X86ISelLowering.cpp revision 8b4b874cc67ae4cefc0e723c8f93cf8d6101fcb2
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44static cl::opt<bool>
45DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
46
47// Forward declarations.
48static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG, DebugLoc dl);
49
50X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
51  : TargetLowering(TM) {
52  Subtarget = &TM.getSubtarget<X86Subtarget>();
53  X86ScalarSSEf64 = Subtarget->hasSSE2();
54  X86ScalarSSEf32 = Subtarget->hasSSE1();
55  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
56
57  bool Fast = false;
58
59  RegInfo = TM.getRegisterInfo();
60  TD = getTargetData();
61
62  // Set up the TargetLowering object.
63
64  // X86 is weird, it always uses i8 for shift amounts and setcc results.
65  setShiftAmountType(MVT::i8);
66  setBooleanContents(ZeroOrOneBooleanContent);
67  setSchedulingPreference(SchedulingForRegPressure);
68  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
69  setStackPointerRegisterToSaveRestore(X86StackPtr);
70
71  if (Subtarget->isTargetDarwin()) {
72    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73    setUseUnderscoreSetJmp(false);
74    setUseUnderscoreLongJmp(false);
75  } else if (Subtarget->isTargetMingw()) {
76    // MS runtime is weird: it exports _setjmp, but longjmp!
77    setUseUnderscoreSetJmp(true);
78    setUseUnderscoreLongJmp(false);
79  } else {
80    setUseUnderscoreSetJmp(true);
81    setUseUnderscoreLongJmp(true);
82  }
83
84  // Set up the register classes.
85  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
86  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
87  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
88  if (Subtarget->is64Bit())
89    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
90
91  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92
93  // We don't accept any truncstore of integer registers.
94  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
95  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
96  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
97  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
98  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
99  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
100
101  // SETOEQ and SETUNE require checking two conditions.
102  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
103  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
104  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
105  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
106  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
107  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
108
109  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110  // operation.
111  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
112  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
113  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
114
115  if (Subtarget->is64Bit()) {
116    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
117    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
118  } else {
119    if (!UseSoftFloat && !NoImplicitFloat && X86ScalarSSEf64) {
120      // We have an impenetrably clever algorithm for ui64->double only.
121      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
122
123      // We have faster algorithm for ui32->single only.
124      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
125    } else {
126      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
127    }
128  }
129
130  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
131  // this operation.
132  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
133  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
134
135  if (!UseSoftFloat && !NoImplicitFloat) {
136    // SSE has no i16 to fp conversion, only i32
137    if (X86ScalarSSEf32) {
138      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
139      // f32 and f64 cases are Legal, f80 case is not
140      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
141    } else {
142      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
143      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
144    }
145  } else {
146    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
147    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
148  }
149
150  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
151  // are Legal, f80 is custom lowered.
152  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
153  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
154
155  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
156  // this operation.
157  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
158  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
159
160  if (X86ScalarSSEf32) {
161    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
162    // f32 and f64 cases are Legal, f80 case is not
163    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
164  } else {
165    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
166    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
167  }
168
169  // Handle FP_TO_UINT by promoting the destination to a larger signed
170  // conversion.
171  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
172  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
173  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
174
175  if (Subtarget->is64Bit()) {
176    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
177    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
178  } else {
179    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
180      // Expand FP_TO_UINT into a select.
181      // FIXME: We would like to use a Custom expander here eventually to do
182      // the optimal thing for SSE vs. the default expansion in the legalizer.
183      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
184    else
185      // With SSE3 we can use fisttpll to convert to a signed i64.
186      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
187  }
188
189  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
190  if (!X86ScalarSSEf64) {
191    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
192    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
193  }
194
195  // Scalar integer divide and remainder are lowered to use operations that
196  // produce two results, to match the available instructions. This exposes
197  // the two-result form to trivial CSE, which is able to combine x/y and x%y
198  // into a single instruction.
199  //
200  // Scalar integer multiply-high is also lowered to use two-result
201  // operations, to match the available instructions. However, plain multiply
202  // (low) operations are left as Legal, as there are single-result
203  // instructions for this in x86. Using the two-result multiply instructions
204  // when both high and low results are needed must be arranged by dagcombine.
205  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
206  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
207  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
208  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
209  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
210  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
211  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
212  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
213  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
214  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
215  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
216  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
217  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
218  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
219  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
220  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
221  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
222  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
223  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
224  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
225  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
226  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
227  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
228  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
229
230  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
231  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
232  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
233  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
234  if (Subtarget->is64Bit())
235    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
236  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
237  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
238  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
239  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
240  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
241  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
242  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
243  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
244
245  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
246  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
247  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
248  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
249  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
250  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
251  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
252  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
253  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
256    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
257    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
258  }
259
260  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
261  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
262
263  // These should be promoted to a larger select which is supported.
264  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
265  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
266  // X86 wants to expand cmov itself.
267  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
268  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
269  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
270  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
271  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
272  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
273  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
274  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
275  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
276  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
277  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
278  if (Subtarget->is64Bit()) {
279    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
280    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
281  }
282  // X86 ret instruction may pop stack.
283  setOperationAction(ISD::RET             , MVT::Other, Custom);
284  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
285
286  // Darwin ABI issue.
287  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
288  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
289  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
290  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
291  if (Subtarget->is64Bit())
292    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
293  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
294  if (Subtarget->is64Bit()) {
295    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
296    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
297    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
298    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
299  }
300  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
301  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
302  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
303  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
304  if (Subtarget->is64Bit()) {
305    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
306    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
307    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
308  }
309
310  if (Subtarget->hasSSE1())
311    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
312
313  if (!Subtarget->hasSSE2())
314    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
315
316  // Expand certain atomics
317  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
318  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
319  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
320  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
321
322  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
323  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
324  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
325  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
326
327  if (!Subtarget->is64Bit()) {
328    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
329    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
330    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
331    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
332    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
333    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
334    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
335  }
336
337  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
338  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
339  // FIXME - use subtarget debug flags
340  if (!Subtarget->isTargetDarwin() &&
341      !Subtarget->isTargetELF() &&
342      !Subtarget->isTargetCygMing()) {
343    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
344    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
345  }
346
347  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
348  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
349  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
350  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
351  if (Subtarget->is64Bit()) {
352    setExceptionPointerRegister(X86::RAX);
353    setExceptionSelectorRegister(X86::RDX);
354  } else {
355    setExceptionPointerRegister(X86::EAX);
356    setExceptionSelectorRegister(X86::EDX);
357  }
358  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
359  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
360
361  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
362
363  setOperationAction(ISD::TRAP, MVT::Other, Legal);
364
365  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
366  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
367  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
368  if (Subtarget->is64Bit()) {
369    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
370    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
371  } else {
372    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
373    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
374  }
375
376  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
377  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
378  if (Subtarget->is64Bit())
379    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
380  if (Subtarget->isTargetCygMing())
381    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
382  else
383    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
384
385  if (!UseSoftFloat && X86ScalarSSEf64) {
386    // f32 and f64 use SSE.
387    // Set up the FP register classes.
388    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
389    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
390
391    // Use ANDPD to simulate FABS.
392    setOperationAction(ISD::FABS , MVT::f64, Custom);
393    setOperationAction(ISD::FABS , MVT::f32, Custom);
394
395    // Use XORP to simulate FNEG.
396    setOperationAction(ISD::FNEG , MVT::f64, Custom);
397    setOperationAction(ISD::FNEG , MVT::f32, Custom);
398
399    // Use ANDPD and ORPD to simulate FCOPYSIGN.
400    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
401    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
402
403    // We don't support sin/cos/fmod
404    setOperationAction(ISD::FSIN , MVT::f64, Expand);
405    setOperationAction(ISD::FCOS , MVT::f64, Expand);
406    setOperationAction(ISD::FSIN , MVT::f32, Expand);
407    setOperationAction(ISD::FCOS , MVT::f32, Expand);
408
409    // Expand FP immediates into loads from the stack, except for the special
410    // cases we handle.
411    addLegalFPImmediate(APFloat(+0.0)); // xorpd
412    addLegalFPImmediate(APFloat(+0.0f)); // xorps
413
414    // Floating truncations from f80 and extensions to f80 go through memory.
415    // If optimizing, we lie about this though and handle it in
416    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
417    if (Fast) {
418      setConvertAction(MVT::f32, MVT::f80, Expand);
419      setConvertAction(MVT::f64, MVT::f80, Expand);
420      setConvertAction(MVT::f80, MVT::f32, Expand);
421      setConvertAction(MVT::f80, MVT::f64, Expand);
422    }
423  } else if (!UseSoftFloat && X86ScalarSSEf32) {
424    // Use SSE for f32, x87 for f64.
425    // Set up the FP register classes.
426    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
427    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
428
429    // Use ANDPS to simulate FABS.
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f32, Custom);
434
435    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
436
437    // Use ANDPS and ORPS to simulate FCOPYSIGN.
438    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
439    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
440
441    // We don't support sin/cos/fmod
442    setOperationAction(ISD::FSIN , MVT::f32, Expand);
443    setOperationAction(ISD::FCOS , MVT::f32, Expand);
444
445    // Special cases we handle for FP constants.
446    addLegalFPImmediate(APFloat(+0.0f)); // xorps
447    addLegalFPImmediate(APFloat(+0.0)); // FLD0
448    addLegalFPImmediate(APFloat(+1.0)); // FLD1
449    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
450    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
451
452    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
453    // this though and handle it in InstructionSelectPreprocess so that
454    // dagcombine2 can hack on these.
455    if (Fast) {
456      setConvertAction(MVT::f32, MVT::f64, Expand);
457      setConvertAction(MVT::f32, MVT::f80, Expand);
458      setConvertAction(MVT::f80, MVT::f32, Expand);
459      setConvertAction(MVT::f64, MVT::f32, Expand);
460      // And x87->x87 truncations also.
461      setConvertAction(MVT::f80, MVT::f64, Expand);
462    }
463
464    if (!UnsafeFPMath) {
465      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
466      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
467    }
468  } else if (!UseSoftFloat) {
469    // f32 and f64 in x87.
470    // Set up the FP register classes.
471    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
472    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
473
474    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
475    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
477    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
478
479    // Floating truncations go through memory.  If optimizing, we lie about
480    // this though and handle it in InstructionSelectPreprocess so that
481    // dagcombine2 can hack on these.
482    if (Fast) {
483      setConvertAction(MVT::f80, MVT::f32, Expand);
484      setConvertAction(MVT::f64, MVT::f32, Expand);
485      setConvertAction(MVT::f80, MVT::f64, Expand);
486    }
487
488    if (!UnsafeFPMath) {
489      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
490      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
491    }
492    addLegalFPImmediate(APFloat(+0.0)); // FLD0
493    addLegalFPImmediate(APFloat(+1.0)); // FLD1
494    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
495    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
496    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
497    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
498    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
499    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
500  }
501
502  // Long double always uses X87.
503  if (!UseSoftFloat && !NoImplicitFloat) {
504    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
505    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
506    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
507    {
508      bool ignored;
509      APFloat TmpFlt(+0.0);
510      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
511                     &ignored);
512      addLegalFPImmediate(TmpFlt);  // FLD0
513      TmpFlt.changeSign();
514      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
515      APFloat TmpFlt2(+1.0);
516      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                      &ignored);
518      addLegalFPImmediate(TmpFlt2);  // FLD1
519      TmpFlt2.changeSign();
520      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
521    }
522
523    if (!UnsafeFPMath) {
524      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
525      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
526    }
527  }
528
529  // Always use a library call for pow.
530  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
531  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
532  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
533
534  setOperationAction(ISD::FLOG, MVT::f80, Expand);
535  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
536  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
537  setOperationAction(ISD::FEXP, MVT::f80, Expand);
538  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
539
540  // First set operation action for all vector types to either promote
541  // (for widening) or expand (for scalarization). Then we will selectively
542  // turn on ones that can be effectively codegen'd.
543  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
544       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
545    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
560    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
588  }
589
590  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
591  // with -msoft-float, disable use of MMX as well.
592  if (!UseSoftFloat && !NoImplicitFloat && !DisableMMX && Subtarget->hasMMX()) {
593    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
594    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
595    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
596    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
597    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
598
599    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
600    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
601    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
602    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
603
604    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
605    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
606    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
607    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
608
609    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
610    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
611
612    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
613    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
614    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
615    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
616    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
617    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
618    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
619
620    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
621    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
622    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
623    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
624    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
625    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
626    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
627
628    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
629    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
630    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
631    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
632    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
633    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
634    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
635
636    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
637    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
638    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
639    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
640    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
641    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
642    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
643    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
644    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
645
646    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
647    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
648    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
649    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
650    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
651
652    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
653    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
654    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
655    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
656
657    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
658    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
659    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
660    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
661
662    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
663
664    setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
665    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
666    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
667    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
668    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
669    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
670  }
671
672  if (!UseSoftFloat && !NoImplicitFloat && Subtarget->hasSSE1()) {
673    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
674
675    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
676    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
677    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
678    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
679    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
680    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
681    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
682    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
683    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
684    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
685    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
686    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
687  }
688
689  if (!UseSoftFloat && !NoImplicitFloat && Subtarget->hasSSE2()) {
690    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
691
692    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
693    // registers cannot be used even for integer operations.
694    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
695    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
696    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
697    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
698
699    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
700    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
701    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
702    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
703    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
704    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
705    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
706    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
707    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
708    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
709    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
710    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
711    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
712    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
713    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
714    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
715
716    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
717    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
718    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
719    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
720
721    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
722    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
723    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
724    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
726
727    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
728    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
729      MVT VT = (MVT::SimpleValueType)i;
730      // Do not attempt to custom lower non-power-of-2 vectors
731      if (!isPowerOf2_32(VT.getVectorNumElements()))
732        continue;
733      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
734      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
735      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
736    }
737
738    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
739    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
740    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
741    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
742    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
743    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
744
745    if (Subtarget->is64Bit()) {
746      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
747      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
748    }
749
750    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
751    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
752      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
753      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
754      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
755      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
756      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
757      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
758      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
759      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
760      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
761      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
762    }
763
764    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
765
766    // Custom lower v2i64 and v2f64 selects.
767    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
768    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
769    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
770    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
771
772  }
773
774  if (Subtarget->hasSSE41()) {
775    // FIXME: Do we need to handle scalar-to-vector here?
776    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
777
778    // i8 and i16 vectors are custom , because the source register and source
779    // source memory operand types are not the same width.  f32 vectors are
780    // custom since the immediate controlling the insert encodes additional
781    // information.
782    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
783    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
784    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
785    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
786
787    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
788    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
789    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
790    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
791
792    if (Subtarget->is64Bit()) {
793      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
794      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
795    }
796  }
797
798  if (Subtarget->hasSSE42()) {
799    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
800  }
801
802  // We want to custom lower some of our intrinsics.
803  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
804
805  // Add/Sub/Mul with overflow operations are custom lowered.
806  setOperationAction(ISD::SADDO, MVT::i32, Custom);
807  setOperationAction(ISD::SADDO, MVT::i64, Custom);
808  setOperationAction(ISD::UADDO, MVT::i32, Custom);
809  setOperationAction(ISD::UADDO, MVT::i64, Custom);
810  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
811  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
812  setOperationAction(ISD::USUBO, MVT::i32, Custom);
813  setOperationAction(ISD::USUBO, MVT::i64, Custom);
814  setOperationAction(ISD::SMULO, MVT::i32, Custom);
815  setOperationAction(ISD::SMULO, MVT::i64, Custom);
816  setOperationAction(ISD::UMULO, MVT::i32, Custom);
817  setOperationAction(ISD::UMULO, MVT::i64, Custom);
818
819  // We have target-specific dag combine patterns for the following nodes:
820  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
821  setTargetDAGCombine(ISD::BUILD_VECTOR);
822  setTargetDAGCombine(ISD::SELECT);
823  setTargetDAGCombine(ISD::SHL);
824  setTargetDAGCombine(ISD::SRA);
825  setTargetDAGCombine(ISD::SRL);
826  setTargetDAGCombine(ISD::STORE);
827
828  computeRegisterProperties();
829
830  // FIXME: These should be based on subtarget info. Plus, the values should
831  // be smaller when we are in optimizing for size mode.
832  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
833  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
834  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
835  allowUnalignedMemoryAccesses = true; // x86 supports it!
836  setPrefLoopAlignment(16);
837}
838
839
840MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
841  return MVT::i8;
842}
843
844
845/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
846/// the desired ByVal argument alignment.
847static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
848  if (MaxAlign == 16)
849    return;
850  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
851    if (VTy->getBitWidth() == 128)
852      MaxAlign = 16;
853  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
854    unsigned EltAlign = 0;
855    getMaxByValAlign(ATy->getElementType(), EltAlign);
856    if (EltAlign > MaxAlign)
857      MaxAlign = EltAlign;
858  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
859    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
860      unsigned EltAlign = 0;
861      getMaxByValAlign(STy->getElementType(i), EltAlign);
862      if (EltAlign > MaxAlign)
863        MaxAlign = EltAlign;
864      if (MaxAlign == 16)
865        break;
866    }
867  }
868  return;
869}
870
871/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
872/// function arguments in the caller parameter area. For X86, aggregates
873/// that contain SSE vectors are placed at 16-byte boundaries while the rest
874/// are at 4-byte boundaries.
875unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
876  if (Subtarget->is64Bit()) {
877    // Max of 8 and alignment of type.
878    unsigned TyAlign = TD->getABITypeAlignment(Ty);
879    if (TyAlign > 8)
880      return TyAlign;
881    return 8;
882  }
883
884  unsigned Align = 4;
885  if (Subtarget->hasSSE1())
886    getMaxByValAlign(Ty, Align);
887  return Align;
888}
889
890/// getOptimalMemOpType - Returns the target specific optimal type for load
891/// and store operations as a result of memset, memcpy, and memmove
892/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
893/// determining it.
894MVT
895X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
896                                       bool isSrcConst, bool isSrcStr) const {
897  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
898  // linux.  This is because the stack realignment code can't handle certain
899  // cases like PR2962.  This should be removed when PR2962 is fixed.
900  if (!NoImplicitFloat && Subtarget->getStackAlignment() >= 16) {
901    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
902      return MVT::v4i32;
903    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
904      return MVT::v4f32;
905  }
906  if (Subtarget->is64Bit() && Size >= 8)
907    return MVT::i64;
908  return MVT::i32;
909}
910
911/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
912/// jumptable.
913SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
914                                                      SelectionDAG &DAG) const {
915  if (usesGlobalOffsetTable())
916    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
917  if (!Subtarget->isPICStyleRIPRel())
918    // This doesn't have DebugLoc associated with it, but is not really the
919    // same as a Register.
920    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
921                       getPointerTy());
922  return Table;
923}
924
925//===----------------------------------------------------------------------===//
926//               Return Value Calling Convention Implementation
927//===----------------------------------------------------------------------===//
928
929#include "X86GenCallingConv.inc"
930
931/// LowerRET - Lower an ISD::RET node.
932SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
933  DebugLoc dl = Op.getDebugLoc();
934  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
935
936  SmallVector<CCValAssign, 16> RVLocs;
937  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
938  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
939  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
940  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
941
942  // If this is the first return lowered for this function, add the regs to the
943  // liveout set for the function.
944  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
945    for (unsigned i = 0; i != RVLocs.size(); ++i)
946      if (RVLocs[i].isRegLoc())
947        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
948  }
949  SDValue Chain = Op.getOperand(0);
950
951  // Handle tail call return.
952  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
953  if (Chain.getOpcode() == X86ISD::TAILCALL) {
954    SDValue TailCall = Chain;
955    SDValue TargetAddress = TailCall.getOperand(1);
956    SDValue StackAdjustment = TailCall.getOperand(2);
957    assert(((TargetAddress.getOpcode() == ISD::Register &&
958               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
959                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
960              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
961              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
962             "Expecting an global address, external symbol, or register");
963    assert(StackAdjustment.getOpcode() == ISD::Constant &&
964           "Expecting a const value");
965
966    SmallVector<SDValue,8> Operands;
967    Operands.push_back(Chain.getOperand(0));
968    Operands.push_back(TargetAddress);
969    Operands.push_back(StackAdjustment);
970    // Copy registers used by the call. Last operand is a flag so it is not
971    // copied.
972    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
973      Operands.push_back(Chain.getOperand(i));
974    }
975    return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
976                       Operands.size());
977  }
978
979  // Regular return.
980  SDValue Flag;
981
982  SmallVector<SDValue, 6> RetOps;
983  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
984  // Operand #1 = Bytes To Pop
985  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
986
987  // Copy the result values into the output registers.
988  for (unsigned i = 0; i != RVLocs.size(); ++i) {
989    CCValAssign &VA = RVLocs[i];
990    assert(VA.isRegLoc() && "Can only return in registers!");
991    SDValue ValToCopy = Op.getOperand(i*2+1);
992
993    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
994    // the RET instruction and handled by the FP Stackifier.
995    if (VA.getLocReg() == X86::ST0 ||
996        VA.getLocReg() == X86::ST1) {
997      // If this is a copy from an xmm register to ST(0), use an FPExtend to
998      // change the value to the FP stack register class.
999      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1000        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1001      RetOps.push_back(ValToCopy);
1002      // Don't emit a copytoreg.
1003      continue;
1004    }
1005
1006    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1007    // which is returned in RAX / RDX.
1008    if (Subtarget->is64Bit()) {
1009      MVT ValVT = ValToCopy.getValueType();
1010      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1011        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1012        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1013          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1014      }
1015    }
1016
1017    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1018    Flag = Chain.getValue(1);
1019  }
1020
1021  // The x86-64 ABI for returning structs by value requires that we copy
1022  // the sret argument into %rax for the return. We saved the argument into
1023  // a virtual register in the entry block, so now we copy the value out
1024  // and into %rax.
1025  if (Subtarget->is64Bit() &&
1026      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1027    MachineFunction &MF = DAG.getMachineFunction();
1028    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1029    unsigned Reg = FuncInfo->getSRetReturnReg();
1030    if (!Reg) {
1031      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1032      FuncInfo->setSRetReturnReg(Reg);
1033    }
1034    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1035
1036    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1037    Flag = Chain.getValue(1);
1038  }
1039
1040  RetOps[0] = Chain;  // Update chain.
1041
1042  // Add the flag if we have it.
1043  if (Flag.getNode())
1044    RetOps.push_back(Flag);
1045
1046  return DAG.getNode(X86ISD::RET_FLAG, dl,
1047                     MVT::Other, &RetOps[0], RetOps.size());
1048}
1049
1050
1051/// LowerCallResult - Lower the result values of an ISD::CALL into the
1052/// appropriate copies out of appropriate physical registers.  This assumes that
1053/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1054/// being lowered.  The returns a SDNode with the same number of values as the
1055/// ISD::CALL.
1056SDNode *X86TargetLowering::
1057LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1058                unsigned CallingConv, SelectionDAG &DAG) {
1059
1060  DebugLoc dl = TheCall->getDebugLoc();
1061  // Assign locations to each value returned by this call.
1062  SmallVector<CCValAssign, 16> RVLocs;
1063  bool isVarArg = TheCall->isVarArg();
1064  bool Is64Bit = Subtarget->is64Bit();
1065  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1066  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1067
1068  SmallVector<SDValue, 8> ResultVals;
1069
1070  // Copy all of the result registers out of their specified physreg.
1071  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1072    CCValAssign &VA = RVLocs[i];
1073    MVT CopyVT = VA.getValVT();
1074
1075    // If this is x86-64, and we disabled SSE, we can't return FP values
1076    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1077        ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1078      cerr << "SSE register return with SSE disabled\n";
1079      exit(1);
1080    }
1081
1082    // If this is a call to a function that returns an fp value on the floating
1083    // point stack, but where we prefer to use the value in xmm registers, copy
1084    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1085    if ((VA.getLocReg() == X86::ST0 ||
1086         VA.getLocReg() == X86::ST1) &&
1087        isScalarFPTypeInSSEReg(VA.getValVT())) {
1088      CopyVT = MVT::f80;
1089    }
1090
1091    SDValue Val;
1092    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1093      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1094      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1095        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1096                                   MVT::v2i64, InFlag).getValue(1);
1097        Val = Chain.getValue(0);
1098        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1099                          Val, DAG.getConstant(0, MVT::i64));
1100      } else {
1101        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1102                                   MVT::i64, InFlag).getValue(1);
1103        Val = Chain.getValue(0);
1104      }
1105      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1106    } else {
1107      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1108                                 CopyVT, InFlag).getValue(1);
1109      Val = Chain.getValue(0);
1110    }
1111    InFlag = Chain.getValue(2);
1112
1113    if (CopyVT != VA.getValVT()) {
1114      // Round the F80 the right size, which also moves to the appropriate xmm
1115      // register.
1116      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1117                        // This truncation won't change the value.
1118                        DAG.getIntPtrConstant(1));
1119    }
1120
1121    ResultVals.push_back(Val);
1122  }
1123
1124  // Merge everything together with a MERGE_VALUES node.
1125  ResultVals.push_back(Chain);
1126  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1127                     &ResultVals[0], ResultVals.size()).getNode();
1128}
1129
1130
1131//===----------------------------------------------------------------------===//
1132//                C & StdCall & Fast Calling Convention implementation
1133//===----------------------------------------------------------------------===//
1134//  StdCall calling convention seems to be standard for many Windows' API
1135//  routines and around. It differs from C calling convention just a little:
1136//  callee should clean up the stack, not caller. Symbols should be also
1137//  decorated in some fancy way :) It doesn't support any vector arguments.
1138//  For info on fast calling convention see Fast Calling Convention (tail call)
1139//  implementation LowerX86_32FastCCCallTo.
1140
1141/// AddLiveIn - This helper function adds the specified physical register to the
1142/// MachineFunction as a live in value.  It also creates a corresponding virtual
1143/// register for it.
1144static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1145                          const TargetRegisterClass *RC) {
1146  assert(RC->contains(PReg) && "Not the correct regclass!");
1147  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1148  MF.getRegInfo().addLiveIn(PReg, VReg);
1149  return VReg;
1150}
1151
1152/// CallIsStructReturn - Determines whether a CALL node uses struct return
1153/// semantics.
1154static bool CallIsStructReturn(CallSDNode *TheCall) {
1155  unsigned NumOps = TheCall->getNumArgs();
1156  if (!NumOps)
1157    return false;
1158
1159  return TheCall->getArgFlags(0).isSRet();
1160}
1161
1162/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1163/// return semantics.
1164static bool ArgsAreStructReturn(SDValue Op) {
1165  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1166  if (!NumArgs)
1167    return false;
1168
1169  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1170}
1171
1172/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1173/// the callee to pop its own arguments. Callee pop is necessary to support tail
1174/// calls.
1175bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1176  if (IsVarArg)
1177    return false;
1178
1179  switch (CallingConv) {
1180  default:
1181    return false;
1182  case CallingConv::X86_StdCall:
1183    return !Subtarget->is64Bit();
1184  case CallingConv::X86_FastCall:
1185    return !Subtarget->is64Bit();
1186  case CallingConv::Fast:
1187    return PerformTailCallOpt;
1188  }
1189}
1190
1191/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1192/// given CallingConvention value.
1193CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1194  if (Subtarget->is64Bit()) {
1195    if (Subtarget->isTargetWin64())
1196      return CC_X86_Win64_C;
1197    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1198      return CC_X86_64_TailCall;
1199    else
1200      return CC_X86_64_C;
1201  }
1202
1203  if (CC == CallingConv::X86_FastCall)
1204    return CC_X86_32_FastCall;
1205  else if (CC == CallingConv::Fast)
1206    return CC_X86_32_FastCC;
1207  else
1208    return CC_X86_32_C;
1209}
1210
1211/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1212/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1213NameDecorationStyle
1214X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1215  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1216  if (CC == CallingConv::X86_FastCall)
1217    return FastCall;
1218  else if (CC == CallingConv::X86_StdCall)
1219    return StdCall;
1220  return None;
1221}
1222
1223
1224/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1225/// in a register before calling.
1226bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1227  return !IsTailCall && !Is64Bit &&
1228    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1229    Subtarget->isPICStyleGOT();
1230}
1231
1232/// CallRequiresFnAddressInReg - Check whether the call requires the function
1233/// address to be loaded in a register.
1234bool
1235X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1236  return !Is64Bit && IsTailCall &&
1237    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1238    Subtarget->isPICStyleGOT();
1239}
1240
1241/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1242/// by "Src" to address "Dst" with size and alignment information specified by
1243/// the specific parameter attribute. The copy will be passed as a byval
1244/// function parameter.
1245static SDValue
1246CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1247                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1248                          DebugLoc dl) {
1249  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1250  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1251                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1252}
1253
1254SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1255                                              const CCValAssign &VA,
1256                                              MachineFrameInfo *MFI,
1257                                              unsigned CC,
1258                                              SDValue Root, unsigned i) {
1259  // Create the nodes corresponding to a load from this parameter slot.
1260  ISD::ArgFlagsTy Flags =
1261    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1262  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1263  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1264
1265  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1266  // changed with more analysis.
1267  // In case of tail call optimization mark all arguments mutable. Since they
1268  // could be overwritten by lowering of arguments in case of a tail call.
1269  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1270                                  VA.getLocMemOffset(), isImmutable);
1271  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1272  if (Flags.isByVal())
1273    return FIN;
1274  return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1275                     PseudoSourceValue::getFixedStack(FI), 0);
1276}
1277
1278SDValue
1279X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1280  MachineFunction &MF = DAG.getMachineFunction();
1281  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1282  DebugLoc dl = Op.getDebugLoc();
1283
1284  const Function* Fn = MF.getFunction();
1285  if (Fn->hasExternalLinkage() &&
1286      Subtarget->isTargetCygMing() &&
1287      Fn->getName() == "main")
1288    FuncInfo->setForceFramePointer(true);
1289
1290  // Decorate the function name.
1291  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1292
1293  MachineFrameInfo *MFI = MF.getFrameInfo();
1294  SDValue Root = Op.getOperand(0);
1295  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1296  unsigned CC = MF.getFunction()->getCallingConv();
1297  bool Is64Bit = Subtarget->is64Bit();
1298  bool IsWin64 = Subtarget->isTargetWin64();
1299
1300  assert(!(isVarArg && CC == CallingConv::Fast) &&
1301         "Var args not supported with calling convention fastcc");
1302
1303  // Assign locations to all of the incoming arguments.
1304  SmallVector<CCValAssign, 16> ArgLocs;
1305  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1306  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1307
1308  SmallVector<SDValue, 8> ArgValues;
1309  unsigned LastVal = ~0U;
1310  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1311    CCValAssign &VA = ArgLocs[i];
1312    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1313    // places.
1314    assert(VA.getValNo() != LastVal &&
1315           "Don't support value assigned to multiple locs yet");
1316    LastVal = VA.getValNo();
1317
1318    if (VA.isRegLoc()) {
1319      MVT RegVT = VA.getLocVT();
1320      TargetRegisterClass *RC = NULL;
1321      if (RegVT == MVT::i32)
1322        RC = X86::GR32RegisterClass;
1323      else if (Is64Bit && RegVT == MVT::i64)
1324        RC = X86::GR64RegisterClass;
1325      else if (RegVT == MVT::f32)
1326        RC = X86::FR32RegisterClass;
1327      else if (RegVT == MVT::f64)
1328        RC = X86::FR64RegisterClass;
1329      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1330        RC = X86::VR128RegisterClass;
1331      else if (RegVT.isVector()) {
1332        assert(RegVT.getSizeInBits() == 64);
1333        if (!Is64Bit)
1334          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1335        else {
1336          // Darwin calling convention passes MMX values in either GPRs or
1337          // XMMs in x86-64. Other targets pass them in memory.
1338          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1339            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1340            RegVT = MVT::v2i64;
1341          } else {
1342            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1343            RegVT = MVT::i64;
1344          }
1345        }
1346      } else {
1347        assert(0 && "Unknown argument type!");
1348      }
1349
1350      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1351      SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1352
1353      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1354      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1355      // right size.
1356      if (VA.getLocInfo() == CCValAssign::SExt)
1357        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1358                               DAG.getValueType(VA.getValVT()));
1359      else if (VA.getLocInfo() == CCValAssign::ZExt)
1360        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1361                               DAG.getValueType(VA.getValVT()));
1362
1363      if (VA.getLocInfo() != CCValAssign::Full)
1364        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1365
1366      // Handle MMX values passed in GPRs.
1367      if (Is64Bit && RegVT != VA.getLocVT()) {
1368        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1369          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1370        else if (RC == X86::VR128RegisterClass) {
1371          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1372                                 ArgValue, DAG.getConstant(0, MVT::i64));
1373          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1374        }
1375      }
1376
1377      ArgValues.push_back(ArgValue);
1378    } else {
1379      assert(VA.isMemLoc());
1380      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1381    }
1382  }
1383
1384  // The x86-64 ABI for returning structs by value requires that we copy
1385  // the sret argument into %rax for the return. Save the argument into
1386  // a virtual register so that we can access it from the return points.
1387  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1388    MachineFunction &MF = DAG.getMachineFunction();
1389    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1390    unsigned Reg = FuncInfo->getSRetReturnReg();
1391    if (!Reg) {
1392      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1393      FuncInfo->setSRetReturnReg(Reg);
1394    }
1395    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1396    Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1397  }
1398
1399  unsigned StackSize = CCInfo.getNextStackOffset();
1400  // align stack specially for tail calls
1401  if (PerformTailCallOpt && CC == CallingConv::Fast)
1402    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1403
1404  // If the function takes variable number of arguments, make a frame index for
1405  // the start of the first vararg value... for expansion of llvm.va_start.
1406  if (isVarArg) {
1407    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1408      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1409    }
1410    if (Is64Bit) {
1411      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1412
1413      // FIXME: We should really autogenerate these arrays
1414      static const unsigned GPR64ArgRegsWin64[] = {
1415        X86::RCX, X86::RDX, X86::R8,  X86::R9
1416      };
1417      static const unsigned XMMArgRegsWin64[] = {
1418        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1419      };
1420      static const unsigned GPR64ArgRegs64Bit[] = {
1421        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1422      };
1423      static const unsigned XMMArgRegs64Bit[] = {
1424        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1425        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1426      };
1427      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1428
1429      if (IsWin64) {
1430        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1431        GPR64ArgRegs = GPR64ArgRegsWin64;
1432        XMMArgRegs = XMMArgRegsWin64;
1433      } else {
1434        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1435        GPR64ArgRegs = GPR64ArgRegs64Bit;
1436        XMMArgRegs = XMMArgRegs64Bit;
1437      }
1438      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1439                                                       TotalNumIntRegs);
1440      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1441                                                       TotalNumXMMRegs);
1442
1443      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1444             "SSE register cannot be used when SSE is disabled!");
1445      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloat) &&
1446             "SSE register cannot be used when SSE is disabled!");
1447      if (UseSoftFloat || NoImplicitFloat || !Subtarget->hasSSE1())
1448        // Kernel mode asks for SSE to be disabled, so don't push them
1449        // on the stack.
1450        TotalNumXMMRegs = 0;
1451
1452      // For X86-64, if there are vararg parameters that are passed via
1453      // registers, then we must store them to their spots on the stack so they
1454      // may be loaded by deferencing the result of va_next.
1455      VarArgsGPOffset = NumIntRegs * 8;
1456      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1457      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1458                                                 TotalNumXMMRegs * 16, 16);
1459
1460      // Store the integer parameter registers.
1461      SmallVector<SDValue, 8> MemOps;
1462      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1463      SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1464                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1465      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1466        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1467                                  X86::GR64RegisterClass);
1468        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1469        SDValue Store =
1470          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1471                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1472        MemOps.push_back(Store);
1473        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1474                          DAG.getIntPtrConstant(8));
1475      }
1476
1477      // Now store the XMM (fp + vector) parameter registers.
1478      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1479                        DAG.getIntPtrConstant(VarArgsFPOffset));
1480      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1481        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1482                                  X86::VR128RegisterClass);
1483        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1484        SDValue Store =
1485          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1486                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1487        MemOps.push_back(Store);
1488        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1489                          DAG.getIntPtrConstant(16));
1490      }
1491      if (!MemOps.empty())
1492          Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1493                             &MemOps[0], MemOps.size());
1494    }
1495  }
1496
1497  ArgValues.push_back(Root);
1498
1499  // Some CCs need callee pop.
1500  if (IsCalleePop(isVarArg, CC)) {
1501    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1502    BytesCallerReserves = 0;
1503  } else {
1504    BytesToPopOnReturn  = 0; // Callee pops nothing.
1505    // If this is an sret function, the return should pop the hidden pointer.
1506    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1507      BytesToPopOnReturn = 4;
1508    BytesCallerReserves = StackSize;
1509  }
1510
1511  if (!Is64Bit) {
1512    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1513    if (CC == CallingConv::X86_FastCall)
1514      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1515  }
1516
1517  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1518
1519  // Return the new list of results.
1520  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1521                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1522}
1523
1524SDValue
1525X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1526                                    const SDValue &StackPtr,
1527                                    const CCValAssign &VA,
1528                                    SDValue Chain,
1529                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1530  DebugLoc dl = TheCall->getDebugLoc();
1531  unsigned LocMemOffset = VA.getLocMemOffset();
1532  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1533  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1534  if (Flags.isByVal()) {
1535    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1536  }
1537  return DAG.getStore(Chain, dl, Arg, PtrOff,
1538                      PseudoSourceValue::getStack(), LocMemOffset);
1539}
1540
1541/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1542/// optimization is performed and it is required.
1543SDValue
1544X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1545                                           SDValue &OutRetAddr,
1546                                           SDValue Chain,
1547                                           bool IsTailCall,
1548                                           bool Is64Bit,
1549                                           int FPDiff,
1550                                           DebugLoc dl) {
1551  if (!IsTailCall || FPDiff==0) return Chain;
1552
1553  // Adjust the Return address stack slot.
1554  MVT VT = getPointerTy();
1555  OutRetAddr = getReturnAddressFrameIndex(DAG);
1556
1557  // Load the "old" Return address.
1558  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1559  return SDValue(OutRetAddr.getNode(), 1);
1560}
1561
1562/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1563/// optimization is performed and it is required (FPDiff!=0).
1564static SDValue
1565EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1566                         SDValue Chain, SDValue RetAddrFrIdx,
1567                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1568  // Store the return address to the appropriate stack slot.
1569  if (!FPDiff) return Chain;
1570  // Calculate the new stack slot for the return address.
1571  int SlotSize = Is64Bit ? 8 : 4;
1572  int NewReturnAddrFI =
1573    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1574  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1575  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1576  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1577                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1578  return Chain;
1579}
1580
1581SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1582  MachineFunction &MF = DAG.getMachineFunction();
1583  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1584  SDValue Chain       = TheCall->getChain();
1585  unsigned CC         = TheCall->getCallingConv();
1586  bool isVarArg       = TheCall->isVarArg();
1587  bool IsTailCall     = TheCall->isTailCall() &&
1588                        CC == CallingConv::Fast && PerformTailCallOpt;
1589  SDValue Callee      = TheCall->getCallee();
1590  bool Is64Bit        = Subtarget->is64Bit();
1591  bool IsStructRet    = CallIsStructReturn(TheCall);
1592  DebugLoc dl         = TheCall->getDebugLoc();
1593
1594  assert(!(isVarArg && CC == CallingConv::Fast) &&
1595         "Var args not supported with calling convention fastcc");
1596
1597  // Analyze operands of the call, assigning locations to each operand.
1598  SmallVector<CCValAssign, 16> ArgLocs;
1599  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1600  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1601
1602  // Get a count of how many bytes are to be pushed on the stack.
1603  unsigned NumBytes = CCInfo.getNextStackOffset();
1604  if (PerformTailCallOpt && CC == CallingConv::Fast)
1605    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1606
1607  int FPDiff = 0;
1608  if (IsTailCall) {
1609    // Lower arguments at fp - stackoffset + fpdiff.
1610    unsigned NumBytesCallerPushed =
1611      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1612    FPDiff = NumBytesCallerPushed - NumBytes;
1613
1614    // Set the delta of movement of the returnaddr stackslot.
1615    // But only set if delta is greater than previous delta.
1616    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1617      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1618  }
1619
1620  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1621
1622  SDValue RetAddrFrIdx;
1623  // Load return adress for tail calls.
1624  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1625                                  FPDiff, dl);
1626
1627  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1628  SmallVector<SDValue, 8> MemOpChains;
1629  SDValue StackPtr;
1630
1631  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1632  // of tail call optimization arguments are handle later.
1633  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1634    CCValAssign &VA = ArgLocs[i];
1635    SDValue Arg = TheCall->getArg(i);
1636    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1637    bool isByVal = Flags.isByVal();
1638
1639    // Promote the value if needed.
1640    switch (VA.getLocInfo()) {
1641    default: assert(0 && "Unknown loc info!");
1642    case CCValAssign::Full: break;
1643    case CCValAssign::SExt:
1644      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1645      break;
1646    case CCValAssign::ZExt:
1647      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1648      break;
1649    case CCValAssign::AExt:
1650      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1651      break;
1652    }
1653
1654    if (VA.isRegLoc()) {
1655      if (Is64Bit) {
1656        MVT RegVT = VA.getLocVT();
1657        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1658          switch (VA.getLocReg()) {
1659          default:
1660            break;
1661          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1662          case X86::R8: {
1663            // Special case: passing MMX values in GPR registers.
1664            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1665            break;
1666          }
1667          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1668          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1669            // Special case: passing MMX values in XMM registers.
1670            Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1671            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1672            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2i64,
1673                              DAG.getUNDEF(MVT::v2i64), Arg,
1674                              getMOVLMask(2, DAG, dl));
1675            break;
1676          }
1677          }
1678      }
1679      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1680    } else {
1681      if (!IsTailCall || (IsTailCall && isByVal)) {
1682        assert(VA.isMemLoc());
1683        if (StackPtr.getNode() == 0)
1684          StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1685
1686        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1687                                               Chain, Arg, Flags));
1688      }
1689    }
1690  }
1691
1692  if (!MemOpChains.empty())
1693    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1694                        &MemOpChains[0], MemOpChains.size());
1695
1696  // Build a sequence of copy-to-reg nodes chained together with token chain
1697  // and flag operands which copy the outgoing args into registers.
1698  SDValue InFlag;
1699  // Tail call byval lowering might overwrite argument registers so in case of
1700  // tail call optimization the copies to registers are lowered later.
1701  if (!IsTailCall)
1702    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1703      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1704                               RegsToPass[i].second, InFlag);
1705      InFlag = Chain.getValue(1);
1706    }
1707
1708  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1709  // GOT pointer.
1710  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1711    Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1712                             DAG.getNode(X86ISD::GlobalBaseReg,
1713                                         DebugLoc::getUnknownLoc(),
1714                                         getPointerTy()),
1715                             InFlag);
1716    InFlag = Chain.getValue(1);
1717  }
1718  // If we are tail calling and generating PIC/GOT style code load the address
1719  // of the callee into ecx. The value in ecx is used as target of the tail
1720  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1721  // calls on PIC/GOT architectures. Normally we would just put the address of
1722  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1723  // restored (since ebx is callee saved) before jumping to the target@PLT.
1724  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1725    // Note: The actual moving to ecx is done further down.
1726    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1727    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1728        !G->getGlobal()->hasProtectedVisibility())
1729      Callee =  LowerGlobalAddress(Callee, DAG);
1730    else if (isa<ExternalSymbolSDNode>(Callee))
1731      Callee = LowerExternalSymbol(Callee,DAG);
1732  }
1733
1734  if (Is64Bit && isVarArg) {
1735    // From AMD64 ABI document:
1736    // For calls that may call functions that use varargs or stdargs
1737    // (prototype-less calls or calls to functions containing ellipsis (...) in
1738    // the declaration) %al is used as hidden argument to specify the number
1739    // of SSE registers used. The contents of %al do not need to match exactly
1740    // the number of registers, but must be an ubound on the number of SSE
1741    // registers used and is in the range 0 - 8 inclusive.
1742
1743    // FIXME: Verify this on Win64
1744    // Count the number of XMM registers allocated.
1745    static const unsigned XMMArgRegs[] = {
1746      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1747      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1748    };
1749    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1750    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1751           && "SSE registers cannot be used when SSE is disabled");
1752
1753    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1754                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1755    InFlag = Chain.getValue(1);
1756  }
1757
1758
1759  // For tail calls lower the arguments to the 'real' stack slot.
1760  if (IsTailCall) {
1761    SmallVector<SDValue, 8> MemOpChains2;
1762    SDValue FIN;
1763    int FI = 0;
1764    // Do not flag preceeding copytoreg stuff together with the following stuff.
1765    InFlag = SDValue();
1766    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1767      CCValAssign &VA = ArgLocs[i];
1768      if (!VA.isRegLoc()) {
1769        assert(VA.isMemLoc());
1770        SDValue Arg = TheCall->getArg(i);
1771        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1772        // Create frame index.
1773        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1774        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1775        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1776        FIN = DAG.getFrameIndex(FI, getPointerTy());
1777
1778        if (Flags.isByVal()) {
1779          // Copy relative to framepointer.
1780          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1781          if (StackPtr.getNode() == 0)
1782            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1783                                          getPointerTy());
1784          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1785
1786          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1787                                                           Flags, DAG, dl));
1788        } else {
1789          // Store relative to framepointer.
1790          MemOpChains2.push_back(
1791            DAG.getStore(Chain, dl, Arg, FIN,
1792                         PseudoSourceValue::getFixedStack(FI), 0));
1793        }
1794      }
1795    }
1796
1797    if (!MemOpChains2.empty())
1798      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1799                          &MemOpChains2[0], MemOpChains2.size());
1800
1801    // Copy arguments to their registers.
1802    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1803      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1804                               RegsToPass[i].second, InFlag);
1805      InFlag = Chain.getValue(1);
1806    }
1807    InFlag =SDValue();
1808
1809    // Store the return address to the appropriate stack slot.
1810    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1811                                     FPDiff, dl);
1812  }
1813
1814  // If the callee is a GlobalAddress node (quite common, every direct call is)
1815  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1816  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1817    // We should use extra load for direct calls to dllimported functions in
1818    // non-JIT mode.
1819    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1820                                        getTargetMachine(), true))
1821      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1822                                          G->getOffset());
1823  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1824    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1825  } else if (IsTailCall) {
1826    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1827
1828    Chain = DAG.getCopyToReg(Chain,  dl,
1829                             DAG.getRegister(Opc, getPointerTy()),
1830                             Callee,InFlag);
1831    Callee = DAG.getRegister(Opc, getPointerTy());
1832    // Add register as live out.
1833    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1834  }
1835
1836  // Returns a chain & a flag for retval copy to use.
1837  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1838  SmallVector<SDValue, 8> Ops;
1839
1840  if (IsTailCall) {
1841    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1842                           DAG.getIntPtrConstant(0, true), InFlag);
1843    InFlag = Chain.getValue(1);
1844
1845    // Returns a chain & a flag for retval copy to use.
1846    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1847    Ops.clear();
1848  }
1849
1850  Ops.push_back(Chain);
1851  Ops.push_back(Callee);
1852
1853  if (IsTailCall)
1854    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1855
1856  // Add argument registers to the end of the list so that they are known live
1857  // into the call.
1858  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1859    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1860                                  RegsToPass[i].second.getValueType()));
1861
1862  // Add an implicit use GOT pointer in EBX.
1863  if (!IsTailCall && !Is64Bit &&
1864      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1865      Subtarget->isPICStyleGOT())
1866    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1867
1868  // Add an implicit use of AL for x86 vararg functions.
1869  if (Is64Bit && isVarArg)
1870    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1871
1872  if (InFlag.getNode())
1873    Ops.push_back(InFlag);
1874
1875  if (IsTailCall) {
1876    assert(InFlag.getNode() &&
1877           "Flag must be set. Depend on flag being set in LowerRET");
1878    Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1879                        TheCall->getVTList(), &Ops[0], Ops.size());
1880
1881    return SDValue(Chain.getNode(), Op.getResNo());
1882  }
1883
1884  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
1885  InFlag = Chain.getValue(1);
1886
1887  // Create the CALLSEQ_END node.
1888  unsigned NumBytesForCalleeToPush;
1889  if (IsCalleePop(isVarArg, CC))
1890    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1891  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1892    // If this is is a call to a struct-return function, the callee
1893    // pops the hidden struct pointer, so we have to push it back.
1894    // This is common for Darwin/X86, Linux & Mingw32 targets.
1895    NumBytesForCalleeToPush = 4;
1896  else
1897    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1898
1899  // Returns a flag for retval copy to use.
1900  Chain = DAG.getCALLSEQ_END(Chain,
1901                             DAG.getIntPtrConstant(NumBytes, true),
1902                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1903                                                   true),
1904                             InFlag);
1905  InFlag = Chain.getValue(1);
1906
1907  // Handle result values, copying them out of physregs into vregs that we
1908  // return.
1909  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1910                 Op.getResNo());
1911}
1912
1913
1914//===----------------------------------------------------------------------===//
1915//                Fast Calling Convention (tail call) implementation
1916//===----------------------------------------------------------------------===//
1917
1918//  Like std call, callee cleans arguments, convention except that ECX is
1919//  reserved for storing the tail called function address. Only 2 registers are
1920//  free for argument passing (inreg). Tail call optimization is performed
1921//  provided:
1922//                * tailcallopt is enabled
1923//                * caller/callee are fastcc
1924//  On X86_64 architecture with GOT-style position independent code only local
1925//  (within module) calls are supported at the moment.
1926//  To keep the stack aligned according to platform abi the function
1927//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1928//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1929//  If a tail called function callee has more arguments than the caller the
1930//  caller needs to make sure that there is room to move the RETADDR to. This is
1931//  achieved by reserving an area the size of the argument delta right after the
1932//  original REtADDR, but before the saved framepointer or the spilled registers
1933//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1934//  stack layout:
1935//    arg1
1936//    arg2
1937//    RETADDR
1938//    [ new RETADDR
1939//      move area ]
1940//    (possible EBP)
1941//    ESI
1942//    EDI
1943//    local1 ..
1944
1945/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1946/// for a 16 byte align requirement.
1947unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1948                                                        SelectionDAG& DAG) {
1949  MachineFunction &MF = DAG.getMachineFunction();
1950  const TargetMachine &TM = MF.getTarget();
1951  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1952  unsigned StackAlignment = TFI.getStackAlignment();
1953  uint64_t AlignMask = StackAlignment - 1;
1954  int64_t Offset = StackSize;
1955  uint64_t SlotSize = TD->getPointerSize();
1956  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1957    // Number smaller than 12 so just add the difference.
1958    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1959  } else {
1960    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1961    Offset = ((~AlignMask) & Offset) + StackAlignment +
1962      (StackAlignment-SlotSize);
1963  }
1964  return Offset;
1965}
1966
1967/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1968/// following the call is a return. A function is eligible if caller/callee
1969/// calling conventions match, currently only fastcc supports tail calls, and
1970/// the function CALL is immediatly followed by a RET.
1971bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1972                                                      SDValue Ret,
1973                                                      SelectionDAG& DAG) const {
1974  if (!PerformTailCallOpt)
1975    return false;
1976
1977  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1978    MachineFunction &MF = DAG.getMachineFunction();
1979    unsigned CallerCC = MF.getFunction()->getCallingConv();
1980    unsigned CalleeCC= TheCall->getCallingConv();
1981    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1982      SDValue Callee = TheCall->getCallee();
1983      // On x86/32Bit PIC/GOT  tail calls are supported.
1984      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1985          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1986        return true;
1987
1988      // Can only do local tail calls (in same module, hidden or protected) on
1989      // x86_64 PIC/GOT at the moment.
1990      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1991        return G->getGlobal()->hasHiddenVisibility()
1992            || G->getGlobal()->hasProtectedVisibility();
1993    }
1994  }
1995
1996  return false;
1997}
1998
1999FastISel *
2000X86TargetLowering::createFastISel(MachineFunction &mf,
2001                                  MachineModuleInfo *mmo,
2002                                  DwarfWriter *dw,
2003                                  DenseMap<const Value *, unsigned> &vm,
2004                                  DenseMap<const BasicBlock *,
2005                                           MachineBasicBlock *> &bm,
2006                                  DenseMap<const AllocaInst *, int> &am
2007#ifndef NDEBUG
2008                                  , SmallSet<Instruction*, 8> &cil
2009#endif
2010                                  ) {
2011  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2012#ifndef NDEBUG
2013                             , cil
2014#endif
2015                             );
2016}
2017
2018
2019//===----------------------------------------------------------------------===//
2020//                           Other Lowering Hooks
2021//===----------------------------------------------------------------------===//
2022
2023
2024SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2025  MachineFunction &MF = DAG.getMachineFunction();
2026  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2027  int ReturnAddrIndex = FuncInfo->getRAIndex();
2028
2029  if (ReturnAddrIndex == 0) {
2030    // Set up a frame object for the return address.
2031    uint64_t SlotSize = TD->getPointerSize();
2032    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2033    FuncInfo->setRAIndex(ReturnAddrIndex);
2034  }
2035
2036  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2037}
2038
2039
2040/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2041/// specific condition code, returning the condition code and the LHS/RHS of the
2042/// comparison to make.
2043static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2044                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2045  if (!isFP) {
2046    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2047      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2048        // X > -1   -> X == 0, jump !sign.
2049        RHS = DAG.getConstant(0, RHS.getValueType());
2050        return X86::COND_NS;
2051      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2052        // X < 0   -> X == 0, jump on sign.
2053        return X86::COND_S;
2054      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2055        // X < 1   -> X <= 0
2056        RHS = DAG.getConstant(0, RHS.getValueType());
2057        return X86::COND_LE;
2058      }
2059    }
2060
2061    switch (SetCCOpcode) {
2062    default: assert(0 && "Invalid integer condition!");
2063    case ISD::SETEQ:  return X86::COND_E;
2064    case ISD::SETGT:  return X86::COND_G;
2065    case ISD::SETGE:  return X86::COND_GE;
2066    case ISD::SETLT:  return X86::COND_L;
2067    case ISD::SETLE:  return X86::COND_LE;
2068    case ISD::SETNE:  return X86::COND_NE;
2069    case ISD::SETULT: return X86::COND_B;
2070    case ISD::SETUGT: return X86::COND_A;
2071    case ISD::SETULE: return X86::COND_BE;
2072    case ISD::SETUGE: return X86::COND_AE;
2073    }
2074  }
2075
2076  // First determine if it is required or is profitable to flip the operands.
2077
2078  // If LHS is a foldable load, but RHS is not, flip the condition.
2079  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2080      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2081    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2082    std::swap(LHS, RHS);
2083  }
2084
2085  switch (SetCCOpcode) {
2086  default: break;
2087  case ISD::SETOLT:
2088  case ISD::SETOLE:
2089  case ISD::SETUGT:
2090  case ISD::SETUGE:
2091    std::swap(LHS, RHS);
2092    break;
2093  }
2094
2095  // On a floating point condition, the flags are set as follows:
2096  // ZF  PF  CF   op
2097  //  0 | 0 | 0 | X > Y
2098  //  0 | 0 | 1 | X < Y
2099  //  1 | 0 | 0 | X == Y
2100  //  1 | 1 | 1 | unordered
2101  switch (SetCCOpcode) {
2102  default: assert(0 && "Condcode should be pre-legalized away");
2103  case ISD::SETUEQ:
2104  case ISD::SETEQ:   return X86::COND_E;
2105  case ISD::SETOLT:              // flipped
2106  case ISD::SETOGT:
2107  case ISD::SETGT:   return X86::COND_A;
2108  case ISD::SETOLE:              // flipped
2109  case ISD::SETOGE:
2110  case ISD::SETGE:   return X86::COND_AE;
2111  case ISD::SETUGT:              // flipped
2112  case ISD::SETULT:
2113  case ISD::SETLT:   return X86::COND_B;
2114  case ISD::SETUGE:              // flipped
2115  case ISD::SETULE:
2116  case ISD::SETLE:   return X86::COND_BE;
2117  case ISD::SETONE:
2118  case ISD::SETNE:   return X86::COND_NE;
2119  case ISD::SETUO:   return X86::COND_P;
2120  case ISD::SETO:    return X86::COND_NP;
2121  }
2122}
2123
2124/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2125/// code. Current x86 isa includes the following FP cmov instructions:
2126/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2127static bool hasFPCMov(unsigned X86CC) {
2128  switch (X86CC) {
2129  default:
2130    return false;
2131  case X86::COND_B:
2132  case X86::COND_BE:
2133  case X86::COND_E:
2134  case X86::COND_P:
2135  case X86::COND_A:
2136  case X86::COND_AE:
2137  case X86::COND_NE:
2138  case X86::COND_NP:
2139    return true;
2140  }
2141}
2142
2143/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2144/// true if Op is undef or if its value falls within the specified range (L, H].
2145static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2146  if (Op.getOpcode() == ISD::UNDEF)
2147    return true;
2148
2149  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2150  return (Val >= Low && Val < Hi);
2151}
2152
2153/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2154/// true if Op is undef or if its value equal to the specified value.
2155static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2156  if (Op.getOpcode() == ISD::UNDEF)
2157    return true;
2158  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2159}
2160
2161/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2162/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2163bool X86::isPSHUFDMask(SDNode *N) {
2164  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2165
2166  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2167    return false;
2168
2169  // Check if the value doesn't reference the second vector.
2170  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2171    SDValue Arg = N->getOperand(i);
2172    if (Arg.getOpcode() == ISD::UNDEF) continue;
2173    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2174    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2175      return false;
2176  }
2177
2178  return true;
2179}
2180
2181/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2182/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2183bool X86::isPSHUFHWMask(SDNode *N) {
2184  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2185
2186  if (N->getNumOperands() != 8)
2187    return false;
2188
2189  // Lower quadword copied in order.
2190  for (unsigned i = 0; i != 4; ++i) {
2191    SDValue Arg = N->getOperand(i);
2192    if (Arg.getOpcode() == ISD::UNDEF) continue;
2193    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2194    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2195      return false;
2196  }
2197
2198  // Upper quadword shuffled.
2199  for (unsigned i = 4; i != 8; ++i) {
2200    SDValue Arg = N->getOperand(i);
2201    if (Arg.getOpcode() == ISD::UNDEF) continue;
2202    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2203    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2204    if (Val < 4 || Val > 7)
2205      return false;
2206  }
2207
2208  return true;
2209}
2210
2211/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2212/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2213bool X86::isPSHUFLWMask(SDNode *N) {
2214  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2215
2216  if (N->getNumOperands() != 8)
2217    return false;
2218
2219  // Upper quadword copied in order.
2220  for (unsigned i = 4; i != 8; ++i)
2221    if (!isUndefOrEqual(N->getOperand(i), i))
2222      return false;
2223
2224  // Lower quadword shuffled.
2225  for (unsigned i = 0; i != 4; ++i)
2226    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2227      return false;
2228
2229  return true;
2230}
2231
2232/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2233/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2234template<class SDOperand>
2235static bool isSHUFPMask(SDOperand *Elems, unsigned NumElems) {
2236  if (NumElems != 2 && NumElems != 4) return false;
2237
2238  unsigned Half = NumElems / 2;
2239  for (unsigned i = 0; i < Half; ++i)
2240    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2241      return false;
2242  for (unsigned i = Half; i < NumElems; ++i)
2243    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2244      return false;
2245
2246  return true;
2247}
2248
2249bool X86::isSHUFPMask(SDNode *N) {
2250  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2251  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2252}
2253
2254/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2255/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2256/// half elements to come from vector 1 (which would equal the dest.) and
2257/// the upper half to come from vector 2.
2258template<class SDOperand>
2259static bool isCommutedSHUFP(SDOperand *Ops, unsigned NumOps) {
2260  if (NumOps != 2 && NumOps != 4) return false;
2261
2262  unsigned Half = NumOps / 2;
2263  for (unsigned i = 0; i < Half; ++i)
2264    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2265      return false;
2266  for (unsigned i = Half; i < NumOps; ++i)
2267    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2268      return false;
2269  return true;
2270}
2271
2272static bool isCommutedSHUFP(SDNode *N) {
2273  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2274  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2275}
2276
2277/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2278/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2279bool X86::isMOVHLPSMask(SDNode *N) {
2280  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2281
2282  if (N->getNumOperands() != 4)
2283    return false;
2284
2285  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2286  return isUndefOrEqual(N->getOperand(0), 6) &&
2287         isUndefOrEqual(N->getOperand(1), 7) &&
2288         isUndefOrEqual(N->getOperand(2), 2) &&
2289         isUndefOrEqual(N->getOperand(3), 3);
2290}
2291
2292/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2293/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2294/// <2, 3, 2, 3>
2295bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2296  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2297
2298  if (N->getNumOperands() != 4)
2299    return false;
2300
2301  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2302  return isUndefOrEqual(N->getOperand(0), 2) &&
2303         isUndefOrEqual(N->getOperand(1), 3) &&
2304         isUndefOrEqual(N->getOperand(2), 2) &&
2305         isUndefOrEqual(N->getOperand(3), 3);
2306}
2307
2308/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2309/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2310bool X86::isMOVLPMask(SDNode *N) {
2311  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2312
2313  unsigned NumElems = N->getNumOperands();
2314  if (NumElems != 2 && NumElems != 4)
2315    return false;
2316
2317  for (unsigned i = 0; i < NumElems/2; ++i)
2318    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2319      return false;
2320
2321  for (unsigned i = NumElems/2; i < NumElems; ++i)
2322    if (!isUndefOrEqual(N->getOperand(i), i))
2323      return false;
2324
2325  return true;
2326}
2327
2328/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2329/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2330/// and MOVLHPS.
2331bool X86::isMOVHPMask(SDNode *N) {
2332  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2333
2334  unsigned NumElems = N->getNumOperands();
2335  if (NumElems != 2 && NumElems != 4)
2336    return false;
2337
2338  for (unsigned i = 0; i < NumElems/2; ++i)
2339    if (!isUndefOrEqual(N->getOperand(i), i))
2340      return false;
2341
2342  for (unsigned i = 0; i < NumElems/2; ++i) {
2343    SDValue Arg = N->getOperand(i + NumElems/2);
2344    if (!isUndefOrEqual(Arg, i + NumElems))
2345      return false;
2346  }
2347
2348  return true;
2349}
2350
2351/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2352/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2353template<class SDOperand>
2354bool static isUNPCKLMask(SDOperand *Elts, unsigned NumElts,
2355                         bool V2IsSplat = false) {
2356  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2357    return false;
2358
2359  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2360    SDValue BitI  = Elts[i];
2361    SDValue BitI1 = Elts[i+1];
2362    if (!isUndefOrEqual(BitI, j))
2363      return false;
2364    if (V2IsSplat) {
2365      if (!isUndefOrEqual(BitI1, NumElts))
2366        return false;
2367    } else {
2368      if (!isUndefOrEqual(BitI1, j + NumElts))
2369        return false;
2370    }
2371  }
2372
2373  return true;
2374}
2375
2376bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2377  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2378  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2379}
2380
2381/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2382/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2383template<class SDOperand>
2384bool static isUNPCKHMask(SDOperand *Elts, unsigned NumElts,
2385                         bool V2IsSplat = false) {
2386  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2387    return false;
2388
2389  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2390    SDValue BitI  = Elts[i];
2391    SDValue BitI1 = Elts[i+1];
2392    if (!isUndefOrEqual(BitI, j + NumElts/2))
2393      return false;
2394    if (V2IsSplat) {
2395      if (isUndefOrEqual(BitI1, NumElts))
2396        return false;
2397    } else {
2398      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2399        return false;
2400    }
2401  }
2402
2403  return true;
2404}
2405
2406bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2407  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2408  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2409}
2410
2411/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2412/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2413/// <0, 0, 1, 1>
2414bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2415  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2416
2417  unsigned NumElems = N->getNumOperands();
2418  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2419    return false;
2420
2421  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2422    SDValue BitI  = N->getOperand(i);
2423    SDValue BitI1 = N->getOperand(i+1);
2424
2425    if (!isUndefOrEqual(BitI, j))
2426      return false;
2427    if (!isUndefOrEqual(BitI1, j))
2428      return false;
2429  }
2430
2431  return true;
2432}
2433
2434/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2435/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2436/// <2, 2, 3, 3>
2437bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2438  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2439
2440  unsigned NumElems = N->getNumOperands();
2441  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2442    return false;
2443
2444  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2445    SDValue BitI  = N->getOperand(i);
2446    SDValue BitI1 = N->getOperand(i + 1);
2447
2448    if (!isUndefOrEqual(BitI, j))
2449      return false;
2450    if (!isUndefOrEqual(BitI1, j))
2451      return false;
2452  }
2453
2454  return true;
2455}
2456
2457/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2458/// specifies a shuffle of elements that is suitable for input to MOVSS,
2459/// MOVSD, and MOVD, i.e. setting the lowest element.
2460template<class SDOperand>
2461static bool isMOVLMask(SDOperand *Elts, unsigned NumElts) {
2462  if (NumElts != 2 && NumElts != 4)
2463    return false;
2464
2465  if (!isUndefOrEqual(Elts[0], NumElts))
2466    return false;
2467
2468  for (unsigned i = 1; i < NumElts; ++i) {
2469    if (!isUndefOrEqual(Elts[i], i))
2470      return false;
2471  }
2472
2473  return true;
2474}
2475
2476bool X86::isMOVLMask(SDNode *N) {
2477  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2478  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2479}
2480
2481/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2482/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2483/// element of vector 2 and the other elements to come from vector 1 in order.
2484template<class SDOperand>
2485static bool isCommutedMOVL(SDOperand *Ops, unsigned NumOps,
2486                           bool V2IsSplat = false,
2487                           bool V2IsUndef = false) {
2488  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2489    return false;
2490
2491  if (!isUndefOrEqual(Ops[0], 0))
2492    return false;
2493
2494  for (unsigned i = 1; i < NumOps; ++i) {
2495    SDValue Arg = Ops[i];
2496    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2497          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2498          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2499      return false;
2500  }
2501
2502  return true;
2503}
2504
2505static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2506                           bool V2IsUndef = false) {
2507  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2508  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2509                        V2IsSplat, V2IsUndef);
2510}
2511
2512/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2513/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2514bool X86::isMOVSHDUPMask(SDNode *N) {
2515  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2516
2517  if (N->getNumOperands() != 4)
2518    return false;
2519
2520  // Expect 1, 1, 3, 3
2521  for (unsigned i = 0; i < 2; ++i) {
2522    SDValue Arg = N->getOperand(i);
2523    if (Arg.getOpcode() == ISD::UNDEF) continue;
2524    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2525    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2526    if (Val != 1) return false;
2527  }
2528
2529  bool HasHi = false;
2530  for (unsigned i = 2; i < 4; ++i) {
2531    SDValue Arg = N->getOperand(i);
2532    if (Arg.getOpcode() == ISD::UNDEF) continue;
2533    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2534    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2535    if (Val != 3) return false;
2536    HasHi = true;
2537  }
2538
2539  // Don't use movshdup if it can be done with a shufps.
2540  return HasHi;
2541}
2542
2543/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2544/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2545bool X86::isMOVSLDUPMask(SDNode *N) {
2546  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2547
2548  if (N->getNumOperands() != 4)
2549    return false;
2550
2551  // Expect 0, 0, 2, 2
2552  for (unsigned i = 0; i < 2; ++i) {
2553    SDValue Arg = N->getOperand(i);
2554    if (Arg.getOpcode() == ISD::UNDEF) continue;
2555    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2556    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2557    if (Val != 0) return false;
2558  }
2559
2560  bool HasHi = false;
2561  for (unsigned i = 2; i < 4; ++i) {
2562    SDValue Arg = N->getOperand(i);
2563    if (Arg.getOpcode() == ISD::UNDEF) continue;
2564    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2565    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2566    if (Val != 2) return false;
2567    HasHi = true;
2568  }
2569
2570  // Don't use movshdup if it can be done with a shufps.
2571  return HasHi;
2572}
2573
2574/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2575/// specifies a identity operation on the LHS or RHS.
2576static bool isIdentityMask(SDNode *N, bool RHS = false) {
2577  unsigned NumElems = N->getNumOperands();
2578  for (unsigned i = 0; i < NumElems; ++i)
2579    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2580      return false;
2581  return true;
2582}
2583
2584/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2585/// a splat of a single element.
2586static bool isSplatMask(SDNode *N) {
2587  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2588
2589  // This is a splat operation if each element of the permute is the same, and
2590  // if the value doesn't reference the second vector.
2591  unsigned NumElems = N->getNumOperands();
2592  SDValue ElementBase;
2593  unsigned i = 0;
2594  for (; i != NumElems; ++i) {
2595    SDValue Elt = N->getOperand(i);
2596    if (isa<ConstantSDNode>(Elt)) {
2597      ElementBase = Elt;
2598      break;
2599    }
2600  }
2601
2602  if (!ElementBase.getNode())
2603    return false;
2604
2605  for (; i != NumElems; ++i) {
2606    SDValue Arg = N->getOperand(i);
2607    if (Arg.getOpcode() == ISD::UNDEF) continue;
2608    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2609    if (Arg != ElementBase) return false;
2610  }
2611
2612  // Make sure it is a splat of the first vector operand.
2613  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2614}
2615
2616/// getSplatMaskEltNo - Given a splat mask, return the index to the element
2617/// we want to splat.
2618static SDValue getSplatMaskEltNo(SDNode *N) {
2619  assert(isSplatMask(N) && "Not a splat mask");
2620  unsigned NumElems = N->getNumOperands();
2621  SDValue ElementBase;
2622  unsigned i = 0;
2623  for (; i != NumElems; ++i) {
2624    SDValue Elt = N->getOperand(i);
2625    if (isa<ConstantSDNode>(Elt))
2626      return Elt;
2627  }
2628  assert(0 && " No splat value found!");
2629  return SDValue();
2630}
2631
2632
2633/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2634/// a splat of a single element and it's a 2 or 4 element mask.
2635bool X86::isSplatMask(SDNode *N) {
2636  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2637
2638  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2639  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2640    return false;
2641  return ::isSplatMask(N);
2642}
2643
2644/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2645/// specifies a splat of zero element.
2646bool X86::isSplatLoMask(SDNode *N) {
2647  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2648
2649  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2650    if (!isUndefOrEqual(N->getOperand(i), 0))
2651      return false;
2652  return true;
2653}
2654
2655/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2656/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2657bool X86::isMOVDDUPMask(SDNode *N) {
2658  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2659
2660  unsigned e = N->getNumOperands() / 2;
2661  for (unsigned i = 0; i < e; ++i)
2662    if (!isUndefOrEqual(N->getOperand(i), i))
2663      return false;
2664  for (unsigned i = 0; i < e; ++i)
2665    if (!isUndefOrEqual(N->getOperand(e+i), i))
2666      return false;
2667  return true;
2668}
2669
2670/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2671/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2672/// instructions.
2673unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2674  unsigned NumOperands = N->getNumOperands();
2675  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2676  unsigned Mask = 0;
2677  for (unsigned i = 0; i < NumOperands; ++i) {
2678    unsigned Val = 0;
2679    SDValue Arg = N->getOperand(NumOperands-i-1);
2680    if (Arg.getOpcode() != ISD::UNDEF)
2681      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2682    if (Val >= NumOperands) Val -= NumOperands;
2683    Mask |= Val;
2684    if (i != NumOperands - 1)
2685      Mask <<= Shift;
2686  }
2687
2688  return Mask;
2689}
2690
2691/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2692/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2693/// instructions.
2694unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2695  unsigned Mask = 0;
2696  // 8 nodes, but we only care about the last 4.
2697  for (unsigned i = 7; i >= 4; --i) {
2698    unsigned Val = 0;
2699    SDValue Arg = N->getOperand(i);
2700    if (Arg.getOpcode() != ISD::UNDEF) {
2701      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2702      Mask |= (Val - 4);
2703    }
2704    if (i != 4)
2705      Mask <<= 2;
2706  }
2707
2708  return Mask;
2709}
2710
2711/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2712/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2713/// instructions.
2714unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2715  unsigned Mask = 0;
2716  // 8 nodes, but we only care about the first 4.
2717  for (int i = 3; i >= 0; --i) {
2718    unsigned Val = 0;
2719    SDValue Arg = N->getOperand(i);
2720    if (Arg.getOpcode() != ISD::UNDEF)
2721      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2722    Mask |= Val;
2723    if (i != 0)
2724      Mask <<= 2;
2725  }
2726
2727  return Mask;
2728}
2729
2730/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2731/// values in ther permute mask.
2732static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2733                                      SDValue &V2, SDValue &Mask,
2734                                      SelectionDAG &DAG) {
2735  MVT VT = Op.getValueType();
2736  MVT MaskVT = Mask.getValueType();
2737  MVT EltVT = MaskVT.getVectorElementType();
2738  unsigned NumElems = Mask.getNumOperands();
2739  SmallVector<SDValue, 8> MaskVec;
2740  DebugLoc dl = Op.getDebugLoc();
2741
2742  for (unsigned i = 0; i != NumElems; ++i) {
2743    SDValue Arg = Mask.getOperand(i);
2744    if (Arg.getOpcode() == ISD::UNDEF) {
2745      MaskVec.push_back(DAG.getUNDEF(EltVT));
2746      continue;
2747    }
2748    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2749    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2750    if (Val < NumElems)
2751      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2752    else
2753      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2754  }
2755
2756  std::swap(V1, V2);
2757  Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &MaskVec[0], NumElems);
2758  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, Mask);
2759}
2760
2761/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2762/// the two vector operands have swapped position.
2763static
2764SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG, DebugLoc dl) {
2765  MVT MaskVT = Mask.getValueType();
2766  MVT EltVT = MaskVT.getVectorElementType();
2767  unsigned NumElems = Mask.getNumOperands();
2768  SmallVector<SDValue, 8> MaskVec;
2769  for (unsigned i = 0; i != NumElems; ++i) {
2770    SDValue Arg = Mask.getOperand(i);
2771    if (Arg.getOpcode() == ISD::UNDEF) {
2772      MaskVec.push_back(DAG.getUNDEF(EltVT));
2773      continue;
2774    }
2775    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2776    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2777    if (Val < NumElems)
2778      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2779    else
2780      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2781  }
2782  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &MaskVec[0], NumElems);
2783}
2784
2785
2786/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2787/// match movhlps. The lower half elements should come from upper half of
2788/// V1 (and in order), and the upper half elements should come from the upper
2789/// half of V2 (and in order).
2790static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2791  unsigned NumElems = Mask->getNumOperands();
2792  if (NumElems != 4)
2793    return false;
2794  for (unsigned i = 0, e = 2; i != e; ++i)
2795    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2796      return false;
2797  for (unsigned i = 2; i != 4; ++i)
2798    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2799      return false;
2800  return true;
2801}
2802
2803/// isScalarLoadToVector - Returns true if the node is a scalar load that
2804/// is promoted to a vector. It also returns the LoadSDNode by reference if
2805/// required.
2806static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2807  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2808    return false;
2809  N = N->getOperand(0).getNode();
2810  if (!ISD::isNON_EXTLoad(N))
2811    return false;
2812  if (LD)
2813    *LD = cast<LoadSDNode>(N);
2814  return true;
2815}
2816
2817/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2818/// match movlp{s|d}. The lower half elements should come from lower half of
2819/// V1 (and in order), and the upper half elements should come from the upper
2820/// half of V2 (and in order). And since V1 will become the source of the
2821/// MOVLP, it must be either a vector load or a scalar load to vector.
2822static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2823  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2824    return false;
2825  // Is V2 is a vector load, don't do this transformation. We will try to use
2826  // load folding shufps op.
2827  if (ISD::isNON_EXTLoad(V2))
2828    return false;
2829
2830  unsigned NumElems = Mask->getNumOperands();
2831  if (NumElems != 2 && NumElems != 4)
2832    return false;
2833  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2834    if (!isUndefOrEqual(Mask->getOperand(i), i))
2835      return false;
2836  for (unsigned i = NumElems/2; i != NumElems; ++i)
2837    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2838      return false;
2839  return true;
2840}
2841
2842/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2843/// all the same.
2844static bool isSplatVector(SDNode *N) {
2845  if (N->getOpcode() != ISD::BUILD_VECTOR)
2846    return false;
2847
2848  SDValue SplatValue = N->getOperand(0);
2849  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2850    if (N->getOperand(i) != SplatValue)
2851      return false;
2852  return true;
2853}
2854
2855/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2856/// to an undef.
2857static bool isUndefShuffle(SDNode *N) {
2858  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2859    return false;
2860
2861  SDValue V1 = N->getOperand(0);
2862  SDValue V2 = N->getOperand(1);
2863  SDValue Mask = N->getOperand(2);
2864  unsigned NumElems = Mask.getNumOperands();
2865  for (unsigned i = 0; i != NumElems; ++i) {
2866    SDValue Arg = Mask.getOperand(i);
2867    if (Arg.getOpcode() != ISD::UNDEF) {
2868      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2869      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2870        return false;
2871      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2872        return false;
2873    }
2874  }
2875  return true;
2876}
2877
2878/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2879/// constant +0.0.
2880static inline bool isZeroNode(SDValue Elt) {
2881  return ((isa<ConstantSDNode>(Elt) &&
2882           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2883          (isa<ConstantFPSDNode>(Elt) &&
2884           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2885}
2886
2887/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2888/// to an zero vector.
2889static bool isZeroShuffle(SDNode *N) {
2890  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2891    return false;
2892
2893  SDValue V1 = N->getOperand(0);
2894  SDValue V2 = N->getOperand(1);
2895  SDValue Mask = N->getOperand(2);
2896  unsigned NumElems = Mask.getNumOperands();
2897  for (unsigned i = 0; i != NumElems; ++i) {
2898    SDValue Arg = Mask.getOperand(i);
2899    if (Arg.getOpcode() == ISD::UNDEF)
2900      continue;
2901
2902    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2903    if (Idx < NumElems) {
2904      unsigned Opc = V1.getNode()->getOpcode();
2905      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2906        continue;
2907      if (Opc != ISD::BUILD_VECTOR ||
2908          !isZeroNode(V1.getNode()->getOperand(Idx)))
2909        return false;
2910    } else if (Idx >= NumElems) {
2911      unsigned Opc = V2.getNode()->getOpcode();
2912      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2913        continue;
2914      if (Opc != ISD::BUILD_VECTOR ||
2915          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2916        return false;
2917    }
2918  }
2919  return true;
2920}
2921
2922/// getZeroVector - Returns a vector of specified type with all zero elements.
2923///
2924static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2925                             DebugLoc dl) {
2926  assert(VT.isVector() && "Expected a vector type");
2927
2928  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2929  // type.  This ensures they get CSE'd.
2930  SDValue Vec;
2931  if (VT.getSizeInBits() == 64) { // MMX
2932    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2933    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2934  } else if (HasSSE2) {  // SSE2
2935    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2936    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2937  } else { // SSE1
2938    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2939    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2940  }
2941  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2942}
2943
2944/// getOnesVector - Returns a vector of specified type with all bits set.
2945///
2946static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2947  assert(VT.isVector() && "Expected a vector type");
2948
2949  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2950  // type.  This ensures they get CSE'd.
2951  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2952  SDValue Vec;
2953  if (VT.getSizeInBits() == 64)  // MMX
2954    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2955  else                                              // SSE
2956    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2957  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2958}
2959
2960
2961/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2962/// that point to V2 points to its first element.
2963static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2964  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2965
2966  bool Changed = false;
2967  SmallVector<SDValue, 8> MaskVec;
2968  unsigned NumElems = Mask.getNumOperands();
2969  for (unsigned i = 0; i != NumElems; ++i) {
2970    SDValue Arg = Mask.getOperand(i);
2971    if (Arg.getOpcode() != ISD::UNDEF) {
2972      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2973      if (Val > NumElems) {
2974        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2975        Changed = true;
2976      }
2977    }
2978    MaskVec.push_back(Arg);
2979  }
2980
2981  if (Changed)
2982    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getDebugLoc(),
2983                       Mask.getValueType(),
2984                       &MaskVec[0], MaskVec.size());
2985  return Mask;
2986}
2987
2988/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2989/// operation of specified width.
2990static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG, DebugLoc dl) {
2991  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2992  MVT BaseVT = MaskVT.getVectorElementType();
2993
2994  SmallVector<SDValue, 8> MaskVec;
2995  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2996  for (unsigned i = 1; i != NumElems; ++i)
2997    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2998  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
2999                     &MaskVec[0], MaskVec.size());
3000}
3001
3002/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
3003/// of specified width.
3004static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG,
3005                              DebugLoc dl) {
3006  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3007  MVT BaseVT = MaskVT.getVectorElementType();
3008  SmallVector<SDValue, 8> MaskVec;
3009  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3010    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3011    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3012  }
3013  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3014                     &MaskVec[0], MaskVec.size());
3015}
3016
3017/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3018/// of specified width.
3019static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG,
3020                              DebugLoc dl) {
3021  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3022  MVT BaseVT = MaskVT.getVectorElementType();
3023  unsigned Half = NumElems/2;
3024  SmallVector<SDValue, 8> MaskVec;
3025  for (unsigned i = 0; i != Half; ++i) {
3026    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3027    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3028  }
3029  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3030                     &MaskVec[0], MaskVec.size());
3031}
3032
3033/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
3034/// element #0 of a vector with the specified index, leaving the rest of the
3035/// elements in place.
3036static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
3037                                   SelectionDAG &DAG, DebugLoc dl) {
3038  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3039  MVT BaseVT = MaskVT.getVectorElementType();
3040  SmallVector<SDValue, 8> MaskVec;
3041  // Element #0 of the result gets the elt we are replacing.
3042  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
3043  for (unsigned i = 1; i != NumElems; ++i)
3044    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
3045  return DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3046                     &MaskVec[0], MaskVec.size());
3047}
3048
3049/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3050static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
3051  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
3052  MVT VT = Op.getValueType();
3053  if (PVT == VT)
3054    return Op;
3055  SDValue V1 = Op.getOperand(0);
3056  SDValue Mask = Op.getOperand(2);
3057  unsigned MaskNumElems = Mask.getNumOperands();
3058  unsigned NumElems = MaskNumElems;
3059  DebugLoc dl = Op.getDebugLoc();
3060  // Special handling of v4f32 -> v4i32.
3061  if (VT != MVT::v4f32) {
3062    // Find which element we want to splat.
3063    SDNode* EltNoNode = getSplatMaskEltNo(Mask.getNode()).getNode();
3064    unsigned EltNo = cast<ConstantSDNode>(EltNoNode)->getZExtValue();
3065    // unpack elements to the correct location
3066    while (NumElems > 4) {
3067      if (EltNo < NumElems/2) {
3068        Mask = getUnpacklMask(MaskNumElems, DAG, dl);
3069      } else {
3070        Mask = getUnpackhMask(MaskNumElems, DAG, dl);
3071        EltNo -= NumElems/2;
3072      }
3073      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V1, Mask);
3074      NumElems >>= 1;
3075    }
3076    SDValue Cst = DAG.getConstant(EltNo, MVT::i32);
3077    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3078  }
3079
3080  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3081  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, PVT, V1,
3082                                  DAG.getUNDEF(PVT), Mask);
3083  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuffle);
3084}
3085
3086/// isVectorLoad - Returns true if the node is a vector load, a scalar
3087/// load that's promoted to vector, or a load bitcasted.
3088static bool isVectorLoad(SDValue Op) {
3089  assert(Op.getValueType().isVector() && "Expected a vector type");
3090  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
3091      Op.getOpcode() == ISD::BIT_CONVERT) {
3092    return isa<LoadSDNode>(Op.getOperand(0));
3093  }
3094  return isa<LoadSDNode>(Op);
3095}
3096
3097
3098/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3099///
3100static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3101                                   SelectionDAG &DAG, bool HasSSE3) {
3102  // If we have sse3 and shuffle has more than one use or input is a load, then
3103  // use movddup. Otherwise, use movlhps.
3104  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3105  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3106  MVT VT = Op.getValueType();
3107  if (VT == PVT)
3108    return Op;
3109  DebugLoc dl = Op.getDebugLoc();
3110  unsigned NumElems = PVT.getVectorNumElements();
3111  if (NumElems == 2) {
3112    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3113    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3114  } else {
3115    assert(NumElems == 4);
3116    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3117    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3118    Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3119                       Cst0, Cst1, Cst0, Cst1);
3120  }
3121
3122  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3123  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, PVT, V1,
3124                                DAG.getUNDEF(PVT), Mask);
3125  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Shuffle);
3126}
3127
3128/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3129/// vector of zero or undef vector.  This produces a shuffle where the low
3130/// element of V2 is swizzled into the zero/undef vector, landing at element
3131/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3132static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3133                                             bool isZero, bool HasSSE2,
3134                                             SelectionDAG &DAG) {
3135  DebugLoc dl = V2.getDebugLoc();
3136  MVT VT = V2.getValueType();
3137  SDValue V1 = isZero
3138    ? getZeroVector(VT, HasSSE2, DAG, dl) : DAG.getUNDEF(VT);
3139  unsigned NumElems = V2.getValueType().getVectorNumElements();
3140  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3141  MVT EVT = MaskVT.getVectorElementType();
3142  SmallVector<SDValue, 16> MaskVec;
3143  for (unsigned i = 0; i != NumElems; ++i)
3144    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3145      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3146    else
3147      MaskVec.push_back(DAG.getConstant(i, EVT));
3148  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3149                               &MaskVec[0], MaskVec.size());
3150  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, Mask);
3151}
3152
3153/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3154/// a shuffle that is zero.
3155static
3156unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3157                                  unsigned NumElems, bool Low,
3158                                  SelectionDAG &DAG) {
3159  unsigned NumZeros = 0;
3160  for (unsigned i = 0; i < NumElems; ++i) {
3161    unsigned Index = Low ? i : NumElems-i-1;
3162    SDValue Idx = Mask.getOperand(Index);
3163    if (Idx.getOpcode() == ISD::UNDEF) {
3164      ++NumZeros;
3165      continue;
3166    }
3167    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3168    if (Elt.getNode() && isZeroNode(Elt))
3169      ++NumZeros;
3170    else
3171      break;
3172  }
3173  return NumZeros;
3174}
3175
3176/// isVectorShift - Returns true if the shuffle can be implemented as a
3177/// logical left or right shift of a vector.
3178static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3179                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3180  unsigned NumElems = Mask.getNumOperands();
3181
3182  isLeft = true;
3183  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3184  if (!NumZeros) {
3185    isLeft = false;
3186    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3187    if (!NumZeros)
3188      return false;
3189  }
3190
3191  bool SeenV1 = false;
3192  bool SeenV2 = false;
3193  for (unsigned i = NumZeros; i < NumElems; ++i) {
3194    unsigned Val = isLeft ? (i - NumZeros) : i;
3195    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3196    if (Idx.getOpcode() == ISD::UNDEF)
3197      continue;
3198    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3199    if (Index < NumElems)
3200      SeenV1 = true;
3201    else {
3202      Index -= NumElems;
3203      SeenV2 = true;
3204    }
3205    if (Index != Val)
3206      return false;
3207  }
3208  if (SeenV1 && SeenV2)
3209    return false;
3210
3211  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3212  ShAmt = NumZeros;
3213  return true;
3214}
3215
3216
3217/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3218///
3219static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3220                                       unsigned NumNonZero, unsigned NumZero,
3221                                       SelectionDAG &DAG, TargetLowering &TLI) {
3222  if (NumNonZero > 8)
3223    return SDValue();
3224
3225  DebugLoc dl = Op.getDebugLoc();
3226  SDValue V(0, 0);
3227  bool First = true;
3228  for (unsigned i = 0; i < 16; ++i) {
3229    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3230    if (ThisIsNonZero && First) {
3231      if (NumZero)
3232        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3233      else
3234        V = DAG.getUNDEF(MVT::v8i16);
3235      First = false;
3236    }
3237
3238    if ((i & 1) != 0) {
3239      SDValue ThisElt(0, 0), LastElt(0, 0);
3240      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3241      if (LastIsNonZero) {
3242        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3243                              MVT::i16, Op.getOperand(i-1));
3244      }
3245      if (ThisIsNonZero) {
3246        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3247        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3248                              ThisElt, DAG.getConstant(8, MVT::i8));
3249        if (LastIsNonZero)
3250          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3251      } else
3252        ThisElt = LastElt;
3253
3254      if (ThisElt.getNode())
3255        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3256                        DAG.getIntPtrConstant(i/2));
3257    }
3258  }
3259
3260  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3261}
3262
3263/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3264///
3265static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3266                                       unsigned NumNonZero, unsigned NumZero,
3267                                       SelectionDAG &DAG, TargetLowering &TLI) {
3268  if (NumNonZero > 4)
3269    return SDValue();
3270
3271  DebugLoc dl = Op.getDebugLoc();
3272  SDValue V(0, 0);
3273  bool First = true;
3274  for (unsigned i = 0; i < 8; ++i) {
3275    bool isNonZero = (NonZeros & (1 << i)) != 0;
3276    if (isNonZero) {
3277      if (First) {
3278        if (NumZero)
3279          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3280        else
3281          V = DAG.getUNDEF(MVT::v8i16);
3282        First = false;
3283      }
3284      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3285                      MVT::v8i16, V, Op.getOperand(i),
3286                      DAG.getIntPtrConstant(i));
3287    }
3288  }
3289
3290  return V;
3291}
3292
3293/// getVShift - Return a vector logical shift node.
3294///
3295static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3296                           unsigned NumBits, SelectionDAG &DAG,
3297                           const TargetLowering &TLI, DebugLoc dl) {
3298  bool isMMX = VT.getSizeInBits() == 64;
3299  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3300  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3301  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3302  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3303                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3304                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3305}
3306
3307SDValue
3308X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3309  DebugLoc dl = Op.getDebugLoc();
3310  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3311  if (ISD::isBuildVectorAllZeros(Op.getNode())
3312      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3313    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3314    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3315    // eliminated on x86-32 hosts.
3316    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3317      return Op;
3318
3319    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3320      return getOnesVector(Op.getValueType(), DAG, dl);
3321    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3322  }
3323
3324  MVT VT = Op.getValueType();
3325  MVT EVT = VT.getVectorElementType();
3326  unsigned EVTBits = EVT.getSizeInBits();
3327
3328  unsigned NumElems = Op.getNumOperands();
3329  unsigned NumZero  = 0;
3330  unsigned NumNonZero = 0;
3331  unsigned NonZeros = 0;
3332  bool IsAllConstants = true;
3333  SmallSet<SDValue, 8> Values;
3334  for (unsigned i = 0; i < NumElems; ++i) {
3335    SDValue Elt = Op.getOperand(i);
3336    if (Elt.getOpcode() == ISD::UNDEF)
3337      continue;
3338    Values.insert(Elt);
3339    if (Elt.getOpcode() != ISD::Constant &&
3340        Elt.getOpcode() != ISD::ConstantFP)
3341      IsAllConstants = false;
3342    if (isZeroNode(Elt))
3343      NumZero++;
3344    else {
3345      NonZeros |= (1 << i);
3346      NumNonZero++;
3347    }
3348  }
3349
3350  if (NumNonZero == 0) {
3351    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3352    return DAG.getUNDEF(VT);
3353  }
3354
3355  // Special case for single non-zero, non-undef, element.
3356  if (NumNonZero == 1 && NumElems <= 4) {
3357    unsigned Idx = CountTrailingZeros_32(NonZeros);
3358    SDValue Item = Op.getOperand(Idx);
3359
3360    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3361    // the value are obviously zero, truncate the value to i32 and do the
3362    // insertion that way.  Only do this if the value is non-constant or if the
3363    // value is a constant being inserted into element 0.  It is cheaper to do
3364    // a constant pool load than it is to do a movd + shuffle.
3365    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3366        (!IsAllConstants || Idx == 0)) {
3367      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3368        // Handle MMX and SSE both.
3369        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3370        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3371
3372        // Truncate the value (which may itself be a constant) to i32, and
3373        // convert it to a vector with movd (S2V+shuffle to zero extend).
3374        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3375        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3376        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3377                                           Subtarget->hasSSE2(), DAG);
3378
3379        // Now we have our 32-bit value zero extended in the low element of
3380        // a vector.  If Idx != 0, swizzle it into place.
3381        if (Idx != 0) {
3382          SDValue Ops[] = {
3383            Item, DAG.getUNDEF(Item.getValueType()),
3384            getSwapEltZeroMask(VecElts, Idx, DAG, dl)
3385          };
3386          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VecVT, Ops, 3);
3387        }
3388        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3389      }
3390    }
3391
3392    // If we have a constant or non-constant insertion into the low element of
3393    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3394    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3395    // depending on what the source datatype is.  Because we can only get here
3396    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3397    if (Idx == 0 &&
3398        // Don't do this for i64 values on x86-32.
3399        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3400      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3401      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3402      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3403                                         Subtarget->hasSSE2(), DAG);
3404    }
3405
3406    // Is it a vector logical left shift?
3407    if (NumElems == 2 && Idx == 1 &&
3408        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3409      unsigned NumBits = VT.getSizeInBits();
3410      return getVShift(true, VT,
3411                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3412                                   VT, Op.getOperand(1)),
3413                       NumBits/2, DAG, *this, dl);
3414    }
3415
3416    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3417      return SDValue();
3418
3419    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3420    // is a non-constant being inserted into an element other than the low one,
3421    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3422    // movd/movss) to move this into the low element, then shuffle it into
3423    // place.
3424    if (EVTBits == 32) {
3425      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3426
3427      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3428      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3429                                         Subtarget->hasSSE2(), DAG);
3430      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3431      MVT MaskEVT = MaskVT.getVectorElementType();
3432      SmallVector<SDValue, 8> MaskVec;
3433      for (unsigned i = 0; i < NumElems; i++)
3434        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3435      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3436                                   &MaskVec[0], MaskVec.size());
3437      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, Item,
3438                         DAG.getUNDEF(VT), Mask);
3439    }
3440  }
3441
3442  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3443  if (Values.size() == 1)
3444    return SDValue();
3445
3446  // A vector full of immediates; various special cases are already
3447  // handled, so this is best done with a single constant-pool load.
3448  if (IsAllConstants)
3449    return SDValue();
3450
3451  // Let legalizer expand 2-wide build_vectors.
3452  if (EVTBits == 64) {
3453    if (NumNonZero == 1) {
3454      // One half is zero or undef.
3455      unsigned Idx = CountTrailingZeros_32(NonZeros);
3456      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3457                                 Op.getOperand(Idx));
3458      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3459                                         Subtarget->hasSSE2(), DAG);
3460    }
3461    return SDValue();
3462  }
3463
3464  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3465  if (EVTBits == 8 && NumElems == 16) {
3466    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3467                                        *this);
3468    if (V.getNode()) return V;
3469  }
3470
3471  if (EVTBits == 16 && NumElems == 8) {
3472    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3473                                        *this);
3474    if (V.getNode()) return V;
3475  }
3476
3477  // If element VT is == 32 bits, turn it into a number of shuffles.
3478  SmallVector<SDValue, 8> V;
3479  V.resize(NumElems);
3480  if (NumElems == 4 && NumZero > 0) {
3481    for (unsigned i = 0; i < 4; ++i) {
3482      bool isZero = !(NonZeros & (1 << i));
3483      if (isZero)
3484        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3485      else
3486        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3487    }
3488
3489    for (unsigned i = 0; i < 2; ++i) {
3490      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3491        default: break;
3492        case 0:
3493          V[i] = V[i*2];  // Must be a zero vector.
3494          break;
3495        case 1:
3496          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2+1], V[i*2],
3497                             getMOVLMask(NumElems, DAG, dl));
3498          break;
3499        case 2:
3500          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2], V[i*2+1],
3501                             getMOVLMask(NumElems, DAG, dl));
3502          break;
3503        case 3:
3504          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i*2], V[i*2+1],
3505                             getUnpacklMask(NumElems, DAG, dl));
3506          break;
3507      }
3508    }
3509
3510    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3511    MVT EVT = MaskVT.getVectorElementType();
3512    SmallVector<SDValue, 8> MaskVec;
3513    bool Reverse = (NonZeros & 0x3) == 2;
3514    for (unsigned i = 0; i < 2; ++i)
3515      if (Reverse)
3516        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3517      else
3518        MaskVec.push_back(DAG.getConstant(i, EVT));
3519    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3520    for (unsigned i = 0; i < 2; ++i)
3521      if (Reverse)
3522        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3523      else
3524        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3525    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
3526                                     &MaskVec[0], MaskVec.size());
3527    return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[0], V[1], ShufMask);
3528  }
3529
3530  if (Values.size() > 2) {
3531    // Expand into a number of unpckl*.
3532    // e.g. for v4f32
3533    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3534    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3535    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3536    SDValue UnpckMask = getUnpacklMask(NumElems, DAG, dl);
3537    for (unsigned i = 0; i < NumElems; ++i)
3538      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3539    NumElems >>= 1;
3540    while (NumElems != 0) {
3541      for (unsigned i = 0; i < NumElems; ++i)
3542        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V[i], V[i + NumElems],
3543                           UnpckMask);
3544      NumElems >>= 1;
3545    }
3546    return V[0];
3547  }
3548
3549  return SDValue();
3550}
3551
3552// v8i16 shuffles - Prefer shuffles in the following order:
3553// 1. [all]   pshuflw, pshufhw, optional move
3554// 2. [ssse3] 1 x pshufb
3555// 3. [ssse3] 2 x pshufb + 1 x por
3556// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3557static
3558SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3559                                 SDValue PermMask, SelectionDAG &DAG,
3560                                 X86TargetLowering &TLI, DebugLoc dl) {
3561  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3562                                   PermMask.getNode()->op_end());
3563  SmallVector<int, 8> MaskVals;
3564
3565  // Determine if more than 1 of the words in each of the low and high quadwords
3566  // of the result come from the same quadword of one of the two inputs.  Undef
3567  // mask values count as coming from any quadword, for better codegen.
3568  SmallVector<unsigned, 4> LoQuad(4);
3569  SmallVector<unsigned, 4> HiQuad(4);
3570  BitVector InputQuads(4);
3571  for (unsigned i = 0; i < 8; ++i) {
3572    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3573    SDValue Elt = MaskElts[i];
3574    int EltIdx = Elt.getOpcode() == ISD::UNDEF ? -1 :
3575                 cast<ConstantSDNode>(Elt)->getZExtValue();
3576    MaskVals.push_back(EltIdx);
3577    if (EltIdx < 0) {
3578      ++Quad[0];
3579      ++Quad[1];
3580      ++Quad[2];
3581      ++Quad[3];
3582      continue;
3583    }
3584    ++Quad[EltIdx / 4];
3585    InputQuads.set(EltIdx / 4);
3586  }
3587
3588  int BestLoQuad = -1;
3589  unsigned MaxQuad = 1;
3590  for (unsigned i = 0; i < 4; ++i) {
3591    if (LoQuad[i] > MaxQuad) {
3592      BestLoQuad = i;
3593      MaxQuad = LoQuad[i];
3594    }
3595  }
3596
3597  int BestHiQuad = -1;
3598  MaxQuad = 1;
3599  for (unsigned i = 0; i < 4; ++i) {
3600    if (HiQuad[i] > MaxQuad) {
3601      BestHiQuad = i;
3602      MaxQuad = HiQuad[i];
3603    }
3604  }
3605
3606  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3607  // of the two input vectors, shuffle them into one input vector so only a
3608  // single pshufb instruction is necessary. If There are more than 2 input
3609  // quads, disable the next transformation since it does not help SSSE3.
3610  bool V1Used = InputQuads[0] || InputQuads[1];
3611  bool V2Used = InputQuads[2] || InputQuads[3];
3612  if (TLI.getSubtarget()->hasSSSE3()) {
3613    if (InputQuads.count() == 2 && V1Used && V2Used) {
3614      BestLoQuad = InputQuads.find_first();
3615      BestHiQuad = InputQuads.find_next(BestLoQuad);
3616    }
3617    if (InputQuads.count() > 2) {
3618      BestLoQuad = -1;
3619      BestHiQuad = -1;
3620    }
3621  }
3622
3623  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3624  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3625  // words from all 4 input quadwords.
3626  SDValue NewV;
3627  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3628    SmallVector<SDValue,8> MaskV;
3629    MaskV.push_back(DAG.getConstant(BestLoQuad < 0 ? 0 : BestLoQuad, MVT::i64));
3630    MaskV.push_back(DAG.getConstant(BestHiQuad < 0 ? 1 : BestHiQuad, MVT::i64));
3631    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, &MaskV[0], 2);
3632
3633    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2i64,
3634                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3635                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), Mask);
3636    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3637
3638    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3639    // source words for the shuffle, to aid later transformations.
3640    bool AllWordsInNewV = true;
3641    bool InOrder[2] = { true, true };
3642    for (unsigned i = 0; i != 8; ++i) {
3643      int idx = MaskVals[i];
3644      if (idx != (int)i)
3645        InOrder[i/4] = false;
3646      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3647        continue;
3648      AllWordsInNewV = false;
3649      break;
3650    }
3651
3652    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3653    if (AllWordsInNewV) {
3654      for (int i = 0; i != 8; ++i) {
3655        int idx = MaskVals[i];
3656        if (idx < 0)
3657          continue;
3658        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3659        if ((idx != i) && idx < 4)
3660          pshufhw = false;
3661        if ((idx != i) && idx > 3)
3662          pshuflw = false;
3663      }
3664      V1 = NewV;
3665      V2Used = false;
3666      BestLoQuad = 0;
3667      BestHiQuad = 1;
3668    }
3669
3670    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3671    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3672    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3673      MaskV.clear();
3674      for (unsigned i = 0; i != 8; ++i)
3675        MaskV.push_back((MaskVals[i] < 0) ? DAG.getUNDEF(MVT::i16)
3676                                          : DAG.getConstant(MaskVals[i],
3677                                                            MVT::i16));
3678      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3679                         DAG.getUNDEF(MVT::v8i16),
3680                         DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i16,
3681                                     &MaskV[0], 8));
3682    }
3683  }
3684
3685  // If we have SSSE3, and all words of the result are from 1 input vector,
3686  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3687  // is present, fall back to case 4.
3688  if (TLI.getSubtarget()->hasSSSE3()) {
3689    SmallVector<SDValue,16> pshufbMask;
3690
3691    // If we have elements from both input vectors, set the high bit of the
3692    // shuffle mask element to zero out elements that come from V2 in the V1
3693    // mask, and elements that come from V1 in the V2 mask, so that the two
3694    // results can be OR'd together.
3695    bool TwoInputs = V1Used && V2Used;
3696    for (unsigned i = 0; i != 8; ++i) {
3697      int EltIdx = MaskVals[i] * 2;
3698      if (TwoInputs && (EltIdx >= 16)) {
3699        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3700        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3701        continue;
3702      }
3703      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
3704      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3705    }
3706    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3707    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3708                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3709                                 MVT::v16i8, &pshufbMask[0], 16));
3710    if (!TwoInputs)
3711      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3712
3713    // Calculate the shuffle mask for the second input, shuffle it, and
3714    // OR it with the first shuffled input.
3715    pshufbMask.clear();
3716    for (unsigned i = 0; i != 8; ++i) {
3717      int EltIdx = MaskVals[i] * 2;
3718      if (EltIdx < 16) {
3719        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3720        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3721        continue;
3722      }
3723      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3724      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3725    }
3726    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3727    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3728                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3729                                 MVT::v16i8, &pshufbMask[0], 16));
3730    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3731    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3732  }
3733
3734  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3735  // and update MaskVals with new element order.
3736  BitVector InOrder(8);
3737  if (BestLoQuad >= 0) {
3738    SmallVector<SDValue, 8> MaskV;
3739    for (int i = 0; i != 4; ++i) {
3740      int idx = MaskVals[i];
3741      if (idx < 0) {
3742        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3743        InOrder.set(i);
3744      } else if ((idx / 4) == BestLoQuad) {
3745        MaskV.push_back(DAG.getConstant(idx & 3, MVT::i16));
3746        InOrder.set(i);
3747      } else {
3748        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3749      }
3750    }
3751    for (unsigned i = 4; i != 8; ++i)
3752      MaskV.push_back(DAG.getConstant(i, MVT::i16));
3753    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3754                       DAG.getUNDEF(MVT::v8i16),
3755                       DAG.getNode(ISD::BUILD_VECTOR, dl,
3756                                   MVT::v8i16, &MaskV[0], 8));
3757  }
3758
3759  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3760  // and update MaskVals with the new element order.
3761  if (BestHiQuad >= 0) {
3762    SmallVector<SDValue, 8> MaskV;
3763    for (unsigned i = 0; i != 4; ++i)
3764      MaskV.push_back(DAG.getConstant(i, MVT::i16));
3765    for (unsigned i = 4; i != 8; ++i) {
3766      int idx = MaskVals[i];
3767      if (idx < 0) {
3768        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3769        InOrder.set(i);
3770      } else if ((idx / 4) == BestHiQuad) {
3771        MaskV.push_back(DAG.getConstant((idx & 3) + 4, MVT::i16));
3772        InOrder.set(i);
3773      } else {
3774        MaskV.push_back(DAG.getUNDEF(MVT::i16));
3775      }
3776    }
3777    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v8i16, NewV,
3778                       DAG.getUNDEF(MVT::v8i16),
3779                       DAG.getNode(ISD::BUILD_VECTOR, dl,
3780                                   MVT::v8i16, &MaskV[0], 8));
3781  }
3782
3783  // In case BestHi & BestLo were both -1, which means each quadword has a word
3784  // from each of the four input quadwords, calculate the InOrder bitvector now
3785  // before falling through to the insert/extract cleanup.
3786  if (BestLoQuad == -1 && BestHiQuad == -1) {
3787    NewV = V1;
3788    for (int i = 0; i != 8; ++i)
3789      if (MaskVals[i] < 0 || MaskVals[i] == i)
3790        InOrder.set(i);
3791  }
3792
3793  // The other elements are put in the right place using pextrw and pinsrw.
3794  for (unsigned i = 0; i != 8; ++i) {
3795    if (InOrder[i])
3796      continue;
3797    int EltIdx = MaskVals[i];
3798    if (EltIdx < 0)
3799      continue;
3800    SDValue ExtOp = (EltIdx < 8)
3801    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3802                  DAG.getIntPtrConstant(EltIdx))
3803    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3804                  DAG.getIntPtrConstant(EltIdx - 8));
3805    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3806                       DAG.getIntPtrConstant(i));
3807  }
3808  return NewV;
3809}
3810
3811// v16i8 shuffles - Prefer shuffles in the following order:
3812// 1. [ssse3] 1 x pshufb
3813// 2. [ssse3] 2 x pshufb + 1 x por
3814// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
3815static
3816SDValue LowerVECTOR_SHUFFLEv16i8(SDValue V1, SDValue V2,
3817                                 SDValue PermMask, SelectionDAG &DAG,
3818                                 X86TargetLowering &TLI, DebugLoc dl) {
3819  SmallVector<SDValue, 16> MaskElts(PermMask.getNode()->op_begin(),
3820                                    PermMask.getNode()->op_end());
3821  SmallVector<int, 16> MaskVals;
3822
3823  // If we have SSSE3, case 1 is generated when all result bytes come from
3824  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
3825  // present, fall back to case 3.
3826  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3827  bool V1Only = true;
3828  bool V2Only = true;
3829  for (unsigned i = 0; i < 16; ++i) {
3830    SDValue Elt = MaskElts[i];
3831    int EltIdx = Elt.getOpcode() == ISD::UNDEF ? -1 :
3832                 cast<ConstantSDNode>(Elt)->getZExtValue();
3833    MaskVals.push_back(EltIdx);
3834    if (EltIdx < 0)
3835      continue;
3836    if (EltIdx < 16)
3837      V2Only = false;
3838    else
3839      V1Only = false;
3840  }
3841
3842  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3843  if (TLI.getSubtarget()->hasSSSE3()) {
3844    SmallVector<SDValue,16> pshufbMask;
3845
3846    // If all result elements are from one input vector, then only translate
3847    // undef mask values to 0x80 (zero out result) in the pshufb mask.
3848    //
3849    // Otherwise, we have elements from both input vectors, and must zero out
3850    // elements that come from V2 in the first mask, and V1 in the second mask
3851    // so that we can OR them together.
3852    bool TwoInputs = !(V1Only || V2Only);
3853    for (unsigned i = 0; i != 16; ++i) {
3854      int EltIdx = MaskVals[i];
3855      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3856        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3857        continue;
3858      }
3859      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3860    }
3861    // If all the elements are from V2, assign it to V1 and return after
3862    // building the first pshufb.
3863    if (V2Only)
3864      V1 = V2;
3865    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3866                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3867                                 MVT::v16i8, &pshufbMask[0], 16));
3868    if (!TwoInputs)
3869      return V1;
3870
3871    // Calculate the shuffle mask for the second input, shuffle it, and
3872    // OR it with the first shuffled input.
3873    pshufbMask.clear();
3874    for (unsigned i = 0; i != 16; ++i) {
3875      int EltIdx = MaskVals[i];
3876      if (EltIdx < 16) {
3877        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3878        continue;
3879      }
3880      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3881    }
3882    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3883                     DAG.getNode(ISD::BUILD_VECTOR, dl,
3884                                 MVT::v16i8, &pshufbMask[0], 16));
3885    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3886  }
3887
3888  // No SSSE3 - Calculate in place words and then fix all out of place words
3889  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
3890  // the 16 different words that comprise the two doublequadword input vectors.
3891  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3892  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3893  SDValue NewV = V2Only ? V2 : V1;
3894  for (int i = 0; i != 8; ++i) {
3895    int Elt0 = MaskVals[i*2];
3896    int Elt1 = MaskVals[i*2+1];
3897
3898    // This word of the result is all undef, skip it.
3899    if (Elt0 < 0 && Elt1 < 0)
3900      continue;
3901
3902    // This word of the result is already in the correct place, skip it.
3903    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3904      continue;
3905    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3906      continue;
3907
3908    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3909    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3910    SDValue InsElt;
3911
3912    // If Elt0 and Elt1 are defined, are consecutive, and can be load
3913    // using a single extract together, load it and store it.
3914    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3915      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3916                           DAG.getIntPtrConstant(Elt1 / 2));
3917      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3918                        DAG.getIntPtrConstant(i));
3919      continue;
3920    }
3921
3922    // If Elt1 is defined, extract it from the appropriate source.  If the
3923    // source byte is not also odd, shift the extracted word left 8 bits
3924    // otherwise clear the bottom 8 bits if we need to do an or.
3925    if (Elt1 >= 0) {
3926      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3927                           DAG.getIntPtrConstant(Elt1 / 2));
3928      if ((Elt1 & 1) == 0)
3929        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3930                             DAG.getConstant(8, TLI.getShiftAmountTy()));
3931      else if (Elt0 >= 0)
3932        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3933                             DAG.getConstant(0xFF00, MVT::i16));
3934    }
3935    // If Elt0 is defined, extract it from the appropriate source.  If the
3936    // source byte is not also even, shift the extracted word right 8 bits. If
3937    // Elt1 was also defined, OR the extracted values together before
3938    // inserting them in the result.
3939    if (Elt0 >= 0) {
3940      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3941                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3942      if ((Elt0 & 1) != 0)
3943        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3944                              DAG.getConstant(8, TLI.getShiftAmountTy()));
3945      else if (Elt1 >= 0)
3946        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3947                             DAG.getConstant(0x00FF, MVT::i16));
3948      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3949                         : InsElt0;
3950    }
3951    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3952                       DAG.getIntPtrConstant(i));
3953  }
3954  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3955}
3956
3957/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3958/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3959/// done when every pair / quad of shuffle mask elements point to elements in
3960/// the right sequence. e.g.
3961/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3962static
3963SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3964                                MVT VT,
3965                                SDValue PermMask, SelectionDAG &DAG,
3966                                TargetLowering &TLI, DebugLoc dl) {
3967  unsigned NumElems = PermMask.getNumOperands();
3968  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3969  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3970  MVT MaskEltVT = MaskVT.getVectorElementType();
3971  MVT NewVT = MaskVT;
3972  switch (VT.getSimpleVT()) {
3973  default: assert(false && "Unexpected!");
3974  case MVT::v4f32: NewVT = MVT::v2f64; break;
3975  case MVT::v4i32: NewVT = MVT::v2i64; break;
3976  case MVT::v8i16: NewVT = MVT::v4i32; break;
3977  case MVT::v16i8: NewVT = MVT::v4i32; break;
3978  }
3979
3980  if (NewWidth == 2) {
3981    if (VT.isInteger())
3982      NewVT = MVT::v2i64;
3983    else
3984      NewVT = MVT::v2f64;
3985  }
3986  unsigned Scale = NumElems / NewWidth;
3987  SmallVector<SDValue, 8> MaskVec;
3988  for (unsigned i = 0; i < NumElems; i += Scale) {
3989    unsigned StartIdx = ~0U;
3990    for (unsigned j = 0; j < Scale; ++j) {
3991      SDValue Elt = PermMask.getOperand(i+j);
3992      if (Elt.getOpcode() == ISD::UNDEF)
3993        continue;
3994      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3995      if (StartIdx == ~0U)
3996        StartIdx = EltIdx - (EltIdx % Scale);
3997      if (EltIdx != StartIdx + j)
3998        return SDValue();
3999    }
4000    if (StartIdx == ~0U)
4001      MaskVec.push_back(DAG.getUNDEF(MaskEltVT));
4002    else
4003      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
4004  }
4005
4006  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4007  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4008  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, NewVT, V1, V2,
4009                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4010                                 &MaskVec[0], MaskVec.size()));
4011}
4012
4013/// getVZextMovL - Return a zero-extending vector move low node.
4014///
4015static SDValue getVZextMovL(MVT VT, MVT OpVT,
4016                              SDValue SrcOp, SelectionDAG &DAG,
4017                              const X86Subtarget *Subtarget, DebugLoc dl) {
4018  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4019    LoadSDNode *LD = NULL;
4020    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4021      LD = dyn_cast<LoadSDNode>(SrcOp);
4022    if (!LD) {
4023      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4024      // instead.
4025      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4026      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
4027          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4028          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4029          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
4030        // PR2108
4031        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4032        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4033                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4034                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4035                                                   OpVT,
4036                                                   SrcOp.getOperand(0)
4037                                                          .getOperand(0))));
4038      }
4039    }
4040  }
4041
4042  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4043                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4044                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4045                                             OpVT, SrcOp)));
4046}
4047
4048/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4049/// shuffles.
4050static SDValue
4051LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
4052                          SDValue PermMask, MVT VT, SelectionDAG &DAG,
4053                          DebugLoc dl) {
4054  MVT MaskVT = PermMask.getValueType();
4055  MVT MaskEVT = MaskVT.getVectorElementType();
4056  SmallVector<std::pair<int, int>, 8> Locs;
4057  Locs.resize(4);
4058  SmallVector<SDValue, 8> Mask1(4, DAG.getUNDEF(MaskEVT));
4059  unsigned NumHi = 0;
4060  unsigned NumLo = 0;
4061  for (unsigned i = 0; i != 4; ++i) {
4062    SDValue Elt = PermMask.getOperand(i);
4063    if (Elt.getOpcode() == ISD::UNDEF) {
4064      Locs[i] = std::make_pair(-1, -1);
4065    } else {
4066      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
4067      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
4068      if (Val < 4) {
4069        Locs[i] = std::make_pair(0, NumLo);
4070        Mask1[NumLo] = Elt;
4071        NumLo++;
4072      } else {
4073        Locs[i] = std::make_pair(1, NumHi);
4074        if (2+NumHi < 4)
4075          Mask1[2+NumHi] = Elt;
4076        NumHi++;
4077      }
4078    }
4079  }
4080
4081  if (NumLo <= 2 && NumHi <= 2) {
4082    // If no more than two elements come from either vector. This can be
4083    // implemented with two shuffles. First shuffle gather the elements.
4084    // The second shuffle, which takes the first shuffle as both of its
4085    // vector operands, put the elements into the right order.
4086    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4087                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4088                                 &Mask1[0], Mask1.size()));
4089
4090    SmallVector<SDValue, 8> Mask2(4, DAG.getUNDEF(MaskEVT));
4091    for (unsigned i = 0; i != 4; ++i) {
4092      if (Locs[i].first == -1)
4093        continue;
4094      else {
4095        unsigned Idx = (i < 2) ? 0 : 4;
4096        Idx += Locs[i].first * 2 + Locs[i].second;
4097        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
4098      }
4099    }
4100
4101    return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V1,
4102                       DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4103                                   &Mask2[0], Mask2.size()));
4104  } else if (NumLo == 3 || NumHi == 3) {
4105    // Otherwise, we must have three elements from one vector, call it X, and
4106    // one element from the other, call it Y.  First, use a shufps to build an
4107    // intermediate vector with the one element from Y and the element from X
4108    // that will be in the same half in the final destination (the indexes don't
4109    // matter). Then, use a shufps to build the final vector, taking the half
4110    // containing the element from Y from the intermediate, and the other half
4111    // from X.
4112    if (NumHi == 3) {
4113      // Normalize it so the 3 elements come from V1.
4114      PermMask = CommuteVectorShuffleMask(PermMask, DAG, dl);
4115      std::swap(V1, V2);
4116    }
4117
4118    // Find the element from V2.
4119    unsigned HiIndex;
4120    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4121      SDValue Elt = PermMask.getOperand(HiIndex);
4122      if (Elt.getOpcode() == ISD::UNDEF)
4123        continue;
4124      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
4125      if (Val >= 4)
4126        break;
4127    }
4128
4129    Mask1[0] = PermMask.getOperand(HiIndex);
4130    Mask1[1] = DAG.getUNDEF(MaskEVT);
4131    Mask1[2] = PermMask.getOperand(HiIndex^1);
4132    Mask1[3] = DAG.getUNDEF(MaskEVT);
4133    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4134                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT, &Mask1[0], 4));
4135
4136    if (HiIndex >= 2) {
4137      Mask1[0] = PermMask.getOperand(0);
4138      Mask1[1] = PermMask.getOperand(1);
4139      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
4140      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
4141      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4142                         DAG.getNode(ISD::BUILD_VECTOR, dl,
4143                                     MaskVT, &Mask1[0], 4));
4144    } else {
4145      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
4146      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
4147      Mask1[2] = PermMask.getOperand(2);
4148      Mask1[3] = PermMask.getOperand(3);
4149      if (Mask1[2].getOpcode() != ISD::UNDEF)
4150        Mask1[2] =
4151          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
4152                          MaskEVT);
4153      if (Mask1[3].getOpcode() != ISD::UNDEF)
4154        Mask1[3] =
4155          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
4156                          MaskEVT);
4157      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V2, V1,
4158                         DAG.getNode(ISD::BUILD_VECTOR, dl,
4159                                     MaskVT, &Mask1[0], 4));
4160    }
4161  }
4162
4163  // Break it into (shuffle shuffle_hi, shuffle_lo).
4164  Locs.clear();
4165  SmallVector<SDValue,8> LoMask(4, DAG.getUNDEF(MaskEVT));
4166  SmallVector<SDValue,8> HiMask(4, DAG.getUNDEF(MaskEVT));
4167  SmallVector<SDValue,8> *MaskPtr = &LoMask;
4168  unsigned MaskIdx = 0;
4169  unsigned LoIdx = 0;
4170  unsigned HiIdx = 2;
4171  for (unsigned i = 0; i != 4; ++i) {
4172    if (i == 2) {
4173      MaskPtr = &HiMask;
4174      MaskIdx = 1;
4175      LoIdx = 0;
4176      HiIdx = 2;
4177    }
4178    SDValue Elt = PermMask.getOperand(i);
4179    if (Elt.getOpcode() == ISD::UNDEF) {
4180      Locs[i] = std::make_pair(-1, -1);
4181    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
4182      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4183      (*MaskPtr)[LoIdx] = Elt;
4184      LoIdx++;
4185    } else {
4186      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4187      (*MaskPtr)[HiIdx] = Elt;
4188      HiIdx++;
4189    }
4190  }
4191
4192  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4193                                    DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4194                                                &LoMask[0], LoMask.size()));
4195  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2,
4196                                    DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4197                                                &HiMask[0], HiMask.size()));
4198  SmallVector<SDValue, 8> MaskOps;
4199  for (unsigned i = 0; i != 4; ++i) {
4200    if (Locs[i].first == -1) {
4201      MaskOps.push_back(DAG.getUNDEF(MaskEVT));
4202    } else {
4203      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4204      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
4205    }
4206  }
4207  return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, LoShuffle, HiShuffle,
4208                     DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4209                                 &MaskOps[0], MaskOps.size()));
4210}
4211
4212SDValue
4213X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4214  SDValue V1 = Op.getOperand(0);
4215  SDValue V2 = Op.getOperand(1);
4216  SDValue PermMask = Op.getOperand(2);
4217  MVT VT = Op.getValueType();
4218  DebugLoc dl = Op.getDebugLoc();
4219  unsigned NumElems = PermMask.getNumOperands();
4220  bool isMMX = VT.getSizeInBits() == 64;
4221  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4222  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4223  bool V1IsSplat = false;
4224  bool V2IsSplat = false;
4225
4226  // FIXME: Check for legal shuffle and return?
4227
4228  if (isUndefShuffle(Op.getNode()))
4229    return DAG.getUNDEF(VT);
4230
4231  if (isZeroShuffle(Op.getNode()))
4232    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4233
4234  if (isIdentityMask(PermMask.getNode()))
4235    return V1;
4236  else if (isIdentityMask(PermMask.getNode(), true))
4237    return V2;
4238
4239  // Canonicalize movddup shuffles.
4240  if (V2IsUndef && Subtarget->hasSSE2() &&
4241      VT.getSizeInBits() == 128 &&
4242      X86::isMOVDDUPMask(PermMask.getNode()))
4243    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
4244
4245  if (isSplatMask(PermMask.getNode())) {
4246    if (isMMX || NumElems < 4) return Op;
4247    // Promote it to a v4{if}32 splat.
4248    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
4249  }
4250
4251  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4252  // do it!
4253  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4254    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG,
4255                                            *this, dl);
4256    if (NewOp.getNode())
4257      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4258                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4259  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4260    // FIXME: Figure out a cleaner way to do this.
4261    // Try to make use of movq to zero out the top part.
4262    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4263      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4264                                                 DAG, *this, dl);
4265      if (NewOp.getNode()) {
4266        SDValue NewV1 = NewOp.getOperand(0);
4267        SDValue NewV2 = NewOp.getOperand(1);
4268        SDValue NewMask = NewOp.getOperand(2);
4269        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4270          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4271          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget,
4272                              dl);
4273        }
4274      }
4275    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4276      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4277                                                DAG, *this, dl);
4278      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4279        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4280                             DAG, Subtarget, dl);
4281    }
4282  }
4283
4284  // Check if this can be converted into a logical shift.
4285  bool isLeft = false;
4286  unsigned ShAmt = 0;
4287  SDValue ShVal;
4288  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4289  if (isShift && ShVal.hasOneUse()) {
4290    // If the shifted value has multiple uses, it may be cheaper to use
4291    // v_set0 + movlhps or movhlps, etc.
4292    MVT EVT = VT.getVectorElementType();
4293    ShAmt *= EVT.getSizeInBits();
4294    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4295  }
4296
4297  if (X86::isMOVLMask(PermMask.getNode())) {
4298    if (V1IsUndef)
4299      return V2;
4300    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4301      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4302    if (!isMMX)
4303      return Op;
4304  }
4305
4306  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4307                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4308                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4309                 X86::isMOVHPMask(PermMask.getNode()) ||
4310                 X86::isMOVLPMask(PermMask.getNode())))
4311    return Op;
4312
4313  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4314      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4315    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4316
4317  if (isShift) {
4318    // No better options. Use a vshl / vsrl.
4319    MVT EVT = VT.getVectorElementType();
4320    ShAmt *= EVT.getSizeInBits();
4321    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4322  }
4323
4324  bool Commuted = false;
4325  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4326  // 1,1,1,1 -> v8i16 though.
4327  V1IsSplat = isSplatVector(V1.getNode());
4328  V2IsSplat = isSplatVector(V2.getNode());
4329
4330  // Canonicalize the splat or undef, if present, to be on the RHS.
4331  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4332    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4333    std::swap(V1IsSplat, V2IsSplat);
4334    std::swap(V1IsUndef, V2IsUndef);
4335    Commuted = true;
4336  }
4337
4338  // FIXME: Figure out a cleaner way to do this.
4339  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4340    if (V2IsUndef) return V1;
4341    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4342    if (V2IsSplat) {
4343      // V2 is a splat, so the mask may be malformed. That is, it may point
4344      // to any V2 element. The instruction selectior won't like this. Get
4345      // a corrected mask and commute to form a proper MOVS{S|D}.
4346      SDValue NewMask = getMOVLMask(NumElems, DAG, dl);
4347      if (NewMask.getNode() != PermMask.getNode())
4348        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4349    }
4350    return Op;
4351  }
4352
4353  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4354      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4355      X86::isUNPCKLMask(PermMask.getNode()) ||
4356      X86::isUNPCKHMask(PermMask.getNode()))
4357    return Op;
4358
4359  if (V2IsSplat) {
4360    // Normalize mask so all entries that point to V2 points to its first
4361    // element then try to match unpck{h|l} again. If match, return a
4362    // new vector_shuffle with the corrected mask.
4363    SDValue NewMask = NormalizeMask(PermMask, DAG);
4364    if (NewMask.getNode() != PermMask.getNode()) {
4365      if (X86::isUNPCKLMask(NewMask.getNode(), true)) {
4366        SDValue NewMask = getUnpacklMask(NumElems, DAG, dl);
4367        return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4368      } else if (X86::isUNPCKHMask(NewMask.getNode(), true)) {
4369        SDValue NewMask = getUnpackhMask(NumElems, DAG, dl);
4370        return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1, V2, NewMask);
4371      }
4372    }
4373  }
4374
4375  // Normalize the node to match x86 shuffle ops if needed
4376  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4377      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4378
4379  if (Commuted) {
4380    // Commute is back and try unpck* again.
4381    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4382    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4383        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4384        X86::isUNPCKLMask(PermMask.getNode()) ||
4385        X86::isUNPCKHMask(PermMask.getNode()))
4386      return Op;
4387  }
4388
4389  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4390  // Try PSHUF* first, then SHUFP*.
4391  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4392  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4393  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4394    if (V2.getOpcode() != ISD::UNDEF)
4395      return DAG.getNode(ISD::VECTOR_SHUFFLE, dl, VT, V1,
4396                         DAG.getUNDEF(VT), PermMask);
4397    return Op;
4398  }
4399
4400  if (!isMMX) {
4401    if (Subtarget->hasSSE2() &&
4402        (X86::isPSHUFDMask(PermMask.getNode()) ||
4403         X86::isPSHUFHWMask(PermMask.getNode()) ||
4404         X86::isPSHUFLWMask(PermMask.getNode()))) {
4405      MVT RVT = VT;
4406      if (VT == MVT::v4f32) {
4407        RVT = MVT::v4i32;
4408        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, RVT,
4409                         DAG.getNode(ISD::BIT_CONVERT, dl, RVT, V1),
4410                         DAG.getUNDEF(RVT), PermMask);
4411      } else if (V2.getOpcode() != ISD::UNDEF)
4412        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, RVT, V1,
4413                         DAG.getUNDEF(RVT), PermMask);
4414      if (RVT != VT)
4415        Op = DAG.getNode(ISD::BIT_CONVERT, dl, VT, Op);
4416      return Op;
4417    }
4418
4419    // Binary or unary shufps.
4420    if (X86::isSHUFPMask(PermMask.getNode()) ||
4421        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4422      return Op;
4423  }
4424
4425  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4426  if (VT == MVT::v8i16) {
4427    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this, dl);
4428    if (NewOp.getNode())
4429      return NewOp;
4430  }
4431
4432  if (VT == MVT::v16i8) {
4433    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(V1, V2, PermMask, DAG, *this, dl);
4434    if (NewOp.getNode())
4435      return NewOp;
4436  }
4437
4438  // Handle all 4 wide cases with a number of shuffles except for MMX.
4439  if (NumElems == 4 && !isMMX)
4440    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG, dl);
4441
4442  return SDValue();
4443}
4444
4445SDValue
4446X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4447                                                SelectionDAG &DAG) {
4448  MVT VT = Op.getValueType();
4449  DebugLoc dl = Op.getDebugLoc();
4450  if (VT.getSizeInBits() == 8) {
4451    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4452                                    Op.getOperand(0), Op.getOperand(1));
4453    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4454                                    DAG.getValueType(VT));
4455    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4456  } else if (VT.getSizeInBits() == 16) {
4457    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4458    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4459    if (Idx == 0)
4460      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4461                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4462                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4463                                                 MVT::v4i32,
4464                                                 Op.getOperand(0)),
4465                                     Op.getOperand(1)));
4466    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4467                                    Op.getOperand(0), Op.getOperand(1));
4468    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4469                                    DAG.getValueType(VT));
4470    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4471  } else if (VT == MVT::f32) {
4472    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4473    // the result back to FR32 register. It's only worth matching if the
4474    // result has a single use which is a store or a bitcast to i32.  And in
4475    // the case of a store, it's not worth it if the index is a constant 0,
4476    // because a MOVSSmr can be used instead, which is smaller and faster.
4477    if (!Op.hasOneUse())
4478      return SDValue();
4479    SDNode *User = *Op.getNode()->use_begin();
4480    if ((User->getOpcode() != ISD::STORE ||
4481         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4482          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4483        (User->getOpcode() != ISD::BIT_CONVERT ||
4484         User->getValueType(0) != MVT::i32))
4485      return SDValue();
4486    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4487                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4488                                              Op.getOperand(0)),
4489                                              Op.getOperand(1));
4490    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4491  } else if (VT == MVT::i32) {
4492    // ExtractPS works with constant index.
4493    if (isa<ConstantSDNode>(Op.getOperand(1)))
4494      return Op;
4495  }
4496  return SDValue();
4497}
4498
4499
4500SDValue
4501X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4502  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4503    return SDValue();
4504
4505  if (Subtarget->hasSSE41()) {
4506    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4507    if (Res.getNode())
4508      return Res;
4509  }
4510
4511  MVT VT = Op.getValueType();
4512  DebugLoc dl = Op.getDebugLoc();
4513  // TODO: handle v16i8.
4514  if (VT.getSizeInBits() == 16) {
4515    SDValue Vec = Op.getOperand(0);
4516    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4517    if (Idx == 0)
4518      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4519                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4520                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4521                                                 MVT::v4i32, Vec),
4522                                     Op.getOperand(1)));
4523    // Transform it so it match pextrw which produces a 32-bit result.
4524    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4525    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4526                                    Op.getOperand(0), Op.getOperand(1));
4527    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4528                                    DAG.getValueType(VT));
4529    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4530  } else if (VT.getSizeInBits() == 32) {
4531    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4532    if (Idx == 0)
4533      return Op;
4534    // SHUFPS the element to the lowest double word, then movss.
4535    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4536    SmallVector<SDValue, 8> IdxVec;
4537    IdxVec.
4538      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4539    IdxVec.
4540      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4541    IdxVec.
4542      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4543    IdxVec.
4544      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4545    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4546                                 &IdxVec[0], IdxVec.size());
4547    SDValue Vec = Op.getOperand(0);
4548    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Vec.getValueType(),
4549                      Vec, DAG.getUNDEF(Vec.getValueType()), Mask);
4550    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4551                       DAG.getIntPtrConstant(0));
4552  } else if (VT.getSizeInBits() == 64) {
4553    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4554    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4555    //        to match extract_elt for f64.
4556    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4557    if (Idx == 0)
4558      return Op;
4559
4560    // UNPCKHPD the element to the lowest double word, then movsd.
4561    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4562    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4563    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4564    SmallVector<SDValue, 8> IdxVec;
4565    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4566    IdxVec.
4567      push_back(DAG.getUNDEF(MaskVT.getVectorElementType()));
4568    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVT,
4569                                 &IdxVec[0], IdxVec.size());
4570    SDValue Vec = Op.getOperand(0);
4571    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, Vec.getValueType(),
4572                      Vec, DAG.getUNDEF(Vec.getValueType()),
4573                      Mask);
4574    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4575                       DAG.getIntPtrConstant(0));
4576  }
4577
4578  return SDValue();
4579}
4580
4581SDValue
4582X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4583  MVT VT = Op.getValueType();
4584  MVT EVT = VT.getVectorElementType();
4585  DebugLoc dl = Op.getDebugLoc();
4586
4587  SDValue N0 = Op.getOperand(0);
4588  SDValue N1 = Op.getOperand(1);
4589  SDValue N2 = Op.getOperand(2);
4590
4591  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4592      isa<ConstantSDNode>(N2)) {
4593    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4594                                              : X86ISD::PINSRW;
4595    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4596    // argument.
4597    if (N1.getValueType() != MVT::i32)
4598      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4599    if (N2.getValueType() != MVT::i32)
4600      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4601    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4602  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4603    // Bits [7:6] of the constant are the source select.  This will always be
4604    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4605    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4606    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4607    // Bits [5:4] of the constant are the destination select.  This is the
4608    //  value of the incoming immediate.
4609    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4610    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4611    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4612    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4613  } else if (EVT == MVT::i32) {
4614    // InsertPS works with constant index.
4615    if (isa<ConstantSDNode>(N2))
4616      return Op;
4617  }
4618  return SDValue();
4619}
4620
4621SDValue
4622X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4623  MVT VT = Op.getValueType();
4624  MVT EVT = VT.getVectorElementType();
4625
4626  if (Subtarget->hasSSE41())
4627    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4628
4629  if (EVT == MVT::i8)
4630    return SDValue();
4631
4632  DebugLoc dl = Op.getDebugLoc();
4633  SDValue N0 = Op.getOperand(0);
4634  SDValue N1 = Op.getOperand(1);
4635  SDValue N2 = Op.getOperand(2);
4636
4637  if (EVT.getSizeInBits() == 16) {
4638    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4639    // as its second argument.
4640    if (N1.getValueType() != MVT::i32)
4641      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4642    if (N2.getValueType() != MVT::i32)
4643      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4644    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4645  }
4646  return SDValue();
4647}
4648
4649SDValue
4650X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4651  DebugLoc dl = Op.getDebugLoc();
4652  if (Op.getValueType() == MVT::v2f32)
4653    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4654                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4655                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4656                                               Op.getOperand(0))));
4657
4658  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4659  MVT VT = MVT::v2i32;
4660  switch (Op.getValueType().getSimpleVT()) {
4661  default: break;
4662  case MVT::v16i8:
4663  case MVT::v8i16:
4664    VT = MVT::v4i32;
4665    break;
4666  }
4667  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4668                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4669}
4670
4671// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4672// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4673// one of the above mentioned nodes. It has to be wrapped because otherwise
4674// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4675// be used to form addressing mode. These wrapped nodes will be selected
4676// into MOV32ri.
4677SDValue
4678X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4679  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4680  // FIXME there isn't really any debug info here, should come from the parent
4681  DebugLoc dl = CP->getDebugLoc();
4682  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4683                                             CP->getAlignment());
4684  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4685  // With PIC, the address is actually $g + Offset.
4686  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4687      !Subtarget->isPICStyleRIPRel()) {
4688    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4689                         DAG.getNode(X86ISD::GlobalBaseReg,
4690                                     DebugLoc::getUnknownLoc(),
4691                                     getPointerTy()),
4692                         Result);
4693  }
4694
4695  return Result;
4696}
4697
4698SDValue
4699X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4700                                      int64_t Offset,
4701                                      SelectionDAG &DAG) const {
4702  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4703  bool ExtraLoadRequired =
4704    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4705
4706  // Create the TargetGlobalAddress node, folding in the constant
4707  // offset if it is legal.
4708  SDValue Result;
4709  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4710    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4711    Offset = 0;
4712  } else
4713    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4714  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4715
4716  // With PIC, the address is actually $g + Offset.
4717  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4718    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4719                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4720                         Result);
4721  }
4722
4723  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4724  // load the value at address GV, not the value of GV itself. This means that
4725  // the GlobalAddress must be in the base or index register of the address, not
4726  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4727  // The same applies for external symbols during PIC codegen
4728  if (ExtraLoadRequired)
4729    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4730                         PseudoSourceValue::getGOT(), 0);
4731
4732  // If there was a non-zero offset that we didn't fold, create an explicit
4733  // addition for it.
4734  if (Offset != 0)
4735    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4736                         DAG.getConstant(Offset, getPointerTy()));
4737
4738  return Result;
4739}
4740
4741SDValue
4742X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4743  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4744  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4745  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4746}
4747
4748// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4749static SDValue
4750LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4751                                const MVT PtrVT) {
4752  SDValue InFlag;
4753  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4754  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4755                                     DAG.getNode(X86ISD::GlobalBaseReg,
4756                                                 DebugLoc::getUnknownLoc(),
4757                                                 PtrVT), InFlag);
4758  InFlag = Chain.getValue(1);
4759
4760  // emit leal symbol@TLSGD(,%ebx,1), %eax
4761  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4762  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4763                                             GA->getValueType(0),
4764                                             GA->getOffset());
4765  SDValue Ops[] = { Chain,  TGA, InFlag };
4766  SDValue Result = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4767  InFlag = Result.getValue(2);
4768  Chain = Result.getValue(1);
4769
4770  // call ___tls_get_addr. This function receives its argument in
4771  // the register EAX.
4772  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Result, InFlag);
4773  InFlag = Chain.getValue(1);
4774
4775  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4776  SDValue Ops1[] = { Chain,
4777                      DAG.getTargetExternalSymbol("___tls_get_addr",
4778                                                  PtrVT),
4779                      DAG.getRegister(X86::EAX, PtrVT),
4780                      DAG.getRegister(X86::EBX, PtrVT),
4781                      InFlag };
4782  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops1, 5);
4783  InFlag = Chain.getValue(1);
4784
4785  return DAG.getCopyFromReg(Chain, dl, X86::EAX, PtrVT, InFlag);
4786}
4787
4788// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4789static SDValue
4790LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4791                                const MVT PtrVT) {
4792  SDValue InFlag, Chain;
4793  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
4794
4795  // emit leaq symbol@TLSGD(%rip), %rdi
4796  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4797  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4798                                             GA->getValueType(0),
4799                                             GA->getOffset());
4800  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4801  SDValue Result = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4802  Chain  = Result.getValue(1);
4803  InFlag = Result.getValue(2);
4804
4805  // call __tls_get_addr. This function receives its argument in
4806  // the register RDI.
4807  Chain = DAG.getCopyToReg(Chain, dl, X86::RDI, Result, InFlag);
4808  InFlag = Chain.getValue(1);
4809
4810  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4811  SDValue Ops1[] = { Chain,
4812                      DAG.getTargetExternalSymbol("__tls_get_addr",
4813                                                  PtrVT),
4814                      DAG.getRegister(X86::RDI, PtrVT),
4815                      InFlag };
4816  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops1, 4);
4817  InFlag = Chain.getValue(1);
4818
4819  return DAG.getCopyFromReg(Chain, dl, X86::RAX, PtrVT, InFlag);
4820}
4821
4822// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4823// "local exec" model.
4824static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4825                                   const MVT PtrVT, TLSModel::Model model) {
4826  DebugLoc dl = GA->getDebugLoc();
4827  // Get the Thread Pointer
4828  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER,
4829                                      DebugLoc::getUnknownLoc(), PtrVT);
4830  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4831  // exec)
4832  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4833                                             GA->getValueType(0),
4834                                             GA->getOffset());
4835  SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
4836
4837  if (model == TLSModel::InitialExec)
4838    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4839                         PseudoSourceValue::getGOT(), 0);
4840
4841  // The address of the thread local variable is the add of the thread
4842  // pointer with the offset of the variable.
4843  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4844}
4845
4846SDValue
4847X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4848  // TODO: implement the "local dynamic" model
4849  // TODO: implement the "initial exec"model for pic executables
4850  assert(Subtarget->isTargetELF() &&
4851         "TLS not implemented for non-ELF targets");
4852  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4853  GlobalValue *GV = GA->getGlobal();
4854  TLSModel::Model model =
4855    getTLSModel (GV, getTargetMachine().getRelocationModel());
4856  if (Subtarget->is64Bit()) {
4857    switch (model) {
4858    case TLSModel::GeneralDynamic:
4859    case TLSModel::LocalDynamic: // not implemented
4860    case TLSModel::InitialExec:  // not implemented
4861    case TLSModel::LocalExec:    // not implemented
4862      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4863    default:
4864      assert (0 && "Unknown TLS model");
4865    }
4866  } else {
4867    switch (model) {
4868    case TLSModel::GeneralDynamic:
4869    case TLSModel::LocalDynamic: // not implemented
4870      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4871
4872    case TLSModel::InitialExec:
4873    case TLSModel::LocalExec:
4874      return LowerToTLSExecModel(GA, DAG, getPointerTy(), model);
4875    default:
4876      assert (0 && "Unknown TLS model");
4877    }
4878  }
4879}
4880
4881SDValue
4882X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4883  // FIXME there isn't really any debug info here
4884  DebugLoc dl = Op.getDebugLoc();
4885  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4886  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4887  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4888  // With PIC, the address is actually $g + Offset.
4889  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4890      !Subtarget->isPICStyleRIPRel()) {
4891    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4892                         DAG.getNode(X86ISD::GlobalBaseReg,
4893                                     DebugLoc::getUnknownLoc(),
4894                                     getPointerTy()),
4895                         Result);
4896  }
4897
4898  return Result;
4899}
4900
4901SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4902  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4903  // FIXME there isn't really any debug into here
4904  DebugLoc dl = JT->getDebugLoc();
4905  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4906  Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4907  // With PIC, the address is actually $g + Offset.
4908  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4909      !Subtarget->isPICStyleRIPRel()) {
4910    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4911                         DAG.getNode(X86ISD::GlobalBaseReg,
4912                                     DebugLoc::getUnknownLoc(),
4913                                     getPointerTy()),
4914                         Result);
4915  }
4916
4917  return Result;
4918}
4919
4920/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4921/// take a 2 x i32 value to shift plus a shift amount.
4922SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4923  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4924  MVT VT = Op.getValueType();
4925  unsigned VTBits = VT.getSizeInBits();
4926  DebugLoc dl = Op.getDebugLoc();
4927  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4928  SDValue ShOpLo = Op.getOperand(0);
4929  SDValue ShOpHi = Op.getOperand(1);
4930  SDValue ShAmt  = Op.getOperand(2);
4931  SDValue Tmp1 = isSRA ?
4932    DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4933                DAG.getConstant(VTBits - 1, MVT::i8)) :
4934    DAG.getConstant(0, VT);
4935
4936  SDValue Tmp2, Tmp3;
4937  if (Op.getOpcode() == ISD::SHL_PARTS) {
4938    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4939    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4940  } else {
4941    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4942    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4943  }
4944
4945  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4946                                  DAG.getConstant(VTBits, MVT::i8));
4947  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4948                               AndNode, DAG.getConstant(0, MVT::i8));
4949
4950  SDValue Hi, Lo;
4951  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4952  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4953  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4954
4955  if (Op.getOpcode() == ISD::SHL_PARTS) {
4956    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4957    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4958  } else {
4959    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4960    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4961  }
4962
4963  SDValue Ops[2] = { Lo, Hi };
4964  return DAG.getMergeValues(Ops, 2, dl);
4965}
4966
4967SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4968  MVT SrcVT = Op.getOperand(0).getValueType();
4969  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4970         "Unknown SINT_TO_FP to lower!");
4971
4972  // These are really Legal; caller falls through into that case.
4973  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4974    return SDValue();
4975  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4976      Subtarget->is64Bit())
4977    return SDValue();
4978
4979  DebugLoc dl = Op.getDebugLoc();
4980  unsigned Size = SrcVT.getSizeInBits()/8;
4981  MachineFunction &MF = DAG.getMachineFunction();
4982  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4983  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4984  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4985                               StackSlot,
4986                               PseudoSourceValue::getFixedStack(SSFI), 0);
4987
4988  // Build the FILD
4989  SDVTList Tys;
4990  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4991  if (useSSE)
4992    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4993  else
4994    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4995  SmallVector<SDValue, 8> Ops;
4996  Ops.push_back(Chain);
4997  Ops.push_back(StackSlot);
4998  Ops.push_back(DAG.getValueType(SrcVT));
4999  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5000                                 Tys, &Ops[0], Ops.size());
5001
5002  if (useSSE) {
5003    Chain = Result.getValue(1);
5004    SDValue InFlag = Result.getValue(2);
5005
5006    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5007    // shouldn't be necessary except that RFP cannot be live across
5008    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5009    MachineFunction &MF = DAG.getMachineFunction();
5010    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
5011    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5012    Tys = DAG.getVTList(MVT::Other);
5013    SmallVector<SDValue, 8> Ops;
5014    Ops.push_back(Chain);
5015    Ops.push_back(Result);
5016    Ops.push_back(StackSlot);
5017    Ops.push_back(DAG.getValueType(Op.getValueType()));
5018    Ops.push_back(InFlag);
5019    Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
5020    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5021                         PseudoSourceValue::getFixedStack(SSFI), 0);
5022  }
5023
5024  return Result;
5025}
5026
5027// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5028SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5029  // This algorithm is not obvious. Here it is in C code, more or less:
5030  /*
5031    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5032      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5033      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5034
5035      // Copy ints to xmm registers.
5036      __m128i xh = _mm_cvtsi32_si128( hi );
5037      __m128i xl = _mm_cvtsi32_si128( lo );
5038
5039      // Combine into low half of a single xmm register.
5040      __m128i x = _mm_unpacklo_epi32( xh, xl );
5041      __m128d d;
5042      double sd;
5043
5044      // Merge in appropriate exponents to give the integer bits the right
5045      // magnitude.
5046      x = _mm_unpacklo_epi32( x, exp );
5047
5048      // Subtract away the biases to deal with the IEEE-754 double precision
5049      // implicit 1.
5050      d = _mm_sub_pd( (__m128d) x, bias );
5051
5052      // All conversions up to here are exact. The correctly rounded result is
5053      // calculated using the current rounding mode using the following
5054      // horizontal add.
5055      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5056      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5057                                // store doesn't really need to be here (except
5058                                // maybe to zero the other double)
5059      return sd;
5060    }
5061  */
5062
5063  DebugLoc dl = Op.getDebugLoc();
5064
5065  // Build some magic constants.
5066  std::vector<Constant*> CV0;
5067  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
5068  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
5069  CV0.push_back(ConstantInt::get(APInt(32, 0)));
5070  CV0.push_back(ConstantInt::get(APInt(32, 0)));
5071  Constant *C0 = ConstantVector::get(CV0);
5072  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5073
5074  std::vector<Constant*> CV1;
5075  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
5076  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
5077  Constant *C1 = ConstantVector::get(CV1);
5078  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5079
5080  SmallVector<SDValue, 4> MaskVec;
5081  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
5082  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
5083  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
5084  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
5085  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
5086                                   &MaskVec[0], MaskVec.size());
5087  SmallVector<SDValue, 4> MaskVec2;
5088  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
5089  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
5090  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32,
5091                                 &MaskVec2[0], MaskVec2.size());
5092
5093  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5094                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5095                                        Op.getOperand(0),
5096                                        DAG.getIntPtrConstant(1)));
5097  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5098                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5099                                        Op.getOperand(0),
5100                                        DAG.getIntPtrConstant(0)));
5101  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v4i32,
5102                                XR1, XR2, UnpcklMask);
5103  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5104                              PseudoSourceValue::getConstantPool(), 0,
5105                              false, 16);
5106  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v4i32,
5107                               Unpck1, CLod0, UnpcklMask);
5108  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5109  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5110                              PseudoSourceValue::getConstantPool(), 0,
5111                              false, 16);
5112  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5113
5114  // Add the halves; easiest way is to swap them into another reg first.
5115  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, dl, MVT::v2f64,
5116                             Sub, Sub, ShufMask);
5117  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5118  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5119                     DAG.getIntPtrConstant(0));
5120}
5121
5122// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5123SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5124  DebugLoc dl = Op.getDebugLoc();
5125  // FP constant to bias correct the final result.
5126  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5127                                   MVT::f64);
5128
5129  // Load the 32-bit value into an XMM register.
5130  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5131                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5132                                         Op.getOperand(0),
5133                                         DAG.getIntPtrConstant(0)));
5134
5135  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5136                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5137                     DAG.getIntPtrConstant(0));
5138
5139  // Or the load with the bias.
5140  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5141                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5142                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5143                                                   MVT::v2f64, Load)),
5144                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5145                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5146                                                   MVT::v2f64, Bias)));
5147  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5148                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5149                   DAG.getIntPtrConstant(0));
5150
5151  // Subtract the bias.
5152  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5153
5154  // Handle final rounding.
5155  MVT DestVT = Op.getValueType();
5156
5157  if (DestVT.bitsLT(MVT::f64)) {
5158    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5159                       DAG.getIntPtrConstant(0));
5160  } else if (DestVT.bitsGT(MVT::f64)) {
5161    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5162  }
5163
5164  // Handle final rounding.
5165  return Sub;
5166}
5167
5168SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5169  SDValue N0 = Op.getOperand(0);
5170  DebugLoc dl = Op.getDebugLoc();
5171
5172  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5173  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5174  // the optimization here.
5175  if (DAG.SignBitIsZero(N0))
5176    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5177
5178  MVT SrcVT = N0.getValueType();
5179  if (SrcVT == MVT::i64) {
5180    // We only handle SSE2 f64 target here; caller can handle the rest.
5181    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5182      return SDValue();
5183
5184    return LowerUINT_TO_FP_i64(Op, DAG);
5185  } else if (SrcVT == MVT::i32) {
5186    return LowerUINT_TO_FP_i32(Op, DAG);
5187  }
5188
5189  assert(0 && "Unknown UINT_TO_FP to lower!");
5190  return SDValue();
5191}
5192
5193std::pair<SDValue,SDValue> X86TargetLowering::
5194FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
5195  DebugLoc dl = Op.getDebugLoc();
5196  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
5197         Op.getValueType().getSimpleVT() >= MVT::i16 &&
5198         "Unknown FP_TO_SINT to lower!");
5199
5200  // These are really Legal.
5201  if (Op.getValueType() == MVT::i32 &&
5202      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5203    return std::make_pair(SDValue(), SDValue());
5204  if (Subtarget->is64Bit() &&
5205      Op.getValueType() == MVT::i64 &&
5206      Op.getOperand(0).getValueType() != MVT::f80)
5207    return std::make_pair(SDValue(), SDValue());
5208
5209  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5210  // stack slot.
5211  MachineFunction &MF = DAG.getMachineFunction();
5212  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
5213  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5214  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5215  unsigned Opc;
5216  switch (Op.getValueType().getSimpleVT()) {
5217  default: assert(0 && "Invalid FP_TO_SINT to lower!");
5218  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5219  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5220  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5221  }
5222
5223  SDValue Chain = DAG.getEntryNode();
5224  SDValue Value = Op.getOperand(0);
5225  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5226    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5227    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5228                         PseudoSourceValue::getFixedStack(SSFI), 0);
5229    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5230    SDValue Ops[] = {
5231      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5232    };
5233    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5234    Chain = Value.getValue(1);
5235    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5236    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5237  }
5238
5239  // Build the FP_TO_INT*_IN_MEM
5240  SDValue Ops[] = { Chain, Value, StackSlot };
5241  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5242
5243  return std::make_pair(FIST, StackSlot);
5244}
5245
5246SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5247  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
5248  SDValue FIST = Vals.first, StackSlot = Vals.second;
5249  if (FIST.getNode() == 0) return SDValue();
5250
5251  // Load the result.
5252  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5253                     FIST, StackSlot, NULL, 0);
5254}
5255
5256SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5257  DebugLoc dl = Op.getDebugLoc();
5258  MVT VT = Op.getValueType();
5259  MVT EltVT = VT;
5260  if (VT.isVector())
5261    EltVT = VT.getVectorElementType();
5262  std::vector<Constant*> CV;
5263  if (EltVT == MVT::f64) {
5264    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
5265    CV.push_back(C);
5266    CV.push_back(C);
5267  } else {
5268    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
5269    CV.push_back(C);
5270    CV.push_back(C);
5271    CV.push_back(C);
5272    CV.push_back(C);
5273  }
5274  Constant *C = ConstantVector::get(CV);
5275  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5276  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5277                               PseudoSourceValue::getConstantPool(), 0,
5278                               false, 16);
5279  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5280}
5281
5282SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5283  DebugLoc dl = Op.getDebugLoc();
5284  MVT VT = Op.getValueType();
5285  MVT EltVT = VT;
5286  unsigned EltNum = 1;
5287  if (VT.isVector()) {
5288    EltVT = VT.getVectorElementType();
5289    EltNum = VT.getVectorNumElements();
5290  }
5291  std::vector<Constant*> CV;
5292  if (EltVT == MVT::f64) {
5293    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
5294    CV.push_back(C);
5295    CV.push_back(C);
5296  } else {
5297    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
5298    CV.push_back(C);
5299    CV.push_back(C);
5300    CV.push_back(C);
5301    CV.push_back(C);
5302  }
5303  Constant *C = ConstantVector::get(CV);
5304  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5305  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5306                               PseudoSourceValue::getConstantPool(), 0,
5307                               false, 16);
5308  if (VT.isVector()) {
5309    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5310                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5311                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5312                                Op.getOperand(0)),
5313                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5314  } else {
5315    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5316  }
5317}
5318
5319SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5320  SDValue Op0 = Op.getOperand(0);
5321  SDValue Op1 = Op.getOperand(1);
5322  DebugLoc dl = Op.getDebugLoc();
5323  MVT VT = Op.getValueType();
5324  MVT SrcVT = Op1.getValueType();
5325
5326  // If second operand is smaller, extend it first.
5327  if (SrcVT.bitsLT(VT)) {
5328    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5329    SrcVT = VT;
5330  }
5331  // And if it is bigger, shrink it first.
5332  if (SrcVT.bitsGT(VT)) {
5333    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5334    SrcVT = VT;
5335  }
5336
5337  // At this point the operands and the result should have the same
5338  // type, and that won't be f80 since that is not custom lowered.
5339
5340  // First get the sign bit of second operand.
5341  std::vector<Constant*> CV;
5342  if (SrcVT == MVT::f64) {
5343    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
5344    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5345  } else {
5346    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
5347    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5348    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5349    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5350  }
5351  Constant *C = ConstantVector::get(CV);
5352  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5353  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5354                                PseudoSourceValue::getConstantPool(), 0,
5355                                false, 16);
5356  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5357
5358  // Shift sign bit right or left if the two operands have different types.
5359  if (SrcVT.bitsGT(VT)) {
5360    // Op0 is MVT::f32, Op1 is MVT::f64.
5361    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5362    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5363                          DAG.getConstant(32, MVT::i32));
5364    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5365    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5366                          DAG.getIntPtrConstant(0));
5367  }
5368
5369  // Clear first operand sign bit.
5370  CV.clear();
5371  if (VT == MVT::f64) {
5372    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5373    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5374  } else {
5375    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5376    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5377    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5378    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5379  }
5380  C = ConstantVector::get(CV);
5381  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5382  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5383                                PseudoSourceValue::getConstantPool(), 0,
5384                                false, 16);
5385  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5386
5387  // Or the value with the sign bit.
5388  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5389}
5390
5391/// Emit nodes that will be selected as "test Op0,Op0", or something
5392/// equivalent.
5393SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5394                                    SelectionDAG &DAG) {
5395  DebugLoc dl = Op.getDebugLoc();
5396
5397  // CF and OF aren't always set the way we want. Determine which
5398  // of these we need.
5399  bool NeedCF = false;
5400  bool NeedOF = false;
5401  switch (X86CC) {
5402  case X86::COND_A: case X86::COND_AE:
5403  case X86::COND_B: case X86::COND_BE:
5404    NeedCF = true;
5405    break;
5406  case X86::COND_G: case X86::COND_GE:
5407  case X86::COND_L: case X86::COND_LE:
5408  case X86::COND_O: case X86::COND_NO:
5409    NeedOF = true;
5410    break;
5411  default: break;
5412  }
5413
5414  // See if we can use the EFLAGS value from the operand instead of
5415  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5416  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5417  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5418    unsigned Opcode = 0;
5419    unsigned NumOperands = 0;
5420    switch (Op.getNode()->getOpcode()) {
5421    case ISD::ADD:
5422      // Due to an isel shortcoming, be conservative if this add is likely to
5423      // be selected as part of a load-modify-store instruction. When the root
5424      // node in a match is a store, isel doesn't know how to remap non-chain
5425      // non-flag uses of other nodes in the match, such as the ADD in this
5426      // case. This leads to the ADD being left around and reselected, with
5427      // the result being two adds in the output.
5428      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5429           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5430        if (UI->getOpcode() == ISD::STORE)
5431          goto default_case;
5432      if (ConstantSDNode *C =
5433            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5434        // An add of one will be selected as an INC.
5435        if (C->getAPIntValue() == 1) {
5436          Opcode = X86ISD::INC;
5437          NumOperands = 1;
5438          break;
5439        }
5440        // An add of negative one (subtract of one) will be selected as a DEC.
5441        if (C->getAPIntValue().isAllOnesValue()) {
5442          Opcode = X86ISD::DEC;
5443          NumOperands = 1;
5444          break;
5445        }
5446      }
5447      // Otherwise use a regular EFLAGS-setting add.
5448      Opcode = X86ISD::ADD;
5449      NumOperands = 2;
5450      break;
5451    case ISD::SUB:
5452      // Due to the ISEL shortcoming noted above, be conservative if this sub is
5453      // likely to be selected as part of a load-modify-store instruction.
5454      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5455           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5456        if (UI->getOpcode() == ISD::STORE)
5457          goto default_case;
5458      // Otherwise use a regular EFLAGS-setting sub.
5459      Opcode = X86ISD::SUB;
5460      NumOperands = 2;
5461      break;
5462    case X86ISD::ADD:
5463    case X86ISD::SUB:
5464    case X86ISD::INC:
5465    case X86ISD::DEC:
5466      return SDValue(Op.getNode(), 1);
5467    default:
5468    default_case:
5469      break;
5470    }
5471    if (Opcode != 0) {
5472      const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::i32);
5473      SmallVector<SDValue, 4> Ops;
5474      for (unsigned i = 0; i != NumOperands; ++i)
5475        Ops.push_back(Op.getOperand(i));
5476      SDValue New = DAG.getNode(Opcode, dl, VTs, 2, &Ops[0], NumOperands);
5477      DAG.ReplaceAllUsesWith(Op, New);
5478      return SDValue(New.getNode(), 1);
5479    }
5480  }
5481
5482  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5483  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5484                     DAG.getConstant(0, Op.getValueType()));
5485}
5486
5487/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5488/// equivalent.
5489SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5490                                   SelectionDAG &DAG) {
5491  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5492    if (C->getAPIntValue() == 0)
5493      return EmitTest(Op0, X86CC, DAG);
5494
5495  DebugLoc dl = Op0.getDebugLoc();
5496  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5497}
5498
5499SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5500  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5501  SDValue Op0 = Op.getOperand(0);
5502  SDValue Op1 = Op.getOperand(1);
5503  DebugLoc dl = Op.getDebugLoc();
5504  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5505
5506  // Lower (X & (1 << N)) == 0 to BT(X, N).
5507  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5508  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5509  if (Op0.getOpcode() == ISD::AND &&
5510      Op0.hasOneUse() &&
5511      Op1.getOpcode() == ISD::Constant &&
5512      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5513      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5514    SDValue LHS, RHS;
5515    if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5516      if (ConstantSDNode *Op010C =
5517            dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5518        if (Op010C->getZExtValue() == 1) {
5519          LHS = Op0.getOperand(0);
5520          RHS = Op0.getOperand(1).getOperand(1);
5521        }
5522    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5523      if (ConstantSDNode *Op000C =
5524            dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5525        if (Op000C->getZExtValue() == 1) {
5526          LHS = Op0.getOperand(1);
5527          RHS = Op0.getOperand(0).getOperand(1);
5528        }
5529    } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5530      ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5531      SDValue AndLHS = Op0.getOperand(0);
5532      if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5533        LHS = AndLHS.getOperand(0);
5534        RHS = AndLHS.getOperand(1);
5535      }
5536    }
5537
5538    if (LHS.getNode()) {
5539      // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5540      // instruction.  Since the shift amount is in-range-or-undefined, we know
5541      // that doing a bittest on the i16 value is ok.  We extend to i32 because
5542      // the encoding for the i16 version is larger than the i32 version.
5543      if (LHS.getValueType() == MVT::i8)
5544        LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5545
5546      // If the operand types disagree, extend the shift amount to match.  Since
5547      // BT ignores high bits (like shifts) we can use anyextend.
5548      if (LHS.getValueType() != RHS.getValueType())
5549        RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5550
5551      SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5552      unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5553      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5554                         DAG.getConstant(Cond, MVT::i8), BT);
5555    }
5556  }
5557
5558  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5559  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5560
5561  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5562  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5563                     DAG.getConstant(X86CC, MVT::i8), Cond);
5564}
5565
5566SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5567  SDValue Cond;
5568  SDValue Op0 = Op.getOperand(0);
5569  SDValue Op1 = Op.getOperand(1);
5570  SDValue CC = Op.getOperand(2);
5571  MVT VT = Op.getValueType();
5572  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5573  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5574  DebugLoc dl = Op.getDebugLoc();
5575
5576  if (isFP) {
5577    unsigned SSECC = 8;
5578    MVT VT0 = Op0.getValueType();
5579    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5580    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5581    bool Swap = false;
5582
5583    switch (SetCCOpcode) {
5584    default: break;
5585    case ISD::SETOEQ:
5586    case ISD::SETEQ:  SSECC = 0; break;
5587    case ISD::SETOGT:
5588    case ISD::SETGT: Swap = true; // Fallthrough
5589    case ISD::SETLT:
5590    case ISD::SETOLT: SSECC = 1; break;
5591    case ISD::SETOGE:
5592    case ISD::SETGE: Swap = true; // Fallthrough
5593    case ISD::SETLE:
5594    case ISD::SETOLE: SSECC = 2; break;
5595    case ISD::SETUO:  SSECC = 3; break;
5596    case ISD::SETUNE:
5597    case ISD::SETNE:  SSECC = 4; break;
5598    case ISD::SETULE: Swap = true;
5599    case ISD::SETUGE: SSECC = 5; break;
5600    case ISD::SETULT: Swap = true;
5601    case ISD::SETUGT: SSECC = 6; break;
5602    case ISD::SETO:   SSECC = 7; break;
5603    }
5604    if (Swap)
5605      std::swap(Op0, Op1);
5606
5607    // In the two special cases we can't handle, emit two comparisons.
5608    if (SSECC == 8) {
5609      if (SetCCOpcode == ISD::SETUEQ) {
5610        SDValue UNORD, EQ;
5611        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5612        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5613        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5614      }
5615      else if (SetCCOpcode == ISD::SETONE) {
5616        SDValue ORD, NEQ;
5617        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5618        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5619        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5620      }
5621      assert(0 && "Illegal FP comparison");
5622    }
5623    // Handle all other FP comparisons here.
5624    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5625  }
5626
5627  // We are handling one of the integer comparisons here.  Since SSE only has
5628  // GT and EQ comparisons for integer, swapping operands and multiple
5629  // operations may be required for some comparisons.
5630  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5631  bool Swap = false, Invert = false, FlipSigns = false;
5632
5633  switch (VT.getSimpleVT()) {
5634  default: break;
5635  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5636  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5637  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5638  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5639  }
5640
5641  switch (SetCCOpcode) {
5642  default: break;
5643  case ISD::SETNE:  Invert = true;
5644  case ISD::SETEQ:  Opc = EQOpc; break;
5645  case ISD::SETLT:  Swap = true;
5646  case ISD::SETGT:  Opc = GTOpc; break;
5647  case ISD::SETGE:  Swap = true;
5648  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5649  case ISD::SETULT: Swap = true;
5650  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5651  case ISD::SETUGE: Swap = true;
5652  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5653  }
5654  if (Swap)
5655    std::swap(Op0, Op1);
5656
5657  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5658  // bits of the inputs before performing those operations.
5659  if (FlipSigns) {
5660    MVT EltVT = VT.getVectorElementType();
5661    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5662                                      EltVT);
5663    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5664    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5665                                    SignBits.size());
5666    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5667    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5668  }
5669
5670  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5671
5672  // If the logical-not of the result is required, perform that now.
5673  if (Invert)
5674    Result = DAG.getNOT(dl, Result, VT);
5675
5676  return Result;
5677}
5678
5679// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5680static bool isX86LogicalCmp(SDValue Op) {
5681  unsigned Opc = Op.getNode()->getOpcode();
5682  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5683    return true;
5684  if (Op.getResNo() == 1 &&
5685      (Opc == X86ISD::ADD ||
5686       Opc == X86ISD::SUB ||
5687       Opc == X86ISD::SMUL ||
5688       Opc == X86ISD::UMUL ||
5689       Opc == X86ISD::INC ||
5690       Opc == X86ISD::DEC))
5691    return true;
5692
5693  return false;
5694}
5695
5696SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5697  bool addTest = true;
5698  SDValue Cond  = Op.getOperand(0);
5699  DebugLoc dl = Op.getDebugLoc();
5700  SDValue CC;
5701
5702  if (Cond.getOpcode() == ISD::SETCC)
5703    Cond = LowerSETCC(Cond, DAG);
5704
5705  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5706  // setting operand in place of the X86ISD::SETCC.
5707  if (Cond.getOpcode() == X86ISD::SETCC) {
5708    CC = Cond.getOperand(0);
5709
5710    SDValue Cmp = Cond.getOperand(1);
5711    unsigned Opc = Cmp.getOpcode();
5712    MVT VT = Op.getValueType();
5713
5714    bool IllegalFPCMov = false;
5715    if (VT.isFloatingPoint() && !VT.isVector() &&
5716        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5717      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5718
5719    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5720        Opc == X86ISD::BT) { // FIXME
5721      Cond = Cmp;
5722      addTest = false;
5723    }
5724  }
5725
5726  if (addTest) {
5727    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5728    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5729  }
5730
5731  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5732                                                    MVT::Flag);
5733  SmallVector<SDValue, 4> Ops;
5734  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5735  // condition is true.
5736  Ops.push_back(Op.getOperand(2));
5737  Ops.push_back(Op.getOperand(1));
5738  Ops.push_back(CC);
5739  Ops.push_back(Cond);
5740  return DAG.getNode(X86ISD::CMOV, dl, VTs, 2, &Ops[0], Ops.size());
5741}
5742
5743// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5744// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5745// from the AND / OR.
5746static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5747  Opc = Op.getOpcode();
5748  if (Opc != ISD::OR && Opc != ISD::AND)
5749    return false;
5750  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5751          Op.getOperand(0).hasOneUse() &&
5752          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5753          Op.getOperand(1).hasOneUse());
5754}
5755
5756// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5757// 1 and that the SETCC node has a single use.
5758static bool isXor1OfSetCC(SDValue Op) {
5759  if (Op.getOpcode() != ISD::XOR)
5760    return false;
5761  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5762  if (N1C && N1C->getAPIntValue() == 1) {
5763    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5764      Op.getOperand(0).hasOneUse();
5765  }
5766  return false;
5767}
5768
5769SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5770  bool addTest = true;
5771  SDValue Chain = Op.getOperand(0);
5772  SDValue Cond  = Op.getOperand(1);
5773  SDValue Dest  = Op.getOperand(2);
5774  DebugLoc dl = Op.getDebugLoc();
5775  SDValue CC;
5776
5777  if (Cond.getOpcode() == ISD::SETCC)
5778    Cond = LowerSETCC(Cond, DAG);
5779#if 0
5780  // FIXME: LowerXALUO doesn't handle these!!
5781  else if (Cond.getOpcode() == X86ISD::ADD  ||
5782           Cond.getOpcode() == X86ISD::SUB  ||
5783           Cond.getOpcode() == X86ISD::SMUL ||
5784           Cond.getOpcode() == X86ISD::UMUL)
5785    Cond = LowerXALUO(Cond, DAG);
5786#endif
5787
5788  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5789  // setting operand in place of the X86ISD::SETCC.
5790  if (Cond.getOpcode() == X86ISD::SETCC) {
5791    CC = Cond.getOperand(0);
5792
5793    SDValue Cmp = Cond.getOperand(1);
5794    unsigned Opc = Cmp.getOpcode();
5795    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5796    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5797      Cond = Cmp;
5798      addTest = false;
5799    } else {
5800      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5801      default: break;
5802      case X86::COND_O:
5803      case X86::COND_B:
5804        // These can only come from an arithmetic instruction with overflow,
5805        // e.g. SADDO, UADDO.
5806        Cond = Cond.getNode()->getOperand(1);
5807        addTest = false;
5808        break;
5809      }
5810    }
5811  } else {
5812    unsigned CondOpc;
5813    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5814      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5815      if (CondOpc == ISD::OR) {
5816        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5817        // two branches instead of an explicit OR instruction with a
5818        // separate test.
5819        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5820            isX86LogicalCmp(Cmp)) {
5821          CC = Cond.getOperand(0).getOperand(0);
5822          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5823                              Chain, Dest, CC, Cmp);
5824          CC = Cond.getOperand(1).getOperand(0);
5825          Cond = Cmp;
5826          addTest = false;
5827        }
5828      } else { // ISD::AND
5829        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5830        // two branches instead of an explicit AND instruction with a
5831        // separate test. However, we only do this if this block doesn't
5832        // have a fall-through edge, because this requires an explicit
5833        // jmp when the condition is false.
5834        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5835            isX86LogicalCmp(Cmp) &&
5836            Op.getNode()->hasOneUse()) {
5837          X86::CondCode CCode =
5838            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5839          CCode = X86::GetOppositeBranchCondition(CCode);
5840          CC = DAG.getConstant(CCode, MVT::i8);
5841          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5842          // Look for an unconditional branch following this conditional branch.
5843          // We need this because we need to reverse the successors in order
5844          // to implement FCMP_OEQ.
5845          if (User.getOpcode() == ISD::BR) {
5846            SDValue FalseBB = User.getOperand(1);
5847            SDValue NewBR =
5848              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5849            assert(NewBR == User);
5850            Dest = FalseBB;
5851
5852            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5853                                Chain, Dest, CC, Cmp);
5854            X86::CondCode CCode =
5855              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5856            CCode = X86::GetOppositeBranchCondition(CCode);
5857            CC = DAG.getConstant(CCode, MVT::i8);
5858            Cond = Cmp;
5859            addTest = false;
5860          }
5861        }
5862      }
5863    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5864      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5865      // It should be transformed during dag combiner except when the condition
5866      // is set by a arithmetics with overflow node.
5867      X86::CondCode CCode =
5868        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5869      CCode = X86::GetOppositeBranchCondition(CCode);
5870      CC = DAG.getConstant(CCode, MVT::i8);
5871      Cond = Cond.getOperand(0).getOperand(1);
5872      addTest = false;
5873    } else if (Cond.hasOneUse() && Cond.getOpcode() == ISD::SRL) {
5874      // Match this pattern so that we can generate simpler code:
5875      //
5876      //   %a = ...
5877      //   %b = and i32 %a, 2
5878      //   %c = srl i32 %b, 1
5879      //   %d = br i32 %c,
5880      //
5881      // into
5882      //
5883      //   %a = ...
5884      //   %b = and %a, 2
5885      //   %c = X86ISD::CMP %b, 0
5886      //   %d = X86ISD::BRCOND %c ...
5887      //
5888      // This applies only when the AND constant value has one bit set and the
5889      // SRL constant is equal to the log2 of the AND constant. The back-end is
5890      // smart enough to convert the result into a TEST/JMP sequence.
5891      SDValue Op0 = Cond.getOperand(0);
5892      SDValue Op1 = Cond.getOperand(1);
5893
5894      if (Op0.getOpcode() == ISD::AND &&
5895          Op0.hasOneUse() &&
5896          Op1.getOpcode() == ISD::Constant) {
5897        SDValue AndOp0 = Op0.getOperand(0);
5898        SDValue AndOp1 = Op0.getOperand(1);
5899
5900        if (AndOp1.getOpcode() == ISD::Constant) {
5901          const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
5902
5903          if (AndConst.isPowerOf2() &&
5904              cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
5905            CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5906            Cond = EmitTest(Op0, X86::COND_NE, DAG);
5907            return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5908                               Chain, Dest, CC, Cond);
5909          }
5910        }
5911      }
5912    }
5913  }
5914
5915  if (addTest) {
5916    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5917    Cond = EmitTest(Cond, X86::COND_NE, DAG);
5918  }
5919  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5920                     Chain, Dest, CC, Cond);
5921}
5922
5923
5924// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5925// Calls to _alloca is needed to probe the stack when allocating more than 4k
5926// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5927// that the guard pages used by the OS virtual memory manager are allocated in
5928// correct sequence.
5929SDValue
5930X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5931                                           SelectionDAG &DAG) {
5932  assert(Subtarget->isTargetCygMing() &&
5933         "This should be used only on Cygwin/Mingw targets");
5934  DebugLoc dl = Op.getDebugLoc();
5935
5936  // Get the inputs.
5937  SDValue Chain = Op.getOperand(0);
5938  SDValue Size  = Op.getOperand(1);
5939  // FIXME: Ensure alignment here
5940
5941  SDValue Flag;
5942
5943  MVT IntPtr = getPointerTy();
5944  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5945
5946  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5947
5948  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5949  Flag = Chain.getValue(1);
5950
5951  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5952  SDValue Ops[] = { Chain,
5953                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5954                      DAG.getRegister(X86::EAX, IntPtr),
5955                      DAG.getRegister(X86StackPtr, SPTy),
5956                      Flag };
5957  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5958  Flag = Chain.getValue(1);
5959
5960  Chain = DAG.getCALLSEQ_END(Chain,
5961                             DAG.getIntPtrConstant(0, true),
5962                             DAG.getIntPtrConstant(0, true),
5963                             Flag);
5964
5965  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5966
5967  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5968  return DAG.getMergeValues(Ops1, 2, dl);
5969}
5970
5971SDValue
5972X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5973                                           SDValue Chain,
5974                                           SDValue Dst, SDValue Src,
5975                                           SDValue Size, unsigned Align,
5976                                           const Value *DstSV,
5977                                           uint64_t DstSVOff) {
5978  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5979
5980  // If not DWORD aligned or size is more than the threshold, call the library.
5981  // The libc version is likely to be faster for these cases. It can use the
5982  // address value and run time information about the CPU.
5983  if ((Align & 3) != 0 ||
5984      !ConstantSize ||
5985      ConstantSize->getZExtValue() >
5986        getSubtarget()->getMaxInlineSizeThreshold()) {
5987    SDValue InFlag(0, 0);
5988
5989    // Check to see if there is a specialized entry-point for memory zeroing.
5990    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5991
5992    if (const char *bzeroEntry =  V &&
5993        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5994      MVT IntPtr = getPointerTy();
5995      const Type *IntPtrTy = TD->getIntPtrType();
5996      TargetLowering::ArgListTy Args;
5997      TargetLowering::ArgListEntry Entry;
5998      Entry.Node = Dst;
5999      Entry.Ty = IntPtrTy;
6000      Args.push_back(Entry);
6001      Entry.Node = Size;
6002      Args.push_back(Entry);
6003      std::pair<SDValue,SDValue> CallResult =
6004        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
6005                    CallingConv::C, false,
6006                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
6007      return CallResult.second;
6008    }
6009
6010    // Otherwise have the target-independent code call memset.
6011    return SDValue();
6012  }
6013
6014  uint64_t SizeVal = ConstantSize->getZExtValue();
6015  SDValue InFlag(0, 0);
6016  MVT AVT;
6017  SDValue Count;
6018  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6019  unsigned BytesLeft = 0;
6020  bool TwoRepStos = false;
6021  if (ValC) {
6022    unsigned ValReg;
6023    uint64_t Val = ValC->getZExtValue() & 255;
6024
6025    // If the value is a constant, then we can potentially use larger sets.
6026    switch (Align & 3) {
6027    case 2:   // WORD aligned
6028      AVT = MVT::i16;
6029      ValReg = X86::AX;
6030      Val = (Val << 8) | Val;
6031      break;
6032    case 0:  // DWORD aligned
6033      AVT = MVT::i32;
6034      ValReg = X86::EAX;
6035      Val = (Val << 8)  | Val;
6036      Val = (Val << 16) | Val;
6037      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6038        AVT = MVT::i64;
6039        ValReg = X86::RAX;
6040        Val = (Val << 32) | Val;
6041      }
6042      break;
6043    default:  // Byte aligned
6044      AVT = MVT::i8;
6045      ValReg = X86::AL;
6046      Count = DAG.getIntPtrConstant(SizeVal);
6047      break;
6048    }
6049
6050    if (AVT.bitsGT(MVT::i8)) {
6051      unsigned UBytes = AVT.getSizeInBits() / 8;
6052      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6053      BytesLeft = SizeVal % UBytes;
6054    }
6055
6056    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6057                              InFlag);
6058    InFlag = Chain.getValue(1);
6059  } else {
6060    AVT = MVT::i8;
6061    Count  = DAG.getIntPtrConstant(SizeVal);
6062    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6063    InFlag = Chain.getValue(1);
6064  }
6065
6066  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6067                                                              X86::ECX,
6068                            Count, InFlag);
6069  InFlag = Chain.getValue(1);
6070  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6071                                                              X86::EDI,
6072                            Dst, InFlag);
6073  InFlag = Chain.getValue(1);
6074
6075  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6076  SmallVector<SDValue, 8> Ops;
6077  Ops.push_back(Chain);
6078  Ops.push_back(DAG.getValueType(AVT));
6079  Ops.push_back(InFlag);
6080  Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6081
6082  if (TwoRepStos) {
6083    InFlag = Chain.getValue(1);
6084    Count  = Size;
6085    MVT CVT = Count.getValueType();
6086    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6087                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6088    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6089                                                             X86::ECX,
6090                              Left, InFlag);
6091    InFlag = Chain.getValue(1);
6092    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6093    Ops.clear();
6094    Ops.push_back(Chain);
6095    Ops.push_back(DAG.getValueType(MVT::i8));
6096    Ops.push_back(InFlag);
6097    Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
6098  } else if (BytesLeft) {
6099    // Handle the last 1 - 7 bytes.
6100    unsigned Offset = SizeVal - BytesLeft;
6101    MVT AddrVT = Dst.getValueType();
6102    MVT SizeVT = Size.getValueType();
6103
6104    Chain = DAG.getMemset(Chain, dl,
6105                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6106                                      DAG.getConstant(Offset, AddrVT)),
6107                          Src,
6108                          DAG.getConstant(BytesLeft, SizeVT),
6109                          Align, DstSV, DstSVOff + Offset);
6110  }
6111
6112  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6113  return Chain;
6114}
6115
6116SDValue
6117X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6118                                      SDValue Chain, SDValue Dst, SDValue Src,
6119                                      SDValue Size, unsigned Align,
6120                                      bool AlwaysInline,
6121                                      const Value *DstSV, uint64_t DstSVOff,
6122                                      const Value *SrcSV, uint64_t SrcSVOff) {
6123  // This requires the copy size to be a constant, preferrably
6124  // within a subtarget-specific limit.
6125  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6126  if (!ConstantSize)
6127    return SDValue();
6128  uint64_t SizeVal = ConstantSize->getZExtValue();
6129  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6130    return SDValue();
6131
6132  /// If not DWORD aligned, call the library.
6133  if ((Align & 3) != 0)
6134    return SDValue();
6135
6136  // DWORD aligned
6137  MVT AVT = MVT::i32;
6138  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6139    AVT = MVT::i64;
6140
6141  unsigned UBytes = AVT.getSizeInBits() / 8;
6142  unsigned CountVal = SizeVal / UBytes;
6143  SDValue Count = DAG.getIntPtrConstant(CountVal);
6144  unsigned BytesLeft = SizeVal % UBytes;
6145
6146  SDValue InFlag(0, 0);
6147  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6148                                                              X86::ECX,
6149                            Count, InFlag);
6150  InFlag = Chain.getValue(1);
6151  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6152                                                             X86::EDI,
6153                            Dst, InFlag);
6154  InFlag = Chain.getValue(1);
6155  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6156                                                              X86::ESI,
6157                            Src, InFlag);
6158  InFlag = Chain.getValue(1);
6159
6160  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6161  SmallVector<SDValue, 8> Ops;
6162  Ops.push_back(Chain);
6163  Ops.push_back(DAG.getValueType(AVT));
6164  Ops.push_back(InFlag);
6165  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
6166
6167  SmallVector<SDValue, 4> Results;
6168  Results.push_back(RepMovs);
6169  if (BytesLeft) {
6170    // Handle the last 1 - 7 bytes.
6171    unsigned Offset = SizeVal - BytesLeft;
6172    MVT DstVT = Dst.getValueType();
6173    MVT SrcVT = Src.getValueType();
6174    MVT SizeVT = Size.getValueType();
6175    Results.push_back(DAG.getMemcpy(Chain, dl,
6176                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6177                                                DAG.getConstant(Offset, DstVT)),
6178                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6179                                                DAG.getConstant(Offset, SrcVT)),
6180                                    DAG.getConstant(BytesLeft, SizeVT),
6181                                    Align, AlwaysInline,
6182                                    DstSV, DstSVOff + Offset,
6183                                    SrcSV, SrcSVOff + Offset));
6184  }
6185
6186  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6187                     &Results[0], Results.size());
6188}
6189
6190SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6191  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6192  DebugLoc dl = Op.getDebugLoc();
6193
6194  if (!Subtarget->is64Bit()) {
6195    // vastart just stores the address of the VarArgsFrameIndex slot into the
6196    // memory location argument.
6197    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6198    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6199  }
6200
6201  // __va_list_tag:
6202  //   gp_offset         (0 - 6 * 8)
6203  //   fp_offset         (48 - 48 + 8 * 16)
6204  //   overflow_arg_area (point to parameters coming in memory).
6205  //   reg_save_area
6206  SmallVector<SDValue, 8> MemOps;
6207  SDValue FIN = Op.getOperand(1);
6208  // Store gp_offset
6209  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6210                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6211                                 FIN, SV, 0);
6212  MemOps.push_back(Store);
6213
6214  // Store fp_offset
6215  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6216                    FIN, DAG.getIntPtrConstant(4));
6217  Store = DAG.getStore(Op.getOperand(0), dl,
6218                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6219                       FIN, SV, 0);
6220  MemOps.push_back(Store);
6221
6222  // Store ptr to overflow_arg_area
6223  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6224                    FIN, DAG.getIntPtrConstant(4));
6225  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6226  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6227  MemOps.push_back(Store);
6228
6229  // Store ptr to reg_save_area.
6230  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6231                    FIN, DAG.getIntPtrConstant(8));
6232  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6233  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6234  MemOps.push_back(Store);
6235  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6236                     &MemOps[0], MemOps.size());
6237}
6238
6239SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6240  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6241  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6242  SDValue Chain = Op.getOperand(0);
6243  SDValue SrcPtr = Op.getOperand(1);
6244  SDValue SrcSV = Op.getOperand(2);
6245
6246  assert(0 && "VAArgInst is not yet implemented for x86-64!");
6247  abort();
6248  return SDValue();
6249}
6250
6251SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6252  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6253  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6254  SDValue Chain = Op.getOperand(0);
6255  SDValue DstPtr = Op.getOperand(1);
6256  SDValue SrcPtr = Op.getOperand(2);
6257  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6258  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6259  DebugLoc dl = Op.getDebugLoc();
6260
6261  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6262                       DAG.getIntPtrConstant(24), 8, false,
6263                       DstSV, 0, SrcSV, 0);
6264}
6265
6266SDValue
6267X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6268  DebugLoc dl = Op.getDebugLoc();
6269  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6270  switch (IntNo) {
6271  default: return SDValue();    // Don't custom lower most intrinsics.
6272  // Comparison intrinsics.
6273  case Intrinsic::x86_sse_comieq_ss:
6274  case Intrinsic::x86_sse_comilt_ss:
6275  case Intrinsic::x86_sse_comile_ss:
6276  case Intrinsic::x86_sse_comigt_ss:
6277  case Intrinsic::x86_sse_comige_ss:
6278  case Intrinsic::x86_sse_comineq_ss:
6279  case Intrinsic::x86_sse_ucomieq_ss:
6280  case Intrinsic::x86_sse_ucomilt_ss:
6281  case Intrinsic::x86_sse_ucomile_ss:
6282  case Intrinsic::x86_sse_ucomigt_ss:
6283  case Intrinsic::x86_sse_ucomige_ss:
6284  case Intrinsic::x86_sse_ucomineq_ss:
6285  case Intrinsic::x86_sse2_comieq_sd:
6286  case Intrinsic::x86_sse2_comilt_sd:
6287  case Intrinsic::x86_sse2_comile_sd:
6288  case Intrinsic::x86_sse2_comigt_sd:
6289  case Intrinsic::x86_sse2_comige_sd:
6290  case Intrinsic::x86_sse2_comineq_sd:
6291  case Intrinsic::x86_sse2_ucomieq_sd:
6292  case Intrinsic::x86_sse2_ucomilt_sd:
6293  case Intrinsic::x86_sse2_ucomile_sd:
6294  case Intrinsic::x86_sse2_ucomigt_sd:
6295  case Intrinsic::x86_sse2_ucomige_sd:
6296  case Intrinsic::x86_sse2_ucomineq_sd: {
6297    unsigned Opc = 0;
6298    ISD::CondCode CC = ISD::SETCC_INVALID;
6299    switch (IntNo) {
6300    default: break;
6301    case Intrinsic::x86_sse_comieq_ss:
6302    case Intrinsic::x86_sse2_comieq_sd:
6303      Opc = X86ISD::COMI;
6304      CC = ISD::SETEQ;
6305      break;
6306    case Intrinsic::x86_sse_comilt_ss:
6307    case Intrinsic::x86_sse2_comilt_sd:
6308      Opc = X86ISD::COMI;
6309      CC = ISD::SETLT;
6310      break;
6311    case Intrinsic::x86_sse_comile_ss:
6312    case Intrinsic::x86_sse2_comile_sd:
6313      Opc = X86ISD::COMI;
6314      CC = ISD::SETLE;
6315      break;
6316    case Intrinsic::x86_sse_comigt_ss:
6317    case Intrinsic::x86_sse2_comigt_sd:
6318      Opc = X86ISD::COMI;
6319      CC = ISD::SETGT;
6320      break;
6321    case Intrinsic::x86_sse_comige_ss:
6322    case Intrinsic::x86_sse2_comige_sd:
6323      Opc = X86ISD::COMI;
6324      CC = ISD::SETGE;
6325      break;
6326    case Intrinsic::x86_sse_comineq_ss:
6327    case Intrinsic::x86_sse2_comineq_sd:
6328      Opc = X86ISD::COMI;
6329      CC = ISD::SETNE;
6330      break;
6331    case Intrinsic::x86_sse_ucomieq_ss:
6332    case Intrinsic::x86_sse2_ucomieq_sd:
6333      Opc = X86ISD::UCOMI;
6334      CC = ISD::SETEQ;
6335      break;
6336    case Intrinsic::x86_sse_ucomilt_ss:
6337    case Intrinsic::x86_sse2_ucomilt_sd:
6338      Opc = X86ISD::UCOMI;
6339      CC = ISD::SETLT;
6340      break;
6341    case Intrinsic::x86_sse_ucomile_ss:
6342    case Intrinsic::x86_sse2_ucomile_sd:
6343      Opc = X86ISD::UCOMI;
6344      CC = ISD::SETLE;
6345      break;
6346    case Intrinsic::x86_sse_ucomigt_ss:
6347    case Intrinsic::x86_sse2_ucomigt_sd:
6348      Opc = X86ISD::UCOMI;
6349      CC = ISD::SETGT;
6350      break;
6351    case Intrinsic::x86_sse_ucomige_ss:
6352    case Intrinsic::x86_sse2_ucomige_sd:
6353      Opc = X86ISD::UCOMI;
6354      CC = ISD::SETGE;
6355      break;
6356    case Intrinsic::x86_sse_ucomineq_ss:
6357    case Intrinsic::x86_sse2_ucomineq_sd:
6358      Opc = X86ISD::UCOMI;
6359      CC = ISD::SETNE;
6360      break;
6361    }
6362
6363    SDValue LHS = Op.getOperand(1);
6364    SDValue RHS = Op.getOperand(2);
6365    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6366    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6367    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6368                                DAG.getConstant(X86CC, MVT::i8), Cond);
6369    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6370  }
6371
6372  // Fix vector shift instructions where the last operand is a non-immediate
6373  // i32 value.
6374  case Intrinsic::x86_sse2_pslli_w:
6375  case Intrinsic::x86_sse2_pslli_d:
6376  case Intrinsic::x86_sse2_pslli_q:
6377  case Intrinsic::x86_sse2_psrli_w:
6378  case Intrinsic::x86_sse2_psrli_d:
6379  case Intrinsic::x86_sse2_psrli_q:
6380  case Intrinsic::x86_sse2_psrai_w:
6381  case Intrinsic::x86_sse2_psrai_d:
6382  case Intrinsic::x86_mmx_pslli_w:
6383  case Intrinsic::x86_mmx_pslli_d:
6384  case Intrinsic::x86_mmx_pslli_q:
6385  case Intrinsic::x86_mmx_psrli_w:
6386  case Intrinsic::x86_mmx_psrli_d:
6387  case Intrinsic::x86_mmx_psrli_q:
6388  case Intrinsic::x86_mmx_psrai_w:
6389  case Intrinsic::x86_mmx_psrai_d: {
6390    SDValue ShAmt = Op.getOperand(2);
6391    if (isa<ConstantSDNode>(ShAmt))
6392      return SDValue();
6393
6394    unsigned NewIntNo = 0;
6395    MVT ShAmtVT = MVT::v4i32;
6396    switch (IntNo) {
6397    case Intrinsic::x86_sse2_pslli_w:
6398      NewIntNo = Intrinsic::x86_sse2_psll_w;
6399      break;
6400    case Intrinsic::x86_sse2_pslli_d:
6401      NewIntNo = Intrinsic::x86_sse2_psll_d;
6402      break;
6403    case Intrinsic::x86_sse2_pslli_q:
6404      NewIntNo = Intrinsic::x86_sse2_psll_q;
6405      break;
6406    case Intrinsic::x86_sse2_psrli_w:
6407      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6408      break;
6409    case Intrinsic::x86_sse2_psrli_d:
6410      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6411      break;
6412    case Intrinsic::x86_sse2_psrli_q:
6413      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6414      break;
6415    case Intrinsic::x86_sse2_psrai_w:
6416      NewIntNo = Intrinsic::x86_sse2_psra_w;
6417      break;
6418    case Intrinsic::x86_sse2_psrai_d:
6419      NewIntNo = Intrinsic::x86_sse2_psra_d;
6420      break;
6421    default: {
6422      ShAmtVT = MVT::v2i32;
6423      switch (IntNo) {
6424      case Intrinsic::x86_mmx_pslli_w:
6425        NewIntNo = Intrinsic::x86_mmx_psll_w;
6426        break;
6427      case Intrinsic::x86_mmx_pslli_d:
6428        NewIntNo = Intrinsic::x86_mmx_psll_d;
6429        break;
6430      case Intrinsic::x86_mmx_pslli_q:
6431        NewIntNo = Intrinsic::x86_mmx_psll_q;
6432        break;
6433      case Intrinsic::x86_mmx_psrli_w:
6434        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6435        break;
6436      case Intrinsic::x86_mmx_psrli_d:
6437        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6438        break;
6439      case Intrinsic::x86_mmx_psrli_q:
6440        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6441        break;
6442      case Intrinsic::x86_mmx_psrai_w:
6443        NewIntNo = Intrinsic::x86_mmx_psra_w;
6444        break;
6445      case Intrinsic::x86_mmx_psrai_d:
6446        NewIntNo = Intrinsic::x86_mmx_psra_d;
6447        break;
6448      default: abort();  // Can't reach here.
6449      }
6450      break;
6451    }
6452    }
6453    MVT VT = Op.getValueType();
6454    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6455                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6456    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6457                       DAG.getConstant(NewIntNo, MVT::i32),
6458                       Op.getOperand(1), ShAmt);
6459  }
6460  }
6461}
6462
6463SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6464  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6465  DebugLoc dl = Op.getDebugLoc();
6466
6467  if (Depth > 0) {
6468    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6469    SDValue Offset =
6470      DAG.getConstant(TD->getPointerSize(),
6471                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6472    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6473                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6474                                   FrameAddr, Offset),
6475                       NULL, 0);
6476  }
6477
6478  // Just load the return address.
6479  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6480  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6481                     RetAddrFI, NULL, 0);
6482}
6483
6484SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6485  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6486  MFI->setFrameAddressIsTaken(true);
6487  MVT VT = Op.getValueType();
6488  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6489  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6490  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6491  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6492  while (Depth--)
6493    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6494  return FrameAddr;
6495}
6496
6497SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6498                                                     SelectionDAG &DAG) {
6499  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6500}
6501
6502SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6503{
6504  MachineFunction &MF = DAG.getMachineFunction();
6505  SDValue Chain     = Op.getOperand(0);
6506  SDValue Offset    = Op.getOperand(1);
6507  SDValue Handler   = Op.getOperand(2);
6508  DebugLoc dl       = Op.getDebugLoc();
6509
6510  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6511                                  getPointerTy());
6512  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6513
6514  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6515                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6516  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6517  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6518  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6519  MF.getRegInfo().addLiveOut(StoreAddrReg);
6520
6521  return DAG.getNode(X86ISD::EH_RETURN, dl,
6522                     MVT::Other,
6523                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6524}
6525
6526SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6527                                             SelectionDAG &DAG) {
6528  SDValue Root = Op.getOperand(0);
6529  SDValue Trmp = Op.getOperand(1); // trampoline
6530  SDValue FPtr = Op.getOperand(2); // nested function
6531  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6532  DebugLoc dl  = Op.getDebugLoc();
6533
6534  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6535
6536  const X86InstrInfo *TII =
6537    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6538
6539  if (Subtarget->is64Bit()) {
6540    SDValue OutChains[6];
6541
6542    // Large code-model.
6543
6544    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
6545    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6546
6547    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6548    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6549
6550    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6551
6552    // Load the pointer to the nested function into R11.
6553    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6554    SDValue Addr = Trmp;
6555    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6556                                Addr, TrmpAddr, 0);
6557
6558    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6559                       DAG.getConstant(2, MVT::i64));
6560    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6561
6562    // Load the 'nest' parameter value into R10.
6563    // R10 is specified in X86CallingConv.td
6564    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6565    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6566                       DAG.getConstant(10, MVT::i64));
6567    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6568                                Addr, TrmpAddr, 10);
6569
6570    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6571                       DAG.getConstant(12, MVT::i64));
6572    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6573
6574    // Jump to the nested function.
6575    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6576    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6577                       DAG.getConstant(20, MVT::i64));
6578    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6579                                Addr, TrmpAddr, 20);
6580
6581    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6582    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6583                       DAG.getConstant(22, MVT::i64));
6584    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6585                                TrmpAddr, 22);
6586
6587    SDValue Ops[] =
6588      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6589    return DAG.getMergeValues(Ops, 2, dl);
6590  } else {
6591    const Function *Func =
6592      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6593    unsigned CC = Func->getCallingConv();
6594    unsigned NestReg;
6595
6596    switch (CC) {
6597    default:
6598      assert(0 && "Unsupported calling convention");
6599    case CallingConv::C:
6600    case CallingConv::X86_StdCall: {
6601      // Pass 'nest' parameter in ECX.
6602      // Must be kept in sync with X86CallingConv.td
6603      NestReg = X86::ECX;
6604
6605      // Check that ECX wasn't needed by an 'inreg' parameter.
6606      const FunctionType *FTy = Func->getFunctionType();
6607      const AttrListPtr &Attrs = Func->getAttributes();
6608
6609      if (!Attrs.isEmpty() && !Func->isVarArg()) {
6610        unsigned InRegCount = 0;
6611        unsigned Idx = 1;
6612
6613        for (FunctionType::param_iterator I = FTy->param_begin(),
6614             E = FTy->param_end(); I != E; ++I, ++Idx)
6615          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6616            // FIXME: should only count parameters that are lowered to integers.
6617            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6618
6619        if (InRegCount > 2) {
6620          cerr << "Nest register in use - reduce number of inreg parameters!\n";
6621          abort();
6622        }
6623      }
6624      break;
6625    }
6626    case CallingConv::X86_FastCall:
6627    case CallingConv::Fast:
6628      // Pass 'nest' parameter in EAX.
6629      // Must be kept in sync with X86CallingConv.td
6630      NestReg = X86::EAX;
6631      break;
6632    }
6633
6634    SDValue OutChains[4];
6635    SDValue Addr, Disp;
6636
6637    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6638                       DAG.getConstant(10, MVT::i32));
6639    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6640
6641    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6642    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6643    OutChains[0] = DAG.getStore(Root, dl,
6644                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6645                                Trmp, TrmpAddr, 0);
6646
6647    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6648                       DAG.getConstant(1, MVT::i32));
6649    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6650
6651    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6652    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6653                       DAG.getConstant(5, MVT::i32));
6654    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6655                                TrmpAddr, 5, false, 1);
6656
6657    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6658                       DAG.getConstant(6, MVT::i32));
6659    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6660
6661    SDValue Ops[] =
6662      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6663    return DAG.getMergeValues(Ops, 2, dl);
6664  }
6665}
6666
6667SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6668  /*
6669   The rounding mode is in bits 11:10 of FPSR, and has the following
6670   settings:
6671     00 Round to nearest
6672     01 Round to -inf
6673     10 Round to +inf
6674     11 Round to 0
6675
6676  FLT_ROUNDS, on the other hand, expects the following:
6677    -1 Undefined
6678     0 Round to 0
6679     1 Round to nearest
6680     2 Round to +inf
6681     3 Round to -inf
6682
6683  To perform the conversion, we do:
6684    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6685  */
6686
6687  MachineFunction &MF = DAG.getMachineFunction();
6688  const TargetMachine &TM = MF.getTarget();
6689  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6690  unsigned StackAlignment = TFI.getStackAlignment();
6691  MVT VT = Op.getValueType();
6692  DebugLoc dl = Op.getDebugLoc();
6693
6694  // Save FP Control Word to stack slot
6695  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6696  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6697
6698  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6699                              DAG.getEntryNode(), StackSlot);
6700
6701  // Load FP Control Word from stack slot
6702  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6703
6704  // Transform as necessary
6705  SDValue CWD1 =
6706    DAG.getNode(ISD::SRL, dl, MVT::i16,
6707                DAG.getNode(ISD::AND, dl, MVT::i16,
6708                            CWD, DAG.getConstant(0x800, MVT::i16)),
6709                DAG.getConstant(11, MVT::i8));
6710  SDValue CWD2 =
6711    DAG.getNode(ISD::SRL, dl, MVT::i16,
6712                DAG.getNode(ISD::AND, dl, MVT::i16,
6713                            CWD, DAG.getConstant(0x400, MVT::i16)),
6714                DAG.getConstant(9, MVT::i8));
6715
6716  SDValue RetVal =
6717    DAG.getNode(ISD::AND, dl, MVT::i16,
6718                DAG.getNode(ISD::ADD, dl, MVT::i16,
6719                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6720                            DAG.getConstant(1, MVT::i16)),
6721                DAG.getConstant(3, MVT::i16));
6722
6723
6724  return DAG.getNode((VT.getSizeInBits() < 16 ?
6725                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6726}
6727
6728SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6729  MVT VT = Op.getValueType();
6730  MVT OpVT = VT;
6731  unsigned NumBits = VT.getSizeInBits();
6732  DebugLoc dl = Op.getDebugLoc();
6733
6734  Op = Op.getOperand(0);
6735  if (VT == MVT::i8) {
6736    // Zero extend to i32 since there is not an i8 bsr.
6737    OpVT = MVT::i32;
6738    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6739  }
6740
6741  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6742  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6743  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6744
6745  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6746  SmallVector<SDValue, 4> Ops;
6747  Ops.push_back(Op);
6748  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6749  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6750  Ops.push_back(Op.getValue(1));
6751  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6752
6753  // Finally xor with NumBits-1.
6754  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6755
6756  if (VT == MVT::i8)
6757    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6758  return Op;
6759}
6760
6761SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6762  MVT VT = Op.getValueType();
6763  MVT OpVT = VT;
6764  unsigned NumBits = VT.getSizeInBits();
6765  DebugLoc dl = Op.getDebugLoc();
6766
6767  Op = Op.getOperand(0);
6768  if (VT == MVT::i8) {
6769    OpVT = MVT::i32;
6770    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6771  }
6772
6773  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6774  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6775  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6776
6777  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6778  SmallVector<SDValue, 4> Ops;
6779  Ops.push_back(Op);
6780  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6781  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6782  Ops.push_back(Op.getValue(1));
6783  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6784
6785  if (VT == MVT::i8)
6786    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6787  return Op;
6788}
6789
6790SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6791  MVT VT = Op.getValueType();
6792  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6793  DebugLoc dl = Op.getDebugLoc();
6794
6795  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6796  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6797  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6798  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6799  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6800  //
6801  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6802  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6803  //  return AloBlo + AloBhi + AhiBlo;
6804
6805  SDValue A = Op.getOperand(0);
6806  SDValue B = Op.getOperand(1);
6807
6808  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6809                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6810                       A, DAG.getConstant(32, MVT::i32));
6811  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6812                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6813                       B, DAG.getConstant(32, MVT::i32));
6814  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6815                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6816                       A, B);
6817  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6818                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6819                       A, Bhi);
6820  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6821                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6822                       Ahi, B);
6823  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6824                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6825                       AloBhi, DAG.getConstant(32, MVT::i32));
6826  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6827                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6828                       AhiBlo, DAG.getConstant(32, MVT::i32));
6829  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6830  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6831  return Res;
6832}
6833
6834
6835SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6836  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6837  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6838  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6839  // has only one use.
6840  SDNode *N = Op.getNode();
6841  SDValue LHS = N->getOperand(0);
6842  SDValue RHS = N->getOperand(1);
6843  unsigned BaseOp = 0;
6844  unsigned Cond = 0;
6845  DebugLoc dl = Op.getDebugLoc();
6846
6847  switch (Op.getOpcode()) {
6848  default: assert(0 && "Unknown ovf instruction!");
6849  case ISD::SADDO:
6850    // A subtract of one will be selected as a INC. Note that INC doesn't
6851    // set CF, so we can't do this for UADDO.
6852    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6853      if (C->getAPIntValue() == 1) {
6854        BaseOp = X86ISD::INC;
6855        Cond = X86::COND_O;
6856        break;
6857      }
6858    BaseOp = X86ISD::ADD;
6859    Cond = X86::COND_O;
6860    break;
6861  case ISD::UADDO:
6862    BaseOp = X86ISD::ADD;
6863    Cond = X86::COND_B;
6864    break;
6865  case ISD::SSUBO:
6866    // A subtract of one will be selected as a DEC. Note that DEC doesn't
6867    // set CF, so we can't do this for USUBO.
6868    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6869      if (C->getAPIntValue() == 1) {
6870        BaseOp = X86ISD::DEC;
6871        Cond = X86::COND_O;
6872        break;
6873      }
6874    BaseOp = X86ISD::SUB;
6875    Cond = X86::COND_O;
6876    break;
6877  case ISD::USUBO:
6878    BaseOp = X86ISD::SUB;
6879    Cond = X86::COND_B;
6880    break;
6881  case ISD::SMULO:
6882    BaseOp = X86ISD::SMUL;
6883    Cond = X86::COND_O;
6884    break;
6885  case ISD::UMULO:
6886    BaseOp = X86ISD::UMUL;
6887    Cond = X86::COND_B;
6888    break;
6889  }
6890
6891  // Also sets EFLAGS.
6892  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6893  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6894
6895  SDValue SetCC =
6896    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6897                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6898
6899  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6900  return Sum;
6901}
6902
6903SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6904  MVT T = Op.getValueType();
6905  DebugLoc dl = Op.getDebugLoc();
6906  unsigned Reg = 0;
6907  unsigned size = 0;
6908  switch(T.getSimpleVT()) {
6909  default:
6910    assert(false && "Invalid value type!");
6911  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6912  case MVT::i16: Reg = X86::AX;  size = 2; break;
6913  case MVT::i32: Reg = X86::EAX; size = 4; break;
6914  case MVT::i64:
6915    assert(Subtarget->is64Bit() && "Node not type legal!");
6916    Reg = X86::RAX; size = 8;
6917    break;
6918  }
6919  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6920                                    Op.getOperand(2), SDValue());
6921  SDValue Ops[] = { cpIn.getValue(0),
6922                    Op.getOperand(1),
6923                    Op.getOperand(3),
6924                    DAG.getTargetConstant(size, MVT::i8),
6925                    cpIn.getValue(1) };
6926  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6927  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6928  SDValue cpOut =
6929    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6930  return cpOut;
6931}
6932
6933SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6934                                                 SelectionDAG &DAG) {
6935  assert(Subtarget->is64Bit() && "Result not type legalized?");
6936  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6937  SDValue TheChain = Op.getOperand(0);
6938  DebugLoc dl = Op.getDebugLoc();
6939  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6940  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6941  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6942                                   rax.getValue(2));
6943  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6944                            DAG.getConstant(32, MVT::i8));
6945  SDValue Ops[] = {
6946    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6947    rdx.getValue(1)
6948  };
6949  return DAG.getMergeValues(Ops, 2, dl);
6950}
6951
6952SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6953  SDNode *Node = Op.getNode();
6954  DebugLoc dl = Node->getDebugLoc();
6955  MVT T = Node->getValueType(0);
6956  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6957                              DAG.getConstant(0, T), Node->getOperand(2));
6958  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6959                       cast<AtomicSDNode>(Node)->getMemoryVT(),
6960                       Node->getOperand(0),
6961                       Node->getOperand(1), negOp,
6962                       cast<AtomicSDNode>(Node)->getSrcValue(),
6963                       cast<AtomicSDNode>(Node)->getAlignment());
6964}
6965
6966/// LowerOperation - Provide custom lowering hooks for some operations.
6967///
6968SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6969  switch (Op.getOpcode()) {
6970  default: assert(0 && "Should not custom lower this!");
6971  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
6972  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
6973  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6974  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6975  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6976  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6977  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6978  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6979  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6980  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6981  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6982  case ISD::SHL_PARTS:
6983  case ISD::SRA_PARTS:
6984  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6985  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6986  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6987  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6988  case ISD::FABS:               return LowerFABS(Op, DAG);
6989  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6990  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6991  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6992  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6993  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6994  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6995  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6996  case ISD::CALL:               return LowerCALL(Op, DAG);
6997  case ISD::RET:                return LowerRET(Op, DAG);
6998  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6999  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7000  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7001  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7002  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7003  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7004  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7005  case ISD::FRAME_TO_ARGS_OFFSET:
7006                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7007  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7008  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7009  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7010  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7011  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7012  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7013  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7014  case ISD::SADDO:
7015  case ISD::UADDO:
7016  case ISD::SSUBO:
7017  case ISD::USUBO:
7018  case ISD::SMULO:
7019  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7020  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7021  }
7022}
7023
7024void X86TargetLowering::
7025ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7026                        SelectionDAG &DAG, unsigned NewOp) {
7027  MVT T = Node->getValueType(0);
7028  DebugLoc dl = Node->getDebugLoc();
7029  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7030
7031  SDValue Chain = Node->getOperand(0);
7032  SDValue In1 = Node->getOperand(1);
7033  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7034                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7035  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7036                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7037  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
7038  // have a MemOperand.  Pass the info through as a normal operand.
7039  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
7040  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
7041  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7042  SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
7043  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7044  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7045  Results.push_back(Result.getValue(2));
7046}
7047
7048/// ReplaceNodeResults - Replace a node with an illegal result type
7049/// with a new node built out of custom code.
7050void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7051                                           SmallVectorImpl<SDValue>&Results,
7052                                           SelectionDAG &DAG) {
7053  DebugLoc dl = N->getDebugLoc();
7054  switch (N->getOpcode()) {
7055  default:
7056    assert(false && "Do not know how to custom type legalize this operation!");
7057    return;
7058  case ISD::FP_TO_SINT: {
7059    std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
7060    SDValue FIST = Vals.first, StackSlot = Vals.second;
7061    if (FIST.getNode() != 0) {
7062      MVT VT = N->getValueType(0);
7063      // Return a load from the stack slot.
7064      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7065    }
7066    return;
7067  }
7068  case ISD::READCYCLECOUNTER: {
7069    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7070    SDValue TheChain = N->getOperand(0);
7071    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7072    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7073                                     rd.getValue(1));
7074    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7075                                     eax.getValue(2));
7076    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7077    SDValue Ops[] = { eax, edx };
7078    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7079    Results.push_back(edx.getValue(1));
7080    return;
7081  }
7082  case ISD::ATOMIC_CMP_SWAP: {
7083    MVT T = N->getValueType(0);
7084    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7085    SDValue cpInL, cpInH;
7086    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7087                        DAG.getConstant(0, MVT::i32));
7088    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7089                        DAG.getConstant(1, MVT::i32));
7090    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7091    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7092                             cpInL.getValue(1));
7093    SDValue swapInL, swapInH;
7094    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7095                          DAG.getConstant(0, MVT::i32));
7096    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7097                          DAG.getConstant(1, MVT::i32));
7098    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7099                               cpInH.getValue(1));
7100    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7101                               swapInL.getValue(1));
7102    SDValue Ops[] = { swapInH.getValue(0),
7103                      N->getOperand(1),
7104                      swapInH.getValue(1) };
7105    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7106    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7107    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7108                                        MVT::i32, Result.getValue(1));
7109    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7110                                        MVT::i32, cpOutL.getValue(2));
7111    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7112    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7113    Results.push_back(cpOutH.getValue(1));
7114    return;
7115  }
7116  case ISD::ATOMIC_LOAD_ADD:
7117    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7118    return;
7119  case ISD::ATOMIC_LOAD_AND:
7120    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7121    return;
7122  case ISD::ATOMIC_LOAD_NAND:
7123    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7124    return;
7125  case ISD::ATOMIC_LOAD_OR:
7126    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7127    return;
7128  case ISD::ATOMIC_LOAD_SUB:
7129    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7130    return;
7131  case ISD::ATOMIC_LOAD_XOR:
7132    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7133    return;
7134  case ISD::ATOMIC_SWAP:
7135    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7136    return;
7137  }
7138}
7139
7140const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7141  switch (Opcode) {
7142  default: return NULL;
7143  case X86ISD::BSF:                return "X86ISD::BSF";
7144  case X86ISD::BSR:                return "X86ISD::BSR";
7145  case X86ISD::SHLD:               return "X86ISD::SHLD";
7146  case X86ISD::SHRD:               return "X86ISD::SHRD";
7147  case X86ISD::FAND:               return "X86ISD::FAND";
7148  case X86ISD::FOR:                return "X86ISD::FOR";
7149  case X86ISD::FXOR:               return "X86ISD::FXOR";
7150  case X86ISD::FSRL:               return "X86ISD::FSRL";
7151  case X86ISD::FILD:               return "X86ISD::FILD";
7152  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7153  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7154  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7155  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7156  case X86ISD::FLD:                return "X86ISD::FLD";
7157  case X86ISD::FST:                return "X86ISD::FST";
7158  case X86ISD::CALL:               return "X86ISD::CALL";
7159  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
7160  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7161  case X86ISD::BT:                 return "X86ISD::BT";
7162  case X86ISD::CMP:                return "X86ISD::CMP";
7163  case X86ISD::COMI:               return "X86ISD::COMI";
7164  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7165  case X86ISD::SETCC:              return "X86ISD::SETCC";
7166  case X86ISD::CMOV:               return "X86ISD::CMOV";
7167  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7168  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7169  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7170  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7171  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7172  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7173  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7174  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7175  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7176  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7177  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7178  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7179  case X86ISD::FMAX:               return "X86ISD::FMAX";
7180  case X86ISD::FMIN:               return "X86ISD::FMIN";
7181  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7182  case X86ISD::FRCP:               return "X86ISD::FRCP";
7183  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7184  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
7185  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7186  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7187  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7188  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7189  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7190  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7191  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7192  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7193  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7194  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7195  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7196  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7197  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7198  case X86ISD::VSHL:               return "X86ISD::VSHL";
7199  case X86ISD::VSRL:               return "X86ISD::VSRL";
7200  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7201  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7202  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7203  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7204  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7205  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7206  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7207  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7208  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7209  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7210  case X86ISD::ADD:                return "X86ISD::ADD";
7211  case X86ISD::SUB:                return "X86ISD::SUB";
7212  case X86ISD::SMUL:               return "X86ISD::SMUL";
7213  case X86ISD::UMUL:               return "X86ISD::UMUL";
7214  case X86ISD::INC:                return "X86ISD::INC";
7215  case X86ISD::DEC:                return "X86ISD::DEC";
7216  }
7217}
7218
7219// isLegalAddressingMode - Return true if the addressing mode represented
7220// by AM is legal for this target, for a load/store of the specified type.
7221bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7222                                              const Type *Ty) const {
7223  // X86 supports extremely general addressing modes.
7224
7225  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7226  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
7227    return false;
7228
7229  if (AM.BaseGV) {
7230    // We can only fold this if we don't need an extra load.
7231    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
7232      return false;
7233    // If BaseGV requires a register, we cannot also have a BaseReg.
7234    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
7235        AM.HasBaseReg)
7236      return false;
7237
7238    // X86-64 only supports addr of globals in small code model.
7239    if (Subtarget->is64Bit()) {
7240      if (getTargetMachine().getCodeModel() != CodeModel::Small)
7241        return false;
7242      // If lower 4G is not available, then we must use rip-relative addressing.
7243      if (AM.BaseOffs || AM.Scale > 1)
7244        return false;
7245    }
7246  }
7247
7248  switch (AM.Scale) {
7249  case 0:
7250  case 1:
7251  case 2:
7252  case 4:
7253  case 8:
7254    // These scales always work.
7255    break;
7256  case 3:
7257  case 5:
7258  case 9:
7259    // These scales are formed with basereg+scalereg.  Only accept if there is
7260    // no basereg yet.
7261    if (AM.HasBaseReg)
7262      return false;
7263    break;
7264  default:  // Other stuff never works.
7265    return false;
7266  }
7267
7268  return true;
7269}
7270
7271
7272bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7273  if (!Ty1->isInteger() || !Ty2->isInteger())
7274    return false;
7275  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7276  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7277  if (NumBits1 <= NumBits2)
7278    return false;
7279  return Subtarget->is64Bit() || NumBits1 < 64;
7280}
7281
7282bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
7283  if (!VT1.isInteger() || !VT2.isInteger())
7284    return false;
7285  unsigned NumBits1 = VT1.getSizeInBits();
7286  unsigned NumBits2 = VT2.getSizeInBits();
7287  if (NumBits1 <= NumBits2)
7288    return false;
7289  return Subtarget->is64Bit() || NumBits1 < 64;
7290}
7291
7292/// isShuffleMaskLegal - Targets can use this to indicate that they only
7293/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7294/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7295/// are assumed to be legal.
7296bool
7297X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
7298  // Only do shuffles on 128-bit vector types for now.
7299  // FIXME: pshufb, blends
7300  if (VT.getSizeInBits() == 64) return false;
7301  return (Mask.getNode()->getNumOperands() <= 4 ||
7302          isIdentityMask(Mask.getNode()) ||
7303          isIdentityMask(Mask.getNode(), true) ||
7304          isSplatMask(Mask.getNode())  ||
7305          X86::isPSHUFHWMask(Mask.getNode()) ||
7306          X86::isPSHUFLWMask(Mask.getNode()) ||
7307          X86::isUNPCKLMask(Mask.getNode()) ||
7308          X86::isUNPCKHMask(Mask.getNode()) ||
7309          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
7310          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
7311}
7312
7313bool
7314X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
7315                                          MVT EVT, SelectionDAG &DAG) const {
7316  unsigned NumElts = BVOps.size();
7317  // Only do shuffles on 128-bit vector types for now.
7318  if (EVT.getSizeInBits() * NumElts == 64) return false;
7319  if (NumElts == 2) return true;
7320  if (NumElts == 4) {
7321    return (isMOVLMask(&BVOps[0], 4)  ||
7322            isCommutedMOVL(&BVOps[0], 4, true) ||
7323            isSHUFPMask(&BVOps[0], 4) ||
7324            isCommutedSHUFP(&BVOps[0], 4));
7325  }
7326  return false;
7327}
7328
7329//===----------------------------------------------------------------------===//
7330//                           X86 Scheduler Hooks
7331//===----------------------------------------------------------------------===//
7332
7333// private utility function
7334MachineBasicBlock *
7335X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7336                                                       MachineBasicBlock *MBB,
7337                                                       unsigned regOpc,
7338                                                       unsigned immOpc,
7339                                                       unsigned LoadOpc,
7340                                                       unsigned CXchgOpc,
7341                                                       unsigned copyOpc,
7342                                                       unsigned notOpc,
7343                                                       unsigned EAXreg,
7344                                                       TargetRegisterClass *RC,
7345                                                       bool invSrc) const {
7346  // For the atomic bitwise operator, we generate
7347  //   thisMBB:
7348  //   newMBB:
7349  //     ld  t1 = [bitinstr.addr]
7350  //     op  t2 = t1, [bitinstr.val]
7351  //     mov EAX = t1
7352  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7353  //     bz  newMBB
7354  //     fallthrough -->nextMBB
7355  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7356  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7357  MachineFunction::iterator MBBIter = MBB;
7358  ++MBBIter;
7359
7360  /// First build the CFG
7361  MachineFunction *F = MBB->getParent();
7362  MachineBasicBlock *thisMBB = MBB;
7363  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7364  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7365  F->insert(MBBIter, newMBB);
7366  F->insert(MBBIter, nextMBB);
7367
7368  // Move all successors to thisMBB to nextMBB
7369  nextMBB->transferSuccessors(thisMBB);
7370
7371  // Update thisMBB to fall through to newMBB
7372  thisMBB->addSuccessor(newMBB);
7373
7374  // newMBB jumps to itself and fall through to nextMBB
7375  newMBB->addSuccessor(nextMBB);
7376  newMBB->addSuccessor(newMBB);
7377
7378  // Insert instructions into newMBB based on incoming instruction
7379  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
7380  DebugLoc dl = bInstr->getDebugLoc();
7381  MachineOperand& destOper = bInstr->getOperand(0);
7382  MachineOperand* argOpers[6];
7383  int numArgs = bInstr->getNumOperands() - 1;
7384  for (int i=0; i < numArgs; ++i)
7385    argOpers[i] = &bInstr->getOperand(i+1);
7386
7387  // x86 address has 4 operands: base, index, scale, and displacement
7388  int lastAddrIndx = 3; // [0,3]
7389  int valArgIndx = 4;
7390
7391  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7392  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7393  for (int i=0; i <= lastAddrIndx; ++i)
7394    (*MIB).addOperand(*argOpers[i]);
7395
7396  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7397  if (invSrc) {
7398    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7399  }
7400  else
7401    tt = t1;
7402
7403  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7404  assert((argOpers[valArgIndx]->isReg() ||
7405          argOpers[valArgIndx]->isImm()) &&
7406         "invalid operand");
7407  if (argOpers[valArgIndx]->isReg())
7408    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7409  else
7410    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7411  MIB.addReg(tt);
7412  (*MIB).addOperand(*argOpers[valArgIndx]);
7413
7414  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7415  MIB.addReg(t1);
7416
7417  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7418  for (int i=0; i <= lastAddrIndx; ++i)
7419    (*MIB).addOperand(*argOpers[i]);
7420  MIB.addReg(t2);
7421  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7422  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7423
7424  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7425  MIB.addReg(EAXreg);
7426
7427  // insert branch
7428  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7429
7430  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7431  return nextMBB;
7432}
7433
7434// private utility function:  64 bit atomics on 32 bit host.
7435MachineBasicBlock *
7436X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7437                                                       MachineBasicBlock *MBB,
7438                                                       unsigned regOpcL,
7439                                                       unsigned regOpcH,
7440                                                       unsigned immOpcL,
7441                                                       unsigned immOpcH,
7442                                                       bool invSrc) const {
7443  // For the atomic bitwise operator, we generate
7444  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7445  //     ld t1,t2 = [bitinstr.addr]
7446  //   newMBB:
7447  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7448  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7449  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7450  //     mov ECX, EBX <- t5, t6
7451  //     mov EAX, EDX <- t1, t2
7452  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7453  //     mov t3, t4 <- EAX, EDX
7454  //     bz  newMBB
7455  //     result in out1, out2
7456  //     fallthrough -->nextMBB
7457
7458  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7459  const unsigned LoadOpc = X86::MOV32rm;
7460  const unsigned copyOpc = X86::MOV32rr;
7461  const unsigned NotOpc = X86::NOT32r;
7462  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7463  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7464  MachineFunction::iterator MBBIter = MBB;
7465  ++MBBIter;
7466
7467  /// First build the CFG
7468  MachineFunction *F = MBB->getParent();
7469  MachineBasicBlock *thisMBB = MBB;
7470  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7471  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7472  F->insert(MBBIter, newMBB);
7473  F->insert(MBBIter, nextMBB);
7474
7475  // Move all successors to thisMBB to nextMBB
7476  nextMBB->transferSuccessors(thisMBB);
7477
7478  // Update thisMBB to fall through to newMBB
7479  thisMBB->addSuccessor(newMBB);
7480
7481  // newMBB jumps to itself and fall through to nextMBB
7482  newMBB->addSuccessor(nextMBB);
7483  newMBB->addSuccessor(newMBB);
7484
7485  DebugLoc dl = bInstr->getDebugLoc();
7486  // Insert instructions into newMBB based on incoming instruction
7487  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7488  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
7489  MachineOperand& dest1Oper = bInstr->getOperand(0);
7490  MachineOperand& dest2Oper = bInstr->getOperand(1);
7491  MachineOperand* argOpers[6];
7492  for (int i=0; i < 6; ++i)
7493    argOpers[i] = &bInstr->getOperand(i+2);
7494
7495  // x86 address has 4 operands: base, index, scale, and displacement
7496  int lastAddrIndx = 3; // [0,3]
7497
7498  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7499  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7500  for (int i=0; i <= lastAddrIndx; ++i)
7501    (*MIB).addOperand(*argOpers[i]);
7502  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7503  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7504  // add 4 to displacement.
7505  for (int i=0; i <= lastAddrIndx-1; ++i)
7506    (*MIB).addOperand(*argOpers[i]);
7507  MachineOperand newOp3 = *(argOpers[3]);
7508  if (newOp3.isImm())
7509    newOp3.setImm(newOp3.getImm()+4);
7510  else
7511    newOp3.setOffset(newOp3.getOffset()+4);
7512  (*MIB).addOperand(newOp3);
7513
7514  // t3/4 are defined later, at the bottom of the loop
7515  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7516  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7517  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7518    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7519  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7520    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7521
7522  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7523  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7524  if (invSrc) {
7525    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7526    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7527  } else {
7528    tt1 = t1;
7529    tt2 = t2;
7530  }
7531
7532  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
7533         "invalid operand");
7534  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7535  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7536  if (argOpers[4]->isReg())
7537    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7538  else
7539    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7540  if (regOpcL != X86::MOV32rr)
7541    MIB.addReg(tt1);
7542  (*MIB).addOperand(*argOpers[4]);
7543  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
7544  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
7545  if (argOpers[5]->isReg())
7546    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7547  else
7548    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7549  if (regOpcH != X86::MOV32rr)
7550    MIB.addReg(tt2);
7551  (*MIB).addOperand(*argOpers[5]);
7552
7553  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7554  MIB.addReg(t1);
7555  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7556  MIB.addReg(t2);
7557
7558  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7559  MIB.addReg(t5);
7560  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7561  MIB.addReg(t6);
7562
7563  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7564  for (int i=0; i <= lastAddrIndx; ++i)
7565    (*MIB).addOperand(*argOpers[i]);
7566
7567  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7568  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7569
7570  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7571  MIB.addReg(X86::EAX);
7572  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7573  MIB.addReg(X86::EDX);
7574
7575  // insert branch
7576  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7577
7578  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7579  return nextMBB;
7580}
7581
7582// private utility function
7583MachineBasicBlock *
7584X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7585                                                      MachineBasicBlock *MBB,
7586                                                      unsigned cmovOpc) const {
7587  // For the atomic min/max operator, we generate
7588  //   thisMBB:
7589  //   newMBB:
7590  //     ld t1 = [min/max.addr]
7591  //     mov t2 = [min/max.val]
7592  //     cmp  t1, t2
7593  //     cmov[cond] t2 = t1
7594  //     mov EAX = t1
7595  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7596  //     bz   newMBB
7597  //     fallthrough -->nextMBB
7598  //
7599  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7600  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7601  MachineFunction::iterator MBBIter = MBB;
7602  ++MBBIter;
7603
7604  /// First build the CFG
7605  MachineFunction *F = MBB->getParent();
7606  MachineBasicBlock *thisMBB = MBB;
7607  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7608  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7609  F->insert(MBBIter, newMBB);
7610  F->insert(MBBIter, nextMBB);
7611
7612  // Move all successors to thisMBB to nextMBB
7613  nextMBB->transferSuccessors(thisMBB);
7614
7615  // Update thisMBB to fall through to newMBB
7616  thisMBB->addSuccessor(newMBB);
7617
7618  // newMBB jumps to newMBB and fall through to nextMBB
7619  newMBB->addSuccessor(nextMBB);
7620  newMBB->addSuccessor(newMBB);
7621
7622  DebugLoc dl = mInstr->getDebugLoc();
7623  // Insert instructions into newMBB based on incoming instruction
7624  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
7625  MachineOperand& destOper = mInstr->getOperand(0);
7626  MachineOperand* argOpers[6];
7627  int numArgs = mInstr->getNumOperands() - 1;
7628  for (int i=0; i < numArgs; ++i)
7629    argOpers[i] = &mInstr->getOperand(i+1);
7630
7631  // x86 address has 4 operands: base, index, scale, and displacement
7632  int lastAddrIndx = 3; // [0,3]
7633  int valArgIndx = 4;
7634
7635  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7636  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7637  for (int i=0; i <= lastAddrIndx; ++i)
7638    (*MIB).addOperand(*argOpers[i]);
7639
7640  // We only support register and immediate values
7641  assert((argOpers[valArgIndx]->isReg() ||
7642          argOpers[valArgIndx]->isImm()) &&
7643         "invalid operand");
7644
7645  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7646  if (argOpers[valArgIndx]->isReg())
7647    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7648  else
7649    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7650  (*MIB).addOperand(*argOpers[valArgIndx]);
7651
7652  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7653  MIB.addReg(t1);
7654
7655  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7656  MIB.addReg(t1);
7657  MIB.addReg(t2);
7658
7659  // Generate movc
7660  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7661  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7662  MIB.addReg(t2);
7663  MIB.addReg(t1);
7664
7665  // Cmp and exchange if none has modified the memory location
7666  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7667  for (int i=0; i <= lastAddrIndx; ++i)
7668    (*MIB).addOperand(*argOpers[i]);
7669  MIB.addReg(t3);
7670  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7671  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7672
7673  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7674  MIB.addReg(X86::EAX);
7675
7676  // insert branch
7677  BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7678
7679  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7680  return nextMBB;
7681}
7682
7683
7684MachineBasicBlock *
7685X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7686                                               MachineBasicBlock *BB) const {
7687  DebugLoc dl = MI->getDebugLoc();
7688  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7689  switch (MI->getOpcode()) {
7690  default: assert(false && "Unexpected instr type to insert");
7691  case X86::CMOV_V1I64:
7692  case X86::CMOV_FR32:
7693  case X86::CMOV_FR64:
7694  case X86::CMOV_V4F32:
7695  case X86::CMOV_V2F64:
7696  case X86::CMOV_V2I64: {
7697    // To "insert" a SELECT_CC instruction, we actually have to insert the
7698    // diamond control-flow pattern.  The incoming instruction knows the
7699    // destination vreg to set, the condition code register to branch on, the
7700    // true/false values to select between, and a branch opcode to use.
7701    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7702    MachineFunction::iterator It = BB;
7703    ++It;
7704
7705    //  thisMBB:
7706    //  ...
7707    //   TrueVal = ...
7708    //   cmpTY ccX, r1, r2
7709    //   bCC copy1MBB
7710    //   fallthrough --> copy0MBB
7711    MachineBasicBlock *thisMBB = BB;
7712    MachineFunction *F = BB->getParent();
7713    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7714    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7715    unsigned Opc =
7716      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7717    BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7718    F->insert(It, copy0MBB);
7719    F->insert(It, sinkMBB);
7720    // Update machine-CFG edges by transferring all successors of the current
7721    // block to the new block which will contain the Phi node for the select.
7722    sinkMBB->transferSuccessors(BB);
7723
7724    // Add the true and fallthrough blocks as its successors.
7725    BB->addSuccessor(copy0MBB);
7726    BB->addSuccessor(sinkMBB);
7727
7728    //  copy0MBB:
7729    //   %FalseValue = ...
7730    //   # fallthrough to sinkMBB
7731    BB = copy0MBB;
7732
7733    // Update machine-CFG edges
7734    BB->addSuccessor(sinkMBB);
7735
7736    //  sinkMBB:
7737    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7738    //  ...
7739    BB = sinkMBB;
7740    BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7741      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7742      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7743
7744    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7745    return BB;
7746  }
7747
7748  case X86::FP32_TO_INT16_IN_MEM:
7749  case X86::FP32_TO_INT32_IN_MEM:
7750  case X86::FP32_TO_INT64_IN_MEM:
7751  case X86::FP64_TO_INT16_IN_MEM:
7752  case X86::FP64_TO_INT32_IN_MEM:
7753  case X86::FP64_TO_INT64_IN_MEM:
7754  case X86::FP80_TO_INT16_IN_MEM:
7755  case X86::FP80_TO_INT32_IN_MEM:
7756  case X86::FP80_TO_INT64_IN_MEM: {
7757    // Change the floating point control register to use "round towards zero"
7758    // mode when truncating to an integer value.
7759    MachineFunction *F = BB->getParent();
7760    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7761    addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7762
7763    // Load the old value of the high byte of the control word...
7764    unsigned OldCW =
7765      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7766    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7767                      CWFrameIdx);
7768
7769    // Set the high part to be round to zero...
7770    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7771      .addImm(0xC7F);
7772
7773    // Reload the modified control word now...
7774    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7775
7776    // Restore the memory image of control word to original value
7777    addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7778      .addReg(OldCW);
7779
7780    // Get the X86 opcode to use.
7781    unsigned Opc;
7782    switch (MI->getOpcode()) {
7783    default: assert(0 && "illegal opcode!");
7784    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7785    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7786    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7787    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7788    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7789    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7790    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7791    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7792    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7793    }
7794
7795    X86AddressMode AM;
7796    MachineOperand &Op = MI->getOperand(0);
7797    if (Op.isReg()) {
7798      AM.BaseType = X86AddressMode::RegBase;
7799      AM.Base.Reg = Op.getReg();
7800    } else {
7801      AM.BaseType = X86AddressMode::FrameIndexBase;
7802      AM.Base.FrameIndex = Op.getIndex();
7803    }
7804    Op = MI->getOperand(1);
7805    if (Op.isImm())
7806      AM.Scale = Op.getImm();
7807    Op = MI->getOperand(2);
7808    if (Op.isImm())
7809      AM.IndexReg = Op.getImm();
7810    Op = MI->getOperand(3);
7811    if (Op.isGlobal()) {
7812      AM.GV = Op.getGlobal();
7813    } else {
7814      AM.Disp = Op.getImm();
7815    }
7816    addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7817                      .addReg(MI->getOperand(4).getReg());
7818
7819    // Reload the original control word now.
7820    addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7821
7822    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7823    return BB;
7824  }
7825  case X86::ATOMAND32:
7826    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7827                                               X86::AND32ri, X86::MOV32rm,
7828                                               X86::LCMPXCHG32, X86::MOV32rr,
7829                                               X86::NOT32r, X86::EAX,
7830                                               X86::GR32RegisterClass);
7831  case X86::ATOMOR32:
7832    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7833                                               X86::OR32ri, X86::MOV32rm,
7834                                               X86::LCMPXCHG32, X86::MOV32rr,
7835                                               X86::NOT32r, X86::EAX,
7836                                               X86::GR32RegisterClass);
7837  case X86::ATOMXOR32:
7838    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7839                                               X86::XOR32ri, X86::MOV32rm,
7840                                               X86::LCMPXCHG32, X86::MOV32rr,
7841                                               X86::NOT32r, X86::EAX,
7842                                               X86::GR32RegisterClass);
7843  case X86::ATOMNAND32:
7844    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7845                                               X86::AND32ri, X86::MOV32rm,
7846                                               X86::LCMPXCHG32, X86::MOV32rr,
7847                                               X86::NOT32r, X86::EAX,
7848                                               X86::GR32RegisterClass, true);
7849  case X86::ATOMMIN32:
7850    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7851  case X86::ATOMMAX32:
7852    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7853  case X86::ATOMUMIN32:
7854    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7855  case X86::ATOMUMAX32:
7856    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7857
7858  case X86::ATOMAND16:
7859    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7860                                               X86::AND16ri, X86::MOV16rm,
7861                                               X86::LCMPXCHG16, X86::MOV16rr,
7862                                               X86::NOT16r, X86::AX,
7863                                               X86::GR16RegisterClass);
7864  case X86::ATOMOR16:
7865    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7866                                               X86::OR16ri, X86::MOV16rm,
7867                                               X86::LCMPXCHG16, X86::MOV16rr,
7868                                               X86::NOT16r, X86::AX,
7869                                               X86::GR16RegisterClass);
7870  case X86::ATOMXOR16:
7871    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7872                                               X86::XOR16ri, X86::MOV16rm,
7873                                               X86::LCMPXCHG16, X86::MOV16rr,
7874                                               X86::NOT16r, X86::AX,
7875                                               X86::GR16RegisterClass);
7876  case X86::ATOMNAND16:
7877    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7878                                               X86::AND16ri, X86::MOV16rm,
7879                                               X86::LCMPXCHG16, X86::MOV16rr,
7880                                               X86::NOT16r, X86::AX,
7881                                               X86::GR16RegisterClass, true);
7882  case X86::ATOMMIN16:
7883    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7884  case X86::ATOMMAX16:
7885    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7886  case X86::ATOMUMIN16:
7887    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7888  case X86::ATOMUMAX16:
7889    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7890
7891  case X86::ATOMAND8:
7892    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7893                                               X86::AND8ri, X86::MOV8rm,
7894                                               X86::LCMPXCHG8, X86::MOV8rr,
7895                                               X86::NOT8r, X86::AL,
7896                                               X86::GR8RegisterClass);
7897  case X86::ATOMOR8:
7898    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7899                                               X86::OR8ri, X86::MOV8rm,
7900                                               X86::LCMPXCHG8, X86::MOV8rr,
7901                                               X86::NOT8r, X86::AL,
7902                                               X86::GR8RegisterClass);
7903  case X86::ATOMXOR8:
7904    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7905                                               X86::XOR8ri, X86::MOV8rm,
7906                                               X86::LCMPXCHG8, X86::MOV8rr,
7907                                               X86::NOT8r, X86::AL,
7908                                               X86::GR8RegisterClass);
7909  case X86::ATOMNAND8:
7910    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7911                                               X86::AND8ri, X86::MOV8rm,
7912                                               X86::LCMPXCHG8, X86::MOV8rr,
7913                                               X86::NOT8r, X86::AL,
7914                                               X86::GR8RegisterClass, true);
7915  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7916  // This group is for 64-bit host.
7917  case X86::ATOMAND64:
7918    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7919                                               X86::AND64ri32, X86::MOV64rm,
7920                                               X86::LCMPXCHG64, X86::MOV64rr,
7921                                               X86::NOT64r, X86::RAX,
7922                                               X86::GR64RegisterClass);
7923  case X86::ATOMOR64:
7924    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7925                                               X86::OR64ri32, X86::MOV64rm,
7926                                               X86::LCMPXCHG64, X86::MOV64rr,
7927                                               X86::NOT64r, X86::RAX,
7928                                               X86::GR64RegisterClass);
7929  case X86::ATOMXOR64:
7930    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7931                                               X86::XOR64ri32, X86::MOV64rm,
7932                                               X86::LCMPXCHG64, X86::MOV64rr,
7933                                               X86::NOT64r, X86::RAX,
7934                                               X86::GR64RegisterClass);
7935  case X86::ATOMNAND64:
7936    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7937                                               X86::AND64ri32, X86::MOV64rm,
7938                                               X86::LCMPXCHG64, X86::MOV64rr,
7939                                               X86::NOT64r, X86::RAX,
7940                                               X86::GR64RegisterClass, true);
7941  case X86::ATOMMIN64:
7942    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7943  case X86::ATOMMAX64:
7944    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7945  case X86::ATOMUMIN64:
7946    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7947  case X86::ATOMUMAX64:
7948    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7949
7950  // This group does 64-bit operations on a 32-bit host.
7951  case X86::ATOMAND6432:
7952    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7953                                               X86::AND32rr, X86::AND32rr,
7954                                               X86::AND32ri, X86::AND32ri,
7955                                               false);
7956  case X86::ATOMOR6432:
7957    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7958                                               X86::OR32rr, X86::OR32rr,
7959                                               X86::OR32ri, X86::OR32ri,
7960                                               false);
7961  case X86::ATOMXOR6432:
7962    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7963                                               X86::XOR32rr, X86::XOR32rr,
7964                                               X86::XOR32ri, X86::XOR32ri,
7965                                               false);
7966  case X86::ATOMNAND6432:
7967    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7968                                               X86::AND32rr, X86::AND32rr,
7969                                               X86::AND32ri, X86::AND32ri,
7970                                               true);
7971  case X86::ATOMADD6432:
7972    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7973                                               X86::ADD32rr, X86::ADC32rr,
7974                                               X86::ADD32ri, X86::ADC32ri,
7975                                               false);
7976  case X86::ATOMSUB6432:
7977    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7978                                               X86::SUB32rr, X86::SBB32rr,
7979                                               X86::SUB32ri, X86::SBB32ri,
7980                                               false);
7981  case X86::ATOMSWAP6432:
7982    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7983                                               X86::MOV32rr, X86::MOV32rr,
7984                                               X86::MOV32ri, X86::MOV32ri,
7985                                               false);
7986  }
7987}
7988
7989//===----------------------------------------------------------------------===//
7990//                           X86 Optimization Hooks
7991//===----------------------------------------------------------------------===//
7992
7993void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7994                                                       const APInt &Mask,
7995                                                       APInt &KnownZero,
7996                                                       APInt &KnownOne,
7997                                                       const SelectionDAG &DAG,
7998                                                       unsigned Depth) const {
7999  unsigned Opc = Op.getOpcode();
8000  assert((Opc >= ISD::BUILTIN_OP_END ||
8001          Opc == ISD::INTRINSIC_WO_CHAIN ||
8002          Opc == ISD::INTRINSIC_W_CHAIN ||
8003          Opc == ISD::INTRINSIC_VOID) &&
8004         "Should use MaskedValueIsZero if you don't know whether Op"
8005         " is a target node!");
8006
8007  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8008  switch (Opc) {
8009  default: break;
8010  case X86ISD::ADD:
8011  case X86ISD::SUB:
8012  case X86ISD::SMUL:
8013  case X86ISD::UMUL:
8014  case X86ISD::INC:
8015  case X86ISD::DEC:
8016    // These nodes' second result is a boolean.
8017    if (Op.getResNo() == 0)
8018      break;
8019    // Fallthrough
8020  case X86ISD::SETCC:
8021    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8022                                       Mask.getBitWidth() - 1);
8023    break;
8024  }
8025}
8026
8027/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8028/// node is a GlobalAddress + offset.
8029bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8030                                       GlobalValue* &GA, int64_t &Offset) const{
8031  if (N->getOpcode() == X86ISD::Wrapper) {
8032    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8033      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8034      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8035      return true;
8036    }
8037  }
8038  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8039}
8040
8041static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
8042                               const TargetLowering &TLI) {
8043  GlobalValue *GV;
8044  int64_t Offset = 0;
8045  if (TLI.isGAPlusOffset(Base, GV, Offset))
8046    return (GV->getAlignment() >= N && (Offset % N) == 0);
8047  // DAG combine handles the stack object case.
8048  return false;
8049}
8050
8051static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
8052                                     unsigned NumElems, MVT EVT,
8053                                     SDNode *&Base,
8054                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8055                                     const TargetLowering &TLI) {
8056  Base = NULL;
8057  for (unsigned i = 0; i < NumElems; ++i) {
8058    SDValue Idx = PermMask.getOperand(i);
8059    if (Idx.getOpcode() == ISD::UNDEF) {
8060      if (!Base)
8061        return false;
8062      continue;
8063    }
8064
8065    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8066    if (!Elt.getNode() ||
8067        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8068      return false;
8069    if (!Base) {
8070      Base = Elt.getNode();
8071      if (Base->getOpcode() == ISD::UNDEF)
8072        return false;
8073      continue;
8074    }
8075    if (Elt.getOpcode() == ISD::UNDEF)
8076      continue;
8077
8078    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
8079                               EVT.getSizeInBits()/8, i, MFI))
8080      return false;
8081  }
8082  return true;
8083}
8084
8085/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8086/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8087/// if the load addresses are consecutive, non-overlapping, and in the right
8088/// order.
8089static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8090                                       const TargetLowering &TLI) {
8091  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8092  DebugLoc dl = N->getDebugLoc();
8093  MVT VT = N->getValueType(0);
8094  MVT EVT = VT.getVectorElementType();
8095  SDValue PermMask = N->getOperand(2);
8096  unsigned NumElems = PermMask.getNumOperands();
8097  SDNode *Base = NULL;
8098  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
8099                                DAG, MFI, TLI))
8100    return SDValue();
8101
8102  LoadSDNode *LD = cast<LoadSDNode>(Base);
8103  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
8104    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8105                       LD->getSrcValue(), LD->getSrcValueOffset(),
8106                       LD->isVolatile());
8107  return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8108                     LD->getSrcValue(), LD->getSrcValueOffset(),
8109                     LD->isVolatile(), LD->getAlignment());
8110}
8111
8112/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
8113static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
8114                                         TargetLowering::DAGCombinerInfo &DCI,
8115                                         const X86Subtarget *Subtarget,
8116                                         const TargetLowering &TLI) {
8117  unsigned NumOps = N->getNumOperands();
8118  DebugLoc dl = N->getDebugLoc();
8119
8120  // Ignore single operand BUILD_VECTOR.
8121  if (NumOps == 1)
8122    return SDValue();
8123
8124  MVT VT = N->getValueType(0);
8125  MVT EVT = VT.getVectorElementType();
8126  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
8127    // We are looking for load i64 and zero extend. We want to transform
8128    // it before legalizer has a chance to expand it. Also look for i64
8129    // BUILD_PAIR bit casted to f64.
8130    return SDValue();
8131  // This must be an insertion into a zero vector.
8132  SDValue HighElt = N->getOperand(1);
8133  if (!isZeroNode(HighElt))
8134    return SDValue();
8135
8136  // Value must be a load.
8137  SDNode *Base = N->getOperand(0).getNode();
8138  if (!isa<LoadSDNode>(Base)) {
8139    if (Base->getOpcode() != ISD::BIT_CONVERT)
8140      return SDValue();
8141    Base = Base->getOperand(0).getNode();
8142    if (!isa<LoadSDNode>(Base))
8143      return SDValue();
8144  }
8145
8146  // Transform it into VZEXT_LOAD addr.
8147  LoadSDNode *LD = cast<LoadSDNode>(Base);
8148
8149  // Load must not be an extload.
8150  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
8151    return SDValue();
8152
8153  // Load type should legal type so we don't have to legalize it.
8154  if (!TLI.isTypeLegal(VT))
8155    return SDValue();
8156
8157  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
8158  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8159  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8160  TargetLowering::TargetLoweringOpt TLO(DAG);
8161  TLO.CombineTo(SDValue(Base, 1), ResNode.getValue(1));
8162  DCI.CommitTargetLoweringOpt(TLO);
8163  return ResNode;
8164}
8165
8166/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8167static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8168                                    const X86Subtarget *Subtarget) {
8169  DebugLoc DL = N->getDebugLoc();
8170  SDValue Cond = N->getOperand(0);
8171  // Get the LHS/RHS of the select.
8172  SDValue LHS = N->getOperand(1);
8173  SDValue RHS = N->getOperand(2);
8174
8175  // If we have SSE[12] support, try to form min/max nodes.
8176  if (Subtarget->hasSSE2() &&
8177      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8178      Cond.getOpcode() == ISD::SETCC) {
8179    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8180
8181    unsigned Opcode = 0;
8182    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8183      switch (CC) {
8184      default: break;
8185      case ISD::SETOLE: // (X <= Y) ? X : Y -> min
8186      case ISD::SETULE:
8187      case ISD::SETLE:
8188        if (!UnsafeFPMath) break;
8189        // FALL THROUGH.
8190      case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
8191      case ISD::SETLT:
8192        Opcode = X86ISD::FMIN;
8193        break;
8194
8195      case ISD::SETOGT: // (X > Y) ? X : Y -> max
8196      case ISD::SETUGT:
8197      case ISD::SETGT:
8198        if (!UnsafeFPMath) break;
8199        // FALL THROUGH.
8200      case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
8201      case ISD::SETGE:
8202        Opcode = X86ISD::FMAX;
8203        break;
8204      }
8205    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8206      switch (CC) {
8207      default: break;
8208      case ISD::SETOGT: // (X > Y) ? Y : X -> min
8209      case ISD::SETUGT:
8210      case ISD::SETGT:
8211        if (!UnsafeFPMath) break;
8212        // FALL THROUGH.
8213      case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
8214      case ISD::SETGE:
8215        Opcode = X86ISD::FMIN;
8216        break;
8217
8218      case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
8219      case ISD::SETULE:
8220      case ISD::SETLE:
8221        if (!UnsafeFPMath) break;
8222        // FALL THROUGH.
8223      case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
8224      case ISD::SETLT:
8225        Opcode = X86ISD::FMAX;
8226        break;
8227      }
8228    }
8229
8230    if (Opcode)
8231      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8232  }
8233
8234  // If this is a select between two integer constants, try to do some
8235  // optimizations.
8236  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8237    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8238      // Don't do this for crazy integer types.
8239      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8240        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8241        // so that TrueC (the true value) is larger than FalseC.
8242        bool NeedsCondInvert = false;
8243
8244        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8245            // Efficiently invertible.
8246            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8247             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8248              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8249          NeedsCondInvert = true;
8250          std::swap(TrueC, FalseC);
8251        }
8252
8253        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8254        if (FalseC->getAPIntValue() == 0 &&
8255            TrueC->getAPIntValue().isPowerOf2()) {
8256          if (NeedsCondInvert) // Invert the condition if needed.
8257            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8258                               DAG.getConstant(1, Cond.getValueType()));
8259
8260          // Zero extend the condition if needed.
8261          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8262
8263          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8264          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8265                             DAG.getConstant(ShAmt, MVT::i8));
8266        }
8267
8268        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8269        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8270          if (NeedsCondInvert) // Invert the condition if needed.
8271            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8272                               DAG.getConstant(1, Cond.getValueType()));
8273
8274          // Zero extend the condition if needed.
8275          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8276                             FalseC->getValueType(0), Cond);
8277          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8278                             SDValue(FalseC, 0));
8279        }
8280
8281        // Optimize cases that will turn into an LEA instruction.  This requires
8282        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8283        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8284          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8285          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8286
8287          bool isFastMultiplier = false;
8288          if (Diff < 10) {
8289            switch ((unsigned char)Diff) {
8290              default: break;
8291              case 1:  // result = add base, cond
8292              case 2:  // result = lea base(    , cond*2)
8293              case 3:  // result = lea base(cond, cond*2)
8294              case 4:  // result = lea base(    , cond*4)
8295              case 5:  // result = lea base(cond, cond*4)
8296              case 8:  // result = lea base(    , cond*8)
8297              case 9:  // result = lea base(cond, cond*8)
8298                isFastMultiplier = true;
8299                break;
8300            }
8301          }
8302
8303          if (isFastMultiplier) {
8304            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8305            if (NeedsCondInvert) // Invert the condition if needed.
8306              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8307                                 DAG.getConstant(1, Cond.getValueType()));
8308
8309            // Zero extend the condition if needed.
8310            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8311                               Cond);
8312            // Scale the condition by the difference.
8313            if (Diff != 1)
8314              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8315                                 DAG.getConstant(Diff, Cond.getValueType()));
8316
8317            // Add the base if non-zero.
8318            if (FalseC->getAPIntValue() != 0)
8319              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8320                                 SDValue(FalseC, 0));
8321            return Cond;
8322          }
8323        }
8324      }
8325  }
8326
8327  return SDValue();
8328}
8329
8330/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8331static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8332                                  TargetLowering::DAGCombinerInfo &DCI) {
8333  DebugLoc DL = N->getDebugLoc();
8334
8335  // If the flag operand isn't dead, don't touch this CMOV.
8336  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8337    return SDValue();
8338
8339  // If this is a select between two integer constants, try to do some
8340  // optimizations.  Note that the operands are ordered the opposite of SELECT
8341  // operands.
8342  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8343    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8344      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8345      // larger than FalseC (the false value).
8346      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8347
8348      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8349        CC = X86::GetOppositeBranchCondition(CC);
8350        std::swap(TrueC, FalseC);
8351      }
8352
8353      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
8354      // This is efficient for any integer data type (including i8/i16) and
8355      // shift amount.
8356      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8357        SDValue Cond = N->getOperand(3);
8358        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8359                           DAG.getConstant(CC, MVT::i8), Cond);
8360
8361        // Zero extend the condition if needed.
8362        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8363
8364        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8365        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8366                           DAG.getConstant(ShAmt, MVT::i8));
8367        if (N->getNumValues() == 2)  // Dead flag value?
8368          return DCI.CombineTo(N, Cond, SDValue());
8369        return Cond;
8370      }
8371
8372      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
8373      // for any integer data type, including i8/i16.
8374      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8375        SDValue Cond = N->getOperand(3);
8376        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8377                           DAG.getConstant(CC, MVT::i8), Cond);
8378
8379        // Zero extend the condition if needed.
8380        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8381                           FalseC->getValueType(0), Cond);
8382        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8383                           SDValue(FalseC, 0));
8384
8385        if (N->getNumValues() == 2)  // Dead flag value?
8386          return DCI.CombineTo(N, Cond, SDValue());
8387        return Cond;
8388      }
8389
8390      // Optimize cases that will turn into an LEA instruction.  This requires
8391      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8392      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8393        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8394        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8395
8396        bool isFastMultiplier = false;
8397        if (Diff < 10) {
8398          switch ((unsigned char)Diff) {
8399          default: break;
8400          case 1:  // result = add base, cond
8401          case 2:  // result = lea base(    , cond*2)
8402          case 3:  // result = lea base(cond, cond*2)
8403          case 4:  // result = lea base(    , cond*4)
8404          case 5:  // result = lea base(cond, cond*4)
8405          case 8:  // result = lea base(    , cond*8)
8406          case 9:  // result = lea base(cond, cond*8)
8407            isFastMultiplier = true;
8408            break;
8409          }
8410        }
8411
8412        if (isFastMultiplier) {
8413          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8414          SDValue Cond = N->getOperand(3);
8415          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8416                             DAG.getConstant(CC, MVT::i8), Cond);
8417          // Zero extend the condition if needed.
8418          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8419                             Cond);
8420          // Scale the condition by the difference.
8421          if (Diff != 1)
8422            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8423                               DAG.getConstant(Diff, Cond.getValueType()));
8424
8425          // Add the base if non-zero.
8426          if (FalseC->getAPIntValue() != 0)
8427            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8428                               SDValue(FalseC, 0));
8429          if (N->getNumValues() == 2)  // Dead flag value?
8430            return DCI.CombineTo(N, Cond, SDValue());
8431          return Cond;
8432        }
8433      }
8434    }
8435  }
8436  return SDValue();
8437}
8438
8439
8440/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8441///                       when possible.
8442static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8443                                   const X86Subtarget *Subtarget) {
8444  // On X86 with SSE2 support, we can transform this to a vector shift if
8445  // all elements are shifted by the same amount.  We can't do this in legalize
8446  // because the a constant vector is typically transformed to a constant pool
8447  // so we have no knowledge of the shift amount.
8448  if (!Subtarget->hasSSE2())
8449    return SDValue();
8450
8451  MVT VT = N->getValueType(0);
8452  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8453    return SDValue();
8454
8455  SDValue ShAmtOp = N->getOperand(1);
8456  MVT EltVT = VT.getVectorElementType();
8457  DebugLoc DL = N->getDebugLoc();
8458  SDValue BaseShAmt;
8459  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8460    unsigned NumElts = VT.getVectorNumElements();
8461    unsigned i = 0;
8462    for (; i != NumElts; ++i) {
8463      SDValue Arg = ShAmtOp.getOperand(i);
8464      if (Arg.getOpcode() == ISD::UNDEF) continue;
8465      BaseShAmt = Arg;
8466      break;
8467    }
8468    for (; i != NumElts; ++i) {
8469      SDValue Arg = ShAmtOp.getOperand(i);
8470      if (Arg.getOpcode() == ISD::UNDEF) continue;
8471      if (Arg != BaseShAmt) {
8472        return SDValue();
8473      }
8474    }
8475  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8476             isSplatMask(ShAmtOp.getOperand(2).getNode())) {
8477      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8478                              DAG.getIntPtrConstant(0));
8479  } else
8480    return SDValue();
8481
8482  if (EltVT.bitsGT(MVT::i32))
8483    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8484  else if (EltVT.bitsLT(MVT::i32))
8485    BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8486
8487  // The shift amount is identical so we can do a vector shift.
8488  SDValue  ValOp = N->getOperand(0);
8489  switch (N->getOpcode()) {
8490  default:
8491    assert(0 && "Unknown shift opcode!");
8492    break;
8493  case ISD::SHL:
8494    if (VT == MVT::v2i64)
8495      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8496                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8497                         ValOp, BaseShAmt);
8498    if (VT == MVT::v4i32)
8499      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8500                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8501                         ValOp, BaseShAmt);
8502    if (VT == MVT::v8i16)
8503      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8504                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8505                         ValOp, BaseShAmt);
8506    break;
8507  case ISD::SRA:
8508    if (VT == MVT::v4i32)
8509      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8510                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8511                         ValOp, BaseShAmt);
8512    if (VT == MVT::v8i16)
8513      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8514                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8515                         ValOp, BaseShAmt);
8516    break;
8517  case ISD::SRL:
8518    if (VT == MVT::v2i64)
8519      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8520                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8521                         ValOp, BaseShAmt);
8522    if (VT == MVT::v4i32)
8523      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8524                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8525                         ValOp, BaseShAmt);
8526    if (VT ==  MVT::v8i16)
8527      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8528                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8529                         ValOp, BaseShAmt);
8530    break;
8531  }
8532  return SDValue();
8533}
8534
8535/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8536static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8537                                   const X86Subtarget *Subtarget) {
8538  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
8539  // the FP state in cases where an emms may be missing.
8540  // A preferable solution to the general problem is to figure out the right
8541  // places to insert EMMS.  This qualifies as a quick hack.
8542
8543  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8544  StoreSDNode *St = cast<StoreSDNode>(N);
8545  MVT VT = St->getValue().getValueType();
8546  if (VT.getSizeInBits() != 64)
8547    return SDValue();
8548
8549  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloat && Subtarget->hasSSE2();
8550  if ((VT.isVector() ||
8551       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8552      isa<LoadSDNode>(St->getValue()) &&
8553      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8554      St->getChain().hasOneUse() && !St->isVolatile()) {
8555    SDNode* LdVal = St->getValue().getNode();
8556    LoadSDNode *Ld = 0;
8557    int TokenFactorIndex = -1;
8558    SmallVector<SDValue, 8> Ops;
8559    SDNode* ChainVal = St->getChain().getNode();
8560    // Must be a store of a load.  We currently handle two cases:  the load
8561    // is a direct child, and it's under an intervening TokenFactor.  It is
8562    // possible to dig deeper under nested TokenFactors.
8563    if (ChainVal == LdVal)
8564      Ld = cast<LoadSDNode>(St->getChain());
8565    else if (St->getValue().hasOneUse() &&
8566             ChainVal->getOpcode() == ISD::TokenFactor) {
8567      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8568        if (ChainVal->getOperand(i).getNode() == LdVal) {
8569          TokenFactorIndex = i;
8570          Ld = cast<LoadSDNode>(St->getValue());
8571        } else
8572          Ops.push_back(ChainVal->getOperand(i));
8573      }
8574    }
8575
8576    if (!Ld || !ISD::isNormalLoad(Ld))
8577      return SDValue();
8578
8579    // If this is not the MMX case, i.e. we are just turning i64 load/store
8580    // into f64 load/store, avoid the transformation if there are multiple
8581    // uses of the loaded value.
8582    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8583      return SDValue();
8584
8585    DebugLoc LdDL = Ld->getDebugLoc();
8586    DebugLoc StDL = N->getDebugLoc();
8587    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8588    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8589    // pair instead.
8590    if (Subtarget->is64Bit() || F64IsLegal) {
8591      MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8592      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8593                                  Ld->getBasePtr(), Ld->getSrcValue(),
8594                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
8595                                  Ld->getAlignment());
8596      SDValue NewChain = NewLd.getValue(1);
8597      if (TokenFactorIndex != -1) {
8598        Ops.push_back(NewChain);
8599        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8600                               Ops.size());
8601      }
8602      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8603                          St->getSrcValue(), St->getSrcValueOffset(),
8604                          St->isVolatile(), St->getAlignment());
8605    }
8606
8607    // Otherwise, lower to two pairs of 32-bit loads / stores.
8608    SDValue LoAddr = Ld->getBasePtr();
8609    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8610                                 DAG.getConstant(4, MVT::i32));
8611
8612    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8613                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
8614                               Ld->isVolatile(), Ld->getAlignment());
8615    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8616                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8617                               Ld->isVolatile(),
8618                               MinAlign(Ld->getAlignment(), 4));
8619
8620    SDValue NewChain = LoLd.getValue(1);
8621    if (TokenFactorIndex != -1) {
8622      Ops.push_back(LoLd);
8623      Ops.push_back(HiLd);
8624      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8625                             Ops.size());
8626    }
8627
8628    LoAddr = St->getBasePtr();
8629    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8630                         DAG.getConstant(4, MVT::i32));
8631
8632    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8633                                St->getSrcValue(), St->getSrcValueOffset(),
8634                                St->isVolatile(), St->getAlignment());
8635    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8636                                St->getSrcValue(),
8637                                St->getSrcValueOffset() + 4,
8638                                St->isVolatile(),
8639                                MinAlign(St->getAlignment(), 4));
8640    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8641  }
8642  return SDValue();
8643}
8644
8645/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8646/// X86ISD::FXOR nodes.
8647static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8648  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8649  // F[X]OR(0.0, x) -> x
8650  // F[X]OR(x, 0.0) -> x
8651  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8652    if (C->getValueAPF().isPosZero())
8653      return N->getOperand(1);
8654  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8655    if (C->getValueAPF().isPosZero())
8656      return N->getOperand(0);
8657  return SDValue();
8658}
8659
8660/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8661static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8662  // FAND(0.0, x) -> 0.0
8663  // FAND(x, 0.0) -> 0.0
8664  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8665    if (C->getValueAPF().isPosZero())
8666      return N->getOperand(0);
8667  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8668    if (C->getValueAPF().isPosZero())
8669      return N->getOperand(1);
8670  return SDValue();
8671}
8672
8673static SDValue PerformBTCombine(SDNode *N,
8674                                SelectionDAG &DAG,
8675                                TargetLowering::DAGCombinerInfo &DCI) {
8676  // BT ignores high bits in the bit index operand.
8677  SDValue Op1 = N->getOperand(1);
8678  if (Op1.hasOneUse()) {
8679    unsigned BitWidth = Op1.getValueSizeInBits();
8680    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8681    APInt KnownZero, KnownOne;
8682    TargetLowering::TargetLoweringOpt TLO(DAG);
8683    TargetLowering &TLI = DAG.getTargetLoweringInfo();
8684    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8685        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8686      DCI.CommitTargetLoweringOpt(TLO);
8687  }
8688  return SDValue();
8689}
8690
8691SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8692                                             DAGCombinerInfo &DCI) const {
8693  SelectionDAG &DAG = DCI.DAG;
8694  switch (N->getOpcode()) {
8695  default: break;
8696  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8697  case ISD::BUILD_VECTOR:
8698    return PerformBuildVectorCombine(N, DAG, DCI, Subtarget, *this);
8699  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
8700  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
8701  case ISD::SHL:
8702  case ISD::SRA:
8703  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
8704  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
8705  case X86ISD::FXOR:
8706  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
8707  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
8708  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
8709  }
8710
8711  return SDValue();
8712}
8713
8714//===----------------------------------------------------------------------===//
8715//                           X86 Inline Assembly Support
8716//===----------------------------------------------------------------------===//
8717
8718/// getConstraintType - Given a constraint letter, return the type of
8719/// constraint it is for this target.
8720X86TargetLowering::ConstraintType
8721X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8722  if (Constraint.size() == 1) {
8723    switch (Constraint[0]) {
8724    case 'A':
8725      return C_Register;
8726    case 'f':
8727    case 'r':
8728    case 'R':
8729    case 'l':
8730    case 'q':
8731    case 'Q':
8732    case 'x':
8733    case 'y':
8734    case 'Y':
8735      return C_RegisterClass;
8736    case 'e':
8737    case 'Z':
8738      return C_Other;
8739    default:
8740      break;
8741    }
8742  }
8743  return TargetLowering::getConstraintType(Constraint);
8744}
8745
8746/// LowerXConstraint - try to replace an X constraint, which matches anything,
8747/// with another that has more specific requirements based on the type of the
8748/// corresponding operand.
8749const char *X86TargetLowering::
8750LowerXConstraint(MVT ConstraintVT) const {
8751  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8752  // 'f' like normal targets.
8753  if (ConstraintVT.isFloatingPoint()) {
8754    if (Subtarget->hasSSE2())
8755      return "Y";
8756    if (Subtarget->hasSSE1())
8757      return "x";
8758  }
8759
8760  return TargetLowering::LowerXConstraint(ConstraintVT);
8761}
8762
8763/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8764/// vector.  If it is invalid, don't add anything to Ops.
8765void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8766                                                     char Constraint,
8767                                                     bool hasMemory,
8768                                                     std::vector<SDValue>&Ops,
8769                                                     SelectionDAG &DAG) const {
8770  SDValue Result(0, 0);
8771
8772  switch (Constraint) {
8773  default: break;
8774  case 'I':
8775    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8776      if (C->getZExtValue() <= 31) {
8777        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8778        break;
8779      }
8780    }
8781    return;
8782  case 'J':
8783    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8784      if (C->getZExtValue() <= 63) {
8785        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8786        break;
8787      }
8788    }
8789    return;
8790  case 'N':
8791    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8792      if (C->getZExtValue() <= 255) {
8793        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8794        break;
8795      }
8796    }
8797    return;
8798  case 'e': {
8799    // 32-bit signed value
8800    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8801      const ConstantInt *CI = C->getConstantIntValue();
8802      if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8803        // Widen to 64 bits here to get it sign extended.
8804        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8805        break;
8806      }
8807    // FIXME gcc accepts some relocatable values here too, but only in certain
8808    // memory models; it's complicated.
8809    }
8810    return;
8811  }
8812  case 'Z': {
8813    // 32-bit unsigned value
8814    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8815      const ConstantInt *CI = C->getConstantIntValue();
8816      if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8817        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8818        break;
8819      }
8820    }
8821    // FIXME gcc accepts some relocatable values here too, but only in certain
8822    // memory models; it's complicated.
8823    return;
8824  }
8825  case 'i': {
8826    // Literal immediates are always ok.
8827    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8828      // Widen to 64 bits here to get it sign extended.
8829      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8830      break;
8831    }
8832
8833    // If we are in non-pic codegen mode, we allow the address of a global (with
8834    // an optional displacement) to be used with 'i'.
8835    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
8836    int64_t Offset = 0;
8837
8838    // Match either (GA) or (GA+C)
8839    if (GA) {
8840      Offset = GA->getOffset();
8841    } else if (Op.getOpcode() == ISD::ADD) {
8842      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8843      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
8844      if (C && GA) {
8845        Offset = GA->getOffset()+C->getZExtValue();
8846      } else {
8847        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8848        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
8849        if (C && GA)
8850          Offset = GA->getOffset()+C->getZExtValue();
8851        else
8852          C = 0, GA = 0;
8853      }
8854    }
8855
8856    if (GA) {
8857      if (hasMemory)
8858        Op = LowerGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
8859                                Offset, DAG);
8860      else
8861        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
8862                                        Offset);
8863      Result = Op;
8864      break;
8865    }
8866
8867    // Otherwise, not valid for this mode.
8868    return;
8869  }
8870  }
8871
8872  if (Result.getNode()) {
8873    Ops.push_back(Result);
8874    return;
8875  }
8876  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8877                                                      Ops, DAG);
8878}
8879
8880std::vector<unsigned> X86TargetLowering::
8881getRegClassForInlineAsmConstraint(const std::string &Constraint,
8882                                  MVT VT) const {
8883  if (Constraint.size() == 1) {
8884    // FIXME: not handling fp-stack yet!
8885    switch (Constraint[0]) {      // GCC X86 Constraint Letters
8886    default: break;  // Unknown constraint letter
8887    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
8888    case 'Q':   // Q_REGS
8889      if (VT == MVT::i32)
8890        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8891      else if (VT == MVT::i16)
8892        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8893      else if (VT == MVT::i8)
8894        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8895      else if (VT == MVT::i64)
8896        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8897      break;
8898    }
8899  }
8900
8901  return std::vector<unsigned>();
8902}
8903
8904std::pair<unsigned, const TargetRegisterClass*>
8905X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8906                                                MVT VT) const {
8907  // First, see if this is a constraint that directly corresponds to an LLVM
8908  // register class.
8909  if (Constraint.size() == 1) {
8910    // GCC Constraint Letters
8911    switch (Constraint[0]) {
8912    default: break;
8913    case 'r':   // GENERAL_REGS
8914    case 'R':   // LEGACY_REGS
8915    case 'l':   // INDEX_REGS
8916      if (VT == MVT::i8)
8917        return std::make_pair(0U, X86::GR8RegisterClass);
8918      if (VT == MVT::i16)
8919        return std::make_pair(0U, X86::GR16RegisterClass);
8920      if (VT == MVT::i32 || !Subtarget->is64Bit())
8921        return std::make_pair(0U, X86::GR32RegisterClass);
8922      return std::make_pair(0U, X86::GR64RegisterClass);
8923    case 'f':  // FP Stack registers.
8924      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8925      // value to the correct fpstack register class.
8926      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8927        return std::make_pair(0U, X86::RFP32RegisterClass);
8928      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8929        return std::make_pair(0U, X86::RFP64RegisterClass);
8930      return std::make_pair(0U, X86::RFP80RegisterClass);
8931    case 'y':   // MMX_REGS if MMX allowed.
8932      if (!Subtarget->hasMMX()) break;
8933      return std::make_pair(0U, X86::VR64RegisterClass);
8934    case 'Y':   // SSE_REGS if SSE2 allowed
8935      if (!Subtarget->hasSSE2()) break;
8936      // FALL THROUGH.
8937    case 'x':   // SSE_REGS if SSE1 allowed
8938      if (!Subtarget->hasSSE1()) break;
8939
8940      switch (VT.getSimpleVT()) {
8941      default: break;
8942      // Scalar SSE types.
8943      case MVT::f32:
8944      case MVT::i32:
8945        return std::make_pair(0U, X86::FR32RegisterClass);
8946      case MVT::f64:
8947      case MVT::i64:
8948        return std::make_pair(0U, X86::FR64RegisterClass);
8949      // Vector types.
8950      case MVT::v16i8:
8951      case MVT::v8i16:
8952      case MVT::v4i32:
8953      case MVT::v2i64:
8954      case MVT::v4f32:
8955      case MVT::v2f64:
8956        return std::make_pair(0U, X86::VR128RegisterClass);
8957      }
8958      break;
8959    }
8960  }
8961
8962  // Use the default implementation in TargetLowering to convert the register
8963  // constraint into a member of a register class.
8964  std::pair<unsigned, const TargetRegisterClass*> Res;
8965  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8966
8967  // Not found as a standard register?
8968  if (Res.second == 0) {
8969    // GCC calls "st(0)" just plain "st".
8970    if (StringsEqualNoCase("{st}", Constraint)) {
8971      Res.first = X86::ST0;
8972      Res.second = X86::RFP80RegisterClass;
8973    }
8974    // 'A' means EAX + EDX.
8975    if (Constraint == "A") {
8976      Res.first = X86::EAX;
8977      Res.second = X86::GRADRegisterClass;
8978    }
8979    return Res;
8980  }
8981
8982  // Otherwise, check to see if this is a register class of the wrong value
8983  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8984  // turn into {ax},{dx}.
8985  if (Res.second->hasType(VT))
8986    return Res;   // Correct type already, nothing to do.
8987
8988  // All of the single-register GCC register classes map their values onto
8989  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
8990  // really want an 8-bit or 32-bit register, map to the appropriate register
8991  // class and return the appropriate register.
8992  if (Res.second == X86::GR16RegisterClass) {
8993    if (VT == MVT::i8) {
8994      unsigned DestReg = 0;
8995      switch (Res.first) {
8996      default: break;
8997      case X86::AX: DestReg = X86::AL; break;
8998      case X86::DX: DestReg = X86::DL; break;
8999      case X86::CX: DestReg = X86::CL; break;
9000      case X86::BX: DestReg = X86::BL; break;
9001      }
9002      if (DestReg) {
9003        Res.first = DestReg;
9004        Res.second = Res.second = X86::GR8RegisterClass;
9005      }
9006    } else if (VT == MVT::i32) {
9007      unsigned DestReg = 0;
9008      switch (Res.first) {
9009      default: break;
9010      case X86::AX: DestReg = X86::EAX; break;
9011      case X86::DX: DestReg = X86::EDX; break;
9012      case X86::CX: DestReg = X86::ECX; break;
9013      case X86::BX: DestReg = X86::EBX; break;
9014      case X86::SI: DestReg = X86::ESI; break;
9015      case X86::DI: DestReg = X86::EDI; break;
9016      case X86::BP: DestReg = X86::EBP; break;
9017      case X86::SP: DestReg = X86::ESP; break;
9018      }
9019      if (DestReg) {
9020        Res.first = DestReg;
9021        Res.second = Res.second = X86::GR32RegisterClass;
9022      }
9023    } else if (VT == MVT::i64) {
9024      unsigned DestReg = 0;
9025      switch (Res.first) {
9026      default: break;
9027      case X86::AX: DestReg = X86::RAX; break;
9028      case X86::DX: DestReg = X86::RDX; break;
9029      case X86::CX: DestReg = X86::RCX; break;
9030      case X86::BX: DestReg = X86::RBX; break;
9031      case X86::SI: DestReg = X86::RSI; break;
9032      case X86::DI: DestReg = X86::RDI; break;
9033      case X86::BP: DestReg = X86::RBP; break;
9034      case X86::SP: DestReg = X86::RSP; break;
9035      }
9036      if (DestReg) {
9037        Res.first = DestReg;
9038        Res.second = Res.second = X86::GR64RegisterClass;
9039      }
9040    }
9041  } else if (Res.second == X86::FR32RegisterClass ||
9042             Res.second == X86::FR64RegisterClass ||
9043             Res.second == X86::VR128RegisterClass) {
9044    // Handle references to XMM physical registers that got mapped into the
9045    // wrong class.  This can happen with constraints like {xmm0} where the
9046    // target independent register mapper will just pick the first match it can
9047    // find, ignoring the required type.
9048    if (VT == MVT::f32)
9049      Res.second = X86::FR32RegisterClass;
9050    else if (VT == MVT::f64)
9051      Res.second = X86::FR64RegisterClass;
9052    else if (X86::VR128RegisterClass->hasType(VT))
9053      Res.second = X86::VR128RegisterClass;
9054  }
9055
9056  return Res;
9057}
9058
9059//===----------------------------------------------------------------------===//
9060//                           X86 Widen vector type
9061//===----------------------------------------------------------------------===//
9062
9063/// getWidenVectorType: given a vector type, returns the type to widen
9064/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9065/// If there is no vector type that we want to widen to, returns MVT::Other
9066/// When and where to widen is target dependent based on the cost of
9067/// scalarizing vs using the wider vector type.
9068
9069MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
9070  assert(VT.isVector());
9071  if (isTypeLegal(VT))
9072    return VT;
9073
9074  // TODO: In computeRegisterProperty, we can compute the list of legal vector
9075  //       type based on element type.  This would speed up our search (though
9076  //       it may not be worth it since the size of the list is relatively
9077  //       small).
9078  MVT EltVT = VT.getVectorElementType();
9079  unsigned NElts = VT.getVectorNumElements();
9080
9081  // On X86, it make sense to widen any vector wider than 1
9082  if (NElts <= 1)
9083    return MVT::Other;
9084
9085  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9086       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9087    MVT SVT = (MVT::SimpleValueType)nVT;
9088
9089    if (isTypeLegal(SVT) &&
9090        SVT.getVectorElementType() == EltVT &&
9091        SVT.getVectorNumElements() > NElts)
9092      return SVT;
9093  }
9094  return MVT::Other;
9095}
9096