X86ISelLowering.cpp revision 87c8935fd55f3177e787e192b5ed4686b6073c61
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/StringExtras.h"
39#include "llvm/ParameterAttributes.h"
40using namespace llvm;
41
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43  : TargetLowering(TM) {
44  Subtarget = &TM.getSubtarget<X86Subtarget>();
45  X86ScalarSSEf64 = Subtarget->hasSSE2();
46  X86ScalarSSEf32 = Subtarget->hasSSE1();
47  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
48
49
50  RegInfo = TM.getRegisterInfo();
51
52  // Set up the TargetLowering object.
53
54  // X86 is weird, it always uses i8 for shift amounts and setcc results.
55  setShiftAmountType(MVT::i8);
56  setSetCCResultType(MVT::i8);
57  setSetCCResultContents(ZeroOrOneSetCCResult);
58  setSchedulingPreference(SchedulingForRegPressure);
59  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
60  setStackPointerRegisterToSaveRestore(X86StackPtr);
61
62  if (Subtarget->isTargetDarwin()) {
63    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
64    setUseUnderscoreSetJmp(false);
65    setUseUnderscoreLongJmp(false);
66  } else if (Subtarget->isTargetMingw()) {
67    // MS runtime is weird: it exports _setjmp, but longjmp!
68    setUseUnderscoreSetJmp(true);
69    setUseUnderscoreLongJmp(false);
70  } else {
71    setUseUnderscoreSetJmp(true);
72    setUseUnderscoreLongJmp(true);
73  }
74
75  // Set up the register classes.
76  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
77  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
78  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
79  if (Subtarget->is64Bit())
80    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
81
82  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
83
84  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
85  // operation.
86  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
87  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
88  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
89
90  if (Subtarget->is64Bit()) {
91    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
92    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
93  } else {
94    if (X86ScalarSSEf64)
95      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
96      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
97    else
98      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
99  }
100
101  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
102  // this operation.
103  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
104  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
105  // SSE has no i16 to fp conversion, only i32
106  if (X86ScalarSSEf32) {
107    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
108    // f32 and f64 cases are Legal, f80 case is not
109    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
110  } else {
111    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
112    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
113  }
114
115  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
116  // are Legal, f80 is custom lowered.
117  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
118  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
119
120  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
121  // this operation.
122  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
123  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
124
125  if (X86ScalarSSEf32) {
126    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
127    // f32 and f64 cases are Legal, f80 case is not
128    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
129  } else {
130    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
131    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
132  }
133
134  // Handle FP_TO_UINT by promoting the destination to a larger signed
135  // conversion.
136  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
137  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
138  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
139
140  if (Subtarget->is64Bit()) {
141    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
142    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
143  } else {
144    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
145      // Expand FP_TO_UINT into a select.
146      // FIXME: We would like to use a Custom expander here eventually to do
147      // the optimal thing for SSE vs. the default expansion in the legalizer.
148      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
149    else
150      // With SSE3 we can use fisttpll to convert to a signed i64.
151      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
152  }
153
154  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
155  if (!X86ScalarSSEf64) {
156    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
157    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
158  }
159
160  // Scalar integer multiply, multiply-high, divide, and remainder are
161  // lowered to use operations that produce two results, to match the
162  // available instructions. This exposes the two-result form to trivial
163  // CSE, which is able to combine x/y and x%y into a single instruction,
164  // for example. The single-result multiply instructions are introduced
165  // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
166  // is not needed.
167  setOperationAction(ISD::MUL             , MVT::i8    , Expand);
168  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
169  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
170  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
171  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
172  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
173  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
174  setOperationAction(ISD::MUL             , MVT::i16   , Expand);
175  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
176  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
177  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
178  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
179  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
180  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
181  setOperationAction(ISD::MUL             , MVT::i32   , Expand);
182  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
183  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
184  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
185  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
186  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
187  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
188  setOperationAction(ISD::MUL             , MVT::i64   , Expand);
189  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
190  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
191  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
192  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
193  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
194  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
195
196  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
197  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
198  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
199  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
200  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
201  if (Subtarget->is64Bit())
202    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
203  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
204  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
205  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
206  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
207  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
208
209  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
210  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
211  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
212  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
213  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
214  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
215  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
216  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
217  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
218  if (Subtarget->is64Bit()) {
219    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
220    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
221    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
222  }
223
224  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
225  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
226
227  // These should be promoted to a larger select which is supported.
228  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
229  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
230  // X86 wants to expand cmov itself.
231  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
232  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
233  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
234  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
235  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
236  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
237  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
238  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
239  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
240  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
241  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
242  if (Subtarget->is64Bit()) {
243    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
244    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
245  }
246  // X86 ret instruction may pop stack.
247  setOperationAction(ISD::RET             , MVT::Other, Custom);
248  if (!Subtarget->is64Bit())
249    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
250
251  // Darwin ABI issue.
252  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
253  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
254  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
255  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
256  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
259    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
260    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
261    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
262  }
263  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
264  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
265  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
266  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
267  // X86 wants to expand memset / memcpy itself.
268  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
269  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
270
271  // Use the default ISD::LOCATION expansion.
272  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
273  // FIXME - use subtarget debug flags
274  if (!Subtarget->isTargetDarwin() &&
275      !Subtarget->isTargetELF() &&
276      !Subtarget->isTargetCygMing())
277    setOperationAction(ISD::LABEL, MVT::Other, Expand);
278
279  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
280  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
281  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
282  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
283  if (Subtarget->is64Bit()) {
284    // FIXME: Verify
285    setExceptionPointerRegister(X86::RAX);
286    setExceptionSelectorRegister(X86::RDX);
287  } else {
288    setExceptionPointerRegister(X86::EAX);
289    setExceptionSelectorRegister(X86::EDX);
290  }
291  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
292
293  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
294
295  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
296  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
297  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
298  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
299  if (Subtarget->is64Bit())
300    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
301  else
302    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
303
304  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
305  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
306  if (Subtarget->is64Bit())
307    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
308  if (Subtarget->isTargetCygMing())
309    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
310  else
311    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
312
313  if (X86ScalarSSEf64) {
314    // f32 and f64 use SSE.
315    // Set up the FP register classes.
316    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
317    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
318
319    // Use ANDPD to simulate FABS.
320    setOperationAction(ISD::FABS , MVT::f64, Custom);
321    setOperationAction(ISD::FABS , MVT::f32, Custom);
322
323    // Use XORP to simulate FNEG.
324    setOperationAction(ISD::FNEG , MVT::f64, Custom);
325    setOperationAction(ISD::FNEG , MVT::f32, Custom);
326
327    // Use ANDPD and ORPD to simulate FCOPYSIGN.
328    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330
331    // We don't support sin/cos/fmod
332    setOperationAction(ISD::FSIN , MVT::f64, Expand);
333    setOperationAction(ISD::FCOS , MVT::f64, Expand);
334    setOperationAction(ISD::FREM , MVT::f64, Expand);
335    setOperationAction(ISD::FSIN , MVT::f32, Expand);
336    setOperationAction(ISD::FCOS , MVT::f32, Expand);
337    setOperationAction(ISD::FREM , MVT::f32, Expand);
338
339    // Expand FP immediates into loads from the stack, except for the special
340    // cases we handle.
341    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
342    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
343    addLegalFPImmediate(APFloat(+0.0)); // xorpd
344    addLegalFPImmediate(APFloat(+0.0f)); // xorps
345
346    // Conversions to long double (in X87) go through memory.
347    setConvertAction(MVT::f32, MVT::f80, Expand);
348    setConvertAction(MVT::f64, MVT::f80, Expand);
349
350    // Conversions from long double (in X87) go through memory.
351    setConvertAction(MVT::f80, MVT::f32, Expand);
352    setConvertAction(MVT::f80, MVT::f64, Expand);
353  } else if (X86ScalarSSEf32) {
354    // Use SSE for f32, x87 for f64.
355    // Set up the FP register classes.
356    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
357    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
358
359    // Use ANDPS to simulate FABS.
360    setOperationAction(ISD::FABS , MVT::f32, Custom);
361
362    // Use XORP to simulate FNEG.
363    setOperationAction(ISD::FNEG , MVT::f32, Custom);
364
365    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
366
367    // Use ANDPS and ORPS to simulate FCOPYSIGN.
368    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
369    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
370
371    // We don't support sin/cos/fmod
372    setOperationAction(ISD::FSIN , MVT::f32, Expand);
373    setOperationAction(ISD::FCOS , MVT::f32, Expand);
374    setOperationAction(ISD::FREM , MVT::f32, Expand);
375
376    // Expand FP immediates into loads from the stack, except for the special
377    // cases we handle.
378    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
379    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
380    addLegalFPImmediate(APFloat(+0.0f)); // xorps
381    addLegalFPImmediate(APFloat(+0.0)); // FLD0
382    addLegalFPImmediate(APFloat(+1.0)); // FLD1
383    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
384    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
385
386    // SSE->x87 conversions go through memory.
387    setConvertAction(MVT::f32, MVT::f64, Expand);
388    setConvertAction(MVT::f32, MVT::f80, Expand);
389
390    // x87->SSE truncations need to go through memory.
391    setConvertAction(MVT::f80, MVT::f32, Expand);
392    setConvertAction(MVT::f64, MVT::f32, Expand);
393    // And x87->x87 truncations also.
394    setConvertAction(MVT::f80, MVT::f64, Expand);
395
396    if (!UnsafeFPMath) {
397      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
398      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
399    }
400  } else {
401    // f32 and f64 in x87.
402    // Set up the FP register classes.
403    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
404    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
405
406    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
407    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
408    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
409    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
410
411    // Floating truncations need to go through memory.
412    setConvertAction(MVT::f80, MVT::f32, Expand);
413    setConvertAction(MVT::f64, MVT::f32, Expand);
414    setConvertAction(MVT::f80, MVT::f64, Expand);
415
416    if (!UnsafeFPMath) {
417      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
418      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
419    }
420
421    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
422    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
423    addLegalFPImmediate(APFloat(+0.0)); // FLD0
424    addLegalFPImmediate(APFloat(+1.0)); // FLD1
425    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
426    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
427    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
428    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
429    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
430    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
431  }
432
433  // Long double always uses X87.
434  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
435  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
436  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
437  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
438  if (!UnsafeFPMath) {
439    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
440    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
441  }
442
443  // Always use a library call for pow.
444  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
445  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
446  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
447
448  // First set operation action for all vector types to expand. Then we
449  // will selectively turn on ones that can be effectively codegen'd.
450  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
451       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
452    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
453    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
454    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
455    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
456    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
457    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
458    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
459    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
460    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
461    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
462    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
463    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
464    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
465    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
466    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
467    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
468    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
469    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
470    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
471    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
472    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
473    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
474    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
475    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
476    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
477    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
478    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
479    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
480    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
481    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
482    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
483  }
484
485  if (Subtarget->hasMMX()) {
486    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
487    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
488    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
489    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
490
491    // FIXME: add MMX packed arithmetics
492
493    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
494    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
495    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
496    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
497
498    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
499    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
500    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
501
502    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
503    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
504
505    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
506    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
507    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
508    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
509    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
510    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
511    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
512
513    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
514    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
515    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
516    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
517    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
518    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
519    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
520
521    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
522    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
523    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
524    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
525    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
526    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
527    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
528
529    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
530    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
531    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
532    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
533    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
534    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
535    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
536
537    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
538    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
539    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
540    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
541
542    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
543    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
544    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
545    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
546
547    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
548    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
549    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
550    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
551  }
552
553  if (Subtarget->hasSSE1()) {
554    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
555
556    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
557    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
558    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
559    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
560    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
561    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
562    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
563    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
564    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
566    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
567  }
568
569  if (Subtarget->hasSSE2()) {
570    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
571    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
572    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
573    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
574    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
575
576    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
577    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
578    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
579    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
580    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
581    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
582    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
583    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
584    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
585    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
586    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
587    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
588    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
589    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
590    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
591
592    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
593    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
594    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
595    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
596    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
597    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
598
599    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
600    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
601      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
602      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
603      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
604    }
605    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
606    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
607    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
608    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
609    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
610    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
611
612    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
613    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
614      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
615      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
616      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
617      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
618      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
619      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
620      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
621      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
622      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
623      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
624    }
625
626    // Custom lower v2i64 and v2f64 selects.
627    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
628    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
629    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
630    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
631  }
632
633  // We want to custom lower some of our intrinsics.
634  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
635
636  // We have target-specific dag combine patterns for the following nodes:
637  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
638  setTargetDAGCombine(ISD::SELECT);
639
640  computeRegisterProperties();
641
642  // FIXME: These should be based on subtarget info. Plus, the values should
643  // be smaller when we are in optimizing for size mode.
644  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
645  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
646  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
647  allowUnalignedMemoryAccesses = true; // x86 supports it!
648}
649
650
651//===----------------------------------------------------------------------===//
652//               Return Value Calling Convention Implementation
653//===----------------------------------------------------------------------===//
654
655#include "X86GenCallingConv.inc"
656
657/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
658/// exists skip possible ISD:TokenFactor.
659static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
660  if (Chain.getOpcode()==X86ISD::TAILCALL) {
661    return Chain;
662  } else if (Chain.getOpcode()==ISD::TokenFactor) {
663    if (Chain.getNumOperands() &&
664        Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
665      return Chain.getOperand(0);
666  }
667  return Chain;
668}
669
670/// LowerRET - Lower an ISD::RET node.
671SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
672  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
673
674  SmallVector<CCValAssign, 16> RVLocs;
675  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
676  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
677  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
678  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
679
680  // If this is the first return lowered for this function, add the regs to the
681  // liveout set for the function.
682  if (DAG.getMachineFunction().liveout_empty()) {
683    for (unsigned i = 0; i != RVLocs.size(); ++i)
684      if (RVLocs[i].isRegLoc())
685        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
686  }
687  SDOperand Chain = Op.getOperand(0);
688
689  // Handle tail call return.
690  Chain = GetPossiblePreceedingTailCall(Chain);
691  if (Chain.getOpcode() == X86ISD::TAILCALL) {
692    SDOperand TailCall = Chain;
693    SDOperand TargetAddress = TailCall.getOperand(1);
694    SDOperand StackAdjustment = TailCall.getOperand(2);
695    assert ( ((TargetAddress.getOpcode() == ISD::Register &&
696               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
697                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
698              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
699              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
700             "Expecting an global address, external symbol, or register");
701    assert( StackAdjustment.getOpcode() == ISD::Constant &&
702            "Expecting a const value");
703
704    SmallVector<SDOperand,8> Operands;
705    Operands.push_back(Chain.getOperand(0));
706    Operands.push_back(TargetAddress);
707    Operands.push_back(StackAdjustment);
708    // Copy registers used by the call. Last operand is a flag so it is not
709    // copied.
710    for(unsigned i=3; i < TailCall.getNumOperands()-1;i++) {
711      Operands.push_back(Chain.getOperand(i));
712    }
713    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0], Operands.size());
714  }
715
716  // Regular return.
717  SDOperand Flag;
718
719  // Copy the result values into the output registers.
720  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
721      RVLocs[0].getLocReg() != X86::ST0) {
722    for (unsigned i = 0; i != RVLocs.size(); ++i) {
723      CCValAssign &VA = RVLocs[i];
724      assert(VA.isRegLoc() && "Can only return in registers!");
725      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
726                               Flag);
727      Flag = Chain.getValue(1);
728    }
729  } else {
730    // We need to handle a destination of ST0 specially, because it isn't really
731    // a register.
732    SDOperand Value = Op.getOperand(1);
733
734    // If this is an FP return with ScalarSSE, we need to move the value from
735    // an XMM register onto the fp-stack.
736    if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
737        (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
738      SDOperand MemLoc;
739
740      // If this is a load into a scalarsse value, don't store the loaded value
741      // back to the stack, only to reload it: just replace the scalar-sse load.
742      if (ISD::isNON_EXTLoad(Value.Val) &&
743          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
744        Chain  = Value.getOperand(0);
745        MemLoc = Value.getOperand(1);
746      } else {
747        // Spill the value to memory and reload it into top of stack.
748        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
749        MachineFunction &MF = DAG.getMachineFunction();
750        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
751        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
752        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
753      }
754      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
755      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
756      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
757      Chain = Value.getValue(1);
758    }
759
760    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
761    SDOperand Ops[] = { Chain, Value };
762    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
763    Flag = Chain.getValue(1);
764  }
765
766  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
767  if (Flag.Val)
768    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
769  else
770    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
771}
772
773
774/// LowerCallResult - Lower the result values of an ISD::CALL into the
775/// appropriate copies out of appropriate physical registers.  This assumes that
776/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
777/// being lowered.  The returns a SDNode with the same number of values as the
778/// ISD::CALL.
779SDNode *X86TargetLowering::
780LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
781                unsigned CallingConv, SelectionDAG &DAG) {
782
783  // Assign locations to each value returned by this call.
784  SmallVector<CCValAssign, 16> RVLocs;
785  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
786  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
787  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
788
789
790  SmallVector<SDOperand, 8> ResultVals;
791
792  // Copy all of the result registers out of their specified physreg.
793  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
794    for (unsigned i = 0; i != RVLocs.size(); ++i) {
795      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
796                                 RVLocs[i].getValVT(), InFlag).getValue(1);
797      InFlag = Chain.getValue(2);
798      ResultVals.push_back(Chain.getValue(0));
799    }
800  } else {
801    // Copies from the FP stack are special, as ST0 isn't a valid register
802    // before the fp stackifier runs.
803
804    // Copy ST0 into an RFP register with FP_GET_RESULT.
805    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
806    SDOperand GROps[] = { Chain, InFlag };
807    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
808    Chain  = RetVal.getValue(1);
809    InFlag = RetVal.getValue(2);
810
811    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
812    // an XMM register.
813    if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
814        (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
815      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
816      // shouldn't be necessary except that RFP cannot be live across
817      // multiple blocks. When stackifier is fixed, they can be uncoupled.
818      MachineFunction &MF = DAG.getMachineFunction();
819      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
820      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
821      SDOperand Ops[] = {
822        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
823      };
824      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
825      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
826      Chain = RetVal.getValue(1);
827    }
828    ResultVals.push_back(RetVal);
829  }
830
831  // Merge everything together with a MERGE_VALUES node.
832  ResultVals.push_back(Chain);
833  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
834                     &ResultVals[0], ResultVals.size()).Val;
835}
836
837
838//===----------------------------------------------------------------------===//
839//                C & StdCall & Fast Calling Convention implementation
840//===----------------------------------------------------------------------===//
841//  StdCall calling convention seems to be standard for many Windows' API
842//  routines and around. It differs from C calling convention just a little:
843//  callee should clean up the stack, not caller. Symbols should be also
844//  decorated in some fancy way :) It doesn't support any vector arguments.
845//  For info on fast calling convention see Fast Calling Convention (tail call)
846//  implementation LowerX86_32FastCCCallTo.
847
848/// AddLiveIn - This helper function adds the specified physical register to the
849/// MachineFunction as a live in value.  It also creates a corresponding virtual
850/// register for it.
851static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
852                          const TargetRegisterClass *RC) {
853  assert(RC->contains(PReg) && "Not the correct regclass!");
854  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
855  MF.addLiveIn(PReg, VReg);
856  return VReg;
857}
858
859// align stack arguments according to platform alignment needed for tail calls
860unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
861
862SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
863                                              const CCValAssign &VA,
864                                              MachineFrameInfo *MFI,
865                                              SDOperand Root, unsigned i) {
866  // Create the nodes corresponding to a load from this parameter slot.
867  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
868                                  VA.getLocMemOffset());
869  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
870
871  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
872
873  if (Flags & ISD::ParamFlags::ByVal)
874    return FIN;
875  else
876    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
877}
878
879SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
880                                               bool isStdCall) {
881  unsigned NumArgs = Op.Val->getNumValues() - 1;
882  MachineFunction &MF = DAG.getMachineFunction();
883  MachineFrameInfo *MFI = MF.getFrameInfo();
884  SDOperand Root = Op.getOperand(0);
885  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
886  unsigned CC = MF.getFunction()->getCallingConv();
887  // Assign locations to all of the incoming arguments.
888  SmallVector<CCValAssign, 16> ArgLocs;
889  CCState CCInfo(CC, isVarArg,
890                 getTargetMachine(), ArgLocs);
891  // Check for possible tail call calling convention.
892  if (CC == CallingConv::Fast && PerformTailCallOpt)
893    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
894  else
895    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
896
897  SmallVector<SDOperand, 8> ArgValues;
898  unsigned LastVal = ~0U;
899  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
900    CCValAssign &VA = ArgLocs[i];
901    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
902    // places.
903    assert(VA.getValNo() != LastVal &&
904           "Don't support value assigned to multiple locs yet");
905    LastVal = VA.getValNo();
906
907    if (VA.isRegLoc()) {
908      MVT::ValueType RegVT = VA.getLocVT();
909      TargetRegisterClass *RC;
910      if (RegVT == MVT::i32)
911        RC = X86::GR32RegisterClass;
912      else {
913        assert(MVT::isVector(RegVT));
914        RC = X86::VR128RegisterClass;
915      }
916
917      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
918      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
919
920      // If this is an 8 or 16-bit value, it is really passed promoted to 32
921      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
922      // right size.
923      if (VA.getLocInfo() == CCValAssign::SExt)
924        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
925                               DAG.getValueType(VA.getValVT()));
926      else if (VA.getLocInfo() == CCValAssign::ZExt)
927        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
928                               DAG.getValueType(VA.getValVT()));
929
930      if (VA.getLocInfo() != CCValAssign::Full)
931        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
932
933      ArgValues.push_back(ArgValue);
934    } else {
935      assert(VA.isMemLoc());
936      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
937    }
938  }
939
940  unsigned StackSize = CCInfo.getNextStackOffset();
941  // align stack specially for tail calls
942  if (CC==CallingConv::Fast)
943    StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
944
945  ArgValues.push_back(Root);
946
947  // If the function takes variable number of arguments, make a frame index for
948  // the start of the first vararg value... for expansion of llvm.va_start.
949  if (isVarArg)
950    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
951
952  // Tail call calling convention (CallingConv::Fast) does not support varargs.
953  assert( !(isVarArg && CC == CallingConv::Fast) &&
954         "CallingConv::Fast does not support varargs.");
955
956  if (isStdCall && !isVarArg &&
957      (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
958    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
959    BytesCallerReserves = 0;
960  } else {
961    BytesToPopOnReturn  = 0; // Callee pops nothing.
962
963    // If this is an sret function, the return should pop the hidden pointer.
964    if (NumArgs &&
965        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
966         ISD::ParamFlags::StructReturn))
967      BytesToPopOnReturn = 4;
968
969    BytesCallerReserves = StackSize;
970  }
971
972  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
973
974  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
975  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
976
977  // Return the new list of results.
978  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
979                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
980}
981
982SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
983                                            unsigned CC) {
984  SDOperand Chain     = Op.getOperand(0);
985  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
986  SDOperand Callee    = Op.getOperand(4);
987  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
988
989  // Analyze operands of the call, assigning locations to each operand.
990  SmallVector<CCValAssign, 16> ArgLocs;
991  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
992  if(CC==CallingConv::Fast && PerformTailCallOpt)
993    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
994  else
995    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
996
997  // Get a count of how many bytes are to be pushed on the stack.
998  unsigned NumBytes = CCInfo.getNextStackOffset();
999  if (CC==CallingConv::Fast)
1000    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1001
1002  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1003
1004  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1005  SmallVector<SDOperand, 8> MemOpChains;
1006
1007  SDOperand StackPtr;
1008
1009  // Walk the register/memloc assignments, inserting copies/loads.
1010  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1011    CCValAssign &VA = ArgLocs[i];
1012    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1013
1014    // Promote the value if needed.
1015    switch (VA.getLocInfo()) {
1016    default: assert(0 && "Unknown loc info!");
1017    case CCValAssign::Full: break;
1018    case CCValAssign::SExt:
1019      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1020      break;
1021    case CCValAssign::ZExt:
1022      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1023      break;
1024    case CCValAssign::AExt:
1025      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1026      break;
1027    }
1028
1029    if (VA.isRegLoc()) {
1030      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1031    } else {
1032      assert(VA.isMemLoc());
1033      if (StackPtr.Val == 0)
1034        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1035
1036      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1037                                             Arg));
1038    }
1039  }
1040
1041  // If the first argument is an sret pointer, remember it.
1042  bool isSRet = NumOps &&
1043    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1044     ISD::ParamFlags::StructReturn);
1045
1046  if (!MemOpChains.empty())
1047    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1048                        &MemOpChains[0], MemOpChains.size());
1049
1050  // Build a sequence of copy-to-reg nodes chained together with token chain
1051  // and flag operands which copy the outgoing args into registers.
1052  SDOperand InFlag;
1053  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1054    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1055                             InFlag);
1056    InFlag = Chain.getValue(1);
1057  }
1058
1059  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1060  // GOT pointer.
1061  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1062      Subtarget->isPICStyleGOT()) {
1063    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1064                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1065                             InFlag);
1066    InFlag = Chain.getValue(1);
1067  }
1068
1069  // If the callee is a GlobalAddress node (quite common, every direct call is)
1070  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1071  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1072    // We should use extra load for direct calls to dllimported functions in
1073    // non-JIT mode.
1074    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1075                                        getTargetMachine(), true))
1076      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1077  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1078    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1079
1080  // Returns a chain & a flag for retval copy to use.
1081  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1082  SmallVector<SDOperand, 8> Ops;
1083  Ops.push_back(Chain);
1084  Ops.push_back(Callee);
1085
1086  // Add argument registers to the end of the list so that they are known live
1087  // into the call.
1088  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1089    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1090                                  RegsToPass[i].second.getValueType()));
1091
1092  // Add an implicit use GOT pointer in EBX.
1093  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1094      Subtarget->isPICStyleGOT())
1095    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1096
1097  if (InFlag.Val)
1098    Ops.push_back(InFlag);
1099
1100  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1101  InFlag = Chain.getValue(1);
1102
1103  // Create the CALLSEQ_END node.
1104  unsigned NumBytesForCalleeToPush = 0;
1105
1106  if (CC == CallingConv::X86_StdCall ||
1107      (CC == CallingConv::Fast && PerformTailCallOpt)) {
1108    if (isVarArg)
1109      NumBytesForCalleeToPush = isSRet ? 4 : 0;
1110    else
1111      NumBytesForCalleeToPush = NumBytes;
1112    assert(!(isVarArg && CC==CallingConv::Fast) &&
1113            "CallingConv::Fast does not support varargs.");
1114  } else {
1115    // If this is is a call to a struct-return function, the callee
1116    // pops the hidden struct pointer, so we have to push it back.
1117    // This is common for Darwin/X86, Linux & Mingw32 targets.
1118    NumBytesForCalleeToPush = isSRet ? 4 : 0;
1119  }
1120
1121  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1122  Ops.clear();
1123  Ops.push_back(Chain);
1124  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1125  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1126  Ops.push_back(InFlag);
1127  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1128  InFlag = Chain.getValue(1);
1129
1130  // Handle result values, copying them out of physregs into vregs that we
1131  // return.
1132  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1133}
1134
1135
1136//===----------------------------------------------------------------------===//
1137//                   FastCall Calling Convention implementation
1138//===----------------------------------------------------------------------===//
1139//
1140// The X86 'fastcall' calling convention passes up to two integer arguments in
1141// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1142// and requires that the callee pop its arguments off the stack (allowing proper
1143// tail calls), and has the same return value conventions as C calling convs.
1144//
1145// This calling convention always arranges for the callee pop value to be 8n+4
1146// bytes, which is needed for tail recursion elimination and stack alignment
1147// reasons.
1148SDOperand
1149X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1150  MachineFunction &MF = DAG.getMachineFunction();
1151  MachineFrameInfo *MFI = MF.getFrameInfo();
1152  SDOperand Root = Op.getOperand(0);
1153  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1154
1155  // Assign locations to all of the incoming arguments.
1156  SmallVector<CCValAssign, 16> ArgLocs;
1157  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1158                 getTargetMachine(), ArgLocs);
1159  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1160
1161  SmallVector<SDOperand, 8> ArgValues;
1162  unsigned LastVal = ~0U;
1163  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1164    CCValAssign &VA = ArgLocs[i];
1165    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1166    // places.
1167    assert(VA.getValNo() != LastVal &&
1168           "Don't support value assigned to multiple locs yet");
1169    LastVal = VA.getValNo();
1170
1171    if (VA.isRegLoc()) {
1172      MVT::ValueType RegVT = VA.getLocVT();
1173      TargetRegisterClass *RC;
1174      if (RegVT == MVT::i32)
1175        RC = X86::GR32RegisterClass;
1176      else {
1177        assert(MVT::isVector(RegVT));
1178        RC = X86::VR128RegisterClass;
1179      }
1180
1181      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1182      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1183
1184      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1185      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1186      // right size.
1187      if (VA.getLocInfo() == CCValAssign::SExt)
1188        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1189                               DAG.getValueType(VA.getValVT()));
1190      else if (VA.getLocInfo() == CCValAssign::ZExt)
1191        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1192                               DAG.getValueType(VA.getValVT()));
1193
1194      if (VA.getLocInfo() != CCValAssign::Full)
1195        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1196
1197      ArgValues.push_back(ArgValue);
1198    } else {
1199      assert(VA.isMemLoc());
1200      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1201    }
1202  }
1203
1204  ArgValues.push_back(Root);
1205
1206  unsigned StackSize = CCInfo.getNextStackOffset();
1207
1208  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1209    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1210    // arguments and the arguments after the retaddr has been pushed are
1211    // aligned.
1212    if ((StackSize & 7) == 0)
1213      StackSize += 4;
1214  }
1215
1216  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1217  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1218  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1219  BytesCallerReserves = 0;
1220
1221  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1222  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1223
1224  // Return the new list of results.
1225  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1226                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1227}
1228
1229SDOperand
1230X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1231                                    const SDOperand &StackPtr,
1232                                    const CCValAssign &VA,
1233                                    SDOperand Chain,
1234                                    SDOperand Arg) {
1235  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1236  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1237  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1238  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1239  if (Flags & ISD::ParamFlags::ByVal) {
1240    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1241                           ISD::ParamFlags::ByValAlignOffs);
1242
1243    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1244        ISD::ParamFlags::ByValSizeOffs;
1245
1246    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1247    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1248
1249    return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1250                       AlignNode);
1251  } else {
1252    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1253  }
1254}
1255
1256SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1257                                               unsigned CC) {
1258  SDOperand Chain     = Op.getOperand(0);
1259  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1260  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1261  SDOperand Callee    = Op.getOperand(4);
1262
1263  // Analyze operands of the call, assigning locations to each operand.
1264  SmallVector<CCValAssign, 16> ArgLocs;
1265  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1266  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1267
1268  // Get a count of how many bytes are to be pushed on the stack.
1269  unsigned NumBytes = CCInfo.getNextStackOffset();
1270
1271  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1272    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1273    // arguments and the arguments after the retaddr has been pushed are
1274    // aligned.
1275    if ((NumBytes & 7) == 0)
1276      NumBytes += 4;
1277  }
1278
1279  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1280
1281  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1282  SmallVector<SDOperand, 8> MemOpChains;
1283
1284  SDOperand StackPtr;
1285
1286  // Walk the register/memloc assignments, inserting copies/loads.
1287  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1288    CCValAssign &VA = ArgLocs[i];
1289    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1290
1291    // Promote the value if needed.
1292    switch (VA.getLocInfo()) {
1293      default: assert(0 && "Unknown loc info!");
1294      case CCValAssign::Full: break;
1295      case CCValAssign::SExt:
1296        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1297        break;
1298      case CCValAssign::ZExt:
1299        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1300        break;
1301      case CCValAssign::AExt:
1302        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1303        break;
1304    }
1305
1306    if (VA.isRegLoc()) {
1307      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1308    } else {
1309      assert(VA.isMemLoc());
1310      if (StackPtr.Val == 0)
1311        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1312
1313      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1314                                             Arg));
1315    }
1316  }
1317
1318  if (!MemOpChains.empty())
1319    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1320                        &MemOpChains[0], MemOpChains.size());
1321
1322  // Build a sequence of copy-to-reg nodes chained together with token chain
1323  // and flag operands which copy the outgoing args into registers.
1324  SDOperand InFlag;
1325  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1326    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1327                             InFlag);
1328    InFlag = Chain.getValue(1);
1329  }
1330
1331  // If the callee is a GlobalAddress node (quite common, every direct call is)
1332  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1333  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1334    // We should use extra load for direct calls to dllimported functions in
1335    // non-JIT mode.
1336    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1337                                        getTargetMachine(), true))
1338      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1339  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1340    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1341
1342  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1343  // GOT pointer.
1344  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1345      Subtarget->isPICStyleGOT()) {
1346    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1347                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1348                             InFlag);
1349    InFlag = Chain.getValue(1);
1350  }
1351
1352  // Returns a chain & a flag for retval copy to use.
1353  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1354  SmallVector<SDOperand, 8> Ops;
1355  Ops.push_back(Chain);
1356  Ops.push_back(Callee);
1357
1358  // Add argument registers to the end of the list so that they are known live
1359  // into the call.
1360  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1361    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1362                                  RegsToPass[i].second.getValueType()));
1363
1364  // Add an implicit use GOT pointer in EBX.
1365  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1366      Subtarget->isPICStyleGOT())
1367    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1368
1369  if (InFlag.Val)
1370    Ops.push_back(InFlag);
1371
1372  assert(isTailCall==false && "no tail call here");
1373  Chain = DAG.getNode(X86ISD::CALL,
1374                      NodeTys, &Ops[0], Ops.size());
1375  InFlag = Chain.getValue(1);
1376
1377  // Returns a flag for retval copy to use.
1378  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1379  Ops.clear();
1380  Ops.push_back(Chain);
1381  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1382  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1383  Ops.push_back(InFlag);
1384  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1385  InFlag = Chain.getValue(1);
1386
1387  // Handle result values, copying them out of physregs into vregs that we
1388  // return.
1389  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1390}
1391
1392//===----------------------------------------------------------------------===//
1393//                Fast Calling Convention (tail call) implementation
1394//===----------------------------------------------------------------------===//
1395
1396//  Like std call, callee cleans arguments, convention except that ECX is
1397//  reserved for storing the tail called function address. Only 2 registers are
1398//  free for argument passing (inreg). Tail call optimization is performed
1399//  provided:
1400//                * tailcallopt is enabled
1401//                * caller/callee are fastcc
1402//                * elf/pic is disabled OR
1403//                * elf/pic enabled + callee is in module + callee has
1404//                  visibility protected or hidden
1405//  To keep the stack aligned according to platform abi the function
1406//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1407//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1408//  If a tail called function callee has more arguments than the caller the
1409//  caller needs to make sure that there is room to move the RETADDR to. This is
1410//  achieved by reserving an area the size of the argument delta right after the
1411//  original REtADDR, but before the saved framepointer or the spilled registers
1412//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1413//  stack layout:
1414//    arg1
1415//    arg2
1416//    RETADDR
1417//    [ new RETADDR
1418//      move area ]
1419//    (possible EBP)
1420//    ESI
1421//    EDI
1422//    local1 ..
1423
1424/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1425/// for a 16 byte align requirement.
1426unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1427                                                        SelectionDAG& DAG) {
1428  if (PerformTailCallOpt) {
1429    MachineFunction &MF = DAG.getMachineFunction();
1430    const TargetMachine &TM = MF.getTarget();
1431    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1432    unsigned StackAlignment = TFI.getStackAlignment();
1433    uint64_t AlignMask = StackAlignment - 1;
1434    int64_t Offset = StackSize;
1435    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1436    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1437      // Number smaller than 12 so just add the difference.
1438      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1439    } else {
1440      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1441      Offset = ((~AlignMask) & Offset) + StackAlignment +
1442        (StackAlignment-SlotSize);
1443    }
1444    StackSize = Offset;
1445  }
1446  return StackSize;
1447}
1448
1449/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1450// following the call is a return. A function is eligible if caller/callee
1451// calling conventions match, currently only fastcc supports tail calls, and the
1452// function CALL is immediatly followed by a RET.
1453bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1454                                                      SDOperand Ret,
1455                                                      SelectionDAG& DAG) const {
1456  bool IsEligible = false;
1457
1458  // Check whether CALL node immediatly preceeds the RET node and whether the
1459  // return uses the result of the node or is a void return.
1460  if ((Ret.getNumOperands() == 1 &&
1461       (Ret.getOperand(0)== SDOperand(Call.Val,1) ||
1462        Ret.getOperand(0)== SDOperand(Call.Val,0))) ||
1463      (Ret.getOperand(0)== SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1464       Ret.getOperand(1)== SDOperand(Call.Val,0))) {
1465    MachineFunction &MF = DAG.getMachineFunction();
1466    unsigned CallerCC = MF.getFunction()->getCallingConv();
1467    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1468    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1469      SDOperand Callee = Call.getOperand(4);
1470      // On elf/pic %ebx needs to be livein.
1471      if(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1472         Subtarget->isPICStyleGOT()) {
1473        // Can only do local tail calls with PIC.
1474        GlobalValue * GV = 0;
1475        GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1476        if(G != 0 &&
1477           (GV = G->getGlobal()) &&
1478           (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1479          IsEligible=true;
1480      } else {
1481        IsEligible=true;
1482      }
1483    }
1484  }
1485  return IsEligible;
1486}
1487
1488SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1489                                                     SelectionDAG &DAG,
1490                                                     unsigned CC) {
1491  SDOperand Chain     = Op.getOperand(0);
1492  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1493  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1494  SDOperand Callee    = Op.getOperand(4);
1495  bool is64Bit        = Subtarget->is64Bit();
1496
1497  assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1498
1499  // Analyze operands of the call, assigning locations to each operand.
1500  SmallVector<CCValAssign, 16> ArgLocs;
1501  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1502  if (is64Bit)
1503    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1504  else
1505    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1506
1507
1508  // Lower arguments at fp - stackoffset + fpdiff.
1509  MachineFunction &MF = DAG.getMachineFunction();
1510
1511  unsigned NumBytesToBePushed =
1512    GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1513
1514  unsigned NumBytesCallerPushed =
1515    MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1516  int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1517
1518  // Set the delta of movement of the returnaddr stackslot.
1519  // But only set if delta is greater than previous delta.
1520  if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1521    MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1522
1523  // Adjust the ret address stack slot.
1524  if (FPDiff) {
1525    MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
1526    SDOperand RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1527    RetAddrFrIdx =
1528      DAG.getLoad(VT, DAG.getEntryNode(),RetAddrFrIdx, NULL, 0);
1529    // Emit a store of the saved ret value to the new location.
1530    int SlotSize = is64Bit ? 8 : 4;
1531    int NewReturnAddrFI =
1532      MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1533    SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1534    Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1535  }
1536
1537  Chain = DAG.
1538   getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1539
1540  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1541  SmallVector<SDOperand, 8> MemOpChains;
1542  SmallVector<SDOperand, 8> MemOpChains2;
1543  SDOperand FramePtr, StackPtr;
1544  SDOperand PtrOff;
1545  SDOperand FIN;
1546  int FI = 0;
1547
1548  // Walk the register/memloc assignments, inserting copies/loads.  Lower
1549  // arguments first to the stack slot where they would normally - in case of a
1550  // normal function call - be.
1551  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1552    CCValAssign &VA = ArgLocs[i];
1553    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1554
1555    // Promote the value if needed.
1556    switch (VA.getLocInfo()) {
1557    default: assert(0 && "Unknown loc info!");
1558    case CCValAssign::Full: break;
1559    case CCValAssign::SExt:
1560      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1561      break;
1562    case CCValAssign::ZExt:
1563      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1564      break;
1565    case CCValAssign::AExt:
1566      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1567      break;
1568    }
1569
1570    if (VA.isRegLoc()) {
1571      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1572    } else {
1573      assert(VA.isMemLoc());
1574      if (StackPtr.Val == 0)
1575        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1576
1577      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1578                                             Arg));
1579    }
1580  }
1581
1582  if (!MemOpChains.empty())
1583    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1584                        &MemOpChains[0], MemOpChains.size());
1585
1586  // Build a sequence of copy-to-reg nodes chained together with token chain
1587  // and flag operands which copy the outgoing args into registers.
1588  SDOperand InFlag;
1589  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1590    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1591                             InFlag);
1592    InFlag = Chain.getValue(1);
1593  }
1594  InFlag = SDOperand();
1595  // Copy from stack slots to stack slot of a tail called function. This needs
1596  // to be done because if we would lower the arguments directly to their real
1597  // stack slot we might end up overwriting each other.
1598  // TODO: To make this more efficient (sometimes saving a store/load) we could
1599  // analyse the arguments and emit this store/load/store sequence only for
1600  // arguments which would be overwritten otherwise.
1601  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1602    CCValAssign &VA = ArgLocs[i];
1603    if (!VA.isRegLoc()) {
1604      SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1605      unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1606
1607      // Get source stack slot.
1608      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1609      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1610      // Create frame index.
1611      int32_t Offset = VA.getLocMemOffset()+FPDiff;
1612      uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1613      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1614      FIN = DAG.getFrameIndex(FI, MVT::i32);
1615      if (Flags & ISD::ParamFlags::ByVal) {
1616        // Copy relative to framepointer.
1617        unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1618                               ISD::ParamFlags::ByValAlignOffs);
1619
1620        unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1621          ISD::ParamFlags::ByValSizeOffs;
1622
1623        SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1624        SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1625        // Copy relative to framepointer.
1626        MemOpChains2.push_back(DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, FIN,
1627                                           PtrOff, SizeNode, AlignNode));
1628      } else {
1629        SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1630        // Store relative to framepointer.
1631        MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1632      }
1633    }
1634  }
1635
1636  if (!MemOpChains2.empty())
1637    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1638                        &MemOpChains2[0], MemOpChains.size());
1639
1640  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1641  // GOT pointer.
1642  // Does not work with tail call since ebx is not restored correctly by
1643  // tailcaller. TODO: at least for x86 - verify for x86-64
1644
1645  // If the callee is a GlobalAddress node (quite common, every direct call is)
1646  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1647  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1648    // We should use extra load for direct calls to dllimported functions in
1649    // non-JIT mode.
1650    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1651                                        getTargetMachine(), true))
1652      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1653  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1654    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1655  else {
1656    assert(Callee.getOpcode() == ISD::LOAD &&
1657           "Function destination must be loaded into virtual register");
1658    unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1659
1660    Chain = DAG.getCopyToReg(Chain,
1661                             DAG.getRegister(Opc, getPointerTy()) ,
1662                             Callee,InFlag);
1663    Callee = DAG.getRegister(Opc, getPointerTy());
1664    // Add register as live out.
1665    DAG.getMachineFunction().addLiveOut(Opc);
1666  }
1667
1668  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1669  SmallVector<SDOperand, 8> Ops;
1670
1671  Ops.push_back(Chain);
1672  Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1673  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1674  if (InFlag.Val)
1675    Ops.push_back(InFlag);
1676  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1677  InFlag = Chain.getValue(1);
1678
1679  // Returns a chain & a flag for retval copy to use.
1680  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1681  Ops.clear();
1682  Ops.push_back(Chain);
1683  Ops.push_back(Callee);
1684  Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1685  // Add argument registers to the end of the list so that they are known live
1686  // into the call.
1687  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1688    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1689                                  RegsToPass[i].second.getValueType()));
1690  if (InFlag.Val)
1691    Ops.push_back(InFlag);
1692  assert(InFlag.Val &&
1693         "Flag must be set. Depend on flag being set in LowerRET");
1694  Chain = DAG.getNode(X86ISD::TAILCALL,
1695                      Op.Val->getVTList(), &Ops[0], Ops.size());
1696
1697  return SDOperand(Chain.Val, Op.ResNo);
1698}
1699
1700//===----------------------------------------------------------------------===//
1701//                 X86-64 C Calling Convention implementation
1702//===----------------------------------------------------------------------===//
1703
1704SDOperand
1705X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1706  MachineFunction &MF = DAG.getMachineFunction();
1707  MachineFrameInfo *MFI = MF.getFrameInfo();
1708  SDOperand Root = Op.getOperand(0);
1709  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1710  unsigned CC= MF.getFunction()->getCallingConv();
1711
1712  static const unsigned GPR64ArgRegs[] = {
1713    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1714  };
1715  static const unsigned XMMArgRegs[] = {
1716    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1717    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1718  };
1719
1720
1721  // Assign locations to all of the incoming arguments.
1722  SmallVector<CCValAssign, 16> ArgLocs;
1723  CCState CCInfo(CC, isVarArg,
1724                 getTargetMachine(), ArgLocs);
1725  if (CC == CallingConv::Fast && PerformTailCallOpt)
1726    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1727  else
1728    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1729
1730  SmallVector<SDOperand, 8> ArgValues;
1731  unsigned LastVal = ~0U;
1732  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1733    CCValAssign &VA = ArgLocs[i];
1734    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1735    // places.
1736    assert(VA.getValNo() != LastVal &&
1737           "Don't support value assigned to multiple locs yet");
1738    LastVal = VA.getValNo();
1739
1740    if (VA.isRegLoc()) {
1741      MVT::ValueType RegVT = VA.getLocVT();
1742      TargetRegisterClass *RC;
1743      if (RegVT == MVT::i32)
1744        RC = X86::GR32RegisterClass;
1745      else if (RegVT == MVT::i64)
1746        RC = X86::GR64RegisterClass;
1747      else if (RegVT == MVT::f32)
1748        RC = X86::FR32RegisterClass;
1749      else if (RegVT == MVT::f64)
1750        RC = X86::FR64RegisterClass;
1751      else {
1752        assert(MVT::isVector(RegVT));
1753        if (MVT::getSizeInBits(RegVT) == 64) {
1754          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1755          RegVT = MVT::i64;
1756        } else
1757          RC = X86::VR128RegisterClass;
1758      }
1759
1760      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1761      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1762
1763      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1764      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1765      // right size.
1766      if (VA.getLocInfo() == CCValAssign::SExt)
1767        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1768                               DAG.getValueType(VA.getValVT()));
1769      else if (VA.getLocInfo() == CCValAssign::ZExt)
1770        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1771                               DAG.getValueType(VA.getValVT()));
1772
1773      if (VA.getLocInfo() != CCValAssign::Full)
1774        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1775
1776      // Handle MMX values passed in GPRs.
1777      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1778          MVT::getSizeInBits(RegVT) == 64)
1779        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1780
1781      ArgValues.push_back(ArgValue);
1782    } else {
1783      assert(VA.isMemLoc());
1784      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1785    }
1786  }
1787
1788  unsigned StackSize = CCInfo.getNextStackOffset();
1789  if (CC==CallingConv::Fast)
1790    StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
1791
1792  // If the function takes variable number of arguments, make a frame index for
1793  // the start of the first vararg value... for expansion of llvm.va_start.
1794  if (isVarArg) {
1795    assert(CC!=CallingConv::Fast
1796           && "Var arg not supported with calling convention fastcc");
1797    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1798    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1799
1800    // For X86-64, if there are vararg parameters that are passed via
1801    // registers, then we must store them to their spots on the stack so they
1802    // may be loaded by deferencing the result of va_next.
1803    VarArgsGPOffset = NumIntRegs * 8;
1804    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1805    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1806    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1807
1808    // Store the integer parameter registers.
1809    SmallVector<SDOperand, 8> MemOps;
1810    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1811    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1812                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1813    for (; NumIntRegs != 6; ++NumIntRegs) {
1814      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1815                                X86::GR64RegisterClass);
1816      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1817      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1818      MemOps.push_back(Store);
1819      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1820                        DAG.getConstant(8, getPointerTy()));
1821    }
1822
1823    // Now store the XMM (fp + vector) parameter registers.
1824    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1825                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1826    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1827      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1828                                X86::VR128RegisterClass);
1829      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1830      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1831      MemOps.push_back(Store);
1832      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1833                        DAG.getConstant(16, getPointerTy()));
1834    }
1835    if (!MemOps.empty())
1836        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1837                           &MemOps[0], MemOps.size());
1838  }
1839
1840  ArgValues.push_back(Root);
1841  // Tail call convention (fastcc) needs callee pop.
1842  if (CC == CallingConv::Fast && PerformTailCallOpt) {
1843    BytesToPopOnReturn = StackSize;  // Callee pops everything.
1844    BytesCallerReserves = 0;
1845  } else {
1846    BytesToPopOnReturn = 0;  // Callee pops nothing.
1847    BytesCallerReserves = StackSize;
1848  }
1849  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1850  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1851
1852  // Return the new list of results.
1853  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1854                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1855}
1856
1857SDOperand
1858X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1859                                        unsigned CC) {
1860  SDOperand Chain     = Op.getOperand(0);
1861  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1862  SDOperand Callee    = Op.getOperand(4);
1863
1864  // Analyze operands of the call, assigning locations to each operand.
1865  SmallVector<CCValAssign, 16> ArgLocs;
1866  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1867  if (CC==CallingConv::Fast && PerformTailCallOpt)
1868    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1869  else
1870    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1871
1872  // Get a count of how many bytes are to be pushed on the stack.
1873  unsigned NumBytes = CCInfo.getNextStackOffset();
1874  if (CC == CallingConv::Fast)
1875    NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1876
1877  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1878
1879  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1880  SmallVector<SDOperand, 8> MemOpChains;
1881
1882  SDOperand StackPtr;
1883
1884  // Walk the register/memloc assignments, inserting copies/loads.
1885  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1886    CCValAssign &VA = ArgLocs[i];
1887    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1888
1889    // Promote the value if needed.
1890    switch (VA.getLocInfo()) {
1891    default: assert(0 && "Unknown loc info!");
1892    case CCValAssign::Full: break;
1893    case CCValAssign::SExt:
1894      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1895      break;
1896    case CCValAssign::ZExt:
1897      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1898      break;
1899    case CCValAssign::AExt:
1900      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1901      break;
1902    }
1903
1904    if (VA.isRegLoc()) {
1905      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1906    } else {
1907      assert(VA.isMemLoc());
1908      if (StackPtr.Val == 0)
1909        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1910
1911      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1912                                             Arg));
1913    }
1914  }
1915
1916  if (!MemOpChains.empty())
1917    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1918                        &MemOpChains[0], MemOpChains.size());
1919
1920  // Build a sequence of copy-to-reg nodes chained together with token chain
1921  // and flag operands which copy the outgoing args into registers.
1922  SDOperand InFlag;
1923  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1924    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1925                             InFlag);
1926    InFlag = Chain.getValue(1);
1927  }
1928
1929  if (isVarArg) {
1930    assert ( CallingConv::Fast != CC &&
1931             "Var args not supported with calling convention fastcc");
1932
1933    // From AMD64 ABI document:
1934    // For calls that may call functions that use varargs or stdargs
1935    // (prototype-less calls or calls to functions containing ellipsis (...) in
1936    // the declaration) %al is used as hidden argument to specify the number
1937    // of SSE registers used. The contents of %al do not need to match exactly
1938    // the number of registers, but must be an ubound on the number of SSE
1939    // registers used and is in the range 0 - 8 inclusive.
1940
1941    // Count the number of XMM registers allocated.
1942    static const unsigned XMMArgRegs[] = {
1943      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1944      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1945    };
1946    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1947
1948    Chain = DAG.getCopyToReg(Chain, X86::AL,
1949                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1950    InFlag = Chain.getValue(1);
1951  }
1952
1953  // If the callee is a GlobalAddress node (quite common, every direct call is)
1954  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1955  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1956    // We should use extra load for direct calls to dllimported functions in
1957    // non-JIT mode.
1958    if (getTargetMachine().getCodeModel() != CodeModel::Large
1959        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1960                                           getTargetMachine(), true))
1961      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1962  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1963    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1964      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1965
1966  // Returns a chain & a flag for retval copy to use.
1967  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1968  SmallVector<SDOperand, 8> Ops;
1969  Ops.push_back(Chain);
1970  Ops.push_back(Callee);
1971
1972  // Add argument registers to the end of the list so that they are known live
1973  // into the call.
1974  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1975    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1976                                  RegsToPass[i].second.getValueType()));
1977
1978  if (InFlag.Val)
1979    Ops.push_back(InFlag);
1980
1981  Chain = DAG.getNode(X86ISD::CALL,
1982                      NodeTys, &Ops[0], Ops.size());
1983  InFlag = Chain.getValue(1);
1984  int NumBytesForCalleeToPush = 0;
1985   if (CC==CallingConv::Fast && PerformTailCallOpt) {
1986    NumBytesForCalleeToPush = NumBytes;  // Callee pops everything
1987  } else {
1988    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1989  }
1990  // Returns a flag for retval copy to use.
1991  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1992  Ops.clear();
1993  Ops.push_back(Chain);
1994  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1995  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1996  Ops.push_back(InFlag);
1997  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1998  InFlag = Chain.getValue(1);
1999
2000  // Handle result values, copying them out of physregs into vregs that we
2001  // return.
2002  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2003}
2004
2005
2006//===----------------------------------------------------------------------===//
2007//                           Other Lowering Hooks
2008//===----------------------------------------------------------------------===//
2009
2010
2011SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2012  MachineFunction &MF = DAG.getMachineFunction();
2013  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2014  int ReturnAddrIndex = FuncInfo->getRAIndex();
2015
2016  if (ReturnAddrIndex == 0) {
2017    // Set up a frame object for the return address.
2018    if (Subtarget->is64Bit())
2019      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2020    else
2021      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2022
2023    FuncInfo->setRAIndex(ReturnAddrIndex);
2024  }
2025
2026  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2027}
2028
2029
2030
2031/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2032/// specific condition code. It returns a false if it cannot do a direct
2033/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2034/// needed.
2035static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2036                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2037                           SelectionDAG &DAG) {
2038  X86CC = X86::COND_INVALID;
2039  if (!isFP) {
2040    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2041      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2042        // X > -1   -> X == 0, jump !sign.
2043        RHS = DAG.getConstant(0, RHS.getValueType());
2044        X86CC = X86::COND_NS;
2045        return true;
2046      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2047        // X < 0   -> X == 0, jump on sign.
2048        X86CC = X86::COND_S;
2049        return true;
2050      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2051        // X < 1   -> X <= 0
2052        RHS = DAG.getConstant(0, RHS.getValueType());
2053        X86CC = X86::COND_LE;
2054        return true;
2055      }
2056    }
2057
2058    switch (SetCCOpcode) {
2059    default: break;
2060    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
2061    case ISD::SETGT:  X86CC = X86::COND_G;  break;
2062    case ISD::SETGE:  X86CC = X86::COND_GE; break;
2063    case ISD::SETLT:  X86CC = X86::COND_L;  break;
2064    case ISD::SETLE:  X86CC = X86::COND_LE; break;
2065    case ISD::SETNE:  X86CC = X86::COND_NE; break;
2066    case ISD::SETULT: X86CC = X86::COND_B;  break;
2067    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2068    case ISD::SETULE: X86CC = X86::COND_BE; break;
2069    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2070    }
2071  } else {
2072    // On a floating point condition, the flags are set as follows:
2073    // ZF  PF  CF   op
2074    //  0 | 0 | 0 | X > Y
2075    //  0 | 0 | 1 | X < Y
2076    //  1 | 0 | 0 | X == Y
2077    //  1 | 1 | 1 | unordered
2078    bool Flip = false;
2079    switch (SetCCOpcode) {
2080    default: break;
2081    case ISD::SETUEQ:
2082    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2083    case ISD::SETOLT: Flip = true; // Fallthrough
2084    case ISD::SETOGT:
2085    case ISD::SETGT: X86CC = X86::COND_A;  break;
2086    case ISD::SETOLE: Flip = true; // Fallthrough
2087    case ISD::SETOGE:
2088    case ISD::SETGE: X86CC = X86::COND_AE; break;
2089    case ISD::SETUGT: Flip = true; // Fallthrough
2090    case ISD::SETULT:
2091    case ISD::SETLT: X86CC = X86::COND_B;  break;
2092    case ISD::SETUGE: Flip = true; // Fallthrough
2093    case ISD::SETULE:
2094    case ISD::SETLE: X86CC = X86::COND_BE; break;
2095    case ISD::SETONE:
2096    case ISD::SETNE: X86CC = X86::COND_NE; break;
2097    case ISD::SETUO: X86CC = X86::COND_P;  break;
2098    case ISD::SETO:  X86CC = X86::COND_NP; break;
2099    }
2100    if (Flip)
2101      std::swap(LHS, RHS);
2102  }
2103
2104  return X86CC != X86::COND_INVALID;
2105}
2106
2107/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2108/// code. Current x86 isa includes the following FP cmov instructions:
2109/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2110static bool hasFPCMov(unsigned X86CC) {
2111  switch (X86CC) {
2112  default:
2113    return false;
2114  case X86::COND_B:
2115  case X86::COND_BE:
2116  case X86::COND_E:
2117  case X86::COND_P:
2118  case X86::COND_A:
2119  case X86::COND_AE:
2120  case X86::COND_NE:
2121  case X86::COND_NP:
2122    return true;
2123  }
2124}
2125
2126/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2127/// true if Op is undef or if its value falls within the specified range (L, H].
2128static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2129  if (Op.getOpcode() == ISD::UNDEF)
2130    return true;
2131
2132  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2133  return (Val >= Low && Val < Hi);
2134}
2135
2136/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2137/// true if Op is undef or if its value equal to the specified value.
2138static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2139  if (Op.getOpcode() == ISD::UNDEF)
2140    return true;
2141  return cast<ConstantSDNode>(Op)->getValue() == Val;
2142}
2143
2144/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2145/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2146bool X86::isPSHUFDMask(SDNode *N) {
2147  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2148
2149  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2150    return false;
2151
2152  // Check if the value doesn't reference the second vector.
2153  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2154    SDOperand Arg = N->getOperand(i);
2155    if (Arg.getOpcode() == ISD::UNDEF) continue;
2156    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2157    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2158      return false;
2159  }
2160
2161  return true;
2162}
2163
2164/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2165/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2166bool X86::isPSHUFHWMask(SDNode *N) {
2167  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2168
2169  if (N->getNumOperands() != 8)
2170    return false;
2171
2172  // Lower quadword copied in order.
2173  for (unsigned i = 0; i != 4; ++i) {
2174    SDOperand Arg = N->getOperand(i);
2175    if (Arg.getOpcode() == ISD::UNDEF) continue;
2176    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2177    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2178      return false;
2179  }
2180
2181  // Upper quadword shuffled.
2182  for (unsigned i = 4; i != 8; ++i) {
2183    SDOperand Arg = N->getOperand(i);
2184    if (Arg.getOpcode() == ISD::UNDEF) continue;
2185    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2186    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2187    if (Val < 4 || Val > 7)
2188      return false;
2189  }
2190
2191  return true;
2192}
2193
2194/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2195/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2196bool X86::isPSHUFLWMask(SDNode *N) {
2197  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2198
2199  if (N->getNumOperands() != 8)
2200    return false;
2201
2202  // Upper quadword copied in order.
2203  for (unsigned i = 4; i != 8; ++i)
2204    if (!isUndefOrEqual(N->getOperand(i), i))
2205      return false;
2206
2207  // Lower quadword shuffled.
2208  for (unsigned i = 0; i != 4; ++i)
2209    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2210      return false;
2211
2212  return true;
2213}
2214
2215/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2216/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2217static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2218  if (NumElems != 2 && NumElems != 4) return false;
2219
2220  unsigned Half = NumElems / 2;
2221  for (unsigned i = 0; i < Half; ++i)
2222    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2223      return false;
2224  for (unsigned i = Half; i < NumElems; ++i)
2225    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2226      return false;
2227
2228  return true;
2229}
2230
2231bool X86::isSHUFPMask(SDNode *N) {
2232  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2233  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2234}
2235
2236/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2237/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2238/// half elements to come from vector 1 (which would equal the dest.) and
2239/// the upper half to come from vector 2.
2240static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2241  if (NumOps != 2 && NumOps != 4) return false;
2242
2243  unsigned Half = NumOps / 2;
2244  for (unsigned i = 0; i < Half; ++i)
2245    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2246      return false;
2247  for (unsigned i = Half; i < NumOps; ++i)
2248    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2249      return false;
2250  return true;
2251}
2252
2253static bool isCommutedSHUFP(SDNode *N) {
2254  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2255  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2256}
2257
2258/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2259/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2260bool X86::isMOVHLPSMask(SDNode *N) {
2261  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2262
2263  if (N->getNumOperands() != 4)
2264    return false;
2265
2266  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2267  return isUndefOrEqual(N->getOperand(0), 6) &&
2268         isUndefOrEqual(N->getOperand(1), 7) &&
2269         isUndefOrEqual(N->getOperand(2), 2) &&
2270         isUndefOrEqual(N->getOperand(3), 3);
2271}
2272
2273/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2274/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2275/// <2, 3, 2, 3>
2276bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2277  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2278
2279  if (N->getNumOperands() != 4)
2280    return false;
2281
2282  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2283  return isUndefOrEqual(N->getOperand(0), 2) &&
2284         isUndefOrEqual(N->getOperand(1), 3) &&
2285         isUndefOrEqual(N->getOperand(2), 2) &&
2286         isUndefOrEqual(N->getOperand(3), 3);
2287}
2288
2289/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2290/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2291bool X86::isMOVLPMask(SDNode *N) {
2292  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2293
2294  unsigned NumElems = N->getNumOperands();
2295  if (NumElems != 2 && NumElems != 4)
2296    return false;
2297
2298  for (unsigned i = 0; i < NumElems/2; ++i)
2299    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2300      return false;
2301
2302  for (unsigned i = NumElems/2; i < NumElems; ++i)
2303    if (!isUndefOrEqual(N->getOperand(i), i))
2304      return false;
2305
2306  return true;
2307}
2308
2309/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2310/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2311/// and MOVLHPS.
2312bool X86::isMOVHPMask(SDNode *N) {
2313  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2314
2315  unsigned NumElems = N->getNumOperands();
2316  if (NumElems != 2 && NumElems != 4)
2317    return false;
2318
2319  for (unsigned i = 0; i < NumElems/2; ++i)
2320    if (!isUndefOrEqual(N->getOperand(i), i))
2321      return false;
2322
2323  for (unsigned i = 0; i < NumElems/2; ++i) {
2324    SDOperand Arg = N->getOperand(i + NumElems/2);
2325    if (!isUndefOrEqual(Arg, i + NumElems))
2326      return false;
2327  }
2328
2329  return true;
2330}
2331
2332/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2333/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2334bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2335                         bool V2IsSplat = false) {
2336  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2337    return false;
2338
2339  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2340    SDOperand BitI  = Elts[i];
2341    SDOperand BitI1 = Elts[i+1];
2342    if (!isUndefOrEqual(BitI, j))
2343      return false;
2344    if (V2IsSplat) {
2345      if (isUndefOrEqual(BitI1, NumElts))
2346        return false;
2347    } else {
2348      if (!isUndefOrEqual(BitI1, j + NumElts))
2349        return false;
2350    }
2351  }
2352
2353  return true;
2354}
2355
2356bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2357  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2358  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2359}
2360
2361/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2362/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2363bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2364                         bool V2IsSplat = false) {
2365  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2366    return false;
2367
2368  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2369    SDOperand BitI  = Elts[i];
2370    SDOperand BitI1 = Elts[i+1];
2371    if (!isUndefOrEqual(BitI, j + NumElts/2))
2372      return false;
2373    if (V2IsSplat) {
2374      if (isUndefOrEqual(BitI1, NumElts))
2375        return false;
2376    } else {
2377      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2378        return false;
2379    }
2380  }
2381
2382  return true;
2383}
2384
2385bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2386  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2387  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2388}
2389
2390/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2391/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2392/// <0, 0, 1, 1>
2393bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2394  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2395
2396  unsigned NumElems = N->getNumOperands();
2397  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2398    return false;
2399
2400  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2401    SDOperand BitI  = N->getOperand(i);
2402    SDOperand BitI1 = N->getOperand(i+1);
2403
2404    if (!isUndefOrEqual(BitI, j))
2405      return false;
2406    if (!isUndefOrEqual(BitI1, j))
2407      return false;
2408  }
2409
2410  return true;
2411}
2412
2413/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2414/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2415/// <2, 2, 3, 3>
2416bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2417  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2418
2419  unsigned NumElems = N->getNumOperands();
2420  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2421    return false;
2422
2423  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2424    SDOperand BitI  = N->getOperand(i);
2425    SDOperand BitI1 = N->getOperand(i + 1);
2426
2427    if (!isUndefOrEqual(BitI, j))
2428      return false;
2429    if (!isUndefOrEqual(BitI1, j))
2430      return false;
2431  }
2432
2433  return true;
2434}
2435
2436/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2437/// specifies a shuffle of elements that is suitable for input to MOVSS,
2438/// MOVSD, and MOVD, i.e. setting the lowest element.
2439static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2440  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2441    return false;
2442
2443  if (!isUndefOrEqual(Elts[0], NumElts))
2444    return false;
2445
2446  for (unsigned i = 1; i < NumElts; ++i) {
2447    if (!isUndefOrEqual(Elts[i], i))
2448      return false;
2449  }
2450
2451  return true;
2452}
2453
2454bool X86::isMOVLMask(SDNode *N) {
2455  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2456  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2457}
2458
2459/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2460/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2461/// element of vector 2 and the other elements to come from vector 1 in order.
2462static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2463                           bool V2IsSplat = false,
2464                           bool V2IsUndef = false) {
2465  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2466    return false;
2467
2468  if (!isUndefOrEqual(Ops[0], 0))
2469    return false;
2470
2471  for (unsigned i = 1; i < NumOps; ++i) {
2472    SDOperand Arg = Ops[i];
2473    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2474          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2475          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2476      return false;
2477  }
2478
2479  return true;
2480}
2481
2482static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2483                           bool V2IsUndef = false) {
2484  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2485  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2486                        V2IsSplat, V2IsUndef);
2487}
2488
2489/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2490/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2491bool X86::isMOVSHDUPMask(SDNode *N) {
2492  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2493
2494  if (N->getNumOperands() != 4)
2495    return false;
2496
2497  // Expect 1, 1, 3, 3
2498  for (unsigned i = 0; i < 2; ++i) {
2499    SDOperand Arg = N->getOperand(i);
2500    if (Arg.getOpcode() == ISD::UNDEF) continue;
2501    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2502    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2503    if (Val != 1) return false;
2504  }
2505
2506  bool HasHi = false;
2507  for (unsigned i = 2; i < 4; ++i) {
2508    SDOperand Arg = N->getOperand(i);
2509    if (Arg.getOpcode() == ISD::UNDEF) continue;
2510    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2511    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2512    if (Val != 3) return false;
2513    HasHi = true;
2514  }
2515
2516  // Don't use movshdup if it can be done with a shufps.
2517  return HasHi;
2518}
2519
2520/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2521/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2522bool X86::isMOVSLDUPMask(SDNode *N) {
2523  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2524
2525  if (N->getNumOperands() != 4)
2526    return false;
2527
2528  // Expect 0, 0, 2, 2
2529  for (unsigned i = 0; i < 2; ++i) {
2530    SDOperand Arg = N->getOperand(i);
2531    if (Arg.getOpcode() == ISD::UNDEF) continue;
2532    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2533    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2534    if (Val != 0) return false;
2535  }
2536
2537  bool HasHi = false;
2538  for (unsigned i = 2; i < 4; ++i) {
2539    SDOperand Arg = N->getOperand(i);
2540    if (Arg.getOpcode() == ISD::UNDEF) continue;
2541    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2542    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2543    if (Val != 2) return false;
2544    HasHi = true;
2545  }
2546
2547  // Don't use movshdup if it can be done with a shufps.
2548  return HasHi;
2549}
2550
2551/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2552/// specifies a identity operation on the LHS or RHS.
2553static bool isIdentityMask(SDNode *N, bool RHS = false) {
2554  unsigned NumElems = N->getNumOperands();
2555  for (unsigned i = 0; i < NumElems; ++i)
2556    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2557      return false;
2558  return true;
2559}
2560
2561/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2562/// a splat of a single element.
2563static bool isSplatMask(SDNode *N) {
2564  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2565
2566  // This is a splat operation if each element of the permute is the same, and
2567  // if the value doesn't reference the second vector.
2568  unsigned NumElems = N->getNumOperands();
2569  SDOperand ElementBase;
2570  unsigned i = 0;
2571  for (; i != NumElems; ++i) {
2572    SDOperand Elt = N->getOperand(i);
2573    if (isa<ConstantSDNode>(Elt)) {
2574      ElementBase = Elt;
2575      break;
2576    }
2577  }
2578
2579  if (!ElementBase.Val)
2580    return false;
2581
2582  for (; i != NumElems; ++i) {
2583    SDOperand Arg = N->getOperand(i);
2584    if (Arg.getOpcode() == ISD::UNDEF) continue;
2585    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2586    if (Arg != ElementBase) return false;
2587  }
2588
2589  // Make sure it is a splat of the first vector operand.
2590  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2591}
2592
2593/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2594/// a splat of a single element and it's a 2 or 4 element mask.
2595bool X86::isSplatMask(SDNode *N) {
2596  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2597
2598  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2599  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2600    return false;
2601  return ::isSplatMask(N);
2602}
2603
2604/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2605/// specifies a splat of zero element.
2606bool X86::isSplatLoMask(SDNode *N) {
2607  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2608
2609  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2610    if (!isUndefOrEqual(N->getOperand(i), 0))
2611      return false;
2612  return true;
2613}
2614
2615/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2616/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2617/// instructions.
2618unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2619  unsigned NumOperands = N->getNumOperands();
2620  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2621  unsigned Mask = 0;
2622  for (unsigned i = 0; i < NumOperands; ++i) {
2623    unsigned Val = 0;
2624    SDOperand Arg = N->getOperand(NumOperands-i-1);
2625    if (Arg.getOpcode() != ISD::UNDEF)
2626      Val = cast<ConstantSDNode>(Arg)->getValue();
2627    if (Val >= NumOperands) Val -= NumOperands;
2628    Mask |= Val;
2629    if (i != NumOperands - 1)
2630      Mask <<= Shift;
2631  }
2632
2633  return Mask;
2634}
2635
2636/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2637/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2638/// instructions.
2639unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2640  unsigned Mask = 0;
2641  // 8 nodes, but we only care about the last 4.
2642  for (unsigned i = 7; i >= 4; --i) {
2643    unsigned Val = 0;
2644    SDOperand Arg = N->getOperand(i);
2645    if (Arg.getOpcode() != ISD::UNDEF)
2646      Val = cast<ConstantSDNode>(Arg)->getValue();
2647    Mask |= (Val - 4);
2648    if (i != 4)
2649      Mask <<= 2;
2650  }
2651
2652  return Mask;
2653}
2654
2655/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2656/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2657/// instructions.
2658unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2659  unsigned Mask = 0;
2660  // 8 nodes, but we only care about the first 4.
2661  for (int i = 3; i >= 0; --i) {
2662    unsigned Val = 0;
2663    SDOperand Arg = N->getOperand(i);
2664    if (Arg.getOpcode() != ISD::UNDEF)
2665      Val = cast<ConstantSDNode>(Arg)->getValue();
2666    Mask |= Val;
2667    if (i != 0)
2668      Mask <<= 2;
2669  }
2670
2671  return Mask;
2672}
2673
2674/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2675/// specifies a 8 element shuffle that can be broken into a pair of
2676/// PSHUFHW and PSHUFLW.
2677static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2678  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2679
2680  if (N->getNumOperands() != 8)
2681    return false;
2682
2683  // Lower quadword shuffled.
2684  for (unsigned i = 0; i != 4; ++i) {
2685    SDOperand Arg = N->getOperand(i);
2686    if (Arg.getOpcode() == ISD::UNDEF) continue;
2687    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2688    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2689    if (Val > 4)
2690      return false;
2691  }
2692
2693  // Upper quadword shuffled.
2694  for (unsigned i = 4; i != 8; ++i) {
2695    SDOperand Arg = N->getOperand(i);
2696    if (Arg.getOpcode() == ISD::UNDEF) continue;
2697    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2698    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2699    if (Val < 4 || Val > 7)
2700      return false;
2701  }
2702
2703  return true;
2704}
2705
2706/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2707/// values in ther permute mask.
2708static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2709                                      SDOperand &V2, SDOperand &Mask,
2710                                      SelectionDAG &DAG) {
2711  MVT::ValueType VT = Op.getValueType();
2712  MVT::ValueType MaskVT = Mask.getValueType();
2713  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2714  unsigned NumElems = Mask.getNumOperands();
2715  SmallVector<SDOperand, 8> MaskVec;
2716
2717  for (unsigned i = 0; i != NumElems; ++i) {
2718    SDOperand Arg = Mask.getOperand(i);
2719    if (Arg.getOpcode() == ISD::UNDEF) {
2720      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2721      continue;
2722    }
2723    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2724    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2725    if (Val < NumElems)
2726      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2727    else
2728      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2729  }
2730
2731  std::swap(V1, V2);
2732  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2733  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2734}
2735
2736/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2737/// match movhlps. The lower half elements should come from upper half of
2738/// V1 (and in order), and the upper half elements should come from the upper
2739/// half of V2 (and in order).
2740static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2741  unsigned NumElems = Mask->getNumOperands();
2742  if (NumElems != 4)
2743    return false;
2744  for (unsigned i = 0, e = 2; i != e; ++i)
2745    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2746      return false;
2747  for (unsigned i = 2; i != 4; ++i)
2748    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2749      return false;
2750  return true;
2751}
2752
2753/// isScalarLoadToVector - Returns true if the node is a scalar load that
2754/// is promoted to a vector.
2755static inline bool isScalarLoadToVector(SDNode *N) {
2756  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2757    N = N->getOperand(0).Val;
2758    return ISD::isNON_EXTLoad(N);
2759  }
2760  return false;
2761}
2762
2763/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2764/// match movlp{s|d}. The lower half elements should come from lower half of
2765/// V1 (and in order), and the upper half elements should come from the upper
2766/// half of V2 (and in order). And since V1 will become the source of the
2767/// MOVLP, it must be either a vector load or a scalar load to vector.
2768static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2769  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2770    return false;
2771  // Is V2 is a vector load, don't do this transformation. We will try to use
2772  // load folding shufps op.
2773  if (ISD::isNON_EXTLoad(V2))
2774    return false;
2775
2776  unsigned NumElems = Mask->getNumOperands();
2777  if (NumElems != 2 && NumElems != 4)
2778    return false;
2779  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2780    if (!isUndefOrEqual(Mask->getOperand(i), i))
2781      return false;
2782  for (unsigned i = NumElems/2; i != NumElems; ++i)
2783    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2784      return false;
2785  return true;
2786}
2787
2788/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2789/// all the same.
2790static bool isSplatVector(SDNode *N) {
2791  if (N->getOpcode() != ISD::BUILD_VECTOR)
2792    return false;
2793
2794  SDOperand SplatValue = N->getOperand(0);
2795  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2796    if (N->getOperand(i) != SplatValue)
2797      return false;
2798  return true;
2799}
2800
2801/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2802/// to an undef.
2803static bool isUndefShuffle(SDNode *N) {
2804  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2805    return false;
2806
2807  SDOperand V1 = N->getOperand(0);
2808  SDOperand V2 = N->getOperand(1);
2809  SDOperand Mask = N->getOperand(2);
2810  unsigned NumElems = Mask.getNumOperands();
2811  for (unsigned i = 0; i != NumElems; ++i) {
2812    SDOperand Arg = Mask.getOperand(i);
2813    if (Arg.getOpcode() != ISD::UNDEF) {
2814      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2815      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2816        return false;
2817      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2818        return false;
2819    }
2820  }
2821  return true;
2822}
2823
2824/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2825/// constant +0.0.
2826static inline bool isZeroNode(SDOperand Elt) {
2827  return ((isa<ConstantSDNode>(Elt) &&
2828           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2829          (isa<ConstantFPSDNode>(Elt) &&
2830           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2831}
2832
2833/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2834/// to an zero vector.
2835static bool isZeroShuffle(SDNode *N) {
2836  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2837    return false;
2838
2839  SDOperand V1 = N->getOperand(0);
2840  SDOperand V2 = N->getOperand(1);
2841  SDOperand Mask = N->getOperand(2);
2842  unsigned NumElems = Mask.getNumOperands();
2843  for (unsigned i = 0; i != NumElems; ++i) {
2844    SDOperand Arg = Mask.getOperand(i);
2845    if (Arg.getOpcode() != ISD::UNDEF) {
2846      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2847      if (Idx < NumElems) {
2848        unsigned Opc = V1.Val->getOpcode();
2849        if (Opc == ISD::UNDEF)
2850          continue;
2851        if (Opc != ISD::BUILD_VECTOR ||
2852            !isZeroNode(V1.Val->getOperand(Idx)))
2853          return false;
2854      } else if (Idx >= NumElems) {
2855        unsigned Opc = V2.Val->getOpcode();
2856        if (Opc == ISD::UNDEF)
2857          continue;
2858        if (Opc != ISD::BUILD_VECTOR ||
2859            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2860          return false;
2861      }
2862    }
2863  }
2864  return true;
2865}
2866
2867/// getZeroVector - Returns a vector of specified type with all zero elements.
2868///
2869static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2870  assert(MVT::isVector(VT) && "Expected a vector type");
2871  unsigned NumElems = MVT::getVectorNumElements(VT);
2872  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2873  bool isFP = MVT::isFloatingPoint(EVT);
2874  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2875  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2876  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2877}
2878
2879/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2880/// that point to V2 points to its first element.
2881static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2882  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2883
2884  bool Changed = false;
2885  SmallVector<SDOperand, 8> MaskVec;
2886  unsigned NumElems = Mask.getNumOperands();
2887  for (unsigned i = 0; i != NumElems; ++i) {
2888    SDOperand Arg = Mask.getOperand(i);
2889    if (Arg.getOpcode() != ISD::UNDEF) {
2890      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2891      if (Val > NumElems) {
2892        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2893        Changed = true;
2894      }
2895    }
2896    MaskVec.push_back(Arg);
2897  }
2898
2899  if (Changed)
2900    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2901                       &MaskVec[0], MaskVec.size());
2902  return Mask;
2903}
2904
2905/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2906/// operation of specified width.
2907static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2908  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2909  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2910
2911  SmallVector<SDOperand, 8> MaskVec;
2912  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2913  for (unsigned i = 1; i != NumElems; ++i)
2914    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2915  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2916}
2917
2918/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2919/// of specified width.
2920static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2921  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2922  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2923  SmallVector<SDOperand, 8> MaskVec;
2924  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2925    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2926    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2927  }
2928  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2929}
2930
2931/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2932/// of specified width.
2933static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2934  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2935  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2936  unsigned Half = NumElems/2;
2937  SmallVector<SDOperand, 8> MaskVec;
2938  for (unsigned i = 0; i != Half; ++i) {
2939    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2940    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2941  }
2942  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2943}
2944
2945/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2946///
2947static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2948  SDOperand V1 = Op.getOperand(0);
2949  SDOperand Mask = Op.getOperand(2);
2950  MVT::ValueType VT = Op.getValueType();
2951  unsigned NumElems = Mask.getNumOperands();
2952  Mask = getUnpacklMask(NumElems, DAG);
2953  while (NumElems != 4) {
2954    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2955    NumElems >>= 1;
2956  }
2957  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2958
2959  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2960  Mask = getZeroVector(MaskVT, DAG);
2961  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2962                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2963  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2964}
2965
2966/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2967/// vector of zero or undef vector.
2968static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2969                                             unsigned NumElems, unsigned Idx,
2970                                             bool isZero, SelectionDAG &DAG) {
2971  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2972  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2973  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2974  SDOperand Zero = DAG.getConstant(0, EVT);
2975  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2976  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2977  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2978                               &MaskVec[0], MaskVec.size());
2979  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2980}
2981
2982/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2983///
2984static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2985                                       unsigned NumNonZero, unsigned NumZero,
2986                                       SelectionDAG &DAG, TargetLowering &TLI) {
2987  if (NumNonZero > 8)
2988    return SDOperand();
2989
2990  SDOperand V(0, 0);
2991  bool First = true;
2992  for (unsigned i = 0; i < 16; ++i) {
2993    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2994    if (ThisIsNonZero && First) {
2995      if (NumZero)
2996        V = getZeroVector(MVT::v8i16, DAG);
2997      else
2998        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2999      First = false;
3000    }
3001
3002    if ((i & 1) != 0) {
3003      SDOperand ThisElt(0, 0), LastElt(0, 0);
3004      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3005      if (LastIsNonZero) {
3006        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3007      }
3008      if (ThisIsNonZero) {
3009        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3010        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3011                              ThisElt, DAG.getConstant(8, MVT::i8));
3012        if (LastIsNonZero)
3013          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3014      } else
3015        ThisElt = LastElt;
3016
3017      if (ThisElt.Val)
3018        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3019                        DAG.getConstant(i/2, TLI.getPointerTy()));
3020    }
3021  }
3022
3023  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3024}
3025
3026/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3027///
3028static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3029                                       unsigned NumNonZero, unsigned NumZero,
3030                                       SelectionDAG &DAG, TargetLowering &TLI) {
3031  if (NumNonZero > 4)
3032    return SDOperand();
3033
3034  SDOperand V(0, 0);
3035  bool First = true;
3036  for (unsigned i = 0; i < 8; ++i) {
3037    bool isNonZero = (NonZeros & (1 << i)) != 0;
3038    if (isNonZero) {
3039      if (First) {
3040        if (NumZero)
3041          V = getZeroVector(MVT::v8i16, DAG);
3042        else
3043          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3044        First = false;
3045      }
3046      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3047                      DAG.getConstant(i, TLI.getPointerTy()));
3048    }
3049  }
3050
3051  return V;
3052}
3053
3054SDOperand
3055X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3056  // All zero's are handled with pxor.
3057  if (ISD::isBuildVectorAllZeros(Op.Val))
3058    return Op;
3059
3060  // All one's are handled with pcmpeqd.
3061  if (ISD::isBuildVectorAllOnes(Op.Val))
3062    return Op;
3063
3064  MVT::ValueType VT = Op.getValueType();
3065  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3066  unsigned EVTBits = MVT::getSizeInBits(EVT);
3067
3068  unsigned NumElems = Op.getNumOperands();
3069  unsigned NumZero  = 0;
3070  unsigned NumNonZero = 0;
3071  unsigned NonZeros = 0;
3072  unsigned NumNonZeroImms = 0;
3073  std::set<SDOperand> Values;
3074  for (unsigned i = 0; i < NumElems; ++i) {
3075    SDOperand Elt = Op.getOperand(i);
3076    if (Elt.getOpcode() != ISD::UNDEF) {
3077      Values.insert(Elt);
3078      if (isZeroNode(Elt))
3079        NumZero++;
3080      else {
3081        NonZeros |= (1 << i);
3082        NumNonZero++;
3083        if (Elt.getOpcode() == ISD::Constant ||
3084            Elt.getOpcode() == ISD::ConstantFP)
3085          NumNonZeroImms++;
3086      }
3087    }
3088  }
3089
3090  if (NumNonZero == 0) {
3091    if (NumZero == 0)
3092      // All undef vector. Return an UNDEF.
3093      return DAG.getNode(ISD::UNDEF, VT);
3094    else
3095      // A mix of zero and undef. Return a zero vector.
3096      return getZeroVector(VT, DAG);
3097  }
3098
3099  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3100  if (Values.size() == 1)
3101    return SDOperand();
3102
3103  // Special case for single non-zero element.
3104  if (NumNonZero == 1) {
3105    unsigned Idx = CountTrailingZeros_32(NonZeros);
3106    SDOperand Item = Op.getOperand(Idx);
3107    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3108    if (Idx == 0)
3109      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3110      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3111                                         NumZero > 0, DAG);
3112
3113    if (EVTBits == 32) {
3114      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3115      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3116                                         DAG);
3117      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3118      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3119      SmallVector<SDOperand, 8> MaskVec;
3120      for (unsigned i = 0; i < NumElems; i++)
3121        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3122      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3123                                   &MaskVec[0], MaskVec.size());
3124      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3125                         DAG.getNode(ISD::UNDEF, VT), Mask);
3126    }
3127  }
3128
3129  // A vector full of immediates; various special cases are already
3130  // handled, so this is best done with a single constant-pool load.
3131  if (NumNonZero == NumNonZeroImms)
3132    return SDOperand();
3133
3134  // Let legalizer expand 2-wide build_vectors.
3135  if (EVTBits == 64)
3136    return SDOperand();
3137
3138  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3139  if (EVTBits == 8 && NumElems == 16) {
3140    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3141                                        *this);
3142    if (V.Val) return V;
3143  }
3144
3145  if (EVTBits == 16 && NumElems == 8) {
3146    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3147                                        *this);
3148    if (V.Val) return V;
3149  }
3150
3151  // If element VT is == 32 bits, turn it into a number of shuffles.
3152  SmallVector<SDOperand, 8> V;
3153  V.resize(NumElems);
3154  if (NumElems == 4 && NumZero > 0) {
3155    for (unsigned i = 0; i < 4; ++i) {
3156      bool isZero = !(NonZeros & (1 << i));
3157      if (isZero)
3158        V[i] = getZeroVector(VT, DAG);
3159      else
3160        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3161    }
3162
3163    for (unsigned i = 0; i < 2; ++i) {
3164      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3165        default: break;
3166        case 0:
3167          V[i] = V[i*2];  // Must be a zero vector.
3168          break;
3169        case 1:
3170          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3171                             getMOVLMask(NumElems, DAG));
3172          break;
3173        case 2:
3174          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3175                             getMOVLMask(NumElems, DAG));
3176          break;
3177        case 3:
3178          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3179                             getUnpacklMask(NumElems, DAG));
3180          break;
3181      }
3182    }
3183
3184    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3185    // clears the upper bits.
3186    // FIXME: we can do the same for v4f32 case when we know both parts of
3187    // the lower half come from scalar_to_vector (loadf32). We should do
3188    // that in post legalizer dag combiner with target specific hooks.
3189    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3190      return V[0];
3191    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3192    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3193    SmallVector<SDOperand, 8> MaskVec;
3194    bool Reverse = (NonZeros & 0x3) == 2;
3195    for (unsigned i = 0; i < 2; ++i)
3196      if (Reverse)
3197        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3198      else
3199        MaskVec.push_back(DAG.getConstant(i, EVT));
3200    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3201    for (unsigned i = 0; i < 2; ++i)
3202      if (Reverse)
3203        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3204      else
3205        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3206    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3207                                     &MaskVec[0], MaskVec.size());
3208    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3209  }
3210
3211  if (Values.size() > 2) {
3212    // Expand into a number of unpckl*.
3213    // e.g. for v4f32
3214    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3215    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3216    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3217    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3218    for (unsigned i = 0; i < NumElems; ++i)
3219      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3220    NumElems >>= 1;
3221    while (NumElems != 0) {
3222      for (unsigned i = 0; i < NumElems; ++i)
3223        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3224                           UnpckMask);
3225      NumElems >>= 1;
3226    }
3227    return V[0];
3228  }
3229
3230  return SDOperand();
3231}
3232
3233SDOperand
3234X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3235  SDOperand V1 = Op.getOperand(0);
3236  SDOperand V2 = Op.getOperand(1);
3237  SDOperand PermMask = Op.getOperand(2);
3238  MVT::ValueType VT = Op.getValueType();
3239  unsigned NumElems = PermMask.getNumOperands();
3240  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3241  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3242  bool V1IsSplat = false;
3243  bool V2IsSplat = false;
3244
3245  if (isUndefShuffle(Op.Val))
3246    return DAG.getNode(ISD::UNDEF, VT);
3247
3248  if (isZeroShuffle(Op.Val))
3249    return getZeroVector(VT, DAG);
3250
3251  if (isIdentityMask(PermMask.Val))
3252    return V1;
3253  else if (isIdentityMask(PermMask.Val, true))
3254    return V2;
3255
3256  if (isSplatMask(PermMask.Val)) {
3257    if (NumElems <= 4) return Op;
3258    // Promote it to a v4i32 splat.
3259    return PromoteSplat(Op, DAG);
3260  }
3261
3262  if (X86::isMOVLMask(PermMask.Val))
3263    return (V1IsUndef) ? V2 : Op;
3264
3265  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3266      X86::isMOVSLDUPMask(PermMask.Val) ||
3267      X86::isMOVHLPSMask(PermMask.Val) ||
3268      X86::isMOVHPMask(PermMask.Val) ||
3269      X86::isMOVLPMask(PermMask.Val))
3270    return Op;
3271
3272  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3273      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3274    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3275
3276  bool Commuted = false;
3277  V1IsSplat = isSplatVector(V1.Val);
3278  V2IsSplat = isSplatVector(V2.Val);
3279  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3280    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3281    std::swap(V1IsSplat, V2IsSplat);
3282    std::swap(V1IsUndef, V2IsUndef);
3283    Commuted = true;
3284  }
3285
3286  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3287    if (V2IsUndef) return V1;
3288    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3289    if (V2IsSplat) {
3290      // V2 is a splat, so the mask may be malformed. That is, it may point
3291      // to any V2 element. The instruction selectior won't like this. Get
3292      // a corrected mask and commute to form a proper MOVS{S|D}.
3293      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3294      if (NewMask.Val != PermMask.Val)
3295        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3296    }
3297    return Op;
3298  }
3299
3300  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3301      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3302      X86::isUNPCKLMask(PermMask.Val) ||
3303      X86::isUNPCKHMask(PermMask.Val))
3304    return Op;
3305
3306  if (V2IsSplat) {
3307    // Normalize mask so all entries that point to V2 points to its first
3308    // element then try to match unpck{h|l} again. If match, return a
3309    // new vector_shuffle with the corrected mask.
3310    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3311    if (NewMask.Val != PermMask.Val) {
3312      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3313        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3314        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3315      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3316        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3317        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3318      }
3319    }
3320  }
3321
3322  // Normalize the node to match x86 shuffle ops if needed
3323  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3324      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3325
3326  if (Commuted) {
3327    // Commute is back and try unpck* again.
3328    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3329    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3330        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3331        X86::isUNPCKLMask(PermMask.Val) ||
3332        X86::isUNPCKHMask(PermMask.Val))
3333      return Op;
3334  }
3335
3336  // If VT is integer, try PSHUF* first, then SHUFP*.
3337  if (MVT::isInteger(VT)) {
3338    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3339    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3340    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3341         X86::isPSHUFDMask(PermMask.Val)) ||
3342        X86::isPSHUFHWMask(PermMask.Val) ||
3343        X86::isPSHUFLWMask(PermMask.Val)) {
3344      if (V2.getOpcode() != ISD::UNDEF)
3345        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3346                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3347      return Op;
3348    }
3349
3350    if (X86::isSHUFPMask(PermMask.Val) &&
3351        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3352      return Op;
3353
3354    // Handle v8i16 shuffle high / low shuffle node pair.
3355    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3356      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3357      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3358      SmallVector<SDOperand, 8> MaskVec;
3359      for (unsigned i = 0; i != 4; ++i)
3360        MaskVec.push_back(PermMask.getOperand(i));
3361      for (unsigned i = 4; i != 8; ++i)
3362        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3363      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3364                                   &MaskVec[0], MaskVec.size());
3365      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3366      MaskVec.clear();
3367      for (unsigned i = 0; i != 4; ++i)
3368        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3369      for (unsigned i = 4; i != 8; ++i)
3370        MaskVec.push_back(PermMask.getOperand(i));
3371      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3372      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3373    }
3374  } else {
3375    // Floating point cases in the other order.
3376    if (X86::isSHUFPMask(PermMask.Val))
3377      return Op;
3378    if (X86::isPSHUFDMask(PermMask.Val) ||
3379        X86::isPSHUFHWMask(PermMask.Val) ||
3380        X86::isPSHUFLWMask(PermMask.Val)) {
3381      if (V2.getOpcode() != ISD::UNDEF)
3382        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3383                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3384      return Op;
3385    }
3386  }
3387
3388  if (NumElems == 4 &&
3389      // Don't do this for MMX.
3390      MVT::getSizeInBits(VT) != 64) {
3391    MVT::ValueType MaskVT = PermMask.getValueType();
3392    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3393    SmallVector<std::pair<int, int>, 8> Locs;
3394    Locs.reserve(NumElems);
3395    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3396    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3397    unsigned NumHi = 0;
3398    unsigned NumLo = 0;
3399    // If no more than two elements come from either vector. This can be
3400    // implemented with two shuffles. First shuffle gather the elements.
3401    // The second shuffle, which takes the first shuffle as both of its
3402    // vector operands, put the elements into the right order.
3403    for (unsigned i = 0; i != NumElems; ++i) {
3404      SDOperand Elt = PermMask.getOperand(i);
3405      if (Elt.getOpcode() == ISD::UNDEF) {
3406        Locs[i] = std::make_pair(-1, -1);
3407      } else {
3408        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3409        if (Val < NumElems) {
3410          Locs[i] = std::make_pair(0, NumLo);
3411          Mask1[NumLo] = Elt;
3412          NumLo++;
3413        } else {
3414          Locs[i] = std::make_pair(1, NumHi);
3415          if (2+NumHi < NumElems)
3416            Mask1[2+NumHi] = Elt;
3417          NumHi++;
3418        }
3419      }
3420    }
3421    if (NumLo <= 2 && NumHi <= 2) {
3422      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3423                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3424                                   &Mask1[0], Mask1.size()));
3425      for (unsigned i = 0; i != NumElems; ++i) {
3426        if (Locs[i].first == -1)
3427          continue;
3428        else {
3429          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3430          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3431          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3432        }
3433      }
3434
3435      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3436                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3437                                     &Mask2[0], Mask2.size()));
3438    }
3439
3440    // Break it into (shuffle shuffle_hi, shuffle_lo).
3441    Locs.clear();
3442    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3443    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3444    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3445    unsigned MaskIdx = 0;
3446    unsigned LoIdx = 0;
3447    unsigned HiIdx = NumElems/2;
3448    for (unsigned i = 0; i != NumElems; ++i) {
3449      if (i == NumElems/2) {
3450        MaskPtr = &HiMask;
3451        MaskIdx = 1;
3452        LoIdx = 0;
3453        HiIdx = NumElems/2;
3454      }
3455      SDOperand Elt = PermMask.getOperand(i);
3456      if (Elt.getOpcode() == ISD::UNDEF) {
3457        Locs[i] = std::make_pair(-1, -1);
3458      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3459        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3460        (*MaskPtr)[LoIdx] = Elt;
3461        LoIdx++;
3462      } else {
3463        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3464        (*MaskPtr)[HiIdx] = Elt;
3465        HiIdx++;
3466      }
3467    }
3468
3469    SDOperand LoShuffle =
3470      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3471                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3472                              &LoMask[0], LoMask.size()));
3473    SDOperand HiShuffle =
3474      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3475                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3476                              &HiMask[0], HiMask.size()));
3477    SmallVector<SDOperand, 8> MaskOps;
3478    for (unsigned i = 0; i != NumElems; ++i) {
3479      if (Locs[i].first == -1) {
3480        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3481      } else {
3482        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3483        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3484      }
3485    }
3486    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3487                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3488                                   &MaskOps[0], MaskOps.size()));
3489  }
3490
3491  return SDOperand();
3492}
3493
3494SDOperand
3495X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3496  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3497    return SDOperand();
3498
3499  MVT::ValueType VT = Op.getValueType();
3500  // TODO: handle v16i8.
3501  if (MVT::getSizeInBits(VT) == 16) {
3502    // Transform it so it match pextrw which produces a 32-bit result.
3503    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3504    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3505                                    Op.getOperand(0), Op.getOperand(1));
3506    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3507                                    DAG.getValueType(VT));
3508    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3509  } else if (MVT::getSizeInBits(VT) == 32) {
3510    SDOperand Vec = Op.getOperand(0);
3511    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3512    if (Idx == 0)
3513      return Op;
3514    // SHUFPS the element to the lowest double word, then movss.
3515    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3516    SmallVector<SDOperand, 8> IdxVec;
3517    IdxVec.
3518      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3519    IdxVec.
3520      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3521    IdxVec.
3522      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3523    IdxVec.
3524      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3525    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3526                                 &IdxVec[0], IdxVec.size());
3527    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3528                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3529    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3530                       DAG.getConstant(0, getPointerTy()));
3531  } else if (MVT::getSizeInBits(VT) == 64) {
3532    SDOperand Vec = Op.getOperand(0);
3533    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3534    if (Idx == 0)
3535      return Op;
3536
3537    // UNPCKHPD the element to the lowest double word, then movsd.
3538    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3539    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3540    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3541    SmallVector<SDOperand, 8> IdxVec;
3542    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3543    IdxVec.
3544      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3545    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3546                                 &IdxVec[0], IdxVec.size());
3547    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3548                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3549    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3550                       DAG.getConstant(0, getPointerTy()));
3551  }
3552
3553  return SDOperand();
3554}
3555
3556SDOperand
3557X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3558  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3559  // as its second argument.
3560  MVT::ValueType VT = Op.getValueType();
3561  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3562  SDOperand N0 = Op.getOperand(0);
3563  SDOperand N1 = Op.getOperand(1);
3564  SDOperand N2 = Op.getOperand(2);
3565  if (MVT::getSizeInBits(BaseVT) == 16) {
3566    if (N1.getValueType() != MVT::i32)
3567      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3568    if (N2.getValueType() != MVT::i32)
3569      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3570    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3571  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3572    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3573    if (Idx == 0) {
3574      // Use a movss.
3575      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3576      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3577      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3578      SmallVector<SDOperand, 8> MaskVec;
3579      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3580      for (unsigned i = 1; i <= 3; ++i)
3581        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3582      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3583                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3584                                     &MaskVec[0], MaskVec.size()));
3585    } else {
3586      // Use two pinsrw instructions to insert a 32 bit value.
3587      Idx <<= 1;
3588      if (MVT::isFloatingPoint(N1.getValueType())) {
3589        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3590        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3591        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3592                         DAG.getConstant(0, getPointerTy()));
3593      }
3594      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3595      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3596                       DAG.getConstant(Idx, getPointerTy()));
3597      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3598      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3599                       DAG.getConstant(Idx+1, getPointerTy()));
3600      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3601    }
3602  }
3603
3604  return SDOperand();
3605}
3606
3607SDOperand
3608X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3609  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3610  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3611}
3612
3613// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3614// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3615// one of the above mentioned nodes. It has to be wrapped because otherwise
3616// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3617// be used to form addressing mode. These wrapped nodes will be selected
3618// into MOV32ri.
3619SDOperand
3620X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3621  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3622  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3623                                               getPointerTy(),
3624                                               CP->getAlignment());
3625  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3626  // With PIC, the address is actually $g + Offset.
3627  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3628      !Subtarget->isPICStyleRIPRel()) {
3629    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3630                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3631                         Result);
3632  }
3633
3634  return Result;
3635}
3636
3637SDOperand
3638X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3639  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3640  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3641  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3642  // With PIC, the address is actually $g + Offset.
3643  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3644      !Subtarget->isPICStyleRIPRel()) {
3645    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3646                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3647                         Result);
3648  }
3649
3650  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3651  // load the value at address GV, not the value of GV itself. This means that
3652  // the GlobalAddress must be in the base or index register of the address, not
3653  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3654  // The same applies for external symbols during PIC codegen
3655  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3656    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3657
3658  return Result;
3659}
3660
3661// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3662static SDOperand
3663LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3664                              const MVT::ValueType PtrVT) {
3665  SDOperand InFlag;
3666  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3667                                     DAG.getNode(X86ISD::GlobalBaseReg,
3668                                                 PtrVT), InFlag);
3669  InFlag = Chain.getValue(1);
3670
3671  // emit leal symbol@TLSGD(,%ebx,1), %eax
3672  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3673  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3674                                             GA->getValueType(0),
3675                                             GA->getOffset());
3676  SDOperand Ops[] = { Chain,  TGA, InFlag };
3677  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3678  InFlag = Result.getValue(2);
3679  Chain = Result.getValue(1);
3680
3681  // call ___tls_get_addr. This function receives its argument in
3682  // the register EAX.
3683  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3684  InFlag = Chain.getValue(1);
3685
3686  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3687  SDOperand Ops1[] = { Chain,
3688                      DAG.getTargetExternalSymbol("___tls_get_addr",
3689                                                  PtrVT),
3690                      DAG.getRegister(X86::EAX, PtrVT),
3691                      DAG.getRegister(X86::EBX, PtrVT),
3692                      InFlag };
3693  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3694  InFlag = Chain.getValue(1);
3695
3696  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3697}
3698
3699// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3700// "local exec" model.
3701static SDOperand
3702LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3703                         const MVT::ValueType PtrVT) {
3704  // Get the Thread Pointer
3705  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3706  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3707  // exec)
3708  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3709                                             GA->getValueType(0),
3710                                             GA->getOffset());
3711  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3712
3713  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3714    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3715
3716  // The address of the thread local variable is the add of the thread
3717  // pointer with the offset of the variable.
3718  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3719}
3720
3721SDOperand
3722X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3723  // TODO: implement the "local dynamic" model
3724  // TODO: implement the "initial exec"model for pic executables
3725  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3726         "TLS not implemented for non-ELF and 64-bit targets");
3727  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3728  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3729  // otherwise use the "Local Exec"TLS Model
3730  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3731    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3732  else
3733    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3734}
3735
3736SDOperand
3737X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3738  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3739  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3740  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3741  // With PIC, the address is actually $g + Offset.
3742  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3743      !Subtarget->isPICStyleRIPRel()) {
3744    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3745                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3746                         Result);
3747  }
3748
3749  return Result;
3750}
3751
3752SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3753  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3754  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3755  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3756  // With PIC, the address is actually $g + Offset.
3757  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3758      !Subtarget->isPICStyleRIPRel()) {
3759    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3760                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3761                         Result);
3762  }
3763
3764  return Result;
3765}
3766
3767SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3768    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3769           "Not an i64 shift!");
3770    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3771    SDOperand ShOpLo = Op.getOperand(0);
3772    SDOperand ShOpHi = Op.getOperand(1);
3773    SDOperand ShAmt  = Op.getOperand(2);
3774    SDOperand Tmp1 = isSRA ?
3775      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3776      DAG.getConstant(0, MVT::i32);
3777
3778    SDOperand Tmp2, Tmp3;
3779    if (Op.getOpcode() == ISD::SHL_PARTS) {
3780      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3781      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3782    } else {
3783      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3784      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3785    }
3786
3787    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3788    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3789                                    DAG.getConstant(32, MVT::i8));
3790    SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3791                                 AndNode, DAG.getConstant(0, MVT::i8));
3792
3793    SDOperand Hi, Lo;
3794    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3795    unsigned Opc = X86ISD::CMOV;
3796    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3797    SmallVector<SDOperand, 4> Ops;
3798    if (Op.getOpcode() == ISD::SHL_PARTS) {
3799      Ops.push_back(Tmp2);
3800      Ops.push_back(Tmp3);
3801      Ops.push_back(CC);
3802      Ops.push_back(Cond);
3803      Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3804
3805      Ops.clear();
3806      Ops.push_back(Tmp3);
3807      Ops.push_back(Tmp1);
3808      Ops.push_back(CC);
3809      Ops.push_back(Cond);
3810      Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3811    } else {
3812      Ops.push_back(Tmp2);
3813      Ops.push_back(Tmp3);
3814      Ops.push_back(CC);
3815      Ops.push_back(Cond);
3816      Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3817
3818      Ops.clear();
3819      Ops.push_back(Tmp3);
3820      Ops.push_back(Tmp1);
3821      Ops.push_back(CC);
3822      Ops.push_back(Cond);
3823      Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
3824    }
3825
3826    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3827    Ops.clear();
3828    Ops.push_back(Lo);
3829    Ops.push_back(Hi);
3830    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3831}
3832
3833SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3834  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3835         Op.getOperand(0).getValueType() >= MVT::i16 &&
3836         "Unknown SINT_TO_FP to lower!");
3837
3838  SDOperand Result;
3839  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3840  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3841  MachineFunction &MF = DAG.getMachineFunction();
3842  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3843  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3844  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3845                                 StackSlot, NULL, 0);
3846
3847  // These are really Legal; caller falls through into that case.
3848  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3849    return Result;
3850  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
3851    return Result;
3852  if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3853      Subtarget->is64Bit())
3854    return Result;
3855
3856  // Build the FILD
3857  SDVTList Tys;
3858  bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3859                (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
3860  if (useSSE)
3861    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3862  else
3863    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3864  SmallVector<SDOperand, 8> Ops;
3865  Ops.push_back(Chain);
3866  Ops.push_back(StackSlot);
3867  Ops.push_back(DAG.getValueType(SrcVT));
3868  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3869                       Tys, &Ops[0], Ops.size());
3870
3871  if (useSSE) {
3872    Chain = Result.getValue(1);
3873    SDOperand InFlag = Result.getValue(2);
3874
3875    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3876    // shouldn't be necessary except that RFP cannot be live across
3877    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3878    MachineFunction &MF = DAG.getMachineFunction();
3879    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3880    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3881    Tys = DAG.getVTList(MVT::Other);
3882    SmallVector<SDOperand, 8> Ops;
3883    Ops.push_back(Chain);
3884    Ops.push_back(Result);
3885    Ops.push_back(StackSlot);
3886    Ops.push_back(DAG.getValueType(Op.getValueType()));
3887    Ops.push_back(InFlag);
3888    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3889    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3890  }
3891
3892  return Result;
3893}
3894
3895SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3896  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3897         "Unknown FP_TO_SINT to lower!");
3898  SDOperand Result;
3899
3900  // These are really Legal.
3901  if (Op.getValueType() == MVT::i32 &&
3902      X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3903    return Result;
3904  if (Op.getValueType() == MVT::i32 &&
3905      X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
3906    return Result;
3907  if (Subtarget->is64Bit() &&
3908      Op.getValueType() == MVT::i64 &&
3909      Op.getOperand(0).getValueType() != MVT::f80)
3910    return Result;
3911
3912  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3913  // stack slot.
3914  MachineFunction &MF = DAG.getMachineFunction();
3915  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3916  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3917  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3918  unsigned Opc;
3919  switch (Op.getValueType()) {
3920    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3921    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3922    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3923    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3924  }
3925
3926  SDOperand Chain = DAG.getEntryNode();
3927  SDOperand Value = Op.getOperand(0);
3928  if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3929      (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
3930    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3931    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3932    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3933    SDOperand Ops[] = {
3934      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3935    };
3936    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3937    Chain = Value.getValue(1);
3938    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3939    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3940  }
3941
3942  // Build the FP_TO_INT*_IN_MEM
3943  SDOperand Ops[] = { Chain, Value, StackSlot };
3944  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3945
3946  // Load the result.
3947  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3948}
3949
3950SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3951  MVT::ValueType VT = Op.getValueType();
3952  MVT::ValueType EltVT = VT;
3953  if (MVT::isVector(VT))
3954    EltVT = MVT::getVectorElementType(VT);
3955  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3956  std::vector<Constant*> CV;
3957  if (EltVT == MVT::f64) {
3958    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
3959    CV.push_back(C);
3960    CV.push_back(C);
3961  } else {
3962    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
3963    CV.push_back(C);
3964    CV.push_back(C);
3965    CV.push_back(C);
3966    CV.push_back(C);
3967  }
3968  Constant *C = ConstantVector::get(CV);
3969  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3970  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3971                               false, 16);
3972  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3973}
3974
3975SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3976  MVT::ValueType VT = Op.getValueType();
3977  MVT::ValueType EltVT = VT;
3978  unsigned EltNum = 1;
3979  if (MVT::isVector(VT)) {
3980    EltVT = MVT::getVectorElementType(VT);
3981    EltNum = MVT::getVectorNumElements(VT);
3982  }
3983  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3984  std::vector<Constant*> CV;
3985  if (EltVT == MVT::f64) {
3986    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
3987    CV.push_back(C);
3988    CV.push_back(C);
3989  } else {
3990    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
3991    CV.push_back(C);
3992    CV.push_back(C);
3993    CV.push_back(C);
3994    CV.push_back(C);
3995  }
3996  Constant *C = ConstantVector::get(CV);
3997  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3998  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3999                               false, 16);
4000  if (MVT::isVector(VT)) {
4001    return DAG.getNode(ISD::BIT_CONVERT, VT,
4002                       DAG.getNode(ISD::XOR, MVT::v2i64,
4003                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4004                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4005  } else {
4006    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4007  }
4008}
4009
4010SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4011  SDOperand Op0 = Op.getOperand(0);
4012  SDOperand Op1 = Op.getOperand(1);
4013  MVT::ValueType VT = Op.getValueType();
4014  MVT::ValueType SrcVT = Op1.getValueType();
4015  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4016
4017  // If second operand is smaller, extend it first.
4018  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4019    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4020    SrcVT = VT;
4021    SrcTy = MVT::getTypeForValueType(SrcVT);
4022  }
4023
4024  // First get the sign bit of second operand.
4025  std::vector<Constant*> CV;
4026  if (SrcVT == MVT::f64) {
4027    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4028    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4029  } else {
4030    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4031    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4032    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4033    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4034  }
4035  Constant *C = ConstantVector::get(CV);
4036  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4037  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4038                                false, 16);
4039  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4040
4041  // Shift sign bit right or left if the two operands have different types.
4042  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4043    // Op0 is MVT::f32, Op1 is MVT::f64.
4044    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4045    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4046                          DAG.getConstant(32, MVT::i32));
4047    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4048    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4049                          DAG.getConstant(0, getPointerTy()));
4050  }
4051
4052  // Clear first operand sign bit.
4053  CV.clear();
4054  if (VT == MVT::f64) {
4055    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4056    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4057  } else {
4058    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4059    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4060    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4061    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4062  }
4063  C = ConstantVector::get(CV);
4064  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4065  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4066                                false, 16);
4067  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4068
4069  // Or the value with the sign bit.
4070  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4071}
4072
4073SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4074  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4075  SDOperand Cond;
4076  SDOperand Op0 = Op.getOperand(0);
4077  SDOperand Op1 = Op.getOperand(1);
4078  SDOperand CC = Op.getOperand(2);
4079  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4080  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4081  unsigned X86CC;
4082
4083  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4084                     Op0, Op1, DAG)) {
4085    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4086    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4087                       DAG.getConstant(X86CC, MVT::i8), Cond);
4088  }
4089
4090  assert(isFP && "Illegal integer SetCC!");
4091
4092  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4093  switch (SetCCOpcode) {
4094  default: assert(false && "Illegal floating point SetCC!");
4095  case ISD::SETOEQ: {  // !PF & ZF
4096    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4097                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4098    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4099                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4100    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4101  }
4102  case ISD::SETUNE: {  // PF | !ZF
4103    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4104                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4105    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4106                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4107    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4108  }
4109  }
4110}
4111
4112
4113SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4114  bool addTest = true;
4115  SDOperand Cond  = Op.getOperand(0);
4116  SDOperand CC;
4117
4118  if (Cond.getOpcode() == ISD::SETCC)
4119    Cond = LowerSETCC(Cond, DAG);
4120
4121  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4122  // setting operand in place of the X86ISD::SETCC.
4123  if (Cond.getOpcode() == X86ISD::SETCC) {
4124    CC = Cond.getOperand(0);
4125
4126    SDOperand Cmp = Cond.getOperand(1);
4127    unsigned Opc = Cmp.getOpcode();
4128    MVT::ValueType VT = Op.getValueType();
4129    bool IllegalFPCMov = false;
4130    if (VT == MVT::f32 && !X86ScalarSSEf32)
4131      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4132    else if (VT == MVT::f64 && !X86ScalarSSEf64)
4133      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4134    if ((Opc == X86ISD::CMP ||
4135         Opc == X86ISD::COMI ||
4136         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4137      Cond = Cmp;
4138      addTest = false;
4139    }
4140  }
4141
4142  if (addTest) {
4143    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4144    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4145  }
4146
4147  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4148                                                    MVT::Flag);
4149  SmallVector<SDOperand, 4> Ops;
4150  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4151  // condition is true.
4152  Ops.push_back(Op.getOperand(2));
4153  Ops.push_back(Op.getOperand(1));
4154  Ops.push_back(CC);
4155  Ops.push_back(Cond);
4156  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4157}
4158
4159SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4160  bool addTest = true;
4161  SDOperand Chain = Op.getOperand(0);
4162  SDOperand Cond  = Op.getOperand(1);
4163  SDOperand Dest  = Op.getOperand(2);
4164  SDOperand CC;
4165
4166  if (Cond.getOpcode() == ISD::SETCC)
4167    Cond = LowerSETCC(Cond, DAG);
4168
4169  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4170  // setting operand in place of the X86ISD::SETCC.
4171  if (Cond.getOpcode() == X86ISD::SETCC) {
4172    CC = Cond.getOperand(0);
4173
4174    SDOperand Cmp = Cond.getOperand(1);
4175    unsigned Opc = Cmp.getOpcode();
4176    if (Opc == X86ISD::CMP ||
4177        Opc == X86ISD::COMI ||
4178        Opc == X86ISD::UCOMI) {
4179      Cond = Cmp;
4180      addTest = false;
4181    }
4182  }
4183
4184  if (addTest) {
4185    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4186    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4187  }
4188  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4189                     Chain, Op.getOperand(2), CC, Cond);
4190}
4191
4192SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4193  unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4194  bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
4195
4196   if (Subtarget->is64Bit())
4197     if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4198       return LowerX86_TailCallTo(Op, DAG, CallingConv);
4199     else
4200       return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
4201  else
4202    switch (CallingConv) {
4203    default:
4204      assert(0 && "Unsupported calling convention");
4205    case CallingConv::Fast:
4206      if (isTailCall && PerformTailCallOpt)
4207        return LowerX86_TailCallTo(Op, DAG, CallingConv);
4208      else
4209        return LowerCCCCallTo(Op,DAG, CallingConv);
4210    case CallingConv::C:
4211    case CallingConv::X86_StdCall:
4212      return LowerCCCCallTo(Op, DAG, CallingConv);
4213    case CallingConv::X86_FastCall:
4214      return LowerFastCCCallTo(Op, DAG, CallingConv);
4215    }
4216}
4217
4218
4219// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4220// Calls to _alloca is needed to probe the stack when allocating more than 4k
4221// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4222// that the guard pages used by the OS virtual memory manager are allocated in
4223// correct sequence.
4224SDOperand
4225X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4226                                           SelectionDAG &DAG) {
4227  assert(Subtarget->isTargetCygMing() &&
4228         "This should be used only on Cygwin/Mingw targets");
4229
4230  // Get the inputs.
4231  SDOperand Chain = Op.getOperand(0);
4232  SDOperand Size  = Op.getOperand(1);
4233  // FIXME: Ensure alignment here
4234
4235  SDOperand Flag;
4236
4237  MVT::ValueType IntPtr = getPointerTy();
4238  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4239
4240  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4241  Flag = Chain.getValue(1);
4242
4243  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4244  SDOperand Ops[] = { Chain,
4245                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4246                      DAG.getRegister(X86::EAX, IntPtr),
4247                      Flag };
4248  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4249  Flag = Chain.getValue(1);
4250
4251  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4252
4253  std::vector<MVT::ValueType> Tys;
4254  Tys.push_back(SPTy);
4255  Tys.push_back(MVT::Other);
4256  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4257  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4258}
4259
4260SDOperand
4261X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4262  MachineFunction &MF = DAG.getMachineFunction();
4263  const Function* Fn = MF.getFunction();
4264  if (Fn->hasExternalLinkage() &&
4265      Subtarget->isTargetCygMing() &&
4266      Fn->getName() == "main")
4267    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4268
4269  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4270  if (Subtarget->is64Bit())
4271    return LowerX86_64CCCArguments(Op, DAG);
4272  else
4273    switch(CC) {
4274    default:
4275      assert(0 && "Unsupported calling convention");
4276    case CallingConv::Fast:
4277      return LowerCCCArguments(Op,DAG, true);
4278      // Falls through
4279    case CallingConv::C:
4280      return LowerCCCArguments(Op, DAG);
4281    case CallingConv::X86_StdCall:
4282      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4283      return LowerCCCArguments(Op, DAG, true);
4284    case CallingConv::X86_FastCall:
4285      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4286      return LowerFastCCArguments(Op, DAG);
4287    }
4288}
4289
4290SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4291  SDOperand InFlag(0, 0);
4292  SDOperand Chain = Op.getOperand(0);
4293  unsigned Align =
4294    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4295  if (Align == 0) Align = 1;
4296
4297  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4298  // If not DWORD aligned or size is more than the threshold, call memset.
4299  // The libc version is likely to be faster for these cases. It can use the
4300  // address value and run time information about the CPU.
4301  if ((Align & 3) != 0 ||
4302      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
4303    MVT::ValueType IntPtr = getPointerTy();
4304    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4305    TargetLowering::ArgListTy Args;
4306    TargetLowering::ArgListEntry Entry;
4307    Entry.Node = Op.getOperand(1);
4308    Entry.Ty = IntPtrTy;
4309    Args.push_back(Entry);
4310    // Extend the unsigned i8 argument to be an int value for the call.
4311    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4312    Entry.Ty = IntPtrTy;
4313    Args.push_back(Entry);
4314    Entry.Node = Op.getOperand(3);
4315    Args.push_back(Entry);
4316    std::pair<SDOperand,SDOperand> CallResult =
4317      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4318                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4319    return CallResult.second;
4320  }
4321
4322  MVT::ValueType AVT;
4323  SDOperand Count;
4324  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4325  unsigned BytesLeft = 0;
4326  bool TwoRepStos = false;
4327  if (ValC) {
4328    unsigned ValReg;
4329    uint64_t Val = ValC->getValue() & 255;
4330
4331    // If the value is a constant, then we can potentially use larger sets.
4332    switch (Align & 3) {
4333      case 2:   // WORD aligned
4334        AVT = MVT::i16;
4335        ValReg = X86::AX;
4336        Val = (Val << 8) | Val;
4337        break;
4338      case 0:  // DWORD aligned
4339        AVT = MVT::i32;
4340        ValReg = X86::EAX;
4341        Val = (Val << 8)  | Val;
4342        Val = (Val << 16) | Val;
4343        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4344          AVT = MVT::i64;
4345          ValReg = X86::RAX;
4346          Val = (Val << 32) | Val;
4347        }
4348        break;
4349      default:  // Byte aligned
4350        AVT = MVT::i8;
4351        ValReg = X86::AL;
4352        Count = Op.getOperand(3);
4353        break;
4354    }
4355
4356    if (AVT > MVT::i8) {
4357      if (I) {
4358        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4359        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4360        BytesLeft = I->getValue() % UBytes;
4361      } else {
4362        assert(AVT >= MVT::i32 &&
4363               "Do not use rep;stos if not at least DWORD aligned");
4364        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4365                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4366        TwoRepStos = true;
4367      }
4368    }
4369
4370    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4371                              InFlag);
4372    InFlag = Chain.getValue(1);
4373  } else {
4374    AVT = MVT::i8;
4375    Count  = Op.getOperand(3);
4376    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4377    InFlag = Chain.getValue(1);
4378  }
4379
4380  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4381                            Count, InFlag);
4382  InFlag = Chain.getValue(1);
4383  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4384                            Op.getOperand(1), InFlag);
4385  InFlag = Chain.getValue(1);
4386
4387  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4388  SmallVector<SDOperand, 8> Ops;
4389  Ops.push_back(Chain);
4390  Ops.push_back(DAG.getValueType(AVT));
4391  Ops.push_back(InFlag);
4392  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4393
4394  if (TwoRepStos) {
4395    InFlag = Chain.getValue(1);
4396    Count = Op.getOperand(3);
4397    MVT::ValueType CVT = Count.getValueType();
4398    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4399                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4400    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4401                              Left, InFlag);
4402    InFlag = Chain.getValue(1);
4403    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4404    Ops.clear();
4405    Ops.push_back(Chain);
4406    Ops.push_back(DAG.getValueType(MVT::i8));
4407    Ops.push_back(InFlag);
4408    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4409  } else if (BytesLeft) {
4410    // Issue stores for the last 1 - 7 bytes.
4411    SDOperand Value;
4412    unsigned Val = ValC->getValue() & 255;
4413    unsigned Offset = I->getValue() - BytesLeft;
4414    SDOperand DstAddr = Op.getOperand(1);
4415    MVT::ValueType AddrVT = DstAddr.getValueType();
4416    if (BytesLeft >= 4) {
4417      Val = (Val << 8)  | Val;
4418      Val = (Val << 16) | Val;
4419      Value = DAG.getConstant(Val, MVT::i32);
4420      Chain = DAG.getStore(Chain, Value,
4421                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4422                                       DAG.getConstant(Offset, AddrVT)),
4423                           NULL, 0);
4424      BytesLeft -= 4;
4425      Offset += 4;
4426    }
4427    if (BytesLeft >= 2) {
4428      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4429      Chain = DAG.getStore(Chain, Value,
4430                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4431                                       DAG.getConstant(Offset, AddrVT)),
4432                           NULL, 0);
4433      BytesLeft -= 2;
4434      Offset += 2;
4435    }
4436    if (BytesLeft == 1) {
4437      Value = DAG.getConstant(Val, MVT::i8);
4438      Chain = DAG.getStore(Chain, Value,
4439                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4440                                       DAG.getConstant(Offset, AddrVT)),
4441                           NULL, 0);
4442    }
4443  }
4444
4445  return Chain;
4446}
4447
4448SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4449  SDOperand ChainOp = Op.getOperand(0);
4450  SDOperand DestOp = Op.getOperand(1);
4451  SDOperand SourceOp = Op.getOperand(2);
4452  SDOperand CountOp = Op.getOperand(3);
4453  SDOperand AlignOp = Op.getOperand(4);
4454  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
4455  if (Align == 0) Align = 1;
4456
4457  // The libc version is likely to be faster for the following cases. It can
4458  // use the address value and run time information about the CPU.
4459  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
4460
4461  // If not DWORD aligned, call memcpy.
4462  if ((Align & 3) != 0)
4463    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4464
4465  // If size is unknown, call memcpy.
4466  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4467  if (!I)
4468    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4469
4470  // If size is more than the threshold, call memcpy.
4471  unsigned Size = I->getValue();
4472  if (Size > Subtarget->getMinRepStrSizeThreshold())
4473    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4474
4475  return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4476}
4477
4478SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4479                                             SDOperand Dest,
4480                                             SDOperand Source,
4481                                             SDOperand Count,
4482                                             SelectionDAG &DAG) {
4483  MVT::ValueType IntPtr = getPointerTy();
4484  TargetLowering::ArgListTy Args;
4485  TargetLowering::ArgListEntry Entry;
4486  Entry.Ty = getTargetData()->getIntPtrType();
4487  Entry.Node = Dest; Args.push_back(Entry);
4488  Entry.Node = Source; Args.push_back(Entry);
4489  Entry.Node = Count; Args.push_back(Entry);
4490  std::pair<SDOperand,SDOperand> CallResult =
4491      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4492                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4493  return CallResult.second;
4494}
4495
4496SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4497                                               SDOperand Dest,
4498                                               SDOperand Source,
4499                                               unsigned Size,
4500                                               unsigned Align,
4501                                               SelectionDAG &DAG) {
4502  MVT::ValueType AVT;
4503  unsigned BytesLeft = 0;
4504  switch (Align & 3) {
4505    case 2:   // WORD aligned
4506      AVT = MVT::i16;
4507      break;
4508    case 0:  // DWORD aligned
4509      AVT = MVT::i32;
4510      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4511        AVT = MVT::i64;
4512      break;
4513    default:  // Byte aligned
4514      AVT = MVT::i8;
4515      break;
4516  }
4517
4518  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4519  SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4520  BytesLeft = Size % UBytes;
4521
4522  SDOperand InFlag(0, 0);
4523  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4524                            Count, InFlag);
4525  InFlag = Chain.getValue(1);
4526  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4527                            Dest, InFlag);
4528  InFlag = Chain.getValue(1);
4529  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4530                            Source, InFlag);
4531  InFlag = Chain.getValue(1);
4532
4533  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4534  SmallVector<SDOperand, 8> Ops;
4535  Ops.push_back(Chain);
4536  Ops.push_back(DAG.getValueType(AVT));
4537  Ops.push_back(InFlag);
4538  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4539
4540  if (BytesLeft) {
4541    // Issue loads and stores for the last 1 - 7 bytes.
4542    unsigned Offset = Size - BytesLeft;
4543    SDOperand DstAddr = Dest;
4544    MVT::ValueType DstVT = DstAddr.getValueType();
4545    SDOperand SrcAddr = Source;
4546    MVT::ValueType SrcVT = SrcAddr.getValueType();
4547    SDOperand Value;
4548    if (BytesLeft >= 4) {
4549      Value = DAG.getLoad(MVT::i32, Chain,
4550                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4551                                      DAG.getConstant(Offset, SrcVT)),
4552                          NULL, 0);
4553      Chain = Value.getValue(1);
4554      Chain = DAG.getStore(Chain, Value,
4555                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4556                                       DAG.getConstant(Offset, DstVT)),
4557                           NULL, 0);
4558      BytesLeft -= 4;
4559      Offset += 4;
4560    }
4561    if (BytesLeft >= 2) {
4562      Value = DAG.getLoad(MVT::i16, Chain,
4563                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4564                                      DAG.getConstant(Offset, SrcVT)),
4565                          NULL, 0);
4566      Chain = Value.getValue(1);
4567      Chain = DAG.getStore(Chain, Value,
4568                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4569                                       DAG.getConstant(Offset, DstVT)),
4570                           NULL, 0);
4571      BytesLeft -= 2;
4572      Offset += 2;
4573    }
4574
4575    if (BytesLeft == 1) {
4576      Value = DAG.getLoad(MVT::i8, Chain,
4577                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4578                                      DAG.getConstant(Offset, SrcVT)),
4579                          NULL, 0);
4580      Chain = Value.getValue(1);
4581      Chain = DAG.getStore(Chain, Value,
4582                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4583                                       DAG.getConstant(Offset, DstVT)),
4584                           NULL, 0);
4585    }
4586  }
4587
4588  return Chain;
4589}
4590
4591SDOperand
4592X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4593  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4594  SDOperand TheOp = Op.getOperand(0);
4595  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4596  if (Subtarget->is64Bit()) {
4597    SDOperand Copy1 =
4598      DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4599    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4600                                         MVT::i64, Copy1.getValue(2));
4601    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4602                                DAG.getConstant(32, MVT::i8));
4603    SDOperand Ops[] = {
4604      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4605    };
4606
4607    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4608    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4609  }
4610
4611  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4612  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4613                                       MVT::i32, Copy1.getValue(2));
4614  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4615  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4616  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4617}
4618
4619SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4620  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4621
4622  if (!Subtarget->is64Bit()) {
4623    // vastart just stores the address of the VarArgsFrameIndex slot into the
4624    // memory location argument.
4625    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4626    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4627                        SV->getOffset());
4628  }
4629
4630  // __va_list_tag:
4631  //   gp_offset         (0 - 6 * 8)
4632  //   fp_offset         (48 - 48 + 8 * 16)
4633  //   overflow_arg_area (point to parameters coming in memory).
4634  //   reg_save_area
4635  SmallVector<SDOperand, 8> MemOps;
4636  SDOperand FIN = Op.getOperand(1);
4637  // Store gp_offset
4638  SDOperand Store = DAG.getStore(Op.getOperand(0),
4639                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4640                                 FIN, SV->getValue(), SV->getOffset());
4641  MemOps.push_back(Store);
4642
4643  // Store fp_offset
4644  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4645                    DAG.getConstant(4, getPointerTy()));
4646  Store = DAG.getStore(Op.getOperand(0),
4647                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4648                       FIN, SV->getValue(), SV->getOffset());
4649  MemOps.push_back(Store);
4650
4651  // Store ptr to overflow_arg_area
4652  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4653                    DAG.getConstant(4, getPointerTy()));
4654  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4655  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4656                       SV->getOffset());
4657  MemOps.push_back(Store);
4658
4659  // Store ptr to reg_save_area.
4660  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4661                    DAG.getConstant(8, getPointerTy()));
4662  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4663  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4664                       SV->getOffset());
4665  MemOps.push_back(Store);
4666  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4667}
4668
4669SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4670  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4671  SDOperand Chain = Op.getOperand(0);
4672  SDOperand DstPtr = Op.getOperand(1);
4673  SDOperand SrcPtr = Op.getOperand(2);
4674  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4675  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4676
4677  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4678                       SrcSV->getValue(), SrcSV->getOffset());
4679  Chain = SrcPtr.getValue(1);
4680  for (unsigned i = 0; i < 3; ++i) {
4681    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4682                                SrcSV->getValue(), SrcSV->getOffset());
4683    Chain = Val.getValue(1);
4684    Chain = DAG.getStore(Chain, Val, DstPtr,
4685                         DstSV->getValue(), DstSV->getOffset());
4686    if (i == 2)
4687      break;
4688    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4689                         DAG.getConstant(8, getPointerTy()));
4690    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4691                         DAG.getConstant(8, getPointerTy()));
4692  }
4693  return Chain;
4694}
4695
4696SDOperand
4697X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4698  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4699  switch (IntNo) {
4700  default: return SDOperand();    // Don't custom lower most intrinsics.
4701    // Comparison intrinsics.
4702  case Intrinsic::x86_sse_comieq_ss:
4703  case Intrinsic::x86_sse_comilt_ss:
4704  case Intrinsic::x86_sse_comile_ss:
4705  case Intrinsic::x86_sse_comigt_ss:
4706  case Intrinsic::x86_sse_comige_ss:
4707  case Intrinsic::x86_sse_comineq_ss:
4708  case Intrinsic::x86_sse_ucomieq_ss:
4709  case Intrinsic::x86_sse_ucomilt_ss:
4710  case Intrinsic::x86_sse_ucomile_ss:
4711  case Intrinsic::x86_sse_ucomigt_ss:
4712  case Intrinsic::x86_sse_ucomige_ss:
4713  case Intrinsic::x86_sse_ucomineq_ss:
4714  case Intrinsic::x86_sse2_comieq_sd:
4715  case Intrinsic::x86_sse2_comilt_sd:
4716  case Intrinsic::x86_sse2_comile_sd:
4717  case Intrinsic::x86_sse2_comigt_sd:
4718  case Intrinsic::x86_sse2_comige_sd:
4719  case Intrinsic::x86_sse2_comineq_sd:
4720  case Intrinsic::x86_sse2_ucomieq_sd:
4721  case Intrinsic::x86_sse2_ucomilt_sd:
4722  case Intrinsic::x86_sse2_ucomile_sd:
4723  case Intrinsic::x86_sse2_ucomigt_sd:
4724  case Intrinsic::x86_sse2_ucomige_sd:
4725  case Intrinsic::x86_sse2_ucomineq_sd: {
4726    unsigned Opc = 0;
4727    ISD::CondCode CC = ISD::SETCC_INVALID;
4728    switch (IntNo) {
4729    default: break;
4730    case Intrinsic::x86_sse_comieq_ss:
4731    case Intrinsic::x86_sse2_comieq_sd:
4732      Opc = X86ISD::COMI;
4733      CC = ISD::SETEQ;
4734      break;
4735    case Intrinsic::x86_sse_comilt_ss:
4736    case Intrinsic::x86_sse2_comilt_sd:
4737      Opc = X86ISD::COMI;
4738      CC = ISD::SETLT;
4739      break;
4740    case Intrinsic::x86_sse_comile_ss:
4741    case Intrinsic::x86_sse2_comile_sd:
4742      Opc = X86ISD::COMI;
4743      CC = ISD::SETLE;
4744      break;
4745    case Intrinsic::x86_sse_comigt_ss:
4746    case Intrinsic::x86_sse2_comigt_sd:
4747      Opc = X86ISD::COMI;
4748      CC = ISD::SETGT;
4749      break;
4750    case Intrinsic::x86_sse_comige_ss:
4751    case Intrinsic::x86_sse2_comige_sd:
4752      Opc = X86ISD::COMI;
4753      CC = ISD::SETGE;
4754      break;
4755    case Intrinsic::x86_sse_comineq_ss:
4756    case Intrinsic::x86_sse2_comineq_sd:
4757      Opc = X86ISD::COMI;
4758      CC = ISD::SETNE;
4759      break;
4760    case Intrinsic::x86_sse_ucomieq_ss:
4761    case Intrinsic::x86_sse2_ucomieq_sd:
4762      Opc = X86ISD::UCOMI;
4763      CC = ISD::SETEQ;
4764      break;
4765    case Intrinsic::x86_sse_ucomilt_ss:
4766    case Intrinsic::x86_sse2_ucomilt_sd:
4767      Opc = X86ISD::UCOMI;
4768      CC = ISD::SETLT;
4769      break;
4770    case Intrinsic::x86_sse_ucomile_ss:
4771    case Intrinsic::x86_sse2_ucomile_sd:
4772      Opc = X86ISD::UCOMI;
4773      CC = ISD::SETLE;
4774      break;
4775    case Intrinsic::x86_sse_ucomigt_ss:
4776    case Intrinsic::x86_sse2_ucomigt_sd:
4777      Opc = X86ISD::UCOMI;
4778      CC = ISD::SETGT;
4779      break;
4780    case Intrinsic::x86_sse_ucomige_ss:
4781    case Intrinsic::x86_sse2_ucomige_sd:
4782      Opc = X86ISD::UCOMI;
4783      CC = ISD::SETGE;
4784      break;
4785    case Intrinsic::x86_sse_ucomineq_ss:
4786    case Intrinsic::x86_sse2_ucomineq_sd:
4787      Opc = X86ISD::UCOMI;
4788      CC = ISD::SETNE;
4789      break;
4790    }
4791
4792    unsigned X86CC;
4793    SDOperand LHS = Op.getOperand(1);
4794    SDOperand RHS = Op.getOperand(2);
4795    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4796
4797    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4798    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4799                                  DAG.getConstant(X86CC, MVT::i8), Cond);
4800    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4801  }
4802  }
4803}
4804
4805SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4806  // Depths > 0 not supported yet!
4807  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4808    return SDOperand();
4809
4810  // Just load the return address
4811  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4812  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4813}
4814
4815SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4816  // Depths > 0 not supported yet!
4817  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4818    return SDOperand();
4819
4820  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4821  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4822                     DAG.getConstant(4, getPointerTy()));
4823}
4824
4825SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4826                                                       SelectionDAG &DAG) {
4827  // Is not yet supported on x86-64
4828  if (Subtarget->is64Bit())
4829    return SDOperand();
4830
4831  return DAG.getConstant(8, getPointerTy());
4832}
4833
4834SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4835{
4836  assert(!Subtarget->is64Bit() &&
4837         "Lowering of eh_return builtin is not supported yet on x86-64");
4838
4839  MachineFunction &MF = DAG.getMachineFunction();
4840  SDOperand Chain     = Op.getOperand(0);
4841  SDOperand Offset    = Op.getOperand(1);
4842  SDOperand Handler   = Op.getOperand(2);
4843
4844  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4845                                    getPointerTy());
4846
4847  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4848                                    DAG.getConstant(-4UL, getPointerTy()));
4849  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4850  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4851  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4852  MF.addLiveOut(X86::ECX);
4853
4854  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4855                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4856}
4857
4858SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4859                                             SelectionDAG &DAG) {
4860  SDOperand Root = Op.getOperand(0);
4861  SDOperand Trmp = Op.getOperand(1); // trampoline
4862  SDOperand FPtr = Op.getOperand(2); // nested function
4863  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4864
4865  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4866
4867  if (Subtarget->is64Bit()) {
4868    return SDOperand(); // not yet supported
4869  } else {
4870    Function *Func = (Function *)
4871      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4872    unsigned CC = Func->getCallingConv();
4873    unsigned NestReg;
4874
4875    switch (CC) {
4876    default:
4877      assert(0 && "Unsupported calling convention");
4878    case CallingConv::C:
4879    case CallingConv::X86_StdCall: {
4880      // Pass 'nest' parameter in ECX.
4881      // Must be kept in sync with X86CallingConv.td
4882      NestReg = X86::ECX;
4883
4884      // Check that ECX wasn't needed by an 'inreg' parameter.
4885      const FunctionType *FTy = Func->getFunctionType();
4886      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4887
4888      if (Attrs && !Func->isVarArg()) {
4889        unsigned InRegCount = 0;
4890        unsigned Idx = 1;
4891
4892        for (FunctionType::param_iterator I = FTy->param_begin(),
4893             E = FTy->param_end(); I != E; ++I, ++Idx)
4894          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4895            // FIXME: should only count parameters that are lowered to integers.
4896            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4897
4898        if (InRegCount > 2) {
4899          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4900          abort();
4901        }
4902      }
4903      break;
4904    }
4905    case CallingConv::X86_FastCall:
4906      // Pass 'nest' parameter in EAX.
4907      // Must be kept in sync with X86CallingConv.td
4908      NestReg = X86::EAX;
4909      break;
4910    }
4911
4912    const X86InstrInfo *TII =
4913      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4914
4915    SDOperand OutChains[4];
4916    SDOperand Addr, Disp;
4917
4918    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4919    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4920
4921    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4922    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4923    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4924                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4925
4926    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4927    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4928                                TrmpSV->getOffset() + 1, false, 1);
4929
4930    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4931    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4932    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4933                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4934
4935    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4936    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4937                                TrmpSV->getOffset() + 6, false, 1);
4938
4939    SDOperand Ops[] =
4940      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4941    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4942  }
4943}
4944
4945/// LowerOperation - Provide custom lowering hooks for some operations.
4946///
4947SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4948  switch (Op.getOpcode()) {
4949  default: assert(0 && "Should not custom lower this!");
4950  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4951  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4952  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4953  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4954  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4955  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4956  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4957  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4958  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4959  case ISD::SHL_PARTS:
4960  case ISD::SRA_PARTS:
4961  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4962  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4963  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4964  case ISD::FABS:               return LowerFABS(Op, DAG);
4965  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4966  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4967  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4968  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4969  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4970  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4971  case ISD::CALL:               return LowerCALL(Op, DAG);
4972  case ISD::RET:                return LowerRET(Op, DAG);
4973  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4974  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4975  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4976  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4977  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4978  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4979  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4980  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4981  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4982  case ISD::FRAME_TO_ARGS_OFFSET:
4983                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4984  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4985  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
4986  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4987  }
4988  return SDOperand();
4989}
4990
4991const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4992  switch (Opcode) {
4993  default: return NULL;
4994  case X86ISD::SHLD:               return "X86ISD::SHLD";
4995  case X86ISD::SHRD:               return "X86ISD::SHRD";
4996  case X86ISD::FAND:               return "X86ISD::FAND";
4997  case X86ISD::FOR:                return "X86ISD::FOR";
4998  case X86ISD::FXOR:               return "X86ISD::FXOR";
4999  case X86ISD::FSRL:               return "X86ISD::FSRL";
5000  case X86ISD::FILD:               return "X86ISD::FILD";
5001  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5002  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5003  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5004  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5005  case X86ISD::FLD:                return "X86ISD::FLD";
5006  case X86ISD::FST:                return "X86ISD::FST";
5007  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
5008  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
5009  case X86ISD::CALL:               return "X86ISD::CALL";
5010  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5011  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5012  case X86ISD::CMP:                return "X86ISD::CMP";
5013  case X86ISD::COMI:               return "X86ISD::COMI";
5014  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5015  case X86ISD::SETCC:              return "X86ISD::SETCC";
5016  case X86ISD::CMOV:               return "X86ISD::CMOV";
5017  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5018  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5019  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5020  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5021  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5022  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5023  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
5024  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5025  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5026  case X86ISD::FMAX:               return "X86ISD::FMAX";
5027  case X86ISD::FMIN:               return "X86ISD::FMIN";
5028  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5029  case X86ISD::FRCP:               return "X86ISD::FRCP";
5030  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5031  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5032  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5033  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5034  }
5035}
5036
5037// isLegalAddressingMode - Return true if the addressing mode represented
5038// by AM is legal for this target, for a load/store of the specified type.
5039bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5040                                              const Type *Ty) const {
5041  // X86 supports extremely general addressing modes.
5042
5043  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5044  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5045    return false;
5046
5047  if (AM.BaseGV) {
5048    // We can only fold this if we don't need an extra load.
5049    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5050      return false;
5051
5052    // X86-64 only supports addr of globals in small code model.
5053    if (Subtarget->is64Bit()) {
5054      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5055        return false;
5056      // If lower 4G is not available, then we must use rip-relative addressing.
5057      if (AM.BaseOffs || AM.Scale > 1)
5058        return false;
5059    }
5060  }
5061
5062  switch (AM.Scale) {
5063  case 0:
5064  case 1:
5065  case 2:
5066  case 4:
5067  case 8:
5068    // These scales always work.
5069    break;
5070  case 3:
5071  case 5:
5072  case 9:
5073    // These scales are formed with basereg+scalereg.  Only accept if there is
5074    // no basereg yet.
5075    if (AM.HasBaseReg)
5076      return false;
5077    break;
5078  default:  // Other stuff never works.
5079    return false;
5080  }
5081
5082  return true;
5083}
5084
5085
5086/// isShuffleMaskLegal - Targets can use this to indicate that they only
5087/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5088/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5089/// are assumed to be legal.
5090bool
5091X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5092  // Only do shuffles on 128-bit vector types for now.
5093  if (MVT::getSizeInBits(VT) == 64) return false;
5094  return (Mask.Val->getNumOperands() <= 4 ||
5095          isIdentityMask(Mask.Val) ||
5096          isIdentityMask(Mask.Val, true) ||
5097          isSplatMask(Mask.Val)  ||
5098          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5099          X86::isUNPCKLMask(Mask.Val) ||
5100          X86::isUNPCKHMask(Mask.Val) ||
5101          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5102          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5103}
5104
5105bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5106                                               MVT::ValueType EVT,
5107                                               SelectionDAG &DAG) const {
5108  unsigned NumElts = BVOps.size();
5109  // Only do shuffles on 128-bit vector types for now.
5110  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5111  if (NumElts == 2) return true;
5112  if (NumElts == 4) {
5113    return (isMOVLMask(&BVOps[0], 4)  ||
5114            isCommutedMOVL(&BVOps[0], 4, true) ||
5115            isSHUFPMask(&BVOps[0], 4) ||
5116            isCommutedSHUFP(&BVOps[0], 4));
5117  }
5118  return false;
5119}
5120
5121//===----------------------------------------------------------------------===//
5122//                           X86 Scheduler Hooks
5123//===----------------------------------------------------------------------===//
5124
5125MachineBasicBlock *
5126X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5127                                           MachineBasicBlock *BB) {
5128  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5129  switch (MI->getOpcode()) {
5130  default: assert(false && "Unexpected instr type to insert");
5131  case X86::CMOV_FR32:
5132  case X86::CMOV_FR64:
5133  case X86::CMOV_V4F32:
5134  case X86::CMOV_V2F64:
5135  case X86::CMOV_V2I64: {
5136    // To "insert" a SELECT_CC instruction, we actually have to insert the
5137    // diamond control-flow pattern.  The incoming instruction knows the
5138    // destination vreg to set, the condition code register to branch on, the
5139    // true/false values to select between, and a branch opcode to use.
5140    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5141    ilist<MachineBasicBlock>::iterator It = BB;
5142    ++It;
5143
5144    //  thisMBB:
5145    //  ...
5146    //   TrueVal = ...
5147    //   cmpTY ccX, r1, r2
5148    //   bCC copy1MBB
5149    //   fallthrough --> copy0MBB
5150    MachineBasicBlock *thisMBB = BB;
5151    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5152    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5153    unsigned Opc =
5154      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5155    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5156    MachineFunction *F = BB->getParent();
5157    F->getBasicBlockList().insert(It, copy0MBB);
5158    F->getBasicBlockList().insert(It, sinkMBB);
5159    // Update machine-CFG edges by first adding all successors of the current
5160    // block to the new block which will contain the Phi node for the select.
5161    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5162        e = BB->succ_end(); i != e; ++i)
5163      sinkMBB->addSuccessor(*i);
5164    // Next, remove all successors of the current block, and add the true
5165    // and fallthrough blocks as its successors.
5166    while(!BB->succ_empty())
5167      BB->removeSuccessor(BB->succ_begin());
5168    BB->addSuccessor(copy0MBB);
5169    BB->addSuccessor(sinkMBB);
5170
5171    //  copy0MBB:
5172    //   %FalseValue = ...
5173    //   # fallthrough to sinkMBB
5174    BB = copy0MBB;
5175
5176    // Update machine-CFG edges
5177    BB->addSuccessor(sinkMBB);
5178
5179    //  sinkMBB:
5180    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5181    //  ...
5182    BB = sinkMBB;
5183    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5184      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5185      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5186
5187    delete MI;   // The pseudo instruction is gone now.
5188    return BB;
5189  }
5190
5191  case X86::FP32_TO_INT16_IN_MEM:
5192  case X86::FP32_TO_INT32_IN_MEM:
5193  case X86::FP32_TO_INT64_IN_MEM:
5194  case X86::FP64_TO_INT16_IN_MEM:
5195  case X86::FP64_TO_INT32_IN_MEM:
5196  case X86::FP64_TO_INT64_IN_MEM:
5197  case X86::FP80_TO_INT16_IN_MEM:
5198  case X86::FP80_TO_INT32_IN_MEM:
5199  case X86::FP80_TO_INT64_IN_MEM: {
5200    // Change the floating point control register to use "round towards zero"
5201    // mode when truncating to an integer value.
5202    MachineFunction *F = BB->getParent();
5203    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5204    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5205
5206    // Load the old value of the high byte of the control word...
5207    unsigned OldCW =
5208      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5209    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5210
5211    // Set the high part to be round to zero...
5212    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5213      .addImm(0xC7F);
5214
5215    // Reload the modified control word now...
5216    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5217
5218    // Restore the memory image of control word to original value
5219    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5220      .addReg(OldCW);
5221
5222    // Get the X86 opcode to use.
5223    unsigned Opc;
5224    switch (MI->getOpcode()) {
5225    default: assert(0 && "illegal opcode!");
5226    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5227    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5228    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5229    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5230    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5231    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5232    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5233    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5234    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5235    }
5236
5237    X86AddressMode AM;
5238    MachineOperand &Op = MI->getOperand(0);
5239    if (Op.isRegister()) {
5240      AM.BaseType = X86AddressMode::RegBase;
5241      AM.Base.Reg = Op.getReg();
5242    } else {
5243      AM.BaseType = X86AddressMode::FrameIndexBase;
5244      AM.Base.FrameIndex = Op.getFrameIndex();
5245    }
5246    Op = MI->getOperand(1);
5247    if (Op.isImmediate())
5248      AM.Scale = Op.getImm();
5249    Op = MI->getOperand(2);
5250    if (Op.isImmediate())
5251      AM.IndexReg = Op.getImm();
5252    Op = MI->getOperand(3);
5253    if (Op.isGlobalAddress()) {
5254      AM.GV = Op.getGlobal();
5255    } else {
5256      AM.Disp = Op.getImm();
5257    }
5258    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5259                      .addReg(MI->getOperand(4).getReg());
5260
5261    // Reload the original control word now.
5262    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5263
5264    delete MI;   // The pseudo instruction is gone now.
5265    return BB;
5266  }
5267  }
5268}
5269
5270//===----------------------------------------------------------------------===//
5271//                           X86 Optimization Hooks
5272//===----------------------------------------------------------------------===//
5273
5274void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5275                                                       uint64_t Mask,
5276                                                       uint64_t &KnownZero,
5277                                                       uint64_t &KnownOne,
5278                                                       const SelectionDAG &DAG,
5279                                                       unsigned Depth) const {
5280  unsigned Opc = Op.getOpcode();
5281  assert((Opc >= ISD::BUILTIN_OP_END ||
5282          Opc == ISD::INTRINSIC_WO_CHAIN ||
5283          Opc == ISD::INTRINSIC_W_CHAIN ||
5284          Opc == ISD::INTRINSIC_VOID) &&
5285         "Should use MaskedValueIsZero if you don't know whether Op"
5286         " is a target node!");
5287
5288  KnownZero = KnownOne = 0;   // Don't know anything.
5289  switch (Opc) {
5290  default: break;
5291  case X86ISD::SETCC:
5292    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5293    break;
5294  }
5295}
5296
5297/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5298/// element of the result of the vector shuffle.
5299static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5300  MVT::ValueType VT = N->getValueType(0);
5301  SDOperand PermMask = N->getOperand(2);
5302  unsigned NumElems = PermMask.getNumOperands();
5303  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5304  i %= NumElems;
5305  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5306    return (i == 0)
5307     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5308  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5309    SDOperand Idx = PermMask.getOperand(i);
5310    if (Idx.getOpcode() == ISD::UNDEF)
5311      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5312    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5313  }
5314  return SDOperand();
5315}
5316
5317/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5318/// node is a GlobalAddress + an offset.
5319static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5320  unsigned Opc = N->getOpcode();
5321  if (Opc == X86ISD::Wrapper) {
5322    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5323      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5324      return true;
5325    }
5326  } else if (Opc == ISD::ADD) {
5327    SDOperand N1 = N->getOperand(0);
5328    SDOperand N2 = N->getOperand(1);
5329    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5330      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5331      if (V) {
5332        Offset += V->getSignExtended();
5333        return true;
5334      }
5335    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5336      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5337      if (V) {
5338        Offset += V->getSignExtended();
5339        return true;
5340      }
5341    }
5342  }
5343  return false;
5344}
5345
5346/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5347/// + Dist * Size.
5348static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5349                              MachineFrameInfo *MFI) {
5350  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5351    return false;
5352
5353  SDOperand Loc = N->getOperand(1);
5354  SDOperand BaseLoc = Base->getOperand(1);
5355  if (Loc.getOpcode() == ISD::FrameIndex) {
5356    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5357      return false;
5358    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5359    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5360    int FS  = MFI->getObjectSize(FI);
5361    int BFS = MFI->getObjectSize(BFI);
5362    if (FS != BFS || FS != Size) return false;
5363    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5364  } else {
5365    GlobalValue *GV1 = NULL;
5366    GlobalValue *GV2 = NULL;
5367    int64_t Offset1 = 0;
5368    int64_t Offset2 = 0;
5369    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5370    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5371    if (isGA1 && isGA2 && GV1 == GV2)
5372      return Offset1 == (Offset2 + Dist*Size);
5373  }
5374
5375  return false;
5376}
5377
5378static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5379                              const X86Subtarget *Subtarget) {
5380  GlobalValue *GV;
5381  int64_t Offset;
5382  if (isGAPlusOffset(Base, GV, Offset))
5383    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5384  else {
5385    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5386    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
5387    if (BFI < 0)
5388      // Fixed objects do not specify alignment, however the offsets are known.
5389      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5390              (MFI->getObjectOffset(BFI) % 16) == 0);
5391    else
5392      return MFI->getObjectAlignment(BFI) >= 16;
5393  }
5394  return false;
5395}
5396
5397
5398/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5399/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5400/// if the load addresses are consecutive, non-overlapping, and in the right
5401/// order.
5402static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5403                                       const X86Subtarget *Subtarget) {
5404  MachineFunction &MF = DAG.getMachineFunction();
5405  MachineFrameInfo *MFI = MF.getFrameInfo();
5406  MVT::ValueType VT = N->getValueType(0);
5407  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5408  SDOperand PermMask = N->getOperand(2);
5409  int NumElems = (int)PermMask.getNumOperands();
5410  SDNode *Base = NULL;
5411  for (int i = 0; i < NumElems; ++i) {
5412    SDOperand Idx = PermMask.getOperand(i);
5413    if (Idx.getOpcode() == ISD::UNDEF) {
5414      if (!Base) return SDOperand();
5415    } else {
5416      SDOperand Arg =
5417        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5418      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5419        return SDOperand();
5420      if (!Base)
5421        Base = Arg.Val;
5422      else if (!isConsecutiveLoad(Arg.Val, Base,
5423                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5424        return SDOperand();
5425    }
5426  }
5427
5428  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5429  LoadSDNode *LD = cast<LoadSDNode>(Base);
5430  if (isAlign16) {
5431    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5432                       LD->getSrcValueOffset(), LD->isVolatile());
5433  } else {
5434    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5435                       LD->getSrcValueOffset(), LD->isVolatile(),
5436                       LD->getAlignment());
5437  }
5438}
5439
5440/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5441static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5442                                      const X86Subtarget *Subtarget) {
5443  SDOperand Cond = N->getOperand(0);
5444
5445  // If we have SSE[12] support, try to form min/max nodes.
5446  if (Subtarget->hasSSE2() &&
5447      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5448    if (Cond.getOpcode() == ISD::SETCC) {
5449      // Get the LHS/RHS of the select.
5450      SDOperand LHS = N->getOperand(1);
5451      SDOperand RHS = N->getOperand(2);
5452      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5453
5454      unsigned Opcode = 0;
5455      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5456        switch (CC) {
5457        default: break;
5458        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5459        case ISD::SETULE:
5460        case ISD::SETLE:
5461          if (!UnsafeFPMath) break;
5462          // FALL THROUGH.
5463        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5464        case ISD::SETLT:
5465          Opcode = X86ISD::FMIN;
5466          break;
5467
5468        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5469        case ISD::SETUGT:
5470        case ISD::SETGT:
5471          if (!UnsafeFPMath) break;
5472          // FALL THROUGH.
5473        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5474        case ISD::SETGE:
5475          Opcode = X86ISD::FMAX;
5476          break;
5477        }
5478      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5479        switch (CC) {
5480        default: break;
5481        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5482        case ISD::SETUGT:
5483        case ISD::SETGT:
5484          if (!UnsafeFPMath) break;
5485          // FALL THROUGH.
5486        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5487        case ISD::SETGE:
5488          Opcode = X86ISD::FMIN;
5489          break;
5490
5491        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5492        case ISD::SETULE:
5493        case ISD::SETLE:
5494          if (!UnsafeFPMath) break;
5495          // FALL THROUGH.
5496        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5497        case ISD::SETLT:
5498          Opcode = X86ISD::FMAX;
5499          break;
5500        }
5501      }
5502
5503      if (Opcode)
5504        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5505    }
5506
5507  }
5508
5509  return SDOperand();
5510}
5511
5512
5513SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5514                                               DAGCombinerInfo &DCI) const {
5515  SelectionDAG &DAG = DCI.DAG;
5516  switch (N->getOpcode()) {
5517  default: break;
5518  case ISD::VECTOR_SHUFFLE:
5519    return PerformShuffleCombine(N, DAG, Subtarget);
5520  case ISD::SELECT:
5521    return PerformSELECTCombine(N, DAG, Subtarget);
5522  }
5523
5524  return SDOperand();
5525}
5526
5527//===----------------------------------------------------------------------===//
5528//                           X86 Inline Assembly Support
5529//===----------------------------------------------------------------------===//
5530
5531/// getConstraintType - Given a constraint letter, return the type of
5532/// constraint it is for this target.
5533X86TargetLowering::ConstraintType
5534X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5535  if (Constraint.size() == 1) {
5536    switch (Constraint[0]) {
5537    case 'A':
5538    case 'r':
5539    case 'R':
5540    case 'l':
5541    case 'q':
5542    case 'Q':
5543    case 'x':
5544    case 'Y':
5545      return C_RegisterClass;
5546    default:
5547      break;
5548    }
5549  }
5550  return TargetLowering::getConstraintType(Constraint);
5551}
5552
5553/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5554/// vector.  If it is invalid, don't add anything to Ops.
5555void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5556                                                     char Constraint,
5557                                                     std::vector<SDOperand>&Ops,
5558                                                     SelectionDAG &DAG) {
5559  SDOperand Result(0, 0);
5560
5561  switch (Constraint) {
5562  default: break;
5563  case 'I':
5564    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5565      if (C->getValue() <= 31) {
5566        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5567        break;
5568      }
5569    }
5570    return;
5571  case 'N':
5572    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5573      if (C->getValue() <= 255) {
5574        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5575        break;
5576      }
5577    }
5578    return;
5579  case 'i': {
5580    // Literal immediates are always ok.
5581    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5582      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5583      break;
5584    }
5585
5586    // If we are in non-pic codegen mode, we allow the address of a global (with
5587    // an optional displacement) to be used with 'i'.
5588    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5589    int64_t Offset = 0;
5590
5591    // Match either (GA) or (GA+C)
5592    if (GA) {
5593      Offset = GA->getOffset();
5594    } else if (Op.getOpcode() == ISD::ADD) {
5595      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5596      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5597      if (C && GA) {
5598        Offset = GA->getOffset()+C->getValue();
5599      } else {
5600        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5601        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5602        if (C && GA)
5603          Offset = GA->getOffset()+C->getValue();
5604        else
5605          C = 0, GA = 0;
5606      }
5607    }
5608
5609    if (GA) {
5610      // If addressing this global requires a load (e.g. in PIC mode), we can't
5611      // match.
5612      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5613                                         false))
5614        return;
5615
5616      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5617                                      Offset);
5618      Result = Op;
5619      break;
5620    }
5621
5622    // Otherwise, not valid for this mode.
5623    return;
5624  }
5625  }
5626
5627  if (Result.Val) {
5628    Ops.push_back(Result);
5629    return;
5630  }
5631  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5632}
5633
5634std::vector<unsigned> X86TargetLowering::
5635getRegClassForInlineAsmConstraint(const std::string &Constraint,
5636                                  MVT::ValueType VT) const {
5637  if (Constraint.size() == 1) {
5638    // FIXME: not handling fp-stack yet!
5639    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5640    default: break;  // Unknown constraint letter
5641    case 'A':   // EAX/EDX
5642      if (VT == MVT::i32 || VT == MVT::i64)
5643        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5644      break;
5645    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5646    case 'Q':   // Q_REGS
5647      if (VT == MVT::i32)
5648        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5649      else if (VT == MVT::i16)
5650        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5651      else if (VT == MVT::i8)
5652        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5653        break;
5654    }
5655  }
5656
5657  return std::vector<unsigned>();
5658}
5659
5660std::pair<unsigned, const TargetRegisterClass*>
5661X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5662                                                MVT::ValueType VT) const {
5663  // First, see if this is a constraint that directly corresponds to an LLVM
5664  // register class.
5665  if (Constraint.size() == 1) {
5666    // GCC Constraint Letters
5667    switch (Constraint[0]) {
5668    default: break;
5669    case 'r':   // GENERAL_REGS
5670    case 'R':   // LEGACY_REGS
5671    case 'l':   // INDEX_REGS
5672      if (VT == MVT::i64 && Subtarget->is64Bit())
5673        return std::make_pair(0U, X86::GR64RegisterClass);
5674      if (VT == MVT::i32)
5675        return std::make_pair(0U, X86::GR32RegisterClass);
5676      else if (VT == MVT::i16)
5677        return std::make_pair(0U, X86::GR16RegisterClass);
5678      else if (VT == MVT::i8)
5679        return std::make_pair(0U, X86::GR8RegisterClass);
5680      break;
5681    case 'y':   // MMX_REGS if MMX allowed.
5682      if (!Subtarget->hasMMX()) break;
5683      return std::make_pair(0U, X86::VR64RegisterClass);
5684      break;
5685    case 'Y':   // SSE_REGS if SSE2 allowed
5686      if (!Subtarget->hasSSE2()) break;
5687      // FALL THROUGH.
5688    case 'x':   // SSE_REGS if SSE1 allowed
5689      if (!Subtarget->hasSSE1()) break;
5690
5691      switch (VT) {
5692      default: break;
5693      // Scalar SSE types.
5694      case MVT::f32:
5695      case MVT::i32:
5696        return std::make_pair(0U, X86::FR32RegisterClass);
5697      case MVT::f64:
5698      case MVT::i64:
5699        return std::make_pair(0U, X86::FR64RegisterClass);
5700      // Vector types.
5701      case MVT::v16i8:
5702      case MVT::v8i16:
5703      case MVT::v4i32:
5704      case MVT::v2i64:
5705      case MVT::v4f32:
5706      case MVT::v2f64:
5707        return std::make_pair(0U, X86::VR128RegisterClass);
5708      }
5709      break;
5710    }
5711  }
5712
5713  // Use the default implementation in TargetLowering to convert the register
5714  // constraint into a member of a register class.
5715  std::pair<unsigned, const TargetRegisterClass*> Res;
5716  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5717
5718  // Not found as a standard register?
5719  if (Res.second == 0) {
5720    // GCC calls "st(0)" just plain "st".
5721    if (StringsEqualNoCase("{st}", Constraint)) {
5722      Res.first = X86::ST0;
5723      Res.second = X86::RFP80RegisterClass;
5724    }
5725
5726    return Res;
5727  }
5728
5729  // Otherwise, check to see if this is a register class of the wrong value
5730  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5731  // turn into {ax},{dx}.
5732  if (Res.second->hasType(VT))
5733    return Res;   // Correct type already, nothing to do.
5734
5735  // All of the single-register GCC register classes map their values onto
5736  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5737  // really want an 8-bit or 32-bit register, map to the appropriate register
5738  // class and return the appropriate register.
5739  if (Res.second != X86::GR16RegisterClass)
5740    return Res;
5741
5742  if (VT == MVT::i8) {
5743    unsigned DestReg = 0;
5744    switch (Res.first) {
5745    default: break;
5746    case X86::AX: DestReg = X86::AL; break;
5747    case X86::DX: DestReg = X86::DL; break;
5748    case X86::CX: DestReg = X86::CL; break;
5749    case X86::BX: DestReg = X86::BL; break;
5750    }
5751    if (DestReg) {
5752      Res.first = DestReg;
5753      Res.second = Res.second = X86::GR8RegisterClass;
5754    }
5755  } else if (VT == MVT::i32) {
5756    unsigned DestReg = 0;
5757    switch (Res.first) {
5758    default: break;
5759    case X86::AX: DestReg = X86::EAX; break;
5760    case X86::DX: DestReg = X86::EDX; break;
5761    case X86::CX: DestReg = X86::ECX; break;
5762    case X86::BX: DestReg = X86::EBX; break;
5763    case X86::SI: DestReg = X86::ESI; break;
5764    case X86::DI: DestReg = X86::EDI; break;
5765    case X86::BP: DestReg = X86::EBP; break;
5766    case X86::SP: DestReg = X86::ESP; break;
5767    }
5768    if (DestReg) {
5769      Res.first = DestReg;
5770      Res.second = Res.second = X86::GR32RegisterClass;
5771    }
5772  } else if (VT == MVT::i64) {
5773    unsigned DestReg = 0;
5774    switch (Res.first) {
5775    default: break;
5776    case X86::AX: DestReg = X86::RAX; break;
5777    case X86::DX: DestReg = X86::RDX; break;
5778    case X86::CX: DestReg = X86::RCX; break;
5779    case X86::BX: DestReg = X86::RBX; break;
5780    case X86::SI: DestReg = X86::RSI; break;
5781    case X86::DI: DestReg = X86::RDI; break;
5782    case X86::BP: DestReg = X86::RBP; break;
5783    case X86::SP: DestReg = X86::RSP; break;
5784    }
5785    if (DestReg) {
5786      Res.first = DestReg;
5787      Res.second = Res.second = X86::GR64RegisterClass;
5788    }
5789  }
5790
5791  return Res;
5792}
5793