X86ISelLowering.cpp revision 8968450305c28444edc3c272d8752a8db0c2f34a
1f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
3f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//                     The LLVM Compiler Infrastructure
4f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
5f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file is distributed under the University of Illinois Open Source
6f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// License. See LICENSE.TXT for details.
7f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
8f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
9f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
10f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file defines the interfaces that X86 uses to lower LLVM code into a
11f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// selection DAG.
12f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
13f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
14f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
15f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86.h"
16f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86InstrBuilder.h"
17f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86ISelLowering.h"
18f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86MachineFunctionInfo.h"
19f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetMachine.h"
20f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CallingConv.h"
21f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Constants.h"
22f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/DerivedTypes.h"
23f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/GlobalVariable.h"
24f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Function.h"
25f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Intrinsics.h"
26f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/BitVector.h"
27f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/VectorExtras.h"
28f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/CallingConvLower.h"
29f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFrameInfo.h"
30f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFunction.h"
31f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineInstrBuilder.h"
32f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineModuleInfo.h"
33f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineRegisterInfo.h"
34f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/PseudoSourceValue.h"
35f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/SelectionDAG.h"
36f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/MathExtras.h"
37f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/Debug.h"
38f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Target/TargetOptions.h"
39f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/SmallSet.h"
40f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/StringExtras.h"
41f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace llvm;
42f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
43f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// Forward declarations.
44f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverettestatic SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
45f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
46f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteX86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
47f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  : TargetLowering(TM) {
48f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  Subtarget = &TM.getSubtarget<X86Subtarget>();
49f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf64 = Subtarget->hasSSE2();
50f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSEf32 = Subtarget->hasSSE1();
51f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
52f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
53f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  bool Fast = false;
54f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
55f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  RegInfo = TM.getRegisterInfo();
56f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
57f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the TargetLowering object.
58f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
59f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // X86 is weird, it always uses i8 for shift amounts and setcc results.
60f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountType(MVT::i8);
61f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSetCCResultContents(ZeroOrOneSetCCResult);
62f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSchedulingPreference(SchedulingForRegPressure);
63f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
64f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setStackPointerRegisterToSaveRestore(X86StackPtr);
65f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
66f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetDarwin()) {
67f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
68f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(false);
69f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
70f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (Subtarget->isTargetMingw()) {
71f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // MS runtime is weird: it exports _setjmp, but longjmp!
72f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
73f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
74f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
75f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
76f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(true);
77f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
78f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
79f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the register classes.
80f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
81f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
82f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
83f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
84f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
85f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
86f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
87f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
88f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // We don't accept any truncstore of integer registers.
89f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
90f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
91f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
92f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
93f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
94f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
95f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
96f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
97f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // operation.
98f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
99f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
100f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
101f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
102f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit()) {
103f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
104f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
105f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
106f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (X86ScalarSSEf64)
107f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
108f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
109f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    else
110f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
111f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
112f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
113f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
114f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // this operation.
115f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
116f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
117f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // SSE has no i16 to fp conversion, only i32
118f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (X86ScalarSSEf32) {
119f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
120f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // f32 and f64 cases are Legal, f80 case is not
121f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
122f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
123f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
124f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
125f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
126f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
127f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
128f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // are Legal, f80 is custom lowered.
129f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
130  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
131
132  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
133  // this operation.
134  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
136
137  if (X86ScalarSSEf32) {
138    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
139    // f32 and f64 cases are Legal, f80 case is not
140    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
141  } else {
142    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
144  }
145
146  // Handle FP_TO_UINT by promoting the destination to a larger signed
147  // conversion.
148  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
151
152  if (Subtarget->is64Bit()) {
153    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
155  } else {
156    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
157      // Expand FP_TO_UINT into a select.
158      // FIXME: We would like to use a Custom expander here eventually to do
159      // the optimal thing for SSE vs. the default expansion in the legalizer.
160      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
161    else
162      // With SSE3 we can use fisttpll to convert to a signed i64.
163      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
164  }
165
166  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
167  if (!X86ScalarSSEf64) {
168    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
169    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
170  }
171
172  // Scalar integer divide and remainder are lowered to use operations that
173  // produce two results, to match the available instructions. This exposes
174  // the two-result form to trivial CSE, which is able to combine x/y and x%y
175  // into a single instruction.
176  //
177  // Scalar integer multiply-high is also lowered to use two-result
178  // operations, to match the available instructions. However, plain multiply
179  // (low) operations are left as Legal, as there are single-result
180  // instructions for this in x86. Using the two-result multiply instructions
181  // when both high and low results are needed must be arranged by dagcombine.
182  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
183  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
184  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
185  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
186  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
187  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
188  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
189  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
190  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
191  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
192  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
193  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
194  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
195  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
196  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
197  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
199  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
201  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
202  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
203  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
205  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
206
207  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
208  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
209  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
210  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
211  if (Subtarget->is64Bit())
212    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
213  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
216  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
217  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
220  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
221
222  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
223  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
224  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
226  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
227  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
229  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
230  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
231  if (Subtarget->is64Bit()) {
232    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
233    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
234    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
235  }
236
237  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
238  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
239
240  // These should be promoted to a larger select which is supported.
241  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
242  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
243  // X86 wants to expand cmov itself.
244  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
245  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
249  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
255  if (Subtarget->is64Bit()) {
256    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
257    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
258  }
259  // X86 ret instruction may pop stack.
260  setOperationAction(ISD::RET             , MVT::Other, Custom);
261  if (!Subtarget->is64Bit())
262    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
263
264  // Darwin ABI issue.
265  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
266  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
267  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
269  if (Subtarget->is64Bit())
270    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
271  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
272  if (Subtarget->is64Bit()) {
273    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
274    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
275    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
276    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
277  }
278  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
279  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
280  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
281  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
282  if (Subtarget->is64Bit()) {
283    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
284    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
285    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
286  }
287
288  if (Subtarget->hasSSE1())
289    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
290
291  if (!Subtarget->hasSSE2())
292    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
293
294  // Expand certain atomics
295  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i8, Custom);
296  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i16, Custom);
297  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i32, Custom);
298  setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i64, Custom);
299  setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i32, Expand);
300
301  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
302  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
303  // FIXME - use subtarget debug flags
304  if (!Subtarget->isTargetDarwin() &&
305      !Subtarget->isTargetELF() &&
306      !Subtarget->isTargetCygMing()) {
307    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
308    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
309  }
310
311  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
312  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
313  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
314  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
315  if (Subtarget->is64Bit()) {
316    // FIXME: Verify
317    setExceptionPointerRegister(X86::RAX);
318    setExceptionSelectorRegister(X86::RDX);
319  } else {
320    setExceptionPointerRegister(X86::EAX);
321    setExceptionSelectorRegister(X86::EDX);
322  }
323  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
324
325  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
326
327  setOperationAction(ISD::TRAP, MVT::Other, Legal);
328
329  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
330  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
331  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
332  if (Subtarget->is64Bit()) {
333    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
334    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
335  } else {
336    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
337    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
338  }
339
340  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
341  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
342  if (Subtarget->is64Bit())
343    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
344  if (Subtarget->isTargetCygMing())
345    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
346  else
347    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
348
349  if (X86ScalarSSEf64) {
350    // f32 and f64 use SSE.
351    // Set up the FP register classes.
352    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
353    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
354
355    // Use ANDPD to simulate FABS.
356    setOperationAction(ISD::FABS , MVT::f64, Custom);
357    setOperationAction(ISD::FABS , MVT::f32, Custom);
358
359    // Use XORP to simulate FNEG.
360    setOperationAction(ISD::FNEG , MVT::f64, Custom);
361    setOperationAction(ISD::FNEG , MVT::f32, Custom);
362
363    // Use ANDPD and ORPD to simulate FCOPYSIGN.
364    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
365    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
366
367    // We don't support sin/cos/fmod
368    setOperationAction(ISD::FSIN , MVT::f64, Expand);
369    setOperationAction(ISD::FCOS , MVT::f64, Expand);
370    setOperationAction(ISD::FSIN , MVT::f32, Expand);
371    setOperationAction(ISD::FCOS , MVT::f32, Expand);
372
373    // Expand FP immediates into loads from the stack, except for the special
374    // cases we handle.
375    addLegalFPImmediate(APFloat(+0.0)); // xorpd
376    addLegalFPImmediate(APFloat(+0.0f)); // xorps
377
378    // Floating truncations from f80 and extensions to f80 go through memory.
379    // If optimizing, we lie about this though and handle it in
380    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
381    if (Fast) {
382      setConvertAction(MVT::f32, MVT::f80, Expand);
383      setConvertAction(MVT::f64, MVT::f80, Expand);
384      setConvertAction(MVT::f80, MVT::f32, Expand);
385      setConvertAction(MVT::f80, MVT::f64, Expand);
386    }
387  } else if (X86ScalarSSEf32) {
388    // Use SSE for f32, x87 for f64.
389    // Set up the FP register classes.
390    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
391    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
392
393    // Use ANDPS to simulate FABS.
394    setOperationAction(ISD::FABS , MVT::f32, Custom);
395
396    // Use XORP to simulate FNEG.
397    setOperationAction(ISD::FNEG , MVT::f32, Custom);
398
399    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
400
401    // Use ANDPS and ORPS to simulate FCOPYSIGN.
402    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
403    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
404
405    // We don't support sin/cos/fmod
406    setOperationAction(ISD::FSIN , MVT::f32, Expand);
407    setOperationAction(ISD::FCOS , MVT::f32, Expand);
408
409    // Special cases we handle for FP constants.
410    addLegalFPImmediate(APFloat(+0.0f)); // xorps
411    addLegalFPImmediate(APFloat(+0.0)); // FLD0
412    addLegalFPImmediate(APFloat(+1.0)); // FLD1
413    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
414    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
415
416    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
417    // this though and handle it in InstructionSelectPreprocess so that
418    // dagcombine2 can hack on these.
419    if (Fast) {
420      setConvertAction(MVT::f32, MVT::f64, Expand);
421      setConvertAction(MVT::f32, MVT::f80, Expand);
422      setConvertAction(MVT::f80, MVT::f32, Expand);
423      setConvertAction(MVT::f64, MVT::f32, Expand);
424      // And x87->x87 truncations also.
425      setConvertAction(MVT::f80, MVT::f64, Expand);
426    }
427
428    if (!UnsafeFPMath) {
429      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
430      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
431    }
432  } else {
433    // f32 and f64 in x87.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
436    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
437
438    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
439    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
440    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
441    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
442
443    // Floating truncations go through memory.  If optimizing, we lie about
444    // this though and handle it in InstructionSelectPreprocess so that
445    // dagcombine2 can hack on these.
446    if (Fast) {
447      setConvertAction(MVT::f80, MVT::f32, Expand);
448      setConvertAction(MVT::f64, MVT::f32, Expand);
449      setConvertAction(MVT::f80, MVT::f64, Expand);
450    }
451
452    if (!UnsafeFPMath) {
453      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
454      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
455    }
456    addLegalFPImmediate(APFloat(+0.0)); // FLD0
457    addLegalFPImmediate(APFloat(+1.0)); // FLD1
458    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
459    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
460    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
461    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
462    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
463    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
464  }
465
466  // Long double always uses X87.
467  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
468  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
469  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
470  {
471    APFloat TmpFlt(+0.0);
472    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
473    addLegalFPImmediate(TmpFlt);  // FLD0
474    TmpFlt.changeSign();
475    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
476    APFloat TmpFlt2(+1.0);
477    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
478    addLegalFPImmediate(TmpFlt2);  // FLD1
479    TmpFlt2.changeSign();
480    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
481  }
482
483  if (!UnsafeFPMath) {
484    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
485    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
486  }
487
488  // Always use a library call for pow.
489  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
490  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
491  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
492
493  // First set operation action for all vector types to expand. Then we
494  // will selectively turn on ones that can be effectively codegen'd.
495  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
496       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
497    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
498    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
499    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
500    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
501    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
502    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
503    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
504    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
505    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
506    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
507    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
508    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
509    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
510    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::SimpleValueType)VT, Expand);
511    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::SimpleValueType)VT, Expand);
512    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::SimpleValueType)VT, Expand);
513    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
514    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
515    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
516    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
517    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
518    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
519    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
520    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
521    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
522    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
523    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
524    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
525    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
526    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
527    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
528    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
529    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
530    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
531    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
535  }
536
537  if (Subtarget->hasMMX()) {
538    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
539    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
540    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
541    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
542    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
543
544    // FIXME: add MMX packed arithmetics
545
546    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
547    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
548    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
549    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
550
551    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
552    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
553    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
554    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
555
556    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
557    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
558
559    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
560    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
561    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
562    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
563    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
564    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
565    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
566
567    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
568    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
569    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
570    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
571    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
572    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
573    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
574
575    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
576    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
577    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
578    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
579    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
580    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
581    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
582
583    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
584    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
585    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
586    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
587    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
588    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
589    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
590    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
591    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
592
593    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
594    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
595    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
596    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
597    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
598
599    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
600    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
601    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
602    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
603
604    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
605    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
606    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
607    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
608
609    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
610  }
611
612  if (Subtarget->hasSSE1()) {
613    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
614
615    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
616    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
617    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
618    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
619    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
620    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
621    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
622    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
623    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
624    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
625    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
626    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
627  }
628
629  if (Subtarget->hasSSE2()) {
630    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
631    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
632    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
633    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
634    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
635
636    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
637    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
638    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
639    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
640    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
641    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
642    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
643    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
644    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
645    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
646    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
647    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
648    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
649    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
650    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
651
652    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
653    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
654    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
655    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
656
657    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
658    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
659    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
660    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
661    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
662
663    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
664    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
665      MVT VT = (MVT::SimpleValueType)i;
666      // Do not attempt to custom lower non-power-of-2 vectors
667      if (!isPowerOf2_32(VT.getVectorNumElements()))
668        continue;
669      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
670      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
671      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
672    }
673    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
674    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
676    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
677    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
678    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
679    if (Subtarget->is64Bit()) {
680      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
681      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
682    }
683
684    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
685    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
686      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
687      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
688      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
689      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
690      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
691      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
692      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
693      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
694      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
695      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
696    }
697
698    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
699
700    // Custom lower v2i64 and v2f64 selects.
701    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
702    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
703    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
704    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
705
706  }
707
708  if (Subtarget->hasSSE41()) {
709    // FIXME: Do we need to handle scalar-to-vector here?
710    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
711    setOperationAction(ISD::MUL,                MVT::v2i64, Legal);
712
713    // i8 and i16 vectors are custom , because the source register and source
714    // source memory operand types are not the same width.  f32 vectors are
715    // custom since the immediate controlling the insert encodes additional
716    // information.
717    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
718    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
719    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
720    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
721
722    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
723    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
725    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
726
727    if (Subtarget->is64Bit()) {
728      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
729      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
730    }
731  }
732
733  if (Subtarget->hasSSE42()) {
734    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
735  }
736
737  // We want to custom lower some of our intrinsics.
738  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
739
740  // We have target-specific dag combine patterns for the following nodes:
741  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
742  setTargetDAGCombine(ISD::BUILD_VECTOR);
743  setTargetDAGCombine(ISD::SELECT);
744  setTargetDAGCombine(ISD::STORE);
745
746  computeRegisterProperties();
747
748  // FIXME: These should be based on subtarget info. Plus, the values should
749  // be smaller when we are in optimizing for size mode.
750  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
751  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
752  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
753  allowUnalignedMemoryAccesses = true; // x86 supports it!
754  setPrefLoopAlignment(16);
755}
756
757
758MVT X86TargetLowering::getSetCCResultType(const SDOperand &) const {
759  return MVT::i8;
760}
761
762
763/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
764/// the desired ByVal argument alignment.
765static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
766  if (MaxAlign == 16)
767    return;
768  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
769    if (VTy->getBitWidth() == 128)
770      MaxAlign = 16;
771  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
772    unsigned EltAlign = 0;
773    getMaxByValAlign(ATy->getElementType(), EltAlign);
774    if (EltAlign > MaxAlign)
775      MaxAlign = EltAlign;
776  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
777    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
778      unsigned EltAlign = 0;
779      getMaxByValAlign(STy->getElementType(i), EltAlign);
780      if (EltAlign > MaxAlign)
781        MaxAlign = EltAlign;
782      if (MaxAlign == 16)
783        break;
784    }
785  }
786  return;
787}
788
789/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
790/// function arguments in the caller parameter area. For X86, aggregates
791/// that contain SSE vectors are placed at 16-byte boundaries while the rest
792/// are at 4-byte boundaries.
793unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
794  if (Subtarget->is64Bit())
795    return getTargetData()->getABITypeAlignment(Ty);
796  unsigned Align = 4;
797  if (Subtarget->hasSSE1())
798    getMaxByValAlign(Ty, Align);
799  return Align;
800}
801
802/// getOptimalMemOpType - Returns the target specific optimal type for load
803/// and store operations as a result of memset, memcpy, and memmove
804/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
805/// determining it.
806MVT
807X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
808                                       bool isSrcConst, bool isSrcStr) const {
809  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
810    return MVT::v4i32;
811  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
812    return MVT::v4f32;
813  if (Subtarget->is64Bit() && Size >= 8)
814    return MVT::i64;
815  return MVT::i32;
816}
817
818
819/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
820/// jumptable.
821SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
822                                                      SelectionDAG &DAG) const {
823  if (usesGlobalOffsetTable())
824    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
825  if (!Subtarget->isPICStyleRIPRel())
826    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
827  return Table;
828}
829
830//===----------------------------------------------------------------------===//
831//               Return Value Calling Convention Implementation
832//===----------------------------------------------------------------------===//
833
834#include "X86GenCallingConv.inc"
835
836/// LowerRET - Lower an ISD::RET node.
837SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
838  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
839
840  SmallVector<CCValAssign, 16> RVLocs;
841  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
842  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
843  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
844  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
845
846  // If this is the first return lowered for this function, add the regs to the
847  // liveout set for the function.
848  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
849    for (unsigned i = 0; i != RVLocs.size(); ++i)
850      if (RVLocs[i].isRegLoc())
851        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
852  }
853  SDOperand Chain = Op.getOperand(0);
854
855  // Handle tail call return.
856  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
857  if (Chain.getOpcode() == X86ISD::TAILCALL) {
858    SDOperand TailCall = Chain;
859    SDOperand TargetAddress = TailCall.getOperand(1);
860    SDOperand StackAdjustment = TailCall.getOperand(2);
861    assert(((TargetAddress.getOpcode() == ISD::Register &&
862               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
863                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
864              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
865              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
866             "Expecting an global address, external symbol, or register");
867    assert(StackAdjustment.getOpcode() == ISD::Constant &&
868           "Expecting a const value");
869
870    SmallVector<SDOperand,8> Operands;
871    Operands.push_back(Chain.getOperand(0));
872    Operands.push_back(TargetAddress);
873    Operands.push_back(StackAdjustment);
874    // Copy registers used by the call. Last operand is a flag so it is not
875    // copied.
876    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
877      Operands.push_back(Chain.getOperand(i));
878    }
879    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
880                       Operands.size());
881  }
882
883  // Regular return.
884  SDOperand Flag;
885
886  SmallVector<SDOperand, 6> RetOps;
887  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
888  // Operand #1 = Bytes To Pop
889  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
890
891  // Copy the result values into the output registers.
892  for (unsigned i = 0; i != RVLocs.size(); ++i) {
893    CCValAssign &VA = RVLocs[i];
894    assert(VA.isRegLoc() && "Can only return in registers!");
895    SDOperand ValToCopy = Op.getOperand(i*2+1);
896
897    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
898    // the RET instruction and handled by the FP Stackifier.
899    if (RVLocs[i].getLocReg() == X86::ST0 ||
900        RVLocs[i].getLocReg() == X86::ST1) {
901      // If this is a copy from an xmm register to ST(0), use an FPExtend to
902      // change the value to the FP stack register class.
903      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
904        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
905      RetOps.push_back(ValToCopy);
906      // Don't emit a copytoreg.
907      continue;
908    }
909
910    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
911    Flag = Chain.getValue(1);
912  }
913
914  // The x86-64 ABI for returning structs by value requires that we copy
915  // the sret argument into %rax for the return. We saved the argument into
916  // a virtual register in the entry block, so now we copy the value out
917  // and into %rax.
918  if (Subtarget->is64Bit() &&
919      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
920    MachineFunction &MF = DAG.getMachineFunction();
921    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
922    unsigned Reg = FuncInfo->getSRetReturnReg();
923    if (!Reg) {
924      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
925      FuncInfo->setSRetReturnReg(Reg);
926    }
927    SDOperand Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
928
929    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
930    Flag = Chain.getValue(1);
931  }
932
933  RetOps[0] = Chain;  // Update chain.
934
935  // Add the flag if we have it.
936  if (Flag.Val)
937    RetOps.push_back(Flag);
938
939  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
940}
941
942
943/// LowerCallResult - Lower the result values of an ISD::CALL into the
944/// appropriate copies out of appropriate physical registers.  This assumes that
945/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
946/// being lowered.  The returns a SDNode with the same number of values as the
947/// ISD::CALL.
948SDNode *X86TargetLowering::
949LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
950                unsigned CallingConv, SelectionDAG &DAG) {
951
952  // Assign locations to each value returned by this call.
953  SmallVector<CCValAssign, 16> RVLocs;
954  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
955  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
956  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
957
958  SmallVector<SDOperand, 8> ResultVals;
959
960  // Copy all of the result registers out of their specified physreg.
961  for (unsigned i = 0; i != RVLocs.size(); ++i) {
962    MVT CopyVT = RVLocs[i].getValVT();
963
964    // If this is a call to a function that returns an fp value on the floating
965    // point stack, but where we prefer to use the value in xmm registers, copy
966    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
967    if (RVLocs[i].getLocReg() == X86::ST0 &&
968        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
969      CopyVT = MVT::f80;
970    }
971
972    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
973                               CopyVT, InFlag).getValue(1);
974    SDOperand Val = Chain.getValue(0);
975    InFlag = Chain.getValue(2);
976
977    if (CopyVT != RVLocs[i].getValVT()) {
978      // Round the F80 the right size, which also moves to the appropriate xmm
979      // register.
980      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
981                        // This truncation won't change the value.
982                        DAG.getIntPtrConstant(1));
983    }
984
985    ResultVals.push_back(Val);
986  }
987
988  // Merge everything together with a MERGE_VALUES node.
989  ResultVals.push_back(Chain);
990  return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
991                            ResultVals.size()).Val;
992}
993
994
995//===----------------------------------------------------------------------===//
996//                C & StdCall & Fast Calling Convention implementation
997//===----------------------------------------------------------------------===//
998//  StdCall calling convention seems to be standard for many Windows' API
999//  routines and around. It differs from C calling convention just a little:
1000//  callee should clean up the stack, not caller. Symbols should be also
1001//  decorated in some fancy way :) It doesn't support any vector arguments.
1002//  For info on fast calling convention see Fast Calling Convention (tail call)
1003//  implementation LowerX86_32FastCCCallTo.
1004
1005/// AddLiveIn - This helper function adds the specified physical register to the
1006/// MachineFunction as a live in value.  It also creates a corresponding virtual
1007/// register for it.
1008static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1009                          const TargetRegisterClass *RC) {
1010  assert(RC->contains(PReg) && "Not the correct regclass!");
1011  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1012  MF.getRegInfo().addLiveIn(PReg, VReg);
1013  return VReg;
1014}
1015
1016/// CallIsStructReturn - Determines whether a CALL node uses struct return
1017/// semantics.
1018static bool CallIsStructReturn(SDOperand Op) {
1019  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1020  if (!NumOps)
1021    return false;
1022
1023  return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet();
1024}
1025
1026/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1027/// return semantics.
1028static bool ArgsAreStructReturn(SDOperand Op) {
1029  unsigned NumArgs = Op.Val->getNumValues() - 1;
1030  if (!NumArgs)
1031    return false;
1032
1033  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1034}
1035
1036/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1037/// the callee to pop its own arguments. Callee pop is necessary to support tail
1038/// calls.
1039bool X86TargetLowering::IsCalleePop(SDOperand Op) {
1040  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1041  if (IsVarArg)
1042    return false;
1043
1044  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1045  default:
1046    return false;
1047  case CallingConv::X86_StdCall:
1048    return !Subtarget->is64Bit();
1049  case CallingConv::X86_FastCall:
1050    return !Subtarget->is64Bit();
1051  case CallingConv::Fast:
1052    return PerformTailCallOpt;
1053  }
1054}
1055
1056/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1057/// FORMAL_ARGUMENTS node.
1058CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1059  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1060
1061  if (Subtarget->is64Bit()) {
1062    if (Subtarget->isTargetWin64())
1063      return CC_X86_Win64_C;
1064    else {
1065      if (CC == CallingConv::Fast && PerformTailCallOpt)
1066        return CC_X86_64_TailCall;
1067      else
1068        return CC_X86_64_C;
1069    }
1070  }
1071
1072  if (CC == CallingConv::X86_FastCall)
1073    return CC_X86_32_FastCall;
1074  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1075    return CC_X86_32_TailCall;
1076  else
1077    return CC_X86_32_C;
1078}
1079
1080/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1081/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1082NameDecorationStyle
1083X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1084  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1085  if (CC == CallingConv::X86_FastCall)
1086    return FastCall;
1087  else if (CC == CallingConv::X86_StdCall)
1088    return StdCall;
1089  return None;
1090}
1091
1092
1093/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1094/// in a register before calling.
1095bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1096  return !IsTailCall && !Is64Bit &&
1097    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1098    Subtarget->isPICStyleGOT();
1099}
1100
1101/// CallRequiresFnAddressInReg - Check whether the call requires the function
1102/// address to be loaded in a register.
1103bool
1104X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1105  return !Is64Bit && IsTailCall &&
1106    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1107    Subtarget->isPICStyleGOT();
1108}
1109
1110/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1111/// by "Src" to address "Dst" with size and alignment information specified by
1112/// the specific parameter attribute. The copy will be passed as a byval
1113/// function parameter.
1114static SDOperand
1115CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1116                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1117  SDOperand SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1118  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1119                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1120}
1121
1122SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1123                                              const CCValAssign &VA,
1124                                              MachineFrameInfo *MFI,
1125                                              unsigned CC,
1126                                              SDOperand Root, unsigned i) {
1127  // Create the nodes corresponding to a load from this parameter slot.
1128  ISD::ArgFlagsTy Flags =
1129    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1130  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1131  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1132
1133  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1134  // changed with more analysis.
1135  // In case of tail call optimization mark all arguments mutable. Since they
1136  // could be overwritten by lowering of arguments in case of a tail call.
1137  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1138                                  VA.getLocMemOffset(), isImmutable);
1139  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1140  if (Flags.isByVal())
1141    return FIN;
1142  return DAG.getLoad(VA.getValVT(), Root, FIN,
1143                     PseudoSourceValue::getFixedStack(FI), 0);
1144}
1145
1146SDOperand
1147X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1148  MachineFunction &MF = DAG.getMachineFunction();
1149  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1150
1151  const Function* Fn = MF.getFunction();
1152  if (Fn->hasExternalLinkage() &&
1153      Subtarget->isTargetCygMing() &&
1154      Fn->getName() == "main")
1155    FuncInfo->setForceFramePointer(true);
1156
1157  // Decorate the function name.
1158  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1159
1160  MachineFrameInfo *MFI = MF.getFrameInfo();
1161  SDOperand Root = Op.getOperand(0);
1162  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1163  unsigned CC = MF.getFunction()->getCallingConv();
1164  bool Is64Bit = Subtarget->is64Bit();
1165  bool IsWin64 = Subtarget->isTargetWin64();
1166
1167  assert(!(isVarArg && CC == CallingConv::Fast) &&
1168         "Var args not supported with calling convention fastcc");
1169
1170  // Assign locations to all of the incoming arguments.
1171  SmallVector<CCValAssign, 16> ArgLocs;
1172  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1173  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1174
1175  SmallVector<SDOperand, 8> ArgValues;
1176  unsigned LastVal = ~0U;
1177  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1178    CCValAssign &VA = ArgLocs[i];
1179    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1180    // places.
1181    assert(VA.getValNo() != LastVal &&
1182           "Don't support value assigned to multiple locs yet");
1183    LastVal = VA.getValNo();
1184
1185    if (VA.isRegLoc()) {
1186      MVT RegVT = VA.getLocVT();
1187      TargetRegisterClass *RC;
1188      if (RegVT == MVT::i32)
1189        RC = X86::GR32RegisterClass;
1190      else if (Is64Bit && RegVT == MVT::i64)
1191        RC = X86::GR64RegisterClass;
1192      else if (RegVT == MVT::f32)
1193        RC = X86::FR32RegisterClass;
1194      else if (RegVT == MVT::f64)
1195        RC = X86::FR64RegisterClass;
1196      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1197        RC = X86::VR128RegisterClass;
1198      else if (RegVT.isVector()) {
1199        assert(RegVT.getSizeInBits() == 64);
1200        if (!Is64Bit)
1201          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1202        else {
1203          // Darwin calling convention passes MMX values in either GPRs or
1204          // XMMs in x86-64. Other targets pass them in memory.
1205          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1206            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1207            RegVT = MVT::v2i64;
1208          } else {
1209            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1210            RegVT = MVT::i64;
1211          }
1212        }
1213      } else {
1214        assert(0 && "Unknown argument type!");
1215      }
1216
1217      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1218      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1219
1220      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1221      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1222      // right size.
1223      if (VA.getLocInfo() == CCValAssign::SExt)
1224        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1225                               DAG.getValueType(VA.getValVT()));
1226      else if (VA.getLocInfo() == CCValAssign::ZExt)
1227        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1228                               DAG.getValueType(VA.getValVT()));
1229
1230      if (VA.getLocInfo() != CCValAssign::Full)
1231        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1232
1233      // Handle MMX values passed in GPRs.
1234      if (Is64Bit && RegVT != VA.getLocVT()) {
1235        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1236          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1237        else if (RC == X86::VR128RegisterClass) {
1238          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1239                                 DAG.getConstant(0, MVT::i64));
1240          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1241        }
1242      }
1243
1244      ArgValues.push_back(ArgValue);
1245    } else {
1246      assert(VA.isMemLoc());
1247      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1248    }
1249  }
1250
1251  // The x86-64 ABI for returning structs by value requires that we copy
1252  // the sret argument into %rax for the return. Save the argument into
1253  // a virtual register so that we can access it from the return points.
1254  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1255    MachineFunction &MF = DAG.getMachineFunction();
1256    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1257    unsigned Reg = FuncInfo->getSRetReturnReg();
1258    if (!Reg) {
1259      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1260      FuncInfo->setSRetReturnReg(Reg);
1261    }
1262    SDOperand Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1263    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1264  }
1265
1266  unsigned StackSize = CCInfo.getNextStackOffset();
1267  // align stack specially for tail calls
1268  if (CC == CallingConv::Fast)
1269    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1270
1271  // If the function takes variable number of arguments, make a frame index for
1272  // the start of the first vararg value... for expansion of llvm.va_start.
1273  if (isVarArg) {
1274    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1275      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1276    }
1277    if (Is64Bit) {
1278      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1279
1280      // FIXME: We should really autogenerate these arrays
1281      static const unsigned GPR64ArgRegsWin64[] = {
1282        X86::RCX, X86::RDX, X86::R8,  X86::R9
1283      };
1284      static const unsigned XMMArgRegsWin64[] = {
1285        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1286      };
1287      static const unsigned GPR64ArgRegs64Bit[] = {
1288        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1289      };
1290      static const unsigned XMMArgRegs64Bit[] = {
1291        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1292        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1293      };
1294      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1295
1296      if (IsWin64) {
1297        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1298        GPR64ArgRegs = GPR64ArgRegsWin64;
1299        XMMArgRegs = XMMArgRegsWin64;
1300      } else {
1301        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1302        GPR64ArgRegs = GPR64ArgRegs64Bit;
1303        XMMArgRegs = XMMArgRegs64Bit;
1304      }
1305      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1306                                                       TotalNumIntRegs);
1307      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1308                                                       TotalNumXMMRegs);
1309
1310      // For X86-64, if there are vararg parameters that are passed via
1311      // registers, then we must store them to their spots on the stack so they
1312      // may be loaded by deferencing the result of va_next.
1313      VarArgsGPOffset = NumIntRegs * 8;
1314      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1315      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1316                                                 TotalNumXMMRegs * 16, 16);
1317
1318      // Store the integer parameter registers.
1319      SmallVector<SDOperand, 8> MemOps;
1320      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1321      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1322                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1323      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1324        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1325                                  X86::GR64RegisterClass);
1326        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1327        SDOperand Store =
1328          DAG.getStore(Val.getValue(1), Val, FIN,
1329                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1330        MemOps.push_back(Store);
1331        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1332                          DAG.getIntPtrConstant(8));
1333      }
1334
1335      // Now store the XMM (fp + vector) parameter registers.
1336      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1337                        DAG.getIntPtrConstant(VarArgsFPOffset));
1338      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1339        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1340                                  X86::VR128RegisterClass);
1341        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1342        SDOperand Store =
1343          DAG.getStore(Val.getValue(1), Val, FIN,
1344                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1345        MemOps.push_back(Store);
1346        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1347                          DAG.getIntPtrConstant(16));
1348      }
1349      if (!MemOps.empty())
1350          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1351                             &MemOps[0], MemOps.size());
1352    }
1353  }
1354
1355  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1356  // arguments and the arguments after the retaddr has been pushed are
1357  // aligned.
1358  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1359      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1360      (StackSize & 7) == 0)
1361    StackSize += 4;
1362
1363  ArgValues.push_back(Root);
1364
1365  // Some CCs need callee pop.
1366  if (IsCalleePop(Op)) {
1367    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1368    BytesCallerReserves = 0;
1369  } else {
1370    BytesToPopOnReturn  = 0; // Callee pops nothing.
1371    // If this is an sret function, the return should pop the hidden pointer.
1372    if (!Is64Bit && ArgsAreStructReturn(Op))
1373      BytesToPopOnReturn = 4;
1374    BytesCallerReserves = StackSize;
1375  }
1376
1377  if (!Is64Bit) {
1378    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1379    if (CC == CallingConv::X86_FastCall)
1380      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1381  }
1382
1383  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1384
1385  // Return the new list of results.
1386  return DAG.getMergeValues(Op.Val->getVTList(), &ArgValues[0],
1387                            ArgValues.size()).getValue(Op.ResNo);
1388}
1389
1390SDOperand
1391X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1392                                    const SDOperand &StackPtr,
1393                                    const CCValAssign &VA,
1394                                    SDOperand Chain,
1395                                    SDOperand Arg) {
1396  unsigned LocMemOffset = VA.getLocMemOffset();
1397  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1398  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1399  ISD::ArgFlagsTy Flags =
1400    cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags();
1401  if (Flags.isByVal()) {
1402    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1403  }
1404  return DAG.getStore(Chain, Arg, PtrOff,
1405                      PseudoSourceValue::getStack(), LocMemOffset);
1406}
1407
1408/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1409/// optimization is performed and it is required.
1410SDOperand
1411X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1412                                           SDOperand &OutRetAddr,
1413                                           SDOperand Chain,
1414                                           bool IsTailCall,
1415                                           bool Is64Bit,
1416                                           int FPDiff) {
1417  if (!IsTailCall || FPDiff==0) return Chain;
1418
1419  // Adjust the Return address stack slot.
1420  MVT VT = getPointerTy();
1421  OutRetAddr = getReturnAddressFrameIndex(DAG);
1422  // Load the "old" Return address.
1423  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1424  return SDOperand(OutRetAddr.Val, 1);
1425}
1426
1427/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1428/// optimization is performed and it is required (FPDiff!=0).
1429static SDOperand
1430EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1431                         SDOperand Chain, SDOperand RetAddrFrIdx,
1432                         bool Is64Bit, int FPDiff) {
1433  // Store the return address to the appropriate stack slot.
1434  if (!FPDiff) return Chain;
1435  // Calculate the new stack slot for the return address.
1436  int SlotSize = Is64Bit ? 8 : 4;
1437  int NewReturnAddrFI =
1438    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1439  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1440  SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1441  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1442                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1443  return Chain;
1444}
1445
1446SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1447  MachineFunction &MF = DAG.getMachineFunction();
1448  SDOperand Chain     = Op.getOperand(0);
1449  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1450  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1451  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1452                        && CC == CallingConv::Fast && PerformTailCallOpt;
1453  SDOperand Callee    = Op.getOperand(4);
1454  bool Is64Bit        = Subtarget->is64Bit();
1455  bool IsStructRet    = CallIsStructReturn(Op);
1456
1457  assert(!(isVarArg && CC == CallingConv::Fast) &&
1458         "Var args not supported with calling convention fastcc");
1459
1460  // Analyze operands of the call, assigning locations to each operand.
1461  SmallVector<CCValAssign, 16> ArgLocs;
1462  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1463  CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
1464
1465  // Get a count of how many bytes are to be pushed on the stack.
1466  unsigned NumBytes = CCInfo.getNextStackOffset();
1467  if (CC == CallingConv::Fast)
1468    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1469
1470  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1471  // arguments and the arguments after the retaddr has been pushed are aligned.
1472  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1473      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1474      (NumBytes & 7) == 0)
1475    NumBytes += 4;
1476
1477  int FPDiff = 0;
1478  if (IsTailCall) {
1479    // Lower arguments at fp - stackoffset + fpdiff.
1480    unsigned NumBytesCallerPushed =
1481      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1482    FPDiff = NumBytesCallerPushed - NumBytes;
1483
1484    // Set the delta of movement of the returnaddr stackslot.
1485    // But only set if delta is greater than previous delta.
1486    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1487      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1488  }
1489
1490  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1491
1492  SDOperand RetAddrFrIdx;
1493  // Load return adress for tail calls.
1494  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1495                                  FPDiff);
1496
1497  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1498  SmallVector<SDOperand, 8> MemOpChains;
1499  SDOperand StackPtr;
1500
1501  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1502  // of tail call optimization arguments are handle later.
1503  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1504    CCValAssign &VA = ArgLocs[i];
1505    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1506    bool isByVal = cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->
1507      getArgFlags().isByVal();
1508
1509    // Promote the value if needed.
1510    switch (VA.getLocInfo()) {
1511    default: assert(0 && "Unknown loc info!");
1512    case CCValAssign::Full: break;
1513    case CCValAssign::SExt:
1514      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1515      break;
1516    case CCValAssign::ZExt:
1517      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1518      break;
1519    case CCValAssign::AExt:
1520      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1521      break;
1522    }
1523
1524    if (VA.isRegLoc()) {
1525      if (Is64Bit) {
1526        MVT RegVT = VA.getLocVT();
1527        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1528          switch (VA.getLocReg()) {
1529          default:
1530            break;
1531          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1532          case X86::R8: {
1533            // Special case: passing MMX values in GPR registers.
1534            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1535            break;
1536          }
1537          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1538          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1539            // Special case: passing MMX values in XMM registers.
1540            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1541            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1542            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1543                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1544                              getMOVLMask(2, DAG));
1545            break;
1546          }
1547          }
1548      }
1549      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1550    } else {
1551      if (!IsTailCall || (IsTailCall && isByVal)) {
1552        assert(VA.isMemLoc());
1553        if (StackPtr.Val == 0)
1554          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1555
1556        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1557                                               Arg));
1558      }
1559    }
1560  }
1561
1562  if (!MemOpChains.empty())
1563    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1564                        &MemOpChains[0], MemOpChains.size());
1565
1566  // Build a sequence of copy-to-reg nodes chained together with token chain
1567  // and flag operands which copy the outgoing args into registers.
1568  SDOperand InFlag;
1569  // Tail call byval lowering might overwrite argument registers so in case of
1570  // tail call optimization the copies to registers are lowered later.
1571  if (!IsTailCall)
1572    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1573      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1574                               InFlag);
1575      InFlag = Chain.getValue(1);
1576    }
1577
1578  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1579  // GOT pointer.
1580  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1581    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1582                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1583                             InFlag);
1584    InFlag = Chain.getValue(1);
1585  }
1586  // If we are tail calling and generating PIC/GOT style code load the address
1587  // of the callee into ecx. The value in ecx is used as target of the tail
1588  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1589  // calls on PIC/GOT architectures. Normally we would just put the address of
1590  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1591  // restored (since ebx is callee saved) before jumping to the target@PLT.
1592  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1593    // Note: The actual moving to ecx is done further down.
1594    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1595    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1596        !G->getGlobal()->hasProtectedVisibility())
1597      Callee =  LowerGlobalAddress(Callee, DAG);
1598    else if (isa<ExternalSymbolSDNode>(Callee))
1599      Callee = LowerExternalSymbol(Callee,DAG);
1600  }
1601
1602  if (Is64Bit && isVarArg) {
1603    // From AMD64 ABI document:
1604    // For calls that may call functions that use varargs or stdargs
1605    // (prototype-less calls or calls to functions containing ellipsis (...) in
1606    // the declaration) %al is used as hidden argument to specify the number
1607    // of SSE registers used. The contents of %al do not need to match exactly
1608    // the number of registers, but must be an ubound on the number of SSE
1609    // registers used and is in the range 0 - 8 inclusive.
1610
1611    // FIXME: Verify this on Win64
1612    // Count the number of XMM registers allocated.
1613    static const unsigned XMMArgRegs[] = {
1614      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1615      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1616    };
1617    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1618
1619    Chain = DAG.getCopyToReg(Chain, X86::AL,
1620                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1621    InFlag = Chain.getValue(1);
1622  }
1623
1624
1625  // For tail calls lower the arguments to the 'real' stack slot.
1626  if (IsTailCall) {
1627    SmallVector<SDOperand, 8> MemOpChains2;
1628    SDOperand FIN;
1629    int FI = 0;
1630    // Do not flag preceeding copytoreg stuff together with the following stuff.
1631    InFlag = SDOperand();
1632    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1633      CCValAssign &VA = ArgLocs[i];
1634      if (!VA.isRegLoc()) {
1635        assert(VA.isMemLoc());
1636        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1637        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1638        ISD::ArgFlagsTy Flags =
1639          cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags();
1640        // Create frame index.
1641        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1642        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1643        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1644        FIN = DAG.getFrameIndex(FI, getPointerTy());
1645
1646        if (Flags.isByVal()) {
1647          // Copy relative to framepointer.
1648          SDOperand Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1649          if (StackPtr.Val == 0)
1650            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1651          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1652
1653          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1654                                                           Flags, DAG));
1655        } else {
1656          // Store relative to framepointer.
1657          MemOpChains2.push_back(
1658            DAG.getStore(Chain, Arg, FIN,
1659                         PseudoSourceValue::getFixedStack(FI), 0));
1660        }
1661      }
1662    }
1663
1664    if (!MemOpChains2.empty())
1665      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1666                          &MemOpChains2[0], MemOpChains2.size());
1667
1668    // Copy arguments to their registers.
1669    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1670      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1671                               InFlag);
1672      InFlag = Chain.getValue(1);
1673    }
1674    InFlag =SDOperand();
1675
1676    // Store the return address to the appropriate stack slot.
1677    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1678                                     FPDiff);
1679  }
1680
1681  // If the callee is a GlobalAddress node (quite common, every direct call is)
1682  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1683  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1684    // We should use extra load for direct calls to dllimported functions in
1685    // non-JIT mode.
1686    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1687                                        getTargetMachine(), true))
1688      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1689  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1690    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1691  } else if (IsTailCall) {
1692    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1693
1694    Chain = DAG.getCopyToReg(Chain,
1695                             DAG.getRegister(Opc, getPointerTy()),
1696                             Callee,InFlag);
1697    Callee = DAG.getRegister(Opc, getPointerTy());
1698    // Add register as live out.
1699    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1700  }
1701
1702  // Returns a chain & a flag for retval copy to use.
1703  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1704  SmallVector<SDOperand, 8> Ops;
1705
1706  if (IsTailCall) {
1707    Ops.push_back(Chain);
1708    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1709    Ops.push_back(DAG.getIntPtrConstant(0));
1710    if (InFlag.Val)
1711      Ops.push_back(InFlag);
1712    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1713    InFlag = Chain.getValue(1);
1714
1715    // Returns a chain & a flag for retval copy to use.
1716    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1717    Ops.clear();
1718  }
1719
1720  Ops.push_back(Chain);
1721  Ops.push_back(Callee);
1722
1723  if (IsTailCall)
1724    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1725
1726  // Add argument registers to the end of the list so that they are known live
1727  // into the call.
1728  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1729    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1730                                  RegsToPass[i].second.getValueType()));
1731
1732  // Add an implicit use GOT pointer in EBX.
1733  if (!IsTailCall && !Is64Bit &&
1734      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1735      Subtarget->isPICStyleGOT())
1736    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1737
1738  // Add an implicit use of AL for x86 vararg functions.
1739  if (Is64Bit && isVarArg)
1740    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1741
1742  if (InFlag.Val)
1743    Ops.push_back(InFlag);
1744
1745  if (IsTailCall) {
1746    assert(InFlag.Val &&
1747           "Flag must be set. Depend on flag being set in LowerRET");
1748    Chain = DAG.getNode(X86ISD::TAILCALL,
1749                        Op.Val->getVTList(), &Ops[0], Ops.size());
1750
1751    return SDOperand(Chain.Val, Op.ResNo);
1752  }
1753
1754  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1755  InFlag = Chain.getValue(1);
1756
1757  // Create the CALLSEQ_END node.
1758  unsigned NumBytesForCalleeToPush;
1759  if (IsCalleePop(Op))
1760    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1761  else if (!Is64Bit && IsStructRet)
1762    // If this is is a call to a struct-return function, the callee
1763    // pops the hidden struct pointer, so we have to push it back.
1764    // This is common for Darwin/X86, Linux & Mingw32 targets.
1765    NumBytesForCalleeToPush = 4;
1766  else
1767    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1768
1769  // Returns a flag for retval copy to use.
1770  Chain = DAG.getCALLSEQ_END(Chain,
1771                             DAG.getIntPtrConstant(NumBytes),
1772                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1773                             InFlag);
1774  InFlag = Chain.getValue(1);
1775
1776  // Handle result values, copying them out of physregs into vregs that we
1777  // return.
1778  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1779}
1780
1781
1782//===----------------------------------------------------------------------===//
1783//                Fast Calling Convention (tail call) implementation
1784//===----------------------------------------------------------------------===//
1785
1786//  Like std call, callee cleans arguments, convention except that ECX is
1787//  reserved for storing the tail called function address. Only 2 registers are
1788//  free for argument passing (inreg). Tail call optimization is performed
1789//  provided:
1790//                * tailcallopt is enabled
1791//                * caller/callee are fastcc
1792//  On X86_64 architecture with GOT-style position independent code only local
1793//  (within module) calls are supported at the moment.
1794//  To keep the stack aligned according to platform abi the function
1795//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1796//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1797//  If a tail called function callee has more arguments than the caller the
1798//  caller needs to make sure that there is room to move the RETADDR to. This is
1799//  achieved by reserving an area the size of the argument delta right after the
1800//  original REtADDR, but before the saved framepointer or the spilled registers
1801//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1802//  stack layout:
1803//    arg1
1804//    arg2
1805//    RETADDR
1806//    [ new RETADDR
1807//      move area ]
1808//    (possible EBP)
1809//    ESI
1810//    EDI
1811//    local1 ..
1812
1813/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1814/// for a 16 byte align requirement.
1815unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1816                                                        SelectionDAG& DAG) {
1817  if (PerformTailCallOpt) {
1818    MachineFunction &MF = DAG.getMachineFunction();
1819    const TargetMachine &TM = MF.getTarget();
1820    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1821    unsigned StackAlignment = TFI.getStackAlignment();
1822    uint64_t AlignMask = StackAlignment - 1;
1823    int64_t Offset = StackSize;
1824    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1825    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1826      // Number smaller than 12 so just add the difference.
1827      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1828    } else {
1829      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1830      Offset = ((~AlignMask) & Offset) + StackAlignment +
1831        (StackAlignment-SlotSize);
1832    }
1833    StackSize = Offset;
1834  }
1835  return StackSize;
1836}
1837
1838/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1839/// following the call is a return. A function is eligible if caller/callee
1840/// calling conventions match, currently only fastcc supports tail calls, and
1841/// the function CALL is immediatly followed by a RET.
1842bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1843                                                      SDOperand Ret,
1844                                                      SelectionDAG& DAG) const {
1845  if (!PerformTailCallOpt)
1846    return false;
1847
1848  if (CheckTailCallReturnConstraints(Call, Ret)) {
1849    MachineFunction &MF = DAG.getMachineFunction();
1850    unsigned CallerCC = MF.getFunction()->getCallingConv();
1851    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1852    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1853      SDOperand Callee = Call.getOperand(4);
1854      // On x86/32Bit PIC/GOT  tail calls are supported.
1855      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1856          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1857        return true;
1858
1859      // Can only do local tail calls (in same module, hidden or protected) on
1860      // x86_64 PIC/GOT at the moment.
1861      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1862        return G->getGlobal()->hasHiddenVisibility()
1863            || G->getGlobal()->hasProtectedVisibility();
1864    }
1865  }
1866
1867  return false;
1868}
1869
1870//===----------------------------------------------------------------------===//
1871//                           Other Lowering Hooks
1872//===----------------------------------------------------------------------===//
1873
1874
1875SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1876  MachineFunction &MF = DAG.getMachineFunction();
1877  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1878  int ReturnAddrIndex = FuncInfo->getRAIndex();
1879
1880  if (ReturnAddrIndex == 0) {
1881    // Set up a frame object for the return address.
1882    if (Subtarget->is64Bit())
1883      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1884    else
1885      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1886
1887    FuncInfo->setRAIndex(ReturnAddrIndex);
1888  }
1889
1890  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1891}
1892
1893
1894
1895/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1896/// specific condition code. It returns a false if it cannot do a direct
1897/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1898/// needed.
1899static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1900                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1901                           SelectionDAG &DAG) {
1902  X86CC = X86::COND_INVALID;
1903  if (!isFP) {
1904    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1905      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1906        // X > -1   -> X == 0, jump !sign.
1907        RHS = DAG.getConstant(0, RHS.getValueType());
1908        X86CC = X86::COND_NS;
1909        return true;
1910      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1911        // X < 0   -> X == 0, jump on sign.
1912        X86CC = X86::COND_S;
1913        return true;
1914      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1915        // X < 1   -> X <= 0
1916        RHS = DAG.getConstant(0, RHS.getValueType());
1917        X86CC = X86::COND_LE;
1918        return true;
1919      }
1920    }
1921
1922    switch (SetCCOpcode) {
1923    default: break;
1924    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1925    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1926    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1927    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1928    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1929    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1930    case ISD::SETULT: X86CC = X86::COND_B;  break;
1931    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1932    case ISD::SETULE: X86CC = X86::COND_BE; break;
1933    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1934    }
1935  } else {
1936    // On a floating point condition, the flags are set as follows:
1937    // ZF  PF  CF   op
1938    //  0 | 0 | 0 | X > Y
1939    //  0 | 0 | 1 | X < Y
1940    //  1 | 0 | 0 | X == Y
1941    //  1 | 1 | 1 | unordered
1942    bool Flip = false;
1943    switch (SetCCOpcode) {
1944    default: break;
1945    case ISD::SETUEQ:
1946    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1947    case ISD::SETOLT: Flip = true; // Fallthrough
1948    case ISD::SETOGT:
1949    case ISD::SETGT: X86CC = X86::COND_A;  break;
1950    case ISD::SETOLE: Flip = true; // Fallthrough
1951    case ISD::SETOGE:
1952    case ISD::SETGE: X86CC = X86::COND_AE; break;
1953    case ISD::SETUGT: Flip = true; // Fallthrough
1954    case ISD::SETULT:
1955    case ISD::SETLT: X86CC = X86::COND_B;  break;
1956    case ISD::SETUGE: Flip = true; // Fallthrough
1957    case ISD::SETULE:
1958    case ISD::SETLE: X86CC = X86::COND_BE; break;
1959    case ISD::SETONE:
1960    case ISD::SETNE: X86CC = X86::COND_NE; break;
1961    case ISD::SETUO: X86CC = X86::COND_P;  break;
1962    case ISD::SETO:  X86CC = X86::COND_NP; break;
1963    }
1964    if (Flip)
1965      std::swap(LHS, RHS);
1966  }
1967
1968  return X86CC != X86::COND_INVALID;
1969}
1970
1971/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1972/// code. Current x86 isa includes the following FP cmov instructions:
1973/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1974static bool hasFPCMov(unsigned X86CC) {
1975  switch (X86CC) {
1976  default:
1977    return false;
1978  case X86::COND_B:
1979  case X86::COND_BE:
1980  case X86::COND_E:
1981  case X86::COND_P:
1982  case X86::COND_A:
1983  case X86::COND_AE:
1984  case X86::COND_NE:
1985  case X86::COND_NP:
1986    return true;
1987  }
1988}
1989
1990/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1991/// true if Op is undef or if its value falls within the specified range (L, H].
1992static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1993  if (Op.getOpcode() == ISD::UNDEF)
1994    return true;
1995
1996  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1997  return (Val >= Low && Val < Hi);
1998}
1999
2000/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2001/// true if Op is undef or if its value equal to the specified value.
2002static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2003  if (Op.getOpcode() == ISD::UNDEF)
2004    return true;
2005  return cast<ConstantSDNode>(Op)->getValue() == Val;
2006}
2007
2008/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2009/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2010bool X86::isPSHUFDMask(SDNode *N) {
2011  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2012
2013  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2014    return false;
2015
2016  // Check if the value doesn't reference the second vector.
2017  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2018    SDOperand Arg = N->getOperand(i);
2019    if (Arg.getOpcode() == ISD::UNDEF) continue;
2020    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2021    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2022      return false;
2023  }
2024
2025  return true;
2026}
2027
2028/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2029/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2030bool X86::isPSHUFHWMask(SDNode *N) {
2031  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2032
2033  if (N->getNumOperands() != 8)
2034    return false;
2035
2036  // Lower quadword copied in order.
2037  for (unsigned i = 0; i != 4; ++i) {
2038    SDOperand Arg = N->getOperand(i);
2039    if (Arg.getOpcode() == ISD::UNDEF) continue;
2040    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2041    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2042      return false;
2043  }
2044
2045  // Upper quadword shuffled.
2046  for (unsigned i = 4; i != 8; ++i) {
2047    SDOperand Arg = N->getOperand(i);
2048    if (Arg.getOpcode() == ISD::UNDEF) continue;
2049    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2050    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2051    if (Val < 4 || Val > 7)
2052      return false;
2053  }
2054
2055  return true;
2056}
2057
2058/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2059/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2060bool X86::isPSHUFLWMask(SDNode *N) {
2061  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2062
2063  if (N->getNumOperands() != 8)
2064    return false;
2065
2066  // Upper quadword copied in order.
2067  for (unsigned i = 4; i != 8; ++i)
2068    if (!isUndefOrEqual(N->getOperand(i), i))
2069      return false;
2070
2071  // Lower quadword shuffled.
2072  for (unsigned i = 0; i != 4; ++i)
2073    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2074      return false;
2075
2076  return true;
2077}
2078
2079/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2080/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2081static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2082  if (NumElems != 2 && NumElems != 4) return false;
2083
2084  unsigned Half = NumElems / 2;
2085  for (unsigned i = 0; i < Half; ++i)
2086    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2087      return false;
2088  for (unsigned i = Half; i < NumElems; ++i)
2089    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2090      return false;
2091
2092  return true;
2093}
2094
2095bool X86::isSHUFPMask(SDNode *N) {
2096  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2097  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2098}
2099
2100/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2101/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2102/// half elements to come from vector 1 (which would equal the dest.) and
2103/// the upper half to come from vector 2.
2104static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2105  if (NumOps != 2 && NumOps != 4) return false;
2106
2107  unsigned Half = NumOps / 2;
2108  for (unsigned i = 0; i < Half; ++i)
2109    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2110      return false;
2111  for (unsigned i = Half; i < NumOps; ++i)
2112    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2113      return false;
2114  return true;
2115}
2116
2117static bool isCommutedSHUFP(SDNode *N) {
2118  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2119  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2120}
2121
2122/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2123/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2124bool X86::isMOVHLPSMask(SDNode *N) {
2125  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2126
2127  if (N->getNumOperands() != 4)
2128    return false;
2129
2130  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2131  return isUndefOrEqual(N->getOperand(0), 6) &&
2132         isUndefOrEqual(N->getOperand(1), 7) &&
2133         isUndefOrEqual(N->getOperand(2), 2) &&
2134         isUndefOrEqual(N->getOperand(3), 3);
2135}
2136
2137/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2138/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2139/// <2, 3, 2, 3>
2140bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2141  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2142
2143  if (N->getNumOperands() != 4)
2144    return false;
2145
2146  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2147  return isUndefOrEqual(N->getOperand(0), 2) &&
2148         isUndefOrEqual(N->getOperand(1), 3) &&
2149         isUndefOrEqual(N->getOperand(2), 2) &&
2150         isUndefOrEqual(N->getOperand(3), 3);
2151}
2152
2153/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2154/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2155bool X86::isMOVLPMask(SDNode *N) {
2156  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2157
2158  unsigned NumElems = N->getNumOperands();
2159  if (NumElems != 2 && NumElems != 4)
2160    return false;
2161
2162  for (unsigned i = 0; i < NumElems/2; ++i)
2163    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2164      return false;
2165
2166  for (unsigned i = NumElems/2; i < NumElems; ++i)
2167    if (!isUndefOrEqual(N->getOperand(i), i))
2168      return false;
2169
2170  return true;
2171}
2172
2173/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2174/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2175/// and MOVLHPS.
2176bool X86::isMOVHPMask(SDNode *N) {
2177  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2178
2179  unsigned NumElems = N->getNumOperands();
2180  if (NumElems != 2 && NumElems != 4)
2181    return false;
2182
2183  for (unsigned i = 0; i < NumElems/2; ++i)
2184    if (!isUndefOrEqual(N->getOperand(i), i))
2185      return false;
2186
2187  for (unsigned i = 0; i < NumElems/2; ++i) {
2188    SDOperand Arg = N->getOperand(i + NumElems/2);
2189    if (!isUndefOrEqual(Arg, i + NumElems))
2190      return false;
2191  }
2192
2193  return true;
2194}
2195
2196/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2197/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2198bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2199                         bool V2IsSplat = false) {
2200  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2201    return false;
2202
2203  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2204    SDOperand BitI  = Elts[i];
2205    SDOperand BitI1 = Elts[i+1];
2206    if (!isUndefOrEqual(BitI, j))
2207      return false;
2208    if (V2IsSplat) {
2209      if (isUndefOrEqual(BitI1, NumElts))
2210        return false;
2211    } else {
2212      if (!isUndefOrEqual(BitI1, j + NumElts))
2213        return false;
2214    }
2215  }
2216
2217  return true;
2218}
2219
2220bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2221  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2222  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2223}
2224
2225/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2226/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2227bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2228                         bool V2IsSplat = false) {
2229  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2230    return false;
2231
2232  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2233    SDOperand BitI  = Elts[i];
2234    SDOperand BitI1 = Elts[i+1];
2235    if (!isUndefOrEqual(BitI, j + NumElts/2))
2236      return false;
2237    if (V2IsSplat) {
2238      if (isUndefOrEqual(BitI1, NumElts))
2239        return false;
2240    } else {
2241      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2242        return false;
2243    }
2244  }
2245
2246  return true;
2247}
2248
2249bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2250  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2251  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2252}
2253
2254/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2255/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2256/// <0, 0, 1, 1>
2257bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2258  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2259
2260  unsigned NumElems = N->getNumOperands();
2261  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2262    return false;
2263
2264  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2265    SDOperand BitI  = N->getOperand(i);
2266    SDOperand BitI1 = N->getOperand(i+1);
2267
2268    if (!isUndefOrEqual(BitI, j))
2269      return false;
2270    if (!isUndefOrEqual(BitI1, j))
2271      return false;
2272  }
2273
2274  return true;
2275}
2276
2277/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2278/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2279/// <2, 2, 3, 3>
2280bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2281  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2282
2283  unsigned NumElems = N->getNumOperands();
2284  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2285    return false;
2286
2287  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2288    SDOperand BitI  = N->getOperand(i);
2289    SDOperand BitI1 = N->getOperand(i + 1);
2290
2291    if (!isUndefOrEqual(BitI, j))
2292      return false;
2293    if (!isUndefOrEqual(BitI1, j))
2294      return false;
2295  }
2296
2297  return true;
2298}
2299
2300/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2301/// specifies a shuffle of elements that is suitable for input to MOVSS,
2302/// MOVSD, and MOVD, i.e. setting the lowest element.
2303static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2304  if (NumElts != 2 && NumElts != 4)
2305    return false;
2306
2307  if (!isUndefOrEqual(Elts[0], NumElts))
2308    return false;
2309
2310  for (unsigned i = 1; i < NumElts; ++i) {
2311    if (!isUndefOrEqual(Elts[i], i))
2312      return false;
2313  }
2314
2315  return true;
2316}
2317
2318bool X86::isMOVLMask(SDNode *N) {
2319  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2320  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2321}
2322
2323/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2324/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2325/// element of vector 2 and the other elements to come from vector 1 in order.
2326static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2327                           bool V2IsSplat = false,
2328                           bool V2IsUndef = false) {
2329  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2330    return false;
2331
2332  if (!isUndefOrEqual(Ops[0], 0))
2333    return false;
2334
2335  for (unsigned i = 1; i < NumOps; ++i) {
2336    SDOperand Arg = Ops[i];
2337    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2338          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2339          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2340      return false;
2341  }
2342
2343  return true;
2344}
2345
2346static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2347                           bool V2IsUndef = false) {
2348  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2349  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2350                        V2IsSplat, V2IsUndef);
2351}
2352
2353/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2354/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2355bool X86::isMOVSHDUPMask(SDNode *N) {
2356  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2357
2358  if (N->getNumOperands() != 4)
2359    return false;
2360
2361  // Expect 1, 1, 3, 3
2362  for (unsigned i = 0; i < 2; ++i) {
2363    SDOperand Arg = N->getOperand(i);
2364    if (Arg.getOpcode() == ISD::UNDEF) continue;
2365    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2366    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2367    if (Val != 1) return false;
2368  }
2369
2370  bool HasHi = false;
2371  for (unsigned i = 2; i < 4; ++i) {
2372    SDOperand Arg = N->getOperand(i);
2373    if (Arg.getOpcode() == ISD::UNDEF) continue;
2374    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2375    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2376    if (Val != 3) return false;
2377    HasHi = true;
2378  }
2379
2380  // Don't use movshdup if it can be done with a shufps.
2381  return HasHi;
2382}
2383
2384/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2385/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2386bool X86::isMOVSLDUPMask(SDNode *N) {
2387  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2388
2389  if (N->getNumOperands() != 4)
2390    return false;
2391
2392  // Expect 0, 0, 2, 2
2393  for (unsigned i = 0; i < 2; ++i) {
2394    SDOperand Arg = N->getOperand(i);
2395    if (Arg.getOpcode() == ISD::UNDEF) continue;
2396    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2397    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2398    if (Val != 0) return false;
2399  }
2400
2401  bool HasHi = false;
2402  for (unsigned i = 2; i < 4; ++i) {
2403    SDOperand Arg = N->getOperand(i);
2404    if (Arg.getOpcode() == ISD::UNDEF) continue;
2405    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2406    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2407    if (Val != 2) return false;
2408    HasHi = true;
2409  }
2410
2411  // Don't use movshdup if it can be done with a shufps.
2412  return HasHi;
2413}
2414
2415/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2416/// specifies a identity operation on the LHS or RHS.
2417static bool isIdentityMask(SDNode *N, bool RHS = false) {
2418  unsigned NumElems = N->getNumOperands();
2419  for (unsigned i = 0; i < NumElems; ++i)
2420    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2421      return false;
2422  return true;
2423}
2424
2425/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2426/// a splat of a single element.
2427static bool isSplatMask(SDNode *N) {
2428  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2429
2430  // This is a splat operation if each element of the permute is the same, and
2431  // if the value doesn't reference the second vector.
2432  unsigned NumElems = N->getNumOperands();
2433  SDOperand ElementBase;
2434  unsigned i = 0;
2435  for (; i != NumElems; ++i) {
2436    SDOperand Elt = N->getOperand(i);
2437    if (isa<ConstantSDNode>(Elt)) {
2438      ElementBase = Elt;
2439      break;
2440    }
2441  }
2442
2443  if (!ElementBase.Val)
2444    return false;
2445
2446  for (; i != NumElems; ++i) {
2447    SDOperand Arg = N->getOperand(i);
2448    if (Arg.getOpcode() == ISD::UNDEF) continue;
2449    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2450    if (Arg != ElementBase) return false;
2451  }
2452
2453  // Make sure it is a splat of the first vector operand.
2454  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2455}
2456
2457/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2458/// a splat of a single element and it's a 2 or 4 element mask.
2459bool X86::isSplatMask(SDNode *N) {
2460  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2461
2462  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2463  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2464    return false;
2465  return ::isSplatMask(N);
2466}
2467
2468/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2469/// specifies a splat of zero element.
2470bool X86::isSplatLoMask(SDNode *N) {
2471  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2472
2473  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2474    if (!isUndefOrEqual(N->getOperand(i), 0))
2475      return false;
2476  return true;
2477}
2478
2479/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2480/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2481/// instructions.
2482unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2483  unsigned NumOperands = N->getNumOperands();
2484  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2485  unsigned Mask = 0;
2486  for (unsigned i = 0; i < NumOperands; ++i) {
2487    unsigned Val = 0;
2488    SDOperand Arg = N->getOperand(NumOperands-i-1);
2489    if (Arg.getOpcode() != ISD::UNDEF)
2490      Val = cast<ConstantSDNode>(Arg)->getValue();
2491    if (Val >= NumOperands) Val -= NumOperands;
2492    Mask |= Val;
2493    if (i != NumOperands - 1)
2494      Mask <<= Shift;
2495  }
2496
2497  return Mask;
2498}
2499
2500/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2501/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2502/// instructions.
2503unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2504  unsigned Mask = 0;
2505  // 8 nodes, but we only care about the last 4.
2506  for (unsigned i = 7; i >= 4; --i) {
2507    unsigned Val = 0;
2508    SDOperand Arg = N->getOperand(i);
2509    if (Arg.getOpcode() != ISD::UNDEF)
2510      Val = cast<ConstantSDNode>(Arg)->getValue();
2511    Mask |= (Val - 4);
2512    if (i != 4)
2513      Mask <<= 2;
2514  }
2515
2516  return Mask;
2517}
2518
2519/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2520/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2521/// instructions.
2522unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2523  unsigned Mask = 0;
2524  // 8 nodes, but we only care about the first 4.
2525  for (int i = 3; i >= 0; --i) {
2526    unsigned Val = 0;
2527    SDOperand Arg = N->getOperand(i);
2528    if (Arg.getOpcode() != ISD::UNDEF)
2529      Val = cast<ConstantSDNode>(Arg)->getValue();
2530    Mask |= Val;
2531    if (i != 0)
2532      Mask <<= 2;
2533  }
2534
2535  return Mask;
2536}
2537
2538/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2539/// specifies a 8 element shuffle that can be broken into a pair of
2540/// PSHUFHW and PSHUFLW.
2541static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2542  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2543
2544  if (N->getNumOperands() != 8)
2545    return false;
2546
2547  // Lower quadword shuffled.
2548  for (unsigned i = 0; i != 4; ++i) {
2549    SDOperand Arg = N->getOperand(i);
2550    if (Arg.getOpcode() == ISD::UNDEF) continue;
2551    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2552    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2553    if (Val >= 4)
2554      return false;
2555  }
2556
2557  // Upper quadword shuffled.
2558  for (unsigned i = 4; i != 8; ++i) {
2559    SDOperand Arg = N->getOperand(i);
2560    if (Arg.getOpcode() == ISD::UNDEF) continue;
2561    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2562    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2563    if (Val < 4 || Val > 7)
2564      return false;
2565  }
2566
2567  return true;
2568}
2569
2570/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2571/// values in ther permute mask.
2572static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2573                                      SDOperand &V2, SDOperand &Mask,
2574                                      SelectionDAG &DAG) {
2575  MVT VT = Op.getValueType();
2576  MVT MaskVT = Mask.getValueType();
2577  MVT EltVT = MaskVT.getVectorElementType();
2578  unsigned NumElems = Mask.getNumOperands();
2579  SmallVector<SDOperand, 8> MaskVec;
2580
2581  for (unsigned i = 0; i != NumElems; ++i) {
2582    SDOperand Arg = Mask.getOperand(i);
2583    if (Arg.getOpcode() == ISD::UNDEF) {
2584      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2585      continue;
2586    }
2587    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2588    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2589    if (Val < NumElems)
2590      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2591    else
2592      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2593  }
2594
2595  std::swap(V1, V2);
2596  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2597  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2598}
2599
2600/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2601/// the two vector operands have swapped position.
2602static
2603SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2604  MVT MaskVT = Mask.getValueType();
2605  MVT EltVT = MaskVT.getVectorElementType();
2606  unsigned NumElems = Mask.getNumOperands();
2607  SmallVector<SDOperand, 8> MaskVec;
2608  for (unsigned i = 0; i != NumElems; ++i) {
2609    SDOperand Arg = Mask.getOperand(i);
2610    if (Arg.getOpcode() == ISD::UNDEF) {
2611      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2612      continue;
2613    }
2614    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2615    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2616    if (Val < NumElems)
2617      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2618    else
2619      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2620  }
2621  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2622}
2623
2624
2625/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2626/// match movhlps. The lower half elements should come from upper half of
2627/// V1 (and in order), and the upper half elements should come from the upper
2628/// half of V2 (and in order).
2629static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2630  unsigned NumElems = Mask->getNumOperands();
2631  if (NumElems != 4)
2632    return false;
2633  for (unsigned i = 0, e = 2; i != e; ++i)
2634    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2635      return false;
2636  for (unsigned i = 2; i != 4; ++i)
2637    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2638      return false;
2639  return true;
2640}
2641
2642/// isScalarLoadToVector - Returns true if the node is a scalar load that
2643/// is promoted to a vector. It also returns the LoadSDNode by reference if
2644/// required.
2645static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2646  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2647    N = N->getOperand(0).Val;
2648    if (ISD::isNON_EXTLoad(N)) {
2649      if (LD)
2650        *LD = cast<LoadSDNode>(N);
2651      return true;
2652    }
2653  }
2654  return false;
2655}
2656
2657/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2658/// match movlp{s|d}. The lower half elements should come from lower half of
2659/// V1 (and in order), and the upper half elements should come from the upper
2660/// half of V2 (and in order). And since V1 will become the source of the
2661/// MOVLP, it must be either a vector load or a scalar load to vector.
2662static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2663  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2664    return false;
2665  // Is V2 is a vector load, don't do this transformation. We will try to use
2666  // load folding shufps op.
2667  if (ISD::isNON_EXTLoad(V2))
2668    return false;
2669
2670  unsigned NumElems = Mask->getNumOperands();
2671  if (NumElems != 2 && NumElems != 4)
2672    return false;
2673  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2674    if (!isUndefOrEqual(Mask->getOperand(i), i))
2675      return false;
2676  for (unsigned i = NumElems/2; i != NumElems; ++i)
2677    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2678      return false;
2679  return true;
2680}
2681
2682/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2683/// all the same.
2684static bool isSplatVector(SDNode *N) {
2685  if (N->getOpcode() != ISD::BUILD_VECTOR)
2686    return false;
2687
2688  SDOperand SplatValue = N->getOperand(0);
2689  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2690    if (N->getOperand(i) != SplatValue)
2691      return false;
2692  return true;
2693}
2694
2695/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2696/// to an undef.
2697static bool isUndefShuffle(SDNode *N) {
2698  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2699    return false;
2700
2701  SDOperand V1 = N->getOperand(0);
2702  SDOperand V2 = N->getOperand(1);
2703  SDOperand Mask = N->getOperand(2);
2704  unsigned NumElems = Mask.getNumOperands();
2705  for (unsigned i = 0; i != NumElems; ++i) {
2706    SDOperand Arg = Mask.getOperand(i);
2707    if (Arg.getOpcode() != ISD::UNDEF) {
2708      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2709      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2710        return false;
2711      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2712        return false;
2713    }
2714  }
2715  return true;
2716}
2717
2718/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2719/// constant +0.0.
2720static inline bool isZeroNode(SDOperand Elt) {
2721  return ((isa<ConstantSDNode>(Elt) &&
2722           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2723          (isa<ConstantFPSDNode>(Elt) &&
2724           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2725}
2726
2727/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2728/// to an zero vector.
2729static bool isZeroShuffle(SDNode *N) {
2730  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2731    return false;
2732
2733  SDOperand V1 = N->getOperand(0);
2734  SDOperand V2 = N->getOperand(1);
2735  SDOperand Mask = N->getOperand(2);
2736  unsigned NumElems = Mask.getNumOperands();
2737  for (unsigned i = 0; i != NumElems; ++i) {
2738    SDOperand Arg = Mask.getOperand(i);
2739    if (Arg.getOpcode() == ISD::UNDEF)
2740      continue;
2741
2742    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2743    if (Idx < NumElems) {
2744      unsigned Opc = V1.Val->getOpcode();
2745      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2746        continue;
2747      if (Opc != ISD::BUILD_VECTOR ||
2748          !isZeroNode(V1.Val->getOperand(Idx)))
2749        return false;
2750    } else if (Idx >= NumElems) {
2751      unsigned Opc = V2.Val->getOpcode();
2752      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2753        continue;
2754      if (Opc != ISD::BUILD_VECTOR ||
2755          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2756        return false;
2757    }
2758  }
2759  return true;
2760}
2761
2762/// getZeroVector - Returns a vector of specified type with all zero elements.
2763///
2764static SDOperand getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2765  assert(VT.isVector() && "Expected a vector type");
2766
2767  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2768  // type.  This ensures they get CSE'd.
2769  SDOperand Vec;
2770  if (VT.getSizeInBits() == 64) { // MMX
2771    SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2772    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2773  } else if (HasSSE2) {  // SSE2
2774    SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2775    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2776  } else { // SSE1
2777    SDOperand Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2778    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2779  }
2780  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2781}
2782
2783/// getOnesVector - Returns a vector of specified type with all bits set.
2784///
2785static SDOperand getOnesVector(MVT VT, SelectionDAG &DAG) {
2786  assert(VT.isVector() && "Expected a vector type");
2787
2788  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2789  // type.  This ensures they get CSE'd.
2790  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2791  SDOperand Vec;
2792  if (VT.getSizeInBits() == 64)  // MMX
2793    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2794  else                                              // SSE
2795    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2796  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2797}
2798
2799
2800/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2801/// that point to V2 points to its first element.
2802static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2803  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2804
2805  bool Changed = false;
2806  SmallVector<SDOperand, 8> MaskVec;
2807  unsigned NumElems = Mask.getNumOperands();
2808  for (unsigned i = 0; i != NumElems; ++i) {
2809    SDOperand Arg = Mask.getOperand(i);
2810    if (Arg.getOpcode() != ISD::UNDEF) {
2811      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2812      if (Val > NumElems) {
2813        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2814        Changed = true;
2815      }
2816    }
2817    MaskVec.push_back(Arg);
2818  }
2819
2820  if (Changed)
2821    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2822                       &MaskVec[0], MaskVec.size());
2823  return Mask;
2824}
2825
2826/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2827/// operation of specified width.
2828static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2829  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2830  MVT BaseVT = MaskVT.getVectorElementType();
2831
2832  SmallVector<SDOperand, 8> MaskVec;
2833  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2834  for (unsigned i = 1; i != NumElems; ++i)
2835    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2836  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2837}
2838
2839/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2840/// of specified width.
2841static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2842  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2843  MVT BaseVT = MaskVT.getVectorElementType();
2844  SmallVector<SDOperand, 8> MaskVec;
2845  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2846    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2847    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2848  }
2849  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2850}
2851
2852/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2853/// of specified width.
2854static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2855  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2856  MVT BaseVT = MaskVT.getVectorElementType();
2857  unsigned Half = NumElems/2;
2858  SmallVector<SDOperand, 8> MaskVec;
2859  for (unsigned i = 0; i != Half; ++i) {
2860    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2861    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2862  }
2863  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2864}
2865
2866/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2867/// element #0 of a vector with the specified index, leaving the rest of the
2868/// elements in place.
2869static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2870                                   SelectionDAG &DAG) {
2871  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2872  MVT BaseVT = MaskVT.getVectorElementType();
2873  SmallVector<SDOperand, 8> MaskVec;
2874  // Element #0 of the result gets the elt we are replacing.
2875  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2876  for (unsigned i = 1; i != NumElems; ++i)
2877    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2878  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2879}
2880
2881/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2882static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
2883  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2884  MVT VT = Op.getValueType();
2885  if (PVT == VT)
2886    return Op;
2887  SDOperand V1 = Op.getOperand(0);
2888  SDOperand Mask = Op.getOperand(2);
2889  unsigned NumElems = Mask.getNumOperands();
2890  // Special handling of v4f32 -> v4i32.
2891  if (VT != MVT::v4f32) {
2892    Mask = getUnpacklMask(NumElems, DAG);
2893    while (NumElems > 4) {
2894      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2895      NumElems >>= 1;
2896    }
2897    Mask = getZeroVector(MVT::v4i32, true, DAG);
2898  }
2899
2900  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2901  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2902                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2903  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2904}
2905
2906/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2907/// vector of zero or undef vector.  This produces a shuffle where the low
2908/// element of V2 is swizzled into the zero/undef vector, landing at element
2909/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2910static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
2911                                             bool isZero, bool HasSSE2,
2912                                             SelectionDAG &DAG) {
2913  MVT VT = V2.getValueType();
2914  SDOperand V1 = isZero
2915    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
2916  unsigned NumElems = V2.getValueType().getVectorNumElements();
2917  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2918  MVT EVT = MaskVT.getVectorElementType();
2919  SmallVector<SDOperand, 16> MaskVec;
2920  for (unsigned i = 0; i != NumElems; ++i)
2921    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2922      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2923    else
2924      MaskVec.push_back(DAG.getConstant(i, EVT));
2925  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2926                               &MaskVec[0], MaskVec.size());
2927  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2928}
2929
2930/// getNumOfConsecutiveZeros - Return the number of elements in a result of
2931/// a shuffle that is zero.
2932static
2933unsigned getNumOfConsecutiveZeros(SDOperand Op, SDOperand Mask,
2934                                  unsigned NumElems, bool Low,
2935                                  SelectionDAG &DAG) {
2936  unsigned NumZeros = 0;
2937  for (unsigned i = 0; i < NumElems; ++i) {
2938    unsigned Index = Low ? i : NumElems-i-1;
2939    SDOperand Idx = Mask.getOperand(Index);
2940    if (Idx.getOpcode() == ISD::UNDEF) {
2941      ++NumZeros;
2942      continue;
2943    }
2944    SDOperand Elt = DAG.getShuffleScalarElt(Op.Val, Index);
2945    if (Elt.Val && isZeroNode(Elt))
2946      ++NumZeros;
2947    else
2948      break;
2949  }
2950  return NumZeros;
2951}
2952
2953/// isVectorShift - Returns true if the shuffle can be implemented as a
2954/// logical left or right shift of a vector.
2955static bool isVectorShift(SDOperand Op, SDOperand Mask, SelectionDAG &DAG,
2956                          bool &isLeft, SDOperand &ShVal, unsigned &ShAmt) {
2957  unsigned NumElems = Mask.getNumOperands();
2958
2959  isLeft = true;
2960  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
2961  if (!NumZeros) {
2962    isLeft = false;
2963    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
2964    if (!NumZeros)
2965      return false;
2966  }
2967
2968  bool SeenV1 = false;
2969  bool SeenV2 = false;
2970  for (unsigned i = NumZeros; i < NumElems; ++i) {
2971    unsigned Val = isLeft ? (i - NumZeros) : i;
2972    SDOperand Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
2973    if (Idx.getOpcode() == ISD::UNDEF)
2974      continue;
2975    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
2976    if (Index < NumElems)
2977      SeenV1 = true;
2978    else {
2979      Index -= NumElems;
2980      SeenV2 = true;
2981    }
2982    if (Index != Val)
2983      return false;
2984  }
2985  if (SeenV1 && SeenV2)
2986    return false;
2987
2988  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
2989  ShAmt = NumZeros;
2990  return true;
2991}
2992
2993
2994/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2995///
2996static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2997                                       unsigned NumNonZero, unsigned NumZero,
2998                                       SelectionDAG &DAG, TargetLowering &TLI) {
2999  if (NumNonZero > 8)
3000    return SDOperand();
3001
3002  SDOperand V(0, 0);
3003  bool First = true;
3004  for (unsigned i = 0; i < 16; ++i) {
3005    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3006    if (ThisIsNonZero && First) {
3007      if (NumZero)
3008        V = getZeroVector(MVT::v8i16, true, DAG);
3009      else
3010        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3011      First = false;
3012    }
3013
3014    if ((i & 1) != 0) {
3015      SDOperand ThisElt(0, 0), LastElt(0, 0);
3016      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3017      if (LastIsNonZero) {
3018        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3019      }
3020      if (ThisIsNonZero) {
3021        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3022        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3023                              ThisElt, DAG.getConstant(8, MVT::i8));
3024        if (LastIsNonZero)
3025          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3026      } else
3027        ThisElt = LastElt;
3028
3029      if (ThisElt.Val)
3030        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3031                        DAG.getIntPtrConstant(i/2));
3032    }
3033  }
3034
3035  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3036}
3037
3038/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3039///
3040static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3041                                       unsigned NumNonZero, unsigned NumZero,
3042                                       SelectionDAG &DAG, TargetLowering &TLI) {
3043  if (NumNonZero > 4)
3044    return SDOperand();
3045
3046  SDOperand V(0, 0);
3047  bool First = true;
3048  for (unsigned i = 0; i < 8; ++i) {
3049    bool isNonZero = (NonZeros & (1 << i)) != 0;
3050    if (isNonZero) {
3051      if (First) {
3052        if (NumZero)
3053          V = getZeroVector(MVT::v8i16, true, DAG);
3054        else
3055          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3056        First = false;
3057      }
3058      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3059                      DAG.getIntPtrConstant(i));
3060    }
3061  }
3062
3063  return V;
3064}
3065
3066/// getVShift - Return a vector logical shift node.
3067///
3068static SDOperand getVShift(bool isLeft, MVT VT, SDOperand SrcOp,
3069                           unsigned NumBits, SelectionDAG &DAG,
3070                           const TargetLowering &TLI) {
3071  bool isMMX = VT.getSizeInBits() == 64;
3072  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3073  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3074  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3075  return DAG.getNode(ISD::BIT_CONVERT, VT,
3076                     DAG.getNode(Opc, ShVT, SrcOp,
3077                              DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3078}
3079
3080SDOperand
3081X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3082  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3083  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3084    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3085    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3086    // eliminated on x86-32 hosts.
3087    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3088      return Op;
3089
3090    if (ISD::isBuildVectorAllOnes(Op.Val))
3091      return getOnesVector(Op.getValueType(), DAG);
3092    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3093  }
3094
3095  MVT VT = Op.getValueType();
3096  MVT EVT = VT.getVectorElementType();
3097  unsigned EVTBits = EVT.getSizeInBits();
3098
3099  unsigned NumElems = Op.getNumOperands();
3100  unsigned NumZero  = 0;
3101  unsigned NumNonZero = 0;
3102  unsigned NonZeros = 0;
3103  bool IsAllConstants = true;
3104  SmallSet<SDOperand, 8> Values;
3105  for (unsigned i = 0; i < NumElems; ++i) {
3106    SDOperand Elt = Op.getOperand(i);
3107    if (Elt.getOpcode() == ISD::UNDEF)
3108      continue;
3109    Values.insert(Elt);
3110    if (Elt.getOpcode() != ISD::Constant &&
3111        Elt.getOpcode() != ISD::ConstantFP)
3112      IsAllConstants = false;
3113    if (isZeroNode(Elt))
3114      NumZero++;
3115    else {
3116      NonZeros |= (1 << i);
3117      NumNonZero++;
3118    }
3119  }
3120
3121  if (NumNonZero == 0) {
3122    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3123    return DAG.getNode(ISD::UNDEF, VT);
3124  }
3125
3126  // Special case for single non-zero, non-undef, element.
3127  if (NumNonZero == 1 && NumElems <= 4) {
3128    unsigned Idx = CountTrailingZeros_32(NonZeros);
3129    SDOperand Item = Op.getOperand(Idx);
3130
3131    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3132    // the value are obviously zero, truncate the value to i32 and do the
3133    // insertion that way.  Only do this if the value is non-constant or if the
3134    // value is a constant being inserted into element 0.  It is cheaper to do
3135    // a constant pool load than it is to do a movd + shuffle.
3136    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3137        (!IsAllConstants || Idx == 0)) {
3138      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3139        // Handle MMX and SSE both.
3140        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3141        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3142
3143        // Truncate the value (which may itself be a constant) to i32, and
3144        // convert it to a vector with movd (S2V+shuffle to zero extend).
3145        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3146        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3147        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3148                                           Subtarget->hasSSE2(), DAG);
3149
3150        // Now we have our 32-bit value zero extended in the low element of
3151        // a vector.  If Idx != 0, swizzle it into place.
3152        if (Idx != 0) {
3153          SDOperand Ops[] = {
3154            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3155            getSwapEltZeroMask(VecElts, Idx, DAG)
3156          };
3157          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3158        }
3159        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3160      }
3161    }
3162
3163    // If we have a constant or non-constant insertion into the low element of
3164    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3165    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3166    // depending on what the source datatype is.  Because we can only get here
3167    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3168    if (Idx == 0 &&
3169        // Don't do this for i64 values on x86-32.
3170        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3171      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3172      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3173      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3174                                         Subtarget->hasSSE2(), DAG);
3175    }
3176
3177    // Is it a vector logical left shift?
3178    if (NumElems == 2 && Idx == 1 &&
3179        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3180      unsigned NumBits = VT.getSizeInBits();
3181      return getVShift(true, VT,
3182                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3183                       NumBits/2, DAG, *this);
3184    }
3185
3186    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3187      return SDOperand();
3188
3189    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3190    // is a non-constant being inserted into an element other than the low one,
3191    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3192    // movd/movss) to move this into the low element, then shuffle it into
3193    // place.
3194    if (EVTBits == 32) {
3195      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3196
3197      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3198      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3199                                         Subtarget->hasSSE2(), DAG);
3200      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3201      MVT MaskEVT = MaskVT.getVectorElementType();
3202      SmallVector<SDOperand, 8> MaskVec;
3203      for (unsigned i = 0; i < NumElems; i++)
3204        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3205      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3206                                   &MaskVec[0], MaskVec.size());
3207      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3208                         DAG.getNode(ISD::UNDEF, VT), Mask);
3209    }
3210  }
3211
3212  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3213  if (Values.size() == 1)
3214    return SDOperand();
3215
3216  // A vector full of immediates; various special cases are already
3217  // handled, so this is best done with a single constant-pool load.
3218  if (IsAllConstants)
3219    return SDOperand();
3220
3221  // Let legalizer expand 2-wide build_vectors.
3222  if (EVTBits == 64) {
3223    if (NumNonZero == 1) {
3224      // One half is zero or undef.
3225      unsigned Idx = CountTrailingZeros_32(NonZeros);
3226      SDOperand V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3227                                 Op.getOperand(Idx));
3228      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3229                                         Subtarget->hasSSE2(), DAG);
3230    }
3231    return SDOperand();
3232  }
3233
3234  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3235  if (EVTBits == 8 && NumElems == 16) {
3236    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3237                                        *this);
3238    if (V.Val) return V;
3239  }
3240
3241  if (EVTBits == 16 && NumElems == 8) {
3242    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3243                                        *this);
3244    if (V.Val) return V;
3245  }
3246
3247  // If element VT is == 32 bits, turn it into a number of shuffles.
3248  SmallVector<SDOperand, 8> V;
3249  V.resize(NumElems);
3250  if (NumElems == 4 && NumZero > 0) {
3251    for (unsigned i = 0; i < 4; ++i) {
3252      bool isZero = !(NonZeros & (1 << i));
3253      if (isZero)
3254        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3255      else
3256        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3257    }
3258
3259    for (unsigned i = 0; i < 2; ++i) {
3260      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3261        default: break;
3262        case 0:
3263          V[i] = V[i*2];  // Must be a zero vector.
3264          break;
3265        case 1:
3266          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3267                             getMOVLMask(NumElems, DAG));
3268          break;
3269        case 2:
3270          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3271                             getMOVLMask(NumElems, DAG));
3272          break;
3273        case 3:
3274          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3275                             getUnpacklMask(NumElems, DAG));
3276          break;
3277      }
3278    }
3279
3280    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3281    MVT EVT = MaskVT.getVectorElementType();
3282    SmallVector<SDOperand, 8> MaskVec;
3283    bool Reverse = (NonZeros & 0x3) == 2;
3284    for (unsigned i = 0; i < 2; ++i)
3285      if (Reverse)
3286        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3287      else
3288        MaskVec.push_back(DAG.getConstant(i, EVT));
3289    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3290    for (unsigned i = 0; i < 2; ++i)
3291      if (Reverse)
3292        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3293      else
3294        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3295    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3296                                     &MaskVec[0], MaskVec.size());
3297    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3298  }
3299
3300  if (Values.size() > 2) {
3301    // Expand into a number of unpckl*.
3302    // e.g. for v4f32
3303    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3304    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3305    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3306    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3307    for (unsigned i = 0; i < NumElems; ++i)
3308      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3309    NumElems >>= 1;
3310    while (NumElems != 0) {
3311      for (unsigned i = 0; i < NumElems; ++i)
3312        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3313                           UnpckMask);
3314      NumElems >>= 1;
3315    }
3316    return V[0];
3317  }
3318
3319  return SDOperand();
3320}
3321
3322static
3323SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3324                                   SDOperand PermMask, SelectionDAG &DAG,
3325                                   TargetLowering &TLI) {
3326  SDOperand NewV;
3327  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3328  MVT MaskEVT = MaskVT.getVectorElementType();
3329  MVT PtrVT = TLI.getPointerTy();
3330  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3331                                     PermMask.Val->op_end());
3332
3333  // First record which half of which vector the low elements come from.
3334  SmallVector<unsigned, 4> LowQuad(4);
3335  for (unsigned i = 0; i < 4; ++i) {
3336    SDOperand Elt = MaskElts[i];
3337    if (Elt.getOpcode() == ISD::UNDEF)
3338      continue;
3339    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3340    int QuadIdx = EltIdx / 4;
3341    ++LowQuad[QuadIdx];
3342  }
3343  int BestLowQuad = -1;
3344  unsigned MaxQuad = 1;
3345  for (unsigned i = 0; i < 4; ++i) {
3346    if (LowQuad[i] > MaxQuad) {
3347      BestLowQuad = i;
3348      MaxQuad = LowQuad[i];
3349    }
3350  }
3351
3352  // Record which half of which vector the high elements come from.
3353  SmallVector<unsigned, 4> HighQuad(4);
3354  for (unsigned i = 4; i < 8; ++i) {
3355    SDOperand Elt = MaskElts[i];
3356    if (Elt.getOpcode() == ISD::UNDEF)
3357      continue;
3358    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3359    int QuadIdx = EltIdx / 4;
3360    ++HighQuad[QuadIdx];
3361  }
3362  int BestHighQuad = -1;
3363  MaxQuad = 1;
3364  for (unsigned i = 0; i < 4; ++i) {
3365    if (HighQuad[i] > MaxQuad) {
3366      BestHighQuad = i;
3367      MaxQuad = HighQuad[i];
3368    }
3369  }
3370
3371  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3372  if (BestLowQuad != -1 || BestHighQuad != -1) {
3373    // First sort the 4 chunks in order using shufpd.
3374    SmallVector<SDOperand, 8> MaskVec;
3375    if (BestLowQuad != -1)
3376      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3377    else
3378      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3379    if (BestHighQuad != -1)
3380      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3381    else
3382      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3383    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3384    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3385                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3386                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3387    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3388
3389    // Now sort high and low parts separately.
3390    BitVector InOrder(8);
3391    if (BestLowQuad != -1) {
3392      // Sort lower half in order using PSHUFLW.
3393      MaskVec.clear();
3394      bool AnyOutOrder = false;
3395      for (unsigned i = 0; i != 4; ++i) {
3396        SDOperand Elt = MaskElts[i];
3397        if (Elt.getOpcode() == ISD::UNDEF) {
3398          MaskVec.push_back(Elt);
3399          InOrder.set(i);
3400        } else {
3401          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3402          if (EltIdx != i)
3403            AnyOutOrder = true;
3404          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3405          // If this element is in the right place after this shuffle, then
3406          // remember it.
3407          if ((int)(EltIdx / 4) == BestLowQuad)
3408            InOrder.set(i);
3409        }
3410      }
3411      if (AnyOutOrder) {
3412        for (unsigned i = 4; i != 8; ++i)
3413          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3414        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3415        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3416      }
3417    }
3418
3419    if (BestHighQuad != -1) {
3420      // Sort high half in order using PSHUFHW if possible.
3421      MaskVec.clear();
3422      for (unsigned i = 0; i != 4; ++i)
3423        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3424      bool AnyOutOrder = false;
3425      for (unsigned i = 4; i != 8; ++i) {
3426        SDOperand Elt = MaskElts[i];
3427        if (Elt.getOpcode() == ISD::UNDEF) {
3428          MaskVec.push_back(Elt);
3429          InOrder.set(i);
3430        } else {
3431          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3432          if (EltIdx != i)
3433            AnyOutOrder = true;
3434          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3435          // If this element is in the right place after this shuffle, then
3436          // remember it.
3437          if ((int)(EltIdx / 4) == BestHighQuad)
3438            InOrder.set(i);
3439        }
3440      }
3441      if (AnyOutOrder) {
3442        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3443        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3444      }
3445    }
3446
3447    // The other elements are put in the right place using pextrw and pinsrw.
3448    for (unsigned i = 0; i != 8; ++i) {
3449      if (InOrder[i])
3450        continue;
3451      SDOperand Elt = MaskElts[i];
3452      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3453      SDOperand ExtOp = (EltIdx < 8)
3454        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3455                      DAG.getConstant(EltIdx, PtrVT))
3456        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3457                      DAG.getConstant(EltIdx - 8, PtrVT));
3458      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3459                         DAG.getConstant(i, PtrVT));
3460    }
3461    return NewV;
3462  }
3463
3464  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3465  ///as few as possible.
3466  // First, let's find out how many elements are already in the right order.
3467  unsigned V1InOrder = 0;
3468  unsigned V1FromV1 = 0;
3469  unsigned V2InOrder = 0;
3470  unsigned V2FromV2 = 0;
3471  SmallVector<SDOperand, 8> V1Elts;
3472  SmallVector<SDOperand, 8> V2Elts;
3473  for (unsigned i = 0; i < 8; ++i) {
3474    SDOperand Elt = MaskElts[i];
3475    if (Elt.getOpcode() == ISD::UNDEF) {
3476      V1Elts.push_back(Elt);
3477      V2Elts.push_back(Elt);
3478      ++V1InOrder;
3479      ++V2InOrder;
3480      continue;
3481    }
3482    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3483    if (EltIdx == i) {
3484      V1Elts.push_back(Elt);
3485      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3486      ++V1InOrder;
3487    } else if (EltIdx == i+8) {
3488      V1Elts.push_back(Elt);
3489      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3490      ++V2InOrder;
3491    } else if (EltIdx < 8) {
3492      V1Elts.push_back(Elt);
3493      ++V1FromV1;
3494    } else {
3495      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3496      ++V2FromV2;
3497    }
3498  }
3499
3500  if (V2InOrder > V1InOrder) {
3501    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3502    std::swap(V1, V2);
3503    std::swap(V1Elts, V2Elts);
3504    std::swap(V1FromV1, V2FromV2);
3505  }
3506
3507  if ((V1FromV1 + V1InOrder) != 8) {
3508    // Some elements are from V2.
3509    if (V1FromV1) {
3510      // If there are elements that are from V1 but out of place,
3511      // then first sort them in place
3512      SmallVector<SDOperand, 8> MaskVec;
3513      for (unsigned i = 0; i < 8; ++i) {
3514        SDOperand Elt = V1Elts[i];
3515        if (Elt.getOpcode() == ISD::UNDEF) {
3516          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3517          continue;
3518        }
3519        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3520        if (EltIdx >= 8)
3521          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3522        else
3523          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3524      }
3525      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3526      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3527    }
3528
3529    NewV = V1;
3530    for (unsigned i = 0; i < 8; ++i) {
3531      SDOperand Elt = V1Elts[i];
3532      if (Elt.getOpcode() == ISD::UNDEF)
3533        continue;
3534      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3535      if (EltIdx < 8)
3536        continue;
3537      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3538                                    DAG.getConstant(EltIdx - 8, PtrVT));
3539      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3540                         DAG.getConstant(i, PtrVT));
3541    }
3542    return NewV;
3543  } else {
3544    // All elements are from V1.
3545    NewV = V1;
3546    for (unsigned i = 0; i < 8; ++i) {
3547      SDOperand Elt = V1Elts[i];
3548      if (Elt.getOpcode() == ISD::UNDEF)
3549        continue;
3550      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3551      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3552                                    DAG.getConstant(EltIdx, PtrVT));
3553      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3554                         DAG.getConstant(i, PtrVT));
3555    }
3556    return NewV;
3557  }
3558}
3559
3560/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3561/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3562/// done when every pair / quad of shuffle mask elements point to elements in
3563/// the right sequence. e.g.
3564/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3565static
3566SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3567                                MVT VT,
3568                                SDOperand PermMask, SelectionDAG &DAG,
3569                                TargetLowering &TLI) {
3570  unsigned NumElems = PermMask.getNumOperands();
3571  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3572  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3573  MVT MaskEltVT = MaskVT.getVectorElementType();
3574  MVT NewVT = MaskVT;
3575  switch (VT.getSimpleVT()) {
3576  default: assert(false && "Unexpected!");
3577  case MVT::v4f32: NewVT = MVT::v2f64; break;
3578  case MVT::v4i32: NewVT = MVT::v2i64; break;
3579  case MVT::v8i16: NewVT = MVT::v4i32; break;
3580  case MVT::v16i8: NewVT = MVT::v4i32; break;
3581  }
3582
3583  if (NewWidth == 2) {
3584    if (VT.isInteger())
3585      NewVT = MVT::v2i64;
3586    else
3587      NewVT = MVT::v2f64;
3588  }
3589  unsigned Scale = NumElems / NewWidth;
3590  SmallVector<SDOperand, 8> MaskVec;
3591  for (unsigned i = 0; i < NumElems; i += Scale) {
3592    unsigned StartIdx = ~0U;
3593    for (unsigned j = 0; j < Scale; ++j) {
3594      SDOperand Elt = PermMask.getOperand(i+j);
3595      if (Elt.getOpcode() == ISD::UNDEF)
3596        continue;
3597      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3598      if (StartIdx == ~0U)
3599        StartIdx = EltIdx - (EltIdx % Scale);
3600      if (EltIdx != StartIdx + j)
3601        return SDOperand();
3602    }
3603    if (StartIdx == ~0U)
3604      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3605    else
3606      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3607  }
3608
3609  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3610  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3611  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3612                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3613                                 &MaskVec[0], MaskVec.size()));
3614}
3615
3616/// getVZextMovL - Return a zero-extending vector move low node.
3617///
3618static SDOperand getVZextMovL(MVT VT, MVT OpVT,
3619                              SDOperand SrcOp, SelectionDAG &DAG,
3620                              const X86Subtarget *Subtarget) {
3621  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3622    LoadSDNode *LD = NULL;
3623    if (!isScalarLoadToVector(SrcOp.Val, &LD))
3624      LD = dyn_cast<LoadSDNode>(SrcOp);
3625    if (!LD) {
3626      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3627      // instead.
3628      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3629      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3630          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3631          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3632          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3633        // PR2108
3634        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3635        return DAG.getNode(ISD::BIT_CONVERT, VT,
3636                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3637                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3638                                                   SrcOp.getOperand(0).getOperand(0))));
3639      }
3640    }
3641  }
3642
3643  return DAG.getNode(ISD::BIT_CONVERT, VT,
3644                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3645                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3646}
3647
3648/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3649/// shuffles.
3650static SDOperand
3651LowerVECTOR_SHUFFLE_4wide(SDOperand V1, SDOperand V2,
3652                          SDOperand PermMask, MVT VT, SelectionDAG &DAG) {
3653  MVT MaskVT = PermMask.getValueType();
3654  MVT MaskEVT = MaskVT.getVectorElementType();
3655  SmallVector<std::pair<int, int>, 8> Locs;
3656  Locs.reserve(4);
3657  SmallVector<SDOperand, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3658  unsigned NumHi = 0;
3659  unsigned NumLo = 0;
3660  for (unsigned i = 0; i != 4; ++i) {
3661    SDOperand Elt = PermMask.getOperand(i);
3662    if (Elt.getOpcode() == ISD::UNDEF) {
3663      Locs[i] = std::make_pair(-1, -1);
3664    } else {
3665      unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3666      if (Val < 4) {
3667        Locs[i] = std::make_pair(0, NumLo);
3668        Mask1[NumLo] = Elt;
3669        NumLo++;
3670      } else {
3671        Locs[i] = std::make_pair(1, NumHi);
3672        if (2+NumHi < 4)
3673          Mask1[2+NumHi] = Elt;
3674        NumHi++;
3675      }
3676    }
3677  }
3678
3679  if (NumLo <= 2 && NumHi <= 2) {
3680    // If no more than two elements come from either vector. This can be
3681    // implemented with two shuffles. First shuffle gather the elements.
3682    // The second shuffle, which takes the first shuffle as both of its
3683    // vector operands, put the elements into the right order.
3684    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3685                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3686                                 &Mask1[0], Mask1.size()));
3687
3688    SmallVector<SDOperand, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3689    for (unsigned i = 0; i != 4; ++i) {
3690      if (Locs[i].first == -1)
3691        continue;
3692      else {
3693        unsigned Idx = (i < 2) ? 0 : 4;
3694        Idx += Locs[i].first * 2 + Locs[i].second;
3695        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3696      }
3697    }
3698
3699    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3700                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3701                                   &Mask2[0], Mask2.size()));
3702  } else if (NumLo == 3 || NumHi == 3) {
3703    // Otherwise, we must have three elements from one vector, call it X, and
3704    // one element from the other, call it Y.  First, use a shufps to build an
3705    // intermediate vector with the one element from Y and the element from X
3706    // that will be in the same half in the final destination (the indexes don't
3707    // matter). Then, use a shufps to build the final vector, taking the half
3708    // containing the element from Y from the intermediate, and the other half
3709    // from X.
3710    if (NumHi == 3) {
3711      // Normalize it so the 3 elements come from V1.
3712      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3713      std::swap(V1, V2);
3714    }
3715
3716    // Find the element from V2.
3717    unsigned HiIndex;
3718    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3719      SDOperand Elt = PermMask.getOperand(HiIndex);
3720      if (Elt.getOpcode() == ISD::UNDEF)
3721        continue;
3722      unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3723      if (Val >= 4)
3724        break;
3725    }
3726
3727    Mask1[0] = PermMask.getOperand(HiIndex);
3728    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3729    Mask1[2] = PermMask.getOperand(HiIndex^1);
3730    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3731    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3732                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3733
3734    if (HiIndex >= 2) {
3735      Mask1[0] = PermMask.getOperand(0);
3736      Mask1[1] = PermMask.getOperand(1);
3737      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3738      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3739      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3740                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3741    } else {
3742      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3743      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3744      Mask1[2] = PermMask.getOperand(2);
3745      Mask1[3] = PermMask.getOperand(3);
3746      if (Mask1[2].getOpcode() != ISD::UNDEF)
3747        Mask1[2] = DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getValue()+4,
3748                                   MaskEVT);
3749      if (Mask1[3].getOpcode() != ISD::UNDEF)
3750        Mask1[3] = DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getValue()+4,
3751                                   MaskEVT);
3752      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3753                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3754    }
3755  }
3756
3757  // Break it into (shuffle shuffle_hi, shuffle_lo).
3758  Locs.clear();
3759  SmallVector<SDOperand,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3760  SmallVector<SDOperand,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3761  SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3762  unsigned MaskIdx = 0;
3763  unsigned LoIdx = 0;
3764  unsigned HiIdx = 2;
3765  for (unsigned i = 0; i != 4; ++i) {
3766    if (i == 2) {
3767      MaskPtr = &HiMask;
3768      MaskIdx = 1;
3769      LoIdx = 0;
3770      HiIdx = 2;
3771    }
3772    SDOperand Elt = PermMask.getOperand(i);
3773    if (Elt.getOpcode() == ISD::UNDEF) {
3774      Locs[i] = std::make_pair(-1, -1);
3775    } else if (cast<ConstantSDNode>(Elt)->getValue() < 4) {
3776      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3777      (*MaskPtr)[LoIdx] = Elt;
3778      LoIdx++;
3779    } else {
3780      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3781      (*MaskPtr)[HiIdx] = Elt;
3782      HiIdx++;
3783    }
3784  }
3785
3786  SDOperand LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3787                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3788                                                &LoMask[0], LoMask.size()));
3789  SDOperand HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3790                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3791                                                &HiMask[0], HiMask.size()));
3792  SmallVector<SDOperand, 8> MaskOps;
3793  for (unsigned i = 0; i != 4; ++i) {
3794    if (Locs[i].first == -1) {
3795      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3796    } else {
3797      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3798      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3799    }
3800  }
3801  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3802                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3803                                 &MaskOps[0], MaskOps.size()));
3804}
3805
3806SDOperand
3807X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3808  SDOperand V1 = Op.getOperand(0);
3809  SDOperand V2 = Op.getOperand(1);
3810  SDOperand PermMask = Op.getOperand(2);
3811  MVT VT = Op.getValueType();
3812  unsigned NumElems = PermMask.getNumOperands();
3813  bool isMMX = VT.getSizeInBits() == 64;
3814  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3815  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3816  bool V1IsSplat = false;
3817  bool V2IsSplat = false;
3818
3819  if (isUndefShuffle(Op.Val))
3820    return DAG.getNode(ISD::UNDEF, VT);
3821
3822  if (isZeroShuffle(Op.Val))
3823    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3824
3825  if (isIdentityMask(PermMask.Val))
3826    return V1;
3827  else if (isIdentityMask(PermMask.Val, true))
3828    return V2;
3829
3830  if (isSplatMask(PermMask.Val)) {
3831    if (isMMX || NumElems < 4) return Op;
3832    // Promote it to a v4{if}32 splat.
3833    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3834  }
3835
3836  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3837  // do it!
3838  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3839    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3840    if (NewOp.Val)
3841      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3842  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3843    // FIXME: Figure out a cleaner way to do this.
3844    // Try to make use of movq to zero out the top part.
3845    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3846      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3847                                                 DAG, *this);
3848      if (NewOp.Val) {
3849        SDOperand NewV1 = NewOp.getOperand(0);
3850        SDOperand NewV2 = NewOp.getOperand(1);
3851        SDOperand NewMask = NewOp.getOperand(2);
3852        if (isCommutedMOVL(NewMask.Val, true, false)) {
3853          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3854          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
3855        }
3856      }
3857    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3858      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3859                                                DAG, *this);
3860      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3861        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3862                             DAG, Subtarget);
3863    }
3864  }
3865
3866  // Check if this can be converted into a logical shift.
3867  bool isLeft = false;
3868  unsigned ShAmt = 0;
3869  SDOperand ShVal;
3870  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
3871  if (isShift && ShVal.hasOneUse()) {
3872    // If the shifted value has multiple uses, it may be cheaper to use
3873    // v_set0 + movlhps or movhlps, etc.
3874    MVT EVT = VT.getVectorElementType();
3875    ShAmt *= EVT.getSizeInBits();
3876    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3877  }
3878
3879  if (X86::isMOVLMask(PermMask.Val)) {
3880    if (V1IsUndef)
3881      return V2;
3882    if (ISD::isBuildVectorAllZeros(V1.Val))
3883      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
3884    if (!isMMX)
3885      return Op;
3886  }
3887
3888  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.Val) ||
3889                 X86::isMOVSLDUPMask(PermMask.Val) ||
3890                 X86::isMOVHLPSMask(PermMask.Val) ||
3891                 X86::isMOVHPMask(PermMask.Val) ||
3892                 X86::isMOVLPMask(PermMask.Val)))
3893    return Op;
3894
3895  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3896      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3897    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3898
3899  if (isShift) {
3900    // No better options. Use a vshl / vsrl.
3901    MVT EVT = VT.getVectorElementType();
3902    ShAmt *= EVT.getSizeInBits();
3903    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
3904  }
3905
3906  bool Commuted = false;
3907  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3908  // 1,1,1,1 -> v8i16 though.
3909  V1IsSplat = isSplatVector(V1.Val);
3910  V2IsSplat = isSplatVector(V2.Val);
3911
3912  // Canonicalize the splat or undef, if present, to be on the RHS.
3913  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3914    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3915    std::swap(V1IsSplat, V2IsSplat);
3916    std::swap(V1IsUndef, V2IsUndef);
3917    Commuted = true;
3918  }
3919
3920  // FIXME: Figure out a cleaner way to do this.
3921  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3922    if (V2IsUndef) return V1;
3923    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3924    if (V2IsSplat) {
3925      // V2 is a splat, so the mask may be malformed. That is, it may point
3926      // to any V2 element. The instruction selectior won't like this. Get
3927      // a corrected mask and commute to form a proper MOVS{S|D}.
3928      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3929      if (NewMask.Val != PermMask.Val)
3930        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3931    }
3932    return Op;
3933  }
3934
3935  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3936      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3937      X86::isUNPCKLMask(PermMask.Val) ||
3938      X86::isUNPCKHMask(PermMask.Val))
3939    return Op;
3940
3941  if (V2IsSplat) {
3942    // Normalize mask so all entries that point to V2 points to its first
3943    // element then try to match unpck{h|l} again. If match, return a
3944    // new vector_shuffle with the corrected mask.
3945    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3946    if (NewMask.Val != PermMask.Val) {
3947      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3948        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3949        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3950      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3951        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3952        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3953      }
3954    }
3955  }
3956
3957  // Normalize the node to match x86 shuffle ops if needed
3958  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3959      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3960
3961  if (Commuted) {
3962    // Commute is back and try unpck* again.
3963    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3964    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3965        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3966        X86::isUNPCKLMask(PermMask.Val) ||
3967        X86::isUNPCKHMask(PermMask.Val))
3968      return Op;
3969  }
3970
3971  // Try PSHUF* first, then SHUFP*.
3972  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
3973  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3974  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.Val)) {
3975    if (V2.getOpcode() != ISD::UNDEF)
3976      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3977                         DAG.getNode(ISD::UNDEF, VT), PermMask);
3978    return Op;
3979  }
3980
3981  if (!isMMX) {
3982    if (Subtarget->hasSSE2() &&
3983        (X86::isPSHUFDMask(PermMask.Val) ||
3984         X86::isPSHUFHWMask(PermMask.Val) ||
3985         X86::isPSHUFLWMask(PermMask.Val))) {
3986      MVT RVT = VT;
3987      if (VT == MVT::v4f32) {
3988        RVT = MVT::v4i32;
3989        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
3990                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
3991                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
3992      } else if (V2.getOpcode() != ISD::UNDEF)
3993        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
3994                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
3995      if (RVT != VT)
3996        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
3997      return Op;
3998    }
3999
4000    // Binary or unary shufps.
4001    if (X86::isSHUFPMask(PermMask.Val) ||
4002        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.Val)))
4003      return Op;
4004  }
4005
4006  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4007  if (VT == MVT::v8i16) {
4008    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4009    if (NewOp.Val)
4010      return NewOp;
4011  }
4012
4013  // Handle all 4 wide cases with a number of shuffles except for MMX.
4014  if (NumElems == 4 && !isMMX)
4015    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4016
4017  return SDOperand();
4018}
4019
4020SDOperand
4021X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
4022                                                SelectionDAG &DAG) {
4023  MVT VT = Op.getValueType();
4024  if (VT.getSizeInBits() == 8) {
4025    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4026                                    Op.getOperand(0), Op.getOperand(1));
4027    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4028                                    DAG.getValueType(VT));
4029    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4030  } else if (VT.getSizeInBits() == 16) {
4031    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4032                                    Op.getOperand(0), Op.getOperand(1));
4033    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4034                                    DAG.getValueType(VT));
4035    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4036  } else if (VT == MVT::f32) {
4037    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4038    // the result back to FR32 register. It's only worth matching if the
4039    // result has a single use which is a store or a bitcast to i32.
4040    if (!Op.hasOneUse())
4041      return SDOperand();
4042    SDNode *User = *Op.Val->use_begin();
4043    if (User->getOpcode() != ISD::STORE &&
4044        (User->getOpcode() != ISD::BIT_CONVERT ||
4045         User->getValueType(0) != MVT::i32))
4046      return SDOperand();
4047    SDOperand Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4048                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4049                                    Op.getOperand(1));
4050    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4051  }
4052  return SDOperand();
4053}
4054
4055
4056SDOperand
4057X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
4058  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4059    return SDOperand();
4060
4061  if (Subtarget->hasSSE41()) {
4062    SDOperand Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4063    if (Res.Val)
4064      return Res;
4065  }
4066
4067  MVT VT = Op.getValueType();
4068  // TODO: handle v16i8.
4069  if (VT.getSizeInBits() == 16) {
4070    SDOperand Vec = Op.getOperand(0);
4071    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4072    if (Idx == 0)
4073      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4074                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4075                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4076                                     Op.getOperand(1)));
4077    // Transform it so it match pextrw which produces a 32-bit result.
4078    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4079    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4080                                    Op.getOperand(0), Op.getOperand(1));
4081    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4082                                    DAG.getValueType(VT));
4083    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4084  } else if (VT.getSizeInBits() == 32) {
4085    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4086    if (Idx == 0)
4087      return Op;
4088    // SHUFPS the element to the lowest double word, then movss.
4089    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4090    SmallVector<SDOperand, 8> IdxVec;
4091    IdxVec.
4092      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4093    IdxVec.
4094      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4095    IdxVec.
4096      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4097    IdxVec.
4098      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4099    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4100                                 &IdxVec[0], IdxVec.size());
4101    SDOperand Vec = Op.getOperand(0);
4102    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4103                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4104    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4105                       DAG.getIntPtrConstant(0));
4106  } else if (VT.getSizeInBits() == 64) {
4107    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4108    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4109    //        to match extract_elt for f64.
4110    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4111    if (Idx == 0)
4112      return Op;
4113
4114    // UNPCKHPD the element to the lowest double word, then movsd.
4115    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4116    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4117    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4118    SmallVector<SDOperand, 8> IdxVec;
4119    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4120    IdxVec.
4121      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4122    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4123                                 &IdxVec[0], IdxVec.size());
4124    SDOperand Vec = Op.getOperand(0);
4125    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4126                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4127    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4128                       DAG.getIntPtrConstant(0));
4129  }
4130
4131  return SDOperand();
4132}
4133
4134SDOperand
4135X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
4136  MVT VT = Op.getValueType();
4137  MVT EVT = VT.getVectorElementType();
4138
4139  SDOperand N0 = Op.getOperand(0);
4140  SDOperand N1 = Op.getOperand(1);
4141  SDOperand N2 = Op.getOperand(2);
4142
4143  if ((EVT.getSizeInBits() == 8) || (EVT.getSizeInBits() == 16)) {
4144    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4145                                                  : X86ISD::PINSRW;
4146    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4147    // argument.
4148    if (N1.getValueType() != MVT::i32)
4149      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4150    if (N2.getValueType() != MVT::i32)
4151      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
4152    return DAG.getNode(Opc, VT, N0, N1, N2);
4153  } else if (EVT == MVT::f32) {
4154    // Bits [7:6] of the constant are the source select.  This will always be
4155    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4156    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4157    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4158    // Bits [5:4] of the constant are the destination select.  This is the
4159    //  value of the incoming immediate.
4160    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4161    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4162    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
4163    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4164  }
4165  return SDOperand();
4166}
4167
4168SDOperand
4169X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
4170  MVT VT = Op.getValueType();
4171  MVT EVT = VT.getVectorElementType();
4172
4173  if (Subtarget->hasSSE41())
4174    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4175
4176  if (EVT == MVT::i8)
4177    return SDOperand();
4178
4179  SDOperand N0 = Op.getOperand(0);
4180  SDOperand N1 = Op.getOperand(1);
4181  SDOperand N2 = Op.getOperand(2);
4182
4183  if (EVT.getSizeInBits() == 16) {
4184    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4185    // as its second argument.
4186    if (N1.getValueType() != MVT::i32)
4187      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4188    if (N2.getValueType() != MVT::i32)
4189      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
4190    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4191  }
4192  return SDOperand();
4193}
4194
4195SDOperand
4196X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
4197  if (Op.getValueType() == MVT::v2f32)
4198    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4199                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4200                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4201                                               Op.getOperand(0))));
4202
4203  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4204  MVT VT = MVT::v2i32;
4205  switch (Op.getValueType().getSimpleVT()) {
4206  default: break;
4207  case MVT::v16i8:
4208  case MVT::v8i16:
4209    VT = MVT::v4i32;
4210    break;
4211  }
4212  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4213                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4214}
4215
4216// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4217// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4218// one of the above mentioned nodes. It has to be wrapped because otherwise
4219// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4220// be used to form addressing mode. These wrapped nodes will be selected
4221// into MOV32ri.
4222SDOperand
4223X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
4224  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4225  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
4226                                               getPointerTy(),
4227                                               CP->getAlignment());
4228  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4229  // With PIC, the address is actually $g + Offset.
4230  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4231      !Subtarget->isPICStyleRIPRel()) {
4232    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4233                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4234                         Result);
4235  }
4236
4237  return Result;
4238}
4239
4240SDOperand
4241X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4242  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4243  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4244  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4245  // With PIC, the address is actually $g + Offset.
4246  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4247      !Subtarget->isPICStyleRIPRel()) {
4248    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4249                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4250                         Result);
4251  }
4252
4253  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4254  // load the value at address GV, not the value of GV itself. This means that
4255  // the GlobalAddress must be in the base or index register of the address, not
4256  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4257  // The same applies for external symbols during PIC codegen
4258  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4259    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4260                         PseudoSourceValue::getGOT(), 0);
4261
4262  return Result;
4263}
4264
4265// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4266static SDOperand
4267LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4268                                const MVT PtrVT) {
4269  SDOperand InFlag;
4270  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4271                                     DAG.getNode(X86ISD::GlobalBaseReg,
4272                                                 PtrVT), InFlag);
4273  InFlag = Chain.getValue(1);
4274
4275  // emit leal symbol@TLSGD(,%ebx,1), %eax
4276  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4277  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4278                                             GA->getValueType(0),
4279                                             GA->getOffset());
4280  SDOperand Ops[] = { Chain,  TGA, InFlag };
4281  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4282  InFlag = Result.getValue(2);
4283  Chain = Result.getValue(1);
4284
4285  // call ___tls_get_addr. This function receives its argument in
4286  // the register EAX.
4287  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4288  InFlag = Chain.getValue(1);
4289
4290  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4291  SDOperand Ops1[] = { Chain,
4292                      DAG.getTargetExternalSymbol("___tls_get_addr",
4293                                                  PtrVT),
4294                      DAG.getRegister(X86::EAX, PtrVT),
4295                      DAG.getRegister(X86::EBX, PtrVT),
4296                      InFlag };
4297  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4298  InFlag = Chain.getValue(1);
4299
4300  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4301}
4302
4303// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4304static SDOperand
4305LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4306                                const MVT PtrVT) {
4307  SDOperand InFlag, Chain;
4308
4309  // emit leaq symbol@TLSGD(%rip), %rdi
4310  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4311  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4312                                             GA->getValueType(0),
4313                                             GA->getOffset());
4314  SDOperand Ops[]  = { DAG.getEntryNode(), TGA};
4315  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4316  Chain  = Result.getValue(1);
4317  InFlag = Result.getValue(2);
4318
4319  // call ___tls_get_addr. This function receives its argument in
4320  // the register RDI.
4321  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4322  InFlag = Chain.getValue(1);
4323
4324  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4325  SDOperand Ops1[] = { Chain,
4326                      DAG.getTargetExternalSymbol("___tls_get_addr",
4327                                                  PtrVT),
4328                      DAG.getRegister(X86::RDI, PtrVT),
4329                      InFlag };
4330  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4331  InFlag = Chain.getValue(1);
4332
4333  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4334}
4335
4336// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4337// "local exec" model.
4338static SDOperand LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4339                                     const MVT PtrVT) {
4340  // Get the Thread Pointer
4341  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4342  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4343  // exec)
4344  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4345                                             GA->getValueType(0),
4346                                             GA->getOffset());
4347  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4348
4349  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4350    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4351                         PseudoSourceValue::getGOT(), 0);
4352
4353  // The address of the thread local variable is the add of the thread
4354  // pointer with the offset of the variable.
4355  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4356}
4357
4358SDOperand
4359X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4360  // TODO: implement the "local dynamic" model
4361  // TODO: implement the "initial exec"model for pic executables
4362  assert(Subtarget->isTargetELF() &&
4363         "TLS not implemented for non-ELF targets");
4364  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4365  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4366  // otherwise use the "Local Exec"TLS Model
4367  if (Subtarget->is64Bit()) {
4368    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4369  } else {
4370    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4371      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4372    else
4373      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4374  }
4375}
4376
4377SDOperand
4378X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4379  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4380  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4381  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4382  // With PIC, the address is actually $g + Offset.
4383  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4384      !Subtarget->isPICStyleRIPRel()) {
4385    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4386                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4387                         Result);
4388  }
4389
4390  return Result;
4391}
4392
4393SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4394  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4395  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4396  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4397  // With PIC, the address is actually $g + Offset.
4398  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4399      !Subtarget->isPICStyleRIPRel()) {
4400    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4401                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4402                         Result);
4403  }
4404
4405  return Result;
4406}
4407
4408/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4409/// take a 2 x i32 value to shift plus a shift amount.
4410SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4411  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4412  MVT VT = Op.getValueType();
4413  unsigned VTBits = VT.getSizeInBits();
4414  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4415  SDOperand ShOpLo = Op.getOperand(0);
4416  SDOperand ShOpHi = Op.getOperand(1);
4417  SDOperand ShAmt  = Op.getOperand(2);
4418  SDOperand Tmp1 = isSRA ?
4419    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4420    DAG.getConstant(0, VT);
4421
4422  SDOperand Tmp2, Tmp3;
4423  if (Op.getOpcode() == ISD::SHL_PARTS) {
4424    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4425    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4426  } else {
4427    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4428    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4429  }
4430
4431  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4432                                  DAG.getConstant(VTBits, MVT::i8));
4433  SDOperand Cond = DAG.getNode(X86ISD::CMP, VT,
4434                               AndNode, DAG.getConstant(0, MVT::i8));
4435
4436  SDOperand Hi, Lo;
4437  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4438  SDOperand Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4439  SDOperand Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4440
4441  if (Op.getOpcode() == ISD::SHL_PARTS) {
4442    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4443    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4444  } else {
4445    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4446    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4447  }
4448
4449  SDOperand Ops[2] = { Lo, Hi };
4450  return DAG.getMergeValues(Ops, 2);
4451}
4452
4453SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4454  MVT SrcVT = Op.getOperand(0).getValueType();
4455  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4456         "Unknown SINT_TO_FP to lower!");
4457
4458  // These are really Legal; caller falls through into that case.
4459  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4460    return SDOperand();
4461  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4462      Subtarget->is64Bit())
4463    return SDOperand();
4464
4465  unsigned Size = SrcVT.getSizeInBits()/8;
4466  MachineFunction &MF = DAG.getMachineFunction();
4467  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4468  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4469  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4470                                 StackSlot,
4471                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4472
4473  // Build the FILD
4474  SDVTList Tys;
4475  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4476  if (useSSE)
4477    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4478  else
4479    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4480  SmallVector<SDOperand, 8> Ops;
4481  Ops.push_back(Chain);
4482  Ops.push_back(StackSlot);
4483  Ops.push_back(DAG.getValueType(SrcVT));
4484  SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4485                                 Tys, &Ops[0], Ops.size());
4486
4487  if (useSSE) {
4488    Chain = Result.getValue(1);
4489    SDOperand InFlag = Result.getValue(2);
4490
4491    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4492    // shouldn't be necessary except that RFP cannot be live across
4493    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4494    MachineFunction &MF = DAG.getMachineFunction();
4495    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4496    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4497    Tys = DAG.getVTList(MVT::Other);
4498    SmallVector<SDOperand, 8> Ops;
4499    Ops.push_back(Chain);
4500    Ops.push_back(Result);
4501    Ops.push_back(StackSlot);
4502    Ops.push_back(DAG.getValueType(Op.getValueType()));
4503    Ops.push_back(InFlag);
4504    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4505    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4506                         PseudoSourceValue::getFixedStack(SSFI), 0);
4507  }
4508
4509  return Result;
4510}
4511
4512std::pair<SDOperand,SDOperand> X86TargetLowering::
4513FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4514  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4515         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4516         "Unknown FP_TO_SINT to lower!");
4517
4518  // These are really Legal.
4519  if (Op.getValueType() == MVT::i32 &&
4520      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4521    return std::make_pair(SDOperand(), SDOperand());
4522  if (Subtarget->is64Bit() &&
4523      Op.getValueType() == MVT::i64 &&
4524      Op.getOperand(0).getValueType() != MVT::f80)
4525    return std::make_pair(SDOperand(), SDOperand());
4526
4527  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4528  // stack slot.
4529  MachineFunction &MF = DAG.getMachineFunction();
4530  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4531  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4532  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4533  unsigned Opc;
4534  switch (Op.getValueType().getSimpleVT()) {
4535  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4536  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4537  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4538  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4539  }
4540
4541  SDOperand Chain = DAG.getEntryNode();
4542  SDOperand Value = Op.getOperand(0);
4543  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4544    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4545    Chain = DAG.getStore(Chain, Value, StackSlot,
4546                         PseudoSourceValue::getFixedStack(SSFI), 0);
4547    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4548    SDOperand Ops[] = {
4549      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4550    };
4551    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4552    Chain = Value.getValue(1);
4553    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4554    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4555  }
4556
4557  // Build the FP_TO_INT*_IN_MEM
4558  SDOperand Ops[] = { Chain, Value, StackSlot };
4559  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4560
4561  return std::make_pair(FIST, StackSlot);
4562}
4563
4564SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4565  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4566  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4567  if (FIST.Val == 0) return SDOperand();
4568
4569  // Load the result.
4570  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4571}
4572
4573SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4574  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4575  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4576  if (FIST.Val == 0) return 0;
4577
4578  MVT VT = N->getValueType(0);
4579
4580  // Return a load from the stack slot.
4581  SDOperand Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0);
4582
4583  // Use MERGE_VALUES to drop the chain result value and get a node with one
4584  // result.  This requires turning off getMergeValues simplification, since
4585  // otherwise it will give us Res back.
4586  return DAG.getMergeValues(&Res, 1, false).Val;
4587}
4588
4589SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4590  MVT VT = Op.getValueType();
4591  MVT EltVT = VT;
4592  if (VT.isVector())
4593    EltVT = VT.getVectorElementType();
4594  std::vector<Constant*> CV;
4595  if (EltVT == MVT::f64) {
4596    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4597    CV.push_back(C);
4598    CV.push_back(C);
4599  } else {
4600    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4601    CV.push_back(C);
4602    CV.push_back(C);
4603    CV.push_back(C);
4604    CV.push_back(C);
4605  }
4606  Constant *C = ConstantVector::get(CV);
4607  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4608  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4609                               PseudoSourceValue::getConstantPool(), 0,
4610                               false, 16);
4611  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4612}
4613
4614SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4615  MVT VT = Op.getValueType();
4616  MVT EltVT = VT;
4617  unsigned EltNum = 1;
4618  if (VT.isVector()) {
4619    EltVT = VT.getVectorElementType();
4620    EltNum = VT.getVectorNumElements();
4621  }
4622  std::vector<Constant*> CV;
4623  if (EltVT == MVT::f64) {
4624    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4625    CV.push_back(C);
4626    CV.push_back(C);
4627  } else {
4628    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4629    CV.push_back(C);
4630    CV.push_back(C);
4631    CV.push_back(C);
4632    CV.push_back(C);
4633  }
4634  Constant *C = ConstantVector::get(CV);
4635  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4636  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4637                               PseudoSourceValue::getConstantPool(), 0,
4638                               false, 16);
4639  if (VT.isVector()) {
4640    return DAG.getNode(ISD::BIT_CONVERT, VT,
4641                       DAG.getNode(ISD::XOR, MVT::v2i64,
4642                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4643                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4644  } else {
4645    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4646  }
4647}
4648
4649SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4650  SDOperand Op0 = Op.getOperand(0);
4651  SDOperand Op1 = Op.getOperand(1);
4652  MVT VT = Op.getValueType();
4653  MVT SrcVT = Op1.getValueType();
4654
4655  // If second operand is smaller, extend it first.
4656  if (SrcVT.bitsLT(VT)) {
4657    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4658    SrcVT = VT;
4659  }
4660  // And if it is bigger, shrink it first.
4661  if (SrcVT.bitsGT(VT)) {
4662    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4663    SrcVT = VT;
4664  }
4665
4666  // At this point the operands and the result should have the same
4667  // type, and that won't be f80 since that is not custom lowered.
4668
4669  // First get the sign bit of second operand.
4670  std::vector<Constant*> CV;
4671  if (SrcVT == MVT::f64) {
4672    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4673    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4674  } else {
4675    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4676    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4677    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4678    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4679  }
4680  Constant *C = ConstantVector::get(CV);
4681  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4682  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4683                                PseudoSourceValue::getConstantPool(), 0,
4684                                false, 16);
4685  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4686
4687  // Shift sign bit right or left if the two operands have different types.
4688  if (SrcVT.bitsGT(VT)) {
4689    // Op0 is MVT::f32, Op1 is MVT::f64.
4690    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4691    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4692                          DAG.getConstant(32, MVT::i32));
4693    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4694    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4695                          DAG.getIntPtrConstant(0));
4696  }
4697
4698  // Clear first operand sign bit.
4699  CV.clear();
4700  if (VT == MVT::f64) {
4701    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4702    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4703  } else {
4704    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4705    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4706    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4707    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4708  }
4709  C = ConstantVector::get(CV);
4710  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4711  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4712                                PseudoSourceValue::getConstantPool(), 0,
4713                                false, 16);
4714  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4715
4716  // Or the value with the sign bit.
4717  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4718}
4719
4720SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4721  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4722  SDOperand Cond;
4723  SDOperand Op0 = Op.getOperand(0);
4724  SDOperand Op1 = Op.getOperand(1);
4725  SDOperand CC = Op.getOperand(2);
4726  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4727  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4728  unsigned X86CC;
4729
4730  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4731                     Op0, Op1, DAG)) {
4732    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4733    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4734                       DAG.getConstant(X86CC, MVT::i8), Cond);
4735  }
4736
4737  assert(isFP && "Illegal integer SetCC!");
4738
4739  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4740  switch (SetCCOpcode) {
4741  default: assert(false && "Illegal floating point SetCC!");
4742  case ISD::SETOEQ: {  // !PF & ZF
4743    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4744                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4745    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4746                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4747    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4748  }
4749  case ISD::SETUNE: {  // PF | !ZF
4750    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4751                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4752    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4753                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4754    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4755  }
4756  }
4757}
4758
4759SDOperand X86TargetLowering::LowerVSETCC(SDOperand Op, SelectionDAG &DAG) {
4760  SDOperand Cond;
4761  SDOperand Op0 = Op.getOperand(0);
4762  SDOperand Op1 = Op.getOperand(1);
4763  SDOperand CC = Op.getOperand(2);
4764  MVT VT = Op.getValueType();
4765  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4766  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
4767
4768  if (isFP) {
4769    unsigned SSECC = 8;
4770    unsigned Opc = Op0.getValueType() == MVT::v4f32 ? X86ISD::CMPPS :
4771                                                      X86ISD::CMPPD;
4772    bool Swap = false;
4773
4774    switch (SetCCOpcode) {
4775    default: break;
4776    case ISD::SETOEQ:
4777    case ISD::SETEQ:  SSECC = 0; break;
4778    case ISD::SETOGT:
4779    case ISD::SETGT: Swap = true; // Fallthrough
4780    case ISD::SETLT:
4781    case ISD::SETOLT: SSECC = 1; break;
4782    case ISD::SETOGE:
4783    case ISD::SETGE: Swap = true; // Fallthrough
4784    case ISD::SETLE:
4785    case ISD::SETOLE: SSECC = 2; break;
4786    case ISD::SETUO:  SSECC = 3; break;
4787    case ISD::SETUNE:
4788    case ISD::SETNE:  SSECC = 4; break;
4789    case ISD::SETULE: Swap = true;
4790    case ISD::SETUGE: SSECC = 5; break;
4791    case ISD::SETULT: Swap = true;
4792    case ISD::SETUGT: SSECC = 6; break;
4793    case ISD::SETO:   SSECC = 7; break;
4794    }
4795    if (Swap)
4796      std::swap(Op0, Op1);
4797
4798    // In the two special cases we can't handle, emit two comparisons.
4799    if (SSECC == 8) {
4800      if (SetCCOpcode == ISD::SETUEQ) {
4801        SDOperand UNORD, EQ;
4802        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
4803        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
4804        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
4805      }
4806      else if (SetCCOpcode == ISD::SETONE) {
4807        SDOperand ORD, NEQ;
4808        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
4809        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
4810        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
4811      }
4812      assert(0 && "Illegal FP comparison");
4813    }
4814    // Handle all other FP comparisons here.
4815    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
4816  }
4817
4818  // We are handling one of the integer comparisons here.  Since SSE only has
4819  // GT and EQ comparisons for integer, swapping operands and multiple
4820  // operations may be required for some comparisons.
4821  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
4822  bool Swap = false, Invert = false, FlipSigns = false;
4823
4824  switch (VT.getSimpleVT()) {
4825  default: break;
4826  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
4827  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
4828  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
4829  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
4830  }
4831
4832  switch (SetCCOpcode) {
4833  default: break;
4834  case ISD::SETNE:  Invert = true;
4835  case ISD::SETEQ:  Opc = EQOpc; break;
4836  case ISD::SETLT:  Swap = true;
4837  case ISD::SETGT:  Opc = GTOpc; break;
4838  case ISD::SETGE:  Swap = true;
4839  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
4840  case ISD::SETULT: Swap = true;
4841  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
4842  case ISD::SETUGE: Swap = true;
4843  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
4844  }
4845  if (Swap)
4846    std::swap(Op0, Op1);
4847
4848  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
4849  // bits of the inputs before performing those operations.
4850  if (FlipSigns) {
4851    MVT EltVT = VT.getVectorElementType();
4852    SDOperand SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
4853    std::vector<SDOperand> SignBits(VT.getVectorNumElements(), SignBit);
4854    SDOperand SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
4855                                    SignBits.size());
4856    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
4857    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
4858  }
4859
4860  SDOperand Result = DAG.getNode(Opc, VT, Op0, Op1);
4861
4862  // If the logical-not of the result is required, perform that now.
4863  if (Invert) {
4864    MVT EltVT = VT.getVectorElementType();
4865    SDOperand NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
4866    std::vector<SDOperand> NegOnes(VT.getVectorNumElements(), NegOne);
4867    SDOperand NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
4868                                    NegOnes.size());
4869    Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
4870  }
4871  return Result;
4872}
4873
4874SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4875  bool addTest = true;
4876  SDOperand Cond  = Op.getOperand(0);
4877  SDOperand CC;
4878
4879  if (Cond.getOpcode() == ISD::SETCC)
4880    Cond = LowerSETCC(Cond, DAG);
4881
4882  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4883  // setting operand in place of the X86ISD::SETCC.
4884  if (Cond.getOpcode() == X86ISD::SETCC) {
4885    CC = Cond.getOperand(0);
4886
4887    SDOperand Cmp = Cond.getOperand(1);
4888    unsigned Opc = Cmp.getOpcode();
4889    MVT VT = Op.getValueType();
4890
4891    bool IllegalFPCMov = false;
4892    if (VT.isFloatingPoint() && !VT.isVector() &&
4893        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4894      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4895
4896    if ((Opc == X86ISD::CMP ||
4897         Opc == X86ISD::COMI ||
4898         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4899      Cond = Cmp;
4900      addTest = false;
4901    }
4902  }
4903
4904  if (addTest) {
4905    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4906    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4907  }
4908
4909  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4910                                                    MVT::Flag);
4911  SmallVector<SDOperand, 4> Ops;
4912  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4913  // condition is true.
4914  Ops.push_back(Op.getOperand(2));
4915  Ops.push_back(Op.getOperand(1));
4916  Ops.push_back(CC);
4917  Ops.push_back(Cond);
4918  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4919}
4920
4921SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4922  bool addTest = true;
4923  SDOperand Chain = Op.getOperand(0);
4924  SDOperand Cond  = Op.getOperand(1);
4925  SDOperand Dest  = Op.getOperand(2);
4926  SDOperand CC;
4927
4928  if (Cond.getOpcode() == ISD::SETCC)
4929    Cond = LowerSETCC(Cond, DAG);
4930
4931  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4932  // setting operand in place of the X86ISD::SETCC.
4933  if (Cond.getOpcode() == X86ISD::SETCC) {
4934    CC = Cond.getOperand(0);
4935
4936    SDOperand Cmp = Cond.getOperand(1);
4937    unsigned Opc = Cmp.getOpcode();
4938    if (Opc == X86ISD::CMP ||
4939        Opc == X86ISD::COMI ||
4940        Opc == X86ISD::UCOMI) {
4941      Cond = Cmp;
4942      addTest = false;
4943    }
4944  }
4945
4946  if (addTest) {
4947    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4948    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4949  }
4950  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4951                     Chain, Op.getOperand(2), CC, Cond);
4952}
4953
4954
4955// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4956// Calls to _alloca is needed to probe the stack when allocating more than 4k
4957// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4958// that the guard pages used by the OS virtual memory manager are allocated in
4959// correct sequence.
4960SDOperand
4961X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4962                                           SelectionDAG &DAG) {
4963  assert(Subtarget->isTargetCygMing() &&
4964         "This should be used only on Cygwin/Mingw targets");
4965
4966  // Get the inputs.
4967  SDOperand Chain = Op.getOperand(0);
4968  SDOperand Size  = Op.getOperand(1);
4969  // FIXME: Ensure alignment here
4970
4971  SDOperand Flag;
4972
4973  MVT IntPtr = getPointerTy();
4974  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4975
4976  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0));
4977
4978  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4979  Flag = Chain.getValue(1);
4980
4981  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4982  SDOperand Ops[] = { Chain,
4983                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4984                      DAG.getRegister(X86::EAX, IntPtr),
4985                      DAG.getRegister(X86StackPtr, SPTy),
4986                      Flag };
4987  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
4988  Flag = Chain.getValue(1);
4989
4990  Chain = DAG.getCALLSEQ_END(Chain,
4991                             DAG.getIntPtrConstant(0),
4992                             DAG.getIntPtrConstant(0),
4993                             Flag);
4994
4995  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4996
4997  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4998  return DAG.getMergeValues(Ops1, 2);
4999}
5000
5001SDOperand
5002X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5003                                           SDOperand Chain,
5004                                           SDOperand Dst, SDOperand Src,
5005                                           SDOperand Size, unsigned Align,
5006                                        const Value *DstSV, uint64_t DstSVOff) {
5007  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5008
5009  /// If not DWORD aligned or size is more than the threshold, call the library.
5010  /// The libc version is likely to be faster for these cases. It can use the
5011  /// address value and run time information about the CPU.
5012  if ((Align & 3) == 0 ||
5013      !ConstantSize ||
5014      ConstantSize->getValue() > getSubtarget()->getMaxInlineSizeThreshold()) {
5015    SDOperand InFlag(0, 0);
5016
5017    // Check to see if there is a specialized entry-point for memory zeroing.
5018    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5019    if (const char *bzeroEntry =
5020          V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5021      MVT IntPtr = getPointerTy();
5022      const Type *IntPtrTy = getTargetData()->getIntPtrType();
5023      TargetLowering::ArgListTy Args;
5024      TargetLowering::ArgListEntry Entry;
5025      Entry.Node = Dst;
5026      Entry.Ty = IntPtrTy;
5027      Args.push_back(Entry);
5028      Entry.Node = Size;
5029      Args.push_back(Entry);
5030      std::pair<SDOperand,SDOperand> CallResult =
5031        LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
5032                    false, DAG.getExternalSymbol(bzeroEntry, IntPtr),
5033                    Args, DAG);
5034      return CallResult.second;
5035    }
5036
5037    // Otherwise have the target-independent code call memset.
5038    return SDOperand();
5039  }
5040
5041  uint64_t SizeVal = ConstantSize->getValue();
5042  SDOperand InFlag(0, 0);
5043  MVT AVT;
5044  SDOperand Count;
5045  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5046  unsigned BytesLeft = 0;
5047  bool TwoRepStos = false;
5048  if (ValC) {
5049    unsigned ValReg;
5050    uint64_t Val = ValC->getValue() & 255;
5051
5052    // If the value is a constant, then we can potentially use larger sets.
5053    switch (Align & 3) {
5054      case 2:   // WORD aligned
5055        AVT = MVT::i16;
5056        ValReg = X86::AX;
5057        Val = (Val << 8) | Val;
5058        break;
5059      case 0:  // DWORD aligned
5060        AVT = MVT::i32;
5061        ValReg = X86::EAX;
5062        Val = (Val << 8)  | Val;
5063        Val = (Val << 16) | Val;
5064        if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5065          AVT = MVT::i64;
5066          ValReg = X86::RAX;
5067          Val = (Val << 32) | Val;
5068        }
5069        break;
5070      default:  // Byte aligned
5071        AVT = MVT::i8;
5072        ValReg = X86::AL;
5073        Count = DAG.getIntPtrConstant(SizeVal);
5074        break;
5075    }
5076
5077    if (AVT.bitsGT(MVT::i8)) {
5078      unsigned UBytes = AVT.getSizeInBits() / 8;
5079      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5080      BytesLeft = SizeVal % UBytes;
5081    }
5082
5083    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5084                              InFlag);
5085    InFlag = Chain.getValue(1);
5086  } else {
5087    AVT = MVT::i8;
5088    Count  = DAG.getIntPtrConstant(SizeVal);
5089    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5090    InFlag = Chain.getValue(1);
5091  }
5092
5093  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5094                            Count, InFlag);
5095  InFlag = Chain.getValue(1);
5096  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5097                            Dst, InFlag);
5098  InFlag = Chain.getValue(1);
5099
5100  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5101  SmallVector<SDOperand, 8> Ops;
5102  Ops.push_back(Chain);
5103  Ops.push_back(DAG.getValueType(AVT));
5104  Ops.push_back(InFlag);
5105  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5106
5107  if (TwoRepStos) {
5108    InFlag = Chain.getValue(1);
5109    Count  = Size;
5110    MVT CVT = Count.getValueType();
5111    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
5112                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5113    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5114                              Left, InFlag);
5115    InFlag = Chain.getValue(1);
5116    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5117    Ops.clear();
5118    Ops.push_back(Chain);
5119    Ops.push_back(DAG.getValueType(MVT::i8));
5120    Ops.push_back(InFlag);
5121    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5122  } else if (BytesLeft) {
5123    // Handle the last 1 - 7 bytes.
5124    unsigned Offset = SizeVal - BytesLeft;
5125    MVT AddrVT = Dst.getValueType();
5126    MVT SizeVT = Size.getValueType();
5127
5128    Chain = DAG.getMemset(Chain,
5129                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5130                                      DAG.getConstant(Offset, AddrVT)),
5131                          Src,
5132                          DAG.getConstant(BytesLeft, SizeVT),
5133                          Align, DstSV, DstSVOff + Offset);
5134  }
5135
5136  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5137  return Chain;
5138}
5139
5140SDOperand
5141X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5142                                           SDOperand Chain,
5143                                           SDOperand Dst, SDOperand Src,
5144                                           SDOperand Size, unsigned Align,
5145                                           bool AlwaysInline,
5146                                           const Value *DstSV, uint64_t DstSVOff,
5147                                           const Value *SrcSV, uint64_t SrcSVOff){
5148
5149  // This requires the copy size to be a constant, preferrably
5150  // within a subtarget-specific limit.
5151  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5152  if (!ConstantSize)
5153    return SDOperand();
5154  uint64_t SizeVal = ConstantSize->getValue();
5155  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5156    return SDOperand();
5157
5158  MVT AVT;
5159  unsigned BytesLeft = 0;
5160  if (Align >= 8 && Subtarget->is64Bit())
5161    AVT = MVT::i64;
5162  else if (Align >= 4)
5163    AVT = MVT::i32;
5164  else if (Align >= 2)
5165    AVT = MVT::i16;
5166  else
5167    AVT = MVT::i8;
5168
5169  unsigned UBytes = AVT.getSizeInBits() / 8;
5170  unsigned CountVal = SizeVal / UBytes;
5171  SDOperand Count = DAG.getIntPtrConstant(CountVal);
5172  BytesLeft = SizeVal % UBytes;
5173
5174  SDOperand InFlag(0, 0);
5175  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5176                            Count, InFlag);
5177  InFlag = Chain.getValue(1);
5178  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5179                            Dst, InFlag);
5180  InFlag = Chain.getValue(1);
5181  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5182                            Src, InFlag);
5183  InFlag = Chain.getValue(1);
5184
5185  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5186  SmallVector<SDOperand, 8> Ops;
5187  Ops.push_back(Chain);
5188  Ops.push_back(DAG.getValueType(AVT));
5189  Ops.push_back(InFlag);
5190  SDOperand RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5191
5192  SmallVector<SDOperand, 4> Results;
5193  Results.push_back(RepMovs);
5194  if (BytesLeft) {
5195    // Handle the last 1 - 7 bytes.
5196    unsigned Offset = SizeVal - BytesLeft;
5197    MVT DstVT = Dst.getValueType();
5198    MVT SrcVT = Src.getValueType();
5199    MVT SizeVT = Size.getValueType();
5200    Results.push_back(DAG.getMemcpy(Chain,
5201                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5202                                                DAG.getConstant(Offset, DstVT)),
5203                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5204                                                DAG.getConstant(Offset, SrcVT)),
5205                                    DAG.getConstant(BytesLeft, SizeVT),
5206                                    Align, AlwaysInline,
5207                                    DstSV, DstSVOff + Offset,
5208                                    SrcSV, SrcSVOff + Offset));
5209  }
5210
5211  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5212}
5213
5214/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5215SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
5216  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5217  SDOperand TheChain = N->getOperand(0);
5218  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
5219  if (Subtarget->is64Bit()) {
5220    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5221    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5222                                       MVT::i64, rax.getValue(2));
5223    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
5224                                DAG.getConstant(32, MVT::i8));
5225    SDOperand Ops[] = {
5226      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
5227    };
5228
5229    return DAG.getMergeValues(Ops, 2).Val;
5230  }
5231
5232  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5233  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5234                                       MVT::i32, eax.getValue(2));
5235  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5236  SDOperand Ops[] = { eax, edx };
5237  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5238
5239  // Use a MERGE_VALUES to return the value and chain.
5240  Ops[1] = edx.getValue(1);
5241  return DAG.getMergeValues(Ops, 2).Val;
5242}
5243
5244SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
5245  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5246
5247  if (!Subtarget->is64Bit()) {
5248    // vastart just stores the address of the VarArgsFrameIndex slot into the
5249    // memory location argument.
5250    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5251    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5252  }
5253
5254  // __va_list_tag:
5255  //   gp_offset         (0 - 6 * 8)
5256  //   fp_offset         (48 - 48 + 8 * 16)
5257  //   overflow_arg_area (point to parameters coming in memory).
5258  //   reg_save_area
5259  SmallVector<SDOperand, 8> MemOps;
5260  SDOperand FIN = Op.getOperand(1);
5261  // Store gp_offset
5262  SDOperand Store = DAG.getStore(Op.getOperand(0),
5263                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5264                                 FIN, SV, 0);
5265  MemOps.push_back(Store);
5266
5267  // Store fp_offset
5268  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5269  Store = DAG.getStore(Op.getOperand(0),
5270                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5271                       FIN, SV, 0);
5272  MemOps.push_back(Store);
5273
5274  // Store ptr to overflow_arg_area
5275  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5276  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5277  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5278  MemOps.push_back(Store);
5279
5280  // Store ptr to reg_save_area.
5281  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5282  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5283  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5284  MemOps.push_back(Store);
5285  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5286}
5287
5288SDOperand X86TargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG) {
5289  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5290  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5291  SDOperand Chain = Op.getOperand(0);
5292  SDOperand SrcPtr = Op.getOperand(1);
5293  SDOperand SrcSV = Op.getOperand(2);
5294
5295  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5296  abort();
5297  return SDOperand();
5298}
5299
5300SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
5301  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5302  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5303  SDOperand Chain = Op.getOperand(0);
5304  SDOperand DstPtr = Op.getOperand(1);
5305  SDOperand SrcPtr = Op.getOperand(2);
5306  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5307  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5308
5309  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5310                       DAG.getIntPtrConstant(24), 8, false,
5311                       DstSV, 0, SrcSV, 0);
5312}
5313
5314SDOperand
5315X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
5316  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5317  switch (IntNo) {
5318  default: return SDOperand();    // Don't custom lower most intrinsics.
5319  // Comparison intrinsics.
5320  case Intrinsic::x86_sse_comieq_ss:
5321  case Intrinsic::x86_sse_comilt_ss:
5322  case Intrinsic::x86_sse_comile_ss:
5323  case Intrinsic::x86_sse_comigt_ss:
5324  case Intrinsic::x86_sse_comige_ss:
5325  case Intrinsic::x86_sse_comineq_ss:
5326  case Intrinsic::x86_sse_ucomieq_ss:
5327  case Intrinsic::x86_sse_ucomilt_ss:
5328  case Intrinsic::x86_sse_ucomile_ss:
5329  case Intrinsic::x86_sse_ucomigt_ss:
5330  case Intrinsic::x86_sse_ucomige_ss:
5331  case Intrinsic::x86_sse_ucomineq_ss:
5332  case Intrinsic::x86_sse2_comieq_sd:
5333  case Intrinsic::x86_sse2_comilt_sd:
5334  case Intrinsic::x86_sse2_comile_sd:
5335  case Intrinsic::x86_sse2_comigt_sd:
5336  case Intrinsic::x86_sse2_comige_sd:
5337  case Intrinsic::x86_sse2_comineq_sd:
5338  case Intrinsic::x86_sse2_ucomieq_sd:
5339  case Intrinsic::x86_sse2_ucomilt_sd:
5340  case Intrinsic::x86_sse2_ucomile_sd:
5341  case Intrinsic::x86_sse2_ucomigt_sd:
5342  case Intrinsic::x86_sse2_ucomige_sd:
5343  case Intrinsic::x86_sse2_ucomineq_sd: {
5344    unsigned Opc = 0;
5345    ISD::CondCode CC = ISD::SETCC_INVALID;
5346    switch (IntNo) {
5347    default: break;
5348    case Intrinsic::x86_sse_comieq_ss:
5349    case Intrinsic::x86_sse2_comieq_sd:
5350      Opc = X86ISD::COMI;
5351      CC = ISD::SETEQ;
5352      break;
5353    case Intrinsic::x86_sse_comilt_ss:
5354    case Intrinsic::x86_sse2_comilt_sd:
5355      Opc = X86ISD::COMI;
5356      CC = ISD::SETLT;
5357      break;
5358    case Intrinsic::x86_sse_comile_ss:
5359    case Intrinsic::x86_sse2_comile_sd:
5360      Opc = X86ISD::COMI;
5361      CC = ISD::SETLE;
5362      break;
5363    case Intrinsic::x86_sse_comigt_ss:
5364    case Intrinsic::x86_sse2_comigt_sd:
5365      Opc = X86ISD::COMI;
5366      CC = ISD::SETGT;
5367      break;
5368    case Intrinsic::x86_sse_comige_ss:
5369    case Intrinsic::x86_sse2_comige_sd:
5370      Opc = X86ISD::COMI;
5371      CC = ISD::SETGE;
5372      break;
5373    case Intrinsic::x86_sse_comineq_ss:
5374    case Intrinsic::x86_sse2_comineq_sd:
5375      Opc = X86ISD::COMI;
5376      CC = ISD::SETNE;
5377      break;
5378    case Intrinsic::x86_sse_ucomieq_ss:
5379    case Intrinsic::x86_sse2_ucomieq_sd:
5380      Opc = X86ISD::UCOMI;
5381      CC = ISD::SETEQ;
5382      break;
5383    case Intrinsic::x86_sse_ucomilt_ss:
5384    case Intrinsic::x86_sse2_ucomilt_sd:
5385      Opc = X86ISD::UCOMI;
5386      CC = ISD::SETLT;
5387      break;
5388    case Intrinsic::x86_sse_ucomile_ss:
5389    case Intrinsic::x86_sse2_ucomile_sd:
5390      Opc = X86ISD::UCOMI;
5391      CC = ISD::SETLE;
5392      break;
5393    case Intrinsic::x86_sse_ucomigt_ss:
5394    case Intrinsic::x86_sse2_ucomigt_sd:
5395      Opc = X86ISD::UCOMI;
5396      CC = ISD::SETGT;
5397      break;
5398    case Intrinsic::x86_sse_ucomige_ss:
5399    case Intrinsic::x86_sse2_ucomige_sd:
5400      Opc = X86ISD::UCOMI;
5401      CC = ISD::SETGE;
5402      break;
5403    case Intrinsic::x86_sse_ucomineq_ss:
5404    case Intrinsic::x86_sse2_ucomineq_sd:
5405      Opc = X86ISD::UCOMI;
5406      CC = ISD::SETNE;
5407      break;
5408    }
5409
5410    unsigned X86CC;
5411    SDOperand LHS = Op.getOperand(1);
5412    SDOperand RHS = Op.getOperand(2);
5413    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5414
5415    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5416    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5417                                  DAG.getConstant(X86CC, MVT::i8), Cond);
5418    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
5419  }
5420
5421  // Fix vector shift instructions where the last operand is a non-immediate
5422  // i32 value.
5423  case Intrinsic::x86_sse2_pslli_w:
5424  case Intrinsic::x86_sse2_pslli_d:
5425  case Intrinsic::x86_sse2_pslli_q:
5426  case Intrinsic::x86_sse2_psrli_w:
5427  case Intrinsic::x86_sse2_psrli_d:
5428  case Intrinsic::x86_sse2_psrli_q:
5429  case Intrinsic::x86_sse2_psrai_w:
5430  case Intrinsic::x86_sse2_psrai_d:
5431  case Intrinsic::x86_mmx_pslli_w:
5432  case Intrinsic::x86_mmx_pslli_d:
5433  case Intrinsic::x86_mmx_pslli_q:
5434  case Intrinsic::x86_mmx_psrli_w:
5435  case Intrinsic::x86_mmx_psrli_d:
5436  case Intrinsic::x86_mmx_psrli_q:
5437  case Intrinsic::x86_mmx_psrai_w:
5438  case Intrinsic::x86_mmx_psrai_d: {
5439    SDOperand ShAmt = Op.getOperand(2);
5440    if (isa<ConstantSDNode>(ShAmt))
5441      return SDOperand();
5442
5443    unsigned NewIntNo = 0;
5444    MVT ShAmtVT = MVT::v4i32;
5445    switch (IntNo) {
5446    case Intrinsic::x86_sse2_pslli_w:
5447      NewIntNo = Intrinsic::x86_sse2_psll_w;
5448      break;
5449    case Intrinsic::x86_sse2_pslli_d:
5450      NewIntNo = Intrinsic::x86_sse2_psll_d;
5451      break;
5452    case Intrinsic::x86_sse2_pslli_q:
5453      NewIntNo = Intrinsic::x86_sse2_psll_q;
5454      break;
5455    case Intrinsic::x86_sse2_psrli_w:
5456      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5457      break;
5458    case Intrinsic::x86_sse2_psrli_d:
5459      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5460      break;
5461    case Intrinsic::x86_sse2_psrli_q:
5462      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5463      break;
5464    case Intrinsic::x86_sse2_psrai_w:
5465      NewIntNo = Intrinsic::x86_sse2_psra_w;
5466      break;
5467    case Intrinsic::x86_sse2_psrai_d:
5468      NewIntNo = Intrinsic::x86_sse2_psra_d;
5469      break;
5470    default: {
5471      ShAmtVT = MVT::v2i32;
5472      switch (IntNo) {
5473      case Intrinsic::x86_mmx_pslli_w:
5474        NewIntNo = Intrinsic::x86_mmx_psll_w;
5475        break;
5476      case Intrinsic::x86_mmx_pslli_d:
5477        NewIntNo = Intrinsic::x86_mmx_psll_d;
5478        break;
5479      case Intrinsic::x86_mmx_pslli_q:
5480        NewIntNo = Intrinsic::x86_mmx_psll_q;
5481        break;
5482      case Intrinsic::x86_mmx_psrli_w:
5483        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5484        break;
5485      case Intrinsic::x86_mmx_psrli_d:
5486        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5487        break;
5488      case Intrinsic::x86_mmx_psrli_q:
5489        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5490        break;
5491      case Intrinsic::x86_mmx_psrai_w:
5492        NewIntNo = Intrinsic::x86_mmx_psra_w;
5493        break;
5494      case Intrinsic::x86_mmx_psrai_d:
5495        NewIntNo = Intrinsic::x86_mmx_psra_d;
5496        break;
5497      default: abort();  // Can't reach here.
5498      }
5499      break;
5500    }
5501    }
5502    MVT VT = Op.getValueType();
5503    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5504                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5505    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5506                       DAG.getConstant(NewIntNo, MVT::i32),
5507                       Op.getOperand(1), ShAmt);
5508  }
5509  }
5510}
5511
5512SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5513  // Depths > 0 not supported yet!
5514  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5515    return SDOperand();
5516
5517  // Just load the return address
5518  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5519  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5520}
5521
5522SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5523  // Depths > 0 not supported yet!
5524  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5525    return SDOperand();
5526
5527  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5528  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5529                     DAG.getIntPtrConstant(!Subtarget->is64Bit() ? 4 : 8));
5530}
5531
5532SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5533                                                       SelectionDAG &DAG) {
5534  // Is not yet supported on x86-64
5535  if (Subtarget->is64Bit())
5536    return SDOperand();
5537
5538  return DAG.getIntPtrConstant(8);
5539}
5540
5541SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5542{
5543  assert(!Subtarget->is64Bit() &&
5544         "Lowering of eh_return builtin is not supported yet on x86-64");
5545
5546  MachineFunction &MF = DAG.getMachineFunction();
5547  SDOperand Chain     = Op.getOperand(0);
5548  SDOperand Offset    = Op.getOperand(1);
5549  SDOperand Handler   = Op.getOperand(2);
5550
5551  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5552                                    getPointerTy());
5553
5554  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5555                                    DAG.getIntPtrConstant(-4UL));
5556  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5557  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5558  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5559  MF.getRegInfo().addLiveOut(X86::ECX);
5560
5561  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5562                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5563}
5564
5565SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5566                                             SelectionDAG &DAG) {
5567  SDOperand Root = Op.getOperand(0);
5568  SDOperand Trmp = Op.getOperand(1); // trampoline
5569  SDOperand FPtr = Op.getOperand(2); // nested function
5570  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5571
5572  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5573
5574  const X86InstrInfo *TII =
5575    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5576
5577  if (Subtarget->is64Bit()) {
5578    SDOperand OutChains[6];
5579
5580    // Large code-model.
5581
5582    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5583    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5584
5585    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5586    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5587
5588    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5589
5590    // Load the pointer to the nested function into R11.
5591    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5592    SDOperand Addr = Trmp;
5593    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5594                                TrmpAddr, 0);
5595
5596    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5597    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5598
5599    // Load the 'nest' parameter value into R10.
5600    // R10 is specified in X86CallingConv.td
5601    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5602    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5603    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5604                                TrmpAddr, 10);
5605
5606    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5607    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5608
5609    // Jump to the nested function.
5610    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5611    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5612    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5613                                TrmpAddr, 20);
5614
5615    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5616    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5617    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5618                                TrmpAddr, 22);
5619
5620    SDOperand Ops[] =
5621      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5622    return DAG.getMergeValues(Ops, 2);
5623  } else {
5624    const Function *Func =
5625      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5626    unsigned CC = Func->getCallingConv();
5627    unsigned NestReg;
5628
5629    switch (CC) {
5630    default:
5631      assert(0 && "Unsupported calling convention");
5632    case CallingConv::C:
5633    case CallingConv::X86_StdCall: {
5634      // Pass 'nest' parameter in ECX.
5635      // Must be kept in sync with X86CallingConv.td
5636      NestReg = X86::ECX;
5637
5638      // Check that ECX wasn't needed by an 'inreg' parameter.
5639      const FunctionType *FTy = Func->getFunctionType();
5640      const PAListPtr &Attrs = Func->getParamAttrs();
5641
5642      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5643        unsigned InRegCount = 0;
5644        unsigned Idx = 1;
5645
5646        for (FunctionType::param_iterator I = FTy->param_begin(),
5647             E = FTy->param_end(); I != E; ++I, ++Idx)
5648          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5649            // FIXME: should only count parameters that are lowered to integers.
5650            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5651
5652        if (InRegCount > 2) {
5653          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5654          abort();
5655        }
5656      }
5657      break;
5658    }
5659    case CallingConv::X86_FastCall:
5660      // Pass 'nest' parameter in EAX.
5661      // Must be kept in sync with X86CallingConv.td
5662      NestReg = X86::EAX;
5663      break;
5664    }
5665
5666    SDOperand OutChains[4];
5667    SDOperand Addr, Disp;
5668
5669    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5670    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5671
5672    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5673    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
5674    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5675                                Trmp, TrmpAddr, 0);
5676
5677    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5678    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5679
5680    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5681    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5682    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5683                                TrmpAddr, 5, false, 1);
5684
5685    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5686    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5687
5688    SDOperand Ops[] =
5689      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5690    return DAG.getMergeValues(Ops, 2);
5691  }
5692}
5693
5694SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5695  /*
5696   The rounding mode is in bits 11:10 of FPSR, and has the following
5697   settings:
5698     00 Round to nearest
5699     01 Round to -inf
5700     10 Round to +inf
5701     11 Round to 0
5702
5703  FLT_ROUNDS, on the other hand, expects the following:
5704    -1 Undefined
5705     0 Round to 0
5706     1 Round to nearest
5707     2 Round to +inf
5708     3 Round to -inf
5709
5710  To perform the conversion, we do:
5711    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5712  */
5713
5714  MachineFunction &MF = DAG.getMachineFunction();
5715  const TargetMachine &TM = MF.getTarget();
5716  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5717  unsigned StackAlignment = TFI.getStackAlignment();
5718  MVT VT = Op.getValueType();
5719
5720  // Save FP Control Word to stack slot
5721  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5722  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5723
5724  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5725                                DAG.getEntryNode(), StackSlot);
5726
5727  // Load FP Control Word from stack slot
5728  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5729
5730  // Transform as necessary
5731  SDOperand CWD1 =
5732    DAG.getNode(ISD::SRL, MVT::i16,
5733                DAG.getNode(ISD::AND, MVT::i16,
5734                            CWD, DAG.getConstant(0x800, MVT::i16)),
5735                DAG.getConstant(11, MVT::i8));
5736  SDOperand CWD2 =
5737    DAG.getNode(ISD::SRL, MVT::i16,
5738                DAG.getNode(ISD::AND, MVT::i16,
5739                            CWD, DAG.getConstant(0x400, MVT::i16)),
5740                DAG.getConstant(9, MVT::i8));
5741
5742  SDOperand RetVal =
5743    DAG.getNode(ISD::AND, MVT::i16,
5744                DAG.getNode(ISD::ADD, MVT::i16,
5745                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5746                            DAG.getConstant(1, MVT::i16)),
5747                DAG.getConstant(3, MVT::i16));
5748
5749
5750  return DAG.getNode((VT.getSizeInBits() < 16 ?
5751                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5752}
5753
5754SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5755  MVT VT = Op.getValueType();
5756  MVT OpVT = VT;
5757  unsigned NumBits = VT.getSizeInBits();
5758
5759  Op = Op.getOperand(0);
5760  if (VT == MVT::i8) {
5761    // Zero extend to i32 since there is not an i8 bsr.
5762    OpVT = MVT::i32;
5763    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5764  }
5765
5766  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5767  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5768  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5769
5770  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5771  SmallVector<SDOperand, 4> Ops;
5772  Ops.push_back(Op);
5773  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5774  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5775  Ops.push_back(Op.getValue(1));
5776  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5777
5778  // Finally xor with NumBits-1.
5779  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5780
5781  if (VT == MVT::i8)
5782    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5783  return Op;
5784}
5785
5786SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5787  MVT VT = Op.getValueType();
5788  MVT OpVT = VT;
5789  unsigned NumBits = VT.getSizeInBits();
5790
5791  Op = Op.getOperand(0);
5792  if (VT == MVT::i8) {
5793    OpVT = MVT::i32;
5794    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5795  }
5796
5797  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5798  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5799  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5800
5801  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5802  SmallVector<SDOperand, 4> Ops;
5803  Ops.push_back(Op);
5804  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5805  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5806  Ops.push_back(Op.getValue(1));
5807  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5808
5809  if (VT == MVT::i8)
5810    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5811  return Op;
5812}
5813
5814SDOperand X86TargetLowering::LowerCMP_SWAP(SDOperand Op, SelectionDAG &DAG) {
5815  MVT T = Op.getValueType();
5816  unsigned Reg = 0;
5817  unsigned size = 0;
5818  switch(T.getSimpleVT()) {
5819  default:
5820    assert(false && "Invalid value type!");
5821  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5822  case MVT::i16: Reg = X86::AX;  size = 2; break;
5823  case MVT::i32: Reg = X86::EAX; size = 4; break;
5824  case MVT::i64:
5825    if (Subtarget->is64Bit()) {
5826      Reg = X86::RAX; size = 8;
5827    } else //Should go away when LowerType stuff lands
5828      return SDOperand(ExpandATOMIC_CMP_SWAP(Op.Val, DAG), 0);
5829    break;
5830  };
5831  SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5832                                    Op.getOperand(3), SDOperand());
5833  SDOperand Ops[] = { cpIn.getValue(0),
5834                      Op.getOperand(1),
5835                      Op.getOperand(2),
5836                      DAG.getTargetConstant(size, MVT::i8),
5837                      cpIn.getValue(1) };
5838  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5839  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5840  SDOperand cpOut =
5841    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5842  return cpOut;
5843}
5844
5845SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op, SelectionDAG &DAG) {
5846  MVT T = Op->getValueType(0);
5847  assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
5848  SDOperand cpInL, cpInH;
5849  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5850                      DAG.getConstant(0, MVT::i32));
5851  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5852                      DAG.getConstant(1, MVT::i32));
5853  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5854                           cpInL, SDOperand());
5855  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5856                           cpInH, cpInL.getValue(1));
5857  SDOperand swapInL, swapInH;
5858  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5859                        DAG.getConstant(0, MVT::i32));
5860  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5861                        DAG.getConstant(1, MVT::i32));
5862  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5863                             swapInL, cpInH.getValue(1));
5864  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5865                             swapInH, swapInL.getValue(1));
5866  SDOperand Ops[] = { swapInH.getValue(0),
5867                      Op->getOperand(1),
5868                      swapInH.getValue(1)};
5869  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5870  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5871  SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5872                                        Result.getValue(1));
5873  SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5874                                        cpOutL.getValue(2));
5875  SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5876  SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5877  SDOperand Vals[2] = { ResultVal, cpOutH.getValue(1) };
5878  return DAG.getMergeValues(Vals, 2).Val;
5879}
5880
5881SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op, SelectionDAG &DAG) {
5882  MVT T = Op->getValueType(0);
5883  assert (T == MVT::i32 && "Only know how to expand i32 Atomic Load Sub");
5884  SDOperand negOp = DAG.getNode(ISD::SUB, T,
5885                                DAG.getConstant(0, T), Op->getOperand(2));
5886  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, Op->getOperand(0),
5887                       Op->getOperand(1), negOp,
5888                       cast<AtomicSDNode>(Op)->getSrcValue(),
5889                       cast<AtomicSDNode>(Op)->getAlignment()).Val;
5890}
5891
5892/// LowerOperation - Provide custom lowering hooks for some operations.
5893///
5894SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5895  switch (Op.getOpcode()) {
5896  default: assert(0 && "Should not custom lower this!");
5897  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
5898  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5899  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5900  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5901  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5902  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5903  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5904  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5905  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5906  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5907  case ISD::SHL_PARTS:
5908  case ISD::SRA_PARTS:
5909  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5910  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5911  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5912  case ISD::FABS:               return LowerFABS(Op, DAG);
5913  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5914  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5915  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5916  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
5917  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5918  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5919  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5920  case ISD::CALL:               return LowerCALL(Op, DAG);
5921  case ISD::RET:                return LowerRET(Op, DAG);
5922  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5923  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5924  case ISD::VAARG:              return LowerVAARG(Op, DAG);
5925  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5926  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5927  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5928  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5929  case ISD::FRAME_TO_ARGS_OFFSET:
5930                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5931  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5932  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5933  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5934  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5935  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5936  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5937
5938  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5939  case ISD::READCYCLECOUNTER:
5940    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5941  }
5942}
5943
5944/// ReplaceNodeResults - Replace a node with an illegal result type
5945/// with a new node built out of custom code.
5946SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
5947  switch (N->getOpcode()) {
5948  default: assert(0 && "Should not custom lower this!");
5949  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5950  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5951  case ISD::ATOMIC_CMP_SWAP:    return ExpandATOMIC_CMP_SWAP(N, DAG);
5952  case ISD::ATOMIC_LOAD_SUB:    return ExpandATOMIC_LOAD_SUB(N,DAG);
5953  }
5954}
5955
5956const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5957  switch (Opcode) {
5958  default: return NULL;
5959  case X86ISD::BSF:                return "X86ISD::BSF";
5960  case X86ISD::BSR:                return "X86ISD::BSR";
5961  case X86ISD::SHLD:               return "X86ISD::SHLD";
5962  case X86ISD::SHRD:               return "X86ISD::SHRD";
5963  case X86ISD::FAND:               return "X86ISD::FAND";
5964  case X86ISD::FOR:                return "X86ISD::FOR";
5965  case X86ISD::FXOR:               return "X86ISD::FXOR";
5966  case X86ISD::FSRL:               return "X86ISD::FSRL";
5967  case X86ISD::FILD:               return "X86ISD::FILD";
5968  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5969  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5970  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5971  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5972  case X86ISD::FLD:                return "X86ISD::FLD";
5973  case X86ISD::FST:                return "X86ISD::FST";
5974  case X86ISD::CALL:               return "X86ISD::CALL";
5975  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5976  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5977  case X86ISD::CMP:                return "X86ISD::CMP";
5978  case X86ISD::COMI:               return "X86ISD::COMI";
5979  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5980  case X86ISD::SETCC:              return "X86ISD::SETCC";
5981  case X86ISD::CMOV:               return "X86ISD::CMOV";
5982  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5983  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5984  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5985  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5986  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5987  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5988  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
5989  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5990  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
5991  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
5992  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5993  case X86ISD::FMAX:               return "X86ISD::FMAX";
5994  case X86ISD::FMIN:               return "X86ISD::FMIN";
5995  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5996  case X86ISD::FRCP:               return "X86ISD::FRCP";
5997  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5998  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5999  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6000  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6001  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6002  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6003  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6004  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6005  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6006  case X86ISD::VSHL:               return "X86ISD::VSHL";
6007  case X86ISD::VSRL:               return "X86ISD::VSRL";
6008  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6009  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6010  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6011  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6012  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6013  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6014  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6015  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6016  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6017  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6018  }
6019}
6020
6021// isLegalAddressingMode - Return true if the addressing mode represented
6022// by AM is legal for this target, for a load/store of the specified type.
6023bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6024                                              const Type *Ty) const {
6025  // X86 supports extremely general addressing modes.
6026
6027  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6028  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6029    return false;
6030
6031  if (AM.BaseGV) {
6032    // We can only fold this if we don't need an extra load.
6033    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6034      return false;
6035
6036    // X86-64 only supports addr of globals in small code model.
6037    if (Subtarget->is64Bit()) {
6038      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6039        return false;
6040      // If lower 4G is not available, then we must use rip-relative addressing.
6041      if (AM.BaseOffs || AM.Scale > 1)
6042        return false;
6043    }
6044  }
6045
6046  switch (AM.Scale) {
6047  case 0:
6048  case 1:
6049  case 2:
6050  case 4:
6051  case 8:
6052    // These scales always work.
6053    break;
6054  case 3:
6055  case 5:
6056  case 9:
6057    // These scales are formed with basereg+scalereg.  Only accept if there is
6058    // no basereg yet.
6059    if (AM.HasBaseReg)
6060      return false;
6061    break;
6062  default:  // Other stuff never works.
6063    return false;
6064  }
6065
6066  return true;
6067}
6068
6069
6070bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6071  if (!Ty1->isInteger() || !Ty2->isInteger())
6072    return false;
6073  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6074  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6075  if (NumBits1 <= NumBits2)
6076    return false;
6077  return Subtarget->is64Bit() || NumBits1 < 64;
6078}
6079
6080bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6081  if (!VT1.isInteger() || !VT2.isInteger())
6082    return false;
6083  unsigned NumBits1 = VT1.getSizeInBits();
6084  unsigned NumBits2 = VT2.getSizeInBits();
6085  if (NumBits1 <= NumBits2)
6086    return false;
6087  return Subtarget->is64Bit() || NumBits1 < 64;
6088}
6089
6090/// isShuffleMaskLegal - Targets can use this to indicate that they only
6091/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6092/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6093/// are assumed to be legal.
6094bool
6095X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT VT) const {
6096  // Only do shuffles on 128-bit vector types for now.
6097  if (VT.getSizeInBits() == 64) return false;
6098  return (Mask.Val->getNumOperands() <= 4 ||
6099          isIdentityMask(Mask.Val) ||
6100          isIdentityMask(Mask.Val, true) ||
6101          isSplatMask(Mask.Val)  ||
6102          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
6103          X86::isUNPCKLMask(Mask.Val) ||
6104          X86::isUNPCKHMask(Mask.Val) ||
6105          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
6106          X86::isUNPCKH_v_undef_Mask(Mask.Val));
6107}
6108
6109bool
6110X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDOperand> &BVOps,
6111                                          MVT EVT, SelectionDAG &DAG) const {
6112  unsigned NumElts = BVOps.size();
6113  // Only do shuffles on 128-bit vector types for now.
6114  if (EVT.getSizeInBits() * NumElts == 64) return false;
6115  if (NumElts == 2) return true;
6116  if (NumElts == 4) {
6117    return (isMOVLMask(&BVOps[0], 4)  ||
6118            isCommutedMOVL(&BVOps[0], 4, true) ||
6119            isSHUFPMask(&BVOps[0], 4) ||
6120            isCommutedSHUFP(&BVOps[0], 4));
6121  }
6122  return false;
6123}
6124
6125//===----------------------------------------------------------------------===//
6126//                           X86 Scheduler Hooks
6127//===----------------------------------------------------------------------===//
6128
6129// private utility function
6130MachineBasicBlock *
6131X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6132                                                       MachineBasicBlock *MBB,
6133                                                       unsigned regOpc,
6134                                                       unsigned immOpc,
6135                                                       bool invSrc) {
6136  // For the atomic bitwise operator, we generate
6137  //   thisMBB:
6138  //   newMBB:
6139  //     ld  t1 = [bitinstr.addr]
6140  //     op  t2 = t1, [bitinstr.val]
6141  //     mov EAX = t1
6142  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6143  //     bz  newMBB
6144  //     fallthrough -->nextMBB
6145  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6146  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6147  MachineFunction::iterator MBBIter = MBB;
6148  ++MBBIter;
6149
6150  /// First build the CFG
6151  MachineFunction *F = MBB->getParent();
6152  MachineBasicBlock *thisMBB = MBB;
6153  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6154  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6155  F->insert(MBBIter, newMBB);
6156  F->insert(MBBIter, nextMBB);
6157
6158  // Move all successors to thisMBB to nextMBB
6159  nextMBB->transferSuccessors(thisMBB);
6160
6161  // Update thisMBB to fall through to newMBB
6162  thisMBB->addSuccessor(newMBB);
6163
6164  // newMBB jumps to itself and fall through to nextMBB
6165  newMBB->addSuccessor(nextMBB);
6166  newMBB->addSuccessor(newMBB);
6167
6168  // Insert instructions into newMBB based on incoming instruction
6169  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6170  MachineOperand& destOper = bInstr->getOperand(0);
6171  MachineOperand* argOpers[6];
6172  int numArgs = bInstr->getNumOperands() - 1;
6173  for (int i=0; i < numArgs; ++i)
6174    argOpers[i] = &bInstr->getOperand(i+1);
6175
6176  // x86 address has 4 operands: base, index, scale, and displacement
6177  int lastAddrIndx = 3; // [0,3]
6178  int valArgIndx = 4;
6179
6180  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6181  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6182  for (int i=0; i <= lastAddrIndx; ++i)
6183    (*MIB).addOperand(*argOpers[i]);
6184
6185  unsigned tt = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6186  if (invSrc) {
6187    MIB = BuildMI(newMBB, TII->get(X86::NOT32r), tt).addReg(t1);
6188  }
6189  else
6190    tt = t1;
6191
6192  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6193  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
6194         && "invalid operand");
6195  if (argOpers[valArgIndx]->isReg())
6196    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6197  else
6198    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6199  MIB.addReg(tt);
6200  (*MIB).addOperand(*argOpers[valArgIndx]);
6201
6202  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6203  MIB.addReg(t1);
6204
6205  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6206  for (int i=0; i <= lastAddrIndx; ++i)
6207    (*MIB).addOperand(*argOpers[i]);
6208  MIB.addReg(t2);
6209  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6210  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6211
6212  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6213  MIB.addReg(X86::EAX);
6214
6215  // insert branch
6216  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6217
6218  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6219  return nextMBB;
6220}
6221
6222// private utility function
6223MachineBasicBlock *
6224X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6225                                                      MachineBasicBlock *MBB,
6226                                                      unsigned cmovOpc) {
6227  // For the atomic min/max operator, we generate
6228  //   thisMBB:
6229  //   newMBB:
6230  //     ld t1 = [min/max.addr]
6231  //     mov t2 = [min/max.val]
6232  //     cmp  t1, t2
6233  //     cmov[cond] t2 = t1
6234  //     mov EAX = t1
6235  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6236  //     bz   newMBB
6237  //     fallthrough -->nextMBB
6238  //
6239  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6240  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6241  MachineFunction::iterator MBBIter = MBB;
6242  ++MBBIter;
6243
6244  /// First build the CFG
6245  MachineFunction *F = MBB->getParent();
6246  MachineBasicBlock *thisMBB = MBB;
6247  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6248  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6249  F->insert(MBBIter, newMBB);
6250  F->insert(MBBIter, nextMBB);
6251
6252  // Move all successors to thisMBB to nextMBB
6253  nextMBB->transferSuccessors(thisMBB);
6254
6255  // Update thisMBB to fall through to newMBB
6256  thisMBB->addSuccessor(newMBB);
6257
6258  // newMBB jumps to newMBB and fall through to nextMBB
6259  newMBB->addSuccessor(nextMBB);
6260  newMBB->addSuccessor(newMBB);
6261
6262  // Insert instructions into newMBB based on incoming instruction
6263  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6264  MachineOperand& destOper = mInstr->getOperand(0);
6265  MachineOperand* argOpers[6];
6266  int numArgs = mInstr->getNumOperands() - 1;
6267  for (int i=0; i < numArgs; ++i)
6268    argOpers[i] = &mInstr->getOperand(i+1);
6269
6270  // x86 address has 4 operands: base, index, scale, and displacement
6271  int lastAddrIndx = 3; // [0,3]
6272  int valArgIndx = 4;
6273
6274  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6275  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6276  for (int i=0; i <= lastAddrIndx; ++i)
6277    (*MIB).addOperand(*argOpers[i]);
6278
6279  // We only support register and immediate values
6280  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
6281         && "invalid operand");
6282
6283  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6284  if (argOpers[valArgIndx]->isReg())
6285    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6286  else
6287    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6288  (*MIB).addOperand(*argOpers[valArgIndx]);
6289
6290  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6291  MIB.addReg(t1);
6292
6293  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6294  MIB.addReg(t1);
6295  MIB.addReg(t2);
6296
6297  // Generate movc
6298  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6299  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6300  MIB.addReg(t2);
6301  MIB.addReg(t1);
6302
6303  // Cmp and exchange if none has modified the memory location
6304  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6305  for (int i=0; i <= lastAddrIndx; ++i)
6306    (*MIB).addOperand(*argOpers[i]);
6307  MIB.addReg(t3);
6308  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6309  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6310
6311  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6312  MIB.addReg(X86::EAX);
6313
6314  // insert branch
6315  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6316
6317  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
6318  return nextMBB;
6319}
6320
6321
6322MachineBasicBlock *
6323X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6324                                               MachineBasicBlock *BB) {
6325  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6326  switch (MI->getOpcode()) {
6327  default: assert(false && "Unexpected instr type to insert");
6328  case X86::CMOV_FR32:
6329  case X86::CMOV_FR64:
6330  case X86::CMOV_V4F32:
6331  case X86::CMOV_V2F64:
6332  case X86::CMOV_V2I64: {
6333    // To "insert" a SELECT_CC instruction, we actually have to insert the
6334    // diamond control-flow pattern.  The incoming instruction knows the
6335    // destination vreg to set, the condition code register to branch on, the
6336    // true/false values to select between, and a branch opcode to use.
6337    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6338    MachineFunction::iterator It = BB;
6339    ++It;
6340
6341    //  thisMBB:
6342    //  ...
6343    //   TrueVal = ...
6344    //   cmpTY ccX, r1, r2
6345    //   bCC copy1MBB
6346    //   fallthrough --> copy0MBB
6347    MachineBasicBlock *thisMBB = BB;
6348    MachineFunction *F = BB->getParent();
6349    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6350    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6351    unsigned Opc =
6352      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6353    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6354    F->insert(It, copy0MBB);
6355    F->insert(It, sinkMBB);
6356    // Update machine-CFG edges by transferring all successors of the current
6357    // block to the new block which will contain the Phi node for the select.
6358    sinkMBB->transferSuccessors(BB);
6359
6360    // Add the true and fallthrough blocks as its successors.
6361    BB->addSuccessor(copy0MBB);
6362    BB->addSuccessor(sinkMBB);
6363
6364    //  copy0MBB:
6365    //   %FalseValue = ...
6366    //   # fallthrough to sinkMBB
6367    BB = copy0MBB;
6368
6369    // Update machine-CFG edges
6370    BB->addSuccessor(sinkMBB);
6371
6372    //  sinkMBB:
6373    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6374    //  ...
6375    BB = sinkMBB;
6376    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6377      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6378      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6379
6380    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6381    return BB;
6382  }
6383
6384  case X86::FP32_TO_INT16_IN_MEM:
6385  case X86::FP32_TO_INT32_IN_MEM:
6386  case X86::FP32_TO_INT64_IN_MEM:
6387  case X86::FP64_TO_INT16_IN_MEM:
6388  case X86::FP64_TO_INT32_IN_MEM:
6389  case X86::FP64_TO_INT64_IN_MEM:
6390  case X86::FP80_TO_INT16_IN_MEM:
6391  case X86::FP80_TO_INT32_IN_MEM:
6392  case X86::FP80_TO_INT64_IN_MEM: {
6393    // Change the floating point control register to use "round towards zero"
6394    // mode when truncating to an integer value.
6395    MachineFunction *F = BB->getParent();
6396    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6397    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6398
6399    // Load the old value of the high byte of the control word...
6400    unsigned OldCW =
6401      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6402    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6403
6404    // Set the high part to be round to zero...
6405    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6406      .addImm(0xC7F);
6407
6408    // Reload the modified control word now...
6409    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6410
6411    // Restore the memory image of control word to original value
6412    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6413      .addReg(OldCW);
6414
6415    // Get the X86 opcode to use.
6416    unsigned Opc;
6417    switch (MI->getOpcode()) {
6418    default: assert(0 && "illegal opcode!");
6419    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6420    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6421    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6422    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6423    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6424    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6425    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6426    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6427    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6428    }
6429
6430    X86AddressMode AM;
6431    MachineOperand &Op = MI->getOperand(0);
6432    if (Op.isRegister()) {
6433      AM.BaseType = X86AddressMode::RegBase;
6434      AM.Base.Reg = Op.getReg();
6435    } else {
6436      AM.BaseType = X86AddressMode::FrameIndexBase;
6437      AM.Base.FrameIndex = Op.getIndex();
6438    }
6439    Op = MI->getOperand(1);
6440    if (Op.isImmediate())
6441      AM.Scale = Op.getImm();
6442    Op = MI->getOperand(2);
6443    if (Op.isImmediate())
6444      AM.IndexReg = Op.getImm();
6445    Op = MI->getOperand(3);
6446    if (Op.isGlobalAddress()) {
6447      AM.GV = Op.getGlobal();
6448    } else {
6449      AM.Disp = Op.getImm();
6450    }
6451    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6452                      .addReg(MI->getOperand(4).getReg());
6453
6454    // Reload the original control word now.
6455    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6456
6457    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6458    return BB;
6459  }
6460  case X86::ATOMAND32:
6461    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6462                                                       X86::AND32ri);
6463  case X86::ATOMOR32:
6464    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
6465                                                       X86::OR32ri);
6466  case X86::ATOMXOR32:
6467    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
6468                                                       X86::XOR32ri);
6469  case X86::ATOMNAND32:
6470    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6471                                               X86::AND32ri, true);
6472  case X86::ATOMMIN32:
6473    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
6474  case X86::ATOMMAX32:
6475    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
6476  case X86::ATOMUMIN32:
6477    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
6478  case X86::ATOMUMAX32:
6479    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
6480  }
6481}
6482
6483//===----------------------------------------------------------------------===//
6484//                           X86 Optimization Hooks
6485//===----------------------------------------------------------------------===//
6486
6487void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
6488                                                       const APInt &Mask,
6489                                                       APInt &KnownZero,
6490                                                       APInt &KnownOne,
6491                                                       const SelectionDAG &DAG,
6492                                                       unsigned Depth) const {
6493  unsigned Opc = Op.getOpcode();
6494  assert((Opc >= ISD::BUILTIN_OP_END ||
6495          Opc == ISD::INTRINSIC_WO_CHAIN ||
6496          Opc == ISD::INTRINSIC_W_CHAIN ||
6497          Opc == ISD::INTRINSIC_VOID) &&
6498         "Should use MaskedValueIsZero if you don't know whether Op"
6499         " is a target node!");
6500
6501  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
6502  switch (Opc) {
6503  default: break;
6504  case X86ISD::SETCC:
6505    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
6506                                       Mask.getBitWidth() - 1);
6507    break;
6508  }
6509}
6510
6511/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
6512/// node is a GlobalAddress + offset.
6513bool X86TargetLowering::isGAPlusOffset(SDNode *N,
6514                                       GlobalValue* &GA, int64_t &Offset) const{
6515  if (N->getOpcode() == X86ISD::Wrapper) {
6516    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
6517      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
6518      return true;
6519    }
6520  }
6521  return TargetLowering::isGAPlusOffset(N, GA, Offset);
6522}
6523
6524static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
6525                               const TargetLowering &TLI) {
6526  GlobalValue *GV;
6527  int64_t Offset = 0;
6528  if (TLI.isGAPlusOffset(Base, GV, Offset))
6529    return (GV->getAlignment() >= N && (Offset % N) == 0);
6530  // DAG combine handles the stack object case.
6531  return false;
6532}
6533
6534static bool EltsFromConsecutiveLoads(SDNode *N, SDOperand PermMask,
6535                                     unsigned NumElems, MVT EVT,
6536                                     SDNode *&Base,
6537                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
6538                                     const TargetLowering &TLI) {
6539  Base = NULL;
6540  for (unsigned i = 0; i < NumElems; ++i) {
6541    SDOperand Idx = PermMask.getOperand(i);
6542    if (Idx.getOpcode() == ISD::UNDEF) {
6543      if (!Base)
6544        return false;
6545      continue;
6546    }
6547
6548    SDOperand Elt = DAG.getShuffleScalarElt(N, i);
6549    if (!Elt.Val ||
6550        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.Val)))
6551      return false;
6552    if (!Base) {
6553      Base = Elt.Val;
6554      if (Base->getOpcode() == ISD::UNDEF)
6555        return false;
6556      continue;
6557    }
6558    if (Elt.getOpcode() == ISD::UNDEF)
6559      continue;
6560
6561    if (!TLI.isConsecutiveLoad(Elt.Val, Base,
6562                               EVT.getSizeInBits()/8, i, MFI))
6563      return false;
6564  }
6565  return true;
6566}
6567
6568/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
6569/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
6570/// if the load addresses are consecutive, non-overlapping, and in the right
6571/// order.
6572static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
6573                                       const TargetLowering &TLI) {
6574  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6575  MVT VT = N->getValueType(0);
6576  MVT EVT = VT.getVectorElementType();
6577  SDOperand PermMask = N->getOperand(2);
6578  unsigned NumElems = PermMask.getNumOperands();
6579  SDNode *Base = NULL;
6580  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
6581                                DAG, MFI, TLI))
6582    return SDOperand();
6583
6584  LoadSDNode *LD = cast<LoadSDNode>(Base);
6585  if (isBaseAlignmentOfN(16, Base->getOperand(1).Val, TLI))
6586    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6587                       LD->getSrcValueOffset(), LD->isVolatile());
6588  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6589                     LD->getSrcValueOffset(), LD->isVolatile(),
6590                     LD->getAlignment());
6591}
6592
6593/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
6594static SDOperand PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
6595                                           const X86Subtarget *Subtarget,
6596                                           const TargetLowering &TLI) {
6597  unsigned NumOps = N->getNumOperands();
6598
6599  // Ignore single operand BUILD_VECTOR.
6600  if (NumOps == 1)
6601    return SDOperand();
6602
6603  MVT VT = N->getValueType(0);
6604  MVT EVT = VT.getVectorElementType();
6605  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
6606    // We are looking for load i64 and zero extend. We want to transform
6607    // it before legalizer has a chance to expand it. Also look for i64
6608    // BUILD_PAIR bit casted to f64.
6609    return SDOperand();
6610  // This must be an insertion into a zero vector.
6611  SDOperand HighElt = N->getOperand(1);
6612  if (!isZeroNode(HighElt))
6613    return SDOperand();
6614
6615  // Value must be a load.
6616  SDNode *Base = N->getOperand(0).Val;
6617  if (!isa<LoadSDNode>(Base)) {
6618    if (Base->getOpcode() != ISD::BIT_CONVERT)
6619      return SDOperand();
6620    Base = Base->getOperand(0).Val;
6621    if (!isa<LoadSDNode>(Base))
6622      return SDOperand();
6623  }
6624
6625  // Transform it into VZEXT_LOAD addr.
6626  LoadSDNode *LD = cast<LoadSDNode>(Base);
6627
6628  // Load must not be an extload.
6629  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
6630    return SDOperand();
6631
6632  return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr());
6633}
6634
6635/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6636static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6637                                      const X86Subtarget *Subtarget) {
6638  SDOperand Cond = N->getOperand(0);
6639
6640  // If we have SSE[12] support, try to form min/max nodes.
6641  if (Subtarget->hasSSE2() &&
6642      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6643    if (Cond.getOpcode() == ISD::SETCC) {
6644      // Get the LHS/RHS of the select.
6645      SDOperand LHS = N->getOperand(1);
6646      SDOperand RHS = N->getOperand(2);
6647      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6648
6649      unsigned Opcode = 0;
6650      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6651        switch (CC) {
6652        default: break;
6653        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6654        case ISD::SETULE:
6655        case ISD::SETLE:
6656          if (!UnsafeFPMath) break;
6657          // FALL THROUGH.
6658        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6659        case ISD::SETLT:
6660          Opcode = X86ISD::FMIN;
6661          break;
6662
6663        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6664        case ISD::SETUGT:
6665        case ISD::SETGT:
6666          if (!UnsafeFPMath) break;
6667          // FALL THROUGH.
6668        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6669        case ISD::SETGE:
6670          Opcode = X86ISD::FMAX;
6671          break;
6672        }
6673      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6674        switch (CC) {
6675        default: break;
6676        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6677        case ISD::SETUGT:
6678        case ISD::SETGT:
6679          if (!UnsafeFPMath) break;
6680          // FALL THROUGH.
6681        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6682        case ISD::SETGE:
6683          Opcode = X86ISD::FMIN;
6684          break;
6685
6686        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6687        case ISD::SETULE:
6688        case ISD::SETLE:
6689          if (!UnsafeFPMath) break;
6690          // FALL THROUGH.
6691        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6692        case ISD::SETLT:
6693          Opcode = X86ISD::FMAX;
6694          break;
6695        }
6696      }
6697
6698      if (Opcode)
6699        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6700    }
6701
6702  }
6703
6704  return SDOperand();
6705}
6706
6707/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6708static SDOperand PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
6709                                     const X86Subtarget *Subtarget) {
6710  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6711  // the FP state in cases where an emms may be missing.
6712  // A preferable solution to the general problem is to figure out the right
6713  // places to insert EMMS.  This qualifies as a quick hack.
6714  StoreSDNode *St = cast<StoreSDNode>(N);
6715  if (St->getValue().getValueType().isVector() &&
6716      St->getValue().getValueType().getSizeInBits() == 64 &&
6717      isa<LoadSDNode>(St->getValue()) &&
6718      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6719      St->getChain().hasOneUse() && !St->isVolatile()) {
6720    SDNode* LdVal = St->getValue().Val;
6721    LoadSDNode *Ld = 0;
6722    int TokenFactorIndex = -1;
6723    SmallVector<SDOperand, 8> Ops;
6724    SDNode* ChainVal = St->getChain().Val;
6725    // Must be a store of a load.  We currently handle two cases:  the load
6726    // is a direct child, and it's under an intervening TokenFactor.  It is
6727    // possible to dig deeper under nested TokenFactors.
6728    if (ChainVal == LdVal)
6729      Ld = cast<LoadSDNode>(St->getChain());
6730    else if (St->getValue().hasOneUse() &&
6731             ChainVal->getOpcode() == ISD::TokenFactor) {
6732      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6733        if (ChainVal->getOperand(i).Val == LdVal) {
6734          TokenFactorIndex = i;
6735          Ld = cast<LoadSDNode>(St->getValue());
6736        } else
6737          Ops.push_back(ChainVal->getOperand(i));
6738      }
6739    }
6740    if (Ld) {
6741      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6742      if (Subtarget->is64Bit()) {
6743        SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6744                                      Ld->getBasePtr(), Ld->getSrcValue(),
6745                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6746                                      Ld->getAlignment());
6747        SDOperand NewChain = NewLd.getValue(1);
6748        if (TokenFactorIndex != -1) {
6749          Ops.push_back(NewChain);
6750          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6751                                 Ops.size());
6752        }
6753        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6754                            St->getSrcValue(), St->getSrcValueOffset(),
6755                            St->isVolatile(), St->getAlignment());
6756      }
6757
6758      // Otherwise, lower to two 32-bit copies.
6759      SDOperand LoAddr = Ld->getBasePtr();
6760      SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6761                                     DAG.getConstant(4, MVT::i32));
6762
6763      SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6764                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6765                                   Ld->isVolatile(), Ld->getAlignment());
6766      SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6767                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6768                                   Ld->isVolatile(),
6769                                   MinAlign(Ld->getAlignment(), 4));
6770
6771      SDOperand NewChain = LoLd.getValue(1);
6772      if (TokenFactorIndex != -1) {
6773        Ops.push_back(LoLd);
6774        Ops.push_back(HiLd);
6775        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6776                               Ops.size());
6777      }
6778
6779      LoAddr = St->getBasePtr();
6780      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6781                           DAG.getConstant(4, MVT::i32));
6782
6783      SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6784                          St->getSrcValue(), St->getSrcValueOffset(),
6785                          St->isVolatile(), St->getAlignment());
6786      SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6787                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6788                                    St->isVolatile(),
6789                                    MinAlign(St->getAlignment(), 4));
6790      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6791    }
6792  }
6793  return SDOperand();
6794}
6795
6796/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6797/// X86ISD::FXOR nodes.
6798static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6799  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6800  // F[X]OR(0.0, x) -> x
6801  // F[X]OR(x, 0.0) -> x
6802  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6803    if (C->getValueAPF().isPosZero())
6804      return N->getOperand(1);
6805  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6806    if (C->getValueAPF().isPosZero())
6807      return N->getOperand(0);
6808  return SDOperand();
6809}
6810
6811/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6812static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6813  // FAND(0.0, x) -> 0.0
6814  // FAND(x, 0.0) -> 0.0
6815  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6816    if (C->getValueAPF().isPosZero())
6817      return N->getOperand(0);
6818  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6819    if (C->getValueAPF().isPosZero())
6820      return N->getOperand(1);
6821  return SDOperand();
6822}
6823
6824
6825SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6826                                               DAGCombinerInfo &DCI) const {
6827  SelectionDAG &DAG = DCI.DAG;
6828  switch (N->getOpcode()) {
6829  default: break;
6830  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
6831  case ISD::BUILD_VECTOR:
6832    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
6833  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6834  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
6835  case X86ISD::FXOR:
6836  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6837  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6838  }
6839
6840  return SDOperand();
6841}
6842
6843//===----------------------------------------------------------------------===//
6844//                           X86 Inline Assembly Support
6845//===----------------------------------------------------------------------===//
6846
6847/// getConstraintType - Given a constraint letter, return the type of
6848/// constraint it is for this target.
6849X86TargetLowering::ConstraintType
6850X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6851  if (Constraint.size() == 1) {
6852    switch (Constraint[0]) {
6853    case 'A':
6854    case 'f':
6855    case 'r':
6856    case 'R':
6857    case 'l':
6858    case 'q':
6859    case 'Q':
6860    case 'x':
6861    case 'y':
6862    case 'Y':
6863      return C_RegisterClass;
6864    default:
6865      break;
6866    }
6867  }
6868  return TargetLowering::getConstraintType(Constraint);
6869}
6870
6871/// LowerXConstraint - try to replace an X constraint, which matches anything,
6872/// with another that has more specific requirements based on the type of the
6873/// corresponding operand.
6874const char *X86TargetLowering::
6875LowerXConstraint(MVT ConstraintVT) const {
6876  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
6877  // 'f' like normal targets.
6878  if (ConstraintVT.isFloatingPoint()) {
6879    if (Subtarget->hasSSE2())
6880      return "Y";
6881    if (Subtarget->hasSSE1())
6882      return "x";
6883  }
6884
6885  return TargetLowering::LowerXConstraint(ConstraintVT);
6886}
6887
6888/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6889/// vector.  If it is invalid, don't add anything to Ops.
6890void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6891                                                     char Constraint,
6892                                                     std::vector<SDOperand>&Ops,
6893                                                     SelectionDAG &DAG) const {
6894  SDOperand Result(0, 0);
6895
6896  switch (Constraint) {
6897  default: break;
6898  case 'I':
6899    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6900      if (C->getValue() <= 31) {
6901        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6902        break;
6903      }
6904    }
6905    return;
6906  case 'N':
6907    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6908      if (C->getValue() <= 255) {
6909        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6910        break;
6911      }
6912    }
6913    return;
6914  case 'i': {
6915    // Literal immediates are always ok.
6916    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6917      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6918      break;
6919    }
6920
6921    // If we are in non-pic codegen mode, we allow the address of a global (with
6922    // an optional displacement) to be used with 'i'.
6923    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6924    int64_t Offset = 0;
6925
6926    // Match either (GA) or (GA+C)
6927    if (GA) {
6928      Offset = GA->getOffset();
6929    } else if (Op.getOpcode() == ISD::ADD) {
6930      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6931      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6932      if (C && GA) {
6933        Offset = GA->getOffset()+C->getValue();
6934      } else {
6935        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6936        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6937        if (C && GA)
6938          Offset = GA->getOffset()+C->getValue();
6939        else
6940          C = 0, GA = 0;
6941      }
6942    }
6943
6944    if (GA) {
6945      // If addressing this global requires a load (e.g. in PIC mode), we can't
6946      // match.
6947      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6948                                         false))
6949        return;
6950
6951      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6952                                      Offset);
6953      Result = Op;
6954      break;
6955    }
6956
6957    // Otherwise, not valid for this mode.
6958    return;
6959  }
6960  }
6961
6962  if (Result.Val) {
6963    Ops.push_back(Result);
6964    return;
6965  }
6966  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6967}
6968
6969std::vector<unsigned> X86TargetLowering::
6970getRegClassForInlineAsmConstraint(const std::string &Constraint,
6971                                  MVT VT) const {
6972  if (Constraint.size() == 1) {
6973    // FIXME: not handling fp-stack yet!
6974    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6975    default: break;  // Unknown constraint letter
6976    case 'A':   // EAX/EDX
6977      if (VT == MVT::i32 || VT == MVT::i64)
6978        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6979      break;
6980    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6981    case 'Q':   // Q_REGS
6982      if (VT == MVT::i32)
6983        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6984      else if (VT == MVT::i16)
6985        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6986      else if (VT == MVT::i8)
6987        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6988      else if (VT == MVT::i64)
6989        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6990      break;
6991    }
6992  }
6993
6994  return std::vector<unsigned>();
6995}
6996
6997std::pair<unsigned, const TargetRegisterClass*>
6998X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6999                                                MVT VT) const {
7000  // First, see if this is a constraint that directly corresponds to an LLVM
7001  // register class.
7002  if (Constraint.size() == 1) {
7003    // GCC Constraint Letters
7004    switch (Constraint[0]) {
7005    default: break;
7006    case 'r':   // GENERAL_REGS
7007    case 'R':   // LEGACY_REGS
7008    case 'l':   // INDEX_REGS
7009      if (VT == MVT::i64 && Subtarget->is64Bit())
7010        return std::make_pair(0U, X86::GR64RegisterClass);
7011      if (VT == MVT::i32)
7012        return std::make_pair(0U, X86::GR32RegisterClass);
7013      else if (VT == MVT::i16)
7014        return std::make_pair(0U, X86::GR16RegisterClass);
7015      else if (VT == MVT::i8)
7016        return std::make_pair(0U, X86::GR8RegisterClass);
7017      break;
7018    case 'f':  // FP Stack registers.
7019      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7020      // value to the correct fpstack register class.
7021      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7022        return std::make_pair(0U, X86::RFP32RegisterClass);
7023      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7024        return std::make_pair(0U, X86::RFP64RegisterClass);
7025      return std::make_pair(0U, X86::RFP80RegisterClass);
7026    case 'y':   // MMX_REGS if MMX allowed.
7027      if (!Subtarget->hasMMX()) break;
7028      return std::make_pair(0U, X86::VR64RegisterClass);
7029      break;
7030    case 'Y':   // SSE_REGS if SSE2 allowed
7031      if (!Subtarget->hasSSE2()) break;
7032      // FALL THROUGH.
7033    case 'x':   // SSE_REGS if SSE1 allowed
7034      if (!Subtarget->hasSSE1()) break;
7035
7036      switch (VT.getSimpleVT()) {
7037      default: break;
7038      // Scalar SSE types.
7039      case MVT::f32:
7040      case MVT::i32:
7041        return std::make_pair(0U, X86::FR32RegisterClass);
7042      case MVT::f64:
7043      case MVT::i64:
7044        return std::make_pair(0U, X86::FR64RegisterClass);
7045      // Vector types.
7046      case MVT::v16i8:
7047      case MVT::v8i16:
7048      case MVT::v4i32:
7049      case MVT::v2i64:
7050      case MVT::v4f32:
7051      case MVT::v2f64:
7052        return std::make_pair(0U, X86::VR128RegisterClass);
7053      }
7054      break;
7055    }
7056  }
7057
7058  // Use the default implementation in TargetLowering to convert the register
7059  // constraint into a member of a register class.
7060  std::pair<unsigned, const TargetRegisterClass*> Res;
7061  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7062
7063  // Not found as a standard register?
7064  if (Res.second == 0) {
7065    // GCC calls "st(0)" just plain "st".
7066    if (StringsEqualNoCase("{st}", Constraint)) {
7067      Res.first = X86::ST0;
7068      Res.second = X86::RFP80RegisterClass;
7069    }
7070
7071    return Res;
7072  }
7073
7074  // Otherwise, check to see if this is a register class of the wrong value
7075  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
7076  // turn into {ax},{dx}.
7077  if (Res.second->hasType(VT))
7078    return Res;   // Correct type already, nothing to do.
7079
7080  // All of the single-register GCC register classes map their values onto
7081  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
7082  // really want an 8-bit or 32-bit register, map to the appropriate register
7083  // class and return the appropriate register.
7084  if (Res.second != X86::GR16RegisterClass)
7085    return Res;
7086
7087  if (VT == MVT::i8) {
7088    unsigned DestReg = 0;
7089    switch (Res.first) {
7090    default: break;
7091    case X86::AX: DestReg = X86::AL; break;
7092    case X86::DX: DestReg = X86::DL; break;
7093    case X86::CX: DestReg = X86::CL; break;
7094    case X86::BX: DestReg = X86::BL; break;
7095    }
7096    if (DestReg) {
7097      Res.first = DestReg;
7098      Res.second = Res.second = X86::GR8RegisterClass;
7099    }
7100  } else if (VT == MVT::i32) {
7101    unsigned DestReg = 0;
7102    switch (Res.first) {
7103    default: break;
7104    case X86::AX: DestReg = X86::EAX; break;
7105    case X86::DX: DestReg = X86::EDX; break;
7106    case X86::CX: DestReg = X86::ECX; break;
7107    case X86::BX: DestReg = X86::EBX; break;
7108    case X86::SI: DestReg = X86::ESI; break;
7109    case X86::DI: DestReg = X86::EDI; break;
7110    case X86::BP: DestReg = X86::EBP; break;
7111    case X86::SP: DestReg = X86::ESP; break;
7112    }
7113    if (DestReg) {
7114      Res.first = DestReg;
7115      Res.second = Res.second = X86::GR32RegisterClass;
7116    }
7117  } else if (VT == MVT::i64) {
7118    unsigned DestReg = 0;
7119    switch (Res.first) {
7120    default: break;
7121    case X86::AX: DestReg = X86::RAX; break;
7122    case X86::DX: DestReg = X86::RDX; break;
7123    case X86::CX: DestReg = X86::RCX; break;
7124    case X86::BX: DestReg = X86::RBX; break;
7125    case X86::SI: DestReg = X86::RSI; break;
7126    case X86::DI: DestReg = X86::RDI; break;
7127    case X86::BP: DestReg = X86::RBP; break;
7128    case X86::SP: DestReg = X86::RSP; break;
7129    }
7130    if (DestReg) {
7131      Res.first = DestReg;
7132      Res.second = Res.second = X86::GR64RegisterClass;
7133    }
7134  }
7135
7136  return Res;
7137}
7138