X86ISelLowering.cpp revision 845b1899b62f6f0e87d5c939c6bbd46a934fff4e
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55#include <bitset>
56using namespace llvm;
57using namespace dwarf;
58
59STATISTIC(NumTailCalls, "Number of tail calls");
60
61static cl::opt<bool> UseRegMask("x86-use-regmask",
62                                cl::desc("Use register masks for x86 calls"));
63
64// Forward declarations.
65static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
66                       SDValue V2);
67
68/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
69/// sets things up to match to an AVX VEXTRACTF128 instruction or a
70/// simple subregister reference.  Idx is an index in the 128 bits we
71/// want.  It need not be aligned to a 128-bit bounday.  That makes
72/// lowering EXTRACT_VECTOR_ELT operations easier.
73static SDValue Extract128BitVector(SDValue Vec,
74                                   SDValue Idx,
75                                   SelectionDAG &DAG,
76                                   DebugLoc dl) {
77  EVT VT = Vec.getValueType();
78  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
79  EVT ElVT = VT.getVectorElementType();
80  int Factor = VT.getSizeInBits()/128;
81  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
82                                  VT.getVectorNumElements()/Factor);
83
84  // Extract from UNDEF is UNDEF.
85  if (Vec.getOpcode() == ISD::UNDEF)
86    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
87
88  if (isa<ConstantSDNode>(Idx)) {
89    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
90
91    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
92    // we can match to VEXTRACTF128.
93    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
94
95    // This is the index of the first element of the 128-bit chunk
96    // we want.
97    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
98                                 * ElemsPerChunk);
99
100    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
101    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
102                                 VecIdx);
103
104    return Result;
105  }
106
107  return SDValue();
108}
109
110/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
111/// sets things up to match to an AVX VINSERTF128 instruction or a
112/// simple superregister reference.  Idx is an index in the 128 bits
113/// we want.  It need not be aligned to a 128-bit bounday.  That makes
114/// lowering INSERT_VECTOR_ELT operations easier.
115static SDValue Insert128BitVector(SDValue Result,
116                                  SDValue Vec,
117                                  SDValue Idx,
118                                  SelectionDAG &DAG,
119                                  DebugLoc dl) {
120  if (isa<ConstantSDNode>(Idx)) {
121    EVT VT = Vec.getValueType();
122    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
123
124    EVT ElVT = VT.getVectorElementType();
125    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
126    EVT ResultVT = Result.getValueType();
127
128    // Insert the relevant 128 bits.
129    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
130
131    // This is the index of the first element of the 128-bit chunk
132    // we want.
133    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
134                                 * ElemsPerChunk);
135
136    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
137    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
138                         VecIdx);
139    return Result;
140  }
141
142  return SDValue();
143}
144
145static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
146  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
147  bool is64Bit = Subtarget->is64Bit();
148
149  if (Subtarget->isTargetEnvMacho()) {
150    if (is64Bit)
151      return new X8664_MachoTargetObjectFile();
152    return new TargetLoweringObjectFileMachO();
153  }
154
155  if (Subtarget->isTargetELF())
156    return new TargetLoweringObjectFileELF();
157  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
158    return new TargetLoweringObjectFileCOFF();
159  llvm_unreachable("unknown subtarget type");
160}
161
162X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
163  : TargetLowering(TM, createTLOF(TM)) {
164  Subtarget = &TM.getSubtarget<X86Subtarget>();
165  X86ScalarSSEf64 = Subtarget->hasSSE2();
166  X86ScalarSSEf32 = Subtarget->hasSSE1();
167  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
168
169  RegInfo = TM.getRegisterInfo();
170  TD = getTargetData();
171
172  // Set up the TargetLowering object.
173  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
174
175  // X86 is weird, it always uses i8 for shift amounts and setcc results.
176  setBooleanContents(ZeroOrOneBooleanContent);
177  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
178  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
179
180  // For 64-bit since we have so many registers use the ILP scheduler, for
181  // 32-bit code use the register pressure specific scheduling.
182  if (Subtarget->is64Bit())
183    setSchedulingPreference(Sched::ILP);
184  else
185    setSchedulingPreference(Sched::RegPressure);
186  setStackPointerRegisterToSaveRestore(X86StackPtr);
187
188  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
189    // Setup Windows compiler runtime calls.
190    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
191    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
192    setLibcallName(RTLIB::SREM_I64, "_allrem");
193    setLibcallName(RTLIB::UREM_I64, "_aullrem");
194    setLibcallName(RTLIB::MUL_I64, "_allmul");
195    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
196    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
197    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
201    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
203    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
204  }
205
206  if (Subtarget->isTargetDarwin()) {
207    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
208    setUseUnderscoreSetJmp(false);
209    setUseUnderscoreLongJmp(false);
210  } else if (Subtarget->isTargetMingw()) {
211    // MS runtime is weird: it exports _setjmp, but longjmp!
212    setUseUnderscoreSetJmp(true);
213    setUseUnderscoreLongJmp(false);
214  } else {
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(true);
217  }
218
219  // Set up the register classes.
220  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
221  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
222  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
223  if (Subtarget->is64Bit())
224    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
225
226  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
227
228  // We don't accept any truncstore of integer registers.
229  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
230  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
233  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
234  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
235
236  // SETOEQ and SETUNE require checking two conditions.
237  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
238  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
239  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
243
244  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
245  // operation.
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
247  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
248  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
249
250  if (Subtarget->is64Bit()) {
251    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
252    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
253  } else if (!TM.Options.UseSoftFloat) {
254    // We have an algorithm for SSE2->double, and we turn this into a
255    // 64-bit FILD followed by conditional FADD for other targets.
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257    // We have an algorithm for SSE2, and we turn this into a 64-bit
258    // FILD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
260  }
261
262  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
263  // this operation.
264  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
265  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
266
267  if (!TM.Options.UseSoftFloat) {
268    // SSE has no i16 to fp conversion, only i32
269    if (X86ScalarSSEf32) {
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
271      // f32 and f64 cases are Legal, f80 case is not
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
273    } else {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    }
277  } else {
278    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
279    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
280  }
281
282  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
283  // are Legal, f80 is custom lowered.
284  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
285  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
286
287  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
288  // this operation.
289  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
290  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
291
292  if (X86ScalarSSEf32) {
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
294    // f32 and f64 cases are Legal, f80 case is not
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
296  } else {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  }
300
301  // Handle FP_TO_UINT by promoting the destination to a larger signed
302  // conversion.
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
304  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
305  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
306
307  if (Subtarget->is64Bit()) {
308    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
309    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
310  } else if (!TM.Options.UseSoftFloat) {
311    // Since AVX is a superset of SSE3, only check for SSE here.
312    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
313      // Expand FP_TO_UINT into a select.
314      // FIXME: We would like to use a Custom expander here eventually to do
315      // the optimal thing for SSE vs. the default expansion in the legalizer.
316      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
317    else
318      // With SSE3 we can use fisttpll to convert to a signed i64; without
319      // SSE, we're stuck with a fistpll.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
321  }
322
323  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
324  if (!X86ScalarSSEf64) {
325    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
326    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
327    if (Subtarget->is64Bit()) {
328      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
329      // Without SSE, i64->f64 goes through memory.
330      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
331    }
332  }
333
334  // Scalar integer divide and remainder are lowered to use operations that
335  // produce two results, to match the available instructions. This exposes
336  // the two-result form to trivial CSE, which is able to combine x/y and x%y
337  // into a single instruction.
338  //
339  // Scalar integer multiply-high is also lowered to use two-result
340  // operations, to match the available instructions. However, plain multiply
341  // (low) operations are left as Legal, as there are single-result
342  // instructions for this in x86. Using the two-result multiply instructions
343  // when both high and low results are needed must be arranged by dagcombine.
344  for (unsigned i = 0, e = 4; i != e; ++i) {
345    MVT VT = IntVTs[i];
346    setOperationAction(ISD::MULHS, VT, Expand);
347    setOperationAction(ISD::MULHU, VT, Expand);
348    setOperationAction(ISD::SDIV, VT, Expand);
349    setOperationAction(ISD::UDIV, VT, Expand);
350    setOperationAction(ISD::SREM, VT, Expand);
351    setOperationAction(ISD::UREM, VT, Expand);
352
353    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
354    setOperationAction(ISD::ADDC, VT, Custom);
355    setOperationAction(ISD::ADDE, VT, Custom);
356    setOperationAction(ISD::SUBC, VT, Custom);
357    setOperationAction(ISD::SUBE, VT, Custom);
358  }
359
360  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
361  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
362  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
363  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
364  if (Subtarget->is64Bit())
365    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
366  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
367  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
368  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
369  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
370  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
371  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
372  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
373  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
374
375  // Promote the i8 variants and force them on up to i32 which has a shorter
376  // encoding.
377  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
378  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
379  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
380  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
383    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
384    if (Subtarget->is64Bit())
385      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
386  } else {
387    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
388    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
391  }
392
393  if (Subtarget->hasLZCNT()) {
394    // When promoting the i8 variants, force them to i32 for a shorter
395    // encoding.
396    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
397    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
398    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
399    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
400    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
401    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
402    if (Subtarget->is64Bit())
403      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
404  } else {
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
406    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
407    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
411    if (Subtarget->is64Bit()) {
412      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
414    }
415  }
416
417  if (Subtarget->hasPOPCNT()) {
418    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
419  } else {
420    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
421    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
422    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
423    if (Subtarget->is64Bit())
424      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
425  }
426
427  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
428  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
429
430  // These should be promoted to a larger select which is supported.
431  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
432  // X86 wants to expand cmov itself.
433  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
434  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
435  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
439  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
441  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
445  if (Subtarget->is64Bit()) {
446    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
447    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
448  }
449  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
450
451  // Darwin ABI issue.
452  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
453  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
454  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
455  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
456  if (Subtarget->is64Bit())
457    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
458  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
459  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
460  if (Subtarget->is64Bit()) {
461    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
462    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
463    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
464    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
465    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
466  }
467  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
468  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
469  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
470  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
471  if (Subtarget->is64Bit()) {
472    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
473    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
474    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
475  }
476
477  if (Subtarget->hasSSE1())
478    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
479
480  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
481  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
482
483  // On X86 and X86-64, atomic operations are lowered to locked instructions.
484  // Locked instructions, in turn, have implicit fence semantics (all memory
485  // operations are flushed before issuing the locked instruction, and they
486  // are not buffered), so we can fold away the common pattern of
487  // fence-atomic-fence.
488  setShouldFoldAtomicFences(true);
489
490  // Expand certain atomics
491  for (unsigned i = 0, e = 4; i != e; ++i) {
492    MVT VT = IntVTs[i];
493    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
494    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
495    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
496  }
497
498  if (!Subtarget->is64Bit()) {
499    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
507  }
508
509  if (Subtarget->hasCmpxchg16b()) {
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
511  }
512
513  // FIXME - use subtarget debug flags
514  if (!Subtarget->isTargetDarwin() &&
515      !Subtarget->isTargetELF() &&
516      !Subtarget->isTargetCygMing()) {
517    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
518  }
519
520  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
521  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
524  if (Subtarget->is64Bit()) {
525    setExceptionPointerRegister(X86::RAX);
526    setExceptionSelectorRegister(X86::RDX);
527  } else {
528    setExceptionPointerRegister(X86::EAX);
529    setExceptionSelectorRegister(X86::EDX);
530  }
531  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
532  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
533
534  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
535  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
536
537  setOperationAction(ISD::TRAP, MVT::Other, Legal);
538
539  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
540  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
541  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
542  if (Subtarget->is64Bit()) {
543    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
544    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
545  } else {
546    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
547    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
548  }
549
550  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
551  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
552
553  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
554    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
555                       MVT::i64 : MVT::i32, Custom);
556  else if (TM.Options.EnableSegmentedStacks)
557    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
558                       MVT::i64 : MVT::i32, Custom);
559  else
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Expand);
562
563  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
564    // f32 and f64 use SSE.
565    // Set up the FP register classes.
566    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
567    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
568
569    // Use ANDPD to simulate FABS.
570    setOperationAction(ISD::FABS , MVT::f64, Custom);
571    setOperationAction(ISD::FABS , MVT::f32, Custom);
572
573    // Use XORP to simulate FNEG.
574    setOperationAction(ISD::FNEG , MVT::f64, Custom);
575    setOperationAction(ISD::FNEG , MVT::f32, Custom);
576
577    // Use ANDPD and ORPD to simulate FCOPYSIGN.
578    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
579    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
580
581    // Lower this to FGETSIGNx86 plus an AND.
582    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
583    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
584
585    // We don't support sin/cos/fmod
586    setOperationAction(ISD::FSIN , MVT::f64, Expand);
587    setOperationAction(ISD::FCOS , MVT::f64, Expand);
588    setOperationAction(ISD::FSIN , MVT::f32, Expand);
589    setOperationAction(ISD::FCOS , MVT::f32, Expand);
590
591    // Expand FP immediates into loads from the stack, except for the special
592    // cases we handle.
593    addLegalFPImmediate(APFloat(+0.0)); // xorpd
594    addLegalFPImmediate(APFloat(+0.0f)); // xorps
595  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
596    // Use SSE for f32, x87 for f64.
597    // Set up the FP register classes.
598    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
599    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
600
601    // Use ANDPS to simulate FABS.
602    setOperationAction(ISD::FABS , MVT::f32, Custom);
603
604    // Use XORP to simulate FNEG.
605    setOperationAction(ISD::FNEG , MVT::f32, Custom);
606
607    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
608
609    // Use ANDPS and ORPS to simulate FCOPYSIGN.
610    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
611    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
612
613    // We don't support sin/cos/fmod
614    setOperationAction(ISD::FSIN , MVT::f32, Expand);
615    setOperationAction(ISD::FCOS , MVT::f32, Expand);
616
617    // Special cases we handle for FP constants.
618    addLegalFPImmediate(APFloat(+0.0f)); // xorps
619    addLegalFPImmediate(APFloat(+0.0)); // FLD0
620    addLegalFPImmediate(APFloat(+1.0)); // FLD1
621    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
622    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
623
624    if (!TM.Options.UnsafeFPMath) {
625      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627    }
628  } else if (!TM.Options.UseSoftFloat) {
629    // f32 and f64 in x87.
630    // Set up the FP register classes.
631    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
632    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
633
634    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
635    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
637    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
638
639    if (!TM.Options.UnsafeFPMath) {
640      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
641      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
642    }
643    addLegalFPImmediate(APFloat(+0.0)); // FLD0
644    addLegalFPImmediate(APFloat(+1.0)); // FLD1
645    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
646    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
647    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
651  }
652
653  // We don't support FMA.
654  setOperationAction(ISD::FMA, MVT::f64, Expand);
655  setOperationAction(ISD::FMA, MVT::f32, Expand);
656
657  // Long double always uses X87.
658  if (!TM.Options.UseSoftFloat) {
659    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
660    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
662    {
663      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
664      addLegalFPImmediate(TmpFlt);  // FLD0
665      TmpFlt.changeSign();
666      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
667
668      bool ignored;
669      APFloat TmpFlt2(+1.0);
670      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
671                      &ignored);
672      addLegalFPImmediate(TmpFlt2);  // FLD1
673      TmpFlt2.changeSign();
674      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
675    }
676
677    if (!TM.Options.UnsafeFPMath) {
678      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
679      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
680    }
681
682    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
683    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
684    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
685    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
686    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
687    setOperationAction(ISD::FMA, MVT::f80, Expand);
688  }
689
690  // Always use a library call for pow.
691  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
692  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
693  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
694
695  setOperationAction(ISD::FLOG, MVT::f80, Expand);
696  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
697  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
698  setOperationAction(ISD::FEXP, MVT::f80, Expand);
699  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
700
701  // First set operation action for all vector types to either promote
702  // (for widening) or expand (for scalarization). Then we will selectively
703  // turn on ones that can be effectively codegen'd.
704  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
705       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
706    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
721    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
723    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
724    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
758    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
763    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
764         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
765      setTruncStoreAction((MVT::SimpleValueType)VT,
766                          (MVT::SimpleValueType)InnerVT, Expand);
767    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
768    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
769    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
770  }
771
772  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
773  // with -msoft-float, disable use of MMX as well.
774  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
775    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
776    // No operations on x86mmx supported, everything uses intrinsics.
777  }
778
779  // MMX-sized vectors (other than x86mmx) are expected to be expanded
780  // into smaller operations.
781  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
782  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
783  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
784  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
785  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
786  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
787  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
788  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
789  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
790  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
791  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
792  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
793  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
794  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
795  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
796  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
797  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
798  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
799  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
800  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
801  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
802  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
803  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
804  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
805  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
806  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
807  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
808  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
809  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
810
811  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
812    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
813
814    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
815    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
816    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
817    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
818    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
819    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
820    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
822    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
826  }
827
828  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
829    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
830
831    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
832    // registers cannot be used even for integer operations.
833    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
834    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
835    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
836    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
837
838    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
839    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
840    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
841    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
842    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
843    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
844    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
845    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
846    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
847    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
848    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
849    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
850    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
851    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
852    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
853    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
854
855    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
856    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
857    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
858    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
859
860    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
861    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
865
866    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
867    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
868    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
869    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
871
872    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
873    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
874      EVT VT = (MVT::SimpleValueType)i;
875      // Do not attempt to custom lower non-power-of-2 vectors
876      if (!isPowerOf2_32(VT.getVectorNumElements()))
877        continue;
878      // Do not attempt to custom lower non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881      setOperationAction(ISD::BUILD_VECTOR,
882                         VT.getSimpleVT().SimpleTy, Custom);
883      setOperationAction(ISD::VECTOR_SHUFFLE,
884                         VT.getSimpleVT().SimpleTy, Custom);
885      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
886                         VT.getSimpleVT().SimpleTy, Custom);
887    }
888
889    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
890    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
891    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
892    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
893    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
894    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
895
896    if (Subtarget->is64Bit()) {
897      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
898      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
899    }
900
901    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
902    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
903      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
904      EVT VT = SVT;
905
906      // Do not attempt to promote non-128-bit vectors
907      if (!VT.is128BitVector())
908        continue;
909
910      setOperationAction(ISD::AND,    SVT, Promote);
911      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
912      setOperationAction(ISD::OR,     SVT, Promote);
913      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
914      setOperationAction(ISD::XOR,    SVT, Promote);
915      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
916      setOperationAction(ISD::LOAD,   SVT, Promote);
917      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
918      setOperationAction(ISD::SELECT, SVT, Promote);
919      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
920    }
921
922    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
923
924    // Custom lower v2i64 and v2f64 selects.
925    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
926    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
927    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
928    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
929
930    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
931    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
932  }
933
934  if (Subtarget->hasSSE41()) {
935    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
936    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
937    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
938    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
939    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
940    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
945
946    // FIXME: Do we need to handle scalar-to-vector here?
947    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
948
949    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
950    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
951    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
952    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
953    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
954
955    // i8 and i16 vectors are custom , because the source register and source
956    // source memory operand types are not the same width.  f32 vectors are
957    // custom since the immediate controlling the insert encodes additional
958    // information.
959    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
960    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
961    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
962    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
963
964    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
965    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
966    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
967    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
968
969    // FIXME: these should be Legal but thats only for the case where
970    // the index is constant.  For now custom expand to deal with that.
971    if (Subtarget->is64Bit()) {
972      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
973      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
974    }
975  }
976
977  if (Subtarget->hasSSE2()) {
978    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
979    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
980
981    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
982    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
983
984    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
986
987    if (Subtarget->hasAVX2()) {
988      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
989      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
990
991      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
992      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
993
994      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
995    } else {
996      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
997      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
998
999      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1000      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1001
1002      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1003    }
1004  }
1005
1006  if (Subtarget->hasSSE42())
1007    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1008
1009  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1010    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1011    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1012    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1013    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1014    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1016
1017    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1019    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1020
1021    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1026    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1027
1028    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1033    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1034
1035    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1036    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1037    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1038
1039    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1040    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1041    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1045
1046    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1047    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1048
1049    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1050    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1051
1052    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1057    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1058    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1059
1060    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1061    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1062    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1063
1064    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1066    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1067    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1068
1069    if (Subtarget->hasAVX2()) {
1070      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1071      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1072      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1073      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1074
1075      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1076      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1078      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1081      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1083      // Don't lower v32i8 because there is no 128-bit byte mul
1084
1085      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1094    } else {
1095      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1096      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1097      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1098      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1099
1100      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1103      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1104
1105      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1108      // Don't lower v32i8 because there is no 128-bit byte mul
1109
1110      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1112
1113      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1114      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1115
1116      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1117    }
1118
1119    // Custom lower several nodes for 256-bit types.
1120    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1121                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1122      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1123      EVT VT = SVT;
1124
1125      // Extract subvector is special because the value type
1126      // (result) is 128-bit but the source is 256-bit wide.
1127      if (VT.is128BitVector())
1128        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1129
1130      // Do not attempt to custom lower other non-256-bit vectors
1131      if (!VT.is256BitVector())
1132        continue;
1133
1134      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1135      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1136      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1137      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1138      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1139      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1140    }
1141
1142    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1143    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1144      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1145      EVT VT = SVT;
1146
1147      // Do not attempt to promote non-256-bit vectors
1148      if (!VT.is256BitVector())
1149        continue;
1150
1151      setOperationAction(ISD::AND,    SVT, Promote);
1152      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1153      setOperationAction(ISD::OR,     SVT, Promote);
1154      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1155      setOperationAction(ISD::XOR,    SVT, Promote);
1156      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::LOAD,   SVT, Promote);
1158      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1159      setOperationAction(ISD::SELECT, SVT, Promote);
1160      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1161    }
1162  }
1163
1164  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1165  // of this type with custom code.
1166  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1167         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1168    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1169                       Custom);
1170  }
1171
1172  // We want to custom lower some of our intrinsics.
1173  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1174
1175
1176  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1177  // handle type legalization for these operations here.
1178  //
1179  // FIXME: We really should do custom legalization for addition and
1180  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1181  // than generic legalization for 64-bit multiplication-with-overflow, though.
1182  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1183    // Add/Sub/Mul with overflow operations are custom lowered.
1184    MVT VT = IntVTs[i];
1185    setOperationAction(ISD::SADDO, VT, Custom);
1186    setOperationAction(ISD::UADDO, VT, Custom);
1187    setOperationAction(ISD::SSUBO, VT, Custom);
1188    setOperationAction(ISD::USUBO, VT, Custom);
1189    setOperationAction(ISD::SMULO, VT, Custom);
1190    setOperationAction(ISD::UMULO, VT, Custom);
1191  }
1192
1193  // There are no 8-bit 3-address imul/mul instructions
1194  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1195  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1196
1197  if (!Subtarget->is64Bit()) {
1198    // These libcalls are not available in 32-bit.
1199    setLibcallName(RTLIB::SHL_I128, 0);
1200    setLibcallName(RTLIB::SRL_I128, 0);
1201    setLibcallName(RTLIB::SRA_I128, 0);
1202  }
1203
1204  // We have target-specific dag combine patterns for the following nodes:
1205  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1206  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1207  setTargetDAGCombine(ISD::VSELECT);
1208  setTargetDAGCombine(ISD::SELECT);
1209  setTargetDAGCombine(ISD::SHL);
1210  setTargetDAGCombine(ISD::SRA);
1211  setTargetDAGCombine(ISD::SRL);
1212  setTargetDAGCombine(ISD::OR);
1213  setTargetDAGCombine(ISD::AND);
1214  setTargetDAGCombine(ISD::ADD);
1215  setTargetDAGCombine(ISD::FADD);
1216  setTargetDAGCombine(ISD::FSUB);
1217  setTargetDAGCombine(ISD::SUB);
1218  setTargetDAGCombine(ISD::LOAD);
1219  setTargetDAGCombine(ISD::STORE);
1220  setTargetDAGCombine(ISD::ZERO_EXTEND);
1221  setTargetDAGCombine(ISD::TRUNCATE);
1222  setTargetDAGCombine(ISD::SINT_TO_FP);
1223  if (Subtarget->is64Bit())
1224    setTargetDAGCombine(ISD::MUL);
1225  if (Subtarget->hasBMI())
1226    setTargetDAGCombine(ISD::XOR);
1227
1228  computeRegisterProperties();
1229
1230  // On Darwin, -Os means optimize for size without hurting performance,
1231  // do not reduce the limit.
1232  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1233  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1234  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1235  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1236  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1237  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1238  setPrefLoopAlignment(4); // 2^4 bytes.
1239  benefitFromCodePlacementOpt = true;
1240
1241  setPrefFunctionAlignment(4); // 2^4 bytes.
1242}
1243
1244
1245EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1246  if (!VT.isVector()) return MVT::i8;
1247  return VT.changeVectorElementTypeToInteger();
1248}
1249
1250
1251/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1252/// the desired ByVal argument alignment.
1253static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1254  if (MaxAlign == 16)
1255    return;
1256  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1257    if (VTy->getBitWidth() == 128)
1258      MaxAlign = 16;
1259  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1260    unsigned EltAlign = 0;
1261    getMaxByValAlign(ATy->getElementType(), EltAlign);
1262    if (EltAlign > MaxAlign)
1263      MaxAlign = EltAlign;
1264  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1265    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1266      unsigned EltAlign = 0;
1267      getMaxByValAlign(STy->getElementType(i), EltAlign);
1268      if (EltAlign > MaxAlign)
1269        MaxAlign = EltAlign;
1270      if (MaxAlign == 16)
1271        break;
1272    }
1273  }
1274  return;
1275}
1276
1277/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1278/// function arguments in the caller parameter area. For X86, aggregates
1279/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1280/// are at 4-byte boundaries.
1281unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1282  if (Subtarget->is64Bit()) {
1283    // Max of 8 and alignment of type.
1284    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1285    if (TyAlign > 8)
1286      return TyAlign;
1287    return 8;
1288  }
1289
1290  unsigned Align = 4;
1291  if (Subtarget->hasSSE1())
1292    getMaxByValAlign(Ty, Align);
1293  return Align;
1294}
1295
1296/// getOptimalMemOpType - Returns the target specific optimal type for load
1297/// and store operations as a result of memset, memcpy, and memmove
1298/// lowering. If DstAlign is zero that means it's safe to destination
1299/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1300/// means there isn't a need to check it against alignment requirement,
1301/// probably because the source does not need to be loaded. If
1302/// 'IsZeroVal' is true, that means it's safe to return a
1303/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1304/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1305/// constant so it does not need to be loaded.
1306/// It returns EVT::Other if the type should be determined using generic
1307/// target-independent logic.
1308EVT
1309X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1310                                       unsigned DstAlign, unsigned SrcAlign,
1311                                       bool IsZeroVal,
1312                                       bool MemcpyStrSrc,
1313                                       MachineFunction &MF) const {
1314  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1315  // linux.  This is because the stack realignment code can't handle certain
1316  // cases like PR2962.  This should be removed when PR2962 is fixed.
1317  const Function *F = MF.getFunction();
1318  if (IsZeroVal &&
1319      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1320    if (Size >= 16 &&
1321        (Subtarget->isUnalignedMemAccessFast() ||
1322         ((DstAlign == 0 || DstAlign >= 16) &&
1323          (SrcAlign == 0 || SrcAlign >= 16))) &&
1324        Subtarget->getStackAlignment() >= 16) {
1325      if (Subtarget->getStackAlignment() >= 32) {
1326        if (Subtarget->hasAVX2())
1327          return MVT::v8i32;
1328        if (Subtarget->hasAVX())
1329          return MVT::v8f32;
1330      }
1331      if (Subtarget->hasSSE2())
1332        return MVT::v4i32;
1333      if (Subtarget->hasSSE1())
1334        return MVT::v4f32;
1335    } else if (!MemcpyStrSrc && Size >= 8 &&
1336               !Subtarget->is64Bit() &&
1337               Subtarget->getStackAlignment() >= 8 &&
1338               Subtarget->hasSSE2()) {
1339      // Do not use f64 to lower memcpy if source is string constant. It's
1340      // better to use i32 to avoid the loads.
1341      return MVT::f64;
1342    }
1343  }
1344  if (Subtarget->is64Bit() && Size >= 8)
1345    return MVT::i64;
1346  return MVT::i32;
1347}
1348
1349/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1350/// current function.  The returned value is a member of the
1351/// MachineJumpTableInfo::JTEntryKind enum.
1352unsigned X86TargetLowering::getJumpTableEncoding() const {
1353  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1354  // symbol.
1355  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1356      Subtarget->isPICStyleGOT())
1357    return MachineJumpTableInfo::EK_Custom32;
1358
1359  // Otherwise, use the normal jump table encoding heuristics.
1360  return TargetLowering::getJumpTableEncoding();
1361}
1362
1363const MCExpr *
1364X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1365                                             const MachineBasicBlock *MBB,
1366                                             unsigned uid,MCContext &Ctx) const{
1367  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1368         Subtarget->isPICStyleGOT());
1369  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1370  // entries.
1371  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1372                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1373}
1374
1375/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1376/// jumptable.
1377SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1378                                                    SelectionDAG &DAG) const {
1379  if (!Subtarget->is64Bit())
1380    // This doesn't have DebugLoc associated with it, but is not really the
1381    // same as a Register.
1382    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1383  return Table;
1384}
1385
1386/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1387/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1388/// MCExpr.
1389const MCExpr *X86TargetLowering::
1390getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1391                             MCContext &Ctx) const {
1392  // X86-64 uses RIP relative addressing based on the jump table label.
1393  if (Subtarget->isPICStyleRIPRel())
1394    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1395
1396  // Otherwise, the reference is relative to the PIC base.
1397  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1398}
1399
1400// FIXME: Why this routine is here? Move to RegInfo!
1401std::pair<const TargetRegisterClass*, uint8_t>
1402X86TargetLowering::findRepresentativeClass(EVT VT) const{
1403  const TargetRegisterClass *RRC = 0;
1404  uint8_t Cost = 1;
1405  switch (VT.getSimpleVT().SimpleTy) {
1406  default:
1407    return TargetLowering::findRepresentativeClass(VT);
1408  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1409    RRC = (Subtarget->is64Bit()
1410           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1411    break;
1412  case MVT::x86mmx:
1413    RRC = X86::VR64RegisterClass;
1414    break;
1415  case MVT::f32: case MVT::f64:
1416  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1417  case MVT::v4f32: case MVT::v2f64:
1418  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1419  case MVT::v4f64:
1420    RRC = X86::VR128RegisterClass;
1421    break;
1422  }
1423  return std::make_pair(RRC, Cost);
1424}
1425
1426bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1427                                               unsigned &Offset) const {
1428  if (!Subtarget->isTargetLinux())
1429    return false;
1430
1431  if (Subtarget->is64Bit()) {
1432    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1433    Offset = 0x28;
1434    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1435      AddressSpace = 256;
1436    else
1437      AddressSpace = 257;
1438  } else {
1439    // %gs:0x14 on i386
1440    Offset = 0x14;
1441    AddressSpace = 256;
1442  }
1443  return true;
1444}
1445
1446
1447//===----------------------------------------------------------------------===//
1448//               Return Value Calling Convention Implementation
1449//===----------------------------------------------------------------------===//
1450
1451#include "X86GenCallingConv.inc"
1452
1453bool
1454X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1455				  MachineFunction &MF, bool isVarArg,
1456                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1457                        LLVMContext &Context) const {
1458  SmallVector<CCValAssign, 16> RVLocs;
1459  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1460                 RVLocs, Context);
1461  return CCInfo.CheckReturn(Outs, RetCC_X86);
1462}
1463
1464SDValue
1465X86TargetLowering::LowerReturn(SDValue Chain,
1466                               CallingConv::ID CallConv, bool isVarArg,
1467                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1468                               const SmallVectorImpl<SDValue> &OutVals,
1469                               DebugLoc dl, SelectionDAG &DAG) const {
1470  MachineFunction &MF = DAG.getMachineFunction();
1471  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1472
1473  SmallVector<CCValAssign, 16> RVLocs;
1474  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1475                 RVLocs, *DAG.getContext());
1476  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1477
1478  // Add the regs to the liveout set for the function.
1479  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1480  for (unsigned i = 0; i != RVLocs.size(); ++i)
1481    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1482      MRI.addLiveOut(RVLocs[i].getLocReg());
1483
1484  SDValue Flag;
1485
1486  SmallVector<SDValue, 6> RetOps;
1487  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1488  // Operand #1 = Bytes To Pop
1489  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1490                   MVT::i16));
1491
1492  // Copy the result values into the output registers.
1493  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1494    CCValAssign &VA = RVLocs[i];
1495    assert(VA.isRegLoc() && "Can only return in registers!");
1496    SDValue ValToCopy = OutVals[i];
1497    EVT ValVT = ValToCopy.getValueType();
1498
1499    // If this is x86-64, and we disabled SSE, we can't return FP values,
1500    // or SSE or MMX vectors.
1501    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1502         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1503          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1504      report_fatal_error("SSE register return with SSE disabled");
1505    }
1506    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1507    // llvm-gcc has never done it right and no one has noticed, so this
1508    // should be OK for now.
1509    if (ValVT == MVT::f64 &&
1510        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1511      report_fatal_error("SSE2 register return with SSE2 disabled");
1512
1513    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1514    // the RET instruction and handled by the FP Stackifier.
1515    if (VA.getLocReg() == X86::ST0 ||
1516        VA.getLocReg() == X86::ST1) {
1517      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1518      // change the value to the FP stack register class.
1519      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1520        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1521      RetOps.push_back(ValToCopy);
1522      // Don't emit a copytoreg.
1523      continue;
1524    }
1525
1526    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1527    // which is returned in RAX / RDX.
1528    if (Subtarget->is64Bit()) {
1529      if (ValVT == MVT::x86mmx) {
1530        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1531          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1532          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1533                                  ValToCopy);
1534          // If we don't have SSE2 available, convert to v4f32 so the generated
1535          // register is legal.
1536          if (!Subtarget->hasSSE2())
1537            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1538        }
1539      }
1540    }
1541
1542    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1543    Flag = Chain.getValue(1);
1544  }
1545
1546  // The x86-64 ABI for returning structs by value requires that we copy
1547  // the sret argument into %rax for the return. We saved the argument into
1548  // a virtual register in the entry block, so now we copy the value out
1549  // and into %rax.
1550  if (Subtarget->is64Bit() &&
1551      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1552    MachineFunction &MF = DAG.getMachineFunction();
1553    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1554    unsigned Reg = FuncInfo->getSRetReturnReg();
1555    assert(Reg &&
1556           "SRetReturnReg should have been set in LowerFormalArguments().");
1557    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1558
1559    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1560    Flag = Chain.getValue(1);
1561
1562    // RAX now acts like a return value.
1563    MRI.addLiveOut(X86::RAX);
1564  }
1565
1566  RetOps[0] = Chain;  // Update chain.
1567
1568  // Add the flag if we have it.
1569  if (Flag.getNode())
1570    RetOps.push_back(Flag);
1571
1572  return DAG.getNode(X86ISD::RET_FLAG, dl,
1573                     MVT::Other, &RetOps[0], RetOps.size());
1574}
1575
1576bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1577  if (N->getNumValues() != 1)
1578    return false;
1579  if (!N->hasNUsesOfValue(1, 0))
1580    return false;
1581
1582  SDNode *Copy = *N->use_begin();
1583  if (Copy->getOpcode() != ISD::CopyToReg &&
1584      Copy->getOpcode() != ISD::FP_EXTEND)
1585    return false;
1586
1587  bool HasRet = false;
1588  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1589       UI != UE; ++UI) {
1590    if (UI->getOpcode() != X86ISD::RET_FLAG)
1591      return false;
1592    HasRet = true;
1593  }
1594
1595  return HasRet;
1596}
1597
1598EVT
1599X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1600                                            ISD::NodeType ExtendKind) const {
1601  MVT ReturnMVT;
1602  // TODO: Is this also valid on 32-bit?
1603  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1604    ReturnMVT = MVT::i8;
1605  else
1606    ReturnMVT = MVT::i32;
1607
1608  EVT MinVT = getRegisterType(Context, ReturnMVT);
1609  return VT.bitsLT(MinVT) ? MinVT : VT;
1610}
1611
1612/// LowerCallResult - Lower the result values of a call into the
1613/// appropriate copies out of appropriate physical registers.
1614///
1615SDValue
1616X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1617                                   CallingConv::ID CallConv, bool isVarArg,
1618                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1619                                   DebugLoc dl, SelectionDAG &DAG,
1620                                   SmallVectorImpl<SDValue> &InVals) const {
1621
1622  // Assign locations to each value returned by this call.
1623  SmallVector<CCValAssign, 16> RVLocs;
1624  bool Is64Bit = Subtarget->is64Bit();
1625  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1626		 getTargetMachine(), RVLocs, *DAG.getContext());
1627  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1628
1629  // Copy all of the result registers out of their specified physreg.
1630  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1631    CCValAssign &VA = RVLocs[i];
1632    EVT CopyVT = VA.getValVT();
1633
1634    // If this is x86-64, and we disabled SSE, we can't return FP values
1635    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1636        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1637      report_fatal_error("SSE register return with SSE disabled");
1638    }
1639
1640    SDValue Val;
1641
1642    // If this is a call to a function that returns an fp value on the floating
1643    // point stack, we must guarantee the the value is popped from the stack, so
1644    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1645    // if the return value is not used. We use the FpPOP_RETVAL instruction
1646    // instead.
1647    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1648      // If we prefer to use the value in xmm registers, copy it out as f80 and
1649      // use a truncate to move it from fp stack reg to xmm reg.
1650      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1651      SDValue Ops[] = { Chain, InFlag };
1652      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1653                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1654      Val = Chain.getValue(0);
1655
1656      // Round the f80 to the right size, which also moves it to the appropriate
1657      // xmm register.
1658      if (CopyVT != VA.getValVT())
1659        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1660                          // This truncation won't change the value.
1661                          DAG.getIntPtrConstant(1));
1662    } else {
1663      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1664                                 CopyVT, InFlag).getValue(1);
1665      Val = Chain.getValue(0);
1666    }
1667    InFlag = Chain.getValue(2);
1668    InVals.push_back(Val);
1669  }
1670
1671  return Chain;
1672}
1673
1674
1675//===----------------------------------------------------------------------===//
1676//                C & StdCall & Fast Calling Convention implementation
1677//===----------------------------------------------------------------------===//
1678//  StdCall calling convention seems to be standard for many Windows' API
1679//  routines and around. It differs from C calling convention just a little:
1680//  callee should clean up the stack, not caller. Symbols should be also
1681//  decorated in some fancy way :) It doesn't support any vector arguments.
1682//  For info on fast calling convention see Fast Calling Convention (tail call)
1683//  implementation LowerX86_32FastCCCallTo.
1684
1685/// CallIsStructReturn - Determines whether a call uses struct return
1686/// semantics.
1687static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1688  if (Outs.empty())
1689    return false;
1690
1691  return Outs[0].Flags.isSRet();
1692}
1693
1694/// ArgsAreStructReturn - Determines whether a function uses struct
1695/// return semantics.
1696static bool
1697ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1698  if (Ins.empty())
1699    return false;
1700
1701  return Ins[0].Flags.isSRet();
1702}
1703
1704/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1705/// by "Src" to address "Dst" with size and alignment information specified by
1706/// the specific parameter attribute. The copy will be passed as a byval
1707/// function parameter.
1708static SDValue
1709CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1710                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1711                          DebugLoc dl) {
1712  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1713
1714  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1715                       /*isVolatile*/false, /*AlwaysInline=*/true,
1716                       MachinePointerInfo(), MachinePointerInfo());
1717}
1718
1719/// IsTailCallConvention - Return true if the calling convention is one that
1720/// supports tail call optimization.
1721static bool IsTailCallConvention(CallingConv::ID CC) {
1722  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1723}
1724
1725bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1726  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1727    return false;
1728
1729  CallSite CS(CI);
1730  CallingConv::ID CalleeCC = CS.getCallingConv();
1731  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1732    return false;
1733
1734  return true;
1735}
1736
1737/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1738/// a tailcall target by changing its ABI.
1739static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1740                                   bool GuaranteedTailCallOpt) {
1741  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1742}
1743
1744SDValue
1745X86TargetLowering::LowerMemArgument(SDValue Chain,
1746                                    CallingConv::ID CallConv,
1747                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1748                                    DebugLoc dl, SelectionDAG &DAG,
1749                                    const CCValAssign &VA,
1750                                    MachineFrameInfo *MFI,
1751                                    unsigned i) const {
1752  // Create the nodes corresponding to a load from this parameter slot.
1753  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1754  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1755                              getTargetMachine().Options.GuaranteedTailCallOpt);
1756  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1757  EVT ValVT;
1758
1759  // If value is passed by pointer we have address passed instead of the value
1760  // itself.
1761  if (VA.getLocInfo() == CCValAssign::Indirect)
1762    ValVT = VA.getLocVT();
1763  else
1764    ValVT = VA.getValVT();
1765
1766  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1767  // changed with more analysis.
1768  // In case of tail call optimization mark all arguments mutable. Since they
1769  // could be overwritten by lowering of arguments in case of a tail call.
1770  if (Flags.isByVal()) {
1771    unsigned Bytes = Flags.getByValSize();
1772    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1773    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1774    return DAG.getFrameIndex(FI, getPointerTy());
1775  } else {
1776    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1777                                    VA.getLocMemOffset(), isImmutable);
1778    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1779    return DAG.getLoad(ValVT, dl, Chain, FIN,
1780                       MachinePointerInfo::getFixedStack(FI),
1781                       false, false, false, 0);
1782  }
1783}
1784
1785SDValue
1786X86TargetLowering::LowerFormalArguments(SDValue Chain,
1787                                        CallingConv::ID CallConv,
1788                                        bool isVarArg,
1789                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1790                                        DebugLoc dl,
1791                                        SelectionDAG &DAG,
1792                                        SmallVectorImpl<SDValue> &InVals)
1793                                          const {
1794  MachineFunction &MF = DAG.getMachineFunction();
1795  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1796
1797  const Function* Fn = MF.getFunction();
1798  if (Fn->hasExternalLinkage() &&
1799      Subtarget->isTargetCygMing() &&
1800      Fn->getName() == "main")
1801    FuncInfo->setForceFramePointer(true);
1802
1803  MachineFrameInfo *MFI = MF.getFrameInfo();
1804  bool Is64Bit = Subtarget->is64Bit();
1805  bool IsWindows = Subtarget->isTargetWindows();
1806  bool IsWin64 = Subtarget->isTargetWin64();
1807
1808  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1809         "Var args not supported with calling convention fastcc or ghc");
1810
1811  // Assign locations to all of the incoming arguments.
1812  SmallVector<CCValAssign, 16> ArgLocs;
1813  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1814                 ArgLocs, *DAG.getContext());
1815
1816  // Allocate shadow area for Win64
1817  if (IsWin64) {
1818    CCInfo.AllocateStack(32, 8);
1819  }
1820
1821  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1822
1823  unsigned LastVal = ~0U;
1824  SDValue ArgValue;
1825  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1826    CCValAssign &VA = ArgLocs[i];
1827    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1828    // places.
1829    assert(VA.getValNo() != LastVal &&
1830           "Don't support value assigned to multiple locs yet");
1831    (void)LastVal;
1832    LastVal = VA.getValNo();
1833
1834    if (VA.isRegLoc()) {
1835      EVT RegVT = VA.getLocVT();
1836      TargetRegisterClass *RC = NULL;
1837      if (RegVT == MVT::i32)
1838        RC = X86::GR32RegisterClass;
1839      else if (Is64Bit && RegVT == MVT::i64)
1840        RC = X86::GR64RegisterClass;
1841      else if (RegVT == MVT::f32)
1842        RC = X86::FR32RegisterClass;
1843      else if (RegVT == MVT::f64)
1844        RC = X86::FR64RegisterClass;
1845      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1846        RC = X86::VR256RegisterClass;
1847      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1848        RC = X86::VR128RegisterClass;
1849      else if (RegVT == MVT::x86mmx)
1850        RC = X86::VR64RegisterClass;
1851      else
1852        llvm_unreachable("Unknown argument type!");
1853
1854      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1855      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1856
1857      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1858      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1859      // right size.
1860      if (VA.getLocInfo() == CCValAssign::SExt)
1861        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1862                               DAG.getValueType(VA.getValVT()));
1863      else if (VA.getLocInfo() == CCValAssign::ZExt)
1864        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1865                               DAG.getValueType(VA.getValVT()));
1866      else if (VA.getLocInfo() == CCValAssign::BCvt)
1867        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1868
1869      if (VA.isExtInLoc()) {
1870        // Handle MMX values passed in XMM regs.
1871        if (RegVT.isVector()) {
1872          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1873                                 ArgValue);
1874        } else
1875          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1876      }
1877    } else {
1878      assert(VA.isMemLoc());
1879      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1880    }
1881
1882    // If value is passed via pointer - do a load.
1883    if (VA.getLocInfo() == CCValAssign::Indirect)
1884      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1885                             MachinePointerInfo(), false, false, false, 0);
1886
1887    InVals.push_back(ArgValue);
1888  }
1889
1890  // The x86-64 ABI for returning structs by value requires that we copy
1891  // the sret argument into %rax for the return. Save the argument into
1892  // a virtual register so that we can access it from the return points.
1893  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1894    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1895    unsigned Reg = FuncInfo->getSRetReturnReg();
1896    if (!Reg) {
1897      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1898      FuncInfo->setSRetReturnReg(Reg);
1899    }
1900    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1901    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1902  }
1903
1904  unsigned StackSize = CCInfo.getNextStackOffset();
1905  // Align stack specially for tail calls.
1906  if (FuncIsMadeTailCallSafe(CallConv,
1907                             MF.getTarget().Options.GuaranteedTailCallOpt))
1908    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1909
1910  // If the function takes variable number of arguments, make a frame index for
1911  // the start of the first vararg value... for expansion of llvm.va_start.
1912  if (isVarArg) {
1913    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1914                    CallConv != CallingConv::X86_ThisCall)) {
1915      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1916    }
1917    if (Is64Bit) {
1918      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1919
1920      // FIXME: We should really autogenerate these arrays
1921      static const unsigned GPR64ArgRegsWin64[] = {
1922        X86::RCX, X86::RDX, X86::R8,  X86::R9
1923      };
1924      static const unsigned GPR64ArgRegs64Bit[] = {
1925        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1926      };
1927      static const unsigned XMMArgRegs64Bit[] = {
1928        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1929        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1930      };
1931      const unsigned *GPR64ArgRegs;
1932      unsigned NumXMMRegs = 0;
1933
1934      if (IsWin64) {
1935        // The XMM registers which might contain var arg parameters are shadowed
1936        // in their paired GPR.  So we only need to save the GPR to their home
1937        // slots.
1938        TotalNumIntRegs = 4;
1939        GPR64ArgRegs = GPR64ArgRegsWin64;
1940      } else {
1941        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1942        GPR64ArgRegs = GPR64ArgRegs64Bit;
1943
1944        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1945                                                TotalNumXMMRegs);
1946      }
1947      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1948                                                       TotalNumIntRegs);
1949
1950      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1951      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1952             "SSE register cannot be used when SSE is disabled!");
1953      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1954               NoImplicitFloatOps) &&
1955             "SSE register cannot be used when SSE is disabled!");
1956      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1957          !Subtarget->hasSSE1())
1958        // Kernel mode asks for SSE to be disabled, so don't push them
1959        // on the stack.
1960        TotalNumXMMRegs = 0;
1961
1962      if (IsWin64) {
1963        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1964        // Get to the caller-allocated home save location.  Add 8 to account
1965        // for the return address.
1966        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1967        FuncInfo->setRegSaveFrameIndex(
1968          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1969        // Fixup to set vararg frame on shadow area (4 x i64).
1970        if (NumIntRegs < 4)
1971          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1972      } else {
1973        // For X86-64, if there are vararg parameters that are passed via
1974        // registers, then we must store them to their spots on the stack so
1975        // they may be loaded by deferencing the result of va_next.
1976        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1977        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1978        FuncInfo->setRegSaveFrameIndex(
1979          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1980                               false));
1981      }
1982
1983      // Store the integer parameter registers.
1984      SmallVector<SDValue, 8> MemOps;
1985      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1986                                        getPointerTy());
1987      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1988      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1989        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1990                                  DAG.getIntPtrConstant(Offset));
1991        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1992                                     X86::GR64RegisterClass);
1993        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1994        SDValue Store =
1995          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1996                       MachinePointerInfo::getFixedStack(
1997                         FuncInfo->getRegSaveFrameIndex(), Offset),
1998                       false, false, 0);
1999        MemOps.push_back(Store);
2000        Offset += 8;
2001      }
2002
2003      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2004        // Now store the XMM (fp + vector) parameter registers.
2005        SmallVector<SDValue, 11> SaveXMMOps;
2006        SaveXMMOps.push_back(Chain);
2007
2008        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2009        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2010        SaveXMMOps.push_back(ALVal);
2011
2012        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2013                               FuncInfo->getRegSaveFrameIndex()));
2014        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2015                               FuncInfo->getVarArgsFPOffset()));
2016
2017        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2018          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2019                                       X86::VR128RegisterClass);
2020          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2021          SaveXMMOps.push_back(Val);
2022        }
2023        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2024                                     MVT::Other,
2025                                     &SaveXMMOps[0], SaveXMMOps.size()));
2026      }
2027
2028      if (!MemOps.empty())
2029        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2030                            &MemOps[0], MemOps.size());
2031    }
2032  }
2033
2034  // Some CCs need callee pop.
2035  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2036                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2037    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2038  } else {
2039    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2040    // If this is an sret function, the return should pop the hidden pointer.
2041    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2042        ArgsAreStructReturn(Ins))
2043      FuncInfo->setBytesToPopOnReturn(4);
2044  }
2045
2046  if (!Is64Bit) {
2047    // RegSaveFrameIndex is X86-64 only.
2048    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2049    if (CallConv == CallingConv::X86_FastCall ||
2050        CallConv == CallingConv::X86_ThisCall)
2051      // fastcc functions can't have varargs.
2052      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2053  }
2054
2055  FuncInfo->setArgumentStackSize(StackSize);
2056
2057  return Chain;
2058}
2059
2060SDValue
2061X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2062                                    SDValue StackPtr, SDValue Arg,
2063                                    DebugLoc dl, SelectionDAG &DAG,
2064                                    const CCValAssign &VA,
2065                                    ISD::ArgFlagsTy Flags) const {
2066  unsigned LocMemOffset = VA.getLocMemOffset();
2067  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2068  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2069  if (Flags.isByVal())
2070    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2071
2072  return DAG.getStore(Chain, dl, Arg, PtrOff,
2073                      MachinePointerInfo::getStack(LocMemOffset),
2074                      false, false, 0);
2075}
2076
2077/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2078/// optimization is performed and it is required.
2079SDValue
2080X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2081                                           SDValue &OutRetAddr, SDValue Chain,
2082                                           bool IsTailCall, bool Is64Bit,
2083                                           int FPDiff, DebugLoc dl) const {
2084  // Adjust the Return address stack slot.
2085  EVT VT = getPointerTy();
2086  OutRetAddr = getReturnAddressFrameIndex(DAG);
2087
2088  // Load the "old" Return address.
2089  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2090                           false, false, false, 0);
2091  return SDValue(OutRetAddr.getNode(), 1);
2092}
2093
2094/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2095/// optimization is performed and it is required (FPDiff!=0).
2096static SDValue
2097EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2098                         SDValue Chain, SDValue RetAddrFrIdx,
2099                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2100  // Store the return address to the appropriate stack slot.
2101  if (!FPDiff) return Chain;
2102  // Calculate the new stack slot for the return address.
2103  int SlotSize = Is64Bit ? 8 : 4;
2104  int NewReturnAddrFI =
2105    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2106  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2107  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2108  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2109                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2110                       false, false, 0);
2111  return Chain;
2112}
2113
2114SDValue
2115X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2116                             CallingConv::ID CallConv, bool isVarArg,
2117                             bool &isTailCall,
2118                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2119                             const SmallVectorImpl<SDValue> &OutVals,
2120                             const SmallVectorImpl<ISD::InputArg> &Ins,
2121                             DebugLoc dl, SelectionDAG &DAG,
2122                             SmallVectorImpl<SDValue> &InVals) const {
2123  MachineFunction &MF = DAG.getMachineFunction();
2124  bool Is64Bit        = Subtarget->is64Bit();
2125  bool IsWin64        = Subtarget->isTargetWin64();
2126  bool IsWindows      = Subtarget->isTargetWindows();
2127  bool IsStructRet    = CallIsStructReturn(Outs);
2128  bool IsSibcall      = false;
2129
2130  if (MF.getTarget().Options.DisableTailCalls)
2131    isTailCall = false;
2132
2133  if (isTailCall) {
2134    // Check if it's really possible to do a tail call.
2135    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2136                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2137                                                   Outs, OutVals, Ins, DAG);
2138
2139    // Sibcalls are automatically detected tailcalls which do not require
2140    // ABI changes.
2141    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2142      IsSibcall = true;
2143
2144    if (isTailCall)
2145      ++NumTailCalls;
2146  }
2147
2148  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2149         "Var args not supported with calling convention fastcc or ghc");
2150
2151  // Analyze operands of the call, assigning locations to each operand.
2152  SmallVector<CCValAssign, 16> ArgLocs;
2153  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2154                 ArgLocs, *DAG.getContext());
2155
2156  // Allocate shadow area for Win64
2157  if (IsWin64) {
2158    CCInfo.AllocateStack(32, 8);
2159  }
2160
2161  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2162
2163  // Get a count of how many bytes are to be pushed on the stack.
2164  unsigned NumBytes = CCInfo.getNextStackOffset();
2165  if (IsSibcall)
2166    // This is a sibcall. The memory operands are available in caller's
2167    // own caller's stack.
2168    NumBytes = 0;
2169  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2170           IsTailCallConvention(CallConv))
2171    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2172
2173  int FPDiff = 0;
2174  if (isTailCall && !IsSibcall) {
2175    // Lower arguments at fp - stackoffset + fpdiff.
2176    unsigned NumBytesCallerPushed =
2177      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2178    FPDiff = NumBytesCallerPushed - NumBytes;
2179
2180    // Set the delta of movement of the returnaddr stackslot.
2181    // But only set if delta is greater than previous delta.
2182    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2183      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2184  }
2185
2186  if (!IsSibcall)
2187    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2188
2189  SDValue RetAddrFrIdx;
2190  // Load return address for tail calls.
2191  if (isTailCall && FPDiff)
2192    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2193                                    Is64Bit, FPDiff, dl);
2194
2195  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2196  SmallVector<SDValue, 8> MemOpChains;
2197  SDValue StackPtr;
2198
2199  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2200  // of tail call optimization arguments are handle later.
2201  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2202    CCValAssign &VA = ArgLocs[i];
2203    EVT RegVT = VA.getLocVT();
2204    SDValue Arg = OutVals[i];
2205    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2206    bool isByVal = Flags.isByVal();
2207
2208    // Promote the value if needed.
2209    switch (VA.getLocInfo()) {
2210    default: llvm_unreachable("Unknown loc info!");
2211    case CCValAssign::Full: break;
2212    case CCValAssign::SExt:
2213      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2214      break;
2215    case CCValAssign::ZExt:
2216      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2217      break;
2218    case CCValAssign::AExt:
2219      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2220        // Special case: passing MMX values in XMM registers.
2221        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2222        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2223        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2224      } else
2225        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2226      break;
2227    case CCValAssign::BCvt:
2228      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2229      break;
2230    case CCValAssign::Indirect: {
2231      // Store the argument.
2232      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2233      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2234      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2235                           MachinePointerInfo::getFixedStack(FI),
2236                           false, false, 0);
2237      Arg = SpillSlot;
2238      break;
2239    }
2240    }
2241
2242    if (VA.isRegLoc()) {
2243      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2244      if (isVarArg && IsWin64) {
2245        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2246        // shadow reg if callee is a varargs function.
2247        unsigned ShadowReg = 0;
2248        switch (VA.getLocReg()) {
2249        case X86::XMM0: ShadowReg = X86::RCX; break;
2250        case X86::XMM1: ShadowReg = X86::RDX; break;
2251        case X86::XMM2: ShadowReg = X86::R8; break;
2252        case X86::XMM3: ShadowReg = X86::R9; break;
2253        }
2254        if (ShadowReg)
2255          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2256      }
2257    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2258      assert(VA.isMemLoc());
2259      if (StackPtr.getNode() == 0)
2260        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2261      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2262                                             dl, DAG, VA, Flags));
2263    }
2264  }
2265
2266  if (!MemOpChains.empty())
2267    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2268                        &MemOpChains[0], MemOpChains.size());
2269
2270  // Build a sequence of copy-to-reg nodes chained together with token chain
2271  // and flag operands which copy the outgoing args into registers.
2272  SDValue InFlag;
2273  // Tail call byval lowering might overwrite argument registers so in case of
2274  // tail call optimization the copies to registers are lowered later.
2275  if (!isTailCall)
2276    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2277      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2278                               RegsToPass[i].second, InFlag);
2279      InFlag = Chain.getValue(1);
2280    }
2281
2282  if (Subtarget->isPICStyleGOT()) {
2283    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2284    // GOT pointer.
2285    if (!isTailCall) {
2286      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2287                               DAG.getNode(X86ISD::GlobalBaseReg,
2288                                           DebugLoc(), getPointerTy()),
2289                               InFlag);
2290      InFlag = Chain.getValue(1);
2291    } else {
2292      // If we are tail calling and generating PIC/GOT style code load the
2293      // address of the callee into ECX. The value in ecx is used as target of
2294      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2295      // for tail calls on PIC/GOT architectures. Normally we would just put the
2296      // address of GOT into ebx and then call target@PLT. But for tail calls
2297      // ebx would be restored (since ebx is callee saved) before jumping to the
2298      // target@PLT.
2299
2300      // Note: The actual moving to ECX is done further down.
2301      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2302      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2303          !G->getGlobal()->hasProtectedVisibility())
2304        Callee = LowerGlobalAddress(Callee, DAG);
2305      else if (isa<ExternalSymbolSDNode>(Callee))
2306        Callee = LowerExternalSymbol(Callee, DAG);
2307    }
2308  }
2309
2310  if (Is64Bit && isVarArg && !IsWin64) {
2311    // From AMD64 ABI document:
2312    // For calls that may call functions that use varargs or stdargs
2313    // (prototype-less calls or calls to functions containing ellipsis (...) in
2314    // the declaration) %al is used as hidden argument to specify the number
2315    // of SSE registers used. The contents of %al do not need to match exactly
2316    // the number of registers, but must be an ubound on the number of SSE
2317    // registers used and is in the range 0 - 8 inclusive.
2318
2319    // Count the number of XMM registers allocated.
2320    static const unsigned XMMArgRegs[] = {
2321      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2322      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2323    };
2324    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2325    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2326           && "SSE registers cannot be used when SSE is disabled");
2327
2328    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2329                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2330    InFlag = Chain.getValue(1);
2331  }
2332
2333
2334  // For tail calls lower the arguments to the 'real' stack slot.
2335  if (isTailCall) {
2336    // Force all the incoming stack arguments to be loaded from the stack
2337    // before any new outgoing arguments are stored to the stack, because the
2338    // outgoing stack slots may alias the incoming argument stack slots, and
2339    // the alias isn't otherwise explicit. This is slightly more conservative
2340    // than necessary, because it means that each store effectively depends
2341    // on every argument instead of just those arguments it would clobber.
2342    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2343
2344    SmallVector<SDValue, 8> MemOpChains2;
2345    SDValue FIN;
2346    int FI = 0;
2347    // Do not flag preceding copytoreg stuff together with the following stuff.
2348    InFlag = SDValue();
2349    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2350      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2351        CCValAssign &VA = ArgLocs[i];
2352        if (VA.isRegLoc())
2353          continue;
2354        assert(VA.isMemLoc());
2355        SDValue Arg = OutVals[i];
2356        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2357        // Create frame index.
2358        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2359        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2360        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2361        FIN = DAG.getFrameIndex(FI, getPointerTy());
2362
2363        if (Flags.isByVal()) {
2364          // Copy relative to framepointer.
2365          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2366          if (StackPtr.getNode() == 0)
2367            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2368                                          getPointerTy());
2369          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2370
2371          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2372                                                           ArgChain,
2373                                                           Flags, DAG, dl));
2374        } else {
2375          // Store relative to framepointer.
2376          MemOpChains2.push_back(
2377            DAG.getStore(ArgChain, dl, Arg, FIN,
2378                         MachinePointerInfo::getFixedStack(FI),
2379                         false, false, 0));
2380        }
2381      }
2382    }
2383
2384    if (!MemOpChains2.empty())
2385      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2386                          &MemOpChains2[0], MemOpChains2.size());
2387
2388    // Copy arguments to their registers.
2389    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2390      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2391                               RegsToPass[i].second, InFlag);
2392      InFlag = Chain.getValue(1);
2393    }
2394    InFlag =SDValue();
2395
2396    // Store the return address to the appropriate stack slot.
2397    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2398                                     FPDiff, dl);
2399  }
2400
2401  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2402    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2403    // In the 64-bit large code model, we have to make all calls
2404    // through a register, since the call instruction's 32-bit
2405    // pc-relative offset may not be large enough to hold the whole
2406    // address.
2407  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2408    // If the callee is a GlobalAddress node (quite common, every direct call
2409    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2410    // it.
2411
2412    // We should use extra load for direct calls to dllimported functions in
2413    // non-JIT mode.
2414    const GlobalValue *GV = G->getGlobal();
2415    if (!GV->hasDLLImportLinkage()) {
2416      unsigned char OpFlags = 0;
2417      bool ExtraLoad = false;
2418      unsigned WrapperKind = ISD::DELETED_NODE;
2419
2420      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2421      // external symbols most go through the PLT in PIC mode.  If the symbol
2422      // has hidden or protected visibility, or if it is static or local, then
2423      // we don't need to use the PLT - we can directly call it.
2424      if (Subtarget->isTargetELF() &&
2425          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2426          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2427        OpFlags = X86II::MO_PLT;
2428      } else if (Subtarget->isPICStyleStubAny() &&
2429                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2430                 (!Subtarget->getTargetTriple().isMacOSX() ||
2431                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2432        // PC-relative references to external symbols should go through $stub,
2433        // unless we're building with the leopard linker or later, which
2434        // automatically synthesizes these stubs.
2435        OpFlags = X86II::MO_DARWIN_STUB;
2436      } else if (Subtarget->isPICStyleRIPRel() &&
2437                 isa<Function>(GV) &&
2438                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2439        // If the function is marked as non-lazy, generate an indirect call
2440        // which loads from the GOT directly. This avoids runtime overhead
2441        // at the cost of eager binding (and one extra byte of encoding).
2442        OpFlags = X86II::MO_GOTPCREL;
2443        WrapperKind = X86ISD::WrapperRIP;
2444        ExtraLoad = true;
2445      }
2446
2447      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2448                                          G->getOffset(), OpFlags);
2449
2450      // Add a wrapper if needed.
2451      if (WrapperKind != ISD::DELETED_NODE)
2452        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2453      // Add extra indirection if needed.
2454      if (ExtraLoad)
2455        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2456                             MachinePointerInfo::getGOT(),
2457                             false, false, false, 0);
2458    }
2459  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2460    unsigned char OpFlags = 0;
2461
2462    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2463    // external symbols should go through the PLT.
2464    if (Subtarget->isTargetELF() &&
2465        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2466      OpFlags = X86II::MO_PLT;
2467    } else if (Subtarget->isPICStyleStubAny() &&
2468               (!Subtarget->getTargetTriple().isMacOSX() ||
2469                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2470      // PC-relative references to external symbols should go through $stub,
2471      // unless we're building with the leopard linker or later, which
2472      // automatically synthesizes these stubs.
2473      OpFlags = X86II::MO_DARWIN_STUB;
2474    }
2475
2476    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2477                                         OpFlags);
2478  }
2479
2480  // Returns a chain & a flag for retval copy to use.
2481  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2482  SmallVector<SDValue, 8> Ops;
2483
2484  if (!IsSibcall && isTailCall) {
2485    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2486                           DAG.getIntPtrConstant(0, true), InFlag);
2487    InFlag = Chain.getValue(1);
2488  }
2489
2490  Ops.push_back(Chain);
2491  Ops.push_back(Callee);
2492
2493  if (isTailCall)
2494    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2495
2496  // Add argument registers to the end of the list so that they are known live
2497  // into the call.
2498  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2499    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2500                                  RegsToPass[i].second.getValueType()));
2501
2502  // Add an implicit use GOT pointer in EBX.
2503  if (!isTailCall && Subtarget->isPICStyleGOT())
2504    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2505
2506  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2507  if (Is64Bit && isVarArg && !IsWin64)
2508    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2509
2510  // Experimental: Add a register mask operand representing the call-preserved
2511  // registers.
2512  if (UseRegMask) {
2513    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2514    const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2515    Ops.push_back(DAG.getRegisterMask(Mask));
2516  }
2517
2518  if (InFlag.getNode())
2519    Ops.push_back(InFlag);
2520
2521  if (isTailCall) {
2522    // We used to do:
2523    //// If this is the first return lowered for this function, add the regs
2524    //// to the liveout set for the function.
2525    // This isn't right, although it's probably harmless on x86; liveouts
2526    // should be computed from returns not tail calls.  Consider a void
2527    // function making a tail call to a function returning int.
2528    return DAG.getNode(X86ISD::TC_RETURN, dl,
2529                       NodeTys, &Ops[0], Ops.size());
2530  }
2531
2532  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2533  InFlag = Chain.getValue(1);
2534
2535  // Create the CALLSEQ_END node.
2536  unsigned NumBytesForCalleeToPush;
2537  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2538                       getTargetMachine().Options.GuaranteedTailCallOpt))
2539    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2540  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2541           IsStructRet)
2542    // If this is a call to a struct-return function, the callee
2543    // pops the hidden struct pointer, so we have to push it back.
2544    // This is common for Darwin/X86, Linux & Mingw32 targets.
2545    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2546    NumBytesForCalleeToPush = 4;
2547  else
2548    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2549
2550  // Returns a flag for retval copy to use.
2551  if (!IsSibcall) {
2552    Chain = DAG.getCALLSEQ_END(Chain,
2553                               DAG.getIntPtrConstant(NumBytes, true),
2554                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2555                                                     true),
2556                               InFlag);
2557    InFlag = Chain.getValue(1);
2558  }
2559
2560  // Handle result values, copying them out of physregs into vregs that we
2561  // return.
2562  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2563                         Ins, dl, DAG, InVals);
2564}
2565
2566
2567//===----------------------------------------------------------------------===//
2568//                Fast Calling Convention (tail call) implementation
2569//===----------------------------------------------------------------------===//
2570
2571//  Like std call, callee cleans arguments, convention except that ECX is
2572//  reserved for storing the tail called function address. Only 2 registers are
2573//  free for argument passing (inreg). Tail call optimization is performed
2574//  provided:
2575//                * tailcallopt is enabled
2576//                * caller/callee are fastcc
2577//  On X86_64 architecture with GOT-style position independent code only local
2578//  (within module) calls are supported at the moment.
2579//  To keep the stack aligned according to platform abi the function
2580//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2581//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2582//  If a tail called function callee has more arguments than the caller the
2583//  caller needs to make sure that there is room to move the RETADDR to. This is
2584//  achieved by reserving an area the size of the argument delta right after the
2585//  original REtADDR, but before the saved framepointer or the spilled registers
2586//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2587//  stack layout:
2588//    arg1
2589//    arg2
2590//    RETADDR
2591//    [ new RETADDR
2592//      move area ]
2593//    (possible EBP)
2594//    ESI
2595//    EDI
2596//    local1 ..
2597
2598/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2599/// for a 16 byte align requirement.
2600unsigned
2601X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2602                                               SelectionDAG& DAG) const {
2603  MachineFunction &MF = DAG.getMachineFunction();
2604  const TargetMachine &TM = MF.getTarget();
2605  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2606  unsigned StackAlignment = TFI.getStackAlignment();
2607  uint64_t AlignMask = StackAlignment - 1;
2608  int64_t Offset = StackSize;
2609  uint64_t SlotSize = TD->getPointerSize();
2610  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2611    // Number smaller than 12 so just add the difference.
2612    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2613  } else {
2614    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2615    Offset = ((~AlignMask) & Offset) + StackAlignment +
2616      (StackAlignment-SlotSize);
2617  }
2618  return Offset;
2619}
2620
2621/// MatchingStackOffset - Return true if the given stack call argument is
2622/// already available in the same position (relatively) of the caller's
2623/// incoming argument stack.
2624static
2625bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2626                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2627                         const X86InstrInfo *TII) {
2628  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2629  int FI = INT_MAX;
2630  if (Arg.getOpcode() == ISD::CopyFromReg) {
2631    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2632    if (!TargetRegisterInfo::isVirtualRegister(VR))
2633      return false;
2634    MachineInstr *Def = MRI->getVRegDef(VR);
2635    if (!Def)
2636      return false;
2637    if (!Flags.isByVal()) {
2638      if (!TII->isLoadFromStackSlot(Def, FI))
2639        return false;
2640    } else {
2641      unsigned Opcode = Def->getOpcode();
2642      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2643          Def->getOperand(1).isFI()) {
2644        FI = Def->getOperand(1).getIndex();
2645        Bytes = Flags.getByValSize();
2646      } else
2647        return false;
2648    }
2649  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2650    if (Flags.isByVal())
2651      // ByVal argument is passed in as a pointer but it's now being
2652      // dereferenced. e.g.
2653      // define @foo(%struct.X* %A) {
2654      //   tail call @bar(%struct.X* byval %A)
2655      // }
2656      return false;
2657    SDValue Ptr = Ld->getBasePtr();
2658    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2659    if (!FINode)
2660      return false;
2661    FI = FINode->getIndex();
2662  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2663    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2664    FI = FINode->getIndex();
2665    Bytes = Flags.getByValSize();
2666  } else
2667    return false;
2668
2669  assert(FI != INT_MAX);
2670  if (!MFI->isFixedObjectIndex(FI))
2671    return false;
2672  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2673}
2674
2675/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2676/// for tail call optimization. Targets which want to do tail call
2677/// optimization should implement this function.
2678bool
2679X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2680                                                     CallingConv::ID CalleeCC,
2681                                                     bool isVarArg,
2682                                                     bool isCalleeStructRet,
2683                                                     bool isCallerStructRet,
2684                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2685                                    const SmallVectorImpl<SDValue> &OutVals,
2686                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2687                                                     SelectionDAG& DAG) const {
2688  if (!IsTailCallConvention(CalleeCC) &&
2689      CalleeCC != CallingConv::C)
2690    return false;
2691
2692  // If -tailcallopt is specified, make fastcc functions tail-callable.
2693  const MachineFunction &MF = DAG.getMachineFunction();
2694  const Function *CallerF = DAG.getMachineFunction().getFunction();
2695  CallingConv::ID CallerCC = CallerF->getCallingConv();
2696  bool CCMatch = CallerCC == CalleeCC;
2697
2698  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2699    if (IsTailCallConvention(CalleeCC) && CCMatch)
2700      return true;
2701    return false;
2702  }
2703
2704  // Look for obvious safe cases to perform tail call optimization that do not
2705  // require ABI changes. This is what gcc calls sibcall.
2706
2707  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2708  // emit a special epilogue.
2709  if (RegInfo->needsStackRealignment(MF))
2710    return false;
2711
2712  // Also avoid sibcall optimization if either caller or callee uses struct
2713  // return semantics.
2714  if (isCalleeStructRet || isCallerStructRet)
2715    return false;
2716
2717  // An stdcall caller is expected to clean up its arguments; the callee
2718  // isn't going to do that.
2719  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2720    return false;
2721
2722  // Do not sibcall optimize vararg calls unless all arguments are passed via
2723  // registers.
2724  if (isVarArg && !Outs.empty()) {
2725
2726    // Optimizing for varargs on Win64 is unlikely to be safe without
2727    // additional testing.
2728    if (Subtarget->isTargetWin64())
2729      return false;
2730
2731    SmallVector<CCValAssign, 16> ArgLocs;
2732    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2733		   getTargetMachine(), ArgLocs, *DAG.getContext());
2734
2735    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2736    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2737      if (!ArgLocs[i].isRegLoc())
2738        return false;
2739  }
2740
2741  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2742  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2743  // this into a sibcall.
2744  bool Unused = false;
2745  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2746    if (!Ins[i].Used) {
2747      Unused = true;
2748      break;
2749    }
2750  }
2751  if (Unused) {
2752    SmallVector<CCValAssign, 16> RVLocs;
2753    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2754		   getTargetMachine(), RVLocs, *DAG.getContext());
2755    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2756    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2757      CCValAssign &VA = RVLocs[i];
2758      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2759        return false;
2760    }
2761  }
2762
2763  // If the calling conventions do not match, then we'd better make sure the
2764  // results are returned in the same way as what the caller expects.
2765  if (!CCMatch) {
2766    SmallVector<CCValAssign, 16> RVLocs1;
2767    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2768		    getTargetMachine(), RVLocs1, *DAG.getContext());
2769    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2770
2771    SmallVector<CCValAssign, 16> RVLocs2;
2772    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2773		    getTargetMachine(), RVLocs2, *DAG.getContext());
2774    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2775
2776    if (RVLocs1.size() != RVLocs2.size())
2777      return false;
2778    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2779      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2780        return false;
2781      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2782        return false;
2783      if (RVLocs1[i].isRegLoc()) {
2784        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2785          return false;
2786      } else {
2787        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2788          return false;
2789      }
2790    }
2791  }
2792
2793  // If the callee takes no arguments then go on to check the results of the
2794  // call.
2795  if (!Outs.empty()) {
2796    // Check if stack adjustment is needed. For now, do not do this if any
2797    // argument is passed on the stack.
2798    SmallVector<CCValAssign, 16> ArgLocs;
2799    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2800		   getTargetMachine(), ArgLocs, *DAG.getContext());
2801
2802    // Allocate shadow area for Win64
2803    if (Subtarget->isTargetWin64()) {
2804      CCInfo.AllocateStack(32, 8);
2805    }
2806
2807    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2808    if (CCInfo.getNextStackOffset()) {
2809      MachineFunction &MF = DAG.getMachineFunction();
2810      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2811        return false;
2812
2813      // Check if the arguments are already laid out in the right way as
2814      // the caller's fixed stack objects.
2815      MachineFrameInfo *MFI = MF.getFrameInfo();
2816      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2817      const X86InstrInfo *TII =
2818        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2819      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2820        CCValAssign &VA = ArgLocs[i];
2821        SDValue Arg = OutVals[i];
2822        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2823        if (VA.getLocInfo() == CCValAssign::Indirect)
2824          return false;
2825        if (!VA.isRegLoc()) {
2826          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2827                                   MFI, MRI, TII))
2828            return false;
2829        }
2830      }
2831    }
2832
2833    // If the tailcall address may be in a register, then make sure it's
2834    // possible to register allocate for it. In 32-bit, the call address can
2835    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2836    // callee-saved registers are restored. These happen to be the same
2837    // registers used to pass 'inreg' arguments so watch out for those.
2838    if (!Subtarget->is64Bit() &&
2839        !isa<GlobalAddressSDNode>(Callee) &&
2840        !isa<ExternalSymbolSDNode>(Callee)) {
2841      unsigned NumInRegs = 0;
2842      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2843        CCValAssign &VA = ArgLocs[i];
2844        if (!VA.isRegLoc())
2845          continue;
2846        unsigned Reg = VA.getLocReg();
2847        switch (Reg) {
2848        default: break;
2849        case X86::EAX: case X86::EDX: case X86::ECX:
2850          if (++NumInRegs == 3)
2851            return false;
2852          break;
2853        }
2854      }
2855    }
2856  }
2857
2858  return true;
2859}
2860
2861FastISel *
2862X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2863  return X86::createFastISel(funcInfo);
2864}
2865
2866
2867//===----------------------------------------------------------------------===//
2868//                           Other Lowering Hooks
2869//===----------------------------------------------------------------------===//
2870
2871static bool MayFoldLoad(SDValue Op) {
2872  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2873}
2874
2875static bool MayFoldIntoStore(SDValue Op) {
2876  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2877}
2878
2879static bool isTargetShuffle(unsigned Opcode) {
2880  switch(Opcode) {
2881  default: return false;
2882  case X86ISD::PSHUFD:
2883  case X86ISD::PSHUFHW:
2884  case X86ISD::PSHUFLW:
2885  case X86ISD::SHUFP:
2886  case X86ISD::PALIGN:
2887  case X86ISD::MOVLHPS:
2888  case X86ISD::MOVLHPD:
2889  case X86ISD::MOVHLPS:
2890  case X86ISD::MOVLPS:
2891  case X86ISD::MOVLPD:
2892  case X86ISD::MOVSHDUP:
2893  case X86ISD::MOVSLDUP:
2894  case X86ISD::MOVDDUP:
2895  case X86ISD::MOVSS:
2896  case X86ISD::MOVSD:
2897  case X86ISD::UNPCKL:
2898  case X86ISD::UNPCKH:
2899  case X86ISD::VPERMILP:
2900  case X86ISD::VPERM2X128:
2901    return true;
2902  }
2903}
2904
2905static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2906                                               SDValue V1, SelectionDAG &DAG) {
2907  switch(Opc) {
2908  default: llvm_unreachable("Unknown x86 shuffle node");
2909  case X86ISD::MOVSHDUP:
2910  case X86ISD::MOVSLDUP:
2911  case X86ISD::MOVDDUP:
2912    return DAG.getNode(Opc, dl, VT, V1);
2913  }
2914}
2915
2916static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2917                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2918  switch(Opc) {
2919  default: llvm_unreachable("Unknown x86 shuffle node");
2920  case X86ISD::PSHUFD:
2921  case X86ISD::PSHUFHW:
2922  case X86ISD::PSHUFLW:
2923  case X86ISD::VPERMILP:
2924    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2925  }
2926}
2927
2928static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2929               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2930  switch(Opc) {
2931  default: llvm_unreachable("Unknown x86 shuffle node");
2932  case X86ISD::PALIGN:
2933  case X86ISD::SHUFP:
2934  case X86ISD::VPERM2X128:
2935    return DAG.getNode(Opc, dl, VT, V1, V2,
2936                       DAG.getConstant(TargetMask, MVT::i8));
2937  }
2938}
2939
2940static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2941                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2942  switch(Opc) {
2943  default: llvm_unreachable("Unknown x86 shuffle node");
2944  case X86ISD::MOVLHPS:
2945  case X86ISD::MOVLHPD:
2946  case X86ISD::MOVHLPS:
2947  case X86ISD::MOVLPS:
2948  case X86ISD::MOVLPD:
2949  case X86ISD::MOVSS:
2950  case X86ISD::MOVSD:
2951  case X86ISD::UNPCKL:
2952  case X86ISD::UNPCKH:
2953    return DAG.getNode(Opc, dl, VT, V1, V2);
2954  }
2955}
2956
2957SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2958  MachineFunction &MF = DAG.getMachineFunction();
2959  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2960  int ReturnAddrIndex = FuncInfo->getRAIndex();
2961
2962  if (ReturnAddrIndex == 0) {
2963    // Set up a frame object for the return address.
2964    uint64_t SlotSize = TD->getPointerSize();
2965    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2966                                                           false);
2967    FuncInfo->setRAIndex(ReturnAddrIndex);
2968  }
2969
2970  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2971}
2972
2973
2974bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2975                                       bool hasSymbolicDisplacement) {
2976  // Offset should fit into 32 bit immediate field.
2977  if (!isInt<32>(Offset))
2978    return false;
2979
2980  // If we don't have a symbolic displacement - we don't have any extra
2981  // restrictions.
2982  if (!hasSymbolicDisplacement)
2983    return true;
2984
2985  // FIXME: Some tweaks might be needed for medium code model.
2986  if (M != CodeModel::Small && M != CodeModel::Kernel)
2987    return false;
2988
2989  // For small code model we assume that latest object is 16MB before end of 31
2990  // bits boundary. We may also accept pretty large negative constants knowing
2991  // that all objects are in the positive half of address space.
2992  if (M == CodeModel::Small && Offset < 16*1024*1024)
2993    return true;
2994
2995  // For kernel code model we know that all object resist in the negative half
2996  // of 32bits address space. We may not accept negative offsets, since they may
2997  // be just off and we may accept pretty large positive ones.
2998  if (M == CodeModel::Kernel && Offset > 0)
2999    return true;
3000
3001  return false;
3002}
3003
3004/// isCalleePop - Determines whether the callee is required to pop its
3005/// own arguments. Callee pop is necessary to support tail calls.
3006bool X86::isCalleePop(CallingConv::ID CallingConv,
3007                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3008  if (IsVarArg)
3009    return false;
3010
3011  switch (CallingConv) {
3012  default:
3013    return false;
3014  case CallingConv::X86_StdCall:
3015    return !is64Bit;
3016  case CallingConv::X86_FastCall:
3017    return !is64Bit;
3018  case CallingConv::X86_ThisCall:
3019    return !is64Bit;
3020  case CallingConv::Fast:
3021    return TailCallOpt;
3022  case CallingConv::GHC:
3023    return TailCallOpt;
3024  }
3025}
3026
3027/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3028/// specific condition code, returning the condition code and the LHS/RHS of the
3029/// comparison to make.
3030static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3031                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3032  if (!isFP) {
3033    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3034      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3035        // X > -1   -> X == 0, jump !sign.
3036        RHS = DAG.getConstant(0, RHS.getValueType());
3037        return X86::COND_NS;
3038      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3039        // X < 0   -> X == 0, jump on sign.
3040        return X86::COND_S;
3041      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3042        // X < 1   -> X <= 0
3043        RHS = DAG.getConstant(0, RHS.getValueType());
3044        return X86::COND_LE;
3045      }
3046    }
3047
3048    switch (SetCCOpcode) {
3049    default: llvm_unreachable("Invalid integer condition!");
3050    case ISD::SETEQ:  return X86::COND_E;
3051    case ISD::SETGT:  return X86::COND_G;
3052    case ISD::SETGE:  return X86::COND_GE;
3053    case ISD::SETLT:  return X86::COND_L;
3054    case ISD::SETLE:  return X86::COND_LE;
3055    case ISD::SETNE:  return X86::COND_NE;
3056    case ISD::SETULT: return X86::COND_B;
3057    case ISD::SETUGT: return X86::COND_A;
3058    case ISD::SETULE: return X86::COND_BE;
3059    case ISD::SETUGE: return X86::COND_AE;
3060    }
3061  }
3062
3063  // First determine if it is required or is profitable to flip the operands.
3064
3065  // If LHS is a foldable load, but RHS is not, flip the condition.
3066  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3067      !ISD::isNON_EXTLoad(RHS.getNode())) {
3068    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3069    std::swap(LHS, RHS);
3070  }
3071
3072  switch (SetCCOpcode) {
3073  default: break;
3074  case ISD::SETOLT:
3075  case ISD::SETOLE:
3076  case ISD::SETUGT:
3077  case ISD::SETUGE:
3078    std::swap(LHS, RHS);
3079    break;
3080  }
3081
3082  // On a floating point condition, the flags are set as follows:
3083  // ZF  PF  CF   op
3084  //  0 | 0 | 0 | X > Y
3085  //  0 | 0 | 1 | X < Y
3086  //  1 | 0 | 0 | X == Y
3087  //  1 | 1 | 1 | unordered
3088  switch (SetCCOpcode) {
3089  default: llvm_unreachable("Condcode should be pre-legalized away");
3090  case ISD::SETUEQ:
3091  case ISD::SETEQ:   return X86::COND_E;
3092  case ISD::SETOLT:              // flipped
3093  case ISD::SETOGT:
3094  case ISD::SETGT:   return X86::COND_A;
3095  case ISD::SETOLE:              // flipped
3096  case ISD::SETOGE:
3097  case ISD::SETGE:   return X86::COND_AE;
3098  case ISD::SETUGT:              // flipped
3099  case ISD::SETULT:
3100  case ISD::SETLT:   return X86::COND_B;
3101  case ISD::SETUGE:              // flipped
3102  case ISD::SETULE:
3103  case ISD::SETLE:   return X86::COND_BE;
3104  case ISD::SETONE:
3105  case ISD::SETNE:   return X86::COND_NE;
3106  case ISD::SETUO:   return X86::COND_P;
3107  case ISD::SETO:    return X86::COND_NP;
3108  case ISD::SETOEQ:
3109  case ISD::SETUNE:  return X86::COND_INVALID;
3110  }
3111}
3112
3113/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3114/// code. Current x86 isa includes the following FP cmov instructions:
3115/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3116static bool hasFPCMov(unsigned X86CC) {
3117  switch (X86CC) {
3118  default:
3119    return false;
3120  case X86::COND_B:
3121  case X86::COND_BE:
3122  case X86::COND_E:
3123  case X86::COND_P:
3124  case X86::COND_A:
3125  case X86::COND_AE:
3126  case X86::COND_NE:
3127  case X86::COND_NP:
3128    return true;
3129  }
3130}
3131
3132/// isFPImmLegal - Returns true if the target can instruction select the
3133/// specified FP immediate natively. If false, the legalizer will
3134/// materialize the FP immediate as a load from a constant pool.
3135bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3136  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3137    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3138      return true;
3139  }
3140  return false;
3141}
3142
3143/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3144/// the specified range (L, H].
3145static bool isUndefOrInRange(int Val, int Low, int Hi) {
3146  return (Val < 0) || (Val >= Low && Val < Hi);
3147}
3148
3149/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3150/// specified value.
3151static bool isUndefOrEqual(int Val, int CmpVal) {
3152  if (Val < 0 || Val == CmpVal)
3153    return true;
3154  return false;
3155}
3156
3157/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3158/// from position Pos and ending in Pos+Size, falls within the specified
3159/// sequential range (L, L+Pos]. or is undef.
3160static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3161                                       int Pos, int Size, int Low) {
3162  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3163    if (!isUndefOrEqual(Mask[i], Low))
3164      return false;
3165  return true;
3166}
3167
3168/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3169/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3170/// the second operand.
3171static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3172  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3173    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3174  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3175    return (Mask[0] < 2 && Mask[1] < 2);
3176  return false;
3177}
3178
3179bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3180  return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3181}
3182
3183/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3184/// is suitable for input to PSHUFHW.
3185static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3186  if (VT != MVT::v8i16)
3187    return false;
3188
3189  // Lower quadword copied in order or undef.
3190  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3191    return false;
3192
3193  // Upper quadword shuffled.
3194  for (unsigned i = 4; i != 8; ++i)
3195    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3196      return false;
3197
3198  return true;
3199}
3200
3201bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3202  return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3203}
3204
3205/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3206/// is suitable for input to PSHUFLW.
3207static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3208  if (VT != MVT::v8i16)
3209    return false;
3210
3211  // Upper quadword copied in order.
3212  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3213    return false;
3214
3215  // Lower quadword shuffled.
3216  for (unsigned i = 0; i != 4; ++i)
3217    if (Mask[i] >= 4)
3218      return false;
3219
3220  return true;
3221}
3222
3223bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3224  return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3225}
3226
3227/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3228/// is suitable for input to PALIGNR.
3229static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3230                          const X86Subtarget *Subtarget) {
3231  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3232      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3233    return false;
3234
3235  unsigned NumElts = VT.getVectorNumElements();
3236  unsigned NumLanes = VT.getSizeInBits()/128;
3237  unsigned NumLaneElts = NumElts/NumLanes;
3238
3239  // Do not handle 64-bit element shuffles with palignr.
3240  if (NumLaneElts == 2)
3241    return false;
3242
3243  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3244    unsigned i;
3245    for (i = 0; i != NumLaneElts; ++i) {
3246      if (Mask[i+l] >= 0)
3247        break;
3248    }
3249
3250    // Lane is all undef, go to next lane
3251    if (i == NumLaneElts)
3252      continue;
3253
3254    int Start = Mask[i+l];
3255
3256    // Make sure its in this lane in one of the sources
3257    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3258        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3259      return false;
3260
3261    // If not lane 0, then we must match lane 0
3262    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3263      return false;
3264
3265    // Correct second source to be contiguous with first source
3266    if (Start >= (int)NumElts)
3267      Start -= NumElts - NumLaneElts;
3268
3269    // Make sure we're shifting in the right direction.
3270    if (Start <= (int)(i+l))
3271      return false;
3272
3273    Start -= i;
3274
3275    // Check the rest of the elements to see if they are consecutive.
3276    for (++i; i != NumLaneElts; ++i) {
3277      int Idx = Mask[i+l];
3278
3279      // Make sure its in this lane
3280      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3281          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3282        return false;
3283
3284      // If not lane 0, then we must match lane 0
3285      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3286        return false;
3287
3288      if (Idx >= (int)NumElts)
3289        Idx -= NumElts - NumLaneElts;
3290
3291      if (!isUndefOrEqual(Idx, Start+i))
3292        return false;
3293
3294    }
3295  }
3296
3297  return true;
3298}
3299
3300/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3301/// the two vector operands have swapped position.
3302static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3303                                     unsigned NumElems) {
3304  for (unsigned i = 0; i != NumElems; ++i) {
3305    int idx = Mask[i];
3306    if (idx < 0)
3307      continue;
3308    else if (idx < (int)NumElems)
3309      Mask[i] = idx + NumElems;
3310    else
3311      Mask[i] = idx - NumElems;
3312  }
3313}
3314
3315/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3316/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3317/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3318/// reverse of what x86 shuffles want.
3319static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3320                        bool Commuted = false) {
3321  if (!HasAVX && VT.getSizeInBits() == 256)
3322    return false;
3323
3324  unsigned NumElems = VT.getVectorNumElements();
3325  unsigned NumLanes = VT.getSizeInBits()/128;
3326  unsigned NumLaneElems = NumElems/NumLanes;
3327
3328  if (NumLaneElems != 2 && NumLaneElems != 4)
3329    return false;
3330
3331  // VSHUFPSY divides the resulting vector into 4 chunks.
3332  // The sources are also splitted into 4 chunks, and each destination
3333  // chunk must come from a different source chunk.
3334  //
3335  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3336  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3337  //
3338  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3339  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3340  //
3341  // VSHUFPDY divides the resulting vector into 4 chunks.
3342  // The sources are also splitted into 4 chunks, and each destination
3343  // chunk must come from a different source chunk.
3344  //
3345  //  SRC1 =>      X3       X2       X1       X0
3346  //  SRC2 =>      Y3       Y2       Y1       Y0
3347  //
3348  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3349  //
3350  unsigned HalfLaneElems = NumLaneElems/2;
3351  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3352    for (unsigned i = 0; i != NumLaneElems; ++i) {
3353      int Idx = Mask[i+l];
3354      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3355      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3356        return false;
3357      // For VSHUFPSY, the mask of the second half must be the same as the
3358      // first but with the appropriate offsets. This works in the same way as
3359      // VPERMILPS works with masks.
3360      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3361        continue;
3362      if (!isUndefOrEqual(Idx, Mask[i]+l))
3363        return false;
3364    }
3365  }
3366
3367  return true;
3368}
3369
3370bool X86::isSHUFPMask(ShuffleVectorSDNode *N, bool HasAVX) {
3371  return ::isSHUFPMask(N->getMask(), N->getValueType(0), HasAVX);
3372}
3373
3374/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3375/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3376bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3377  EVT VT = N->getValueType(0);
3378  unsigned NumElems = VT.getVectorNumElements();
3379
3380  if (VT.getSizeInBits() != 128)
3381    return false;
3382
3383  if (NumElems != 4)
3384    return false;
3385
3386  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3387  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3388         isUndefOrEqual(N->getMaskElt(1), 7) &&
3389         isUndefOrEqual(N->getMaskElt(2), 2) &&
3390         isUndefOrEqual(N->getMaskElt(3), 3);
3391}
3392
3393/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3394/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3395/// <2, 3, 2, 3>
3396bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3397  EVT VT = N->getValueType(0);
3398  unsigned NumElems = VT.getVectorNumElements();
3399
3400  if (VT.getSizeInBits() != 128)
3401    return false;
3402
3403  if (NumElems != 4)
3404    return false;
3405
3406  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3407         isUndefOrEqual(N->getMaskElt(1), 3) &&
3408         isUndefOrEqual(N->getMaskElt(2), 2) &&
3409         isUndefOrEqual(N->getMaskElt(3), 3);
3410}
3411
3412/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3413/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3414bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3415  EVT VT = N->getValueType(0);
3416
3417  if (VT.getSizeInBits() != 128)
3418    return false;
3419
3420  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3421
3422  if (NumElems != 2 && NumElems != 4)
3423    return false;
3424
3425  for (unsigned i = 0; i < NumElems/2; ++i)
3426    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3427      return false;
3428
3429  for (unsigned i = NumElems/2; i < NumElems; ++i)
3430    if (!isUndefOrEqual(N->getMaskElt(i), i))
3431      return false;
3432
3433  return true;
3434}
3435
3436/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3437/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3438bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3439  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3440
3441  if ((NumElems != 2 && NumElems != 4)
3442      || N->getValueType(0).getSizeInBits() > 128)
3443    return false;
3444
3445  for (unsigned i = 0; i < NumElems/2; ++i)
3446    if (!isUndefOrEqual(N->getMaskElt(i), i))
3447      return false;
3448
3449  for (unsigned i = 0; i < NumElems/2; ++i)
3450    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3451      return false;
3452
3453  return true;
3454}
3455
3456/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3457/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3458static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3459                         bool HasAVX2, bool V2IsSplat = false) {
3460  unsigned NumElts = VT.getVectorNumElements();
3461
3462  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3463         "Unsupported vector type for unpckh");
3464
3465  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3466      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3467    return false;
3468
3469  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3470  // independently on 128-bit lanes.
3471  unsigned NumLanes = VT.getSizeInBits()/128;
3472  unsigned NumLaneElts = NumElts/NumLanes;
3473
3474  for (unsigned l = 0; l != NumLanes; ++l) {
3475    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3476         i != (l+1)*NumLaneElts;
3477         i += 2, ++j) {
3478      int BitI  = Mask[i];
3479      int BitI1 = Mask[i+1];
3480      if (!isUndefOrEqual(BitI, j))
3481        return false;
3482      if (V2IsSplat) {
3483        if (!isUndefOrEqual(BitI1, NumElts))
3484          return false;
3485      } else {
3486        if (!isUndefOrEqual(BitI1, j + NumElts))
3487          return false;
3488      }
3489    }
3490  }
3491
3492  return true;
3493}
3494
3495bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3496  return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3497}
3498
3499/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3500/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3501static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3502                         bool HasAVX2, bool V2IsSplat = false) {
3503  unsigned NumElts = VT.getVectorNumElements();
3504
3505  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3506         "Unsupported vector type for unpckh");
3507
3508  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3509      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3510    return false;
3511
3512  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3513  // independently on 128-bit lanes.
3514  unsigned NumLanes = VT.getSizeInBits()/128;
3515  unsigned NumLaneElts = NumElts/NumLanes;
3516
3517  for (unsigned l = 0; l != NumLanes; ++l) {
3518    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3519         i != (l+1)*NumLaneElts; i += 2, ++j) {
3520      int BitI  = Mask[i];
3521      int BitI1 = Mask[i+1];
3522      if (!isUndefOrEqual(BitI, j))
3523        return false;
3524      if (V2IsSplat) {
3525        if (isUndefOrEqual(BitI1, NumElts))
3526          return false;
3527      } else {
3528        if (!isUndefOrEqual(BitI1, j+NumElts))
3529          return false;
3530      }
3531    }
3532  }
3533  return true;
3534}
3535
3536bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3537  return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3538}
3539
3540/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3541/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3542/// <0, 0, 1, 1>
3543static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3544                                  bool HasAVX2) {
3545  unsigned NumElts = VT.getVectorNumElements();
3546
3547  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3548         "Unsupported vector type for unpckh");
3549
3550  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3551      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3552    return false;
3553
3554  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3555  // FIXME: Need a better way to get rid of this, there's no latency difference
3556  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3557  // the former later. We should also remove the "_undef" special mask.
3558  if (NumElts == 4 && VT.getSizeInBits() == 256)
3559    return false;
3560
3561  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3562  // independently on 128-bit lanes.
3563  unsigned NumLanes = VT.getSizeInBits()/128;
3564  unsigned NumLaneElts = NumElts/NumLanes;
3565
3566  for (unsigned l = 0; l != NumLanes; ++l) {
3567    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3568         i != (l+1)*NumLaneElts;
3569         i += 2, ++j) {
3570      int BitI  = Mask[i];
3571      int BitI1 = Mask[i+1];
3572
3573      if (!isUndefOrEqual(BitI, j))
3574        return false;
3575      if (!isUndefOrEqual(BitI1, j))
3576        return false;
3577    }
3578  }
3579
3580  return true;
3581}
3582
3583bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3584  return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3585}
3586
3587/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3588/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3589/// <2, 2, 3, 3>
3590static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3591  unsigned NumElts = VT.getVectorNumElements();
3592
3593  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3594         "Unsupported vector type for unpckh");
3595
3596  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3597      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3598    return false;
3599
3600  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3601  // independently on 128-bit lanes.
3602  unsigned NumLanes = VT.getSizeInBits()/128;
3603  unsigned NumLaneElts = NumElts/NumLanes;
3604
3605  for (unsigned l = 0; l != NumLanes; ++l) {
3606    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3607         i != (l+1)*NumLaneElts; i += 2, ++j) {
3608      int BitI  = Mask[i];
3609      int BitI1 = Mask[i+1];
3610      if (!isUndefOrEqual(BitI, j))
3611        return false;
3612      if (!isUndefOrEqual(BitI1, j))
3613        return false;
3614    }
3615  }
3616  return true;
3617}
3618
3619bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3620  return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3621}
3622
3623/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3624/// specifies a shuffle of elements that is suitable for input to MOVSS,
3625/// MOVSD, and MOVD, i.e. setting the lowest element.
3626static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3627  if (VT.getVectorElementType().getSizeInBits() < 32)
3628    return false;
3629  if (VT.getSizeInBits() == 256)
3630    return false;
3631
3632  unsigned NumElts = VT.getVectorNumElements();
3633
3634  if (!isUndefOrEqual(Mask[0], NumElts))
3635    return false;
3636
3637  for (unsigned i = 1; i != NumElts; ++i)
3638    if (!isUndefOrEqual(Mask[i], i))
3639      return false;
3640
3641  return true;
3642}
3643
3644bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3645  return ::isMOVLMask(N->getMask(), N->getValueType(0));
3646}
3647
3648/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3649/// as permutations between 128-bit chunks or halves. As an example: this
3650/// shuffle bellow:
3651///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3652/// The first half comes from the second half of V1 and the second half from the
3653/// the second half of V2.
3654static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3655  if (!HasAVX || VT.getSizeInBits() != 256)
3656    return false;
3657
3658  // The shuffle result is divided into half A and half B. In total the two
3659  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3660  // B must come from C, D, E or F.
3661  unsigned HalfSize = VT.getVectorNumElements()/2;
3662  bool MatchA = false, MatchB = false;
3663
3664  // Check if A comes from one of C, D, E, F.
3665  for (unsigned Half = 0; Half != 4; ++Half) {
3666    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3667      MatchA = true;
3668      break;
3669    }
3670  }
3671
3672  // Check if B comes from one of C, D, E, F.
3673  for (unsigned Half = 0; Half != 4; ++Half) {
3674    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3675      MatchB = true;
3676      break;
3677    }
3678  }
3679
3680  return MatchA && MatchB;
3681}
3682
3683/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3684/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3685static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3686  EVT VT = SVOp->getValueType(0);
3687
3688  unsigned HalfSize = VT.getVectorNumElements()/2;
3689
3690  unsigned FstHalf = 0, SndHalf = 0;
3691  for (unsigned i = 0; i < HalfSize; ++i) {
3692    if (SVOp->getMaskElt(i) > 0) {
3693      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3694      break;
3695    }
3696  }
3697  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3698    if (SVOp->getMaskElt(i) > 0) {
3699      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3700      break;
3701    }
3702  }
3703
3704  return (FstHalf | (SndHalf << 4));
3705}
3706
3707/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3708/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3709/// Note that VPERMIL mask matching is different depending whether theunderlying
3710/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3711/// to the same elements of the low, but to the higher half of the source.
3712/// In VPERMILPD the two lanes could be shuffled independently of each other
3713/// with the same restriction that lanes can't be crossed.
3714static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3715  if (!HasAVX)
3716    return false;
3717
3718  unsigned NumElts = VT.getVectorNumElements();
3719  // Only match 256-bit with 32/64-bit types
3720  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3721    return false;
3722
3723  unsigned NumLanes = VT.getSizeInBits()/128;
3724  unsigned LaneSize = NumElts/NumLanes;
3725  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3726    for (unsigned i = 0; i != LaneSize; ++i) {
3727      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3728        return false;
3729      if (NumElts != 8 || l == 0)
3730        continue;
3731      // VPERMILPS handling
3732      if (Mask[i] < 0)
3733        continue;
3734      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3735        return false;
3736    }
3737  }
3738
3739  return true;
3740}
3741
3742/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3743/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3744static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3745  EVT VT = SVOp->getValueType(0);
3746
3747  unsigned NumElts = VT.getVectorNumElements();
3748  unsigned NumLanes = VT.getSizeInBits()/128;
3749  unsigned LaneSize = NumElts/NumLanes;
3750
3751  // Although the mask is equal for both lanes do it twice to get the cases
3752  // where a mask will match because the same mask element is undef on the
3753  // first half but valid on the second. This would get pathological cases
3754  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3755  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3756  unsigned Mask = 0;
3757  for (unsigned i = 0; i != NumElts; ++i) {
3758    int MaskElt = SVOp->getMaskElt(i);
3759    if (MaskElt < 0)
3760      continue;
3761    MaskElt %= LaneSize;
3762    unsigned Shamt = i;
3763    // VPERMILPSY, the mask of the first half must be equal to the second one
3764    if (NumElts == 8) Shamt %= LaneSize;
3765    Mask |= MaskElt << (Shamt*Shift);
3766  }
3767
3768  return Mask;
3769}
3770
3771/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3772/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3773/// element of vector 2 and the other elements to come from vector 1 in order.
3774static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3775                               bool V2IsSplat = false, bool V2IsUndef = false) {
3776  unsigned NumOps = VT.getVectorNumElements();
3777  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3778    return false;
3779
3780  if (!isUndefOrEqual(Mask[0], 0))
3781    return false;
3782
3783  for (unsigned i = 1; i != NumOps; ++i)
3784    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3785          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3786          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3787      return false;
3788
3789  return true;
3790}
3791
3792static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3793                           bool V2IsUndef = false) {
3794  return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3795                            V2IsSplat, V2IsUndef);
3796}
3797
3798/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3799/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3800/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3801bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3802                         const X86Subtarget *Subtarget) {
3803  if (!Subtarget->hasSSE3())
3804    return false;
3805
3806  // The second vector must be undef
3807  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3808    return false;
3809
3810  EVT VT = N->getValueType(0);
3811  unsigned NumElems = VT.getVectorNumElements();
3812
3813  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3814      (VT.getSizeInBits() == 256 && NumElems != 8))
3815    return false;
3816
3817  // "i+1" is the value the indexed mask element must have
3818  for (unsigned i = 0; i < NumElems; i += 2)
3819    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3820        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3821      return false;
3822
3823  return true;
3824}
3825
3826/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3827/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3828/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3829bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3830                         const X86Subtarget *Subtarget) {
3831  if (!Subtarget->hasSSE3())
3832    return false;
3833
3834  // The second vector must be undef
3835  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3836    return false;
3837
3838  EVT VT = N->getValueType(0);
3839  unsigned NumElems = VT.getVectorNumElements();
3840
3841  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3842      (VT.getSizeInBits() == 256 && NumElems != 8))
3843    return false;
3844
3845  // "i" is the value the indexed mask element must have
3846  for (unsigned i = 0; i != NumElems; i += 2)
3847    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3848        !isUndefOrEqual(N->getMaskElt(i+1), i))
3849      return false;
3850
3851  return true;
3852}
3853
3854/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3855/// specifies a shuffle of elements that is suitable for input to 256-bit
3856/// version of MOVDDUP.
3857static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3858  unsigned NumElts = VT.getVectorNumElements();
3859
3860  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3861    return false;
3862
3863  for (unsigned i = 0; i != NumElts/2; ++i)
3864    if (!isUndefOrEqual(Mask[i], 0))
3865      return false;
3866  for (unsigned i = NumElts/2; i != NumElts; ++i)
3867    if (!isUndefOrEqual(Mask[i], NumElts/2))
3868      return false;
3869  return true;
3870}
3871
3872/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3873/// specifies a shuffle of elements that is suitable for input to 128-bit
3874/// version of MOVDDUP.
3875bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3876  EVT VT = N->getValueType(0);
3877
3878  if (VT.getSizeInBits() != 128)
3879    return false;
3880
3881  unsigned e = VT.getVectorNumElements() / 2;
3882  for (unsigned i = 0; i != e; ++i)
3883    if (!isUndefOrEqual(N->getMaskElt(i), i))
3884      return false;
3885  for (unsigned i = 0; i != e; ++i)
3886    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3887      return false;
3888  return true;
3889}
3890
3891/// isVEXTRACTF128Index - Return true if the specified
3892/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3893/// suitable for input to VEXTRACTF128.
3894bool X86::isVEXTRACTF128Index(SDNode *N) {
3895  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3896    return false;
3897
3898  // The index should be aligned on a 128-bit boundary.
3899  uint64_t Index =
3900    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3901
3902  unsigned VL = N->getValueType(0).getVectorNumElements();
3903  unsigned VBits = N->getValueType(0).getSizeInBits();
3904  unsigned ElSize = VBits / VL;
3905  bool Result = (Index * ElSize) % 128 == 0;
3906
3907  return Result;
3908}
3909
3910/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3911/// operand specifies a subvector insert that is suitable for input to
3912/// VINSERTF128.
3913bool X86::isVINSERTF128Index(SDNode *N) {
3914  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3915    return false;
3916
3917  // The index should be aligned on a 128-bit boundary.
3918  uint64_t Index =
3919    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3920
3921  unsigned VL = N->getValueType(0).getVectorNumElements();
3922  unsigned VBits = N->getValueType(0).getSizeInBits();
3923  unsigned ElSize = VBits / VL;
3924  bool Result = (Index * ElSize) % 128 == 0;
3925
3926  return Result;
3927}
3928
3929/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3930/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3931/// Handles 128-bit and 256-bit.
3932unsigned X86::getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3933  EVT VT = N->getValueType(0);
3934
3935  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3936         "Unsupported vector type for PSHUF/SHUFP");
3937
3938  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3939  // independently on 128-bit lanes.
3940  unsigned NumElts = VT.getVectorNumElements();
3941  unsigned NumLanes = VT.getSizeInBits()/128;
3942  unsigned NumLaneElts = NumElts/NumLanes;
3943
3944  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3945         "Only supports 2 or 4 elements per lane");
3946
3947  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3948  unsigned Mask = 0;
3949  for (unsigned i = 0; i != NumElts; ++i) {
3950    int Elt = N->getMaskElt(i);
3951    if (Elt < 0) continue;
3952    Elt %= NumLaneElts;
3953    unsigned ShAmt = i << Shift;
3954    if (ShAmt >= 8) ShAmt -= 8;
3955    Mask |= Elt << ShAmt;
3956  }
3957
3958  return Mask;
3959}
3960
3961/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3962/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3963unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3964  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3965  unsigned Mask = 0;
3966  // 8 nodes, but we only care about the last 4.
3967  for (unsigned i = 7; i >= 4; --i) {
3968    int Val = SVOp->getMaskElt(i);
3969    if (Val >= 0)
3970      Mask |= (Val - 4);
3971    if (i != 4)
3972      Mask <<= 2;
3973  }
3974  return Mask;
3975}
3976
3977/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3978/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3979unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3980  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3981  unsigned Mask = 0;
3982  // 8 nodes, but we only care about the first 4.
3983  for (int i = 3; i >= 0; --i) {
3984    int Val = SVOp->getMaskElt(i);
3985    if (Val >= 0)
3986      Mask |= Val;
3987    if (i != 0)
3988      Mask <<= 2;
3989  }
3990  return Mask;
3991}
3992
3993/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3994/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3995static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3996  EVT VT = SVOp->getValueType(0);
3997  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3998
3999  unsigned NumElts = VT.getVectorNumElements();
4000  unsigned NumLanes = VT.getSizeInBits()/128;
4001  unsigned NumLaneElts = NumElts/NumLanes;
4002
4003  int Val = 0;
4004  unsigned i;
4005  for (i = 0; i != NumElts; ++i) {
4006    Val = SVOp->getMaskElt(i);
4007    if (Val >= 0)
4008      break;
4009  }
4010  if (Val >= (int)NumElts)
4011    Val -= NumElts - NumLaneElts;
4012
4013  assert(Val - i > 0 && "PALIGNR imm should be positive");
4014  return (Val - i) * EltSize;
4015}
4016
4017/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4018/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4019/// instructions.
4020unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4021  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4022    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4023
4024  uint64_t Index =
4025    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4026
4027  EVT VecVT = N->getOperand(0).getValueType();
4028  EVT ElVT = VecVT.getVectorElementType();
4029
4030  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4031  return Index / NumElemsPerChunk;
4032}
4033
4034/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4035/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4036/// instructions.
4037unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4038  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4039    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4040
4041  uint64_t Index =
4042    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4043
4044  EVT VecVT = N->getValueType(0);
4045  EVT ElVT = VecVT.getVectorElementType();
4046
4047  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4048  return Index / NumElemsPerChunk;
4049}
4050
4051/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4052/// constant +0.0.
4053bool X86::isZeroNode(SDValue Elt) {
4054  return ((isa<ConstantSDNode>(Elt) &&
4055           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4056          (isa<ConstantFPSDNode>(Elt) &&
4057           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4058}
4059
4060/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4061/// their permute mask.
4062static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4063                                    SelectionDAG &DAG) {
4064  EVT VT = SVOp->getValueType(0);
4065  unsigned NumElems = VT.getVectorNumElements();
4066  SmallVector<int, 8> MaskVec;
4067
4068  for (unsigned i = 0; i != NumElems; ++i) {
4069    int idx = SVOp->getMaskElt(i);
4070    if (idx < 0)
4071      MaskVec.push_back(idx);
4072    else if (idx < (int)NumElems)
4073      MaskVec.push_back(idx + NumElems);
4074    else
4075      MaskVec.push_back(idx - NumElems);
4076  }
4077  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4078                              SVOp->getOperand(0), &MaskVec[0]);
4079}
4080
4081/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4082/// match movhlps. The lower half elements should come from upper half of
4083/// V1 (and in order), and the upper half elements should come from the upper
4084/// half of V2 (and in order).
4085static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4086  EVT VT = Op->getValueType(0);
4087  if (VT.getSizeInBits() != 128)
4088    return false;
4089  if (VT.getVectorNumElements() != 4)
4090    return false;
4091  for (unsigned i = 0, e = 2; i != e; ++i)
4092    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4093      return false;
4094  for (unsigned i = 2; i != 4; ++i)
4095    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4096      return false;
4097  return true;
4098}
4099
4100/// isScalarLoadToVector - Returns true if the node is a scalar load that
4101/// is promoted to a vector. It also returns the LoadSDNode by reference if
4102/// required.
4103static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4104  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4105    return false;
4106  N = N->getOperand(0).getNode();
4107  if (!ISD::isNON_EXTLoad(N))
4108    return false;
4109  if (LD)
4110    *LD = cast<LoadSDNode>(N);
4111  return true;
4112}
4113
4114// Test whether the given value is a vector value which will be legalized
4115// into a load.
4116static bool WillBeConstantPoolLoad(SDNode *N) {
4117  if (N->getOpcode() != ISD::BUILD_VECTOR)
4118    return false;
4119
4120  // Check for any non-constant elements.
4121  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4122    switch (N->getOperand(i).getNode()->getOpcode()) {
4123    case ISD::UNDEF:
4124    case ISD::ConstantFP:
4125    case ISD::Constant:
4126      break;
4127    default:
4128      return false;
4129    }
4130
4131  // Vectors of all-zeros and all-ones are materialized with special
4132  // instructions rather than being loaded.
4133  return !ISD::isBuildVectorAllZeros(N) &&
4134         !ISD::isBuildVectorAllOnes(N);
4135}
4136
4137/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4138/// match movlp{s|d}. The lower half elements should come from lower half of
4139/// V1 (and in order), and the upper half elements should come from the upper
4140/// half of V2 (and in order). And since V1 will become the source of the
4141/// MOVLP, it must be either a vector load or a scalar load to vector.
4142static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4143                               ShuffleVectorSDNode *Op) {
4144  EVT VT = Op->getValueType(0);
4145  if (VT.getSizeInBits() != 128)
4146    return false;
4147
4148  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4149    return false;
4150  // Is V2 is a vector load, don't do this transformation. We will try to use
4151  // load folding shufps op.
4152  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4153    return false;
4154
4155  unsigned NumElems = VT.getVectorNumElements();
4156
4157  if (NumElems != 2 && NumElems != 4)
4158    return false;
4159  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4160    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4161      return false;
4162  for (unsigned i = NumElems/2; i != NumElems; ++i)
4163    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4164      return false;
4165  return true;
4166}
4167
4168/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4169/// all the same.
4170static bool isSplatVector(SDNode *N) {
4171  if (N->getOpcode() != ISD::BUILD_VECTOR)
4172    return false;
4173
4174  SDValue SplatValue = N->getOperand(0);
4175  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4176    if (N->getOperand(i) != SplatValue)
4177      return false;
4178  return true;
4179}
4180
4181/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4182/// to an zero vector.
4183/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4184static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4185  SDValue V1 = N->getOperand(0);
4186  SDValue V2 = N->getOperand(1);
4187  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4188  for (unsigned i = 0; i != NumElems; ++i) {
4189    int Idx = N->getMaskElt(i);
4190    if (Idx >= (int)NumElems) {
4191      unsigned Opc = V2.getOpcode();
4192      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4193        continue;
4194      if (Opc != ISD::BUILD_VECTOR ||
4195          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4196        return false;
4197    } else if (Idx >= 0) {
4198      unsigned Opc = V1.getOpcode();
4199      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4200        continue;
4201      if (Opc != ISD::BUILD_VECTOR ||
4202          !X86::isZeroNode(V1.getOperand(Idx)))
4203        return false;
4204    }
4205  }
4206  return true;
4207}
4208
4209/// getZeroVector - Returns a vector of specified type with all zero elements.
4210///
4211static SDValue getZeroVector(EVT VT, bool HasSSE2, bool HasAVX2,
4212                             SelectionDAG &DAG, DebugLoc dl) {
4213  assert(VT.isVector() && "Expected a vector type");
4214
4215  // Always build SSE zero vectors as <4 x i32> bitcasted
4216  // to their dest type. This ensures they get CSE'd.
4217  SDValue Vec;
4218  if (VT.getSizeInBits() == 128) {  // SSE
4219    if (HasSSE2) {  // SSE2
4220      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4221      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4222    } else { // SSE1
4223      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4224      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4225    }
4226  } else if (VT.getSizeInBits() == 256) { // AVX
4227    if (HasAVX2) { // AVX2
4228      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4229      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4230      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4231    } else {
4232      // 256-bit logic and arithmetic instructions in AVX are all
4233      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4234      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4235      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4236      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4237    }
4238  }
4239  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4240}
4241
4242/// getOnesVector - Returns a vector of specified type with all bits set.
4243/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4244/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4245/// Then bitcast to their original type, ensuring they get CSE'd.
4246static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4247                             DebugLoc dl) {
4248  assert(VT.isVector() && "Expected a vector type");
4249  assert((VT.is128BitVector() || VT.is256BitVector())
4250         && "Expected a 128-bit or 256-bit vector type");
4251
4252  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4253  SDValue Vec;
4254  if (VT.getSizeInBits() == 256) {
4255    if (HasAVX2) { // AVX2
4256      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4257      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4258    } else { // AVX
4259      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4260      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4261                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4262      Vec = Insert128BitVector(InsV, Vec,
4263                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4264    }
4265  } else {
4266    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4267  }
4268
4269  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4270}
4271
4272/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4273/// that point to V2 points to its first element.
4274static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4275  EVT VT = SVOp->getValueType(0);
4276  unsigned NumElems = VT.getVectorNumElements();
4277
4278  bool Changed = false;
4279  SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4280
4281  for (unsigned i = 0; i != NumElems; ++i) {
4282    if (MaskVec[i] > (int)NumElems) {
4283      MaskVec[i] = NumElems;
4284      Changed = true;
4285    }
4286  }
4287  if (Changed)
4288    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4289                                SVOp->getOperand(1), &MaskVec[0]);
4290  return SDValue(SVOp, 0);
4291}
4292
4293/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4294/// operation of specified width.
4295static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4296                       SDValue V2) {
4297  unsigned NumElems = VT.getVectorNumElements();
4298  SmallVector<int, 8> Mask;
4299  Mask.push_back(NumElems);
4300  for (unsigned i = 1; i != NumElems; ++i)
4301    Mask.push_back(i);
4302  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4303}
4304
4305/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4306static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4307                          SDValue V2) {
4308  unsigned NumElems = VT.getVectorNumElements();
4309  SmallVector<int, 8> Mask;
4310  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4311    Mask.push_back(i);
4312    Mask.push_back(i + NumElems);
4313  }
4314  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4315}
4316
4317/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4318static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4319                          SDValue V2) {
4320  unsigned NumElems = VT.getVectorNumElements();
4321  unsigned Half = NumElems/2;
4322  SmallVector<int, 8> Mask;
4323  for (unsigned i = 0; i != Half; ++i) {
4324    Mask.push_back(i + Half);
4325    Mask.push_back(i + NumElems + Half);
4326  }
4327  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4328}
4329
4330// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4331// a generic shuffle instruction because the target has no such instructions.
4332// Generate shuffles which repeat i16 and i8 several times until they can be
4333// represented by v4f32 and then be manipulated by target suported shuffles.
4334static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4335  EVT VT = V.getValueType();
4336  int NumElems = VT.getVectorNumElements();
4337  DebugLoc dl = V.getDebugLoc();
4338
4339  while (NumElems > 4) {
4340    if (EltNo < NumElems/2) {
4341      V = getUnpackl(DAG, dl, VT, V, V);
4342    } else {
4343      V = getUnpackh(DAG, dl, VT, V, V);
4344      EltNo -= NumElems/2;
4345    }
4346    NumElems >>= 1;
4347  }
4348  return V;
4349}
4350
4351/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4352static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4353  EVT VT = V.getValueType();
4354  DebugLoc dl = V.getDebugLoc();
4355  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4356         && "Vector size not supported");
4357
4358  if (VT.getSizeInBits() == 128) {
4359    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4360    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4361    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4362                             &SplatMask[0]);
4363  } else {
4364    // To use VPERMILPS to splat scalars, the second half of indicies must
4365    // refer to the higher part, which is a duplication of the lower one,
4366    // because VPERMILPS can only handle in-lane permutations.
4367    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4368                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4369
4370    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4371    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4372                             &SplatMask[0]);
4373  }
4374
4375  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4376}
4377
4378/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4379static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4380  EVT SrcVT = SV->getValueType(0);
4381  SDValue V1 = SV->getOperand(0);
4382  DebugLoc dl = SV->getDebugLoc();
4383
4384  int EltNo = SV->getSplatIndex();
4385  int NumElems = SrcVT.getVectorNumElements();
4386  unsigned Size = SrcVT.getSizeInBits();
4387
4388  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4389          "Unknown how to promote splat for type");
4390
4391  // Extract the 128-bit part containing the splat element and update
4392  // the splat element index when it refers to the higher register.
4393  if (Size == 256) {
4394    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4395    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4396    if (Idx > 0)
4397      EltNo -= NumElems/2;
4398  }
4399
4400  // All i16 and i8 vector types can't be used directly by a generic shuffle
4401  // instruction because the target has no such instruction. Generate shuffles
4402  // which repeat i16 and i8 several times until they fit in i32, and then can
4403  // be manipulated by target suported shuffles.
4404  EVT EltVT = SrcVT.getVectorElementType();
4405  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4406    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4407
4408  // Recreate the 256-bit vector and place the same 128-bit vector
4409  // into the low and high part. This is necessary because we want
4410  // to use VPERM* to shuffle the vectors
4411  if (Size == 256) {
4412    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4413                         DAG.getConstant(0, MVT::i32), DAG, dl);
4414    V1 = Insert128BitVector(InsV, V1,
4415               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4416  }
4417
4418  return getLegalSplat(DAG, V1, EltNo);
4419}
4420
4421/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4422/// vector of zero or undef vector.  This produces a shuffle where the low
4423/// element of V2 is swizzled into the zero/undef vector, landing at element
4424/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4425static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4426                                           bool IsZero,
4427                                           const X86Subtarget *Subtarget,
4428                                           SelectionDAG &DAG) {
4429  EVT VT = V2.getValueType();
4430  SDValue V1 = IsZero
4431    ? getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(), DAG,
4432                    V2.getDebugLoc()) : DAG.getUNDEF(VT);
4433  unsigned NumElems = VT.getVectorNumElements();
4434  SmallVector<int, 16> MaskVec;
4435  for (unsigned i = 0; i != NumElems; ++i)
4436    // If this is the insertion idx, put the low elt of V2 here.
4437    MaskVec.push_back(i == Idx ? NumElems : i);
4438  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4439}
4440
4441/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4442/// element of the result of the vector shuffle.
4443static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4444                                   unsigned Depth) {
4445  if (Depth == 6)
4446    return SDValue();  // Limit search depth.
4447
4448  SDValue V = SDValue(N, 0);
4449  EVT VT = V.getValueType();
4450  unsigned Opcode = V.getOpcode();
4451
4452  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4453  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4454    Index = SV->getMaskElt(Index);
4455
4456    if (Index < 0)
4457      return DAG.getUNDEF(VT.getVectorElementType());
4458
4459    int NumElems = VT.getVectorNumElements();
4460    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4461    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4462  }
4463
4464  // Recurse into target specific vector shuffles to find scalars.
4465  if (isTargetShuffle(Opcode)) {
4466    int NumElems = VT.getVectorNumElements();
4467    SmallVector<unsigned, 16> ShuffleMask;
4468    SDValue ImmN;
4469
4470    switch(Opcode) {
4471    case X86ISD::SHUFP:
4472      ImmN = N->getOperand(N->getNumOperands()-1);
4473      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4474                      ShuffleMask);
4475      break;
4476    case X86ISD::UNPCKH:
4477      DecodeUNPCKHMask(VT, ShuffleMask);
4478      break;
4479    case X86ISD::UNPCKL:
4480      DecodeUNPCKLMask(VT, ShuffleMask);
4481      break;
4482    case X86ISD::MOVHLPS:
4483      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4484      break;
4485    case X86ISD::MOVLHPS:
4486      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4487      break;
4488    case X86ISD::PSHUFD:
4489      ImmN = N->getOperand(N->getNumOperands()-1);
4490      DecodePSHUFMask(NumElems,
4491                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4492                      ShuffleMask);
4493      break;
4494    case X86ISD::PSHUFHW:
4495      ImmN = N->getOperand(N->getNumOperands()-1);
4496      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4497                        ShuffleMask);
4498      break;
4499    case X86ISD::PSHUFLW:
4500      ImmN = N->getOperand(N->getNumOperands()-1);
4501      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4502                        ShuffleMask);
4503      break;
4504    case X86ISD::MOVSS:
4505    case X86ISD::MOVSD: {
4506      // The index 0 always comes from the first element of the second source,
4507      // this is why MOVSS and MOVSD are used in the first place. The other
4508      // elements come from the other positions of the first source vector.
4509      unsigned OpNum = (Index == 0) ? 1 : 0;
4510      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4511                                 Depth+1);
4512    }
4513    case X86ISD::VPERMILP:
4514      ImmN = N->getOperand(N->getNumOperands()-1);
4515      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4516                        ShuffleMask);
4517      break;
4518    case X86ISD::VPERM2X128:
4519      ImmN = N->getOperand(N->getNumOperands()-1);
4520      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4521                           ShuffleMask);
4522      break;
4523    case X86ISD::MOVDDUP:
4524    case X86ISD::MOVLHPD:
4525    case X86ISD::MOVLPD:
4526    case X86ISD::MOVLPS:
4527    case X86ISD::MOVSHDUP:
4528    case X86ISD::MOVSLDUP:
4529    case X86ISD::PALIGN:
4530      return SDValue(); // Not yet implemented.
4531    default:
4532      assert(0 && "unknown target shuffle node");
4533      return SDValue();
4534    }
4535
4536    Index = ShuffleMask[Index];
4537    if (Index < 0)
4538      return DAG.getUNDEF(VT.getVectorElementType());
4539
4540    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4541    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4542                               Depth+1);
4543  }
4544
4545  // Actual nodes that may contain scalar elements
4546  if (Opcode == ISD::BITCAST) {
4547    V = V.getOperand(0);
4548    EVT SrcVT = V.getValueType();
4549    unsigned NumElems = VT.getVectorNumElements();
4550
4551    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4552      return SDValue();
4553  }
4554
4555  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4556    return (Index == 0) ? V.getOperand(0)
4557                          : DAG.getUNDEF(VT.getVectorElementType());
4558
4559  if (V.getOpcode() == ISD::BUILD_VECTOR)
4560    return V.getOperand(Index);
4561
4562  return SDValue();
4563}
4564
4565/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4566/// shuffle operation which come from a consecutively from a zero. The
4567/// search can start in two different directions, from left or right.
4568static
4569unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4570                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4571  int i = 0;
4572
4573  while (i < NumElems) {
4574    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4575    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4576    if (!(Elt.getNode() &&
4577         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4578      break;
4579    ++i;
4580  }
4581
4582  return i;
4583}
4584
4585/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4586/// MaskE correspond consecutively to elements from one of the vector operands,
4587/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4588static
4589bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4590                              int OpIdx, int NumElems, unsigned &OpNum) {
4591  bool SeenV1 = false;
4592  bool SeenV2 = false;
4593
4594  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4595    int Idx = SVOp->getMaskElt(i);
4596    // Ignore undef indicies
4597    if (Idx < 0)
4598      continue;
4599
4600    if (Idx < NumElems)
4601      SeenV1 = true;
4602    else
4603      SeenV2 = true;
4604
4605    // Only accept consecutive elements from the same vector
4606    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4607      return false;
4608  }
4609
4610  OpNum = SeenV1 ? 0 : 1;
4611  return true;
4612}
4613
4614/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4615/// logical left shift of a vector.
4616static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4617                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4618  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4619  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4620              false /* check zeros from right */, DAG);
4621  unsigned OpSrc;
4622
4623  if (!NumZeros)
4624    return false;
4625
4626  // Considering the elements in the mask that are not consecutive zeros,
4627  // check if they consecutively come from only one of the source vectors.
4628  //
4629  //               V1 = {X, A, B, C}     0
4630  //                         \  \  \    /
4631  //   vector_shuffle V1, V2 <1, 2, 3, X>
4632  //
4633  if (!isShuffleMaskConsecutive(SVOp,
4634            0,                   // Mask Start Index
4635            NumElems-NumZeros-1, // Mask End Index
4636            NumZeros,            // Where to start looking in the src vector
4637            NumElems,            // Number of elements in vector
4638            OpSrc))              // Which source operand ?
4639    return false;
4640
4641  isLeft = false;
4642  ShAmt = NumZeros;
4643  ShVal = SVOp->getOperand(OpSrc);
4644  return true;
4645}
4646
4647/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4648/// logical left shift of a vector.
4649static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4650                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4651  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4652  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4653              true /* check zeros from left */, DAG);
4654  unsigned OpSrc;
4655
4656  if (!NumZeros)
4657    return false;
4658
4659  // Considering the elements in the mask that are not consecutive zeros,
4660  // check if they consecutively come from only one of the source vectors.
4661  //
4662  //                           0    { A, B, X, X } = V2
4663  //                          / \    /  /
4664  //   vector_shuffle V1, V2 <X, X, 4, 5>
4665  //
4666  if (!isShuffleMaskConsecutive(SVOp,
4667            NumZeros,     // Mask Start Index
4668            NumElems-1,   // Mask End Index
4669            0,            // Where to start looking in the src vector
4670            NumElems,     // Number of elements in vector
4671            OpSrc))       // Which source operand ?
4672    return false;
4673
4674  isLeft = true;
4675  ShAmt = NumZeros;
4676  ShVal = SVOp->getOperand(OpSrc);
4677  return true;
4678}
4679
4680/// isVectorShift - Returns true if the shuffle can be implemented as a
4681/// logical left or right shift of a vector.
4682static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4683                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4684  // Although the logic below support any bitwidth size, there are no
4685  // shift instructions which handle more than 128-bit vectors.
4686  if (SVOp->getValueType(0).getSizeInBits() > 128)
4687    return false;
4688
4689  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4690      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4691    return true;
4692
4693  return false;
4694}
4695
4696/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4697///
4698static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4699                                       unsigned NumNonZero, unsigned NumZero,
4700                                       SelectionDAG &DAG,
4701                                       const TargetLowering &TLI) {
4702  if (NumNonZero > 8)
4703    return SDValue();
4704
4705  DebugLoc dl = Op.getDebugLoc();
4706  SDValue V(0, 0);
4707  bool First = true;
4708  for (unsigned i = 0; i < 16; ++i) {
4709    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4710    if (ThisIsNonZero && First) {
4711      if (NumZero)
4712        V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4713                          DAG, dl);
4714      else
4715        V = DAG.getUNDEF(MVT::v8i16);
4716      First = false;
4717    }
4718
4719    if ((i & 1) != 0) {
4720      SDValue ThisElt(0, 0), LastElt(0, 0);
4721      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4722      if (LastIsNonZero) {
4723        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4724                              MVT::i16, Op.getOperand(i-1));
4725      }
4726      if (ThisIsNonZero) {
4727        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4728        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4729                              ThisElt, DAG.getConstant(8, MVT::i8));
4730        if (LastIsNonZero)
4731          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4732      } else
4733        ThisElt = LastElt;
4734
4735      if (ThisElt.getNode())
4736        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4737                        DAG.getIntPtrConstant(i/2));
4738    }
4739  }
4740
4741  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4742}
4743
4744/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4745///
4746static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4747                                     unsigned NumNonZero, unsigned NumZero,
4748                                     SelectionDAG &DAG,
4749                                     const TargetLowering &TLI) {
4750  if (NumNonZero > 4)
4751    return SDValue();
4752
4753  DebugLoc dl = Op.getDebugLoc();
4754  SDValue V(0, 0);
4755  bool First = true;
4756  for (unsigned i = 0; i < 8; ++i) {
4757    bool isNonZero = (NonZeros & (1 << i)) != 0;
4758    if (isNonZero) {
4759      if (First) {
4760        if (NumZero)
4761          V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4762                            DAG, dl);
4763        else
4764          V = DAG.getUNDEF(MVT::v8i16);
4765        First = false;
4766      }
4767      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4768                      MVT::v8i16, V, Op.getOperand(i),
4769                      DAG.getIntPtrConstant(i));
4770    }
4771  }
4772
4773  return V;
4774}
4775
4776/// getVShift - Return a vector logical shift node.
4777///
4778static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4779                         unsigned NumBits, SelectionDAG &DAG,
4780                         const TargetLowering &TLI, DebugLoc dl) {
4781  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4782  EVT ShVT = MVT::v2i64;
4783  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4784  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4785  return DAG.getNode(ISD::BITCAST, dl, VT,
4786                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4787                             DAG.getConstant(NumBits,
4788                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4789}
4790
4791SDValue
4792X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4793                                          SelectionDAG &DAG) const {
4794
4795  // Check if the scalar load can be widened into a vector load. And if
4796  // the address is "base + cst" see if the cst can be "absorbed" into
4797  // the shuffle mask.
4798  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4799    SDValue Ptr = LD->getBasePtr();
4800    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4801      return SDValue();
4802    EVT PVT = LD->getValueType(0);
4803    if (PVT != MVT::i32 && PVT != MVT::f32)
4804      return SDValue();
4805
4806    int FI = -1;
4807    int64_t Offset = 0;
4808    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4809      FI = FINode->getIndex();
4810      Offset = 0;
4811    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4812               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4813      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4814      Offset = Ptr.getConstantOperandVal(1);
4815      Ptr = Ptr.getOperand(0);
4816    } else {
4817      return SDValue();
4818    }
4819
4820    // FIXME: 256-bit vector instructions don't require a strict alignment,
4821    // improve this code to support it better.
4822    unsigned RequiredAlign = VT.getSizeInBits()/8;
4823    SDValue Chain = LD->getChain();
4824    // Make sure the stack object alignment is at least 16 or 32.
4825    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4826    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4827      if (MFI->isFixedObjectIndex(FI)) {
4828        // Can't change the alignment. FIXME: It's possible to compute
4829        // the exact stack offset and reference FI + adjust offset instead.
4830        // If someone *really* cares about this. That's the way to implement it.
4831        return SDValue();
4832      } else {
4833        MFI->setObjectAlignment(FI, RequiredAlign);
4834      }
4835    }
4836
4837    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4838    // Ptr + (Offset & ~15).
4839    if (Offset < 0)
4840      return SDValue();
4841    if ((Offset % RequiredAlign) & 3)
4842      return SDValue();
4843    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4844    if (StartOffset)
4845      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4846                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4847
4848    int EltNo = (Offset - StartOffset) >> 2;
4849    int NumElems = VT.getVectorNumElements();
4850
4851    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4852    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4853                             LD->getPointerInfo().getWithOffset(StartOffset),
4854                             false, false, false, 0);
4855
4856    SmallVector<int, 8> Mask;
4857    for (int i = 0; i < NumElems; ++i)
4858      Mask.push_back(EltNo);
4859
4860    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4861  }
4862
4863  return SDValue();
4864}
4865
4866/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4867/// vector of type 'VT', see if the elements can be replaced by a single large
4868/// load which has the same value as a build_vector whose operands are 'elts'.
4869///
4870/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4871///
4872/// FIXME: we'd also like to handle the case where the last elements are zero
4873/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4874/// There's even a handy isZeroNode for that purpose.
4875static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4876                                        DebugLoc &DL, SelectionDAG &DAG) {
4877  EVT EltVT = VT.getVectorElementType();
4878  unsigned NumElems = Elts.size();
4879
4880  LoadSDNode *LDBase = NULL;
4881  unsigned LastLoadedElt = -1U;
4882
4883  // For each element in the initializer, see if we've found a load or an undef.
4884  // If we don't find an initial load element, or later load elements are
4885  // non-consecutive, bail out.
4886  for (unsigned i = 0; i < NumElems; ++i) {
4887    SDValue Elt = Elts[i];
4888
4889    if (!Elt.getNode() ||
4890        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4891      return SDValue();
4892    if (!LDBase) {
4893      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4894        return SDValue();
4895      LDBase = cast<LoadSDNode>(Elt.getNode());
4896      LastLoadedElt = i;
4897      continue;
4898    }
4899    if (Elt.getOpcode() == ISD::UNDEF)
4900      continue;
4901
4902    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4903    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4904      return SDValue();
4905    LastLoadedElt = i;
4906  }
4907
4908  // If we have found an entire vector of loads and undefs, then return a large
4909  // load of the entire vector width starting at the base pointer.  If we found
4910  // consecutive loads for the low half, generate a vzext_load node.
4911  if (LastLoadedElt == NumElems - 1) {
4912    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4913      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4914                         LDBase->getPointerInfo(),
4915                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4916                         LDBase->isInvariant(), 0);
4917    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4918                       LDBase->getPointerInfo(),
4919                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4920                       LDBase->isInvariant(), LDBase->getAlignment());
4921  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4922             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4923    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4924    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4925    SDValue ResNode =
4926        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4927                                LDBase->getPointerInfo(),
4928                                LDBase->getAlignment(),
4929                                false/*isVolatile*/, true/*ReadMem*/,
4930                                false/*WriteMem*/);
4931    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4932  }
4933  return SDValue();
4934}
4935
4936/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4937/// a vbroadcast node. We support two patterns:
4938/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4939/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4940/// a scalar load.
4941/// The scalar load node is returned when a pattern is found,
4942/// or SDValue() otherwise.
4943static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4944  if (!Subtarget->hasAVX())
4945    return SDValue();
4946
4947  EVT VT = Op.getValueType();
4948  SDValue V = Op;
4949
4950  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4951    V = V.getOperand(0);
4952
4953  //A suspected load to be broadcasted.
4954  SDValue Ld;
4955
4956  switch (V.getOpcode()) {
4957    default:
4958      // Unknown pattern found.
4959      return SDValue();
4960
4961    case ISD::BUILD_VECTOR: {
4962      // The BUILD_VECTOR node must be a splat.
4963      if (!isSplatVector(V.getNode()))
4964        return SDValue();
4965
4966      Ld = V.getOperand(0);
4967
4968      // The suspected load node has several users. Make sure that all
4969      // of its users are from the BUILD_VECTOR node.
4970      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4971        return SDValue();
4972      break;
4973    }
4974
4975    case ISD::VECTOR_SHUFFLE: {
4976      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4977
4978      // Shuffles must have a splat mask where the first element is
4979      // broadcasted.
4980      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4981        return SDValue();
4982
4983      SDValue Sc = Op.getOperand(0);
4984      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4985        return SDValue();
4986
4987      Ld = Sc.getOperand(0);
4988
4989      // The scalar_to_vector node and the suspected
4990      // load node must have exactly one user.
4991      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4992        return SDValue();
4993      break;
4994    }
4995  }
4996
4997  // The scalar source must be a normal load.
4998  if (!ISD::isNormalLoad(Ld.getNode()))
4999    return SDValue();
5000
5001  // Reject loads that have uses of the chain result
5002  if (Ld->hasAnyUseOfValue(1))
5003    return SDValue();
5004
5005  bool Is256 = VT.getSizeInBits() == 256;
5006  bool Is128 = VT.getSizeInBits() == 128;
5007  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5008
5009  // VBroadcast to YMM
5010  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5011    return Ld;
5012
5013  // VBroadcast to XMM
5014  if (Is128 && (ScalarSize == 32))
5015    return Ld;
5016
5017  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5018  // double since there is vbroadcastsd xmm
5019  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5020    // VBroadcast to YMM
5021    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5022      return Ld;
5023
5024    // VBroadcast to XMM
5025    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5026      return Ld;
5027  }
5028
5029  // Unsupported broadcast.
5030  return SDValue();
5031}
5032
5033SDValue
5034X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5035  DebugLoc dl = Op.getDebugLoc();
5036
5037  EVT VT = Op.getValueType();
5038  EVT ExtVT = VT.getVectorElementType();
5039  unsigned NumElems = Op.getNumOperands();
5040
5041  // Vectors containing all zeros can be matched by pxor and xorps later
5042  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5043    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5044    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5045    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5046      return Op;
5047
5048    return getZeroVector(VT, Subtarget->hasSSE2(),
5049                         Subtarget->hasAVX2(), DAG, dl);
5050  }
5051
5052  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5053  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5054  // vpcmpeqd on 256-bit vectors.
5055  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5056    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5057      return Op;
5058
5059    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5060  }
5061
5062  SDValue LD = isVectorBroadcast(Op, Subtarget);
5063  if (LD.getNode())
5064    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5065
5066  unsigned EVTBits = ExtVT.getSizeInBits();
5067
5068  unsigned NumZero  = 0;
5069  unsigned NumNonZero = 0;
5070  unsigned NonZeros = 0;
5071  bool IsAllConstants = true;
5072  SmallSet<SDValue, 8> Values;
5073  for (unsigned i = 0; i < NumElems; ++i) {
5074    SDValue Elt = Op.getOperand(i);
5075    if (Elt.getOpcode() == ISD::UNDEF)
5076      continue;
5077    Values.insert(Elt);
5078    if (Elt.getOpcode() != ISD::Constant &&
5079        Elt.getOpcode() != ISD::ConstantFP)
5080      IsAllConstants = false;
5081    if (X86::isZeroNode(Elt))
5082      NumZero++;
5083    else {
5084      NonZeros |= (1 << i);
5085      NumNonZero++;
5086    }
5087  }
5088
5089  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5090  if (NumNonZero == 0)
5091    return DAG.getUNDEF(VT);
5092
5093  // Special case for single non-zero, non-undef, element.
5094  if (NumNonZero == 1) {
5095    unsigned Idx = CountTrailingZeros_32(NonZeros);
5096    SDValue Item = Op.getOperand(Idx);
5097
5098    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5099    // the value are obviously zero, truncate the value to i32 and do the
5100    // insertion that way.  Only do this if the value is non-constant or if the
5101    // value is a constant being inserted into element 0.  It is cheaper to do
5102    // a constant pool load than it is to do a movd + shuffle.
5103    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5104        (!IsAllConstants || Idx == 0)) {
5105      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5106        // Handle SSE only.
5107        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5108        EVT VecVT = MVT::v4i32;
5109        unsigned VecElts = 4;
5110
5111        // Truncate the value (which may itself be a constant) to i32, and
5112        // convert it to a vector with movd (S2V+shuffle to zero extend).
5113        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5114        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5115        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5116
5117        // Now we have our 32-bit value zero extended in the low element of
5118        // a vector.  If Idx != 0, swizzle it into place.
5119        if (Idx != 0) {
5120          SmallVector<int, 4> Mask;
5121          Mask.push_back(Idx);
5122          for (unsigned i = 1; i != VecElts; ++i)
5123            Mask.push_back(i);
5124          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5125                                      DAG.getUNDEF(Item.getValueType()),
5126                                      &Mask[0]);
5127        }
5128        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5129      }
5130    }
5131
5132    // If we have a constant or non-constant insertion into the low element of
5133    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5134    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5135    // depending on what the source datatype is.
5136    if (Idx == 0) {
5137      if (NumZero == 0)
5138        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5139
5140      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5141          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5142        if (VT.getSizeInBits() == 256) {
5143          SDValue ZeroVec = getZeroVector(VT, Subtarget->hasSSE2(),
5144                                          Subtarget->hasAVX2(), DAG, dl);
5145          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5146                             Item, DAG.getIntPtrConstant(0));
5147        }
5148        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5149        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5150        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5151        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5152      }
5153
5154      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5155        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5156        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5157        if (VT.getSizeInBits() == 256) {
5158          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget->hasSSE2(),
5159                                          Subtarget->hasAVX2(), DAG, dl);
5160          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5161                                    DAG, dl);
5162        } else {
5163          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5164          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5165        }
5166        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5167      }
5168    }
5169
5170    // Is it a vector logical left shift?
5171    if (NumElems == 2 && Idx == 1 &&
5172        X86::isZeroNode(Op.getOperand(0)) &&
5173        !X86::isZeroNode(Op.getOperand(1))) {
5174      unsigned NumBits = VT.getSizeInBits();
5175      return getVShift(true, VT,
5176                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5177                                   VT, Op.getOperand(1)),
5178                       NumBits/2, DAG, *this, dl);
5179    }
5180
5181    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5182      return SDValue();
5183
5184    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5185    // is a non-constant being inserted into an element other than the low one,
5186    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5187    // movd/movss) to move this into the low element, then shuffle it into
5188    // place.
5189    if (EVTBits == 32) {
5190      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5191
5192      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5193      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5194      SmallVector<int, 8> MaskVec;
5195      for (unsigned i = 0; i < NumElems; i++)
5196        MaskVec.push_back(i == Idx ? 0 : 1);
5197      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5198    }
5199  }
5200
5201  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5202  if (Values.size() == 1) {
5203    if (EVTBits == 32) {
5204      // Instead of a shuffle like this:
5205      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5206      // Check if it's possible to issue this instead.
5207      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5208      unsigned Idx = CountTrailingZeros_32(NonZeros);
5209      SDValue Item = Op.getOperand(Idx);
5210      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5211        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5212    }
5213    return SDValue();
5214  }
5215
5216  // A vector full of immediates; various special cases are already
5217  // handled, so this is best done with a single constant-pool load.
5218  if (IsAllConstants)
5219    return SDValue();
5220
5221  // For AVX-length vectors, build the individual 128-bit pieces and use
5222  // shuffles to put them in place.
5223  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5224    SmallVector<SDValue, 32> V;
5225    for (unsigned i = 0; i < NumElems; ++i)
5226      V.push_back(Op.getOperand(i));
5227
5228    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5229
5230    // Build both the lower and upper subvector.
5231    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5232    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5233                                NumElems/2);
5234
5235    // Recreate the wider vector with the lower and upper part.
5236    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5237                                DAG.getConstant(0, MVT::i32), DAG, dl);
5238    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5239                              DAG, dl);
5240  }
5241
5242  // Let legalizer expand 2-wide build_vectors.
5243  if (EVTBits == 64) {
5244    if (NumNonZero == 1) {
5245      // One half is zero or undef.
5246      unsigned Idx = CountTrailingZeros_32(NonZeros);
5247      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5248                                 Op.getOperand(Idx));
5249      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5250    }
5251    return SDValue();
5252  }
5253
5254  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5255  if (EVTBits == 8 && NumElems == 16) {
5256    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5257                                        *this);
5258    if (V.getNode()) return V;
5259  }
5260
5261  if (EVTBits == 16 && NumElems == 8) {
5262    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5263                                      *this);
5264    if (V.getNode()) return V;
5265  }
5266
5267  // If element VT is == 32 bits, turn it into a number of shuffles.
5268  SmallVector<SDValue, 8> V(NumElems);
5269  if (NumElems == 4 && NumZero > 0) {
5270    for (unsigned i = 0; i < 4; ++i) {
5271      bool isZero = !(NonZeros & (1 << i));
5272      if (isZero)
5273        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
5274                             DAG, dl);
5275      else
5276        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5277    }
5278
5279    for (unsigned i = 0; i < 2; ++i) {
5280      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5281        default: break;
5282        case 0:
5283          V[i] = V[i*2];  // Must be a zero vector.
5284          break;
5285        case 1:
5286          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5287          break;
5288        case 2:
5289          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5290          break;
5291        case 3:
5292          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5293          break;
5294      }
5295    }
5296
5297    bool Reverse1 = (NonZeros & 0x3) == 2;
5298    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5299    int MaskVec[] = {
5300      Reverse1 ? 1 : 0,
5301      Reverse1 ? 0 : 1,
5302      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5303      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5304    };
5305    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5306  }
5307
5308  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5309    // Check for a build vector of consecutive loads.
5310    for (unsigned i = 0; i < NumElems; ++i)
5311      V[i] = Op.getOperand(i);
5312
5313    // Check for elements which are consecutive loads.
5314    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5315    if (LD.getNode())
5316      return LD;
5317
5318    // For SSE 4.1, use insertps to put the high elements into the low element.
5319    if (getSubtarget()->hasSSE41()) {
5320      SDValue Result;
5321      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5322        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5323      else
5324        Result = DAG.getUNDEF(VT);
5325
5326      for (unsigned i = 1; i < NumElems; ++i) {
5327        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5328        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5329                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5330      }
5331      return Result;
5332    }
5333
5334    // Otherwise, expand into a number of unpckl*, start by extending each of
5335    // our (non-undef) elements to the full vector width with the element in the
5336    // bottom slot of the vector (which generates no code for SSE).
5337    for (unsigned i = 0; i < NumElems; ++i) {
5338      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5339        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5340      else
5341        V[i] = DAG.getUNDEF(VT);
5342    }
5343
5344    // Next, we iteratively mix elements, e.g. for v4f32:
5345    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5346    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5347    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5348    unsigned EltStride = NumElems >> 1;
5349    while (EltStride != 0) {
5350      for (unsigned i = 0; i < EltStride; ++i) {
5351        // If V[i+EltStride] is undef and this is the first round of mixing,
5352        // then it is safe to just drop this shuffle: V[i] is already in the
5353        // right place, the one element (since it's the first round) being
5354        // inserted as undef can be dropped.  This isn't safe for successive
5355        // rounds because they will permute elements within both vectors.
5356        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5357            EltStride == NumElems/2)
5358          continue;
5359
5360        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5361      }
5362      EltStride >>= 1;
5363    }
5364    return V[0];
5365  }
5366  return SDValue();
5367}
5368
5369// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5370// them in a MMX register.  This is better than doing a stack convert.
5371static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5372  DebugLoc dl = Op.getDebugLoc();
5373  EVT ResVT = Op.getValueType();
5374
5375  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5376         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5377  int Mask[2];
5378  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5379  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5380  InVec = Op.getOperand(1);
5381  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5382    unsigned NumElts = ResVT.getVectorNumElements();
5383    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5384    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5385                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5386  } else {
5387    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5388    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5389    Mask[0] = 0; Mask[1] = 2;
5390    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5391  }
5392  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5393}
5394
5395// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5396// to create 256-bit vectors from two other 128-bit ones.
5397static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5398  DebugLoc dl = Op.getDebugLoc();
5399  EVT ResVT = Op.getValueType();
5400
5401  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5402
5403  SDValue V1 = Op.getOperand(0);
5404  SDValue V2 = Op.getOperand(1);
5405  unsigned NumElems = ResVT.getVectorNumElements();
5406
5407  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5408                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5409  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5410                            DAG, dl);
5411}
5412
5413SDValue
5414X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5415  EVT ResVT = Op.getValueType();
5416
5417  assert(Op.getNumOperands() == 2);
5418  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5419         "Unsupported CONCAT_VECTORS for value type");
5420
5421  // We support concatenate two MMX registers and place them in a MMX register.
5422  // This is better than doing a stack convert.
5423  if (ResVT.is128BitVector())
5424    return LowerMMXCONCAT_VECTORS(Op, DAG);
5425
5426  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5427  // from two other 128-bit ones.
5428  return LowerAVXCONCAT_VECTORS(Op, DAG);
5429}
5430
5431// v8i16 shuffles - Prefer shuffles in the following order:
5432// 1. [all]   pshuflw, pshufhw, optional move
5433// 2. [ssse3] 1 x pshufb
5434// 3. [ssse3] 2 x pshufb + 1 x por
5435// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5436SDValue
5437X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5438                                            SelectionDAG &DAG) const {
5439  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5440  SDValue V1 = SVOp->getOperand(0);
5441  SDValue V2 = SVOp->getOperand(1);
5442  DebugLoc dl = SVOp->getDebugLoc();
5443  SmallVector<int, 8> MaskVals;
5444
5445  // Determine if more than 1 of the words in each of the low and high quadwords
5446  // of the result come from the same quadword of one of the two inputs.  Undef
5447  // mask values count as coming from any quadword, for better codegen.
5448  unsigned LoQuad[] = { 0, 0, 0, 0 };
5449  unsigned HiQuad[] = { 0, 0, 0, 0 };
5450  BitVector InputQuads(4);
5451  for (unsigned i = 0; i < 8; ++i) {
5452    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5453    int EltIdx = SVOp->getMaskElt(i);
5454    MaskVals.push_back(EltIdx);
5455    if (EltIdx < 0) {
5456      ++Quad[0];
5457      ++Quad[1];
5458      ++Quad[2];
5459      ++Quad[3];
5460      continue;
5461    }
5462    ++Quad[EltIdx / 4];
5463    InputQuads.set(EltIdx / 4);
5464  }
5465
5466  int BestLoQuad = -1;
5467  unsigned MaxQuad = 1;
5468  for (unsigned i = 0; i < 4; ++i) {
5469    if (LoQuad[i] > MaxQuad) {
5470      BestLoQuad = i;
5471      MaxQuad = LoQuad[i];
5472    }
5473  }
5474
5475  int BestHiQuad = -1;
5476  MaxQuad = 1;
5477  for (unsigned i = 0; i < 4; ++i) {
5478    if (HiQuad[i] > MaxQuad) {
5479      BestHiQuad = i;
5480      MaxQuad = HiQuad[i];
5481    }
5482  }
5483
5484  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5485  // of the two input vectors, shuffle them into one input vector so only a
5486  // single pshufb instruction is necessary. If There are more than 2 input
5487  // quads, disable the next transformation since it does not help SSSE3.
5488  bool V1Used = InputQuads[0] || InputQuads[1];
5489  bool V2Used = InputQuads[2] || InputQuads[3];
5490  if (Subtarget->hasSSSE3()) {
5491    if (InputQuads.count() == 2 && V1Used && V2Used) {
5492      BestLoQuad = InputQuads.find_first();
5493      BestHiQuad = InputQuads.find_next(BestLoQuad);
5494    }
5495    if (InputQuads.count() > 2) {
5496      BestLoQuad = -1;
5497      BestHiQuad = -1;
5498    }
5499  }
5500
5501  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5502  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5503  // words from all 4 input quadwords.
5504  SDValue NewV;
5505  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5506    int MaskV[] = {
5507      BestLoQuad < 0 ? 0 : BestLoQuad,
5508      BestHiQuad < 0 ? 1 : BestHiQuad
5509    };
5510    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5511                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5512                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5513    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5514
5515    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5516    // source words for the shuffle, to aid later transformations.
5517    bool AllWordsInNewV = true;
5518    bool InOrder[2] = { true, true };
5519    for (unsigned i = 0; i != 8; ++i) {
5520      int idx = MaskVals[i];
5521      if (idx != (int)i)
5522        InOrder[i/4] = false;
5523      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5524        continue;
5525      AllWordsInNewV = false;
5526      break;
5527    }
5528
5529    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5530    if (AllWordsInNewV) {
5531      for (int i = 0; i != 8; ++i) {
5532        int idx = MaskVals[i];
5533        if (idx < 0)
5534          continue;
5535        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5536        if ((idx != i) && idx < 4)
5537          pshufhw = false;
5538        if ((idx != i) && idx > 3)
5539          pshuflw = false;
5540      }
5541      V1 = NewV;
5542      V2Used = false;
5543      BestLoQuad = 0;
5544      BestHiQuad = 1;
5545    }
5546
5547    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5548    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5549    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5550      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5551      unsigned TargetMask = 0;
5552      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5553                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5554      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5555                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5556      V1 = NewV.getOperand(0);
5557      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5558    }
5559  }
5560
5561  // If we have SSSE3, and all words of the result are from 1 input vector,
5562  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5563  // is present, fall back to case 4.
5564  if (Subtarget->hasSSSE3()) {
5565    SmallVector<SDValue,16> pshufbMask;
5566
5567    // If we have elements from both input vectors, set the high bit of the
5568    // shuffle mask element to zero out elements that come from V2 in the V1
5569    // mask, and elements that come from V1 in the V2 mask, so that the two
5570    // results can be OR'd together.
5571    bool TwoInputs = V1Used && V2Used;
5572    for (unsigned i = 0; i != 8; ++i) {
5573      int EltIdx = MaskVals[i] * 2;
5574      if (TwoInputs && (EltIdx >= 16)) {
5575        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5576        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5577        continue;
5578      }
5579      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5580      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5581    }
5582    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5583    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5584                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5585                                 MVT::v16i8, &pshufbMask[0], 16));
5586    if (!TwoInputs)
5587      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5588
5589    // Calculate the shuffle mask for the second input, shuffle it, and
5590    // OR it with the first shuffled input.
5591    pshufbMask.clear();
5592    for (unsigned i = 0; i != 8; ++i) {
5593      int EltIdx = MaskVals[i] * 2;
5594      if (EltIdx < 16) {
5595        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5596        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5597        continue;
5598      }
5599      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5600      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5601    }
5602    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5603    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5604                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5605                                 MVT::v16i8, &pshufbMask[0], 16));
5606    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5607    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5608  }
5609
5610  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5611  // and update MaskVals with new element order.
5612  std::bitset<8> InOrder;
5613  if (BestLoQuad >= 0) {
5614    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5615    for (int i = 0; i != 4; ++i) {
5616      int idx = MaskVals[i];
5617      if (idx < 0) {
5618        InOrder.set(i);
5619      } else if ((idx / 4) == BestLoQuad) {
5620        MaskV[i] = idx & 3;
5621        InOrder.set(i);
5622      }
5623    }
5624    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5625                                &MaskV[0]);
5626
5627    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5628      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5629                               NewV.getOperand(0),
5630                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5631                               DAG);
5632  }
5633
5634  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5635  // and update MaskVals with the new element order.
5636  if (BestHiQuad >= 0) {
5637    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5638    for (unsigned i = 4; i != 8; ++i) {
5639      int idx = MaskVals[i];
5640      if (idx < 0) {
5641        InOrder.set(i);
5642      } else if ((idx / 4) == BestHiQuad) {
5643        MaskV[i] = (idx & 3) + 4;
5644        InOrder.set(i);
5645      }
5646    }
5647    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5648                                &MaskV[0]);
5649
5650    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5651      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5652                              NewV.getOperand(0),
5653                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5654                              DAG);
5655  }
5656
5657  // In case BestHi & BestLo were both -1, which means each quadword has a word
5658  // from each of the four input quadwords, calculate the InOrder bitvector now
5659  // before falling through to the insert/extract cleanup.
5660  if (BestLoQuad == -1 && BestHiQuad == -1) {
5661    NewV = V1;
5662    for (int i = 0; i != 8; ++i)
5663      if (MaskVals[i] < 0 || MaskVals[i] == i)
5664        InOrder.set(i);
5665  }
5666
5667  // The other elements are put in the right place using pextrw and pinsrw.
5668  for (unsigned i = 0; i != 8; ++i) {
5669    if (InOrder[i])
5670      continue;
5671    int EltIdx = MaskVals[i];
5672    if (EltIdx < 0)
5673      continue;
5674    SDValue ExtOp = (EltIdx < 8)
5675    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5676                  DAG.getIntPtrConstant(EltIdx))
5677    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5678                  DAG.getIntPtrConstant(EltIdx - 8));
5679    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5680                       DAG.getIntPtrConstant(i));
5681  }
5682  return NewV;
5683}
5684
5685// v16i8 shuffles - Prefer shuffles in the following order:
5686// 1. [ssse3] 1 x pshufb
5687// 2. [ssse3] 2 x pshufb + 1 x por
5688// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5689static
5690SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5691                                 SelectionDAG &DAG,
5692                                 const X86TargetLowering &TLI) {
5693  SDValue V1 = SVOp->getOperand(0);
5694  SDValue V2 = SVOp->getOperand(1);
5695  DebugLoc dl = SVOp->getDebugLoc();
5696  ArrayRef<int> MaskVals = SVOp->getMask();
5697
5698  // If we have SSSE3, case 1 is generated when all result bytes come from
5699  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5700  // present, fall back to case 3.
5701  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5702  bool V1Only = true;
5703  bool V2Only = true;
5704  for (unsigned i = 0; i < 16; ++i) {
5705    int EltIdx = MaskVals[i];
5706    if (EltIdx < 0)
5707      continue;
5708    if (EltIdx < 16)
5709      V2Only = false;
5710    else
5711      V1Only = false;
5712  }
5713
5714  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5715  if (TLI.getSubtarget()->hasSSSE3()) {
5716    SmallVector<SDValue,16> pshufbMask;
5717
5718    // If all result elements are from one input vector, then only translate
5719    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5720    //
5721    // Otherwise, we have elements from both input vectors, and must zero out
5722    // elements that come from V2 in the first mask, and V1 in the second mask
5723    // so that we can OR them together.
5724    bool TwoInputs = !(V1Only || V2Only);
5725    for (unsigned i = 0; i != 16; ++i) {
5726      int EltIdx = MaskVals[i];
5727      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5728        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5729        continue;
5730      }
5731      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5732    }
5733    // If all the elements are from V2, assign it to V1 and return after
5734    // building the first pshufb.
5735    if (V2Only)
5736      V1 = V2;
5737    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5738                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5739                                 MVT::v16i8, &pshufbMask[0], 16));
5740    if (!TwoInputs)
5741      return V1;
5742
5743    // Calculate the shuffle mask for the second input, shuffle it, and
5744    // OR it with the first shuffled input.
5745    pshufbMask.clear();
5746    for (unsigned i = 0; i != 16; ++i) {
5747      int EltIdx = MaskVals[i];
5748      if (EltIdx < 16) {
5749        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5750        continue;
5751      }
5752      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5753    }
5754    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5755                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5756                                 MVT::v16i8, &pshufbMask[0], 16));
5757    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5758  }
5759
5760  // No SSSE3 - Calculate in place words and then fix all out of place words
5761  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5762  // the 16 different words that comprise the two doublequadword input vectors.
5763  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5764  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5765  SDValue NewV = V2Only ? V2 : V1;
5766  for (int i = 0; i != 8; ++i) {
5767    int Elt0 = MaskVals[i*2];
5768    int Elt1 = MaskVals[i*2+1];
5769
5770    // This word of the result is all undef, skip it.
5771    if (Elt0 < 0 && Elt1 < 0)
5772      continue;
5773
5774    // This word of the result is already in the correct place, skip it.
5775    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5776      continue;
5777    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5778      continue;
5779
5780    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5781    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5782    SDValue InsElt;
5783
5784    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5785    // using a single extract together, load it and store it.
5786    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5787      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5788                           DAG.getIntPtrConstant(Elt1 / 2));
5789      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5790                        DAG.getIntPtrConstant(i));
5791      continue;
5792    }
5793
5794    // If Elt1 is defined, extract it from the appropriate source.  If the
5795    // source byte is not also odd, shift the extracted word left 8 bits
5796    // otherwise clear the bottom 8 bits if we need to do an or.
5797    if (Elt1 >= 0) {
5798      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5799                           DAG.getIntPtrConstant(Elt1 / 2));
5800      if ((Elt1 & 1) == 0)
5801        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5802                             DAG.getConstant(8,
5803                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5804      else if (Elt0 >= 0)
5805        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5806                             DAG.getConstant(0xFF00, MVT::i16));
5807    }
5808    // If Elt0 is defined, extract it from the appropriate source.  If the
5809    // source byte is not also even, shift the extracted word right 8 bits. If
5810    // Elt1 was also defined, OR the extracted values together before
5811    // inserting them in the result.
5812    if (Elt0 >= 0) {
5813      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5814                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5815      if ((Elt0 & 1) != 0)
5816        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5817                              DAG.getConstant(8,
5818                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5819      else if (Elt1 >= 0)
5820        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5821                             DAG.getConstant(0x00FF, MVT::i16));
5822      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5823                         : InsElt0;
5824    }
5825    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5826                       DAG.getIntPtrConstant(i));
5827  }
5828  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5829}
5830
5831/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5832/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5833/// done when every pair / quad of shuffle mask elements point to elements in
5834/// the right sequence. e.g.
5835/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5836static
5837SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5838                                 SelectionDAG &DAG, DebugLoc dl) {
5839  EVT VT = SVOp->getValueType(0);
5840  SDValue V1 = SVOp->getOperand(0);
5841  SDValue V2 = SVOp->getOperand(1);
5842  unsigned NumElems = VT.getVectorNumElements();
5843  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5844  EVT NewVT;
5845  switch (VT.getSimpleVT().SimpleTy) {
5846  default: assert(false && "Unexpected!");
5847  case MVT::v4f32: NewVT = MVT::v2f64; break;
5848  case MVT::v4i32: NewVT = MVT::v2i64; break;
5849  case MVT::v8i16: NewVT = MVT::v4i32; break;
5850  case MVT::v16i8: NewVT = MVT::v4i32; break;
5851  }
5852
5853  int Scale = NumElems / NewWidth;
5854  SmallVector<int, 8> MaskVec;
5855  for (unsigned i = 0; i < NumElems; i += Scale) {
5856    int StartIdx = -1;
5857    for (int j = 0; j < Scale; ++j) {
5858      int EltIdx = SVOp->getMaskElt(i+j);
5859      if (EltIdx < 0)
5860        continue;
5861      if (StartIdx == -1)
5862        StartIdx = EltIdx - (EltIdx % Scale);
5863      if (EltIdx != StartIdx + j)
5864        return SDValue();
5865    }
5866    if (StartIdx == -1)
5867      MaskVec.push_back(-1);
5868    else
5869      MaskVec.push_back(StartIdx / Scale);
5870  }
5871
5872  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5873  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5874  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5875}
5876
5877/// getVZextMovL - Return a zero-extending vector move low node.
5878///
5879static SDValue getVZextMovL(EVT VT, EVT OpVT,
5880                            SDValue SrcOp, SelectionDAG &DAG,
5881                            const X86Subtarget *Subtarget, DebugLoc dl) {
5882  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5883    LoadSDNode *LD = NULL;
5884    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5885      LD = dyn_cast<LoadSDNode>(SrcOp);
5886    if (!LD) {
5887      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5888      // instead.
5889      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5890      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5891          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5892          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5893          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5894        // PR2108
5895        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5896        return DAG.getNode(ISD::BITCAST, dl, VT,
5897                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5898                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5899                                                   OpVT,
5900                                                   SrcOp.getOperand(0)
5901                                                          .getOperand(0))));
5902      }
5903    }
5904  }
5905
5906  return DAG.getNode(ISD::BITCAST, dl, VT,
5907                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5908                                 DAG.getNode(ISD::BITCAST, dl,
5909                                             OpVT, SrcOp)));
5910}
5911
5912/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5913/// which could not be matched by any known target speficic shuffle
5914static SDValue
5915LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5916  EVT VT = SVOp->getValueType(0);
5917
5918  unsigned NumElems = VT.getVectorNumElements();
5919  unsigned NumLaneElems = NumElems / 2;
5920
5921  int MinRange[2][2] = { { static_cast<int>(NumElems),
5922                           static_cast<int>(NumElems) },
5923                         { static_cast<int>(NumElems),
5924                           static_cast<int>(NumElems) } };
5925  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5926
5927  // Collect used ranges for each source in each lane
5928  for (unsigned l = 0; l < 2; ++l) {
5929    unsigned LaneStart = l*NumLaneElems;
5930    for (unsigned i = 0; i != NumLaneElems; ++i) {
5931      int Idx = SVOp->getMaskElt(i+LaneStart);
5932      if (Idx < 0)
5933        continue;
5934
5935      int Input = 0;
5936      if (Idx >= (int)NumElems) {
5937        Idx -= NumElems;
5938        Input = 1;
5939      }
5940
5941      if (Idx > MaxRange[l][Input])
5942        MaxRange[l][Input] = Idx;
5943      if (Idx < MinRange[l][Input])
5944        MinRange[l][Input] = Idx;
5945    }
5946  }
5947
5948  // Make sure each range is 128-bits
5949  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5950  for (unsigned l = 0; l < 2; ++l) {
5951    for (unsigned Input = 0; Input < 2; ++Input) {
5952      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5953        continue;
5954
5955      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5956        ExtractIdx[l][Input] = 0;
5957      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5958               MaxRange[l][Input] < (int)NumElems)
5959        ExtractIdx[l][Input] = NumLaneElems;
5960      else
5961        return SDValue();
5962    }
5963  }
5964
5965  DebugLoc dl = SVOp->getDebugLoc();
5966  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5967  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5968
5969  SDValue Ops[2][2];
5970  for (unsigned l = 0; l < 2; ++l) {
5971    for (unsigned Input = 0; Input < 2; ++Input) {
5972      if (ExtractIdx[l][Input] >= 0)
5973        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5974                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5975                                                DAG, dl);
5976      else
5977        Ops[l][Input] = DAG.getUNDEF(NVT);
5978    }
5979  }
5980
5981  // Generate 128-bit shuffles
5982  SmallVector<int, 16> Mask1, Mask2;
5983  for (unsigned i = 0; i != NumLaneElems; ++i) {
5984    int Elt = SVOp->getMaskElt(i);
5985    if (Elt >= (int)NumElems) {
5986      Elt %= NumLaneElems;
5987      Elt += NumLaneElems;
5988    } else if (Elt >= 0) {
5989      Elt %= NumLaneElems;
5990    }
5991    Mask1.push_back(Elt);
5992  }
5993  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
5994    int Elt = SVOp->getMaskElt(i);
5995    if (Elt >= (int)NumElems) {
5996      Elt %= NumLaneElems;
5997      Elt += NumLaneElems;
5998    } else if (Elt >= 0) {
5999      Elt %= NumLaneElems;
6000    }
6001    Mask2.push_back(Elt);
6002  }
6003
6004  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
6005  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
6006
6007  // Concatenate the result back
6008  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
6009                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6010  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
6011                            DAG, dl);
6012}
6013
6014/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6015/// 4 elements, and match them with several different shuffle types.
6016static SDValue
6017LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6018  SDValue V1 = SVOp->getOperand(0);
6019  SDValue V2 = SVOp->getOperand(1);
6020  DebugLoc dl = SVOp->getDebugLoc();
6021  EVT VT = SVOp->getValueType(0);
6022
6023  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6024
6025  std::pair<int, int> Locs[4];
6026  int Mask1[] = { -1, -1, -1, -1 };
6027  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6028
6029  unsigned NumHi = 0;
6030  unsigned NumLo = 0;
6031  for (unsigned i = 0; i != 4; ++i) {
6032    int Idx = PermMask[i];
6033    if (Idx < 0) {
6034      Locs[i] = std::make_pair(-1, -1);
6035    } else {
6036      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6037      if (Idx < 4) {
6038        Locs[i] = std::make_pair(0, NumLo);
6039        Mask1[NumLo] = Idx;
6040        NumLo++;
6041      } else {
6042        Locs[i] = std::make_pair(1, NumHi);
6043        if (2+NumHi < 4)
6044          Mask1[2+NumHi] = Idx;
6045        NumHi++;
6046      }
6047    }
6048  }
6049
6050  if (NumLo <= 2 && NumHi <= 2) {
6051    // If no more than two elements come from either vector. This can be
6052    // implemented with two shuffles. First shuffle gather the elements.
6053    // The second shuffle, which takes the first shuffle as both of its
6054    // vector operands, put the elements into the right order.
6055    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6056
6057    int Mask2[] = { -1, -1, -1, -1 };
6058
6059    for (unsigned i = 0; i != 4; ++i)
6060      if (Locs[i].first != -1) {
6061        unsigned Idx = (i < 2) ? 0 : 4;
6062        Idx += Locs[i].first * 2 + Locs[i].second;
6063        Mask2[i] = Idx;
6064      }
6065
6066    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6067  } else if (NumLo == 3 || NumHi == 3) {
6068    // Otherwise, we must have three elements from one vector, call it X, and
6069    // one element from the other, call it Y.  First, use a shufps to build an
6070    // intermediate vector with the one element from Y and the element from X
6071    // that will be in the same half in the final destination (the indexes don't
6072    // matter). Then, use a shufps to build the final vector, taking the half
6073    // containing the element from Y from the intermediate, and the other half
6074    // from X.
6075    if (NumHi == 3) {
6076      // Normalize it so the 3 elements come from V1.
6077      CommuteVectorShuffleMask(PermMask, 4);
6078      std::swap(V1, V2);
6079    }
6080
6081    // Find the element from V2.
6082    unsigned HiIndex;
6083    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6084      int Val = PermMask[HiIndex];
6085      if (Val < 0)
6086        continue;
6087      if (Val >= 4)
6088        break;
6089    }
6090
6091    Mask1[0] = PermMask[HiIndex];
6092    Mask1[1] = -1;
6093    Mask1[2] = PermMask[HiIndex^1];
6094    Mask1[3] = -1;
6095    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6096
6097    if (HiIndex >= 2) {
6098      Mask1[0] = PermMask[0];
6099      Mask1[1] = PermMask[1];
6100      Mask1[2] = HiIndex & 1 ? 6 : 4;
6101      Mask1[3] = HiIndex & 1 ? 4 : 6;
6102      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6103    } else {
6104      Mask1[0] = HiIndex & 1 ? 2 : 0;
6105      Mask1[1] = HiIndex & 1 ? 0 : 2;
6106      Mask1[2] = PermMask[2];
6107      Mask1[3] = PermMask[3];
6108      if (Mask1[2] >= 0)
6109        Mask1[2] += 4;
6110      if (Mask1[3] >= 0)
6111        Mask1[3] += 4;
6112      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6113    }
6114  }
6115
6116  // Break it into (shuffle shuffle_hi, shuffle_lo).
6117  int LoMask[] = { -1, -1, -1, -1 };
6118  int HiMask[] = { -1, -1, -1, -1 };
6119
6120  int *MaskPtr = LoMask;
6121  unsigned MaskIdx = 0;
6122  unsigned LoIdx = 0;
6123  unsigned HiIdx = 2;
6124  for (unsigned i = 0; i != 4; ++i) {
6125    if (i == 2) {
6126      MaskPtr = HiMask;
6127      MaskIdx = 1;
6128      LoIdx = 0;
6129      HiIdx = 2;
6130    }
6131    int Idx = PermMask[i];
6132    if (Idx < 0) {
6133      Locs[i] = std::make_pair(-1, -1);
6134    } else if (Idx < 4) {
6135      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6136      MaskPtr[LoIdx] = Idx;
6137      LoIdx++;
6138    } else {
6139      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6140      MaskPtr[HiIdx] = Idx;
6141      HiIdx++;
6142    }
6143  }
6144
6145  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6146  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6147  int MaskOps[] = { -1, -1, -1, -1 };
6148  for (unsigned i = 0; i != 4; ++i)
6149    if (Locs[i].first != -1)
6150      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6151  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6152}
6153
6154static bool MayFoldVectorLoad(SDValue V) {
6155  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6156    V = V.getOperand(0);
6157  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6158    V = V.getOperand(0);
6159  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6160      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6161    // BUILD_VECTOR (load), undef
6162    V = V.getOperand(0);
6163  if (MayFoldLoad(V))
6164    return true;
6165  return false;
6166}
6167
6168// FIXME: the version above should always be used. Since there's
6169// a bug where several vector shuffles can't be folded because the
6170// DAG is not updated during lowering and a node claims to have two
6171// uses while it only has one, use this version, and let isel match
6172// another instruction if the load really happens to have more than
6173// one use. Remove this version after this bug get fixed.
6174// rdar://8434668, PR8156
6175static bool RelaxedMayFoldVectorLoad(SDValue V) {
6176  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6177    V = V.getOperand(0);
6178  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6179    V = V.getOperand(0);
6180  if (ISD::isNormalLoad(V.getNode()))
6181    return true;
6182  return false;
6183}
6184
6185/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6186/// a vector extract, and if both can be later optimized into a single load.
6187/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6188/// here because otherwise a target specific shuffle node is going to be
6189/// emitted for this shuffle, and the optimization not done.
6190/// FIXME: This is probably not the best approach, but fix the problem
6191/// until the right path is decided.
6192static
6193bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6194                                         const TargetLowering &TLI) {
6195  EVT VT = V.getValueType();
6196  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6197
6198  // Be sure that the vector shuffle is present in a pattern like this:
6199  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6200  if (!V.hasOneUse())
6201    return false;
6202
6203  SDNode *N = *V.getNode()->use_begin();
6204  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6205    return false;
6206
6207  SDValue EltNo = N->getOperand(1);
6208  if (!isa<ConstantSDNode>(EltNo))
6209    return false;
6210
6211  // If the bit convert changed the number of elements, it is unsafe
6212  // to examine the mask.
6213  bool HasShuffleIntoBitcast = false;
6214  if (V.getOpcode() == ISD::BITCAST) {
6215    EVT SrcVT = V.getOperand(0).getValueType();
6216    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6217      return false;
6218    V = V.getOperand(0);
6219    HasShuffleIntoBitcast = true;
6220  }
6221
6222  // Select the input vector, guarding against out of range extract vector.
6223  unsigned NumElems = VT.getVectorNumElements();
6224  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6225  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6226  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6227
6228  // If we are accessing the upper part of a YMM register
6229  // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6230  // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6231  // because the legalization of N did not happen yet.
6232  if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6233    return false;
6234
6235  // Skip one more bit_convert if necessary
6236  if (V.getOpcode() == ISD::BITCAST)
6237    V = V.getOperand(0);
6238
6239  if (!ISD::isNormalLoad(V.getNode()))
6240    return false;
6241
6242  // Is the original load suitable?
6243  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6244
6245  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6246    return false;
6247
6248  if (!HasShuffleIntoBitcast)
6249    return true;
6250
6251  // If there's a bitcast before the shuffle, check if the load type and
6252  // alignment is valid.
6253  unsigned Align = LN0->getAlignment();
6254  unsigned NewAlign =
6255    TLI.getTargetData()->getABITypeAlignment(
6256                                  VT.getTypeForEVT(*DAG.getContext()));
6257
6258  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6259    return false;
6260
6261  return true;
6262}
6263
6264static
6265SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6266  EVT VT = Op.getValueType();
6267
6268  // Canonizalize to v2f64.
6269  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6270  return DAG.getNode(ISD::BITCAST, dl, VT,
6271                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6272                                          V1, DAG));
6273}
6274
6275static
6276SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6277                        bool HasSSE2) {
6278  SDValue V1 = Op.getOperand(0);
6279  SDValue V2 = Op.getOperand(1);
6280  EVT VT = Op.getValueType();
6281
6282  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6283
6284  if (HasSSE2 && VT == MVT::v2f64)
6285    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6286
6287  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6288  return DAG.getNode(ISD::BITCAST, dl, VT,
6289                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6290                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6291                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6292}
6293
6294static
6295SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6296  SDValue V1 = Op.getOperand(0);
6297  SDValue V2 = Op.getOperand(1);
6298  EVT VT = Op.getValueType();
6299
6300  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6301         "unsupported shuffle type");
6302
6303  if (V2.getOpcode() == ISD::UNDEF)
6304    V2 = V1;
6305
6306  // v4i32 or v4f32
6307  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6308}
6309
6310static
6311SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6312  SDValue V1 = Op.getOperand(0);
6313  SDValue V2 = Op.getOperand(1);
6314  EVT VT = Op.getValueType();
6315  unsigned NumElems = VT.getVectorNumElements();
6316
6317  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6318  // operand of these instructions is only memory, so check if there's a
6319  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6320  // same masks.
6321  bool CanFoldLoad = false;
6322
6323  // Trivial case, when V2 comes from a load.
6324  if (MayFoldVectorLoad(V2))
6325    CanFoldLoad = true;
6326
6327  // When V1 is a load, it can be folded later into a store in isel, example:
6328  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6329  //    turns into:
6330  //  (MOVLPSmr addr:$src1, VR128:$src2)
6331  // So, recognize this potential and also use MOVLPS or MOVLPD
6332  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6333    CanFoldLoad = true;
6334
6335  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6336  if (CanFoldLoad) {
6337    if (HasSSE2 && NumElems == 2)
6338      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6339
6340    if (NumElems == 4)
6341      // If we don't care about the second element, procede to use movss.
6342      if (SVOp->getMaskElt(1) != -1)
6343        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6344  }
6345
6346  // movl and movlp will both match v2i64, but v2i64 is never matched by
6347  // movl earlier because we make it strict to avoid messing with the movlp load
6348  // folding logic (see the code above getMOVLP call). Match it here then,
6349  // this is horrible, but will stay like this until we move all shuffle
6350  // matching to x86 specific nodes. Note that for the 1st condition all
6351  // types are matched with movsd.
6352  if (HasSSE2) {
6353    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6354    // as to remove this logic from here, as much as possible
6355    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6356      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6357    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6358  }
6359
6360  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6361
6362  // Invert the operand order and use SHUFPS to match it.
6363  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6364                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6365}
6366
6367static
6368SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6369                               const TargetLowering &TLI,
6370                               const X86Subtarget *Subtarget) {
6371  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6372  EVT VT = Op.getValueType();
6373  DebugLoc dl = Op.getDebugLoc();
6374  SDValue V1 = Op.getOperand(0);
6375  SDValue V2 = Op.getOperand(1);
6376
6377  if (isZeroShuffle(SVOp))
6378    return getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
6379                         DAG, dl);
6380
6381  // Handle splat operations
6382  if (SVOp->isSplat()) {
6383    unsigned NumElem = VT.getVectorNumElements();
6384    int Size = VT.getSizeInBits();
6385    // Special case, this is the only place now where it's allowed to return
6386    // a vector_shuffle operation without using a target specific node, because
6387    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6388    // this be moved to DAGCombine instead?
6389    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6390      return Op;
6391
6392    // Use vbroadcast whenever the splat comes from a foldable load
6393    SDValue LD = isVectorBroadcast(Op, Subtarget);
6394    if (LD.getNode())
6395      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6396
6397    // Handle splats by matching through known shuffle masks
6398    if ((Size == 128 && NumElem <= 4) ||
6399        (Size == 256 && NumElem < 8))
6400      return SDValue();
6401
6402    // All remaning splats are promoted to target supported vector shuffles.
6403    return PromoteSplat(SVOp, DAG);
6404  }
6405
6406  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6407  // do it!
6408  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6409    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6410    if (NewOp.getNode())
6411      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6412  } else if ((VT == MVT::v4i32 ||
6413             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6414    // FIXME: Figure out a cleaner way to do this.
6415    // Try to make use of movq to zero out the top part.
6416    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6417      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6418      if (NewOp.getNode()) {
6419        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6420          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6421                              DAG, Subtarget, dl);
6422      }
6423    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6424      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6425      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6426        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6427                            DAG, Subtarget, dl);
6428    }
6429  }
6430  return SDValue();
6431}
6432
6433SDValue
6434X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6435  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6436  SDValue V1 = Op.getOperand(0);
6437  SDValue V2 = Op.getOperand(1);
6438  EVT VT = Op.getValueType();
6439  DebugLoc dl = Op.getDebugLoc();
6440  unsigned NumElems = VT.getVectorNumElements();
6441  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6442  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6443  bool V1IsSplat = false;
6444  bool V2IsSplat = false;
6445  bool HasSSE2 = Subtarget->hasSSE2();
6446  bool HasAVX    = Subtarget->hasAVX();
6447  bool HasAVX2   = Subtarget->hasAVX2();
6448  MachineFunction &MF = DAG.getMachineFunction();
6449  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6450
6451  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6452
6453  if (V1IsUndef && V2IsUndef)
6454    return DAG.getUNDEF(VT);
6455
6456  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6457
6458  // Vector shuffle lowering takes 3 steps:
6459  //
6460  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6461  //    narrowing and commutation of operands should be handled.
6462  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6463  //    shuffle nodes.
6464  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6465  //    so the shuffle can be broken into other shuffles and the legalizer can
6466  //    try the lowering again.
6467  //
6468  // The general idea is that no vector_shuffle operation should be left to
6469  // be matched during isel, all of them must be converted to a target specific
6470  // node here.
6471
6472  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6473  // narrowing and commutation of operands should be handled. The actual code
6474  // doesn't include all of those, work in progress...
6475  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6476  if (NewOp.getNode())
6477    return NewOp;
6478
6479  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6480  // unpckh_undef). Only use pshufd if speed is more important than size.
6481  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6482    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6483  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6484    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6485
6486  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6487      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6488    return getMOVDDup(Op, dl, V1, DAG);
6489
6490  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6491    return getMOVHighToLow(Op, dl, DAG);
6492
6493  // Use to match splats
6494  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6495      (VT == MVT::v2f64 || VT == MVT::v2i64))
6496    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6497
6498  if (X86::isPSHUFDMask(SVOp)) {
6499    // The actual implementation will match the mask in the if above and then
6500    // during isel it can match several different instructions, not only pshufd
6501    // as its name says, sad but true, emulate the behavior for now...
6502    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6503        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6504
6505    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6506
6507    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6508      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6509
6510    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6511                                TargetMask, DAG);
6512  }
6513
6514  // Check if this can be converted into a logical shift.
6515  bool isLeft = false;
6516  unsigned ShAmt = 0;
6517  SDValue ShVal;
6518  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6519  if (isShift && ShVal.hasOneUse()) {
6520    // If the shifted value has multiple uses, it may be cheaper to use
6521    // v_set0 + movlhps or movhlps, etc.
6522    EVT EltVT = VT.getVectorElementType();
6523    ShAmt *= EltVT.getSizeInBits();
6524    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6525  }
6526
6527  if (X86::isMOVLMask(SVOp)) {
6528    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6529      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6530    if (!X86::isMOVLPMask(SVOp)) {
6531      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6532        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6533
6534      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6535        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6536    }
6537  }
6538
6539  // FIXME: fold these into legal mask.
6540  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6541    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6542
6543  if (X86::isMOVHLPSMask(SVOp))
6544    return getMOVHighToLow(Op, dl, DAG);
6545
6546  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6547    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6548
6549  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6550    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6551
6552  if (X86::isMOVLPMask(SVOp))
6553    return getMOVLP(Op, dl, DAG, HasSSE2);
6554
6555  if (ShouldXformToMOVHLPS(SVOp) ||
6556      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6557    return CommuteVectorShuffle(SVOp, DAG);
6558
6559  if (isShift) {
6560    // No better options. Use a vshldq / vsrldq.
6561    EVT EltVT = VT.getVectorElementType();
6562    ShAmt *= EltVT.getSizeInBits();
6563    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6564  }
6565
6566  bool Commuted = false;
6567  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6568  // 1,1,1,1 -> v8i16 though.
6569  V1IsSplat = isSplatVector(V1.getNode());
6570  V2IsSplat = isSplatVector(V2.getNode());
6571
6572  // Canonicalize the splat or undef, if present, to be on the RHS.
6573  if (V1IsSplat && !V2IsSplat) {
6574    Op = CommuteVectorShuffle(SVOp, DAG);
6575    SVOp = cast<ShuffleVectorSDNode>(Op);
6576    V1 = SVOp->getOperand(0);
6577    V2 = SVOp->getOperand(1);
6578    std::swap(V1IsSplat, V2IsSplat);
6579    Commuted = true;
6580  }
6581
6582  ArrayRef<int> M = SVOp->getMask();
6583
6584  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6585    // Shuffling low element of v1 into undef, just return v1.
6586    if (V2IsUndef)
6587      return V1;
6588    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6589    // the instruction selector will not match, so get a canonical MOVL with
6590    // swapped operands to undo the commute.
6591    return getMOVL(DAG, dl, VT, V2, V1);
6592  }
6593
6594  if (isUNPCKLMask(M, VT, HasAVX2))
6595    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6596
6597  if (isUNPCKHMask(M, VT, HasAVX2))
6598    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6599
6600  if (V2IsSplat) {
6601    // Normalize mask so all entries that point to V2 points to its first
6602    // element then try to match unpck{h|l} again. If match, return a
6603    // new vector_shuffle with the corrected mask.
6604    SDValue NewMask = NormalizeMask(SVOp, DAG);
6605    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6606    if (NSVOp != SVOp) {
6607      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6608        return NewMask;
6609      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6610        return NewMask;
6611      }
6612    }
6613  }
6614
6615  if (Commuted) {
6616    // Commute is back and try unpck* again.
6617    // FIXME: this seems wrong.
6618    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6619    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6620
6621    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6622      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6623
6624    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6625      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6626  }
6627
6628  // Normalize the node to match x86 shuffle ops if needed
6629  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6630    return CommuteVectorShuffle(SVOp, DAG);
6631
6632  // The checks below are all present in isShuffleMaskLegal, but they are
6633  // inlined here right now to enable us to directly emit target specific
6634  // nodes, and remove one by one until they don't return Op anymore.
6635
6636  if (isPALIGNRMask(M, VT, Subtarget))
6637    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6638                                getShufflePALIGNRImmediate(SVOp),
6639                                DAG);
6640
6641  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6642      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6643    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6644      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6645  }
6646
6647  if (isPSHUFHWMask(M, VT))
6648    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6649                                X86::getShufflePSHUFHWImmediate(SVOp),
6650                                DAG);
6651
6652  if (isPSHUFLWMask(M, VT))
6653    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6654                                X86::getShufflePSHUFLWImmediate(SVOp),
6655                                DAG);
6656
6657  if (isSHUFPMask(M, VT, HasAVX))
6658    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6659                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6660
6661  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6662    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6663  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6664    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6665
6666  //===--------------------------------------------------------------------===//
6667  // Generate target specific nodes for 128 or 256-bit shuffles only
6668  // supported in the AVX instruction set.
6669  //
6670
6671  // Handle VMOVDDUPY permutations
6672  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6673    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6674
6675  // Handle VPERMILPS/D* permutations
6676  if (isVPERMILPMask(M, VT, HasAVX))
6677    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6678                                getShuffleVPERMILPImmediate(SVOp), DAG);
6679
6680  // Handle VPERM2F128/VPERM2I128 permutations
6681  if (isVPERM2X128Mask(M, VT, HasAVX))
6682    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6683                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6684
6685  //===--------------------------------------------------------------------===//
6686  // Since no target specific shuffle was selected for this generic one,
6687  // lower it into other known shuffles. FIXME: this isn't true yet, but
6688  // this is the plan.
6689  //
6690
6691  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6692  if (VT == MVT::v8i16) {
6693    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6694    if (NewOp.getNode())
6695      return NewOp;
6696  }
6697
6698  if (VT == MVT::v16i8) {
6699    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6700    if (NewOp.getNode())
6701      return NewOp;
6702  }
6703
6704  // Handle all 128-bit wide vectors with 4 elements, and match them with
6705  // several different shuffle types.
6706  if (NumElems == 4 && VT.getSizeInBits() == 128)
6707    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6708
6709  // Handle general 256-bit shuffles
6710  if (VT.is256BitVector())
6711    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6712
6713  return SDValue();
6714}
6715
6716SDValue
6717X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6718                                                SelectionDAG &DAG) const {
6719  EVT VT = Op.getValueType();
6720  DebugLoc dl = Op.getDebugLoc();
6721
6722  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6723    return SDValue();
6724
6725  if (VT.getSizeInBits() == 8) {
6726    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6727                                    Op.getOperand(0), Op.getOperand(1));
6728    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6729                                    DAG.getValueType(VT));
6730    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6731  } else if (VT.getSizeInBits() == 16) {
6732    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6733    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6734    if (Idx == 0)
6735      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6736                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6737                                     DAG.getNode(ISD::BITCAST, dl,
6738                                                 MVT::v4i32,
6739                                                 Op.getOperand(0)),
6740                                     Op.getOperand(1)));
6741    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6742                                    Op.getOperand(0), Op.getOperand(1));
6743    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6744                                    DAG.getValueType(VT));
6745    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6746  } else if (VT == MVT::f32) {
6747    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6748    // the result back to FR32 register. It's only worth matching if the
6749    // result has a single use which is a store or a bitcast to i32.  And in
6750    // the case of a store, it's not worth it if the index is a constant 0,
6751    // because a MOVSSmr can be used instead, which is smaller and faster.
6752    if (!Op.hasOneUse())
6753      return SDValue();
6754    SDNode *User = *Op.getNode()->use_begin();
6755    if ((User->getOpcode() != ISD::STORE ||
6756         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6757          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6758        (User->getOpcode() != ISD::BITCAST ||
6759         User->getValueType(0) != MVT::i32))
6760      return SDValue();
6761    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6762                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6763                                              Op.getOperand(0)),
6764                                              Op.getOperand(1));
6765    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6766  } else if (VT == MVT::i32 || VT == MVT::i64) {
6767    // ExtractPS/pextrq works with constant index.
6768    if (isa<ConstantSDNode>(Op.getOperand(1)))
6769      return Op;
6770  }
6771  return SDValue();
6772}
6773
6774
6775SDValue
6776X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6777                                           SelectionDAG &DAG) const {
6778  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6779    return SDValue();
6780
6781  SDValue Vec = Op.getOperand(0);
6782  EVT VecVT = Vec.getValueType();
6783
6784  // If this is a 256-bit vector result, first extract the 128-bit vector and
6785  // then extract the element from the 128-bit vector.
6786  if (VecVT.getSizeInBits() == 256) {
6787    DebugLoc dl = Op.getNode()->getDebugLoc();
6788    unsigned NumElems = VecVT.getVectorNumElements();
6789    SDValue Idx = Op.getOperand(1);
6790    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6791
6792    // Get the 128-bit vector.
6793    bool Upper = IdxVal >= NumElems/2;
6794    Vec = Extract128BitVector(Vec,
6795                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6796
6797    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6798                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6799  }
6800
6801  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6802
6803  if (Subtarget->hasSSE41()) {
6804    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6805    if (Res.getNode())
6806      return Res;
6807  }
6808
6809  EVT VT = Op.getValueType();
6810  DebugLoc dl = Op.getDebugLoc();
6811  // TODO: handle v16i8.
6812  if (VT.getSizeInBits() == 16) {
6813    SDValue Vec = Op.getOperand(0);
6814    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6815    if (Idx == 0)
6816      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6817                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6818                                     DAG.getNode(ISD::BITCAST, dl,
6819                                                 MVT::v4i32, Vec),
6820                                     Op.getOperand(1)));
6821    // Transform it so it match pextrw which produces a 32-bit result.
6822    EVT EltVT = MVT::i32;
6823    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6824                                    Op.getOperand(0), Op.getOperand(1));
6825    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6826                                    DAG.getValueType(VT));
6827    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6828  } else if (VT.getSizeInBits() == 32) {
6829    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6830    if (Idx == 0)
6831      return Op;
6832
6833    // SHUFPS the element to the lowest double word, then movss.
6834    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6835    EVT VVT = Op.getOperand(0).getValueType();
6836    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6837                                       DAG.getUNDEF(VVT), Mask);
6838    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6839                       DAG.getIntPtrConstant(0));
6840  } else if (VT.getSizeInBits() == 64) {
6841    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6842    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6843    //        to match extract_elt for f64.
6844    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6845    if (Idx == 0)
6846      return Op;
6847
6848    // UNPCKHPD the element to the lowest double word, then movsd.
6849    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6850    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6851    int Mask[2] = { 1, -1 };
6852    EVT VVT = Op.getOperand(0).getValueType();
6853    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6854                                       DAG.getUNDEF(VVT), Mask);
6855    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6856                       DAG.getIntPtrConstant(0));
6857  }
6858
6859  return SDValue();
6860}
6861
6862SDValue
6863X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6864                                               SelectionDAG &DAG) const {
6865  EVT VT = Op.getValueType();
6866  EVT EltVT = VT.getVectorElementType();
6867  DebugLoc dl = Op.getDebugLoc();
6868
6869  SDValue N0 = Op.getOperand(0);
6870  SDValue N1 = Op.getOperand(1);
6871  SDValue N2 = Op.getOperand(2);
6872
6873  if (VT.getSizeInBits() == 256)
6874    return SDValue();
6875
6876  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6877      isa<ConstantSDNode>(N2)) {
6878    unsigned Opc;
6879    if (VT == MVT::v8i16)
6880      Opc = X86ISD::PINSRW;
6881    else if (VT == MVT::v16i8)
6882      Opc = X86ISD::PINSRB;
6883    else
6884      Opc = X86ISD::PINSRB;
6885
6886    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6887    // argument.
6888    if (N1.getValueType() != MVT::i32)
6889      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6890    if (N2.getValueType() != MVT::i32)
6891      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6892    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6893  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6894    // Bits [7:6] of the constant are the source select.  This will always be
6895    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6896    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6897    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6898    // Bits [5:4] of the constant are the destination select.  This is the
6899    //  value of the incoming immediate.
6900    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6901    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6902    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6903    // Create this as a scalar to vector..
6904    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6905    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6906  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6907             isa<ConstantSDNode>(N2)) {
6908    // PINSR* works with constant index.
6909    return Op;
6910  }
6911  return SDValue();
6912}
6913
6914SDValue
6915X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6916  EVT VT = Op.getValueType();
6917  EVT EltVT = VT.getVectorElementType();
6918
6919  DebugLoc dl = Op.getDebugLoc();
6920  SDValue N0 = Op.getOperand(0);
6921  SDValue N1 = Op.getOperand(1);
6922  SDValue N2 = Op.getOperand(2);
6923
6924  // If this is a 256-bit vector result, first extract the 128-bit vector,
6925  // insert the element into the extracted half and then place it back.
6926  if (VT.getSizeInBits() == 256) {
6927    if (!isa<ConstantSDNode>(N2))
6928      return SDValue();
6929
6930    // Get the desired 128-bit vector half.
6931    unsigned NumElems = VT.getVectorNumElements();
6932    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6933    bool Upper = IdxVal >= NumElems/2;
6934    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6935    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6936
6937    // Insert the element into the desired half.
6938    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6939                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6940
6941    // Insert the changed part back to the 256-bit vector
6942    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6943  }
6944
6945  if (Subtarget->hasSSE41())
6946    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6947
6948  if (EltVT == MVT::i8)
6949    return SDValue();
6950
6951  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6952    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6953    // as its second argument.
6954    if (N1.getValueType() != MVT::i32)
6955      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6956    if (N2.getValueType() != MVT::i32)
6957      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6958    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6959  }
6960  return SDValue();
6961}
6962
6963SDValue
6964X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6965  LLVMContext *Context = DAG.getContext();
6966  DebugLoc dl = Op.getDebugLoc();
6967  EVT OpVT = Op.getValueType();
6968
6969  // If this is a 256-bit vector result, first insert into a 128-bit
6970  // vector and then insert into the 256-bit vector.
6971  if (OpVT.getSizeInBits() > 128) {
6972    // Insert into a 128-bit vector.
6973    EVT VT128 = EVT::getVectorVT(*Context,
6974                                 OpVT.getVectorElementType(),
6975                                 OpVT.getVectorNumElements() / 2);
6976
6977    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6978
6979    // Insert the 128-bit vector.
6980    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6981                              DAG.getConstant(0, MVT::i32),
6982                              DAG, dl);
6983  }
6984
6985  if (Op.getValueType() == MVT::v1i64 &&
6986      Op.getOperand(0).getValueType() == MVT::i64)
6987    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6988
6989  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6990  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6991         "Expected an SSE type!");
6992  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6993                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6994}
6995
6996// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6997// a simple subregister reference or explicit instructions to grab
6998// upper bits of a vector.
6999SDValue
7000X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7001  if (Subtarget->hasAVX()) {
7002    DebugLoc dl = Op.getNode()->getDebugLoc();
7003    SDValue Vec = Op.getNode()->getOperand(0);
7004    SDValue Idx = Op.getNode()->getOperand(1);
7005
7006    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7007        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7008        return Extract128BitVector(Vec, Idx, DAG, dl);
7009    }
7010  }
7011  return SDValue();
7012}
7013
7014// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7015// simple superregister reference or explicit instructions to insert
7016// the upper bits of a vector.
7017SDValue
7018X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7019  if (Subtarget->hasAVX()) {
7020    DebugLoc dl = Op.getNode()->getDebugLoc();
7021    SDValue Vec = Op.getNode()->getOperand(0);
7022    SDValue SubVec = Op.getNode()->getOperand(1);
7023    SDValue Idx = Op.getNode()->getOperand(2);
7024
7025    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7026        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7027      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7028    }
7029  }
7030  return SDValue();
7031}
7032
7033// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7034// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7035// one of the above mentioned nodes. It has to be wrapped because otherwise
7036// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7037// be used to form addressing mode. These wrapped nodes will be selected
7038// into MOV32ri.
7039SDValue
7040X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7041  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7042
7043  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7044  // global base reg.
7045  unsigned char OpFlag = 0;
7046  unsigned WrapperKind = X86ISD::Wrapper;
7047  CodeModel::Model M = getTargetMachine().getCodeModel();
7048
7049  if (Subtarget->isPICStyleRIPRel() &&
7050      (M == CodeModel::Small || M == CodeModel::Kernel))
7051    WrapperKind = X86ISD::WrapperRIP;
7052  else if (Subtarget->isPICStyleGOT())
7053    OpFlag = X86II::MO_GOTOFF;
7054  else if (Subtarget->isPICStyleStubPIC())
7055    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7056
7057  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7058                                             CP->getAlignment(),
7059                                             CP->getOffset(), OpFlag);
7060  DebugLoc DL = CP->getDebugLoc();
7061  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7062  // With PIC, the address is actually $g + Offset.
7063  if (OpFlag) {
7064    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7065                         DAG.getNode(X86ISD::GlobalBaseReg,
7066                                     DebugLoc(), getPointerTy()),
7067                         Result);
7068  }
7069
7070  return Result;
7071}
7072
7073SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7074  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7075
7076  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7077  // global base reg.
7078  unsigned char OpFlag = 0;
7079  unsigned WrapperKind = X86ISD::Wrapper;
7080  CodeModel::Model M = getTargetMachine().getCodeModel();
7081
7082  if (Subtarget->isPICStyleRIPRel() &&
7083      (M == CodeModel::Small || M == CodeModel::Kernel))
7084    WrapperKind = X86ISD::WrapperRIP;
7085  else if (Subtarget->isPICStyleGOT())
7086    OpFlag = X86II::MO_GOTOFF;
7087  else if (Subtarget->isPICStyleStubPIC())
7088    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7089
7090  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7091                                          OpFlag);
7092  DebugLoc DL = JT->getDebugLoc();
7093  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7094
7095  // With PIC, the address is actually $g + Offset.
7096  if (OpFlag)
7097    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7098                         DAG.getNode(X86ISD::GlobalBaseReg,
7099                                     DebugLoc(), getPointerTy()),
7100                         Result);
7101
7102  return Result;
7103}
7104
7105SDValue
7106X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7107  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7108
7109  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7110  // global base reg.
7111  unsigned char OpFlag = 0;
7112  unsigned WrapperKind = X86ISD::Wrapper;
7113  CodeModel::Model M = getTargetMachine().getCodeModel();
7114
7115  if (Subtarget->isPICStyleRIPRel() &&
7116      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7117    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7118      OpFlag = X86II::MO_GOTPCREL;
7119    WrapperKind = X86ISD::WrapperRIP;
7120  } else if (Subtarget->isPICStyleGOT()) {
7121    OpFlag = X86II::MO_GOT;
7122  } else if (Subtarget->isPICStyleStubPIC()) {
7123    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7124  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7125    OpFlag = X86II::MO_DARWIN_NONLAZY;
7126  }
7127
7128  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7129
7130  DebugLoc DL = Op.getDebugLoc();
7131  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7132
7133
7134  // With PIC, the address is actually $g + Offset.
7135  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7136      !Subtarget->is64Bit()) {
7137    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7138                         DAG.getNode(X86ISD::GlobalBaseReg,
7139                                     DebugLoc(), getPointerTy()),
7140                         Result);
7141  }
7142
7143  // For symbols that require a load from a stub to get the address, emit the
7144  // load.
7145  if (isGlobalStubReference(OpFlag))
7146    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7147                         MachinePointerInfo::getGOT(), false, false, false, 0);
7148
7149  return Result;
7150}
7151
7152SDValue
7153X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7154  // Create the TargetBlockAddressAddress node.
7155  unsigned char OpFlags =
7156    Subtarget->ClassifyBlockAddressReference();
7157  CodeModel::Model M = getTargetMachine().getCodeModel();
7158  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7159  DebugLoc dl = Op.getDebugLoc();
7160  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7161                                       /*isTarget=*/true, OpFlags);
7162
7163  if (Subtarget->isPICStyleRIPRel() &&
7164      (M == CodeModel::Small || M == CodeModel::Kernel))
7165    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7166  else
7167    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7168
7169  // With PIC, the address is actually $g + Offset.
7170  if (isGlobalRelativeToPICBase(OpFlags)) {
7171    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7172                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7173                         Result);
7174  }
7175
7176  return Result;
7177}
7178
7179SDValue
7180X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7181                                      int64_t Offset,
7182                                      SelectionDAG &DAG) const {
7183  // Create the TargetGlobalAddress node, folding in the constant
7184  // offset if it is legal.
7185  unsigned char OpFlags =
7186    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7187  CodeModel::Model M = getTargetMachine().getCodeModel();
7188  SDValue Result;
7189  if (OpFlags == X86II::MO_NO_FLAG &&
7190      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7191    // A direct static reference to a global.
7192    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7193    Offset = 0;
7194  } else {
7195    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7196  }
7197
7198  if (Subtarget->isPICStyleRIPRel() &&
7199      (M == CodeModel::Small || M == CodeModel::Kernel))
7200    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7201  else
7202    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7203
7204  // With PIC, the address is actually $g + Offset.
7205  if (isGlobalRelativeToPICBase(OpFlags)) {
7206    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7207                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7208                         Result);
7209  }
7210
7211  // For globals that require a load from a stub to get the address, emit the
7212  // load.
7213  if (isGlobalStubReference(OpFlags))
7214    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7215                         MachinePointerInfo::getGOT(), false, false, false, 0);
7216
7217  // If there was a non-zero offset that we didn't fold, create an explicit
7218  // addition for it.
7219  if (Offset != 0)
7220    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7221                         DAG.getConstant(Offset, getPointerTy()));
7222
7223  return Result;
7224}
7225
7226SDValue
7227X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7228  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7229  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7230  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7231}
7232
7233static SDValue
7234GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7235           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7236           unsigned char OperandFlags) {
7237  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7238  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7239  DebugLoc dl = GA->getDebugLoc();
7240  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7241                                           GA->getValueType(0),
7242                                           GA->getOffset(),
7243                                           OperandFlags);
7244  if (InFlag) {
7245    SDValue Ops[] = { Chain,  TGA, *InFlag };
7246    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7247  } else {
7248    SDValue Ops[]  = { Chain, TGA };
7249    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7250  }
7251
7252  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7253  MFI->setAdjustsStack(true);
7254
7255  SDValue Flag = Chain.getValue(1);
7256  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7257}
7258
7259// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7260static SDValue
7261LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7262                                const EVT PtrVT) {
7263  SDValue InFlag;
7264  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7265  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7266                                     DAG.getNode(X86ISD::GlobalBaseReg,
7267                                                 DebugLoc(), PtrVT), InFlag);
7268  InFlag = Chain.getValue(1);
7269
7270  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7271}
7272
7273// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7274static SDValue
7275LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7276                                const EVT PtrVT) {
7277  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7278                    X86::RAX, X86II::MO_TLSGD);
7279}
7280
7281// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7282// "local exec" model.
7283static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7284                                   const EVT PtrVT, TLSModel::Model model,
7285                                   bool is64Bit) {
7286  DebugLoc dl = GA->getDebugLoc();
7287
7288  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7289  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7290                                                         is64Bit ? 257 : 256));
7291
7292  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7293                                      DAG.getIntPtrConstant(0),
7294                                      MachinePointerInfo(Ptr),
7295                                      false, false, false, 0);
7296
7297  unsigned char OperandFlags = 0;
7298  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7299  // initialexec.
7300  unsigned WrapperKind = X86ISD::Wrapper;
7301  if (model == TLSModel::LocalExec) {
7302    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7303  } else if (is64Bit) {
7304    assert(model == TLSModel::InitialExec);
7305    OperandFlags = X86II::MO_GOTTPOFF;
7306    WrapperKind = X86ISD::WrapperRIP;
7307  } else {
7308    assert(model == TLSModel::InitialExec);
7309    OperandFlags = X86II::MO_INDNTPOFF;
7310  }
7311
7312  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7313  // exec)
7314  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7315                                           GA->getValueType(0),
7316                                           GA->getOffset(), OperandFlags);
7317  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7318
7319  if (model == TLSModel::InitialExec)
7320    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7321                         MachinePointerInfo::getGOT(), false, false, false, 0);
7322
7323  // The address of the thread local variable is the add of the thread
7324  // pointer with the offset of the variable.
7325  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7326}
7327
7328SDValue
7329X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7330
7331  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7332  const GlobalValue *GV = GA->getGlobal();
7333
7334  if (Subtarget->isTargetELF()) {
7335    // TODO: implement the "local dynamic" model
7336    // TODO: implement the "initial exec"model for pic executables
7337
7338    // If GV is an alias then use the aliasee for determining
7339    // thread-localness.
7340    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7341      GV = GA->resolveAliasedGlobal(false);
7342
7343    TLSModel::Model model
7344      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7345
7346    switch (model) {
7347      case TLSModel::GeneralDynamic:
7348      case TLSModel::LocalDynamic: // not implemented
7349        if (Subtarget->is64Bit())
7350          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7351        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7352
7353      case TLSModel::InitialExec:
7354      case TLSModel::LocalExec:
7355        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7356                                   Subtarget->is64Bit());
7357    }
7358  } else if (Subtarget->isTargetDarwin()) {
7359    // Darwin only has one model of TLS.  Lower to that.
7360    unsigned char OpFlag = 0;
7361    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7362                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7363
7364    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7365    // global base reg.
7366    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7367                  !Subtarget->is64Bit();
7368    if (PIC32)
7369      OpFlag = X86II::MO_TLVP_PIC_BASE;
7370    else
7371      OpFlag = X86II::MO_TLVP;
7372    DebugLoc DL = Op.getDebugLoc();
7373    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7374                                                GA->getValueType(0),
7375                                                GA->getOffset(), OpFlag);
7376    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7377
7378    // With PIC32, the address is actually $g + Offset.
7379    if (PIC32)
7380      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7381                           DAG.getNode(X86ISD::GlobalBaseReg,
7382                                       DebugLoc(), getPointerTy()),
7383                           Offset);
7384
7385    // Lowering the machine isd will make sure everything is in the right
7386    // location.
7387    SDValue Chain = DAG.getEntryNode();
7388    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7389    SDValue Args[] = { Chain, Offset };
7390    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7391
7392    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7393    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7394    MFI->setAdjustsStack(true);
7395
7396    // And our return value (tls address) is in the standard call return value
7397    // location.
7398    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7399    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7400                              Chain.getValue(1));
7401  }
7402
7403  llvm_unreachable("TLS not implemented for this target.");
7404}
7405
7406
7407/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7408/// and take a 2 x i32 value to shift plus a shift amount.
7409SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7410  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7411  EVT VT = Op.getValueType();
7412  unsigned VTBits = VT.getSizeInBits();
7413  DebugLoc dl = Op.getDebugLoc();
7414  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7415  SDValue ShOpLo = Op.getOperand(0);
7416  SDValue ShOpHi = Op.getOperand(1);
7417  SDValue ShAmt  = Op.getOperand(2);
7418  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7419                                     DAG.getConstant(VTBits - 1, MVT::i8))
7420                       : DAG.getConstant(0, VT);
7421
7422  SDValue Tmp2, Tmp3;
7423  if (Op.getOpcode() == ISD::SHL_PARTS) {
7424    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7425    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7426  } else {
7427    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7428    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7429  }
7430
7431  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7432                                DAG.getConstant(VTBits, MVT::i8));
7433  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7434                             AndNode, DAG.getConstant(0, MVT::i8));
7435
7436  SDValue Hi, Lo;
7437  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7438  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7439  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7440
7441  if (Op.getOpcode() == ISD::SHL_PARTS) {
7442    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7443    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7444  } else {
7445    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7446    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7447  }
7448
7449  SDValue Ops[2] = { Lo, Hi };
7450  return DAG.getMergeValues(Ops, 2, dl);
7451}
7452
7453SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7454                                           SelectionDAG &DAG) const {
7455  EVT SrcVT = Op.getOperand(0).getValueType();
7456
7457  if (SrcVT.isVector())
7458    return SDValue();
7459
7460  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7461         "Unknown SINT_TO_FP to lower!");
7462
7463  // These are really Legal; return the operand so the caller accepts it as
7464  // Legal.
7465  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7466    return Op;
7467  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7468      Subtarget->is64Bit()) {
7469    return Op;
7470  }
7471
7472  DebugLoc dl = Op.getDebugLoc();
7473  unsigned Size = SrcVT.getSizeInBits()/8;
7474  MachineFunction &MF = DAG.getMachineFunction();
7475  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7476  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7477  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7478                               StackSlot,
7479                               MachinePointerInfo::getFixedStack(SSFI),
7480                               false, false, 0);
7481  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7482}
7483
7484SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7485                                     SDValue StackSlot,
7486                                     SelectionDAG &DAG) const {
7487  // Build the FILD
7488  DebugLoc DL = Op.getDebugLoc();
7489  SDVTList Tys;
7490  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7491  if (useSSE)
7492    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7493  else
7494    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7495
7496  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7497
7498  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7499  MachineMemOperand *MMO;
7500  if (FI) {
7501    int SSFI = FI->getIndex();
7502    MMO =
7503      DAG.getMachineFunction()
7504      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7505                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7506  } else {
7507    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7508    StackSlot = StackSlot.getOperand(1);
7509  }
7510  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7511  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7512                                           X86ISD::FILD, DL,
7513                                           Tys, Ops, array_lengthof(Ops),
7514                                           SrcVT, MMO);
7515
7516  if (useSSE) {
7517    Chain = Result.getValue(1);
7518    SDValue InFlag = Result.getValue(2);
7519
7520    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7521    // shouldn't be necessary except that RFP cannot be live across
7522    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7523    MachineFunction &MF = DAG.getMachineFunction();
7524    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7525    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7526    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7527    Tys = DAG.getVTList(MVT::Other);
7528    SDValue Ops[] = {
7529      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7530    };
7531    MachineMemOperand *MMO =
7532      DAG.getMachineFunction()
7533      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7534                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7535
7536    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7537                                    Ops, array_lengthof(Ops),
7538                                    Op.getValueType(), MMO);
7539    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7540                         MachinePointerInfo::getFixedStack(SSFI),
7541                         false, false, false, 0);
7542  }
7543
7544  return Result;
7545}
7546
7547// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7548SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7549                                               SelectionDAG &DAG) const {
7550  // This algorithm is not obvious. Here it is what we're trying to output:
7551  /*
7552     movq       %rax,  %xmm0
7553     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7554     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7555     #ifdef __SSE3__
7556       haddpd   %xmm0, %xmm0
7557     #else
7558       pshufd   $0x4e, %xmm0, %xmm1
7559       addpd    %xmm1, %xmm0
7560     #endif
7561  */
7562
7563  DebugLoc dl = Op.getDebugLoc();
7564  LLVMContext *Context = DAG.getContext();
7565
7566  // Build some magic constants.
7567  SmallVector<Constant*,4> CV0;
7568  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7569  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7570  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7571  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7572  Constant *C0 = ConstantVector::get(CV0);
7573  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7574
7575  SmallVector<Constant*,2> CV1;
7576  CV1.push_back(
7577        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7578  CV1.push_back(
7579        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7580  Constant *C1 = ConstantVector::get(CV1);
7581  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7582
7583  // Load the 64-bit value into an XMM register.
7584  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7585                            Op.getOperand(0));
7586  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7587                              MachinePointerInfo::getConstantPool(),
7588                              false, false, false, 16);
7589  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7590                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7591                              CLod0);
7592
7593  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7594                              MachinePointerInfo::getConstantPool(),
7595                              false, false, false, 16);
7596  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7597  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7598  SDValue Result;
7599
7600  if (Subtarget->hasSSE3()) {
7601    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7602    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7603  } else {
7604    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7605    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7606                                           S2F, 0x4E, DAG);
7607    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7608                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7609                         Sub);
7610  }
7611
7612  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7613                     DAG.getIntPtrConstant(0));
7614}
7615
7616// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7617SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7618                                               SelectionDAG &DAG) const {
7619  DebugLoc dl = Op.getDebugLoc();
7620  // FP constant to bias correct the final result.
7621  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7622                                   MVT::f64);
7623
7624  // Load the 32-bit value into an XMM register.
7625  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7626                             Op.getOperand(0));
7627
7628  // Zero out the upper parts of the register.
7629  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7630
7631  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7632                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7633                     DAG.getIntPtrConstant(0));
7634
7635  // Or the load with the bias.
7636  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7637                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7638                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7639                                                   MVT::v2f64, Load)),
7640                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7641                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7642                                                   MVT::v2f64, Bias)));
7643  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7644                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7645                   DAG.getIntPtrConstant(0));
7646
7647  // Subtract the bias.
7648  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7649
7650  // Handle final rounding.
7651  EVT DestVT = Op.getValueType();
7652
7653  if (DestVT.bitsLT(MVT::f64)) {
7654    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7655                       DAG.getIntPtrConstant(0));
7656  } else if (DestVT.bitsGT(MVT::f64)) {
7657    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7658  }
7659
7660  // Handle final rounding.
7661  return Sub;
7662}
7663
7664SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7665                                           SelectionDAG &DAG) const {
7666  SDValue N0 = Op.getOperand(0);
7667  DebugLoc dl = Op.getDebugLoc();
7668
7669  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7670  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7671  // the optimization here.
7672  if (DAG.SignBitIsZero(N0))
7673    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7674
7675  EVT SrcVT = N0.getValueType();
7676  EVT DstVT = Op.getValueType();
7677  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7678    return LowerUINT_TO_FP_i64(Op, DAG);
7679  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7680    return LowerUINT_TO_FP_i32(Op, DAG);
7681  else if (Subtarget->is64Bit() &&
7682           SrcVT == MVT::i64 && DstVT == MVT::f32)
7683    return SDValue();
7684
7685  // Make a 64-bit buffer, and use it to build an FILD.
7686  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7687  if (SrcVT == MVT::i32) {
7688    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7689    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7690                                     getPointerTy(), StackSlot, WordOff);
7691    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7692                                  StackSlot, MachinePointerInfo(),
7693                                  false, false, 0);
7694    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7695                                  OffsetSlot, MachinePointerInfo(),
7696                                  false, false, 0);
7697    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7698    return Fild;
7699  }
7700
7701  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7702  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7703                               StackSlot, MachinePointerInfo(),
7704                               false, false, 0);
7705  // For i64 source, we need to add the appropriate power of 2 if the input
7706  // was negative.  This is the same as the optimization in
7707  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7708  // we must be careful to do the computation in x87 extended precision, not
7709  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7710  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7711  MachineMemOperand *MMO =
7712    DAG.getMachineFunction()
7713    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7714                          MachineMemOperand::MOLoad, 8, 8);
7715
7716  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7717  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7718  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7719                                         MVT::i64, MMO);
7720
7721  APInt FF(32, 0x5F800000ULL);
7722
7723  // Check whether the sign bit is set.
7724  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7725                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7726                                 ISD::SETLT);
7727
7728  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7729  SDValue FudgePtr = DAG.getConstantPool(
7730                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7731                                         getPointerTy());
7732
7733  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7734  SDValue Zero = DAG.getIntPtrConstant(0);
7735  SDValue Four = DAG.getIntPtrConstant(4);
7736  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7737                               Zero, Four);
7738  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7739
7740  // Load the value out, extending it from f32 to f80.
7741  // FIXME: Avoid the extend by constructing the right constant pool?
7742  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7743                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7744                                 MVT::f32, false, false, 4);
7745  // Extend everything to 80 bits to force it to be done on x87.
7746  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7747  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7748}
7749
7750std::pair<SDValue,SDValue> X86TargetLowering::
7751FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7752  DebugLoc DL = Op.getDebugLoc();
7753
7754  EVT DstTy = Op.getValueType();
7755
7756  if (!IsSigned) {
7757    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7758    DstTy = MVT::i64;
7759  }
7760
7761  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7762         DstTy.getSimpleVT() >= MVT::i16 &&
7763         "Unknown FP_TO_SINT to lower!");
7764
7765  // These are really Legal.
7766  if (DstTy == MVT::i32 &&
7767      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7768    return std::make_pair(SDValue(), SDValue());
7769  if (Subtarget->is64Bit() &&
7770      DstTy == MVT::i64 &&
7771      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7772    return std::make_pair(SDValue(), SDValue());
7773
7774  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7775  // stack slot.
7776  MachineFunction &MF = DAG.getMachineFunction();
7777  unsigned MemSize = DstTy.getSizeInBits()/8;
7778  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7779  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7780
7781
7782
7783  unsigned Opc;
7784  switch (DstTy.getSimpleVT().SimpleTy) {
7785  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7786  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7787  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7788  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7789  }
7790
7791  SDValue Chain = DAG.getEntryNode();
7792  SDValue Value = Op.getOperand(0);
7793  EVT TheVT = Op.getOperand(0).getValueType();
7794  if (isScalarFPTypeInSSEReg(TheVT)) {
7795    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7796    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7797                         MachinePointerInfo::getFixedStack(SSFI),
7798                         false, false, 0);
7799    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7800    SDValue Ops[] = {
7801      Chain, StackSlot, DAG.getValueType(TheVT)
7802    };
7803
7804    MachineMemOperand *MMO =
7805      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7806                              MachineMemOperand::MOLoad, MemSize, MemSize);
7807    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7808                                    DstTy, MMO);
7809    Chain = Value.getValue(1);
7810    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7811    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7812  }
7813
7814  MachineMemOperand *MMO =
7815    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7816                            MachineMemOperand::MOStore, MemSize, MemSize);
7817
7818  // Build the FP_TO_INT*_IN_MEM
7819  SDValue Ops[] = { Chain, Value, StackSlot };
7820  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7821                                         Ops, 3, DstTy, MMO);
7822
7823  return std::make_pair(FIST, StackSlot);
7824}
7825
7826SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7827                                           SelectionDAG &DAG) const {
7828  if (Op.getValueType().isVector())
7829    return SDValue();
7830
7831  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7832  SDValue FIST = Vals.first, StackSlot = Vals.second;
7833  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7834  if (FIST.getNode() == 0) return Op;
7835
7836  // Load the result.
7837  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7838                     FIST, StackSlot, MachinePointerInfo(),
7839                     false, false, false, 0);
7840}
7841
7842SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7843                                           SelectionDAG &DAG) const {
7844  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7845  SDValue FIST = Vals.first, StackSlot = Vals.second;
7846  assert(FIST.getNode() && "Unexpected failure");
7847
7848  // Load the result.
7849  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7850                     FIST, StackSlot, MachinePointerInfo(),
7851                     false, false, false, 0);
7852}
7853
7854SDValue X86TargetLowering::LowerFABS(SDValue Op,
7855                                     SelectionDAG &DAG) const {
7856  LLVMContext *Context = DAG.getContext();
7857  DebugLoc dl = Op.getDebugLoc();
7858  EVT VT = Op.getValueType();
7859  EVT EltVT = VT;
7860  if (VT.isVector())
7861    EltVT = VT.getVectorElementType();
7862  Constant *C;
7863  if (EltVT == MVT::f64) {
7864    C = ConstantVector::getSplat(2,
7865                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7866  } else {
7867    C = ConstantVector::getSplat(4,
7868               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7869  }
7870  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7871  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7872                             MachinePointerInfo::getConstantPool(),
7873                             false, false, false, 16);
7874  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7875}
7876
7877SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7878  LLVMContext *Context = DAG.getContext();
7879  DebugLoc dl = Op.getDebugLoc();
7880  EVT VT = Op.getValueType();
7881  EVT EltVT = VT;
7882  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7883  if (VT.isVector()) {
7884    EltVT = VT.getVectorElementType();
7885    NumElts = VT.getVectorNumElements();
7886  }
7887  Constant *C;
7888  if (EltVT == MVT::f64)
7889    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7890  else
7891    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7892  C = ConstantVector::getSplat(NumElts, C);
7893  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7894  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7895                             MachinePointerInfo::getConstantPool(),
7896                             false, false, false, 16);
7897  if (VT.isVector()) {
7898    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7899    return DAG.getNode(ISD::BITCAST, dl, VT,
7900                       DAG.getNode(ISD::XOR, dl, XORVT,
7901                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7902                                Op.getOperand(0)),
7903                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7904  } else {
7905    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7906  }
7907}
7908
7909SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7910  LLVMContext *Context = DAG.getContext();
7911  SDValue Op0 = Op.getOperand(0);
7912  SDValue Op1 = Op.getOperand(1);
7913  DebugLoc dl = Op.getDebugLoc();
7914  EVT VT = Op.getValueType();
7915  EVT SrcVT = Op1.getValueType();
7916
7917  // If second operand is smaller, extend it first.
7918  if (SrcVT.bitsLT(VT)) {
7919    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7920    SrcVT = VT;
7921  }
7922  // And if it is bigger, shrink it first.
7923  if (SrcVT.bitsGT(VT)) {
7924    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7925    SrcVT = VT;
7926  }
7927
7928  // At this point the operands and the result should have the same
7929  // type, and that won't be f80 since that is not custom lowered.
7930
7931  // First get the sign bit of second operand.
7932  SmallVector<Constant*,4> CV;
7933  if (SrcVT == MVT::f64) {
7934    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7935    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7936  } else {
7937    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7938    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7939    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7940    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7941  }
7942  Constant *C = ConstantVector::get(CV);
7943  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7944  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7945                              MachinePointerInfo::getConstantPool(),
7946                              false, false, false, 16);
7947  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7948
7949  // Shift sign bit right or left if the two operands have different types.
7950  if (SrcVT.bitsGT(VT)) {
7951    // Op0 is MVT::f32, Op1 is MVT::f64.
7952    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7953    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7954                          DAG.getConstant(32, MVT::i32));
7955    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7956    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7957                          DAG.getIntPtrConstant(0));
7958  }
7959
7960  // Clear first operand sign bit.
7961  CV.clear();
7962  if (VT == MVT::f64) {
7963    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7964    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7965  } else {
7966    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7967    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7968    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7969    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7970  }
7971  C = ConstantVector::get(CV);
7972  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7973  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7974                              MachinePointerInfo::getConstantPool(),
7975                              false, false, false, 16);
7976  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7977
7978  // Or the value with the sign bit.
7979  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7980}
7981
7982SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7983  SDValue N0 = Op.getOperand(0);
7984  DebugLoc dl = Op.getDebugLoc();
7985  EVT VT = Op.getValueType();
7986
7987  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7988  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7989                                  DAG.getConstant(1, VT));
7990  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7991}
7992
7993/// Emit nodes that will be selected as "test Op0,Op0", or something
7994/// equivalent.
7995SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7996                                    SelectionDAG &DAG) const {
7997  DebugLoc dl = Op.getDebugLoc();
7998
7999  // CF and OF aren't always set the way we want. Determine which
8000  // of these we need.
8001  bool NeedCF = false;
8002  bool NeedOF = false;
8003  switch (X86CC) {
8004  default: break;
8005  case X86::COND_A: case X86::COND_AE:
8006  case X86::COND_B: case X86::COND_BE:
8007    NeedCF = true;
8008    break;
8009  case X86::COND_G: case X86::COND_GE:
8010  case X86::COND_L: case X86::COND_LE:
8011  case X86::COND_O: case X86::COND_NO:
8012    NeedOF = true;
8013    break;
8014  }
8015
8016  // See if we can use the EFLAGS value from the operand instead of
8017  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8018  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8019  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8020    // Emit a CMP with 0, which is the TEST pattern.
8021    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8022                       DAG.getConstant(0, Op.getValueType()));
8023
8024  unsigned Opcode = 0;
8025  unsigned NumOperands = 0;
8026  switch (Op.getNode()->getOpcode()) {
8027  case ISD::ADD:
8028    // Due to an isel shortcoming, be conservative if this add is likely to be
8029    // selected as part of a load-modify-store instruction. When the root node
8030    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8031    // uses of other nodes in the match, such as the ADD in this case. This
8032    // leads to the ADD being left around and reselected, with the result being
8033    // two adds in the output.  Alas, even if none our users are stores, that
8034    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8035    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8036    // climbing the DAG back to the root, and it doesn't seem to be worth the
8037    // effort.
8038    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8039         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8040      if (UI->getOpcode() != ISD::CopyToReg &&
8041          UI->getOpcode() != ISD::SETCC &&
8042          UI->getOpcode() != ISD::STORE)
8043        goto default_case;
8044
8045    if (ConstantSDNode *C =
8046        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8047      // An add of one will be selected as an INC.
8048      if (C->getAPIntValue() == 1) {
8049        Opcode = X86ISD::INC;
8050        NumOperands = 1;
8051        break;
8052      }
8053
8054      // An add of negative one (subtract of one) will be selected as a DEC.
8055      if (C->getAPIntValue().isAllOnesValue()) {
8056        Opcode = X86ISD::DEC;
8057        NumOperands = 1;
8058        break;
8059      }
8060    }
8061
8062    // Otherwise use a regular EFLAGS-setting add.
8063    Opcode = X86ISD::ADD;
8064    NumOperands = 2;
8065    break;
8066  case ISD::AND: {
8067    // If the primary and result isn't used, don't bother using X86ISD::AND,
8068    // because a TEST instruction will be better.
8069    bool NonFlagUse = false;
8070    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8071           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8072      SDNode *User = *UI;
8073      unsigned UOpNo = UI.getOperandNo();
8074      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8075        // Look pass truncate.
8076        UOpNo = User->use_begin().getOperandNo();
8077        User = *User->use_begin();
8078      }
8079
8080      if (User->getOpcode() != ISD::BRCOND &&
8081          User->getOpcode() != ISD::SETCC &&
8082          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8083        NonFlagUse = true;
8084        break;
8085      }
8086    }
8087
8088    if (!NonFlagUse)
8089      break;
8090  }
8091    // FALL THROUGH
8092  case ISD::SUB:
8093  case ISD::OR:
8094  case ISD::XOR:
8095    // Due to the ISEL shortcoming noted above, be conservative if this op is
8096    // likely to be selected as part of a load-modify-store instruction.
8097    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8098           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8099      if (UI->getOpcode() == ISD::STORE)
8100        goto default_case;
8101
8102    // Otherwise use a regular EFLAGS-setting instruction.
8103    switch (Op.getNode()->getOpcode()) {
8104    default: llvm_unreachable("unexpected operator!");
8105    case ISD::SUB: Opcode = X86ISD::SUB; break;
8106    case ISD::OR:  Opcode = X86ISD::OR;  break;
8107    case ISD::XOR: Opcode = X86ISD::XOR; break;
8108    case ISD::AND: Opcode = X86ISD::AND; break;
8109    }
8110
8111    NumOperands = 2;
8112    break;
8113  case X86ISD::ADD:
8114  case X86ISD::SUB:
8115  case X86ISD::INC:
8116  case X86ISD::DEC:
8117  case X86ISD::OR:
8118  case X86ISD::XOR:
8119  case X86ISD::AND:
8120    return SDValue(Op.getNode(), 1);
8121  default:
8122  default_case:
8123    break;
8124  }
8125
8126  if (Opcode == 0)
8127    // Emit a CMP with 0, which is the TEST pattern.
8128    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8129                       DAG.getConstant(0, Op.getValueType()));
8130
8131  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8132  SmallVector<SDValue, 4> Ops;
8133  for (unsigned i = 0; i != NumOperands; ++i)
8134    Ops.push_back(Op.getOperand(i));
8135
8136  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8137  DAG.ReplaceAllUsesWith(Op, New);
8138  return SDValue(New.getNode(), 1);
8139}
8140
8141/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8142/// equivalent.
8143SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8144                                   SelectionDAG &DAG) const {
8145  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8146    if (C->getAPIntValue() == 0)
8147      return EmitTest(Op0, X86CC, DAG);
8148
8149  DebugLoc dl = Op0.getDebugLoc();
8150  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8151}
8152
8153/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8154/// if it's possible.
8155SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8156                                     DebugLoc dl, SelectionDAG &DAG) const {
8157  SDValue Op0 = And.getOperand(0);
8158  SDValue Op1 = And.getOperand(1);
8159  if (Op0.getOpcode() == ISD::TRUNCATE)
8160    Op0 = Op0.getOperand(0);
8161  if (Op1.getOpcode() == ISD::TRUNCATE)
8162    Op1 = Op1.getOperand(0);
8163
8164  SDValue LHS, RHS;
8165  if (Op1.getOpcode() == ISD::SHL)
8166    std::swap(Op0, Op1);
8167  if (Op0.getOpcode() == ISD::SHL) {
8168    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8169      if (And00C->getZExtValue() == 1) {
8170        // If we looked past a truncate, check that it's only truncating away
8171        // known zeros.
8172        unsigned BitWidth = Op0.getValueSizeInBits();
8173        unsigned AndBitWidth = And.getValueSizeInBits();
8174        if (BitWidth > AndBitWidth) {
8175          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8176          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8177          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8178            return SDValue();
8179        }
8180        LHS = Op1;
8181        RHS = Op0.getOperand(1);
8182      }
8183  } else if (Op1.getOpcode() == ISD::Constant) {
8184    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8185    uint64_t AndRHSVal = AndRHS->getZExtValue();
8186    SDValue AndLHS = Op0;
8187
8188    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8189      LHS = AndLHS.getOperand(0);
8190      RHS = AndLHS.getOperand(1);
8191    }
8192
8193    // Use BT if the immediate can't be encoded in a TEST instruction.
8194    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8195      LHS = AndLHS;
8196      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8197    }
8198  }
8199
8200  if (LHS.getNode()) {
8201    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8202    // instruction.  Since the shift amount is in-range-or-undefined, we know
8203    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8204    // the encoding for the i16 version is larger than the i32 version.
8205    // Also promote i16 to i32 for performance / code size reason.
8206    if (LHS.getValueType() == MVT::i8 ||
8207        LHS.getValueType() == MVT::i16)
8208      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8209
8210    // If the operand types disagree, extend the shift amount to match.  Since
8211    // BT ignores high bits (like shifts) we can use anyextend.
8212    if (LHS.getValueType() != RHS.getValueType())
8213      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8214
8215    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8216    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8217    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8218                       DAG.getConstant(Cond, MVT::i8), BT);
8219  }
8220
8221  return SDValue();
8222}
8223
8224SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8225
8226  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8227
8228  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8229  SDValue Op0 = Op.getOperand(0);
8230  SDValue Op1 = Op.getOperand(1);
8231  DebugLoc dl = Op.getDebugLoc();
8232  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8233
8234  // Optimize to BT if possible.
8235  // Lower (X & (1 << N)) == 0 to BT(X, N).
8236  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8237  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8238  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8239      Op1.getOpcode() == ISD::Constant &&
8240      cast<ConstantSDNode>(Op1)->isNullValue() &&
8241      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8242    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8243    if (NewSetCC.getNode())
8244      return NewSetCC;
8245  }
8246
8247  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8248  // these.
8249  if (Op1.getOpcode() == ISD::Constant &&
8250      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8251       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8252      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8253
8254    // If the input is a setcc, then reuse the input setcc or use a new one with
8255    // the inverted condition.
8256    if (Op0.getOpcode() == X86ISD::SETCC) {
8257      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8258      bool Invert = (CC == ISD::SETNE) ^
8259        cast<ConstantSDNode>(Op1)->isNullValue();
8260      if (!Invert) return Op0;
8261
8262      CCode = X86::GetOppositeBranchCondition(CCode);
8263      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8264                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8265    }
8266  }
8267
8268  bool isFP = Op1.getValueType().isFloatingPoint();
8269  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8270  if (X86CC == X86::COND_INVALID)
8271    return SDValue();
8272
8273  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8274  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8275                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8276}
8277
8278// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8279// ones, and then concatenate the result back.
8280static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8281  EVT VT = Op.getValueType();
8282
8283  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8284         "Unsupported value type for operation");
8285
8286  int NumElems = VT.getVectorNumElements();
8287  DebugLoc dl = Op.getDebugLoc();
8288  SDValue CC = Op.getOperand(2);
8289  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8290  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8291
8292  // Extract the LHS vectors
8293  SDValue LHS = Op.getOperand(0);
8294  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8295  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8296
8297  // Extract the RHS vectors
8298  SDValue RHS = Op.getOperand(1);
8299  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8300  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8301
8302  // Issue the operation on the smaller types and concatenate the result back
8303  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8304  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8305  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8306                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8307                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8308}
8309
8310
8311SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8312  SDValue Cond;
8313  SDValue Op0 = Op.getOperand(0);
8314  SDValue Op1 = Op.getOperand(1);
8315  SDValue CC = Op.getOperand(2);
8316  EVT VT = Op.getValueType();
8317  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8318  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8319  DebugLoc dl = Op.getDebugLoc();
8320
8321  if (isFP) {
8322    unsigned SSECC = 8;
8323    EVT EltVT = Op0.getValueType().getVectorElementType();
8324    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8325
8326    bool Swap = false;
8327
8328    // SSE Condition code mapping:
8329    //  0 - EQ
8330    //  1 - LT
8331    //  2 - LE
8332    //  3 - UNORD
8333    //  4 - NEQ
8334    //  5 - NLT
8335    //  6 - NLE
8336    //  7 - ORD
8337    switch (SetCCOpcode) {
8338    default: break;
8339    case ISD::SETOEQ:
8340    case ISD::SETEQ:  SSECC = 0; break;
8341    case ISD::SETOGT:
8342    case ISD::SETGT: Swap = true; // Fallthrough
8343    case ISD::SETLT:
8344    case ISD::SETOLT: SSECC = 1; break;
8345    case ISD::SETOGE:
8346    case ISD::SETGE: Swap = true; // Fallthrough
8347    case ISD::SETLE:
8348    case ISD::SETOLE: SSECC = 2; break;
8349    case ISD::SETUO:  SSECC = 3; break;
8350    case ISD::SETUNE:
8351    case ISD::SETNE:  SSECC = 4; break;
8352    case ISD::SETULE: Swap = true;
8353    case ISD::SETUGE: SSECC = 5; break;
8354    case ISD::SETULT: Swap = true;
8355    case ISD::SETUGT: SSECC = 6; break;
8356    case ISD::SETO:   SSECC = 7; break;
8357    }
8358    if (Swap)
8359      std::swap(Op0, Op1);
8360
8361    // In the two special cases we can't handle, emit two comparisons.
8362    if (SSECC == 8) {
8363      if (SetCCOpcode == ISD::SETUEQ) {
8364        SDValue UNORD, EQ;
8365        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8366                            DAG.getConstant(3, MVT::i8));
8367        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8368                         DAG.getConstant(0, MVT::i8));
8369        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8370      } else if (SetCCOpcode == ISD::SETONE) {
8371        SDValue ORD, NEQ;
8372        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8373                          DAG.getConstant(7, MVT::i8));
8374        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8375                          DAG.getConstant(4, MVT::i8));
8376        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8377      }
8378      llvm_unreachable("Illegal FP comparison");
8379    }
8380    // Handle all other FP comparisons here.
8381    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8382                       DAG.getConstant(SSECC, MVT::i8));
8383  }
8384
8385  // Break 256-bit integer vector compare into smaller ones.
8386  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8387    return Lower256IntVSETCC(Op, DAG);
8388
8389  // We are handling one of the integer comparisons here.  Since SSE only has
8390  // GT and EQ comparisons for integer, swapping operands and multiple
8391  // operations may be required for some comparisons.
8392  unsigned Opc = 0;
8393  bool Swap = false, Invert = false, FlipSigns = false;
8394
8395  switch (SetCCOpcode) {
8396  default: break;
8397  case ISD::SETNE:  Invert = true;
8398  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8399  case ISD::SETLT:  Swap = true;
8400  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8401  case ISD::SETGE:  Swap = true;
8402  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8403  case ISD::SETULT: Swap = true;
8404  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8405  case ISD::SETUGE: Swap = true;
8406  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8407  }
8408  if (Swap)
8409    std::swap(Op0, Op1);
8410
8411  // Check that the operation in question is available (most are plain SSE2,
8412  // but PCMPGTQ and PCMPEQQ have different requirements).
8413  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8414    return SDValue();
8415  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8416    return SDValue();
8417
8418  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8419  // bits of the inputs before performing those operations.
8420  if (FlipSigns) {
8421    EVT EltVT = VT.getVectorElementType();
8422    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8423                                      EltVT);
8424    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8425    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8426                                    SignBits.size());
8427    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8428    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8429  }
8430
8431  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8432
8433  // If the logical-not of the result is required, perform that now.
8434  if (Invert)
8435    Result = DAG.getNOT(dl, Result, VT);
8436
8437  return Result;
8438}
8439
8440// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8441static bool isX86LogicalCmp(SDValue Op) {
8442  unsigned Opc = Op.getNode()->getOpcode();
8443  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8444    return true;
8445  if (Op.getResNo() == 1 &&
8446      (Opc == X86ISD::ADD ||
8447       Opc == X86ISD::SUB ||
8448       Opc == X86ISD::ADC ||
8449       Opc == X86ISD::SBB ||
8450       Opc == X86ISD::SMUL ||
8451       Opc == X86ISD::UMUL ||
8452       Opc == X86ISD::INC ||
8453       Opc == X86ISD::DEC ||
8454       Opc == X86ISD::OR ||
8455       Opc == X86ISD::XOR ||
8456       Opc == X86ISD::AND))
8457    return true;
8458
8459  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8460    return true;
8461
8462  return false;
8463}
8464
8465static bool isZero(SDValue V) {
8466  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8467  return C && C->isNullValue();
8468}
8469
8470static bool isAllOnes(SDValue V) {
8471  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8472  return C && C->isAllOnesValue();
8473}
8474
8475SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8476  bool addTest = true;
8477  SDValue Cond  = Op.getOperand(0);
8478  SDValue Op1 = Op.getOperand(1);
8479  SDValue Op2 = Op.getOperand(2);
8480  DebugLoc DL = Op.getDebugLoc();
8481  SDValue CC;
8482
8483  if (Cond.getOpcode() == ISD::SETCC) {
8484    SDValue NewCond = LowerSETCC(Cond, DAG);
8485    if (NewCond.getNode())
8486      Cond = NewCond;
8487  }
8488
8489  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8490  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8491  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8492  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8493  if (Cond.getOpcode() == X86ISD::SETCC &&
8494      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8495      isZero(Cond.getOperand(1).getOperand(1))) {
8496    SDValue Cmp = Cond.getOperand(1);
8497
8498    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8499
8500    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8501        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8502      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8503
8504      SDValue CmpOp0 = Cmp.getOperand(0);
8505      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8506                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8507
8508      SDValue Res =   // Res = 0 or -1.
8509        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8510                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8511
8512      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8513        Res = DAG.getNOT(DL, Res, Res.getValueType());
8514
8515      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8516      if (N2C == 0 || !N2C->isNullValue())
8517        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8518      return Res;
8519    }
8520  }
8521
8522  // Look past (and (setcc_carry (cmp ...)), 1).
8523  if (Cond.getOpcode() == ISD::AND &&
8524      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8525    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8526    if (C && C->getAPIntValue() == 1)
8527      Cond = Cond.getOperand(0);
8528  }
8529
8530  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8531  // setting operand in place of the X86ISD::SETCC.
8532  unsigned CondOpcode = Cond.getOpcode();
8533  if (CondOpcode == X86ISD::SETCC ||
8534      CondOpcode == X86ISD::SETCC_CARRY) {
8535    CC = Cond.getOperand(0);
8536
8537    SDValue Cmp = Cond.getOperand(1);
8538    unsigned Opc = Cmp.getOpcode();
8539    EVT VT = Op.getValueType();
8540
8541    bool IllegalFPCMov = false;
8542    if (VT.isFloatingPoint() && !VT.isVector() &&
8543        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8544      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8545
8546    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8547        Opc == X86ISD::BT) { // FIXME
8548      Cond = Cmp;
8549      addTest = false;
8550    }
8551  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8552             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8553             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8554              Cond.getOperand(0).getValueType() != MVT::i8)) {
8555    SDValue LHS = Cond.getOperand(0);
8556    SDValue RHS = Cond.getOperand(1);
8557    unsigned X86Opcode;
8558    unsigned X86Cond;
8559    SDVTList VTs;
8560    switch (CondOpcode) {
8561    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8562    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8563    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8564    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8565    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8566    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8567    default: llvm_unreachable("unexpected overflowing operator");
8568    }
8569    if (CondOpcode == ISD::UMULO)
8570      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8571                          MVT::i32);
8572    else
8573      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8574
8575    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8576
8577    if (CondOpcode == ISD::UMULO)
8578      Cond = X86Op.getValue(2);
8579    else
8580      Cond = X86Op.getValue(1);
8581
8582    CC = DAG.getConstant(X86Cond, MVT::i8);
8583    addTest = false;
8584  }
8585
8586  if (addTest) {
8587    // Look pass the truncate.
8588    if (Cond.getOpcode() == ISD::TRUNCATE)
8589      Cond = Cond.getOperand(0);
8590
8591    // We know the result of AND is compared against zero. Try to match
8592    // it to BT.
8593    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8594      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8595      if (NewSetCC.getNode()) {
8596        CC = NewSetCC.getOperand(0);
8597        Cond = NewSetCC.getOperand(1);
8598        addTest = false;
8599      }
8600    }
8601  }
8602
8603  if (addTest) {
8604    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8605    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8606  }
8607
8608  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8609  // a <  b ?  0 : -1 -> RES = setcc_carry
8610  // a >= b ? -1 :  0 -> RES = setcc_carry
8611  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8612  if (Cond.getOpcode() == X86ISD::CMP) {
8613    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8614
8615    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8616        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8617      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8618                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8619      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8620        return DAG.getNOT(DL, Res, Res.getValueType());
8621      return Res;
8622    }
8623  }
8624
8625  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8626  // condition is true.
8627  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8628  SDValue Ops[] = { Op2, Op1, CC, Cond };
8629  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8630}
8631
8632// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8633// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8634// from the AND / OR.
8635static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8636  Opc = Op.getOpcode();
8637  if (Opc != ISD::OR && Opc != ISD::AND)
8638    return false;
8639  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8640          Op.getOperand(0).hasOneUse() &&
8641          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8642          Op.getOperand(1).hasOneUse());
8643}
8644
8645// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8646// 1 and that the SETCC node has a single use.
8647static bool isXor1OfSetCC(SDValue Op) {
8648  if (Op.getOpcode() != ISD::XOR)
8649    return false;
8650  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8651  if (N1C && N1C->getAPIntValue() == 1) {
8652    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8653      Op.getOperand(0).hasOneUse();
8654  }
8655  return false;
8656}
8657
8658SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8659  bool addTest = true;
8660  SDValue Chain = Op.getOperand(0);
8661  SDValue Cond  = Op.getOperand(1);
8662  SDValue Dest  = Op.getOperand(2);
8663  DebugLoc dl = Op.getDebugLoc();
8664  SDValue CC;
8665  bool Inverted = false;
8666
8667  if (Cond.getOpcode() == ISD::SETCC) {
8668    // Check for setcc([su]{add,sub,mul}o == 0).
8669    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8670        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8671        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8672        Cond.getOperand(0).getResNo() == 1 &&
8673        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8674         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8675         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8676         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8677         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8678         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8679      Inverted = true;
8680      Cond = Cond.getOperand(0);
8681    } else {
8682      SDValue NewCond = LowerSETCC(Cond, DAG);
8683      if (NewCond.getNode())
8684        Cond = NewCond;
8685    }
8686  }
8687#if 0
8688  // FIXME: LowerXALUO doesn't handle these!!
8689  else if (Cond.getOpcode() == X86ISD::ADD  ||
8690           Cond.getOpcode() == X86ISD::SUB  ||
8691           Cond.getOpcode() == X86ISD::SMUL ||
8692           Cond.getOpcode() == X86ISD::UMUL)
8693    Cond = LowerXALUO(Cond, DAG);
8694#endif
8695
8696  // Look pass (and (setcc_carry (cmp ...)), 1).
8697  if (Cond.getOpcode() == ISD::AND &&
8698      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8699    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8700    if (C && C->getAPIntValue() == 1)
8701      Cond = Cond.getOperand(0);
8702  }
8703
8704  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8705  // setting operand in place of the X86ISD::SETCC.
8706  unsigned CondOpcode = Cond.getOpcode();
8707  if (CondOpcode == X86ISD::SETCC ||
8708      CondOpcode == X86ISD::SETCC_CARRY) {
8709    CC = Cond.getOperand(0);
8710
8711    SDValue Cmp = Cond.getOperand(1);
8712    unsigned Opc = Cmp.getOpcode();
8713    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8714    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8715      Cond = Cmp;
8716      addTest = false;
8717    } else {
8718      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8719      default: break;
8720      case X86::COND_O:
8721      case X86::COND_B:
8722        // These can only come from an arithmetic instruction with overflow,
8723        // e.g. SADDO, UADDO.
8724        Cond = Cond.getNode()->getOperand(1);
8725        addTest = false;
8726        break;
8727      }
8728    }
8729  }
8730  CondOpcode = Cond.getOpcode();
8731  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8732      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8733      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8734       Cond.getOperand(0).getValueType() != MVT::i8)) {
8735    SDValue LHS = Cond.getOperand(0);
8736    SDValue RHS = Cond.getOperand(1);
8737    unsigned X86Opcode;
8738    unsigned X86Cond;
8739    SDVTList VTs;
8740    switch (CondOpcode) {
8741    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8742    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8743    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8744    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8745    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8746    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8747    default: llvm_unreachable("unexpected overflowing operator");
8748    }
8749    if (Inverted)
8750      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8751    if (CondOpcode == ISD::UMULO)
8752      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8753                          MVT::i32);
8754    else
8755      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8756
8757    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8758
8759    if (CondOpcode == ISD::UMULO)
8760      Cond = X86Op.getValue(2);
8761    else
8762      Cond = X86Op.getValue(1);
8763
8764    CC = DAG.getConstant(X86Cond, MVT::i8);
8765    addTest = false;
8766  } else {
8767    unsigned CondOpc;
8768    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8769      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8770      if (CondOpc == ISD::OR) {
8771        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8772        // two branches instead of an explicit OR instruction with a
8773        // separate test.
8774        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8775            isX86LogicalCmp(Cmp)) {
8776          CC = Cond.getOperand(0).getOperand(0);
8777          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8778                              Chain, Dest, CC, Cmp);
8779          CC = Cond.getOperand(1).getOperand(0);
8780          Cond = Cmp;
8781          addTest = false;
8782        }
8783      } else { // ISD::AND
8784        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8785        // two branches instead of an explicit AND instruction with a
8786        // separate test. However, we only do this if this block doesn't
8787        // have a fall-through edge, because this requires an explicit
8788        // jmp when the condition is false.
8789        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8790            isX86LogicalCmp(Cmp) &&
8791            Op.getNode()->hasOneUse()) {
8792          X86::CondCode CCode =
8793            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8794          CCode = X86::GetOppositeBranchCondition(CCode);
8795          CC = DAG.getConstant(CCode, MVT::i8);
8796          SDNode *User = *Op.getNode()->use_begin();
8797          // Look for an unconditional branch following this conditional branch.
8798          // We need this because we need to reverse the successors in order
8799          // to implement FCMP_OEQ.
8800          if (User->getOpcode() == ISD::BR) {
8801            SDValue FalseBB = User->getOperand(1);
8802            SDNode *NewBR =
8803              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8804            assert(NewBR == User);
8805            (void)NewBR;
8806            Dest = FalseBB;
8807
8808            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8809                                Chain, Dest, CC, Cmp);
8810            X86::CondCode CCode =
8811              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8812            CCode = X86::GetOppositeBranchCondition(CCode);
8813            CC = DAG.getConstant(CCode, MVT::i8);
8814            Cond = Cmp;
8815            addTest = false;
8816          }
8817        }
8818      }
8819    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8820      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8821      // It should be transformed during dag combiner except when the condition
8822      // is set by a arithmetics with overflow node.
8823      X86::CondCode CCode =
8824        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8825      CCode = X86::GetOppositeBranchCondition(CCode);
8826      CC = DAG.getConstant(CCode, MVT::i8);
8827      Cond = Cond.getOperand(0).getOperand(1);
8828      addTest = false;
8829    } else if (Cond.getOpcode() == ISD::SETCC &&
8830               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8831      // For FCMP_OEQ, we can emit
8832      // two branches instead of an explicit AND instruction with a
8833      // separate test. However, we only do this if this block doesn't
8834      // have a fall-through edge, because this requires an explicit
8835      // jmp when the condition is false.
8836      if (Op.getNode()->hasOneUse()) {
8837        SDNode *User = *Op.getNode()->use_begin();
8838        // Look for an unconditional branch following this conditional branch.
8839        // We need this because we need to reverse the successors in order
8840        // to implement FCMP_OEQ.
8841        if (User->getOpcode() == ISD::BR) {
8842          SDValue FalseBB = User->getOperand(1);
8843          SDNode *NewBR =
8844            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8845          assert(NewBR == User);
8846          (void)NewBR;
8847          Dest = FalseBB;
8848
8849          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8850                                    Cond.getOperand(0), Cond.getOperand(1));
8851          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8852          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8853                              Chain, Dest, CC, Cmp);
8854          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8855          Cond = Cmp;
8856          addTest = false;
8857        }
8858      }
8859    } else if (Cond.getOpcode() == ISD::SETCC &&
8860               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8861      // For FCMP_UNE, we can emit
8862      // two branches instead of an explicit AND instruction with a
8863      // separate test. However, we only do this if this block doesn't
8864      // have a fall-through edge, because this requires an explicit
8865      // jmp when the condition is false.
8866      if (Op.getNode()->hasOneUse()) {
8867        SDNode *User = *Op.getNode()->use_begin();
8868        // Look for an unconditional branch following this conditional branch.
8869        // We need this because we need to reverse the successors in order
8870        // to implement FCMP_UNE.
8871        if (User->getOpcode() == ISD::BR) {
8872          SDValue FalseBB = User->getOperand(1);
8873          SDNode *NewBR =
8874            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8875          assert(NewBR == User);
8876          (void)NewBR;
8877
8878          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8879                                    Cond.getOperand(0), Cond.getOperand(1));
8880          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8881          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8882                              Chain, Dest, CC, Cmp);
8883          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8884          Cond = Cmp;
8885          addTest = false;
8886          Dest = FalseBB;
8887        }
8888      }
8889    }
8890  }
8891
8892  if (addTest) {
8893    // Look pass the truncate.
8894    if (Cond.getOpcode() == ISD::TRUNCATE)
8895      Cond = Cond.getOperand(0);
8896
8897    // We know the result of AND is compared against zero. Try to match
8898    // it to BT.
8899    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8900      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8901      if (NewSetCC.getNode()) {
8902        CC = NewSetCC.getOperand(0);
8903        Cond = NewSetCC.getOperand(1);
8904        addTest = false;
8905      }
8906    }
8907  }
8908
8909  if (addTest) {
8910    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8911    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8912  }
8913  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8914                     Chain, Dest, CC, Cond);
8915}
8916
8917
8918// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8919// Calls to _alloca is needed to probe the stack when allocating more than 4k
8920// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8921// that the guard pages used by the OS virtual memory manager are allocated in
8922// correct sequence.
8923SDValue
8924X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8925                                           SelectionDAG &DAG) const {
8926  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8927          getTargetMachine().Options.EnableSegmentedStacks) &&
8928         "This should be used only on Windows targets or when segmented stacks "
8929         "are being used");
8930  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8931  DebugLoc dl = Op.getDebugLoc();
8932
8933  // Get the inputs.
8934  SDValue Chain = Op.getOperand(0);
8935  SDValue Size  = Op.getOperand(1);
8936  // FIXME: Ensure alignment here
8937
8938  bool Is64Bit = Subtarget->is64Bit();
8939  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8940
8941  if (getTargetMachine().Options.EnableSegmentedStacks) {
8942    MachineFunction &MF = DAG.getMachineFunction();
8943    MachineRegisterInfo &MRI = MF.getRegInfo();
8944
8945    if (Is64Bit) {
8946      // The 64 bit implementation of segmented stacks needs to clobber both r10
8947      // r11. This makes it impossible to use it along with nested parameters.
8948      const Function *F = MF.getFunction();
8949
8950      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8951           I != E; I++)
8952        if (I->hasNestAttr())
8953          report_fatal_error("Cannot use segmented stacks with functions that "
8954                             "have nested arguments.");
8955    }
8956
8957    const TargetRegisterClass *AddrRegClass =
8958      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8959    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8960    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8961    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8962                                DAG.getRegister(Vreg, SPTy));
8963    SDValue Ops1[2] = { Value, Chain };
8964    return DAG.getMergeValues(Ops1, 2, dl);
8965  } else {
8966    SDValue Flag;
8967    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8968
8969    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8970    Flag = Chain.getValue(1);
8971    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8972
8973    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8974    Flag = Chain.getValue(1);
8975
8976    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8977
8978    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8979    return DAG.getMergeValues(Ops1, 2, dl);
8980  }
8981}
8982
8983SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8984  MachineFunction &MF = DAG.getMachineFunction();
8985  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8986
8987  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8988  DebugLoc DL = Op.getDebugLoc();
8989
8990  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8991    // vastart just stores the address of the VarArgsFrameIndex slot into the
8992    // memory location argument.
8993    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8994                                   getPointerTy());
8995    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8996                        MachinePointerInfo(SV), false, false, 0);
8997  }
8998
8999  // __va_list_tag:
9000  //   gp_offset         (0 - 6 * 8)
9001  //   fp_offset         (48 - 48 + 8 * 16)
9002  //   overflow_arg_area (point to parameters coming in memory).
9003  //   reg_save_area
9004  SmallVector<SDValue, 8> MemOps;
9005  SDValue FIN = Op.getOperand(1);
9006  // Store gp_offset
9007  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9008                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9009                                               MVT::i32),
9010                               FIN, MachinePointerInfo(SV), false, false, 0);
9011  MemOps.push_back(Store);
9012
9013  // Store fp_offset
9014  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9015                    FIN, DAG.getIntPtrConstant(4));
9016  Store = DAG.getStore(Op.getOperand(0), DL,
9017                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9018                                       MVT::i32),
9019                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9020  MemOps.push_back(Store);
9021
9022  // Store ptr to overflow_arg_area
9023  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9024                    FIN, DAG.getIntPtrConstant(4));
9025  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9026                                    getPointerTy());
9027  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9028                       MachinePointerInfo(SV, 8),
9029                       false, false, 0);
9030  MemOps.push_back(Store);
9031
9032  // Store ptr to reg_save_area.
9033  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9034                    FIN, DAG.getIntPtrConstant(8));
9035  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9036                                    getPointerTy());
9037  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9038                       MachinePointerInfo(SV, 16), false, false, 0);
9039  MemOps.push_back(Store);
9040  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9041                     &MemOps[0], MemOps.size());
9042}
9043
9044SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9045  assert(Subtarget->is64Bit() &&
9046         "LowerVAARG only handles 64-bit va_arg!");
9047  assert((Subtarget->isTargetLinux() ||
9048          Subtarget->isTargetDarwin()) &&
9049          "Unhandled target in LowerVAARG");
9050  assert(Op.getNode()->getNumOperands() == 4);
9051  SDValue Chain = Op.getOperand(0);
9052  SDValue SrcPtr = Op.getOperand(1);
9053  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9054  unsigned Align = Op.getConstantOperandVal(3);
9055  DebugLoc dl = Op.getDebugLoc();
9056
9057  EVT ArgVT = Op.getNode()->getValueType(0);
9058  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9059  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9060  uint8_t ArgMode;
9061
9062  // Decide which area this value should be read from.
9063  // TODO: Implement the AMD64 ABI in its entirety. This simple
9064  // selection mechanism works only for the basic types.
9065  if (ArgVT == MVT::f80) {
9066    llvm_unreachable("va_arg for f80 not yet implemented");
9067  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9068    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9069  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9070    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9071  } else {
9072    llvm_unreachable("Unhandled argument type in LowerVAARG");
9073  }
9074
9075  if (ArgMode == 2) {
9076    // Sanity Check: Make sure using fp_offset makes sense.
9077    assert(!getTargetMachine().Options.UseSoftFloat &&
9078           !(DAG.getMachineFunction()
9079                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9080           Subtarget->hasSSE1());
9081  }
9082
9083  // Insert VAARG_64 node into the DAG
9084  // VAARG_64 returns two values: Variable Argument Address, Chain
9085  SmallVector<SDValue, 11> InstOps;
9086  InstOps.push_back(Chain);
9087  InstOps.push_back(SrcPtr);
9088  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9089  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9090  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9091  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9092  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9093                                          VTs, &InstOps[0], InstOps.size(),
9094                                          MVT::i64,
9095                                          MachinePointerInfo(SV),
9096                                          /*Align=*/0,
9097                                          /*Volatile=*/false,
9098                                          /*ReadMem=*/true,
9099                                          /*WriteMem=*/true);
9100  Chain = VAARG.getValue(1);
9101
9102  // Load the next argument and return it
9103  return DAG.getLoad(ArgVT, dl,
9104                     Chain,
9105                     VAARG,
9106                     MachinePointerInfo(),
9107                     false, false, false, 0);
9108}
9109
9110SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9111  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9112  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9113  SDValue Chain = Op.getOperand(0);
9114  SDValue DstPtr = Op.getOperand(1);
9115  SDValue SrcPtr = Op.getOperand(2);
9116  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9117  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9118  DebugLoc DL = Op.getDebugLoc();
9119
9120  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9121                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9122                       false,
9123                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9124}
9125
9126// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9127// may or may not be a constant. Takes immediate version of shift as input.
9128static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9129                                   SDValue SrcOp, SDValue ShAmt,
9130                                   SelectionDAG &DAG) {
9131  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9132
9133  if (isa<ConstantSDNode>(ShAmt)) {
9134    switch (Opc) {
9135      default: llvm_unreachable("Unknown target vector shift node");
9136      case X86ISD::VSHLI:
9137      case X86ISD::VSRLI:
9138      case X86ISD::VSRAI:
9139        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9140    }
9141  }
9142
9143  // Change opcode to non-immediate version
9144  switch (Opc) {
9145    default: llvm_unreachable("Unknown target vector shift node");
9146    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9147    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9148    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9149  }
9150
9151  // Need to build a vector containing shift amount
9152  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9153  SDValue ShOps[4];
9154  ShOps[0] = ShAmt;
9155  ShOps[1] = DAG.getConstant(0, MVT::i32);
9156  ShOps[2] = DAG.getUNDEF(MVT::i32);
9157  ShOps[3] = DAG.getUNDEF(MVT::i32);
9158  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9159  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9160  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9161}
9162
9163SDValue
9164X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9165  DebugLoc dl = Op.getDebugLoc();
9166  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9167  switch (IntNo) {
9168  default: return SDValue();    // Don't custom lower most intrinsics.
9169  // Comparison intrinsics.
9170  case Intrinsic::x86_sse_comieq_ss:
9171  case Intrinsic::x86_sse_comilt_ss:
9172  case Intrinsic::x86_sse_comile_ss:
9173  case Intrinsic::x86_sse_comigt_ss:
9174  case Intrinsic::x86_sse_comige_ss:
9175  case Intrinsic::x86_sse_comineq_ss:
9176  case Intrinsic::x86_sse_ucomieq_ss:
9177  case Intrinsic::x86_sse_ucomilt_ss:
9178  case Intrinsic::x86_sse_ucomile_ss:
9179  case Intrinsic::x86_sse_ucomigt_ss:
9180  case Intrinsic::x86_sse_ucomige_ss:
9181  case Intrinsic::x86_sse_ucomineq_ss:
9182  case Intrinsic::x86_sse2_comieq_sd:
9183  case Intrinsic::x86_sse2_comilt_sd:
9184  case Intrinsic::x86_sse2_comile_sd:
9185  case Intrinsic::x86_sse2_comigt_sd:
9186  case Intrinsic::x86_sse2_comige_sd:
9187  case Intrinsic::x86_sse2_comineq_sd:
9188  case Intrinsic::x86_sse2_ucomieq_sd:
9189  case Intrinsic::x86_sse2_ucomilt_sd:
9190  case Intrinsic::x86_sse2_ucomile_sd:
9191  case Intrinsic::x86_sse2_ucomigt_sd:
9192  case Intrinsic::x86_sse2_ucomige_sd:
9193  case Intrinsic::x86_sse2_ucomineq_sd: {
9194    unsigned Opc = 0;
9195    ISD::CondCode CC = ISD::SETCC_INVALID;
9196    switch (IntNo) {
9197    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9198    case Intrinsic::x86_sse_comieq_ss:
9199    case Intrinsic::x86_sse2_comieq_sd:
9200      Opc = X86ISD::COMI;
9201      CC = ISD::SETEQ;
9202      break;
9203    case Intrinsic::x86_sse_comilt_ss:
9204    case Intrinsic::x86_sse2_comilt_sd:
9205      Opc = X86ISD::COMI;
9206      CC = ISD::SETLT;
9207      break;
9208    case Intrinsic::x86_sse_comile_ss:
9209    case Intrinsic::x86_sse2_comile_sd:
9210      Opc = X86ISD::COMI;
9211      CC = ISD::SETLE;
9212      break;
9213    case Intrinsic::x86_sse_comigt_ss:
9214    case Intrinsic::x86_sse2_comigt_sd:
9215      Opc = X86ISD::COMI;
9216      CC = ISD::SETGT;
9217      break;
9218    case Intrinsic::x86_sse_comige_ss:
9219    case Intrinsic::x86_sse2_comige_sd:
9220      Opc = X86ISD::COMI;
9221      CC = ISD::SETGE;
9222      break;
9223    case Intrinsic::x86_sse_comineq_ss:
9224    case Intrinsic::x86_sse2_comineq_sd:
9225      Opc = X86ISD::COMI;
9226      CC = ISD::SETNE;
9227      break;
9228    case Intrinsic::x86_sse_ucomieq_ss:
9229    case Intrinsic::x86_sse2_ucomieq_sd:
9230      Opc = X86ISD::UCOMI;
9231      CC = ISD::SETEQ;
9232      break;
9233    case Intrinsic::x86_sse_ucomilt_ss:
9234    case Intrinsic::x86_sse2_ucomilt_sd:
9235      Opc = X86ISD::UCOMI;
9236      CC = ISD::SETLT;
9237      break;
9238    case Intrinsic::x86_sse_ucomile_ss:
9239    case Intrinsic::x86_sse2_ucomile_sd:
9240      Opc = X86ISD::UCOMI;
9241      CC = ISD::SETLE;
9242      break;
9243    case Intrinsic::x86_sse_ucomigt_ss:
9244    case Intrinsic::x86_sse2_ucomigt_sd:
9245      Opc = X86ISD::UCOMI;
9246      CC = ISD::SETGT;
9247      break;
9248    case Intrinsic::x86_sse_ucomige_ss:
9249    case Intrinsic::x86_sse2_ucomige_sd:
9250      Opc = X86ISD::UCOMI;
9251      CC = ISD::SETGE;
9252      break;
9253    case Intrinsic::x86_sse_ucomineq_ss:
9254    case Intrinsic::x86_sse2_ucomineq_sd:
9255      Opc = X86ISD::UCOMI;
9256      CC = ISD::SETNE;
9257      break;
9258    }
9259
9260    SDValue LHS = Op.getOperand(1);
9261    SDValue RHS = Op.getOperand(2);
9262    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9263    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9264    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9265    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9266                                DAG.getConstant(X86CC, MVT::i8), Cond);
9267    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9268  }
9269  // XOP comparison intrinsics
9270  case Intrinsic::x86_xop_vpcomltb:
9271  case Intrinsic::x86_xop_vpcomltw:
9272  case Intrinsic::x86_xop_vpcomltd:
9273  case Intrinsic::x86_xop_vpcomltq:
9274  case Intrinsic::x86_xop_vpcomltub:
9275  case Intrinsic::x86_xop_vpcomltuw:
9276  case Intrinsic::x86_xop_vpcomltud:
9277  case Intrinsic::x86_xop_vpcomltuq:
9278  case Intrinsic::x86_xop_vpcomleb:
9279  case Intrinsic::x86_xop_vpcomlew:
9280  case Intrinsic::x86_xop_vpcomled:
9281  case Intrinsic::x86_xop_vpcomleq:
9282  case Intrinsic::x86_xop_vpcomleub:
9283  case Intrinsic::x86_xop_vpcomleuw:
9284  case Intrinsic::x86_xop_vpcomleud:
9285  case Intrinsic::x86_xop_vpcomleuq:
9286  case Intrinsic::x86_xop_vpcomgtb:
9287  case Intrinsic::x86_xop_vpcomgtw:
9288  case Intrinsic::x86_xop_vpcomgtd:
9289  case Intrinsic::x86_xop_vpcomgtq:
9290  case Intrinsic::x86_xop_vpcomgtub:
9291  case Intrinsic::x86_xop_vpcomgtuw:
9292  case Intrinsic::x86_xop_vpcomgtud:
9293  case Intrinsic::x86_xop_vpcomgtuq:
9294  case Intrinsic::x86_xop_vpcomgeb:
9295  case Intrinsic::x86_xop_vpcomgew:
9296  case Intrinsic::x86_xop_vpcomged:
9297  case Intrinsic::x86_xop_vpcomgeq:
9298  case Intrinsic::x86_xop_vpcomgeub:
9299  case Intrinsic::x86_xop_vpcomgeuw:
9300  case Intrinsic::x86_xop_vpcomgeud:
9301  case Intrinsic::x86_xop_vpcomgeuq:
9302  case Intrinsic::x86_xop_vpcomeqb:
9303  case Intrinsic::x86_xop_vpcomeqw:
9304  case Intrinsic::x86_xop_vpcomeqd:
9305  case Intrinsic::x86_xop_vpcomeqq:
9306  case Intrinsic::x86_xop_vpcomequb:
9307  case Intrinsic::x86_xop_vpcomequw:
9308  case Intrinsic::x86_xop_vpcomequd:
9309  case Intrinsic::x86_xop_vpcomequq:
9310  case Intrinsic::x86_xop_vpcomneb:
9311  case Intrinsic::x86_xop_vpcomnew:
9312  case Intrinsic::x86_xop_vpcomned:
9313  case Intrinsic::x86_xop_vpcomneq:
9314  case Intrinsic::x86_xop_vpcomneub:
9315  case Intrinsic::x86_xop_vpcomneuw:
9316  case Intrinsic::x86_xop_vpcomneud:
9317  case Intrinsic::x86_xop_vpcomneuq:
9318  case Intrinsic::x86_xop_vpcomfalseb:
9319  case Intrinsic::x86_xop_vpcomfalsew:
9320  case Intrinsic::x86_xop_vpcomfalsed:
9321  case Intrinsic::x86_xop_vpcomfalseq:
9322  case Intrinsic::x86_xop_vpcomfalseub:
9323  case Intrinsic::x86_xop_vpcomfalseuw:
9324  case Intrinsic::x86_xop_vpcomfalseud:
9325  case Intrinsic::x86_xop_vpcomfalseuq:
9326  case Intrinsic::x86_xop_vpcomtrueb:
9327  case Intrinsic::x86_xop_vpcomtruew:
9328  case Intrinsic::x86_xop_vpcomtrued:
9329  case Intrinsic::x86_xop_vpcomtrueq:
9330  case Intrinsic::x86_xop_vpcomtrueub:
9331  case Intrinsic::x86_xop_vpcomtrueuw:
9332  case Intrinsic::x86_xop_vpcomtrueud:
9333  case Intrinsic::x86_xop_vpcomtrueuq: {
9334    unsigned CC = 0;
9335    unsigned Opc = 0;
9336
9337    switch (IntNo) {
9338    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9339    case Intrinsic::x86_xop_vpcomltb:
9340    case Intrinsic::x86_xop_vpcomltw:
9341    case Intrinsic::x86_xop_vpcomltd:
9342    case Intrinsic::x86_xop_vpcomltq:
9343      CC = 0;
9344      Opc = X86ISD::VPCOM;
9345      break;
9346    case Intrinsic::x86_xop_vpcomltub:
9347    case Intrinsic::x86_xop_vpcomltuw:
9348    case Intrinsic::x86_xop_vpcomltud:
9349    case Intrinsic::x86_xop_vpcomltuq:
9350      CC = 0;
9351      Opc = X86ISD::VPCOMU;
9352      break;
9353    case Intrinsic::x86_xop_vpcomleb:
9354    case Intrinsic::x86_xop_vpcomlew:
9355    case Intrinsic::x86_xop_vpcomled:
9356    case Intrinsic::x86_xop_vpcomleq:
9357      CC = 1;
9358      Opc = X86ISD::VPCOM;
9359      break;
9360    case Intrinsic::x86_xop_vpcomleub:
9361    case Intrinsic::x86_xop_vpcomleuw:
9362    case Intrinsic::x86_xop_vpcomleud:
9363    case Intrinsic::x86_xop_vpcomleuq:
9364      CC = 1;
9365      Opc = X86ISD::VPCOMU;
9366      break;
9367    case Intrinsic::x86_xop_vpcomgtb:
9368    case Intrinsic::x86_xop_vpcomgtw:
9369    case Intrinsic::x86_xop_vpcomgtd:
9370    case Intrinsic::x86_xop_vpcomgtq:
9371      CC = 2;
9372      Opc = X86ISD::VPCOM;
9373      break;
9374    case Intrinsic::x86_xop_vpcomgtub:
9375    case Intrinsic::x86_xop_vpcomgtuw:
9376    case Intrinsic::x86_xop_vpcomgtud:
9377    case Intrinsic::x86_xop_vpcomgtuq:
9378      CC = 2;
9379      Opc = X86ISD::VPCOMU;
9380      break;
9381    case Intrinsic::x86_xop_vpcomgeb:
9382    case Intrinsic::x86_xop_vpcomgew:
9383    case Intrinsic::x86_xop_vpcomged:
9384    case Intrinsic::x86_xop_vpcomgeq:
9385      CC = 3;
9386      Opc = X86ISD::VPCOM;
9387      break;
9388    case Intrinsic::x86_xop_vpcomgeub:
9389    case Intrinsic::x86_xop_vpcomgeuw:
9390    case Intrinsic::x86_xop_vpcomgeud:
9391    case Intrinsic::x86_xop_vpcomgeuq:
9392      CC = 3;
9393      Opc = X86ISD::VPCOMU;
9394      break;
9395    case Intrinsic::x86_xop_vpcomeqb:
9396    case Intrinsic::x86_xop_vpcomeqw:
9397    case Intrinsic::x86_xop_vpcomeqd:
9398    case Intrinsic::x86_xop_vpcomeqq:
9399      CC = 4;
9400      Opc = X86ISD::VPCOM;
9401      break;
9402    case Intrinsic::x86_xop_vpcomequb:
9403    case Intrinsic::x86_xop_vpcomequw:
9404    case Intrinsic::x86_xop_vpcomequd:
9405    case Intrinsic::x86_xop_vpcomequq:
9406      CC = 4;
9407      Opc = X86ISD::VPCOMU;
9408      break;
9409    case Intrinsic::x86_xop_vpcomneb:
9410    case Intrinsic::x86_xop_vpcomnew:
9411    case Intrinsic::x86_xop_vpcomned:
9412    case Intrinsic::x86_xop_vpcomneq:
9413      CC = 5;
9414      Opc = X86ISD::VPCOM;
9415      break;
9416    case Intrinsic::x86_xop_vpcomneub:
9417    case Intrinsic::x86_xop_vpcomneuw:
9418    case Intrinsic::x86_xop_vpcomneud:
9419    case Intrinsic::x86_xop_vpcomneuq:
9420      CC = 5;
9421      Opc = X86ISD::VPCOMU;
9422      break;
9423    case Intrinsic::x86_xop_vpcomfalseb:
9424    case Intrinsic::x86_xop_vpcomfalsew:
9425    case Intrinsic::x86_xop_vpcomfalsed:
9426    case Intrinsic::x86_xop_vpcomfalseq:
9427      CC = 6;
9428      Opc = X86ISD::VPCOM;
9429      break;
9430    case Intrinsic::x86_xop_vpcomfalseub:
9431    case Intrinsic::x86_xop_vpcomfalseuw:
9432    case Intrinsic::x86_xop_vpcomfalseud:
9433    case Intrinsic::x86_xop_vpcomfalseuq:
9434      CC = 6;
9435      Opc = X86ISD::VPCOMU;
9436      break;
9437    case Intrinsic::x86_xop_vpcomtrueb:
9438    case Intrinsic::x86_xop_vpcomtruew:
9439    case Intrinsic::x86_xop_vpcomtrued:
9440    case Intrinsic::x86_xop_vpcomtrueq:
9441      CC = 7;
9442      Opc = X86ISD::VPCOM;
9443      break;
9444    case Intrinsic::x86_xop_vpcomtrueub:
9445    case Intrinsic::x86_xop_vpcomtrueuw:
9446    case Intrinsic::x86_xop_vpcomtrueud:
9447    case Intrinsic::x86_xop_vpcomtrueuq:
9448      CC = 7;
9449      Opc = X86ISD::VPCOMU;
9450      break;
9451    }
9452
9453    SDValue LHS = Op.getOperand(1);
9454    SDValue RHS = Op.getOperand(2);
9455    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9456                       DAG.getConstant(CC, MVT::i8));
9457  }
9458
9459  // Arithmetic intrinsics.
9460  case Intrinsic::x86_sse3_hadd_ps:
9461  case Intrinsic::x86_sse3_hadd_pd:
9462  case Intrinsic::x86_avx_hadd_ps_256:
9463  case Intrinsic::x86_avx_hadd_pd_256:
9464    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9465                       Op.getOperand(1), Op.getOperand(2));
9466  case Intrinsic::x86_sse3_hsub_ps:
9467  case Intrinsic::x86_sse3_hsub_pd:
9468  case Intrinsic::x86_avx_hsub_ps_256:
9469  case Intrinsic::x86_avx_hsub_pd_256:
9470    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9471                       Op.getOperand(1), Op.getOperand(2));
9472  case Intrinsic::x86_ssse3_phadd_w_128:
9473  case Intrinsic::x86_ssse3_phadd_d_128:
9474  case Intrinsic::x86_avx2_phadd_w:
9475  case Intrinsic::x86_avx2_phadd_d:
9476    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9477                       Op.getOperand(1), Op.getOperand(2));
9478  case Intrinsic::x86_ssse3_phsub_w_128:
9479  case Intrinsic::x86_ssse3_phsub_d_128:
9480  case Intrinsic::x86_avx2_phsub_w:
9481  case Intrinsic::x86_avx2_phsub_d:
9482    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9483                       Op.getOperand(1), Op.getOperand(2));
9484  case Intrinsic::x86_avx2_psllv_d:
9485  case Intrinsic::x86_avx2_psllv_q:
9486  case Intrinsic::x86_avx2_psllv_d_256:
9487  case Intrinsic::x86_avx2_psllv_q_256:
9488    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9489                      Op.getOperand(1), Op.getOperand(2));
9490  case Intrinsic::x86_avx2_psrlv_d:
9491  case Intrinsic::x86_avx2_psrlv_q:
9492  case Intrinsic::x86_avx2_psrlv_d_256:
9493  case Intrinsic::x86_avx2_psrlv_q_256:
9494    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9495                      Op.getOperand(1), Op.getOperand(2));
9496  case Intrinsic::x86_avx2_psrav_d:
9497  case Intrinsic::x86_avx2_psrav_d_256:
9498    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9499                      Op.getOperand(1), Op.getOperand(2));
9500  case Intrinsic::x86_ssse3_pshuf_b_128:
9501  case Intrinsic::x86_avx2_pshuf_b:
9502    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9503                       Op.getOperand(1), Op.getOperand(2));
9504  case Intrinsic::x86_ssse3_psign_b_128:
9505  case Intrinsic::x86_ssse3_psign_w_128:
9506  case Intrinsic::x86_ssse3_psign_d_128:
9507  case Intrinsic::x86_avx2_psign_b:
9508  case Intrinsic::x86_avx2_psign_w:
9509  case Intrinsic::x86_avx2_psign_d:
9510    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9511                       Op.getOperand(1), Op.getOperand(2));
9512  case Intrinsic::x86_sse41_insertps:
9513    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9514                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9515  case Intrinsic::x86_avx_vperm2f128_ps_256:
9516  case Intrinsic::x86_avx_vperm2f128_pd_256:
9517  case Intrinsic::x86_avx_vperm2f128_si_256:
9518  case Intrinsic::x86_avx2_vperm2i128:
9519    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9520                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9521
9522  // ptest and testp intrinsics. The intrinsic these come from are designed to
9523  // return an integer value, not just an instruction so lower it to the ptest
9524  // or testp pattern and a setcc for the result.
9525  case Intrinsic::x86_sse41_ptestz:
9526  case Intrinsic::x86_sse41_ptestc:
9527  case Intrinsic::x86_sse41_ptestnzc:
9528  case Intrinsic::x86_avx_ptestz_256:
9529  case Intrinsic::x86_avx_ptestc_256:
9530  case Intrinsic::x86_avx_ptestnzc_256:
9531  case Intrinsic::x86_avx_vtestz_ps:
9532  case Intrinsic::x86_avx_vtestc_ps:
9533  case Intrinsic::x86_avx_vtestnzc_ps:
9534  case Intrinsic::x86_avx_vtestz_pd:
9535  case Intrinsic::x86_avx_vtestc_pd:
9536  case Intrinsic::x86_avx_vtestnzc_pd:
9537  case Intrinsic::x86_avx_vtestz_ps_256:
9538  case Intrinsic::x86_avx_vtestc_ps_256:
9539  case Intrinsic::x86_avx_vtestnzc_ps_256:
9540  case Intrinsic::x86_avx_vtestz_pd_256:
9541  case Intrinsic::x86_avx_vtestc_pd_256:
9542  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9543    bool IsTestPacked = false;
9544    unsigned X86CC = 0;
9545    switch (IntNo) {
9546    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9547    case Intrinsic::x86_avx_vtestz_ps:
9548    case Intrinsic::x86_avx_vtestz_pd:
9549    case Intrinsic::x86_avx_vtestz_ps_256:
9550    case Intrinsic::x86_avx_vtestz_pd_256:
9551      IsTestPacked = true; // Fallthrough
9552    case Intrinsic::x86_sse41_ptestz:
9553    case Intrinsic::x86_avx_ptestz_256:
9554      // ZF = 1
9555      X86CC = X86::COND_E;
9556      break;
9557    case Intrinsic::x86_avx_vtestc_ps:
9558    case Intrinsic::x86_avx_vtestc_pd:
9559    case Intrinsic::x86_avx_vtestc_ps_256:
9560    case Intrinsic::x86_avx_vtestc_pd_256:
9561      IsTestPacked = true; // Fallthrough
9562    case Intrinsic::x86_sse41_ptestc:
9563    case Intrinsic::x86_avx_ptestc_256:
9564      // CF = 1
9565      X86CC = X86::COND_B;
9566      break;
9567    case Intrinsic::x86_avx_vtestnzc_ps:
9568    case Intrinsic::x86_avx_vtestnzc_pd:
9569    case Intrinsic::x86_avx_vtestnzc_ps_256:
9570    case Intrinsic::x86_avx_vtestnzc_pd_256:
9571      IsTestPacked = true; // Fallthrough
9572    case Intrinsic::x86_sse41_ptestnzc:
9573    case Intrinsic::x86_avx_ptestnzc_256:
9574      // ZF and CF = 0
9575      X86CC = X86::COND_A;
9576      break;
9577    }
9578
9579    SDValue LHS = Op.getOperand(1);
9580    SDValue RHS = Op.getOperand(2);
9581    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9582    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9583    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9584    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9585    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9586  }
9587
9588  // SSE/AVX shift intrinsics
9589  case Intrinsic::x86_sse2_psll_w:
9590  case Intrinsic::x86_sse2_psll_d:
9591  case Intrinsic::x86_sse2_psll_q:
9592  case Intrinsic::x86_avx2_psll_w:
9593  case Intrinsic::x86_avx2_psll_d:
9594  case Intrinsic::x86_avx2_psll_q:
9595    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9596                       Op.getOperand(1), Op.getOperand(2));
9597  case Intrinsic::x86_sse2_psrl_w:
9598  case Intrinsic::x86_sse2_psrl_d:
9599  case Intrinsic::x86_sse2_psrl_q:
9600  case Intrinsic::x86_avx2_psrl_w:
9601  case Intrinsic::x86_avx2_psrl_d:
9602  case Intrinsic::x86_avx2_psrl_q:
9603    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9604                       Op.getOperand(1), Op.getOperand(2));
9605  case Intrinsic::x86_sse2_psra_w:
9606  case Intrinsic::x86_sse2_psra_d:
9607  case Intrinsic::x86_avx2_psra_w:
9608  case Intrinsic::x86_avx2_psra_d:
9609    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9610                       Op.getOperand(1), Op.getOperand(2));
9611  case Intrinsic::x86_sse2_pslli_w:
9612  case Intrinsic::x86_sse2_pslli_d:
9613  case Intrinsic::x86_sse2_pslli_q:
9614  case Intrinsic::x86_avx2_pslli_w:
9615  case Intrinsic::x86_avx2_pslli_d:
9616  case Intrinsic::x86_avx2_pslli_q:
9617    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9618                               Op.getOperand(1), Op.getOperand(2), DAG);
9619  case Intrinsic::x86_sse2_psrli_w:
9620  case Intrinsic::x86_sse2_psrli_d:
9621  case Intrinsic::x86_sse2_psrli_q:
9622  case Intrinsic::x86_avx2_psrli_w:
9623  case Intrinsic::x86_avx2_psrli_d:
9624  case Intrinsic::x86_avx2_psrli_q:
9625    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9626                               Op.getOperand(1), Op.getOperand(2), DAG);
9627  case Intrinsic::x86_sse2_psrai_w:
9628  case Intrinsic::x86_sse2_psrai_d:
9629  case Intrinsic::x86_avx2_psrai_w:
9630  case Intrinsic::x86_avx2_psrai_d:
9631    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9632                               Op.getOperand(1), Op.getOperand(2), DAG);
9633  // Fix vector shift instructions where the last operand is a non-immediate
9634  // i32 value.
9635  case Intrinsic::x86_mmx_pslli_w:
9636  case Intrinsic::x86_mmx_pslli_d:
9637  case Intrinsic::x86_mmx_pslli_q:
9638  case Intrinsic::x86_mmx_psrli_w:
9639  case Intrinsic::x86_mmx_psrli_d:
9640  case Intrinsic::x86_mmx_psrli_q:
9641  case Intrinsic::x86_mmx_psrai_w:
9642  case Intrinsic::x86_mmx_psrai_d: {
9643    SDValue ShAmt = Op.getOperand(2);
9644    if (isa<ConstantSDNode>(ShAmt))
9645      return SDValue();
9646
9647    unsigned NewIntNo = 0;
9648    switch (IntNo) {
9649    case Intrinsic::x86_mmx_pslli_w:
9650      NewIntNo = Intrinsic::x86_mmx_psll_w;
9651      break;
9652    case Intrinsic::x86_mmx_pslli_d:
9653      NewIntNo = Intrinsic::x86_mmx_psll_d;
9654      break;
9655    case Intrinsic::x86_mmx_pslli_q:
9656      NewIntNo = Intrinsic::x86_mmx_psll_q;
9657      break;
9658    case Intrinsic::x86_mmx_psrli_w:
9659      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9660      break;
9661    case Intrinsic::x86_mmx_psrli_d:
9662      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9663      break;
9664    case Intrinsic::x86_mmx_psrli_q:
9665      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9666      break;
9667    case Intrinsic::x86_mmx_psrai_w:
9668      NewIntNo = Intrinsic::x86_mmx_psra_w;
9669      break;
9670    case Intrinsic::x86_mmx_psrai_d:
9671      NewIntNo = Intrinsic::x86_mmx_psra_d;
9672      break;
9673    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9674    }
9675
9676    // The vector shift intrinsics with scalars uses 32b shift amounts but
9677    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9678    // to be zero.
9679    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9680                         DAG.getConstant(0, MVT::i32));
9681// FIXME this must be lowered to get rid of the invalid type.
9682
9683    EVT VT = Op.getValueType();
9684    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9685    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9686                       DAG.getConstant(NewIntNo, MVT::i32),
9687                       Op.getOperand(1), ShAmt);
9688  }
9689  }
9690}
9691
9692SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9693                                           SelectionDAG &DAG) const {
9694  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9695  MFI->setReturnAddressIsTaken(true);
9696
9697  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9698  DebugLoc dl = Op.getDebugLoc();
9699
9700  if (Depth > 0) {
9701    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9702    SDValue Offset =
9703      DAG.getConstant(TD->getPointerSize(),
9704                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9705    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9706                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9707                                   FrameAddr, Offset),
9708                       MachinePointerInfo(), false, false, false, 0);
9709  }
9710
9711  // Just load the return address.
9712  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9713  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9714                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9715}
9716
9717SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9718  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9719  MFI->setFrameAddressIsTaken(true);
9720
9721  EVT VT = Op.getValueType();
9722  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9723  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9724  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9725  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9726  while (Depth--)
9727    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9728                            MachinePointerInfo(),
9729                            false, false, false, 0);
9730  return FrameAddr;
9731}
9732
9733SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9734                                                     SelectionDAG &DAG) const {
9735  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9736}
9737
9738SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9739  MachineFunction &MF = DAG.getMachineFunction();
9740  SDValue Chain     = Op.getOperand(0);
9741  SDValue Offset    = Op.getOperand(1);
9742  SDValue Handler   = Op.getOperand(2);
9743  DebugLoc dl       = Op.getDebugLoc();
9744
9745  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9746                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9747                                     getPointerTy());
9748  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9749
9750  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9751                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9752  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9753  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9754                       false, false, 0);
9755  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9756  MF.getRegInfo().addLiveOut(StoreAddrReg);
9757
9758  return DAG.getNode(X86ISD::EH_RETURN, dl,
9759                     MVT::Other,
9760                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9761}
9762
9763SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9764                                                  SelectionDAG &DAG) const {
9765  return Op.getOperand(0);
9766}
9767
9768SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9769                                                SelectionDAG &DAG) const {
9770  SDValue Root = Op.getOperand(0);
9771  SDValue Trmp = Op.getOperand(1); // trampoline
9772  SDValue FPtr = Op.getOperand(2); // nested function
9773  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9774  DebugLoc dl  = Op.getDebugLoc();
9775
9776  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9777
9778  if (Subtarget->is64Bit()) {
9779    SDValue OutChains[6];
9780
9781    // Large code-model.
9782    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9783    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9784
9785    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9786    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9787
9788    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9789
9790    // Load the pointer to the nested function into R11.
9791    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9792    SDValue Addr = Trmp;
9793    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9794                                Addr, MachinePointerInfo(TrmpAddr),
9795                                false, false, 0);
9796
9797    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9798                       DAG.getConstant(2, MVT::i64));
9799    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9800                                MachinePointerInfo(TrmpAddr, 2),
9801                                false, false, 2);
9802
9803    // Load the 'nest' parameter value into R10.
9804    // R10 is specified in X86CallingConv.td
9805    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9806    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9807                       DAG.getConstant(10, MVT::i64));
9808    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9809                                Addr, MachinePointerInfo(TrmpAddr, 10),
9810                                false, false, 0);
9811
9812    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9813                       DAG.getConstant(12, MVT::i64));
9814    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9815                                MachinePointerInfo(TrmpAddr, 12),
9816                                false, false, 2);
9817
9818    // Jump to the nested function.
9819    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9820    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9821                       DAG.getConstant(20, MVT::i64));
9822    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9823                                Addr, MachinePointerInfo(TrmpAddr, 20),
9824                                false, false, 0);
9825
9826    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9827    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9828                       DAG.getConstant(22, MVT::i64));
9829    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9830                                MachinePointerInfo(TrmpAddr, 22),
9831                                false, false, 0);
9832
9833    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9834  } else {
9835    const Function *Func =
9836      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9837    CallingConv::ID CC = Func->getCallingConv();
9838    unsigned NestReg;
9839
9840    switch (CC) {
9841    default:
9842      llvm_unreachable("Unsupported calling convention");
9843    case CallingConv::C:
9844    case CallingConv::X86_StdCall: {
9845      // Pass 'nest' parameter in ECX.
9846      // Must be kept in sync with X86CallingConv.td
9847      NestReg = X86::ECX;
9848
9849      // Check that ECX wasn't needed by an 'inreg' parameter.
9850      FunctionType *FTy = Func->getFunctionType();
9851      const AttrListPtr &Attrs = Func->getAttributes();
9852
9853      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9854        unsigned InRegCount = 0;
9855        unsigned Idx = 1;
9856
9857        for (FunctionType::param_iterator I = FTy->param_begin(),
9858             E = FTy->param_end(); I != E; ++I, ++Idx)
9859          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9860            // FIXME: should only count parameters that are lowered to integers.
9861            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9862
9863        if (InRegCount > 2) {
9864          report_fatal_error("Nest register in use - reduce number of inreg"
9865                             " parameters!");
9866        }
9867      }
9868      break;
9869    }
9870    case CallingConv::X86_FastCall:
9871    case CallingConv::X86_ThisCall:
9872    case CallingConv::Fast:
9873      // Pass 'nest' parameter in EAX.
9874      // Must be kept in sync with X86CallingConv.td
9875      NestReg = X86::EAX;
9876      break;
9877    }
9878
9879    SDValue OutChains[4];
9880    SDValue Addr, Disp;
9881
9882    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9883                       DAG.getConstant(10, MVT::i32));
9884    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9885
9886    // This is storing the opcode for MOV32ri.
9887    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9888    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9889    OutChains[0] = DAG.getStore(Root, dl,
9890                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9891                                Trmp, MachinePointerInfo(TrmpAddr),
9892                                false, false, 0);
9893
9894    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9895                       DAG.getConstant(1, MVT::i32));
9896    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9897                                MachinePointerInfo(TrmpAddr, 1),
9898                                false, false, 1);
9899
9900    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9901    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9902                       DAG.getConstant(5, MVT::i32));
9903    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9904                                MachinePointerInfo(TrmpAddr, 5),
9905                                false, false, 1);
9906
9907    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9908                       DAG.getConstant(6, MVT::i32));
9909    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9910                                MachinePointerInfo(TrmpAddr, 6),
9911                                false, false, 1);
9912
9913    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9914  }
9915}
9916
9917SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9918                                            SelectionDAG &DAG) const {
9919  /*
9920   The rounding mode is in bits 11:10 of FPSR, and has the following
9921   settings:
9922     00 Round to nearest
9923     01 Round to -inf
9924     10 Round to +inf
9925     11 Round to 0
9926
9927  FLT_ROUNDS, on the other hand, expects the following:
9928    -1 Undefined
9929     0 Round to 0
9930     1 Round to nearest
9931     2 Round to +inf
9932     3 Round to -inf
9933
9934  To perform the conversion, we do:
9935    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9936  */
9937
9938  MachineFunction &MF = DAG.getMachineFunction();
9939  const TargetMachine &TM = MF.getTarget();
9940  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9941  unsigned StackAlignment = TFI.getStackAlignment();
9942  EVT VT = Op.getValueType();
9943  DebugLoc DL = Op.getDebugLoc();
9944
9945  // Save FP Control Word to stack slot
9946  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9947  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9948
9949
9950  MachineMemOperand *MMO =
9951   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9952                           MachineMemOperand::MOStore, 2, 2);
9953
9954  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9955  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9956                                          DAG.getVTList(MVT::Other),
9957                                          Ops, 2, MVT::i16, MMO);
9958
9959  // Load FP Control Word from stack slot
9960  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9961                            MachinePointerInfo(), false, false, false, 0);
9962
9963  // Transform as necessary
9964  SDValue CWD1 =
9965    DAG.getNode(ISD::SRL, DL, MVT::i16,
9966                DAG.getNode(ISD::AND, DL, MVT::i16,
9967                            CWD, DAG.getConstant(0x800, MVT::i16)),
9968                DAG.getConstant(11, MVT::i8));
9969  SDValue CWD2 =
9970    DAG.getNode(ISD::SRL, DL, MVT::i16,
9971                DAG.getNode(ISD::AND, DL, MVT::i16,
9972                            CWD, DAG.getConstant(0x400, MVT::i16)),
9973                DAG.getConstant(9, MVT::i8));
9974
9975  SDValue RetVal =
9976    DAG.getNode(ISD::AND, DL, MVT::i16,
9977                DAG.getNode(ISD::ADD, DL, MVT::i16,
9978                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9979                            DAG.getConstant(1, MVT::i16)),
9980                DAG.getConstant(3, MVT::i16));
9981
9982
9983  return DAG.getNode((VT.getSizeInBits() < 16 ?
9984                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9985}
9986
9987SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9988  EVT VT = Op.getValueType();
9989  EVT OpVT = VT;
9990  unsigned NumBits = VT.getSizeInBits();
9991  DebugLoc dl = Op.getDebugLoc();
9992
9993  Op = Op.getOperand(0);
9994  if (VT == MVT::i8) {
9995    // Zero extend to i32 since there is not an i8 bsr.
9996    OpVT = MVT::i32;
9997    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9998  }
9999
10000  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10001  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10002  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10003
10004  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10005  SDValue Ops[] = {
10006    Op,
10007    DAG.getConstant(NumBits+NumBits-1, OpVT),
10008    DAG.getConstant(X86::COND_E, MVT::i8),
10009    Op.getValue(1)
10010  };
10011  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10012
10013  // Finally xor with NumBits-1.
10014  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10015
10016  if (VT == MVT::i8)
10017    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10018  return Op;
10019}
10020
10021SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10022                                                SelectionDAG &DAG) const {
10023  EVT VT = Op.getValueType();
10024  EVT OpVT = VT;
10025  unsigned NumBits = VT.getSizeInBits();
10026  DebugLoc dl = Op.getDebugLoc();
10027
10028  Op = Op.getOperand(0);
10029  if (VT == MVT::i8) {
10030    // Zero extend to i32 since there is not an i8 bsr.
10031    OpVT = MVT::i32;
10032    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10033  }
10034
10035  // Issue a bsr (scan bits in reverse).
10036  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10037  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10038
10039  // And xor with NumBits-1.
10040  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10041
10042  if (VT == MVT::i8)
10043    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10044  return Op;
10045}
10046
10047SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10048  EVT VT = Op.getValueType();
10049  unsigned NumBits = VT.getSizeInBits();
10050  DebugLoc dl = Op.getDebugLoc();
10051  Op = Op.getOperand(0);
10052
10053  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10054  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10055  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10056
10057  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10058  SDValue Ops[] = {
10059    Op,
10060    DAG.getConstant(NumBits, VT),
10061    DAG.getConstant(X86::COND_E, MVT::i8),
10062    Op.getValue(1)
10063  };
10064  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10065}
10066
10067// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10068// ones, and then concatenate the result back.
10069static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10070  EVT VT = Op.getValueType();
10071
10072  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10073         "Unsupported value type for operation");
10074
10075  int NumElems = VT.getVectorNumElements();
10076  DebugLoc dl = Op.getDebugLoc();
10077  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10078  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10079
10080  // Extract the LHS vectors
10081  SDValue LHS = Op.getOperand(0);
10082  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10083  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10084
10085  // Extract the RHS vectors
10086  SDValue RHS = Op.getOperand(1);
10087  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10088  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10089
10090  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10091  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10092
10093  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10094                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10095                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10096}
10097
10098SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10099  assert(Op.getValueType().getSizeInBits() == 256 &&
10100         Op.getValueType().isInteger() &&
10101         "Only handle AVX 256-bit vector integer operation");
10102  return Lower256IntArith(Op, DAG);
10103}
10104
10105SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10106  assert(Op.getValueType().getSizeInBits() == 256 &&
10107         Op.getValueType().isInteger() &&
10108         "Only handle AVX 256-bit vector integer operation");
10109  return Lower256IntArith(Op, DAG);
10110}
10111
10112SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10113  EVT VT = Op.getValueType();
10114
10115  // Decompose 256-bit ops into smaller 128-bit ops.
10116  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10117    return Lower256IntArith(Op, DAG);
10118
10119  DebugLoc dl = Op.getDebugLoc();
10120
10121  SDValue A = Op.getOperand(0);
10122  SDValue B = Op.getOperand(1);
10123
10124  if (VT == MVT::v4i64) {
10125    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
10126
10127    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
10128    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
10129    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
10130    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
10131    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
10132    //
10133    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
10134    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
10135    //  return AloBlo + AloBhi + AhiBlo;
10136
10137    SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A,
10138                              DAG.getConstant(32, MVT::i32));
10139    SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B,
10140                              DAG.getConstant(32, MVT::i32));
10141    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10142                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10143                         A, B);
10144    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10145                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10146                         A, Bhi);
10147    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10148                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10149                         Ahi, B);
10150    AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi,
10151                         DAG.getConstant(32, MVT::i32));
10152    AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo,
10153                         DAG.getConstant(32, MVT::i32));
10154    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10155    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10156    return Res;
10157  }
10158
10159  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
10160
10161  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
10162  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
10163  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
10164  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
10165  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
10166  //
10167  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10168  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10169  //  return AloBlo + AloBhi + AhiBlo;
10170
10171  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A,
10172                            DAG.getConstant(32, MVT::i32));
10173  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B,
10174                            DAG.getConstant(32, MVT::i32));
10175  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10176                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10177                       A, B);
10178  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10179                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10180                       A, Bhi);
10181  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10182                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10183                       Ahi, B);
10184  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi,
10185                       DAG.getConstant(32, MVT::i32));
10186  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo,
10187                       DAG.getConstant(32, MVT::i32));
10188  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10189  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10190  return Res;
10191}
10192
10193SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10194
10195  EVT VT = Op.getValueType();
10196  DebugLoc dl = Op.getDebugLoc();
10197  SDValue R = Op.getOperand(0);
10198  SDValue Amt = Op.getOperand(1);
10199  LLVMContext *Context = DAG.getContext();
10200
10201  if (!Subtarget->hasSSE2())
10202    return SDValue();
10203
10204  // Optimize shl/srl/sra with constant shift amount.
10205  if (isSplatVector(Amt.getNode())) {
10206    SDValue SclrAmt = Amt->getOperand(0);
10207    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10208      uint64_t ShiftAmt = C->getZExtValue();
10209
10210      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10211          (Subtarget->hasAVX2() &&
10212           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10213        if (Op.getOpcode() == ISD::SHL)
10214          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10215                             DAG.getConstant(ShiftAmt, MVT::i32));
10216        if (Op.getOpcode() == ISD::SRL)
10217          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10218                             DAG.getConstant(ShiftAmt, MVT::i32));
10219        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10220          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10221                             DAG.getConstant(ShiftAmt, MVT::i32));
10222      }
10223
10224      if (VT == MVT::v16i8) {
10225        if (Op.getOpcode() == ISD::SHL) {
10226          // Make a large shift.
10227          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10228                                    DAG.getConstant(ShiftAmt, MVT::i32));
10229          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10230          // Zero out the rightmost bits.
10231          SmallVector<SDValue, 16> V(16,
10232                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10233                                                     MVT::i8));
10234          return DAG.getNode(ISD::AND, dl, VT, SHL,
10235                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10236        }
10237        if (Op.getOpcode() == ISD::SRL) {
10238          // Make a large shift.
10239          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10240                                    DAG.getConstant(ShiftAmt, MVT::i32));
10241          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10242          // Zero out the leftmost bits.
10243          SmallVector<SDValue, 16> V(16,
10244                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10245                                                     MVT::i8));
10246          return DAG.getNode(ISD::AND, dl, VT, SRL,
10247                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10248        }
10249        if (Op.getOpcode() == ISD::SRA) {
10250          if (ShiftAmt == 7) {
10251            // R s>> 7  ===  R s< 0
10252            SDValue Zeros = getZeroVector(VT, /* HasSSE2 */true,
10253                                          /* HasAVX2 */false, DAG, dl);
10254            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10255          }
10256
10257          // R s>> a === ((R u>> a) ^ m) - m
10258          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10259          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10260                                                         MVT::i8));
10261          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10262          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10263          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10264          return Res;
10265        }
10266      }
10267
10268      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10269        if (Op.getOpcode() == ISD::SHL) {
10270          // Make a large shift.
10271          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10272                                    DAG.getConstant(ShiftAmt, MVT::i32));
10273          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10274          // Zero out the rightmost bits.
10275          SmallVector<SDValue, 32> V(32,
10276                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10277                                                     MVT::i8));
10278          return DAG.getNode(ISD::AND, dl, VT, SHL,
10279                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10280        }
10281        if (Op.getOpcode() == ISD::SRL) {
10282          // Make a large shift.
10283          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10284                                    DAG.getConstant(ShiftAmt, MVT::i32));
10285          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10286          // Zero out the leftmost bits.
10287          SmallVector<SDValue, 32> V(32,
10288                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10289                                                     MVT::i8));
10290          return DAG.getNode(ISD::AND, dl, VT, SRL,
10291                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10292        }
10293        if (Op.getOpcode() == ISD::SRA) {
10294          if (ShiftAmt == 7) {
10295            // R s>> 7  ===  R s< 0
10296            SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */,
10297                                          true /* HasAVX2 */, DAG, dl);
10298            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10299          }
10300
10301          // R s>> a === ((R u>> a) ^ m) - m
10302          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10303          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10304                                                         MVT::i8));
10305          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10306          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10307          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10308          return Res;
10309        }
10310      }
10311    }
10312  }
10313
10314  // Lower SHL with variable shift amount.
10315  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10316    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10317                     DAG.getConstant(23, MVT::i32));
10318
10319    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10320    Constant *C = ConstantVector::getSplat(4, CI);
10321    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10322    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10323                                 MachinePointerInfo::getConstantPool(),
10324                                 false, false, false, 16);
10325
10326    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10327    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10328    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10329    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10330  }
10331  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10332    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10333
10334    // a = a << 5;
10335    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10336                     DAG.getConstant(5, MVT::i32));
10337    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10338
10339    // Turn 'a' into a mask suitable for VSELECT
10340    SDValue VSelM = DAG.getConstant(0x80, VT);
10341    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10342    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10343
10344    SDValue CM1 = DAG.getConstant(0x0f, VT);
10345    SDValue CM2 = DAG.getConstant(0x3f, VT);
10346
10347    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10348    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10349    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10350                            DAG.getConstant(4, MVT::i32), DAG);
10351    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10352    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10353
10354    // a += a
10355    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10356    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10357    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10358
10359    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10360    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10361    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10362                            DAG.getConstant(2, MVT::i32), DAG);
10363    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10364    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10365
10366    // a += a
10367    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10368    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10369    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10370
10371    // return VSELECT(r, r+r, a);
10372    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10373                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10374    return R;
10375  }
10376
10377  // Decompose 256-bit shifts into smaller 128-bit shifts.
10378  if (VT.getSizeInBits() == 256) {
10379    unsigned NumElems = VT.getVectorNumElements();
10380    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10381    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10382
10383    // Extract the two vectors
10384    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10385    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10386                                     DAG, dl);
10387
10388    // Recreate the shift amount vectors
10389    SDValue Amt1, Amt2;
10390    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10391      // Constant shift amount
10392      SmallVector<SDValue, 4> Amt1Csts;
10393      SmallVector<SDValue, 4> Amt2Csts;
10394      for (unsigned i = 0; i != NumElems/2; ++i)
10395        Amt1Csts.push_back(Amt->getOperand(i));
10396      for (unsigned i = NumElems/2; i != NumElems; ++i)
10397        Amt2Csts.push_back(Amt->getOperand(i));
10398
10399      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10400                                 &Amt1Csts[0], NumElems/2);
10401      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10402                                 &Amt2Csts[0], NumElems/2);
10403    } else {
10404      // Variable shift amount
10405      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10406      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10407                                 DAG, dl);
10408    }
10409
10410    // Issue new vector shifts for the smaller types
10411    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10412    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10413
10414    // Concatenate the result back
10415    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10416  }
10417
10418  return SDValue();
10419}
10420
10421SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10422  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10423  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10424  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10425  // has only one use.
10426  SDNode *N = Op.getNode();
10427  SDValue LHS = N->getOperand(0);
10428  SDValue RHS = N->getOperand(1);
10429  unsigned BaseOp = 0;
10430  unsigned Cond = 0;
10431  DebugLoc DL = Op.getDebugLoc();
10432  switch (Op.getOpcode()) {
10433  default: llvm_unreachable("Unknown ovf instruction!");
10434  case ISD::SADDO:
10435    // A subtract of one will be selected as a INC. Note that INC doesn't
10436    // set CF, so we can't do this for UADDO.
10437    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10438      if (C->isOne()) {
10439        BaseOp = X86ISD::INC;
10440        Cond = X86::COND_O;
10441        break;
10442      }
10443    BaseOp = X86ISD::ADD;
10444    Cond = X86::COND_O;
10445    break;
10446  case ISD::UADDO:
10447    BaseOp = X86ISD::ADD;
10448    Cond = X86::COND_B;
10449    break;
10450  case ISD::SSUBO:
10451    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10452    // set CF, so we can't do this for USUBO.
10453    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10454      if (C->isOne()) {
10455        BaseOp = X86ISD::DEC;
10456        Cond = X86::COND_O;
10457        break;
10458      }
10459    BaseOp = X86ISD::SUB;
10460    Cond = X86::COND_O;
10461    break;
10462  case ISD::USUBO:
10463    BaseOp = X86ISD::SUB;
10464    Cond = X86::COND_B;
10465    break;
10466  case ISD::SMULO:
10467    BaseOp = X86ISD::SMUL;
10468    Cond = X86::COND_O;
10469    break;
10470  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10471    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10472                                 MVT::i32);
10473    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10474
10475    SDValue SetCC =
10476      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10477                  DAG.getConstant(X86::COND_O, MVT::i32),
10478                  SDValue(Sum.getNode(), 2));
10479
10480    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10481  }
10482  }
10483
10484  // Also sets EFLAGS.
10485  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10486  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10487
10488  SDValue SetCC =
10489    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10490                DAG.getConstant(Cond, MVT::i32),
10491                SDValue(Sum.getNode(), 1));
10492
10493  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10494}
10495
10496SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10497                                                  SelectionDAG &DAG) const {
10498  DebugLoc dl = Op.getDebugLoc();
10499  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10500  EVT VT = Op.getValueType();
10501
10502  if (!Subtarget->hasSSE2() || !VT.isVector())
10503    return SDValue();
10504
10505  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10506                      ExtraVT.getScalarType().getSizeInBits();
10507  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10508
10509  switch (VT.getSimpleVT().SimpleTy) {
10510    default: return SDValue();
10511    case MVT::v8i32:
10512    case MVT::v16i16:
10513      if (!Subtarget->hasAVX())
10514        return SDValue();
10515      if (!Subtarget->hasAVX2()) {
10516        // needs to be split
10517        int NumElems = VT.getVectorNumElements();
10518        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10519        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10520
10521        // Extract the LHS vectors
10522        SDValue LHS = Op.getOperand(0);
10523        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10524        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10525
10526        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10527        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10528
10529        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10530        int ExtraNumElems = ExtraVT.getVectorNumElements();
10531        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10532                                   ExtraNumElems/2);
10533        SDValue Extra = DAG.getValueType(ExtraVT);
10534
10535        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10536        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10537
10538        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10539      }
10540      // fall through
10541    case MVT::v4i32:
10542    case MVT::v8i16: {
10543      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10544                                         Op.getOperand(0), ShAmt, DAG);
10545      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10546    }
10547  }
10548}
10549
10550
10551SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10552  DebugLoc dl = Op.getDebugLoc();
10553
10554  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10555  // There isn't any reason to disable it if the target processor supports it.
10556  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10557    SDValue Chain = Op.getOperand(0);
10558    SDValue Zero = DAG.getConstant(0, MVT::i32);
10559    SDValue Ops[] = {
10560      DAG.getRegister(X86::ESP, MVT::i32), // Base
10561      DAG.getTargetConstant(1, MVT::i8),   // Scale
10562      DAG.getRegister(0, MVT::i32),        // Index
10563      DAG.getTargetConstant(0, MVT::i32),  // Disp
10564      DAG.getRegister(0, MVT::i32),        // Segment.
10565      Zero,
10566      Chain
10567    };
10568    SDNode *Res =
10569      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10570                          array_lengthof(Ops));
10571    return SDValue(Res, 0);
10572  }
10573
10574  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10575  if (!isDev)
10576    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10577
10578  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10579  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10580  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10581  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10582
10583  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10584  if (!Op1 && !Op2 && !Op3 && Op4)
10585    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10586
10587  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10588  if (Op1 && !Op2 && !Op3 && !Op4)
10589    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10590
10591  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10592  //           (MFENCE)>;
10593  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10594}
10595
10596SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10597                                             SelectionDAG &DAG) const {
10598  DebugLoc dl = Op.getDebugLoc();
10599  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10600    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10601  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10602    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10603
10604  // The only fence that needs an instruction is a sequentially-consistent
10605  // cross-thread fence.
10606  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10607    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10608    // no-sse2). There isn't any reason to disable it if the target processor
10609    // supports it.
10610    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10611      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10612
10613    SDValue Chain = Op.getOperand(0);
10614    SDValue Zero = DAG.getConstant(0, MVT::i32);
10615    SDValue Ops[] = {
10616      DAG.getRegister(X86::ESP, MVT::i32), // Base
10617      DAG.getTargetConstant(1, MVT::i8),   // Scale
10618      DAG.getRegister(0, MVT::i32),        // Index
10619      DAG.getTargetConstant(0, MVT::i32),  // Disp
10620      DAG.getRegister(0, MVT::i32),        // Segment.
10621      Zero,
10622      Chain
10623    };
10624    SDNode *Res =
10625      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10626                         array_lengthof(Ops));
10627    return SDValue(Res, 0);
10628  }
10629
10630  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10631  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10632}
10633
10634
10635SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10636  EVT T = Op.getValueType();
10637  DebugLoc DL = Op.getDebugLoc();
10638  unsigned Reg = 0;
10639  unsigned size = 0;
10640  switch(T.getSimpleVT().SimpleTy) {
10641  default:
10642    assert(false && "Invalid value type!");
10643  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10644  case MVT::i16: Reg = X86::AX;  size = 2; break;
10645  case MVT::i32: Reg = X86::EAX; size = 4; break;
10646  case MVT::i64:
10647    assert(Subtarget->is64Bit() && "Node not type legal!");
10648    Reg = X86::RAX; size = 8;
10649    break;
10650  }
10651  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10652                                    Op.getOperand(2), SDValue());
10653  SDValue Ops[] = { cpIn.getValue(0),
10654                    Op.getOperand(1),
10655                    Op.getOperand(3),
10656                    DAG.getTargetConstant(size, MVT::i8),
10657                    cpIn.getValue(1) };
10658  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10659  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10660  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10661                                           Ops, 5, T, MMO);
10662  SDValue cpOut =
10663    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10664  return cpOut;
10665}
10666
10667SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10668                                                 SelectionDAG &DAG) const {
10669  assert(Subtarget->is64Bit() && "Result not type legalized?");
10670  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10671  SDValue TheChain = Op.getOperand(0);
10672  DebugLoc dl = Op.getDebugLoc();
10673  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10674  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10675  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10676                                   rax.getValue(2));
10677  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10678                            DAG.getConstant(32, MVT::i8));
10679  SDValue Ops[] = {
10680    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10681    rdx.getValue(1)
10682  };
10683  return DAG.getMergeValues(Ops, 2, dl);
10684}
10685
10686SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10687                                            SelectionDAG &DAG) const {
10688  EVT SrcVT = Op.getOperand(0).getValueType();
10689  EVT DstVT = Op.getValueType();
10690  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10691         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10692  assert((DstVT == MVT::i64 ||
10693          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10694         "Unexpected custom BITCAST");
10695  // i64 <=> MMX conversions are Legal.
10696  if (SrcVT==MVT::i64 && DstVT.isVector())
10697    return Op;
10698  if (DstVT==MVT::i64 && SrcVT.isVector())
10699    return Op;
10700  // MMX <=> MMX conversions are Legal.
10701  if (SrcVT.isVector() && DstVT.isVector())
10702    return Op;
10703  // All other conversions need to be expanded.
10704  return SDValue();
10705}
10706
10707SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10708  SDNode *Node = Op.getNode();
10709  DebugLoc dl = Node->getDebugLoc();
10710  EVT T = Node->getValueType(0);
10711  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10712                              DAG.getConstant(0, T), Node->getOperand(2));
10713  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10714                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10715                       Node->getOperand(0),
10716                       Node->getOperand(1), negOp,
10717                       cast<AtomicSDNode>(Node)->getSrcValue(),
10718                       cast<AtomicSDNode>(Node)->getAlignment(),
10719                       cast<AtomicSDNode>(Node)->getOrdering(),
10720                       cast<AtomicSDNode>(Node)->getSynchScope());
10721}
10722
10723static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10724  SDNode *Node = Op.getNode();
10725  DebugLoc dl = Node->getDebugLoc();
10726  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10727
10728  // Convert seq_cst store -> xchg
10729  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10730  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10731  //        (The only way to get a 16-byte store is cmpxchg16b)
10732  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10733  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10734      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10735    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10736                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10737                                 Node->getOperand(0),
10738                                 Node->getOperand(1), Node->getOperand(2),
10739                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10740                                 cast<AtomicSDNode>(Node)->getOrdering(),
10741                                 cast<AtomicSDNode>(Node)->getSynchScope());
10742    return Swap.getValue(1);
10743  }
10744  // Other atomic stores have a simple pattern.
10745  return Op;
10746}
10747
10748static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10749  EVT VT = Op.getNode()->getValueType(0);
10750
10751  // Let legalize expand this if it isn't a legal type yet.
10752  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10753    return SDValue();
10754
10755  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10756
10757  unsigned Opc;
10758  bool ExtraOp = false;
10759  switch (Op.getOpcode()) {
10760  default: assert(0 && "Invalid code");
10761  case ISD::ADDC: Opc = X86ISD::ADD; break;
10762  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10763  case ISD::SUBC: Opc = X86ISD::SUB; break;
10764  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10765  }
10766
10767  if (!ExtraOp)
10768    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10769                       Op.getOperand(1));
10770  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10771                     Op.getOperand(1), Op.getOperand(2));
10772}
10773
10774/// LowerOperation - Provide custom lowering hooks for some operations.
10775///
10776SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10777  switch (Op.getOpcode()) {
10778  default: llvm_unreachable("Should not custom lower this!");
10779  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10780  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10781  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10782  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10783  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10784  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10785  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10786  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10787  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10788  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10789  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10790  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10791  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10792  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10793  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10794  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10795  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10796  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10797  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10798  case ISD::SHL_PARTS:
10799  case ISD::SRA_PARTS:
10800  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10801  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10802  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10803  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10804  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10805  case ISD::FABS:               return LowerFABS(Op, DAG);
10806  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10807  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10808  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10809  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10810  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10811  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10812  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10813  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10814  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10815  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10816  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10817  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10818  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10819  case ISD::FRAME_TO_ARGS_OFFSET:
10820                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10821  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10822  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10823  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10824  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10825  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10826  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10827  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10828  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10829  case ISD::MUL:                return LowerMUL(Op, DAG);
10830  case ISD::SRA:
10831  case ISD::SRL:
10832  case ISD::SHL:                return LowerShift(Op, DAG);
10833  case ISD::SADDO:
10834  case ISD::UADDO:
10835  case ISD::SSUBO:
10836  case ISD::USUBO:
10837  case ISD::SMULO:
10838  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10839  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10840  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10841  case ISD::ADDC:
10842  case ISD::ADDE:
10843  case ISD::SUBC:
10844  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10845  case ISD::ADD:                return LowerADD(Op, DAG);
10846  case ISD::SUB:                return LowerSUB(Op, DAG);
10847  }
10848}
10849
10850static void ReplaceATOMIC_LOAD(SDNode *Node,
10851                                  SmallVectorImpl<SDValue> &Results,
10852                                  SelectionDAG &DAG) {
10853  DebugLoc dl = Node->getDebugLoc();
10854  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10855
10856  // Convert wide load -> cmpxchg8b/cmpxchg16b
10857  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10858  //        (The only way to get a 16-byte load is cmpxchg16b)
10859  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10860  SDValue Zero = DAG.getConstant(0, VT);
10861  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10862                               Node->getOperand(0),
10863                               Node->getOperand(1), Zero, Zero,
10864                               cast<AtomicSDNode>(Node)->getMemOperand(),
10865                               cast<AtomicSDNode>(Node)->getOrdering(),
10866                               cast<AtomicSDNode>(Node)->getSynchScope());
10867  Results.push_back(Swap.getValue(0));
10868  Results.push_back(Swap.getValue(1));
10869}
10870
10871void X86TargetLowering::
10872ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10873                        SelectionDAG &DAG, unsigned NewOp) const {
10874  DebugLoc dl = Node->getDebugLoc();
10875  assert (Node->getValueType(0) == MVT::i64 &&
10876          "Only know how to expand i64 atomics");
10877
10878  SDValue Chain = Node->getOperand(0);
10879  SDValue In1 = Node->getOperand(1);
10880  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10881                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10882  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10883                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10884  SDValue Ops[] = { Chain, In1, In2L, In2H };
10885  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10886  SDValue Result =
10887    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10888                            cast<MemSDNode>(Node)->getMemOperand());
10889  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10890  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10891  Results.push_back(Result.getValue(2));
10892}
10893
10894/// ReplaceNodeResults - Replace a node with an illegal result type
10895/// with a new node built out of custom code.
10896void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10897                                           SmallVectorImpl<SDValue>&Results,
10898                                           SelectionDAG &DAG) const {
10899  DebugLoc dl = N->getDebugLoc();
10900  switch (N->getOpcode()) {
10901  default:
10902    assert(false && "Do not know how to custom type legalize this operation!");
10903    return;
10904  case ISD::SIGN_EXTEND_INREG:
10905  case ISD::ADDC:
10906  case ISD::ADDE:
10907  case ISD::SUBC:
10908  case ISD::SUBE:
10909    // We don't want to expand or promote these.
10910    return;
10911  case ISD::FP_TO_SINT: {
10912    std::pair<SDValue,SDValue> Vals =
10913        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10914    SDValue FIST = Vals.first, StackSlot = Vals.second;
10915    if (FIST.getNode() != 0) {
10916      EVT VT = N->getValueType(0);
10917      // Return a load from the stack slot.
10918      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10919                                    MachinePointerInfo(),
10920                                    false, false, false, 0));
10921    }
10922    return;
10923  }
10924  case ISD::READCYCLECOUNTER: {
10925    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10926    SDValue TheChain = N->getOperand(0);
10927    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10928    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10929                                     rd.getValue(1));
10930    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10931                                     eax.getValue(2));
10932    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10933    SDValue Ops[] = { eax, edx };
10934    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10935    Results.push_back(edx.getValue(1));
10936    return;
10937  }
10938  case ISD::ATOMIC_CMP_SWAP: {
10939    EVT T = N->getValueType(0);
10940    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10941    bool Regs64bit = T == MVT::i128;
10942    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10943    SDValue cpInL, cpInH;
10944    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10945                        DAG.getConstant(0, HalfT));
10946    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10947                        DAG.getConstant(1, HalfT));
10948    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10949                             Regs64bit ? X86::RAX : X86::EAX,
10950                             cpInL, SDValue());
10951    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10952                             Regs64bit ? X86::RDX : X86::EDX,
10953                             cpInH, cpInL.getValue(1));
10954    SDValue swapInL, swapInH;
10955    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10956                          DAG.getConstant(0, HalfT));
10957    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10958                          DAG.getConstant(1, HalfT));
10959    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10960                               Regs64bit ? X86::RBX : X86::EBX,
10961                               swapInL, cpInH.getValue(1));
10962    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10963                               Regs64bit ? X86::RCX : X86::ECX,
10964                               swapInH, swapInL.getValue(1));
10965    SDValue Ops[] = { swapInH.getValue(0),
10966                      N->getOperand(1),
10967                      swapInH.getValue(1) };
10968    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10969    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10970    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10971                                  X86ISD::LCMPXCHG8_DAG;
10972    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10973                                             Ops, 3, T, MMO);
10974    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10975                                        Regs64bit ? X86::RAX : X86::EAX,
10976                                        HalfT, Result.getValue(1));
10977    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10978                                        Regs64bit ? X86::RDX : X86::EDX,
10979                                        HalfT, cpOutL.getValue(2));
10980    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10981    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10982    Results.push_back(cpOutH.getValue(1));
10983    return;
10984  }
10985  case ISD::ATOMIC_LOAD_ADD:
10986    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10987    return;
10988  case ISD::ATOMIC_LOAD_AND:
10989    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10990    return;
10991  case ISD::ATOMIC_LOAD_NAND:
10992    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10993    return;
10994  case ISD::ATOMIC_LOAD_OR:
10995    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10996    return;
10997  case ISD::ATOMIC_LOAD_SUB:
10998    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10999    return;
11000  case ISD::ATOMIC_LOAD_XOR:
11001    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11002    return;
11003  case ISD::ATOMIC_SWAP:
11004    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11005    return;
11006  case ISD::ATOMIC_LOAD:
11007    ReplaceATOMIC_LOAD(N, Results, DAG);
11008  }
11009}
11010
11011const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11012  switch (Opcode) {
11013  default: return NULL;
11014  case X86ISD::BSF:                return "X86ISD::BSF";
11015  case X86ISD::BSR:                return "X86ISD::BSR";
11016  case X86ISD::SHLD:               return "X86ISD::SHLD";
11017  case X86ISD::SHRD:               return "X86ISD::SHRD";
11018  case X86ISD::FAND:               return "X86ISD::FAND";
11019  case X86ISD::FOR:                return "X86ISD::FOR";
11020  case X86ISD::FXOR:               return "X86ISD::FXOR";
11021  case X86ISD::FSRL:               return "X86ISD::FSRL";
11022  case X86ISD::FILD:               return "X86ISD::FILD";
11023  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11024  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11025  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11026  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11027  case X86ISD::FLD:                return "X86ISD::FLD";
11028  case X86ISD::FST:                return "X86ISD::FST";
11029  case X86ISD::CALL:               return "X86ISD::CALL";
11030  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11031  case X86ISD::BT:                 return "X86ISD::BT";
11032  case X86ISD::CMP:                return "X86ISD::CMP";
11033  case X86ISD::COMI:               return "X86ISD::COMI";
11034  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11035  case X86ISD::SETCC:              return "X86ISD::SETCC";
11036  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11037  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11038  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11039  case X86ISD::CMOV:               return "X86ISD::CMOV";
11040  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11041  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11042  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11043  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11044  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11045  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11046  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11047  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11048  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11049  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11050  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11051  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11052  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11053  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11054  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11055  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11056  case X86ISD::HADD:               return "X86ISD::HADD";
11057  case X86ISD::HSUB:               return "X86ISD::HSUB";
11058  case X86ISD::FHADD:              return "X86ISD::FHADD";
11059  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11060  case X86ISD::FMAX:               return "X86ISD::FMAX";
11061  case X86ISD::FMIN:               return "X86ISD::FMIN";
11062  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11063  case X86ISD::FRCP:               return "X86ISD::FRCP";
11064  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11065  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11066  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11067  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11068  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11069  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11070  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11071  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11072  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11073  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11074  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11075  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11076  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11077  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11078  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11079  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11080  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11081  case X86ISD::VSHL:               return "X86ISD::VSHL";
11082  case X86ISD::VSRL:               return "X86ISD::VSRL";
11083  case X86ISD::VSRA:               return "X86ISD::VSRA";
11084  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11085  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11086  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11087  case X86ISD::CMPP:               return "X86ISD::CMPP";
11088  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11089  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11090  case X86ISD::ADD:                return "X86ISD::ADD";
11091  case X86ISD::SUB:                return "X86ISD::SUB";
11092  case X86ISD::ADC:                return "X86ISD::ADC";
11093  case X86ISD::SBB:                return "X86ISD::SBB";
11094  case X86ISD::SMUL:               return "X86ISD::SMUL";
11095  case X86ISD::UMUL:               return "X86ISD::UMUL";
11096  case X86ISD::INC:                return "X86ISD::INC";
11097  case X86ISD::DEC:                return "X86ISD::DEC";
11098  case X86ISD::OR:                 return "X86ISD::OR";
11099  case X86ISD::XOR:                return "X86ISD::XOR";
11100  case X86ISD::AND:                return "X86ISD::AND";
11101  case X86ISD::ANDN:               return "X86ISD::ANDN";
11102  case X86ISD::BLSI:               return "X86ISD::BLSI";
11103  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11104  case X86ISD::BLSR:               return "X86ISD::BLSR";
11105  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11106  case X86ISD::PTEST:              return "X86ISD::PTEST";
11107  case X86ISD::TESTP:              return "X86ISD::TESTP";
11108  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11109  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11110  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11111  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11112  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11113  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11114  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11115  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11116  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11117  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11118  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11119  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11120  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11121  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11122  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11123  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11124  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11125  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11126  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11127  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11128  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11129  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11130  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11131  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11132  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11133  }
11134}
11135
11136// isLegalAddressingMode - Return true if the addressing mode represented
11137// by AM is legal for this target, for a load/store of the specified type.
11138bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11139                                              Type *Ty) const {
11140  // X86 supports extremely general addressing modes.
11141  CodeModel::Model M = getTargetMachine().getCodeModel();
11142  Reloc::Model R = getTargetMachine().getRelocationModel();
11143
11144  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11145  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11146    return false;
11147
11148  if (AM.BaseGV) {
11149    unsigned GVFlags =
11150      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11151
11152    // If a reference to this global requires an extra load, we can't fold it.
11153    if (isGlobalStubReference(GVFlags))
11154      return false;
11155
11156    // If BaseGV requires a register for the PIC base, we cannot also have a
11157    // BaseReg specified.
11158    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11159      return false;
11160
11161    // If lower 4G is not available, then we must use rip-relative addressing.
11162    if ((M != CodeModel::Small || R != Reloc::Static) &&
11163        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11164      return false;
11165  }
11166
11167  switch (AM.Scale) {
11168  case 0:
11169  case 1:
11170  case 2:
11171  case 4:
11172  case 8:
11173    // These scales always work.
11174    break;
11175  case 3:
11176  case 5:
11177  case 9:
11178    // These scales are formed with basereg+scalereg.  Only accept if there is
11179    // no basereg yet.
11180    if (AM.HasBaseReg)
11181      return false;
11182    break;
11183  default:  // Other stuff never works.
11184    return false;
11185  }
11186
11187  return true;
11188}
11189
11190
11191bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11192  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11193    return false;
11194  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11195  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11196  if (NumBits1 <= NumBits2)
11197    return false;
11198  return true;
11199}
11200
11201bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11202  if (!VT1.isInteger() || !VT2.isInteger())
11203    return false;
11204  unsigned NumBits1 = VT1.getSizeInBits();
11205  unsigned NumBits2 = VT2.getSizeInBits();
11206  if (NumBits1 <= NumBits2)
11207    return false;
11208  return true;
11209}
11210
11211bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11212  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11213  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11214}
11215
11216bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11217  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11218  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11219}
11220
11221bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11222  // i16 instructions are longer (0x66 prefix) and potentially slower.
11223  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11224}
11225
11226/// isShuffleMaskLegal - Targets can use this to indicate that they only
11227/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11228/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11229/// are assumed to be legal.
11230bool
11231X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11232                                      EVT VT) const {
11233  // Very little shuffling can be done for 64-bit vectors right now.
11234  if (VT.getSizeInBits() == 64)
11235    return false;
11236
11237  // FIXME: pshufb, blends, shifts.
11238  return (VT.getVectorNumElements() == 2 ||
11239          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11240          isMOVLMask(M, VT) ||
11241          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11242          isPSHUFDMask(M, VT) ||
11243          isPSHUFHWMask(M, VT) ||
11244          isPSHUFLWMask(M, VT) ||
11245          isPALIGNRMask(M, VT, Subtarget) ||
11246          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11247          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11248          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11249          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11250}
11251
11252bool
11253X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11254                                          EVT VT) const {
11255  unsigned NumElts = VT.getVectorNumElements();
11256  // FIXME: This collection of masks seems suspect.
11257  if (NumElts == 2)
11258    return true;
11259  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11260    return (isMOVLMask(Mask, VT)  ||
11261            isCommutedMOVLMask(Mask, VT, true) ||
11262            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11263            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11264  }
11265  return false;
11266}
11267
11268//===----------------------------------------------------------------------===//
11269//                           X86 Scheduler Hooks
11270//===----------------------------------------------------------------------===//
11271
11272// private utility function
11273MachineBasicBlock *
11274X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11275                                                       MachineBasicBlock *MBB,
11276                                                       unsigned regOpc,
11277                                                       unsigned immOpc,
11278                                                       unsigned LoadOpc,
11279                                                       unsigned CXchgOpc,
11280                                                       unsigned notOpc,
11281                                                       unsigned EAXreg,
11282                                                       TargetRegisterClass *RC,
11283                                                       bool invSrc) const {
11284  // For the atomic bitwise operator, we generate
11285  //   thisMBB:
11286  //   newMBB:
11287  //     ld  t1 = [bitinstr.addr]
11288  //     op  t2 = t1, [bitinstr.val]
11289  //     mov EAX = t1
11290  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11291  //     bz  newMBB
11292  //     fallthrough -->nextMBB
11293  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11294  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11295  MachineFunction::iterator MBBIter = MBB;
11296  ++MBBIter;
11297
11298  /// First build the CFG
11299  MachineFunction *F = MBB->getParent();
11300  MachineBasicBlock *thisMBB = MBB;
11301  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11302  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11303  F->insert(MBBIter, newMBB);
11304  F->insert(MBBIter, nextMBB);
11305
11306  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11307  nextMBB->splice(nextMBB->begin(), thisMBB,
11308                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11309                  thisMBB->end());
11310  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11311
11312  // Update thisMBB to fall through to newMBB
11313  thisMBB->addSuccessor(newMBB);
11314
11315  // newMBB jumps to itself and fall through to nextMBB
11316  newMBB->addSuccessor(nextMBB);
11317  newMBB->addSuccessor(newMBB);
11318
11319  // Insert instructions into newMBB based on incoming instruction
11320  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11321         "unexpected number of operands");
11322  DebugLoc dl = bInstr->getDebugLoc();
11323  MachineOperand& destOper = bInstr->getOperand(0);
11324  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11325  int numArgs = bInstr->getNumOperands() - 1;
11326  for (int i=0; i < numArgs; ++i)
11327    argOpers[i] = &bInstr->getOperand(i+1);
11328
11329  // x86 address has 4 operands: base, index, scale, and displacement
11330  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11331  int valArgIndx = lastAddrIndx + 1;
11332
11333  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11334  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11335  for (int i=0; i <= lastAddrIndx; ++i)
11336    (*MIB).addOperand(*argOpers[i]);
11337
11338  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11339  if (invSrc) {
11340    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11341  }
11342  else
11343    tt = t1;
11344
11345  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11346  assert((argOpers[valArgIndx]->isReg() ||
11347          argOpers[valArgIndx]->isImm()) &&
11348         "invalid operand");
11349  if (argOpers[valArgIndx]->isReg())
11350    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11351  else
11352    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11353  MIB.addReg(tt);
11354  (*MIB).addOperand(*argOpers[valArgIndx]);
11355
11356  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11357  MIB.addReg(t1);
11358
11359  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11360  for (int i=0; i <= lastAddrIndx; ++i)
11361    (*MIB).addOperand(*argOpers[i]);
11362  MIB.addReg(t2);
11363  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11364  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11365                    bInstr->memoperands_end());
11366
11367  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11368  MIB.addReg(EAXreg);
11369
11370  // insert branch
11371  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11372
11373  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11374  return nextMBB;
11375}
11376
11377// private utility function:  64 bit atomics on 32 bit host.
11378MachineBasicBlock *
11379X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11380                                                       MachineBasicBlock *MBB,
11381                                                       unsigned regOpcL,
11382                                                       unsigned regOpcH,
11383                                                       unsigned immOpcL,
11384                                                       unsigned immOpcH,
11385                                                       bool invSrc) const {
11386  // For the atomic bitwise operator, we generate
11387  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11388  //     ld t1,t2 = [bitinstr.addr]
11389  //   newMBB:
11390  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11391  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11392  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11393  //     mov ECX, EBX <- t5, t6
11394  //     mov EAX, EDX <- t1, t2
11395  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11396  //     mov t3, t4 <- EAX, EDX
11397  //     bz  newMBB
11398  //     result in out1, out2
11399  //     fallthrough -->nextMBB
11400
11401  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11402  const unsigned LoadOpc = X86::MOV32rm;
11403  const unsigned NotOpc = X86::NOT32r;
11404  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11405  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11406  MachineFunction::iterator MBBIter = MBB;
11407  ++MBBIter;
11408
11409  /// First build the CFG
11410  MachineFunction *F = MBB->getParent();
11411  MachineBasicBlock *thisMBB = MBB;
11412  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11413  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11414  F->insert(MBBIter, newMBB);
11415  F->insert(MBBIter, nextMBB);
11416
11417  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11418  nextMBB->splice(nextMBB->begin(), thisMBB,
11419                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11420                  thisMBB->end());
11421  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11422
11423  // Update thisMBB to fall through to newMBB
11424  thisMBB->addSuccessor(newMBB);
11425
11426  // newMBB jumps to itself and fall through to nextMBB
11427  newMBB->addSuccessor(nextMBB);
11428  newMBB->addSuccessor(newMBB);
11429
11430  DebugLoc dl = bInstr->getDebugLoc();
11431  // Insert instructions into newMBB based on incoming instruction
11432  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11433  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11434         "unexpected number of operands");
11435  MachineOperand& dest1Oper = bInstr->getOperand(0);
11436  MachineOperand& dest2Oper = bInstr->getOperand(1);
11437  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11438  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11439    argOpers[i] = &bInstr->getOperand(i+2);
11440
11441    // We use some of the operands multiple times, so conservatively just
11442    // clear any kill flags that might be present.
11443    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11444      argOpers[i]->setIsKill(false);
11445  }
11446
11447  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11448  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11449
11450  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11451  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11452  for (int i=0; i <= lastAddrIndx; ++i)
11453    (*MIB).addOperand(*argOpers[i]);
11454  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11455  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11456  // add 4 to displacement.
11457  for (int i=0; i <= lastAddrIndx-2; ++i)
11458    (*MIB).addOperand(*argOpers[i]);
11459  MachineOperand newOp3 = *(argOpers[3]);
11460  if (newOp3.isImm())
11461    newOp3.setImm(newOp3.getImm()+4);
11462  else
11463    newOp3.setOffset(newOp3.getOffset()+4);
11464  (*MIB).addOperand(newOp3);
11465  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11466
11467  // t3/4 are defined later, at the bottom of the loop
11468  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11469  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11470  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11471    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11472  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11473    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11474
11475  // The subsequent operations should be using the destination registers of
11476  //the PHI instructions.
11477  if (invSrc) {
11478    t1 = F->getRegInfo().createVirtualRegister(RC);
11479    t2 = F->getRegInfo().createVirtualRegister(RC);
11480    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11481    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11482  } else {
11483    t1 = dest1Oper.getReg();
11484    t2 = dest2Oper.getReg();
11485  }
11486
11487  int valArgIndx = lastAddrIndx + 1;
11488  assert((argOpers[valArgIndx]->isReg() ||
11489          argOpers[valArgIndx]->isImm()) &&
11490         "invalid operand");
11491  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11492  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11493  if (argOpers[valArgIndx]->isReg())
11494    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11495  else
11496    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11497  if (regOpcL != X86::MOV32rr)
11498    MIB.addReg(t1);
11499  (*MIB).addOperand(*argOpers[valArgIndx]);
11500  assert(argOpers[valArgIndx + 1]->isReg() ==
11501         argOpers[valArgIndx]->isReg());
11502  assert(argOpers[valArgIndx + 1]->isImm() ==
11503         argOpers[valArgIndx]->isImm());
11504  if (argOpers[valArgIndx + 1]->isReg())
11505    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11506  else
11507    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11508  if (regOpcH != X86::MOV32rr)
11509    MIB.addReg(t2);
11510  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11511
11512  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11513  MIB.addReg(t1);
11514  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11515  MIB.addReg(t2);
11516
11517  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11518  MIB.addReg(t5);
11519  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11520  MIB.addReg(t6);
11521
11522  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11523  for (int i=0; i <= lastAddrIndx; ++i)
11524    (*MIB).addOperand(*argOpers[i]);
11525
11526  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11527  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11528                    bInstr->memoperands_end());
11529
11530  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11531  MIB.addReg(X86::EAX);
11532  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11533  MIB.addReg(X86::EDX);
11534
11535  // insert branch
11536  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11537
11538  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11539  return nextMBB;
11540}
11541
11542// private utility function
11543MachineBasicBlock *
11544X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11545                                                      MachineBasicBlock *MBB,
11546                                                      unsigned cmovOpc) const {
11547  // For the atomic min/max operator, we generate
11548  //   thisMBB:
11549  //   newMBB:
11550  //     ld t1 = [min/max.addr]
11551  //     mov t2 = [min/max.val]
11552  //     cmp  t1, t2
11553  //     cmov[cond] t2 = t1
11554  //     mov EAX = t1
11555  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11556  //     bz   newMBB
11557  //     fallthrough -->nextMBB
11558  //
11559  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11560  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11561  MachineFunction::iterator MBBIter = MBB;
11562  ++MBBIter;
11563
11564  /// First build the CFG
11565  MachineFunction *F = MBB->getParent();
11566  MachineBasicBlock *thisMBB = MBB;
11567  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11568  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11569  F->insert(MBBIter, newMBB);
11570  F->insert(MBBIter, nextMBB);
11571
11572  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11573  nextMBB->splice(nextMBB->begin(), thisMBB,
11574                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11575                  thisMBB->end());
11576  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11577
11578  // Update thisMBB to fall through to newMBB
11579  thisMBB->addSuccessor(newMBB);
11580
11581  // newMBB jumps to newMBB and fall through to nextMBB
11582  newMBB->addSuccessor(nextMBB);
11583  newMBB->addSuccessor(newMBB);
11584
11585  DebugLoc dl = mInstr->getDebugLoc();
11586  // Insert instructions into newMBB based on incoming instruction
11587  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11588         "unexpected number of operands");
11589  MachineOperand& destOper = mInstr->getOperand(0);
11590  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11591  int numArgs = mInstr->getNumOperands() - 1;
11592  for (int i=0; i < numArgs; ++i)
11593    argOpers[i] = &mInstr->getOperand(i+1);
11594
11595  // x86 address has 4 operands: base, index, scale, and displacement
11596  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11597  int valArgIndx = lastAddrIndx + 1;
11598
11599  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11600  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11601  for (int i=0; i <= lastAddrIndx; ++i)
11602    (*MIB).addOperand(*argOpers[i]);
11603
11604  // We only support register and immediate values
11605  assert((argOpers[valArgIndx]->isReg() ||
11606          argOpers[valArgIndx]->isImm()) &&
11607         "invalid operand");
11608
11609  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11610  if (argOpers[valArgIndx]->isReg())
11611    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11612  else
11613    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11614  (*MIB).addOperand(*argOpers[valArgIndx]);
11615
11616  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11617  MIB.addReg(t1);
11618
11619  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11620  MIB.addReg(t1);
11621  MIB.addReg(t2);
11622
11623  // Generate movc
11624  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11625  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11626  MIB.addReg(t2);
11627  MIB.addReg(t1);
11628
11629  // Cmp and exchange if none has modified the memory location
11630  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11631  for (int i=0; i <= lastAddrIndx; ++i)
11632    (*MIB).addOperand(*argOpers[i]);
11633  MIB.addReg(t3);
11634  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11635  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11636                    mInstr->memoperands_end());
11637
11638  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11639  MIB.addReg(X86::EAX);
11640
11641  // insert branch
11642  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11643
11644  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11645  return nextMBB;
11646}
11647
11648// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11649// or XMM0_V32I8 in AVX all of this code can be replaced with that
11650// in the .td file.
11651MachineBasicBlock *
11652X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11653                            unsigned numArgs, bool memArg) const {
11654  assert(Subtarget->hasSSE42() &&
11655         "Target must have SSE4.2 or AVX features enabled");
11656
11657  DebugLoc dl = MI->getDebugLoc();
11658  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11659  unsigned Opc;
11660  if (!Subtarget->hasAVX()) {
11661    if (memArg)
11662      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11663    else
11664      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11665  } else {
11666    if (memArg)
11667      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11668    else
11669      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11670  }
11671
11672  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11673  for (unsigned i = 0; i < numArgs; ++i) {
11674    MachineOperand &Op = MI->getOperand(i+1);
11675    if (!(Op.isReg() && Op.isImplicit()))
11676      MIB.addOperand(Op);
11677  }
11678  BuildMI(*BB, MI, dl,
11679    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11680             MI->getOperand(0).getReg())
11681    .addReg(X86::XMM0);
11682
11683  MI->eraseFromParent();
11684  return BB;
11685}
11686
11687MachineBasicBlock *
11688X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11689  DebugLoc dl = MI->getDebugLoc();
11690  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11691
11692  // Address into RAX/EAX, other two args into ECX, EDX.
11693  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11694  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11695  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11696  for (int i = 0; i < X86::AddrNumOperands; ++i)
11697    MIB.addOperand(MI->getOperand(i));
11698
11699  unsigned ValOps = X86::AddrNumOperands;
11700  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11701    .addReg(MI->getOperand(ValOps).getReg());
11702  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11703    .addReg(MI->getOperand(ValOps+1).getReg());
11704
11705  // The instruction doesn't actually take any operands though.
11706  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11707
11708  MI->eraseFromParent(); // The pseudo is gone now.
11709  return BB;
11710}
11711
11712MachineBasicBlock *
11713X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11714  DebugLoc dl = MI->getDebugLoc();
11715  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11716
11717  // First arg in ECX, the second in EAX.
11718  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11719    .addReg(MI->getOperand(0).getReg());
11720  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11721    .addReg(MI->getOperand(1).getReg());
11722
11723  // The instruction doesn't actually take any operands though.
11724  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11725
11726  MI->eraseFromParent(); // The pseudo is gone now.
11727  return BB;
11728}
11729
11730MachineBasicBlock *
11731X86TargetLowering::EmitVAARG64WithCustomInserter(
11732                   MachineInstr *MI,
11733                   MachineBasicBlock *MBB) const {
11734  // Emit va_arg instruction on X86-64.
11735
11736  // Operands to this pseudo-instruction:
11737  // 0  ) Output        : destination address (reg)
11738  // 1-5) Input         : va_list address (addr, i64mem)
11739  // 6  ) ArgSize       : Size (in bytes) of vararg type
11740  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11741  // 8  ) Align         : Alignment of type
11742  // 9  ) EFLAGS (implicit-def)
11743
11744  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11745  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11746
11747  unsigned DestReg = MI->getOperand(0).getReg();
11748  MachineOperand &Base = MI->getOperand(1);
11749  MachineOperand &Scale = MI->getOperand(2);
11750  MachineOperand &Index = MI->getOperand(3);
11751  MachineOperand &Disp = MI->getOperand(4);
11752  MachineOperand &Segment = MI->getOperand(5);
11753  unsigned ArgSize = MI->getOperand(6).getImm();
11754  unsigned ArgMode = MI->getOperand(7).getImm();
11755  unsigned Align = MI->getOperand(8).getImm();
11756
11757  // Memory Reference
11758  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11759  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11760  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11761
11762  // Machine Information
11763  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11764  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11765  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11766  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11767  DebugLoc DL = MI->getDebugLoc();
11768
11769  // struct va_list {
11770  //   i32   gp_offset
11771  //   i32   fp_offset
11772  //   i64   overflow_area (address)
11773  //   i64   reg_save_area (address)
11774  // }
11775  // sizeof(va_list) = 24
11776  // alignment(va_list) = 8
11777
11778  unsigned TotalNumIntRegs = 6;
11779  unsigned TotalNumXMMRegs = 8;
11780  bool UseGPOffset = (ArgMode == 1);
11781  bool UseFPOffset = (ArgMode == 2);
11782  unsigned MaxOffset = TotalNumIntRegs * 8 +
11783                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11784
11785  /* Align ArgSize to a multiple of 8 */
11786  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11787  bool NeedsAlign = (Align > 8);
11788
11789  MachineBasicBlock *thisMBB = MBB;
11790  MachineBasicBlock *overflowMBB;
11791  MachineBasicBlock *offsetMBB;
11792  MachineBasicBlock *endMBB;
11793
11794  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11795  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11796  unsigned OffsetReg = 0;
11797
11798  if (!UseGPOffset && !UseFPOffset) {
11799    // If we only pull from the overflow region, we don't create a branch.
11800    // We don't need to alter control flow.
11801    OffsetDestReg = 0; // unused
11802    OverflowDestReg = DestReg;
11803
11804    offsetMBB = NULL;
11805    overflowMBB = thisMBB;
11806    endMBB = thisMBB;
11807  } else {
11808    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11809    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11810    // If not, pull from overflow_area. (branch to overflowMBB)
11811    //
11812    //       thisMBB
11813    //         |     .
11814    //         |        .
11815    //     offsetMBB   overflowMBB
11816    //         |        .
11817    //         |     .
11818    //        endMBB
11819
11820    // Registers for the PHI in endMBB
11821    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11822    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11823
11824    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11825    MachineFunction *MF = MBB->getParent();
11826    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11827    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11828    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11829
11830    MachineFunction::iterator MBBIter = MBB;
11831    ++MBBIter;
11832
11833    // Insert the new basic blocks
11834    MF->insert(MBBIter, offsetMBB);
11835    MF->insert(MBBIter, overflowMBB);
11836    MF->insert(MBBIter, endMBB);
11837
11838    // Transfer the remainder of MBB and its successor edges to endMBB.
11839    endMBB->splice(endMBB->begin(), thisMBB,
11840                    llvm::next(MachineBasicBlock::iterator(MI)),
11841                    thisMBB->end());
11842    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11843
11844    // Make offsetMBB and overflowMBB successors of thisMBB
11845    thisMBB->addSuccessor(offsetMBB);
11846    thisMBB->addSuccessor(overflowMBB);
11847
11848    // endMBB is a successor of both offsetMBB and overflowMBB
11849    offsetMBB->addSuccessor(endMBB);
11850    overflowMBB->addSuccessor(endMBB);
11851
11852    // Load the offset value into a register
11853    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11854    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11855      .addOperand(Base)
11856      .addOperand(Scale)
11857      .addOperand(Index)
11858      .addDisp(Disp, UseFPOffset ? 4 : 0)
11859      .addOperand(Segment)
11860      .setMemRefs(MMOBegin, MMOEnd);
11861
11862    // Check if there is enough room left to pull this argument.
11863    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11864      .addReg(OffsetReg)
11865      .addImm(MaxOffset + 8 - ArgSizeA8);
11866
11867    // Branch to "overflowMBB" if offset >= max
11868    // Fall through to "offsetMBB" otherwise
11869    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11870      .addMBB(overflowMBB);
11871  }
11872
11873  // In offsetMBB, emit code to use the reg_save_area.
11874  if (offsetMBB) {
11875    assert(OffsetReg != 0);
11876
11877    // Read the reg_save_area address.
11878    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11879    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11880      .addOperand(Base)
11881      .addOperand(Scale)
11882      .addOperand(Index)
11883      .addDisp(Disp, 16)
11884      .addOperand(Segment)
11885      .setMemRefs(MMOBegin, MMOEnd);
11886
11887    // Zero-extend the offset
11888    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11889      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11890        .addImm(0)
11891        .addReg(OffsetReg)
11892        .addImm(X86::sub_32bit);
11893
11894    // Add the offset to the reg_save_area to get the final address.
11895    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11896      .addReg(OffsetReg64)
11897      .addReg(RegSaveReg);
11898
11899    // Compute the offset for the next argument
11900    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11901    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11902      .addReg(OffsetReg)
11903      .addImm(UseFPOffset ? 16 : 8);
11904
11905    // Store it back into the va_list.
11906    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11907      .addOperand(Base)
11908      .addOperand(Scale)
11909      .addOperand(Index)
11910      .addDisp(Disp, UseFPOffset ? 4 : 0)
11911      .addOperand(Segment)
11912      .addReg(NextOffsetReg)
11913      .setMemRefs(MMOBegin, MMOEnd);
11914
11915    // Jump to endMBB
11916    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11917      .addMBB(endMBB);
11918  }
11919
11920  //
11921  // Emit code to use overflow area
11922  //
11923
11924  // Load the overflow_area address into a register.
11925  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11926  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11927    .addOperand(Base)
11928    .addOperand(Scale)
11929    .addOperand(Index)
11930    .addDisp(Disp, 8)
11931    .addOperand(Segment)
11932    .setMemRefs(MMOBegin, MMOEnd);
11933
11934  // If we need to align it, do so. Otherwise, just copy the address
11935  // to OverflowDestReg.
11936  if (NeedsAlign) {
11937    // Align the overflow address
11938    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11939    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11940
11941    // aligned_addr = (addr + (align-1)) & ~(align-1)
11942    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11943      .addReg(OverflowAddrReg)
11944      .addImm(Align-1);
11945
11946    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11947      .addReg(TmpReg)
11948      .addImm(~(uint64_t)(Align-1));
11949  } else {
11950    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11951      .addReg(OverflowAddrReg);
11952  }
11953
11954  // Compute the next overflow address after this argument.
11955  // (the overflow address should be kept 8-byte aligned)
11956  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11957  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11958    .addReg(OverflowDestReg)
11959    .addImm(ArgSizeA8);
11960
11961  // Store the new overflow address.
11962  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11963    .addOperand(Base)
11964    .addOperand(Scale)
11965    .addOperand(Index)
11966    .addDisp(Disp, 8)
11967    .addOperand(Segment)
11968    .addReg(NextAddrReg)
11969    .setMemRefs(MMOBegin, MMOEnd);
11970
11971  // If we branched, emit the PHI to the front of endMBB.
11972  if (offsetMBB) {
11973    BuildMI(*endMBB, endMBB->begin(), DL,
11974            TII->get(X86::PHI), DestReg)
11975      .addReg(OffsetDestReg).addMBB(offsetMBB)
11976      .addReg(OverflowDestReg).addMBB(overflowMBB);
11977  }
11978
11979  // Erase the pseudo instruction
11980  MI->eraseFromParent();
11981
11982  return endMBB;
11983}
11984
11985MachineBasicBlock *
11986X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11987                                                 MachineInstr *MI,
11988                                                 MachineBasicBlock *MBB) const {
11989  // Emit code to save XMM registers to the stack. The ABI says that the
11990  // number of registers to save is given in %al, so it's theoretically
11991  // possible to do an indirect jump trick to avoid saving all of them,
11992  // however this code takes a simpler approach and just executes all
11993  // of the stores if %al is non-zero. It's less code, and it's probably
11994  // easier on the hardware branch predictor, and stores aren't all that
11995  // expensive anyway.
11996
11997  // Create the new basic blocks. One block contains all the XMM stores,
11998  // and one block is the final destination regardless of whether any
11999  // stores were performed.
12000  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12001  MachineFunction *F = MBB->getParent();
12002  MachineFunction::iterator MBBIter = MBB;
12003  ++MBBIter;
12004  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12005  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12006  F->insert(MBBIter, XMMSaveMBB);
12007  F->insert(MBBIter, EndMBB);
12008
12009  // Transfer the remainder of MBB and its successor edges to EndMBB.
12010  EndMBB->splice(EndMBB->begin(), MBB,
12011                 llvm::next(MachineBasicBlock::iterator(MI)),
12012                 MBB->end());
12013  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12014
12015  // The original block will now fall through to the XMM save block.
12016  MBB->addSuccessor(XMMSaveMBB);
12017  // The XMMSaveMBB will fall through to the end block.
12018  XMMSaveMBB->addSuccessor(EndMBB);
12019
12020  // Now add the instructions.
12021  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12022  DebugLoc DL = MI->getDebugLoc();
12023
12024  unsigned CountReg = MI->getOperand(0).getReg();
12025  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12026  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12027
12028  if (!Subtarget->isTargetWin64()) {
12029    // If %al is 0, branch around the XMM save block.
12030    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12031    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12032    MBB->addSuccessor(EndMBB);
12033  }
12034
12035  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12036  // In the XMM save block, save all the XMM argument registers.
12037  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12038    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12039    MachineMemOperand *MMO =
12040      F->getMachineMemOperand(
12041          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12042        MachineMemOperand::MOStore,
12043        /*Size=*/16, /*Align=*/16);
12044    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12045      .addFrameIndex(RegSaveFrameIndex)
12046      .addImm(/*Scale=*/1)
12047      .addReg(/*IndexReg=*/0)
12048      .addImm(/*Disp=*/Offset)
12049      .addReg(/*Segment=*/0)
12050      .addReg(MI->getOperand(i).getReg())
12051      .addMemOperand(MMO);
12052  }
12053
12054  MI->eraseFromParent();   // The pseudo instruction is gone now.
12055
12056  return EndMBB;
12057}
12058
12059MachineBasicBlock *
12060X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12061                                     MachineBasicBlock *BB) const {
12062  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12063  DebugLoc DL = MI->getDebugLoc();
12064
12065  // To "insert" a SELECT_CC instruction, we actually have to insert the
12066  // diamond control-flow pattern.  The incoming instruction knows the
12067  // destination vreg to set, the condition code register to branch on, the
12068  // true/false values to select between, and a branch opcode to use.
12069  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12070  MachineFunction::iterator It = BB;
12071  ++It;
12072
12073  //  thisMBB:
12074  //  ...
12075  //   TrueVal = ...
12076  //   cmpTY ccX, r1, r2
12077  //   bCC copy1MBB
12078  //   fallthrough --> copy0MBB
12079  MachineBasicBlock *thisMBB = BB;
12080  MachineFunction *F = BB->getParent();
12081  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12082  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12083  F->insert(It, copy0MBB);
12084  F->insert(It, sinkMBB);
12085
12086  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12087  // live into the sink and copy blocks.
12088  if (!MI->killsRegister(X86::EFLAGS)) {
12089    copy0MBB->addLiveIn(X86::EFLAGS);
12090    sinkMBB->addLiveIn(X86::EFLAGS);
12091  }
12092
12093  // Transfer the remainder of BB and its successor edges to sinkMBB.
12094  sinkMBB->splice(sinkMBB->begin(), BB,
12095                  llvm::next(MachineBasicBlock::iterator(MI)),
12096                  BB->end());
12097  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12098
12099  // Add the true and fallthrough blocks as its successors.
12100  BB->addSuccessor(copy0MBB);
12101  BB->addSuccessor(sinkMBB);
12102
12103  // Create the conditional branch instruction.
12104  unsigned Opc =
12105    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12106  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12107
12108  //  copy0MBB:
12109  //   %FalseValue = ...
12110  //   # fallthrough to sinkMBB
12111  copy0MBB->addSuccessor(sinkMBB);
12112
12113  //  sinkMBB:
12114  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12115  //  ...
12116  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12117          TII->get(X86::PHI), MI->getOperand(0).getReg())
12118    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12119    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12120
12121  MI->eraseFromParent();   // The pseudo instruction is gone now.
12122  return sinkMBB;
12123}
12124
12125MachineBasicBlock *
12126X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12127                                        bool Is64Bit) const {
12128  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12129  DebugLoc DL = MI->getDebugLoc();
12130  MachineFunction *MF = BB->getParent();
12131  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12132
12133  assert(getTargetMachine().Options.EnableSegmentedStacks);
12134
12135  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12136  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12137
12138  // BB:
12139  //  ... [Till the alloca]
12140  // If stacklet is not large enough, jump to mallocMBB
12141  //
12142  // bumpMBB:
12143  //  Allocate by subtracting from RSP
12144  //  Jump to continueMBB
12145  //
12146  // mallocMBB:
12147  //  Allocate by call to runtime
12148  //
12149  // continueMBB:
12150  //  ...
12151  //  [rest of original BB]
12152  //
12153
12154  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12155  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12156  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12157
12158  MachineRegisterInfo &MRI = MF->getRegInfo();
12159  const TargetRegisterClass *AddrRegClass =
12160    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12161
12162  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12163    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12164    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12165    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12166    sizeVReg = MI->getOperand(1).getReg(),
12167    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12168
12169  MachineFunction::iterator MBBIter = BB;
12170  ++MBBIter;
12171
12172  MF->insert(MBBIter, bumpMBB);
12173  MF->insert(MBBIter, mallocMBB);
12174  MF->insert(MBBIter, continueMBB);
12175
12176  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12177                      (MachineBasicBlock::iterator(MI)), BB->end());
12178  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12179
12180  // Add code to the main basic block to check if the stack limit has been hit,
12181  // and if so, jump to mallocMBB otherwise to bumpMBB.
12182  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12183  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12184    .addReg(tmpSPVReg).addReg(sizeVReg);
12185  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12186    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12187    .addReg(SPLimitVReg);
12188  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12189
12190  // bumpMBB simply decreases the stack pointer, since we know the current
12191  // stacklet has enough space.
12192  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12193    .addReg(SPLimitVReg);
12194  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12195    .addReg(SPLimitVReg);
12196  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12197
12198  // Calls into a routine in libgcc to allocate more space from the heap.
12199  if (Is64Bit) {
12200    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12201      .addReg(sizeVReg);
12202    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12203    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12204  } else {
12205    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12206      .addImm(12);
12207    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12208    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12209      .addExternalSymbol("__morestack_allocate_stack_space");
12210  }
12211
12212  if (!Is64Bit)
12213    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12214      .addImm(16);
12215
12216  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12217    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12218  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12219
12220  // Set up the CFG correctly.
12221  BB->addSuccessor(bumpMBB);
12222  BB->addSuccessor(mallocMBB);
12223  mallocMBB->addSuccessor(continueMBB);
12224  bumpMBB->addSuccessor(continueMBB);
12225
12226  // Take care of the PHI nodes.
12227  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12228          MI->getOperand(0).getReg())
12229    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12230    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12231
12232  // Delete the original pseudo instruction.
12233  MI->eraseFromParent();
12234
12235  // And we're done.
12236  return continueMBB;
12237}
12238
12239MachineBasicBlock *
12240X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12241                                          MachineBasicBlock *BB) const {
12242  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12243  DebugLoc DL = MI->getDebugLoc();
12244
12245  assert(!Subtarget->isTargetEnvMacho());
12246
12247  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12248  // non-trivial part is impdef of ESP.
12249
12250  if (Subtarget->isTargetWin64()) {
12251    if (Subtarget->isTargetCygMing()) {
12252      // ___chkstk(Mingw64):
12253      // Clobbers R10, R11, RAX and EFLAGS.
12254      // Updates RSP.
12255      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12256        .addExternalSymbol("___chkstk")
12257        .addReg(X86::RAX, RegState::Implicit)
12258        .addReg(X86::RSP, RegState::Implicit)
12259        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12260        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12261        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12262    } else {
12263      // __chkstk(MSVCRT): does not update stack pointer.
12264      // Clobbers R10, R11 and EFLAGS.
12265      // FIXME: RAX(allocated size) might be reused and not killed.
12266      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12267        .addExternalSymbol("__chkstk")
12268        .addReg(X86::RAX, RegState::Implicit)
12269        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12270      // RAX has the offset to subtracted from RSP.
12271      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12272        .addReg(X86::RSP)
12273        .addReg(X86::RAX);
12274    }
12275  } else {
12276    const char *StackProbeSymbol =
12277      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12278
12279    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12280      .addExternalSymbol(StackProbeSymbol)
12281      .addReg(X86::EAX, RegState::Implicit)
12282      .addReg(X86::ESP, RegState::Implicit)
12283      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12284      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12285      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12286  }
12287
12288  MI->eraseFromParent();   // The pseudo instruction is gone now.
12289  return BB;
12290}
12291
12292MachineBasicBlock *
12293X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12294                                      MachineBasicBlock *BB) const {
12295  // This is pretty easy.  We're taking the value that we received from
12296  // our load from the relocation, sticking it in either RDI (x86-64)
12297  // or EAX and doing an indirect call.  The return value will then
12298  // be in the normal return register.
12299  const X86InstrInfo *TII
12300    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12301  DebugLoc DL = MI->getDebugLoc();
12302  MachineFunction *F = BB->getParent();
12303
12304  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12305  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12306
12307  if (Subtarget->is64Bit()) {
12308    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12309                                      TII->get(X86::MOV64rm), X86::RDI)
12310    .addReg(X86::RIP)
12311    .addImm(0).addReg(0)
12312    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12313                      MI->getOperand(3).getTargetFlags())
12314    .addReg(0);
12315    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12316    addDirectMem(MIB, X86::RDI);
12317  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12318    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12319                                      TII->get(X86::MOV32rm), X86::EAX)
12320    .addReg(0)
12321    .addImm(0).addReg(0)
12322    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12323                      MI->getOperand(3).getTargetFlags())
12324    .addReg(0);
12325    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12326    addDirectMem(MIB, X86::EAX);
12327  } else {
12328    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12329                                      TII->get(X86::MOV32rm), X86::EAX)
12330    .addReg(TII->getGlobalBaseReg(F))
12331    .addImm(0).addReg(0)
12332    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12333                      MI->getOperand(3).getTargetFlags())
12334    .addReg(0);
12335    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12336    addDirectMem(MIB, X86::EAX);
12337  }
12338
12339  MI->eraseFromParent(); // The pseudo instruction is gone now.
12340  return BB;
12341}
12342
12343MachineBasicBlock *
12344X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12345                                               MachineBasicBlock *BB) const {
12346  switch (MI->getOpcode()) {
12347  default: assert(0 && "Unexpected instr type to insert");
12348  case X86::TAILJMPd64:
12349  case X86::TAILJMPr64:
12350  case X86::TAILJMPm64:
12351    assert(0 && "TAILJMP64 would not be touched here.");
12352  case X86::TCRETURNdi64:
12353  case X86::TCRETURNri64:
12354  case X86::TCRETURNmi64:
12355    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12356    // On AMD64, additional defs should be added before register allocation.
12357    if (!Subtarget->isTargetWin64()) {
12358      MI->addRegisterDefined(X86::RSI);
12359      MI->addRegisterDefined(X86::RDI);
12360      MI->addRegisterDefined(X86::XMM6);
12361      MI->addRegisterDefined(X86::XMM7);
12362      MI->addRegisterDefined(X86::XMM8);
12363      MI->addRegisterDefined(X86::XMM9);
12364      MI->addRegisterDefined(X86::XMM10);
12365      MI->addRegisterDefined(X86::XMM11);
12366      MI->addRegisterDefined(X86::XMM12);
12367      MI->addRegisterDefined(X86::XMM13);
12368      MI->addRegisterDefined(X86::XMM14);
12369      MI->addRegisterDefined(X86::XMM15);
12370    }
12371    return BB;
12372  case X86::WIN_ALLOCA:
12373    return EmitLoweredWinAlloca(MI, BB);
12374  case X86::SEG_ALLOCA_32:
12375    return EmitLoweredSegAlloca(MI, BB, false);
12376  case X86::SEG_ALLOCA_64:
12377    return EmitLoweredSegAlloca(MI, BB, true);
12378  case X86::TLSCall_32:
12379  case X86::TLSCall_64:
12380    return EmitLoweredTLSCall(MI, BB);
12381  case X86::CMOV_GR8:
12382  case X86::CMOV_FR32:
12383  case X86::CMOV_FR64:
12384  case X86::CMOV_V4F32:
12385  case X86::CMOV_V2F64:
12386  case X86::CMOV_V2I64:
12387  case X86::CMOV_V8F32:
12388  case X86::CMOV_V4F64:
12389  case X86::CMOV_V4I64:
12390  case X86::CMOV_GR16:
12391  case X86::CMOV_GR32:
12392  case X86::CMOV_RFP32:
12393  case X86::CMOV_RFP64:
12394  case X86::CMOV_RFP80:
12395    return EmitLoweredSelect(MI, BB);
12396
12397  case X86::FP32_TO_INT16_IN_MEM:
12398  case X86::FP32_TO_INT32_IN_MEM:
12399  case X86::FP32_TO_INT64_IN_MEM:
12400  case X86::FP64_TO_INT16_IN_MEM:
12401  case X86::FP64_TO_INT32_IN_MEM:
12402  case X86::FP64_TO_INT64_IN_MEM:
12403  case X86::FP80_TO_INT16_IN_MEM:
12404  case X86::FP80_TO_INT32_IN_MEM:
12405  case X86::FP80_TO_INT64_IN_MEM: {
12406    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12407    DebugLoc DL = MI->getDebugLoc();
12408
12409    // Change the floating point control register to use "round towards zero"
12410    // mode when truncating to an integer value.
12411    MachineFunction *F = BB->getParent();
12412    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12413    addFrameReference(BuildMI(*BB, MI, DL,
12414                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12415
12416    // Load the old value of the high byte of the control word...
12417    unsigned OldCW =
12418      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12419    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12420                      CWFrameIdx);
12421
12422    // Set the high part to be round to zero...
12423    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12424      .addImm(0xC7F);
12425
12426    // Reload the modified control word now...
12427    addFrameReference(BuildMI(*BB, MI, DL,
12428                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12429
12430    // Restore the memory image of control word to original value
12431    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12432      .addReg(OldCW);
12433
12434    // Get the X86 opcode to use.
12435    unsigned Opc;
12436    switch (MI->getOpcode()) {
12437    default: llvm_unreachable("illegal opcode!");
12438    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12439    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12440    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12441    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12442    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12443    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12444    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12445    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12446    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12447    }
12448
12449    X86AddressMode AM;
12450    MachineOperand &Op = MI->getOperand(0);
12451    if (Op.isReg()) {
12452      AM.BaseType = X86AddressMode::RegBase;
12453      AM.Base.Reg = Op.getReg();
12454    } else {
12455      AM.BaseType = X86AddressMode::FrameIndexBase;
12456      AM.Base.FrameIndex = Op.getIndex();
12457    }
12458    Op = MI->getOperand(1);
12459    if (Op.isImm())
12460      AM.Scale = Op.getImm();
12461    Op = MI->getOperand(2);
12462    if (Op.isImm())
12463      AM.IndexReg = Op.getImm();
12464    Op = MI->getOperand(3);
12465    if (Op.isGlobal()) {
12466      AM.GV = Op.getGlobal();
12467    } else {
12468      AM.Disp = Op.getImm();
12469    }
12470    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12471                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12472
12473    // Reload the original control word now.
12474    addFrameReference(BuildMI(*BB, MI, DL,
12475                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12476
12477    MI->eraseFromParent();   // The pseudo instruction is gone now.
12478    return BB;
12479  }
12480    // String/text processing lowering.
12481  case X86::PCMPISTRM128REG:
12482  case X86::VPCMPISTRM128REG:
12483    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12484  case X86::PCMPISTRM128MEM:
12485  case X86::VPCMPISTRM128MEM:
12486    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12487  case X86::PCMPESTRM128REG:
12488  case X86::VPCMPESTRM128REG:
12489    return EmitPCMP(MI, BB, 5, false /* in mem */);
12490  case X86::PCMPESTRM128MEM:
12491  case X86::VPCMPESTRM128MEM:
12492    return EmitPCMP(MI, BB, 5, true /* in mem */);
12493
12494    // Thread synchronization.
12495  case X86::MONITOR:
12496    return EmitMonitor(MI, BB);
12497  case X86::MWAIT:
12498    return EmitMwait(MI, BB);
12499
12500    // Atomic Lowering.
12501  case X86::ATOMAND32:
12502    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12503                                               X86::AND32ri, X86::MOV32rm,
12504                                               X86::LCMPXCHG32,
12505                                               X86::NOT32r, X86::EAX,
12506                                               X86::GR32RegisterClass);
12507  case X86::ATOMOR32:
12508    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12509                                               X86::OR32ri, X86::MOV32rm,
12510                                               X86::LCMPXCHG32,
12511                                               X86::NOT32r, X86::EAX,
12512                                               X86::GR32RegisterClass);
12513  case X86::ATOMXOR32:
12514    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12515                                               X86::XOR32ri, X86::MOV32rm,
12516                                               X86::LCMPXCHG32,
12517                                               X86::NOT32r, X86::EAX,
12518                                               X86::GR32RegisterClass);
12519  case X86::ATOMNAND32:
12520    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12521                                               X86::AND32ri, X86::MOV32rm,
12522                                               X86::LCMPXCHG32,
12523                                               X86::NOT32r, X86::EAX,
12524                                               X86::GR32RegisterClass, true);
12525  case X86::ATOMMIN32:
12526    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12527  case X86::ATOMMAX32:
12528    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12529  case X86::ATOMUMIN32:
12530    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12531  case X86::ATOMUMAX32:
12532    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12533
12534  case X86::ATOMAND16:
12535    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12536                                               X86::AND16ri, X86::MOV16rm,
12537                                               X86::LCMPXCHG16,
12538                                               X86::NOT16r, X86::AX,
12539                                               X86::GR16RegisterClass);
12540  case X86::ATOMOR16:
12541    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12542                                               X86::OR16ri, X86::MOV16rm,
12543                                               X86::LCMPXCHG16,
12544                                               X86::NOT16r, X86::AX,
12545                                               X86::GR16RegisterClass);
12546  case X86::ATOMXOR16:
12547    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12548                                               X86::XOR16ri, X86::MOV16rm,
12549                                               X86::LCMPXCHG16,
12550                                               X86::NOT16r, X86::AX,
12551                                               X86::GR16RegisterClass);
12552  case X86::ATOMNAND16:
12553    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12554                                               X86::AND16ri, X86::MOV16rm,
12555                                               X86::LCMPXCHG16,
12556                                               X86::NOT16r, X86::AX,
12557                                               X86::GR16RegisterClass, true);
12558  case X86::ATOMMIN16:
12559    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12560  case X86::ATOMMAX16:
12561    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12562  case X86::ATOMUMIN16:
12563    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12564  case X86::ATOMUMAX16:
12565    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12566
12567  case X86::ATOMAND8:
12568    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12569                                               X86::AND8ri, X86::MOV8rm,
12570                                               X86::LCMPXCHG8,
12571                                               X86::NOT8r, X86::AL,
12572                                               X86::GR8RegisterClass);
12573  case X86::ATOMOR8:
12574    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12575                                               X86::OR8ri, X86::MOV8rm,
12576                                               X86::LCMPXCHG8,
12577                                               X86::NOT8r, X86::AL,
12578                                               X86::GR8RegisterClass);
12579  case X86::ATOMXOR8:
12580    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12581                                               X86::XOR8ri, X86::MOV8rm,
12582                                               X86::LCMPXCHG8,
12583                                               X86::NOT8r, X86::AL,
12584                                               X86::GR8RegisterClass);
12585  case X86::ATOMNAND8:
12586    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12587                                               X86::AND8ri, X86::MOV8rm,
12588                                               X86::LCMPXCHG8,
12589                                               X86::NOT8r, X86::AL,
12590                                               X86::GR8RegisterClass, true);
12591  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12592  // This group is for 64-bit host.
12593  case X86::ATOMAND64:
12594    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12595                                               X86::AND64ri32, X86::MOV64rm,
12596                                               X86::LCMPXCHG64,
12597                                               X86::NOT64r, X86::RAX,
12598                                               X86::GR64RegisterClass);
12599  case X86::ATOMOR64:
12600    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12601                                               X86::OR64ri32, X86::MOV64rm,
12602                                               X86::LCMPXCHG64,
12603                                               X86::NOT64r, X86::RAX,
12604                                               X86::GR64RegisterClass);
12605  case X86::ATOMXOR64:
12606    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12607                                               X86::XOR64ri32, X86::MOV64rm,
12608                                               X86::LCMPXCHG64,
12609                                               X86::NOT64r, X86::RAX,
12610                                               X86::GR64RegisterClass);
12611  case X86::ATOMNAND64:
12612    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12613                                               X86::AND64ri32, X86::MOV64rm,
12614                                               X86::LCMPXCHG64,
12615                                               X86::NOT64r, X86::RAX,
12616                                               X86::GR64RegisterClass, true);
12617  case X86::ATOMMIN64:
12618    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12619  case X86::ATOMMAX64:
12620    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12621  case X86::ATOMUMIN64:
12622    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12623  case X86::ATOMUMAX64:
12624    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12625
12626  // This group does 64-bit operations on a 32-bit host.
12627  case X86::ATOMAND6432:
12628    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12629                                               X86::AND32rr, X86::AND32rr,
12630                                               X86::AND32ri, X86::AND32ri,
12631                                               false);
12632  case X86::ATOMOR6432:
12633    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12634                                               X86::OR32rr, X86::OR32rr,
12635                                               X86::OR32ri, X86::OR32ri,
12636                                               false);
12637  case X86::ATOMXOR6432:
12638    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12639                                               X86::XOR32rr, X86::XOR32rr,
12640                                               X86::XOR32ri, X86::XOR32ri,
12641                                               false);
12642  case X86::ATOMNAND6432:
12643    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12644                                               X86::AND32rr, X86::AND32rr,
12645                                               X86::AND32ri, X86::AND32ri,
12646                                               true);
12647  case X86::ATOMADD6432:
12648    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12649                                               X86::ADD32rr, X86::ADC32rr,
12650                                               X86::ADD32ri, X86::ADC32ri,
12651                                               false);
12652  case X86::ATOMSUB6432:
12653    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12654                                               X86::SUB32rr, X86::SBB32rr,
12655                                               X86::SUB32ri, X86::SBB32ri,
12656                                               false);
12657  case X86::ATOMSWAP6432:
12658    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12659                                               X86::MOV32rr, X86::MOV32rr,
12660                                               X86::MOV32ri, X86::MOV32ri,
12661                                               false);
12662  case X86::VASTART_SAVE_XMM_REGS:
12663    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12664
12665  case X86::VAARG_64:
12666    return EmitVAARG64WithCustomInserter(MI, BB);
12667  }
12668}
12669
12670//===----------------------------------------------------------------------===//
12671//                           X86 Optimization Hooks
12672//===----------------------------------------------------------------------===//
12673
12674void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12675                                                       const APInt &Mask,
12676                                                       APInt &KnownZero,
12677                                                       APInt &KnownOne,
12678                                                       const SelectionDAG &DAG,
12679                                                       unsigned Depth) const {
12680  unsigned Opc = Op.getOpcode();
12681  assert((Opc >= ISD::BUILTIN_OP_END ||
12682          Opc == ISD::INTRINSIC_WO_CHAIN ||
12683          Opc == ISD::INTRINSIC_W_CHAIN ||
12684          Opc == ISD::INTRINSIC_VOID) &&
12685         "Should use MaskedValueIsZero if you don't know whether Op"
12686         " is a target node!");
12687
12688  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12689  switch (Opc) {
12690  default: break;
12691  case X86ISD::ADD:
12692  case X86ISD::SUB:
12693  case X86ISD::ADC:
12694  case X86ISD::SBB:
12695  case X86ISD::SMUL:
12696  case X86ISD::UMUL:
12697  case X86ISD::INC:
12698  case X86ISD::DEC:
12699  case X86ISD::OR:
12700  case X86ISD::XOR:
12701  case X86ISD::AND:
12702    // These nodes' second result is a boolean.
12703    if (Op.getResNo() == 0)
12704      break;
12705    // Fallthrough
12706  case X86ISD::SETCC:
12707    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12708                                       Mask.getBitWidth() - 1);
12709    break;
12710  case ISD::INTRINSIC_WO_CHAIN: {
12711    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12712    unsigned NumLoBits = 0;
12713    switch (IntId) {
12714    default: break;
12715    case Intrinsic::x86_sse_movmsk_ps:
12716    case Intrinsic::x86_avx_movmsk_ps_256:
12717    case Intrinsic::x86_sse2_movmsk_pd:
12718    case Intrinsic::x86_avx_movmsk_pd_256:
12719    case Intrinsic::x86_mmx_pmovmskb:
12720    case Intrinsic::x86_sse2_pmovmskb_128:
12721    case Intrinsic::x86_avx2_pmovmskb: {
12722      // High bits of movmskp{s|d}, pmovmskb are known zero.
12723      switch (IntId) {
12724        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12725        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12726        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12727        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12728        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12729        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12730        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12731      }
12732      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12733                                        Mask.getBitWidth() - NumLoBits);
12734      break;
12735    }
12736    }
12737    break;
12738  }
12739  }
12740}
12741
12742unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12743                                                         unsigned Depth) const {
12744  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12745  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12746    return Op.getValueType().getScalarType().getSizeInBits();
12747
12748  // Fallback case.
12749  return 1;
12750}
12751
12752/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12753/// node is a GlobalAddress + offset.
12754bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12755                                       const GlobalValue* &GA,
12756                                       int64_t &Offset) const {
12757  if (N->getOpcode() == X86ISD::Wrapper) {
12758    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12759      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12760      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12761      return true;
12762    }
12763  }
12764  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12765}
12766
12767/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12768/// same as extracting the high 128-bit part of 256-bit vector and then
12769/// inserting the result into the low part of a new 256-bit vector
12770static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12771  EVT VT = SVOp->getValueType(0);
12772  int NumElems = VT.getVectorNumElements();
12773
12774  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12775  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12776    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12777        SVOp->getMaskElt(j) >= 0)
12778      return false;
12779
12780  return true;
12781}
12782
12783/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12784/// same as extracting the low 128-bit part of 256-bit vector and then
12785/// inserting the result into the high part of a new 256-bit vector
12786static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12787  EVT VT = SVOp->getValueType(0);
12788  int NumElems = VT.getVectorNumElements();
12789
12790  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12791  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12792    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12793        SVOp->getMaskElt(j) >= 0)
12794      return false;
12795
12796  return true;
12797}
12798
12799/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12800static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12801                                        TargetLowering::DAGCombinerInfo &DCI,
12802                                        bool HasAVX2) {
12803  DebugLoc dl = N->getDebugLoc();
12804  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12805  SDValue V1 = SVOp->getOperand(0);
12806  SDValue V2 = SVOp->getOperand(1);
12807  EVT VT = SVOp->getValueType(0);
12808  int NumElems = VT.getVectorNumElements();
12809
12810  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12811      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12812    //
12813    //                   0,0,0,...
12814    //                      |
12815    //    V      UNDEF    BUILD_VECTOR    UNDEF
12816    //     \      /           \           /
12817    //  CONCAT_VECTOR         CONCAT_VECTOR
12818    //         \                  /
12819    //          \                /
12820    //          RESULT: V + zero extended
12821    //
12822    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12823        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12824        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12825      return SDValue();
12826
12827    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12828      return SDValue();
12829
12830    // To match the shuffle mask, the first half of the mask should
12831    // be exactly the first vector, and all the rest a splat with the
12832    // first element of the second one.
12833    for (int i = 0; i < NumElems/2; ++i)
12834      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12835          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12836        return SDValue();
12837
12838    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12839    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12840      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12841      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12842      SDValue ResNode =
12843        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12844                                Ld->getMemoryVT(),
12845                                Ld->getPointerInfo(),
12846                                Ld->getAlignment(),
12847                                false/*isVolatile*/, true/*ReadMem*/,
12848                                false/*WriteMem*/);
12849      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12850    }
12851
12852    // Emit a zeroed vector and insert the desired subvector on its
12853    // first half.
12854    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, HasAVX2, DAG, dl);
12855    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12856                         DAG.getConstant(0, MVT::i32), DAG, dl);
12857    return DCI.CombineTo(N, InsV);
12858  }
12859
12860  //===--------------------------------------------------------------------===//
12861  // Combine some shuffles into subvector extracts and inserts:
12862  //
12863
12864  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12865  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12866    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12867                                    DAG, dl);
12868    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12869                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12870    return DCI.CombineTo(N, InsV);
12871  }
12872
12873  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12874  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12875    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12876    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12877                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12878    return DCI.CombineTo(N, InsV);
12879  }
12880
12881  return SDValue();
12882}
12883
12884/// PerformShuffleCombine - Performs several different shuffle combines.
12885static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12886                                     TargetLowering::DAGCombinerInfo &DCI,
12887                                     const X86Subtarget *Subtarget) {
12888  DebugLoc dl = N->getDebugLoc();
12889  EVT VT = N->getValueType(0);
12890
12891  // Don't create instructions with illegal types after legalize types has run.
12892  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12893  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12894    return SDValue();
12895
12896  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12897  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12898      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12899    return PerformShuffleCombine256(N, DAG, DCI, Subtarget->hasAVX2());
12900
12901  // Only handle 128 wide vector from here on.
12902  if (VT.getSizeInBits() != 128)
12903    return SDValue();
12904
12905  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12906  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12907  // consecutive, non-overlapping, and in the right order.
12908  SmallVector<SDValue, 16> Elts;
12909  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12910    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12911
12912  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12913}
12914
12915
12916/// PerformTruncateCombine - Converts truncate operation to
12917/// a sequence of vector shuffle operations.
12918/// It is possible when we truncate 256-bit vector to 128-bit vector
12919
12920SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12921                                                  DAGCombinerInfo &DCI) const {
12922  if (!DCI.isBeforeLegalizeOps())
12923    return SDValue();
12924
12925  if (!Subtarget->hasAVX()) return SDValue();
12926
12927  EVT VT = N->getValueType(0);
12928  SDValue Op = N->getOperand(0);
12929  EVT OpVT = Op.getValueType();
12930  DebugLoc dl = N->getDebugLoc();
12931
12932  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12933
12934    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12935                          DAG.getIntPtrConstant(0));
12936
12937    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12938                          DAG.getIntPtrConstant(2));
12939
12940    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12941    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12942
12943    // PSHUFD
12944    int ShufMask1[] = {0, 2, 0, 0};
12945
12946    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12947                                ShufMask1);
12948    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12949                                ShufMask1);
12950
12951    // MOVLHPS
12952    int ShufMask2[] = {0, 1, 4, 5};
12953
12954    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12955  }
12956  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12957
12958    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12959                          DAG.getIntPtrConstant(0));
12960
12961    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12962                          DAG.getIntPtrConstant(4));
12963
12964    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
12965    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
12966
12967    // PSHUFB
12968    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
12969                      -1, -1, -1, -1, -1, -1, -1, -1};
12970
12971    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
12972                                DAG.getUNDEF(MVT::v16i8),
12973                                ShufMask1);
12974    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
12975                                DAG.getUNDEF(MVT::v16i8),
12976                                ShufMask1);
12977
12978    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12979    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12980
12981    // MOVLHPS
12982    int ShufMask2[] = {0, 1, 4, 5};
12983
12984    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
12985    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
12986  }
12987
12988  return SDValue();
12989}
12990
12991/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12992/// generation and convert it from being a bunch of shuffles and extracts
12993/// to a simple store and scalar loads to extract the elements.
12994static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12995                                                const TargetLowering &TLI) {
12996  SDValue InputVector = N->getOperand(0);
12997
12998  // Only operate on vectors of 4 elements, where the alternative shuffling
12999  // gets to be more expensive.
13000  if (InputVector.getValueType() != MVT::v4i32)
13001    return SDValue();
13002
13003  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13004  // single use which is a sign-extend or zero-extend, and all elements are
13005  // used.
13006  SmallVector<SDNode *, 4> Uses;
13007  unsigned ExtractedElements = 0;
13008  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13009       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13010    if (UI.getUse().getResNo() != InputVector.getResNo())
13011      return SDValue();
13012
13013    SDNode *Extract = *UI;
13014    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13015      return SDValue();
13016
13017    if (Extract->getValueType(0) != MVT::i32)
13018      return SDValue();
13019    if (!Extract->hasOneUse())
13020      return SDValue();
13021    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13022        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13023      return SDValue();
13024    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13025      return SDValue();
13026
13027    // Record which element was extracted.
13028    ExtractedElements |=
13029      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13030
13031    Uses.push_back(Extract);
13032  }
13033
13034  // If not all the elements were used, this may not be worthwhile.
13035  if (ExtractedElements != 15)
13036    return SDValue();
13037
13038  // Ok, we've now decided to do the transformation.
13039  DebugLoc dl = InputVector.getDebugLoc();
13040
13041  // Store the value to a temporary stack slot.
13042  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13043  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13044                            MachinePointerInfo(), false, false, 0);
13045
13046  // Replace each use (extract) with a load of the appropriate element.
13047  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13048       UE = Uses.end(); UI != UE; ++UI) {
13049    SDNode *Extract = *UI;
13050
13051    // cOMpute the element's address.
13052    SDValue Idx = Extract->getOperand(1);
13053    unsigned EltSize =
13054        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13055    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13056    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13057
13058    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13059                                     StackPtr, OffsetVal);
13060
13061    // Load the scalar.
13062    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13063                                     ScalarAddr, MachinePointerInfo(),
13064                                     false, false, false, 0);
13065
13066    // Replace the exact with the load.
13067    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13068  }
13069
13070  // The replacement was made in place; don't return anything.
13071  return SDValue();
13072}
13073
13074/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13075/// nodes.
13076static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13077                                    TargetLowering::DAGCombinerInfo &DCI,
13078                                    const X86Subtarget *Subtarget) {
13079  DebugLoc DL = N->getDebugLoc();
13080  SDValue Cond = N->getOperand(0);
13081  // Get the LHS/RHS of the select.
13082  SDValue LHS = N->getOperand(1);
13083  SDValue RHS = N->getOperand(2);
13084  EVT VT = LHS.getValueType();
13085
13086  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13087  // instructions match the semantics of the common C idiom x<y?x:y but not
13088  // x<=y?x:y, because of how they handle negative zero (which can be
13089  // ignored in unsafe-math mode).
13090  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13091      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13092      (Subtarget->hasSSE2() ||
13093       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13094    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13095
13096    unsigned Opcode = 0;
13097    // Check for x CC y ? x : y.
13098    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13099        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13100      switch (CC) {
13101      default: break;
13102      case ISD::SETULT:
13103        // Converting this to a min would handle NaNs incorrectly, and swapping
13104        // the operands would cause it to handle comparisons between positive
13105        // and negative zero incorrectly.
13106        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13107          if (!DAG.getTarget().Options.UnsafeFPMath &&
13108              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13109            break;
13110          std::swap(LHS, RHS);
13111        }
13112        Opcode = X86ISD::FMIN;
13113        break;
13114      case ISD::SETOLE:
13115        // Converting this to a min would handle comparisons between positive
13116        // and negative zero incorrectly.
13117        if (!DAG.getTarget().Options.UnsafeFPMath &&
13118            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13119          break;
13120        Opcode = X86ISD::FMIN;
13121        break;
13122      case ISD::SETULE:
13123        // Converting this to a min would handle both negative zeros and NaNs
13124        // incorrectly, but we can swap the operands to fix both.
13125        std::swap(LHS, RHS);
13126      case ISD::SETOLT:
13127      case ISD::SETLT:
13128      case ISD::SETLE:
13129        Opcode = X86ISD::FMIN;
13130        break;
13131
13132      case ISD::SETOGE:
13133        // Converting this to a max would handle comparisons between positive
13134        // and negative zero incorrectly.
13135        if (!DAG.getTarget().Options.UnsafeFPMath &&
13136            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13137          break;
13138        Opcode = X86ISD::FMAX;
13139        break;
13140      case ISD::SETUGT:
13141        // Converting this to a max would handle NaNs incorrectly, and swapping
13142        // the operands would cause it to handle comparisons between positive
13143        // and negative zero incorrectly.
13144        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13145          if (!DAG.getTarget().Options.UnsafeFPMath &&
13146              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13147            break;
13148          std::swap(LHS, RHS);
13149        }
13150        Opcode = X86ISD::FMAX;
13151        break;
13152      case ISD::SETUGE:
13153        // Converting this to a max would handle both negative zeros and NaNs
13154        // incorrectly, but we can swap the operands to fix both.
13155        std::swap(LHS, RHS);
13156      case ISD::SETOGT:
13157      case ISD::SETGT:
13158      case ISD::SETGE:
13159        Opcode = X86ISD::FMAX;
13160        break;
13161      }
13162    // Check for x CC y ? y : x -- a min/max with reversed arms.
13163    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13164               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13165      switch (CC) {
13166      default: break;
13167      case ISD::SETOGE:
13168        // Converting this to a min would handle comparisons between positive
13169        // and negative zero incorrectly, and swapping the operands would
13170        // cause it to handle NaNs incorrectly.
13171        if (!DAG.getTarget().Options.UnsafeFPMath &&
13172            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13173          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13174            break;
13175          std::swap(LHS, RHS);
13176        }
13177        Opcode = X86ISD::FMIN;
13178        break;
13179      case ISD::SETUGT:
13180        // Converting this to a min would handle NaNs incorrectly.
13181        if (!DAG.getTarget().Options.UnsafeFPMath &&
13182            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13183          break;
13184        Opcode = X86ISD::FMIN;
13185        break;
13186      case ISD::SETUGE:
13187        // Converting this to a min would handle both negative zeros and NaNs
13188        // incorrectly, but we can swap the operands to fix both.
13189        std::swap(LHS, RHS);
13190      case ISD::SETOGT:
13191      case ISD::SETGT:
13192      case ISD::SETGE:
13193        Opcode = X86ISD::FMIN;
13194        break;
13195
13196      case ISD::SETULT:
13197        // Converting this to a max would handle NaNs incorrectly.
13198        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13199          break;
13200        Opcode = X86ISD::FMAX;
13201        break;
13202      case ISD::SETOLE:
13203        // Converting this to a max would handle comparisons between positive
13204        // and negative zero incorrectly, and swapping the operands would
13205        // cause it to handle NaNs incorrectly.
13206        if (!DAG.getTarget().Options.UnsafeFPMath &&
13207            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13208          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13209            break;
13210          std::swap(LHS, RHS);
13211        }
13212        Opcode = X86ISD::FMAX;
13213        break;
13214      case ISD::SETULE:
13215        // Converting this to a max would handle both negative zeros and NaNs
13216        // incorrectly, but we can swap the operands to fix both.
13217        std::swap(LHS, RHS);
13218      case ISD::SETOLT:
13219      case ISD::SETLT:
13220      case ISD::SETLE:
13221        Opcode = X86ISD::FMAX;
13222        break;
13223      }
13224    }
13225
13226    if (Opcode)
13227      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13228  }
13229
13230  // If this is a select between two integer constants, try to do some
13231  // optimizations.
13232  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13233    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13234      // Don't do this for crazy integer types.
13235      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13236        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13237        // so that TrueC (the true value) is larger than FalseC.
13238        bool NeedsCondInvert = false;
13239
13240        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13241            // Efficiently invertible.
13242            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13243             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13244              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13245          NeedsCondInvert = true;
13246          std::swap(TrueC, FalseC);
13247        }
13248
13249        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13250        if (FalseC->getAPIntValue() == 0 &&
13251            TrueC->getAPIntValue().isPowerOf2()) {
13252          if (NeedsCondInvert) // Invert the condition if needed.
13253            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13254                               DAG.getConstant(1, Cond.getValueType()));
13255
13256          // Zero extend the condition if needed.
13257          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13258
13259          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13260          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13261                             DAG.getConstant(ShAmt, MVT::i8));
13262        }
13263
13264        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13265        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13266          if (NeedsCondInvert) // Invert the condition if needed.
13267            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13268                               DAG.getConstant(1, Cond.getValueType()));
13269
13270          // Zero extend the condition if needed.
13271          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13272                             FalseC->getValueType(0), Cond);
13273          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13274                             SDValue(FalseC, 0));
13275        }
13276
13277        // Optimize cases that will turn into an LEA instruction.  This requires
13278        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13279        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13280          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13281          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13282
13283          bool isFastMultiplier = false;
13284          if (Diff < 10) {
13285            switch ((unsigned char)Diff) {
13286              default: break;
13287              case 1:  // result = add base, cond
13288              case 2:  // result = lea base(    , cond*2)
13289              case 3:  // result = lea base(cond, cond*2)
13290              case 4:  // result = lea base(    , cond*4)
13291              case 5:  // result = lea base(cond, cond*4)
13292              case 8:  // result = lea base(    , cond*8)
13293              case 9:  // result = lea base(cond, cond*8)
13294                isFastMultiplier = true;
13295                break;
13296            }
13297          }
13298
13299          if (isFastMultiplier) {
13300            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13301            if (NeedsCondInvert) // Invert the condition if needed.
13302              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13303                                 DAG.getConstant(1, Cond.getValueType()));
13304
13305            // Zero extend the condition if needed.
13306            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13307                               Cond);
13308            // Scale the condition by the difference.
13309            if (Diff != 1)
13310              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13311                                 DAG.getConstant(Diff, Cond.getValueType()));
13312
13313            // Add the base if non-zero.
13314            if (FalseC->getAPIntValue() != 0)
13315              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13316                                 SDValue(FalseC, 0));
13317            return Cond;
13318          }
13319        }
13320      }
13321  }
13322
13323  // Canonicalize max and min:
13324  // (x > y) ? x : y -> (x >= y) ? x : y
13325  // (x < y) ? x : y -> (x <= y) ? x : y
13326  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13327  // the need for an extra compare
13328  // against zero. e.g.
13329  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13330  // subl   %esi, %edi
13331  // testl  %edi, %edi
13332  // movl   $0, %eax
13333  // cmovgl %edi, %eax
13334  // =>
13335  // xorl   %eax, %eax
13336  // subl   %esi, $edi
13337  // cmovsl %eax, %edi
13338  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13339      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13340      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13341    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13342    switch (CC) {
13343    default: break;
13344    case ISD::SETLT:
13345    case ISD::SETGT: {
13346      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13347      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13348                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13349      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13350    }
13351    }
13352  }
13353
13354  // If we know that this node is legal then we know that it is going to be
13355  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13356  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13357  // to simplify previous instructions.
13358  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13359  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13360      !DCI.isBeforeLegalize() &&
13361      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13362    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13363    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13364    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13365
13366    APInt KnownZero, KnownOne;
13367    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13368                                          DCI.isBeforeLegalizeOps());
13369    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13370        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13371      DCI.CommitTargetLoweringOpt(TLO);
13372  }
13373
13374  return SDValue();
13375}
13376
13377/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13378static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13379                                  TargetLowering::DAGCombinerInfo &DCI) {
13380  DebugLoc DL = N->getDebugLoc();
13381
13382  // If the flag operand isn't dead, don't touch this CMOV.
13383  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13384    return SDValue();
13385
13386  SDValue FalseOp = N->getOperand(0);
13387  SDValue TrueOp = N->getOperand(1);
13388  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13389  SDValue Cond = N->getOperand(3);
13390  if (CC == X86::COND_E || CC == X86::COND_NE) {
13391    switch (Cond.getOpcode()) {
13392    default: break;
13393    case X86ISD::BSR:
13394    case X86ISD::BSF:
13395      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13396      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13397        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13398    }
13399  }
13400
13401  // If this is a select between two integer constants, try to do some
13402  // optimizations.  Note that the operands are ordered the opposite of SELECT
13403  // operands.
13404  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13405    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13406      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13407      // larger than FalseC (the false value).
13408      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13409        CC = X86::GetOppositeBranchCondition(CC);
13410        std::swap(TrueC, FalseC);
13411      }
13412
13413      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13414      // This is efficient for any integer data type (including i8/i16) and
13415      // shift amount.
13416      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13417        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13418                           DAG.getConstant(CC, MVT::i8), Cond);
13419
13420        // Zero extend the condition if needed.
13421        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13422
13423        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13424        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13425                           DAG.getConstant(ShAmt, MVT::i8));
13426        if (N->getNumValues() == 2)  // Dead flag value?
13427          return DCI.CombineTo(N, Cond, SDValue());
13428        return Cond;
13429      }
13430
13431      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13432      // for any integer data type, including i8/i16.
13433      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13434        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13435                           DAG.getConstant(CC, MVT::i8), Cond);
13436
13437        // Zero extend the condition if needed.
13438        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13439                           FalseC->getValueType(0), Cond);
13440        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13441                           SDValue(FalseC, 0));
13442
13443        if (N->getNumValues() == 2)  // Dead flag value?
13444          return DCI.CombineTo(N, Cond, SDValue());
13445        return Cond;
13446      }
13447
13448      // Optimize cases that will turn into an LEA instruction.  This requires
13449      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13450      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13451        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13452        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13453
13454        bool isFastMultiplier = false;
13455        if (Diff < 10) {
13456          switch ((unsigned char)Diff) {
13457          default: break;
13458          case 1:  // result = add base, cond
13459          case 2:  // result = lea base(    , cond*2)
13460          case 3:  // result = lea base(cond, cond*2)
13461          case 4:  // result = lea base(    , cond*4)
13462          case 5:  // result = lea base(cond, cond*4)
13463          case 8:  // result = lea base(    , cond*8)
13464          case 9:  // result = lea base(cond, cond*8)
13465            isFastMultiplier = true;
13466            break;
13467          }
13468        }
13469
13470        if (isFastMultiplier) {
13471          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13472          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13473                             DAG.getConstant(CC, MVT::i8), Cond);
13474          // Zero extend the condition if needed.
13475          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13476                             Cond);
13477          // Scale the condition by the difference.
13478          if (Diff != 1)
13479            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13480                               DAG.getConstant(Diff, Cond.getValueType()));
13481
13482          // Add the base if non-zero.
13483          if (FalseC->getAPIntValue() != 0)
13484            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13485                               SDValue(FalseC, 0));
13486          if (N->getNumValues() == 2)  // Dead flag value?
13487            return DCI.CombineTo(N, Cond, SDValue());
13488          return Cond;
13489        }
13490      }
13491    }
13492  }
13493  return SDValue();
13494}
13495
13496
13497/// PerformMulCombine - Optimize a single multiply with constant into two
13498/// in order to implement it with two cheaper instructions, e.g.
13499/// LEA + SHL, LEA + LEA.
13500static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13501                                 TargetLowering::DAGCombinerInfo &DCI) {
13502  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13503    return SDValue();
13504
13505  EVT VT = N->getValueType(0);
13506  if (VT != MVT::i64)
13507    return SDValue();
13508
13509  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13510  if (!C)
13511    return SDValue();
13512  uint64_t MulAmt = C->getZExtValue();
13513  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13514    return SDValue();
13515
13516  uint64_t MulAmt1 = 0;
13517  uint64_t MulAmt2 = 0;
13518  if ((MulAmt % 9) == 0) {
13519    MulAmt1 = 9;
13520    MulAmt2 = MulAmt / 9;
13521  } else if ((MulAmt % 5) == 0) {
13522    MulAmt1 = 5;
13523    MulAmt2 = MulAmt / 5;
13524  } else if ((MulAmt % 3) == 0) {
13525    MulAmt1 = 3;
13526    MulAmt2 = MulAmt / 3;
13527  }
13528  if (MulAmt2 &&
13529      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13530    DebugLoc DL = N->getDebugLoc();
13531
13532    if (isPowerOf2_64(MulAmt2) &&
13533        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13534      // If second multiplifer is pow2, issue it first. We want the multiply by
13535      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13536      // is an add.
13537      std::swap(MulAmt1, MulAmt2);
13538
13539    SDValue NewMul;
13540    if (isPowerOf2_64(MulAmt1))
13541      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13542                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13543    else
13544      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13545                           DAG.getConstant(MulAmt1, VT));
13546
13547    if (isPowerOf2_64(MulAmt2))
13548      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13549                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13550    else
13551      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13552                           DAG.getConstant(MulAmt2, VT));
13553
13554    // Do not add new nodes to DAG combiner worklist.
13555    DCI.CombineTo(N, NewMul, false);
13556  }
13557  return SDValue();
13558}
13559
13560static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13561  SDValue N0 = N->getOperand(0);
13562  SDValue N1 = N->getOperand(1);
13563  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13564  EVT VT = N0.getValueType();
13565
13566  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13567  // since the result of setcc_c is all zero's or all ones.
13568  if (VT.isInteger() && !VT.isVector() &&
13569      N1C && N0.getOpcode() == ISD::AND &&
13570      N0.getOperand(1).getOpcode() == ISD::Constant) {
13571    SDValue N00 = N0.getOperand(0);
13572    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13573        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13574          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13575         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13576      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13577      APInt ShAmt = N1C->getAPIntValue();
13578      Mask = Mask.shl(ShAmt);
13579      if (Mask != 0)
13580        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13581                           N00, DAG.getConstant(Mask, VT));
13582    }
13583  }
13584
13585
13586  // Hardware support for vector shifts is sparse which makes us scalarize the
13587  // vector operations in many cases. Also, on sandybridge ADD is faster than
13588  // shl.
13589  // (shl V, 1) -> add V,V
13590  if (isSplatVector(N1.getNode())) {
13591    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13592    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13593    // We shift all of the values by one. In many cases we do not have
13594    // hardware support for this operation. This is better expressed as an ADD
13595    // of two values.
13596    if (N1C && (1 == N1C->getZExtValue())) {
13597      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13598    }
13599  }
13600
13601  return SDValue();
13602}
13603
13604/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13605///                       when possible.
13606static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13607                                   TargetLowering::DAGCombinerInfo &DCI,
13608                                   const X86Subtarget *Subtarget) {
13609  EVT VT = N->getValueType(0);
13610  if (N->getOpcode() == ISD::SHL) {
13611    SDValue V = PerformSHLCombine(N, DAG);
13612    if (V.getNode()) return V;
13613  }
13614
13615  // On X86 with SSE2 support, we can transform this to a vector shift if
13616  // all elements are shifted by the same amount.  We can't do this in legalize
13617  // because the a constant vector is typically transformed to a constant pool
13618  // so we have no knowledge of the shift amount.
13619  if (!Subtarget->hasSSE2())
13620    return SDValue();
13621
13622  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13623      (!Subtarget->hasAVX2() ||
13624       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13625    return SDValue();
13626
13627  SDValue ShAmtOp = N->getOperand(1);
13628  EVT EltVT = VT.getVectorElementType();
13629  DebugLoc DL = N->getDebugLoc();
13630  SDValue BaseShAmt = SDValue();
13631  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13632    unsigned NumElts = VT.getVectorNumElements();
13633    unsigned i = 0;
13634    for (; i != NumElts; ++i) {
13635      SDValue Arg = ShAmtOp.getOperand(i);
13636      if (Arg.getOpcode() == ISD::UNDEF) continue;
13637      BaseShAmt = Arg;
13638      break;
13639    }
13640    // Handle the case where the build_vector is all undef
13641    // FIXME: Should DAG allow this?
13642    if (i == NumElts)
13643      return SDValue();
13644
13645    for (; i != NumElts; ++i) {
13646      SDValue Arg = ShAmtOp.getOperand(i);
13647      if (Arg.getOpcode() == ISD::UNDEF) continue;
13648      if (Arg != BaseShAmt) {
13649        return SDValue();
13650      }
13651    }
13652  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13653             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13654    SDValue InVec = ShAmtOp.getOperand(0);
13655    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13656      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13657      unsigned i = 0;
13658      for (; i != NumElts; ++i) {
13659        SDValue Arg = InVec.getOperand(i);
13660        if (Arg.getOpcode() == ISD::UNDEF) continue;
13661        BaseShAmt = Arg;
13662        break;
13663      }
13664    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13665       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13666         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13667         if (C->getZExtValue() == SplatIdx)
13668           BaseShAmt = InVec.getOperand(1);
13669       }
13670    }
13671    if (BaseShAmt.getNode() == 0) {
13672      // Don't create instructions with illegal types after legalize
13673      // types has run.
13674      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13675          !DCI.isBeforeLegalize())
13676        return SDValue();
13677
13678      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13679                              DAG.getIntPtrConstant(0));
13680    }
13681  } else
13682    return SDValue();
13683
13684  // The shift amount is an i32.
13685  if (EltVT.bitsGT(MVT::i32))
13686    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13687  else if (EltVT.bitsLT(MVT::i32))
13688    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13689
13690  // The shift amount is identical so we can do a vector shift.
13691  SDValue  ValOp = N->getOperand(0);
13692  switch (N->getOpcode()) {
13693  default:
13694    llvm_unreachable("Unknown shift opcode!");
13695  case ISD::SHL:
13696    switch (VT.getSimpleVT().SimpleTy) {
13697    default: return SDValue();
13698    case MVT::v2i64:
13699    case MVT::v4i32:
13700    case MVT::v8i16:
13701    case MVT::v4i64:
13702    case MVT::v8i32:
13703    case MVT::v16i16:
13704      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13705    }
13706  case ISD::SRA:
13707    switch (VT.getSimpleVT().SimpleTy) {
13708    default: return SDValue();
13709    case MVT::v4i32:
13710    case MVT::v8i16:
13711    case MVT::v8i32:
13712    case MVT::v16i16:
13713      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13714    }
13715  case ISD::SRL:
13716    switch (VT.getSimpleVT().SimpleTy) {
13717    default: return SDValue();
13718    case MVT::v2i64:
13719    case MVT::v4i32:
13720    case MVT::v8i16:
13721    case MVT::v4i64:
13722    case MVT::v8i32:
13723    case MVT::v16i16:
13724      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13725    }
13726  }
13727}
13728
13729
13730// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13731// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13732// and friends.  Likewise for OR -> CMPNEQSS.
13733static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13734                            TargetLowering::DAGCombinerInfo &DCI,
13735                            const X86Subtarget *Subtarget) {
13736  unsigned opcode;
13737
13738  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13739  // we're requiring SSE2 for both.
13740  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13741    SDValue N0 = N->getOperand(0);
13742    SDValue N1 = N->getOperand(1);
13743    SDValue CMP0 = N0->getOperand(1);
13744    SDValue CMP1 = N1->getOperand(1);
13745    DebugLoc DL = N->getDebugLoc();
13746
13747    // The SETCCs should both refer to the same CMP.
13748    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13749      return SDValue();
13750
13751    SDValue CMP00 = CMP0->getOperand(0);
13752    SDValue CMP01 = CMP0->getOperand(1);
13753    EVT     VT    = CMP00.getValueType();
13754
13755    if (VT == MVT::f32 || VT == MVT::f64) {
13756      bool ExpectingFlags = false;
13757      // Check for any users that want flags:
13758      for (SDNode::use_iterator UI = N->use_begin(),
13759             UE = N->use_end();
13760           !ExpectingFlags && UI != UE; ++UI)
13761        switch (UI->getOpcode()) {
13762        default:
13763        case ISD::BR_CC:
13764        case ISD::BRCOND:
13765        case ISD::SELECT:
13766          ExpectingFlags = true;
13767          break;
13768        case ISD::CopyToReg:
13769        case ISD::SIGN_EXTEND:
13770        case ISD::ZERO_EXTEND:
13771        case ISD::ANY_EXTEND:
13772          break;
13773        }
13774
13775      if (!ExpectingFlags) {
13776        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13777        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13778
13779        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13780          X86::CondCode tmp = cc0;
13781          cc0 = cc1;
13782          cc1 = tmp;
13783        }
13784
13785        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13786            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13787          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13788          X86ISD::NodeType NTOperator = is64BitFP ?
13789            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13790          // FIXME: need symbolic constants for these magic numbers.
13791          // See X86ATTInstPrinter.cpp:printSSECC().
13792          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13793          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13794                                              DAG.getConstant(x86cc, MVT::i8));
13795          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13796                                              OnesOrZeroesF);
13797          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13798                                      DAG.getConstant(1, MVT::i32));
13799          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13800          return OneBitOfTruth;
13801        }
13802      }
13803    }
13804  }
13805  return SDValue();
13806}
13807
13808/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13809/// so it can be folded inside ANDNP.
13810static bool CanFoldXORWithAllOnes(const SDNode *N) {
13811  EVT VT = N->getValueType(0);
13812
13813  // Match direct AllOnes for 128 and 256-bit vectors
13814  if (ISD::isBuildVectorAllOnes(N))
13815    return true;
13816
13817  // Look through a bit convert.
13818  if (N->getOpcode() == ISD::BITCAST)
13819    N = N->getOperand(0).getNode();
13820
13821  // Sometimes the operand may come from a insert_subvector building a 256-bit
13822  // allones vector
13823  if (VT.getSizeInBits() == 256 &&
13824      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13825    SDValue V1 = N->getOperand(0);
13826    SDValue V2 = N->getOperand(1);
13827
13828    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13829        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13830        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13831        ISD::isBuildVectorAllOnes(V2.getNode()))
13832      return true;
13833  }
13834
13835  return false;
13836}
13837
13838static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13839                                 TargetLowering::DAGCombinerInfo &DCI,
13840                                 const X86Subtarget *Subtarget) {
13841  if (DCI.isBeforeLegalizeOps())
13842    return SDValue();
13843
13844  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13845  if (R.getNode())
13846    return R;
13847
13848  EVT VT = N->getValueType(0);
13849
13850  // Create ANDN, BLSI, and BLSR instructions
13851  // BLSI is X & (-X)
13852  // BLSR is X & (X-1)
13853  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13854    SDValue N0 = N->getOperand(0);
13855    SDValue N1 = N->getOperand(1);
13856    DebugLoc DL = N->getDebugLoc();
13857
13858    // Check LHS for not
13859    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13860      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13861    // Check RHS for not
13862    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13863      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13864
13865    // Check LHS for neg
13866    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13867        isZero(N0.getOperand(0)))
13868      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13869
13870    // Check RHS for neg
13871    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13872        isZero(N1.getOperand(0)))
13873      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13874
13875    // Check LHS for X-1
13876    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13877        isAllOnes(N0.getOperand(1)))
13878      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13879
13880    // Check RHS for X-1
13881    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13882        isAllOnes(N1.getOperand(1)))
13883      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13884
13885    return SDValue();
13886  }
13887
13888  // Want to form ANDNP nodes:
13889  // 1) In the hopes of then easily combining them with OR and AND nodes
13890  //    to form PBLEND/PSIGN.
13891  // 2) To match ANDN packed intrinsics
13892  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13893    return SDValue();
13894
13895  SDValue N0 = N->getOperand(0);
13896  SDValue N1 = N->getOperand(1);
13897  DebugLoc DL = N->getDebugLoc();
13898
13899  // Check LHS for vnot
13900  if (N0.getOpcode() == ISD::XOR &&
13901      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13902      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13903    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13904
13905  // Check RHS for vnot
13906  if (N1.getOpcode() == ISD::XOR &&
13907      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13908      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13909    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13910
13911  return SDValue();
13912}
13913
13914static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13915                                TargetLowering::DAGCombinerInfo &DCI,
13916                                const X86Subtarget *Subtarget) {
13917  if (DCI.isBeforeLegalizeOps())
13918    return SDValue();
13919
13920  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13921  if (R.getNode())
13922    return R;
13923
13924  EVT VT = N->getValueType(0);
13925
13926  SDValue N0 = N->getOperand(0);
13927  SDValue N1 = N->getOperand(1);
13928
13929  // look for psign/blend
13930  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13931    if (!Subtarget->hasSSSE3() ||
13932        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13933      return SDValue();
13934
13935    // Canonicalize pandn to RHS
13936    if (N0.getOpcode() == X86ISD::ANDNP)
13937      std::swap(N0, N1);
13938    // or (and (m, y), (pandn m, x))
13939    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13940      SDValue Mask = N1.getOperand(0);
13941      SDValue X    = N1.getOperand(1);
13942      SDValue Y;
13943      if (N0.getOperand(0) == Mask)
13944        Y = N0.getOperand(1);
13945      if (N0.getOperand(1) == Mask)
13946        Y = N0.getOperand(0);
13947
13948      // Check to see if the mask appeared in both the AND and ANDNP and
13949      if (!Y.getNode())
13950        return SDValue();
13951
13952      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13953      if (Mask.getOpcode() != ISD::BITCAST ||
13954          X.getOpcode() != ISD::BITCAST ||
13955          Y.getOpcode() != ISD::BITCAST)
13956        return SDValue();
13957
13958      // Look through mask bitcast.
13959      Mask = Mask.getOperand(0);
13960      EVT MaskVT = Mask.getValueType();
13961
13962      // Validate that the Mask operand is a vector sra node.
13963      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13964      // there is no psrai.b
13965      if (Mask.getOpcode() != X86ISD::VSRAI)
13966        return SDValue();
13967
13968      // Check that the SRA is all signbits.
13969      SDValue SraC = Mask.getOperand(1);
13970      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13971      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13972      if ((SraAmt + 1) != EltBits)
13973        return SDValue();
13974
13975      DebugLoc DL = N->getDebugLoc();
13976
13977      // Now we know we at least have a plendvb with the mask val.  See if
13978      // we can form a psignb/w/d.
13979      // psign = x.type == y.type == mask.type && y = sub(0, x);
13980      X = X.getOperand(0);
13981      Y = Y.getOperand(0);
13982      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13983          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13984          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
13985        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
13986               "Unsupported VT for PSIGN");
13987        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
13988        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13989      }
13990      // PBLENDVB only available on SSE 4.1
13991      if (!Subtarget->hasSSE41())
13992        return SDValue();
13993
13994      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13995
13996      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13997      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13998      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13999      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14000      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14001    }
14002  }
14003
14004  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14005    return SDValue();
14006
14007  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14008  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14009    std::swap(N0, N1);
14010  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14011    return SDValue();
14012  if (!N0.hasOneUse() || !N1.hasOneUse())
14013    return SDValue();
14014
14015  SDValue ShAmt0 = N0.getOperand(1);
14016  if (ShAmt0.getValueType() != MVT::i8)
14017    return SDValue();
14018  SDValue ShAmt1 = N1.getOperand(1);
14019  if (ShAmt1.getValueType() != MVT::i8)
14020    return SDValue();
14021  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14022    ShAmt0 = ShAmt0.getOperand(0);
14023  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14024    ShAmt1 = ShAmt1.getOperand(0);
14025
14026  DebugLoc DL = N->getDebugLoc();
14027  unsigned Opc = X86ISD::SHLD;
14028  SDValue Op0 = N0.getOperand(0);
14029  SDValue Op1 = N1.getOperand(0);
14030  if (ShAmt0.getOpcode() == ISD::SUB) {
14031    Opc = X86ISD::SHRD;
14032    std::swap(Op0, Op1);
14033    std::swap(ShAmt0, ShAmt1);
14034  }
14035
14036  unsigned Bits = VT.getSizeInBits();
14037  if (ShAmt1.getOpcode() == ISD::SUB) {
14038    SDValue Sum = ShAmt1.getOperand(0);
14039    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14040      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14041      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14042        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14043      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14044        return DAG.getNode(Opc, DL, VT,
14045                           Op0, Op1,
14046                           DAG.getNode(ISD::TRUNCATE, DL,
14047                                       MVT::i8, ShAmt0));
14048    }
14049  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14050    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14051    if (ShAmt0C &&
14052        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14053      return DAG.getNode(Opc, DL, VT,
14054                         N0.getOperand(0), N1.getOperand(0),
14055                         DAG.getNode(ISD::TRUNCATE, DL,
14056                                       MVT::i8, ShAmt0));
14057  }
14058
14059  return SDValue();
14060}
14061
14062// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14063static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14064                                 TargetLowering::DAGCombinerInfo &DCI,
14065                                 const X86Subtarget *Subtarget) {
14066  if (DCI.isBeforeLegalizeOps())
14067    return SDValue();
14068
14069  EVT VT = N->getValueType(0);
14070
14071  if (VT != MVT::i32 && VT != MVT::i64)
14072    return SDValue();
14073
14074  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14075
14076  // Create BLSMSK instructions by finding X ^ (X-1)
14077  SDValue N0 = N->getOperand(0);
14078  SDValue N1 = N->getOperand(1);
14079  DebugLoc DL = N->getDebugLoc();
14080
14081  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14082      isAllOnes(N0.getOperand(1)))
14083    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14084
14085  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14086      isAllOnes(N1.getOperand(1)))
14087    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14088
14089  return SDValue();
14090}
14091
14092/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14093static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14094                                   const X86Subtarget *Subtarget) {
14095  LoadSDNode *Ld = cast<LoadSDNode>(N);
14096  EVT RegVT = Ld->getValueType(0);
14097  EVT MemVT = Ld->getMemoryVT();
14098  DebugLoc dl = Ld->getDebugLoc();
14099  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14100
14101  ISD::LoadExtType Ext = Ld->getExtensionType();
14102
14103  // If this is a vector EXT Load then attempt to optimize it using a
14104  // shuffle. We need SSE4 for the shuffles.
14105  // TODO: It is possible to support ZExt by zeroing the undef values
14106  // during the shuffle phase or after the shuffle.
14107  if (RegVT.isVector() && RegVT.isInteger() &&
14108      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14109    assert(MemVT != RegVT && "Cannot extend to the same type");
14110    assert(MemVT.isVector() && "Must load a vector from memory");
14111
14112    unsigned NumElems = RegVT.getVectorNumElements();
14113    unsigned RegSz = RegVT.getSizeInBits();
14114    unsigned MemSz = MemVT.getSizeInBits();
14115    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14116    // All sizes must be a power of two
14117    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14118
14119    // Attempt to load the original value using a single load op.
14120    // Find a scalar type which is equal to the loaded word size.
14121    MVT SclrLoadTy = MVT::i8;
14122    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14123         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14124      MVT Tp = (MVT::SimpleValueType)tp;
14125      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14126        SclrLoadTy = Tp;
14127        break;
14128      }
14129    }
14130
14131    // Proceed if a load word is found.
14132    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14133
14134    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14135      RegSz/SclrLoadTy.getSizeInBits());
14136
14137    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14138                                  RegSz/MemVT.getScalarType().getSizeInBits());
14139    // Can't shuffle using an illegal type.
14140    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14141
14142    // Perform a single load.
14143    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14144                                  Ld->getBasePtr(),
14145                                  Ld->getPointerInfo(), Ld->isVolatile(),
14146                                  Ld->isNonTemporal(), Ld->isInvariant(),
14147                                  Ld->getAlignment());
14148
14149    // Insert the word loaded into a vector.
14150    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14151      LoadUnitVecVT, ScalarLoad);
14152
14153    // Bitcast the loaded value to a vector of the original element type, in
14154    // the size of the target vector type.
14155    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14156                                    ScalarInVector);
14157    unsigned SizeRatio = RegSz/MemSz;
14158
14159    // Redistribute the loaded elements into the different locations.
14160    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14161    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14162
14163    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14164                                DAG.getUNDEF(SlicedVec.getValueType()),
14165                                ShuffleVec.data());
14166
14167    // Bitcast to the requested type.
14168    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14169    // Replace the original load with the new sequence
14170    // and return the new chain.
14171    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14172    return SDValue(ScalarLoad.getNode(), 1);
14173  }
14174
14175  return SDValue();
14176}
14177
14178/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14179static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14180                                   const X86Subtarget *Subtarget) {
14181  StoreSDNode *St = cast<StoreSDNode>(N);
14182  EVT VT = St->getValue().getValueType();
14183  EVT StVT = St->getMemoryVT();
14184  DebugLoc dl = St->getDebugLoc();
14185  SDValue StoredVal = St->getOperand(1);
14186  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14187
14188  // If we are saving a concatenation of two XMM registers, perform two stores.
14189  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14190  // 128-bit ones. If in the future the cost becomes only one memory access the
14191  // first version would be better.
14192  if (VT.getSizeInBits() == 256 &&
14193    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14194    StoredVal.getNumOperands() == 2) {
14195
14196    SDValue Value0 = StoredVal.getOperand(0);
14197    SDValue Value1 = StoredVal.getOperand(1);
14198
14199    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14200    SDValue Ptr0 = St->getBasePtr();
14201    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14202
14203    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14204                                St->getPointerInfo(), St->isVolatile(),
14205                                St->isNonTemporal(), St->getAlignment());
14206    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14207                                St->getPointerInfo(), St->isVolatile(),
14208                                St->isNonTemporal(), St->getAlignment());
14209    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14210  }
14211
14212  // Optimize trunc store (of multiple scalars) to shuffle and store.
14213  // First, pack all of the elements in one place. Next, store to memory
14214  // in fewer chunks.
14215  if (St->isTruncatingStore() && VT.isVector()) {
14216    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14217    unsigned NumElems = VT.getVectorNumElements();
14218    assert(StVT != VT && "Cannot truncate to the same type");
14219    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14220    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14221
14222    // From, To sizes and ElemCount must be pow of two
14223    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14224    // We are going to use the original vector elt for storing.
14225    // Accumulated smaller vector elements must be a multiple of the store size.
14226    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14227
14228    unsigned SizeRatio  = FromSz / ToSz;
14229
14230    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14231
14232    // Create a type on which we perform the shuffle
14233    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14234            StVT.getScalarType(), NumElems*SizeRatio);
14235
14236    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14237
14238    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14239    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14240    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14241
14242    // Can't shuffle using an illegal type
14243    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14244
14245    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14246                                DAG.getUNDEF(WideVec.getValueType()),
14247                                ShuffleVec.data());
14248    // At this point all of the data is stored at the bottom of the
14249    // register. We now need to save it to mem.
14250
14251    // Find the largest store unit
14252    MVT StoreType = MVT::i8;
14253    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14254         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14255      MVT Tp = (MVT::SimpleValueType)tp;
14256      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14257        StoreType = Tp;
14258    }
14259
14260    // Bitcast the original vector into a vector of store-size units
14261    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14262            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14263    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14264    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14265    SmallVector<SDValue, 8> Chains;
14266    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14267                                        TLI.getPointerTy());
14268    SDValue Ptr = St->getBasePtr();
14269
14270    // Perform one or more big stores into memory.
14271    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14272      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14273                                   StoreType, ShuffWide,
14274                                   DAG.getIntPtrConstant(i));
14275      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14276                                St->getPointerInfo(), St->isVolatile(),
14277                                St->isNonTemporal(), St->getAlignment());
14278      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14279      Chains.push_back(Ch);
14280    }
14281
14282    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14283                               Chains.size());
14284  }
14285
14286
14287  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14288  // the FP state in cases where an emms may be missing.
14289  // A preferable solution to the general problem is to figure out the right
14290  // places to insert EMMS.  This qualifies as a quick hack.
14291
14292  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14293  if (VT.getSizeInBits() != 64)
14294    return SDValue();
14295
14296  const Function *F = DAG.getMachineFunction().getFunction();
14297  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14298  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14299                     && Subtarget->hasSSE2();
14300  if ((VT.isVector() ||
14301       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14302      isa<LoadSDNode>(St->getValue()) &&
14303      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14304      St->getChain().hasOneUse() && !St->isVolatile()) {
14305    SDNode* LdVal = St->getValue().getNode();
14306    LoadSDNode *Ld = 0;
14307    int TokenFactorIndex = -1;
14308    SmallVector<SDValue, 8> Ops;
14309    SDNode* ChainVal = St->getChain().getNode();
14310    // Must be a store of a load.  We currently handle two cases:  the load
14311    // is a direct child, and it's under an intervening TokenFactor.  It is
14312    // possible to dig deeper under nested TokenFactors.
14313    if (ChainVal == LdVal)
14314      Ld = cast<LoadSDNode>(St->getChain());
14315    else if (St->getValue().hasOneUse() &&
14316             ChainVal->getOpcode() == ISD::TokenFactor) {
14317      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14318        if (ChainVal->getOperand(i).getNode() == LdVal) {
14319          TokenFactorIndex = i;
14320          Ld = cast<LoadSDNode>(St->getValue());
14321        } else
14322          Ops.push_back(ChainVal->getOperand(i));
14323      }
14324    }
14325
14326    if (!Ld || !ISD::isNormalLoad(Ld))
14327      return SDValue();
14328
14329    // If this is not the MMX case, i.e. we are just turning i64 load/store
14330    // into f64 load/store, avoid the transformation if there are multiple
14331    // uses of the loaded value.
14332    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14333      return SDValue();
14334
14335    DebugLoc LdDL = Ld->getDebugLoc();
14336    DebugLoc StDL = N->getDebugLoc();
14337    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14338    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14339    // pair instead.
14340    if (Subtarget->is64Bit() || F64IsLegal) {
14341      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14342      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14343                                  Ld->getPointerInfo(), Ld->isVolatile(),
14344                                  Ld->isNonTemporal(), Ld->isInvariant(),
14345                                  Ld->getAlignment());
14346      SDValue NewChain = NewLd.getValue(1);
14347      if (TokenFactorIndex != -1) {
14348        Ops.push_back(NewChain);
14349        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14350                               Ops.size());
14351      }
14352      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14353                          St->getPointerInfo(),
14354                          St->isVolatile(), St->isNonTemporal(),
14355                          St->getAlignment());
14356    }
14357
14358    // Otherwise, lower to two pairs of 32-bit loads / stores.
14359    SDValue LoAddr = Ld->getBasePtr();
14360    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14361                                 DAG.getConstant(4, MVT::i32));
14362
14363    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14364                               Ld->getPointerInfo(),
14365                               Ld->isVolatile(), Ld->isNonTemporal(),
14366                               Ld->isInvariant(), Ld->getAlignment());
14367    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14368                               Ld->getPointerInfo().getWithOffset(4),
14369                               Ld->isVolatile(), Ld->isNonTemporal(),
14370                               Ld->isInvariant(),
14371                               MinAlign(Ld->getAlignment(), 4));
14372
14373    SDValue NewChain = LoLd.getValue(1);
14374    if (TokenFactorIndex != -1) {
14375      Ops.push_back(LoLd);
14376      Ops.push_back(HiLd);
14377      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14378                             Ops.size());
14379    }
14380
14381    LoAddr = St->getBasePtr();
14382    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14383                         DAG.getConstant(4, MVT::i32));
14384
14385    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14386                                St->getPointerInfo(),
14387                                St->isVolatile(), St->isNonTemporal(),
14388                                St->getAlignment());
14389    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14390                                St->getPointerInfo().getWithOffset(4),
14391                                St->isVolatile(),
14392                                St->isNonTemporal(),
14393                                MinAlign(St->getAlignment(), 4));
14394    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14395  }
14396  return SDValue();
14397}
14398
14399/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14400/// and return the operands for the horizontal operation in LHS and RHS.  A
14401/// horizontal operation performs the binary operation on successive elements
14402/// of its first operand, then on successive elements of its second operand,
14403/// returning the resulting values in a vector.  For example, if
14404///   A = < float a0, float a1, float a2, float a3 >
14405/// and
14406///   B = < float b0, float b1, float b2, float b3 >
14407/// then the result of doing a horizontal operation on A and B is
14408///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14409/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14410/// A horizontal-op B, for some already available A and B, and if so then LHS is
14411/// set to A, RHS to B, and the routine returns 'true'.
14412/// Note that the binary operation should have the property that if one of the
14413/// operands is UNDEF then the result is UNDEF.
14414static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14415  // Look for the following pattern: if
14416  //   A = < float a0, float a1, float a2, float a3 >
14417  //   B = < float b0, float b1, float b2, float b3 >
14418  // and
14419  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14420  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14421  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14422  // which is A horizontal-op B.
14423
14424  // At least one of the operands should be a vector shuffle.
14425  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14426      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14427    return false;
14428
14429  EVT VT = LHS.getValueType();
14430
14431  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14432         "Unsupported vector type for horizontal add/sub");
14433
14434  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14435  // operate independently on 128-bit lanes.
14436  unsigned NumElts = VT.getVectorNumElements();
14437  unsigned NumLanes = VT.getSizeInBits()/128;
14438  unsigned NumLaneElts = NumElts / NumLanes;
14439  assert((NumLaneElts % 2 == 0) &&
14440         "Vector type should have an even number of elements in each lane");
14441  unsigned HalfLaneElts = NumLaneElts/2;
14442
14443  // View LHS in the form
14444  //   LHS = VECTOR_SHUFFLE A, B, LMask
14445  // If LHS is not a shuffle then pretend it is the shuffle
14446  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14447  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14448  // type VT.
14449  SDValue A, B;
14450  SmallVector<int, 16> LMask(NumElts);
14451  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14452    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14453      A = LHS.getOperand(0);
14454    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14455      B = LHS.getOperand(1);
14456    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14457    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14458  } else {
14459    if (LHS.getOpcode() != ISD::UNDEF)
14460      A = LHS;
14461    for (unsigned i = 0; i != NumElts; ++i)
14462      LMask[i] = i;
14463  }
14464
14465  // Likewise, view RHS in the form
14466  //   RHS = VECTOR_SHUFFLE C, D, RMask
14467  SDValue C, D;
14468  SmallVector<int, 16> RMask(NumElts);
14469  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14470    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14471      C = RHS.getOperand(0);
14472    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14473      D = RHS.getOperand(1);
14474    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14475    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14476  } else {
14477    if (RHS.getOpcode() != ISD::UNDEF)
14478      C = RHS;
14479    for (unsigned i = 0; i != NumElts; ++i)
14480      RMask[i] = i;
14481  }
14482
14483  // Check that the shuffles are both shuffling the same vectors.
14484  if (!(A == C && B == D) && !(A == D && B == C))
14485    return false;
14486
14487  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14488  if (!A.getNode() && !B.getNode())
14489    return false;
14490
14491  // If A and B occur in reverse order in RHS, then "swap" them (which means
14492  // rewriting the mask).
14493  if (A != C)
14494    CommuteVectorShuffleMask(RMask, NumElts);
14495
14496  // At this point LHS and RHS are equivalent to
14497  //   LHS = VECTOR_SHUFFLE A, B, LMask
14498  //   RHS = VECTOR_SHUFFLE A, B, RMask
14499  // Check that the masks correspond to performing a horizontal operation.
14500  for (unsigned i = 0; i != NumElts; ++i) {
14501    int LIdx = LMask[i], RIdx = RMask[i];
14502
14503    // Ignore any UNDEF components.
14504    if (LIdx < 0 || RIdx < 0 ||
14505        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14506        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14507      continue;
14508
14509    // Check that successive elements are being operated on.  If not, this is
14510    // not a horizontal operation.
14511    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14512    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14513    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14514    if (!(LIdx == Index && RIdx == Index + 1) &&
14515        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14516      return false;
14517  }
14518
14519  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14520  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14521  return true;
14522}
14523
14524/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14525static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14526                                  const X86Subtarget *Subtarget) {
14527  EVT VT = N->getValueType(0);
14528  SDValue LHS = N->getOperand(0);
14529  SDValue RHS = N->getOperand(1);
14530
14531  // Try to synthesize horizontal adds from adds of shuffles.
14532  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14533       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14534      isHorizontalBinOp(LHS, RHS, true))
14535    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14536  return SDValue();
14537}
14538
14539/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14540static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14541                                  const X86Subtarget *Subtarget) {
14542  EVT VT = N->getValueType(0);
14543  SDValue LHS = N->getOperand(0);
14544  SDValue RHS = N->getOperand(1);
14545
14546  // Try to synthesize horizontal subs from subs of shuffles.
14547  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14548       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14549      isHorizontalBinOp(LHS, RHS, false))
14550    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14551  return SDValue();
14552}
14553
14554/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14555/// X86ISD::FXOR nodes.
14556static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14557  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14558  // F[X]OR(0.0, x) -> x
14559  // F[X]OR(x, 0.0) -> x
14560  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14561    if (C->getValueAPF().isPosZero())
14562      return N->getOperand(1);
14563  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14564    if (C->getValueAPF().isPosZero())
14565      return N->getOperand(0);
14566  return SDValue();
14567}
14568
14569/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14570static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14571  // FAND(0.0, x) -> 0.0
14572  // FAND(x, 0.0) -> 0.0
14573  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14574    if (C->getValueAPF().isPosZero())
14575      return N->getOperand(0);
14576  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14577    if (C->getValueAPF().isPosZero())
14578      return N->getOperand(1);
14579  return SDValue();
14580}
14581
14582static SDValue PerformBTCombine(SDNode *N,
14583                                SelectionDAG &DAG,
14584                                TargetLowering::DAGCombinerInfo &DCI) {
14585  // BT ignores high bits in the bit index operand.
14586  SDValue Op1 = N->getOperand(1);
14587  if (Op1.hasOneUse()) {
14588    unsigned BitWidth = Op1.getValueSizeInBits();
14589    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14590    APInt KnownZero, KnownOne;
14591    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14592                                          !DCI.isBeforeLegalizeOps());
14593    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14594    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14595        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14596      DCI.CommitTargetLoweringOpt(TLO);
14597  }
14598  return SDValue();
14599}
14600
14601static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14602  SDValue Op = N->getOperand(0);
14603  if (Op.getOpcode() == ISD::BITCAST)
14604    Op = Op.getOperand(0);
14605  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14606  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14607      VT.getVectorElementType().getSizeInBits() ==
14608      OpVT.getVectorElementType().getSizeInBits()) {
14609    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14610  }
14611  return SDValue();
14612}
14613
14614static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14615                                  const X86Subtarget *Subtarget) {
14616  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14617  //           (and (i32 x86isd::setcc_carry), 1)
14618  // This eliminates the zext. This transformation is necessary because
14619  // ISD::SETCC is always legalized to i8.
14620  DebugLoc dl = N->getDebugLoc();
14621  SDValue N0 = N->getOperand(0);
14622  EVT VT = N->getValueType(0);
14623  EVT OpVT = N0.getValueType();
14624
14625  if (N0.getOpcode() == ISD::AND &&
14626      N0.hasOneUse() &&
14627      N0.getOperand(0).hasOneUse()) {
14628    SDValue N00 = N0.getOperand(0);
14629    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14630      return SDValue();
14631    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14632    if (!C || C->getZExtValue() != 1)
14633      return SDValue();
14634    return DAG.getNode(ISD::AND, dl, VT,
14635                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14636                                   N00.getOperand(0), N00.getOperand(1)),
14637                       DAG.getConstant(1, VT));
14638  }
14639  // Optimize vectors in AVX mode:
14640  //
14641  //   v8i16 -> v8i32
14642  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14643  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14644  //   Concat upper and lower parts.
14645  //
14646  //   v4i32 -> v4i64
14647  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14648  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14649  //   Concat upper and lower parts.
14650  //
14651  if (Subtarget->hasAVX()) {
14652
14653    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14654      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14655
14656      SDValue ZeroVec = getZeroVector(OpVT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
14657        DAG, dl);
14658      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14659      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14660
14661      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14662        VT.getVectorNumElements()/2);
14663
14664      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14665      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14666
14667      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14668    }
14669  }
14670
14671
14672  return SDValue();
14673}
14674
14675// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14676static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14677  unsigned X86CC = N->getConstantOperandVal(0);
14678  SDValue EFLAG = N->getOperand(1);
14679  DebugLoc DL = N->getDebugLoc();
14680
14681  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14682  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14683  // cases.
14684  if (X86CC == X86::COND_B)
14685    return DAG.getNode(ISD::AND, DL, MVT::i8,
14686                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14687                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14688                       DAG.getConstant(1, MVT::i8));
14689
14690  return SDValue();
14691}
14692
14693static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14694                                        const X86TargetLowering *XTLI) {
14695  SDValue Op0 = N->getOperand(0);
14696  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14697  // a 32-bit target where SSE doesn't support i64->FP operations.
14698  if (Op0.getOpcode() == ISD::LOAD) {
14699    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14700    EVT VT = Ld->getValueType(0);
14701    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14702        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14703        !XTLI->getSubtarget()->is64Bit() &&
14704        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14705      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14706                                          Ld->getChain(), Op0, DAG);
14707      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14708      return FILDChain;
14709    }
14710  }
14711  return SDValue();
14712}
14713
14714// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14715static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14716                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14717  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14718  // the result is either zero or one (depending on the input carry bit).
14719  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14720  if (X86::isZeroNode(N->getOperand(0)) &&
14721      X86::isZeroNode(N->getOperand(1)) &&
14722      // We don't have a good way to replace an EFLAGS use, so only do this when
14723      // dead right now.
14724      SDValue(N, 1).use_empty()) {
14725    DebugLoc DL = N->getDebugLoc();
14726    EVT VT = N->getValueType(0);
14727    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14728    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14729                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14730                                           DAG.getConstant(X86::COND_B,MVT::i8),
14731                                           N->getOperand(2)),
14732                               DAG.getConstant(1, VT));
14733    return DCI.CombineTo(N, Res1, CarryOut);
14734  }
14735
14736  return SDValue();
14737}
14738
14739// fold (add Y, (sete  X, 0)) -> adc  0, Y
14740//      (add Y, (setne X, 0)) -> sbb -1, Y
14741//      (sub (sete  X, 0), Y) -> sbb  0, Y
14742//      (sub (setne X, 0), Y) -> adc -1, Y
14743static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14744  DebugLoc DL = N->getDebugLoc();
14745
14746  // Look through ZExts.
14747  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14748  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14749    return SDValue();
14750
14751  SDValue SetCC = Ext.getOperand(0);
14752  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14753    return SDValue();
14754
14755  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14756  if (CC != X86::COND_E && CC != X86::COND_NE)
14757    return SDValue();
14758
14759  SDValue Cmp = SetCC.getOperand(1);
14760  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14761      !X86::isZeroNode(Cmp.getOperand(1)) ||
14762      !Cmp.getOperand(0).getValueType().isInteger())
14763    return SDValue();
14764
14765  SDValue CmpOp0 = Cmp.getOperand(0);
14766  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14767                               DAG.getConstant(1, CmpOp0.getValueType()));
14768
14769  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14770  if (CC == X86::COND_NE)
14771    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14772                       DL, OtherVal.getValueType(), OtherVal,
14773                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14774  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14775                     DL, OtherVal.getValueType(), OtherVal,
14776                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14777}
14778
14779/// PerformADDCombine - Do target-specific dag combines on integer adds.
14780static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14781                                 const X86Subtarget *Subtarget) {
14782  EVT VT = N->getValueType(0);
14783  SDValue Op0 = N->getOperand(0);
14784  SDValue Op1 = N->getOperand(1);
14785
14786  // Try to synthesize horizontal adds from adds of shuffles.
14787  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14788       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14789      isHorizontalBinOp(Op0, Op1, true))
14790    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14791
14792  return OptimizeConditionalInDecrement(N, DAG);
14793}
14794
14795static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14796                                 const X86Subtarget *Subtarget) {
14797  SDValue Op0 = N->getOperand(0);
14798  SDValue Op1 = N->getOperand(1);
14799
14800  // X86 can't encode an immediate LHS of a sub. See if we can push the
14801  // negation into a preceding instruction.
14802  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14803    // If the RHS of the sub is a XOR with one use and a constant, invert the
14804    // immediate. Then add one to the LHS of the sub so we can turn
14805    // X-Y -> X+~Y+1, saving one register.
14806    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14807        isa<ConstantSDNode>(Op1.getOperand(1))) {
14808      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14809      EVT VT = Op0.getValueType();
14810      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14811                                   Op1.getOperand(0),
14812                                   DAG.getConstant(~XorC, VT));
14813      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14814                         DAG.getConstant(C->getAPIntValue()+1, VT));
14815    }
14816  }
14817
14818  // Try to synthesize horizontal adds from adds of shuffles.
14819  EVT VT = N->getValueType(0);
14820  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14821       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14822      isHorizontalBinOp(Op0, Op1, true))
14823    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14824
14825  return OptimizeConditionalInDecrement(N, DAG);
14826}
14827
14828SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14829                                             DAGCombinerInfo &DCI) const {
14830  SelectionDAG &DAG = DCI.DAG;
14831  switch (N->getOpcode()) {
14832  default: break;
14833  case ISD::EXTRACT_VECTOR_ELT:
14834    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14835  case ISD::VSELECT:
14836  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14837  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14838  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14839  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14840  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14841  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14842  case ISD::SHL:
14843  case ISD::SRA:
14844  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
14845  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14846  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14847  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14848  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14849  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14850  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14851  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14852  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14853  case X86ISD::FXOR:
14854  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14855  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14856  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14857  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14858  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
14859  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
14860  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14861  case X86ISD::SHUFP:       // Handle all target specific shuffles
14862  case X86ISD::PALIGN:
14863  case X86ISD::UNPCKH:
14864  case X86ISD::UNPCKL:
14865  case X86ISD::MOVHLPS:
14866  case X86ISD::MOVLHPS:
14867  case X86ISD::PSHUFD:
14868  case X86ISD::PSHUFHW:
14869  case X86ISD::PSHUFLW:
14870  case X86ISD::MOVSS:
14871  case X86ISD::MOVSD:
14872  case X86ISD::VPERMILP:
14873  case X86ISD::VPERM2X128:
14874  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14875  }
14876
14877  return SDValue();
14878}
14879
14880/// isTypeDesirableForOp - Return true if the target has native support for
14881/// the specified value type and it is 'desirable' to use the type for the
14882/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14883/// instruction encodings are longer and some i16 instructions are slow.
14884bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14885  if (!isTypeLegal(VT))
14886    return false;
14887  if (VT != MVT::i16)
14888    return true;
14889
14890  switch (Opc) {
14891  default:
14892    return true;
14893  case ISD::LOAD:
14894  case ISD::SIGN_EXTEND:
14895  case ISD::ZERO_EXTEND:
14896  case ISD::ANY_EXTEND:
14897  case ISD::SHL:
14898  case ISD::SRL:
14899  case ISD::SUB:
14900  case ISD::ADD:
14901  case ISD::MUL:
14902  case ISD::AND:
14903  case ISD::OR:
14904  case ISD::XOR:
14905    return false;
14906  }
14907}
14908
14909/// IsDesirableToPromoteOp - This method query the target whether it is
14910/// beneficial for dag combiner to promote the specified node. If true, it
14911/// should return the desired promotion type by reference.
14912bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14913  EVT VT = Op.getValueType();
14914  if (VT != MVT::i16)
14915    return false;
14916
14917  bool Promote = false;
14918  bool Commute = false;
14919  switch (Op.getOpcode()) {
14920  default: break;
14921  case ISD::LOAD: {
14922    LoadSDNode *LD = cast<LoadSDNode>(Op);
14923    // If the non-extending load has a single use and it's not live out, then it
14924    // might be folded.
14925    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14926                                                     Op.hasOneUse()*/) {
14927      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14928             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14929        // The only case where we'd want to promote LOAD (rather then it being
14930        // promoted as an operand is when it's only use is liveout.
14931        if (UI->getOpcode() != ISD::CopyToReg)
14932          return false;
14933      }
14934    }
14935    Promote = true;
14936    break;
14937  }
14938  case ISD::SIGN_EXTEND:
14939  case ISD::ZERO_EXTEND:
14940  case ISD::ANY_EXTEND:
14941    Promote = true;
14942    break;
14943  case ISD::SHL:
14944  case ISD::SRL: {
14945    SDValue N0 = Op.getOperand(0);
14946    // Look out for (store (shl (load), x)).
14947    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14948      return false;
14949    Promote = true;
14950    break;
14951  }
14952  case ISD::ADD:
14953  case ISD::MUL:
14954  case ISD::AND:
14955  case ISD::OR:
14956  case ISD::XOR:
14957    Commute = true;
14958    // fallthrough
14959  case ISD::SUB: {
14960    SDValue N0 = Op.getOperand(0);
14961    SDValue N1 = Op.getOperand(1);
14962    if (!Commute && MayFoldLoad(N1))
14963      return false;
14964    // Avoid disabling potential load folding opportunities.
14965    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14966      return false;
14967    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14968      return false;
14969    Promote = true;
14970  }
14971  }
14972
14973  PVT = MVT::i32;
14974  return Promote;
14975}
14976
14977//===----------------------------------------------------------------------===//
14978//                           X86 Inline Assembly Support
14979//===----------------------------------------------------------------------===//
14980
14981namespace {
14982  // Helper to match a string separated by whitespace.
14983  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14984    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14985
14986    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14987      StringRef piece(*args[i]);
14988      if (!s.startswith(piece)) // Check if the piece matches.
14989        return false;
14990
14991      s = s.substr(piece.size());
14992      StringRef::size_type pos = s.find_first_not_of(" \t");
14993      if (pos == 0) // We matched a prefix.
14994        return false;
14995
14996      s = s.substr(pos);
14997    }
14998
14999    return s.empty();
15000  }
15001  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15002}
15003
15004bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15005  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15006
15007  std::string AsmStr = IA->getAsmString();
15008
15009  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15010  if (!Ty || Ty->getBitWidth() % 16 != 0)
15011    return false;
15012
15013  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15014  SmallVector<StringRef, 4> AsmPieces;
15015  SplitString(AsmStr, AsmPieces, ";\n");
15016
15017  switch (AsmPieces.size()) {
15018  default: return false;
15019  case 1:
15020    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15021    // we will turn this bswap into something that will be lowered to logical
15022    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15023    // lower so don't worry about this.
15024    // bswap $0
15025    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15026        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15027        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15028        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15029        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15030        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15031      // No need to check constraints, nothing other than the equivalent of
15032      // "=r,0" would be valid here.
15033      return IntrinsicLowering::LowerToByteSwap(CI);
15034    }
15035
15036    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15037    if (CI->getType()->isIntegerTy(16) &&
15038        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15039        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15040         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15041      AsmPieces.clear();
15042      const std::string &ConstraintsStr = IA->getConstraintString();
15043      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15044      std::sort(AsmPieces.begin(), AsmPieces.end());
15045      if (AsmPieces.size() == 4 &&
15046          AsmPieces[0] == "~{cc}" &&
15047          AsmPieces[1] == "~{dirflag}" &&
15048          AsmPieces[2] == "~{flags}" &&
15049          AsmPieces[3] == "~{fpsr}")
15050      return IntrinsicLowering::LowerToByteSwap(CI);
15051    }
15052    break;
15053  case 3:
15054    if (CI->getType()->isIntegerTy(32) &&
15055        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15056        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15057        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15058        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15059      AsmPieces.clear();
15060      const std::string &ConstraintsStr = IA->getConstraintString();
15061      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15062      std::sort(AsmPieces.begin(), AsmPieces.end());
15063      if (AsmPieces.size() == 4 &&
15064          AsmPieces[0] == "~{cc}" &&
15065          AsmPieces[1] == "~{dirflag}" &&
15066          AsmPieces[2] == "~{flags}" &&
15067          AsmPieces[3] == "~{fpsr}")
15068        return IntrinsicLowering::LowerToByteSwap(CI);
15069    }
15070
15071    if (CI->getType()->isIntegerTy(64)) {
15072      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15073      if (Constraints.size() >= 2 &&
15074          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15075          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15076        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15077        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15078            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15079            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15080          return IntrinsicLowering::LowerToByteSwap(CI);
15081      }
15082    }
15083    break;
15084  }
15085  return false;
15086}
15087
15088
15089
15090/// getConstraintType - Given a constraint letter, return the type of
15091/// constraint it is for this target.
15092X86TargetLowering::ConstraintType
15093X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15094  if (Constraint.size() == 1) {
15095    switch (Constraint[0]) {
15096    case 'R':
15097    case 'q':
15098    case 'Q':
15099    case 'f':
15100    case 't':
15101    case 'u':
15102    case 'y':
15103    case 'x':
15104    case 'Y':
15105    case 'l':
15106      return C_RegisterClass;
15107    case 'a':
15108    case 'b':
15109    case 'c':
15110    case 'd':
15111    case 'S':
15112    case 'D':
15113    case 'A':
15114      return C_Register;
15115    case 'I':
15116    case 'J':
15117    case 'K':
15118    case 'L':
15119    case 'M':
15120    case 'N':
15121    case 'G':
15122    case 'C':
15123    case 'e':
15124    case 'Z':
15125      return C_Other;
15126    default:
15127      break;
15128    }
15129  }
15130  return TargetLowering::getConstraintType(Constraint);
15131}
15132
15133/// Examine constraint type and operand type and determine a weight value.
15134/// This object must already have been set up with the operand type
15135/// and the current alternative constraint selected.
15136TargetLowering::ConstraintWeight
15137  X86TargetLowering::getSingleConstraintMatchWeight(
15138    AsmOperandInfo &info, const char *constraint) const {
15139  ConstraintWeight weight = CW_Invalid;
15140  Value *CallOperandVal = info.CallOperandVal;
15141    // If we don't have a value, we can't do a match,
15142    // but allow it at the lowest weight.
15143  if (CallOperandVal == NULL)
15144    return CW_Default;
15145  Type *type = CallOperandVal->getType();
15146  // Look at the constraint type.
15147  switch (*constraint) {
15148  default:
15149    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15150  case 'R':
15151  case 'q':
15152  case 'Q':
15153  case 'a':
15154  case 'b':
15155  case 'c':
15156  case 'd':
15157  case 'S':
15158  case 'D':
15159  case 'A':
15160    if (CallOperandVal->getType()->isIntegerTy())
15161      weight = CW_SpecificReg;
15162    break;
15163  case 'f':
15164  case 't':
15165  case 'u':
15166      if (type->isFloatingPointTy())
15167        weight = CW_SpecificReg;
15168      break;
15169  case 'y':
15170      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15171        weight = CW_SpecificReg;
15172      break;
15173  case 'x':
15174  case 'Y':
15175    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15176        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15177      weight = CW_Register;
15178    break;
15179  case 'I':
15180    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15181      if (C->getZExtValue() <= 31)
15182        weight = CW_Constant;
15183    }
15184    break;
15185  case 'J':
15186    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15187      if (C->getZExtValue() <= 63)
15188        weight = CW_Constant;
15189    }
15190    break;
15191  case 'K':
15192    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15193      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15194        weight = CW_Constant;
15195    }
15196    break;
15197  case 'L':
15198    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15199      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15200        weight = CW_Constant;
15201    }
15202    break;
15203  case 'M':
15204    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15205      if (C->getZExtValue() <= 3)
15206        weight = CW_Constant;
15207    }
15208    break;
15209  case 'N':
15210    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15211      if (C->getZExtValue() <= 0xff)
15212        weight = CW_Constant;
15213    }
15214    break;
15215  case 'G':
15216  case 'C':
15217    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15218      weight = CW_Constant;
15219    }
15220    break;
15221  case 'e':
15222    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15223      if ((C->getSExtValue() >= -0x80000000LL) &&
15224          (C->getSExtValue() <= 0x7fffffffLL))
15225        weight = CW_Constant;
15226    }
15227    break;
15228  case 'Z':
15229    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15230      if (C->getZExtValue() <= 0xffffffff)
15231        weight = CW_Constant;
15232    }
15233    break;
15234  }
15235  return weight;
15236}
15237
15238/// LowerXConstraint - try to replace an X constraint, which matches anything,
15239/// with another that has more specific requirements based on the type of the
15240/// corresponding operand.
15241const char *X86TargetLowering::
15242LowerXConstraint(EVT ConstraintVT) const {
15243  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15244  // 'f' like normal targets.
15245  if (ConstraintVT.isFloatingPoint()) {
15246    if (Subtarget->hasSSE2())
15247      return "Y";
15248    if (Subtarget->hasSSE1())
15249      return "x";
15250  }
15251
15252  return TargetLowering::LowerXConstraint(ConstraintVT);
15253}
15254
15255/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15256/// vector.  If it is invalid, don't add anything to Ops.
15257void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15258                                                     std::string &Constraint,
15259                                                     std::vector<SDValue>&Ops,
15260                                                     SelectionDAG &DAG) const {
15261  SDValue Result(0, 0);
15262
15263  // Only support length 1 constraints for now.
15264  if (Constraint.length() > 1) return;
15265
15266  char ConstraintLetter = Constraint[0];
15267  switch (ConstraintLetter) {
15268  default: break;
15269  case 'I':
15270    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15271      if (C->getZExtValue() <= 31) {
15272        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15273        break;
15274      }
15275    }
15276    return;
15277  case 'J':
15278    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15279      if (C->getZExtValue() <= 63) {
15280        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15281        break;
15282      }
15283    }
15284    return;
15285  case 'K':
15286    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15287      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15288        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15289        break;
15290      }
15291    }
15292    return;
15293  case 'N':
15294    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15295      if (C->getZExtValue() <= 255) {
15296        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15297        break;
15298      }
15299    }
15300    return;
15301  case 'e': {
15302    // 32-bit signed value
15303    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15304      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15305                                           C->getSExtValue())) {
15306        // Widen to 64 bits here to get it sign extended.
15307        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15308        break;
15309      }
15310    // FIXME gcc accepts some relocatable values here too, but only in certain
15311    // memory models; it's complicated.
15312    }
15313    return;
15314  }
15315  case 'Z': {
15316    // 32-bit unsigned value
15317    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15318      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15319                                           C->getZExtValue())) {
15320        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15321        break;
15322      }
15323    }
15324    // FIXME gcc accepts some relocatable values here too, but only in certain
15325    // memory models; it's complicated.
15326    return;
15327  }
15328  case 'i': {
15329    // Literal immediates are always ok.
15330    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15331      // Widen to 64 bits here to get it sign extended.
15332      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15333      break;
15334    }
15335
15336    // In any sort of PIC mode addresses need to be computed at runtime by
15337    // adding in a register or some sort of table lookup.  These can't
15338    // be used as immediates.
15339    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15340      return;
15341
15342    // If we are in non-pic codegen mode, we allow the address of a global (with
15343    // an optional displacement) to be used with 'i'.
15344    GlobalAddressSDNode *GA = 0;
15345    int64_t Offset = 0;
15346
15347    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15348    while (1) {
15349      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15350        Offset += GA->getOffset();
15351        break;
15352      } else if (Op.getOpcode() == ISD::ADD) {
15353        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15354          Offset += C->getZExtValue();
15355          Op = Op.getOperand(0);
15356          continue;
15357        }
15358      } else if (Op.getOpcode() == ISD::SUB) {
15359        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15360          Offset += -C->getZExtValue();
15361          Op = Op.getOperand(0);
15362          continue;
15363        }
15364      }
15365
15366      // Otherwise, this isn't something we can handle, reject it.
15367      return;
15368    }
15369
15370    const GlobalValue *GV = GA->getGlobal();
15371    // If we require an extra load to get this address, as in PIC mode, we
15372    // can't accept it.
15373    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15374                                                        getTargetMachine())))
15375      return;
15376
15377    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15378                                        GA->getValueType(0), Offset);
15379    break;
15380  }
15381  }
15382
15383  if (Result.getNode()) {
15384    Ops.push_back(Result);
15385    return;
15386  }
15387  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15388}
15389
15390std::pair<unsigned, const TargetRegisterClass*>
15391X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15392                                                EVT VT) const {
15393  // First, see if this is a constraint that directly corresponds to an LLVM
15394  // register class.
15395  if (Constraint.size() == 1) {
15396    // GCC Constraint Letters
15397    switch (Constraint[0]) {
15398    default: break;
15399      // TODO: Slight differences here in allocation order and leaving
15400      // RIP in the class. Do they matter any more here than they do
15401      // in the normal allocation?
15402    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15403      if (Subtarget->is64Bit()) {
15404	if (VT == MVT::i32 || VT == MVT::f32)
15405	  return std::make_pair(0U, X86::GR32RegisterClass);
15406	else if (VT == MVT::i16)
15407	  return std::make_pair(0U, X86::GR16RegisterClass);
15408	else if (VT == MVT::i8 || VT == MVT::i1)
15409	  return std::make_pair(0U, X86::GR8RegisterClass);
15410	else if (VT == MVT::i64 || VT == MVT::f64)
15411	  return std::make_pair(0U, X86::GR64RegisterClass);
15412	break;
15413      }
15414      // 32-bit fallthrough
15415    case 'Q':   // Q_REGS
15416      if (VT == MVT::i32 || VT == MVT::f32)
15417	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15418      else if (VT == MVT::i16)
15419	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15420      else if (VT == MVT::i8 || VT == MVT::i1)
15421	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15422      else if (VT == MVT::i64)
15423	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15424      break;
15425    case 'r':   // GENERAL_REGS
15426    case 'l':   // INDEX_REGS
15427      if (VT == MVT::i8 || VT == MVT::i1)
15428        return std::make_pair(0U, X86::GR8RegisterClass);
15429      if (VT == MVT::i16)
15430        return std::make_pair(0U, X86::GR16RegisterClass);
15431      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15432        return std::make_pair(0U, X86::GR32RegisterClass);
15433      return std::make_pair(0U, X86::GR64RegisterClass);
15434    case 'R':   // LEGACY_REGS
15435      if (VT == MVT::i8 || VT == MVT::i1)
15436        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15437      if (VT == MVT::i16)
15438        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15439      if (VT == MVT::i32 || !Subtarget->is64Bit())
15440        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15441      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15442    case 'f':  // FP Stack registers.
15443      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15444      // value to the correct fpstack register class.
15445      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15446        return std::make_pair(0U, X86::RFP32RegisterClass);
15447      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15448        return std::make_pair(0U, X86::RFP64RegisterClass);
15449      return std::make_pair(0U, X86::RFP80RegisterClass);
15450    case 'y':   // MMX_REGS if MMX allowed.
15451      if (!Subtarget->hasMMX()) break;
15452      return std::make_pair(0U, X86::VR64RegisterClass);
15453    case 'Y':   // SSE_REGS if SSE2 allowed
15454      if (!Subtarget->hasSSE2()) break;
15455      // FALL THROUGH.
15456    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15457      if (!Subtarget->hasSSE1()) break;
15458
15459      switch (VT.getSimpleVT().SimpleTy) {
15460      default: break;
15461      // Scalar SSE types.
15462      case MVT::f32:
15463      case MVT::i32:
15464        return std::make_pair(0U, X86::FR32RegisterClass);
15465      case MVT::f64:
15466      case MVT::i64:
15467        return std::make_pair(0U, X86::FR64RegisterClass);
15468      // Vector types.
15469      case MVT::v16i8:
15470      case MVT::v8i16:
15471      case MVT::v4i32:
15472      case MVT::v2i64:
15473      case MVT::v4f32:
15474      case MVT::v2f64:
15475        return std::make_pair(0U, X86::VR128RegisterClass);
15476      // AVX types.
15477      case MVT::v32i8:
15478      case MVT::v16i16:
15479      case MVT::v8i32:
15480      case MVT::v4i64:
15481      case MVT::v8f32:
15482      case MVT::v4f64:
15483        return std::make_pair(0U, X86::VR256RegisterClass);
15484
15485      }
15486      break;
15487    }
15488  }
15489
15490  // Use the default implementation in TargetLowering to convert the register
15491  // constraint into a member of a register class.
15492  std::pair<unsigned, const TargetRegisterClass*> Res;
15493  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15494
15495  // Not found as a standard register?
15496  if (Res.second == 0) {
15497    // Map st(0) -> st(7) -> ST0
15498    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15499        tolower(Constraint[1]) == 's' &&
15500        tolower(Constraint[2]) == 't' &&
15501        Constraint[3] == '(' &&
15502        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15503        Constraint[5] == ')' &&
15504        Constraint[6] == '}') {
15505
15506      Res.first = X86::ST0+Constraint[4]-'0';
15507      Res.second = X86::RFP80RegisterClass;
15508      return Res;
15509    }
15510
15511    // GCC allows "st(0)" to be called just plain "st".
15512    if (StringRef("{st}").equals_lower(Constraint)) {
15513      Res.first = X86::ST0;
15514      Res.second = X86::RFP80RegisterClass;
15515      return Res;
15516    }
15517
15518    // flags -> EFLAGS
15519    if (StringRef("{flags}").equals_lower(Constraint)) {
15520      Res.first = X86::EFLAGS;
15521      Res.second = X86::CCRRegisterClass;
15522      return Res;
15523    }
15524
15525    // 'A' means EAX + EDX.
15526    if (Constraint == "A") {
15527      Res.first = X86::EAX;
15528      Res.second = X86::GR32_ADRegisterClass;
15529      return Res;
15530    }
15531    return Res;
15532  }
15533
15534  // Otherwise, check to see if this is a register class of the wrong value
15535  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15536  // turn into {ax},{dx}.
15537  if (Res.second->hasType(VT))
15538    return Res;   // Correct type already, nothing to do.
15539
15540  // All of the single-register GCC register classes map their values onto
15541  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15542  // really want an 8-bit or 32-bit register, map to the appropriate register
15543  // class and return the appropriate register.
15544  if (Res.second == X86::GR16RegisterClass) {
15545    if (VT == MVT::i8) {
15546      unsigned DestReg = 0;
15547      switch (Res.first) {
15548      default: break;
15549      case X86::AX: DestReg = X86::AL; break;
15550      case X86::DX: DestReg = X86::DL; break;
15551      case X86::CX: DestReg = X86::CL; break;
15552      case X86::BX: DestReg = X86::BL; break;
15553      }
15554      if (DestReg) {
15555        Res.first = DestReg;
15556        Res.second = X86::GR8RegisterClass;
15557      }
15558    } else if (VT == MVT::i32) {
15559      unsigned DestReg = 0;
15560      switch (Res.first) {
15561      default: break;
15562      case X86::AX: DestReg = X86::EAX; break;
15563      case X86::DX: DestReg = X86::EDX; break;
15564      case X86::CX: DestReg = X86::ECX; break;
15565      case X86::BX: DestReg = X86::EBX; break;
15566      case X86::SI: DestReg = X86::ESI; break;
15567      case X86::DI: DestReg = X86::EDI; break;
15568      case X86::BP: DestReg = X86::EBP; break;
15569      case X86::SP: DestReg = X86::ESP; break;
15570      }
15571      if (DestReg) {
15572        Res.first = DestReg;
15573        Res.second = X86::GR32RegisterClass;
15574      }
15575    } else if (VT == MVT::i64) {
15576      unsigned DestReg = 0;
15577      switch (Res.first) {
15578      default: break;
15579      case X86::AX: DestReg = X86::RAX; break;
15580      case X86::DX: DestReg = X86::RDX; break;
15581      case X86::CX: DestReg = X86::RCX; break;
15582      case X86::BX: DestReg = X86::RBX; break;
15583      case X86::SI: DestReg = X86::RSI; break;
15584      case X86::DI: DestReg = X86::RDI; break;
15585      case X86::BP: DestReg = X86::RBP; break;
15586      case X86::SP: DestReg = X86::RSP; break;
15587      }
15588      if (DestReg) {
15589        Res.first = DestReg;
15590        Res.second = X86::GR64RegisterClass;
15591      }
15592    }
15593  } else if (Res.second == X86::FR32RegisterClass ||
15594             Res.second == X86::FR64RegisterClass ||
15595             Res.second == X86::VR128RegisterClass) {
15596    // Handle references to XMM physical registers that got mapped into the
15597    // wrong class.  This can happen with constraints like {xmm0} where the
15598    // target independent register mapper will just pick the first match it can
15599    // find, ignoring the required type.
15600    if (VT == MVT::f32)
15601      Res.second = X86::FR32RegisterClass;
15602    else if (VT == MVT::f64)
15603      Res.second = X86::FR64RegisterClass;
15604    else if (X86::VR128RegisterClass->hasType(VT))
15605      Res.second = X86::VR128RegisterClass;
15606  }
15607
15608  return Res;
15609}
15610