X86ISelLowering.cpp revision 8b99c1e42cff9a55996907901a5ad81a97f24912
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetOptions.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt();
172  X86ScalarSSEf32 = Subtarget->hasXMM();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
184  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
185
186  // For 64-bit since we have so many registers use the ILP scheduler, for
187  // 32-bit code use the register pressure specific scheduling.
188  if (Subtarget->is64Bit())
189    setSchedulingPreference(Sched::ILP);
190  else
191    setSchedulingPreference(Sched::RegPressure);
192  setStackPointerRegisterToSaveRestore(X86StackPtr);
193
194  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
195    // Setup Windows compiler runtime calls.
196    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
197    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
198    setLibcallName(RTLIB::SREM_I64, "_allrem");
199    setLibcallName(RTLIB::UREM_I64, "_aullrem");
200    setLibcallName(RTLIB::MUL_I64, "_allmul");
201    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
202    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
203    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
208    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
209    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
210  }
211
212  if (Subtarget->isTargetDarwin()) {
213    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
214    setUseUnderscoreSetJmp(false);
215    setUseUnderscoreLongJmp(false);
216  } else if (Subtarget->isTargetMingw()) {
217    // MS runtime is weird: it exports _setjmp, but longjmp!
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(false);
220  } else {
221    setUseUnderscoreSetJmp(true);
222    setUseUnderscoreLongJmp(true);
223  }
224
225  // Set up the register classes.
226  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
227  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
228  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
229  if (Subtarget->is64Bit())
230    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
231
232  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
233
234  // We don't accept any truncstore of integer registers.
235  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
236  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
239  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
240  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
241
242  // SETOEQ and SETUNE require checking two conditions.
243  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
248  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
249
250  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
251  // operation.
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
254  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
255
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
259  } else if (!TM.Options.UseSoftFloat) {
260    // We have an algorithm for SSE2->double, and we turn this into a
261    // 64-bit FILD followed by conditional FADD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
263    // We have an algorithm for SSE2, and we turn this into a 64-bit
264    // FILD for other targets.
265    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
266  }
267
268  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
269  // this operation.
270  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
271  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
272
273  if (!TM.Options.UseSoftFloat) {
274    // SSE has no i16 to fp conversion, only i32
275    if (X86ScalarSSEf32) {
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277      // f32 and f64 cases are Legal, f80 case is not
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    } else {
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
281      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
282    }
283  } else {
284    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
285    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
286  }
287
288  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
289  // are Legal, f80 is custom lowered.
290  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
291  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
292
293  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
294  // this operation.
295  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
296  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
297
298  if (X86ScalarSSEf32) {
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
300    // f32 and f64 cases are Legal, f80 case is not
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  } else {
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
304    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
305  }
306
307  // Handle FP_TO_UINT by promoting the destination to a larger signed
308  // conversion.
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
311  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
312
313  if (Subtarget->is64Bit()) {
314    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
315    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
316  } else if (!TM.Options.UseSoftFloat) {
317    // Since AVX is a superset of SSE3, only check for SSE here.
318    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
319      // Expand FP_TO_UINT into a select.
320      // FIXME: We would like to use a Custom expander here eventually to do
321      // the optimal thing for SSE vs. the default expansion in the legalizer.
322      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
323    else
324      // With SSE3 we can use fisttpll to convert to a signed i64; without
325      // SSE, we're stuck with a fistpll.
326      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0, e = 4; i != e; ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Expand);
382  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i16  , Expand);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
384  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i64  , Expand);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
387  } else {
388    setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
389    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
390    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
391    if (Subtarget->is64Bit())
392      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
393  }
394
395  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i8   , Expand);
396  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i16  , Expand);
397  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
398  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i64  , Expand);
399  if (Subtarget->hasLZCNT()) {
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401  } else {
402    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
403    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
404    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
405    if (Subtarget->is64Bit())
406      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
407  }
408
409  if (Subtarget->hasPOPCNT()) {
410    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
411  } else {
412    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
413    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
414    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
415    if (Subtarget->is64Bit())
416      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
417  }
418
419  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
420  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
421
422  // These should be promoted to a larger select which is supported.
423  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
424  // X86 wants to expand cmov itself.
425  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
426  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
427  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
428  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
429  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
430  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
431  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
432  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
433  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
434  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
435  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
436  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
437  if (Subtarget->is64Bit()) {
438    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
439    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
440  }
441  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
442
443  // Darwin ABI issue.
444  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
445  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
446  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
447  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
448  if (Subtarget->is64Bit())
449    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
450  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
451  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
452  if (Subtarget->is64Bit()) {
453    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
454    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
455    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
456    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
457    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
458  }
459  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
460  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
461  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
462  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
463  if (Subtarget->is64Bit()) {
464    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
465    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
466    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
467  }
468
469  if (Subtarget->hasXMM())
470    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
471
472  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
473  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
474
475  // On X86 and X86-64, atomic operations are lowered to locked instructions.
476  // Locked instructions, in turn, have implicit fence semantics (all memory
477  // operations are flushed before issuing the locked instruction, and they
478  // are not buffered), so we can fold away the common pattern of
479  // fence-atomic-fence.
480  setShouldFoldAtomicFences(true);
481
482  // Expand certain atomics
483  for (unsigned i = 0, e = 4; i != e; ++i) {
484    MVT VT = IntVTs[i];
485    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
486    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
487    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
488  }
489
490  if (!Subtarget->is64Bit()) {
491    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
492    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
493    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
494    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
495    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
496    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
497    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
498    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
499  }
500
501  if (Subtarget->hasCmpxchg16b()) {
502    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
503  }
504
505  // FIXME - use subtarget debug flags
506  if (!Subtarget->isTargetDarwin() &&
507      !Subtarget->isTargetELF() &&
508      !Subtarget->isTargetCygMing()) {
509    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
510  }
511
512  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
513  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
514  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
515  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
516  if (Subtarget->is64Bit()) {
517    setExceptionPointerRegister(X86::RAX);
518    setExceptionSelectorRegister(X86::RDX);
519  } else {
520    setExceptionPointerRegister(X86::EAX);
521    setExceptionSelectorRegister(X86::EDX);
522  }
523  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
524  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
525
526  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
527  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
528
529  setOperationAction(ISD::TRAP, MVT::Other, Legal);
530
531  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
532  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
533  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
534  if (Subtarget->is64Bit()) {
535    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
536    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
537  } else {
538    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
539    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
540  }
541
542  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
543  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
544
545  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
546    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
547                       MVT::i64 : MVT::i32, Custom);
548  else if (TM.Options.EnableSegmentedStacks)
549    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
550                       MVT::i64 : MVT::i32, Custom);
551  else
552    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
553                       MVT::i64 : MVT::i32, Expand);
554
555  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
556    // f32 and f64 use SSE.
557    // Set up the FP register classes.
558    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
559    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
560
561    // Use ANDPD to simulate FABS.
562    setOperationAction(ISD::FABS , MVT::f64, Custom);
563    setOperationAction(ISD::FABS , MVT::f32, Custom);
564
565    // Use XORP to simulate FNEG.
566    setOperationAction(ISD::FNEG , MVT::f64, Custom);
567    setOperationAction(ISD::FNEG , MVT::f32, Custom);
568
569    // Use ANDPD and ORPD to simulate FCOPYSIGN.
570    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
571    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
572
573    // Lower this to FGETSIGNx86 plus an AND.
574    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
575    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
576
577    // We don't support sin/cos/fmod
578    setOperationAction(ISD::FSIN , MVT::f64, Expand);
579    setOperationAction(ISD::FCOS , MVT::f64, Expand);
580    setOperationAction(ISD::FSIN , MVT::f32, Expand);
581    setOperationAction(ISD::FCOS , MVT::f32, Expand);
582
583    // Expand FP immediates into loads from the stack, except for the special
584    // cases we handle.
585    addLegalFPImmediate(APFloat(+0.0)); // xorpd
586    addLegalFPImmediate(APFloat(+0.0f)); // xorps
587  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
588    // Use SSE for f32, x87 for f64.
589    // Set up the FP register classes.
590    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592
593    // Use ANDPS to simulate FABS.
594    setOperationAction(ISD::FABS , MVT::f32, Custom);
595
596    // Use XORP to simulate FNEG.
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
600
601    // Use ANDPS and ORPS to simulate FCOPYSIGN.
602    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
603    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
604
605    // We don't support sin/cos/fmod
606    setOperationAction(ISD::FSIN , MVT::f32, Expand);
607    setOperationAction(ISD::FCOS , MVT::f32, Expand);
608
609    // Special cases we handle for FP constants.
610    addLegalFPImmediate(APFloat(+0.0f)); // xorps
611    addLegalFPImmediate(APFloat(+0.0)); // FLD0
612    addLegalFPImmediate(APFloat(+1.0)); // FLD1
613    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
614    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
615
616    if (!TM.Options.UnsafeFPMath) {
617      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
618      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
619    }
620  } else if (!TM.Options.UseSoftFloat) {
621    // f32 and f64 in x87.
622    // Set up the FP register classes.
623    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
624    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
625
626    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
627    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
628    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
629    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
630
631    if (!TM.Options.UnsafeFPMath) {
632      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
633      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
634    }
635    addLegalFPImmediate(APFloat(+0.0)); // FLD0
636    addLegalFPImmediate(APFloat(+1.0)); // FLD1
637    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
638    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
639    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
640    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
641    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
642    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
643  }
644
645  // We don't support FMA.
646  setOperationAction(ISD::FMA, MVT::f64, Expand);
647  setOperationAction(ISD::FMA, MVT::f32, Expand);
648
649  // Long double always uses X87.
650  if (!TM.Options.UseSoftFloat) {
651    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
652    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
653    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
654    {
655      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
656      addLegalFPImmediate(TmpFlt);  // FLD0
657      TmpFlt.changeSign();
658      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
659
660      bool ignored;
661      APFloat TmpFlt2(+1.0);
662      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
663                      &ignored);
664      addLegalFPImmediate(TmpFlt2);  // FLD1
665      TmpFlt2.changeSign();
666      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
667    }
668
669    if (!TM.Options.UnsafeFPMath) {
670      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
671      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
672    }
673
674    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
675    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
676    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
677    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
678    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
679    setOperationAction(ISD::FMA, MVT::f80, Expand);
680  }
681
682  // Always use a library call for pow.
683  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
684  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
685  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
686
687  setOperationAction(ISD::FLOG, MVT::f80, Expand);
688  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
689  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
690  setOperationAction(ISD::FEXP, MVT::f80, Expand);
691  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
692
693  // First set operation action for all vector types to either promote
694  // (for widening) or expand (for scalarization). Then we will selectively
695  // turn on ones that can be effectively codegen'd.
696  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
697       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
698    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
713    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
715    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
716    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
750    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
755    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
756         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
757      setTruncStoreAction((MVT::SimpleValueType)VT,
758                          (MVT::SimpleValueType)InnerVT, Expand);
759    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
760    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
761    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
762  }
763
764  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
765  // with -msoft-float, disable use of MMX as well.
766  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
767    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
768    // No operations on x86mmx supported, everything uses intrinsics.
769  }
770
771  // MMX-sized vectors (other than x86mmx) are expected to be expanded
772  // into smaller operations.
773  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
774  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
775  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
776  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
777  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
778  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
779  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
780  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
781  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
782  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
783  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
784  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
785  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
786  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
787  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
788  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
789  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
790  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
791  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
792  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
793  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
794  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
795  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
796  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
797  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
798  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
799  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
800  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
801  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
802
803  if (!TM.Options.UseSoftFloat && Subtarget->hasXMM()) {
804    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
805
806    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
807    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
808    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
809    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
810    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
811    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
812    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
813    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
814    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
815    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
817    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
818  }
819
820  if (!TM.Options.UseSoftFloat && Subtarget->hasXMMInt()) {
821    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
822
823    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
824    // registers cannot be used even for integer operations.
825    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
826    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
827    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
828    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
829
830    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
831    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
832    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
833    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
834    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
835    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
836    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
837    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
838    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
839    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
840    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
841    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
842    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
843    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
844    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
845    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
846
847    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
848    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
849    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
850    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
851
852    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
853    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
854    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
855    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
856    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
857
858    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
859    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
860    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
861    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
862    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
863
864    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
865    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
866      EVT VT = (MVT::SimpleValueType)i;
867      // Do not attempt to custom lower non-power-of-2 vectors
868      if (!isPowerOf2_32(VT.getVectorNumElements()))
869        continue;
870      // Do not attempt to custom lower non-128-bit vectors
871      if (!VT.is128BitVector())
872        continue;
873      setOperationAction(ISD::BUILD_VECTOR,
874                         VT.getSimpleVT().SimpleTy, Custom);
875      setOperationAction(ISD::VECTOR_SHUFFLE,
876                         VT.getSimpleVT().SimpleTy, Custom);
877      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
878                         VT.getSimpleVT().SimpleTy, Custom);
879    }
880
881    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
882    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
883    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
884    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
885    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
886    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
887
888    if (Subtarget->is64Bit()) {
889      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
890      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
891    }
892
893    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
894    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
895      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
896      EVT VT = SVT;
897
898      // Do not attempt to promote non-128-bit vectors
899      if (!VT.is128BitVector())
900        continue;
901
902      setOperationAction(ISD::AND,    SVT, Promote);
903      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
904      setOperationAction(ISD::OR,     SVT, Promote);
905      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
906      setOperationAction(ISD::XOR,    SVT, Promote);
907      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
908      setOperationAction(ISD::LOAD,   SVT, Promote);
909      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
910      setOperationAction(ISD::SELECT, SVT, Promote);
911      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
912    }
913
914    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
915
916    // Custom lower v2i64 and v2f64 selects.
917    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
918    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
919    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
920    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
921
922    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
923    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
924  }
925
926  if (Subtarget->hasSSE41orAVX()) {
927    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
928    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
929    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
930    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
931    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
932    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
933    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
934    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
935    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
936    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
937
938    // FIXME: Do we need to handle scalar-to-vector here?
939    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
940
941    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
942    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
943    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
944    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
945    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
946
947    // i8 and i16 vectors are custom , because the source register and source
948    // source memory operand types are not the same width.  f32 vectors are
949    // custom since the immediate controlling the insert encodes additional
950    // information.
951    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
952    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
953    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
954    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
955
956    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
957    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
958    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
959    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
960
961    // FIXME: these should be Legal but thats only for the case where
962    // the index is constant.  For now custom expand to deal with that
963    if (Subtarget->is64Bit()) {
964      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
965      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
966    }
967  }
968
969  if (Subtarget->hasXMMInt()) {
970    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
971    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
972
973    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
974    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
975
976    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
977    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
978
979    if (Subtarget->hasAVX2()) {
980      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
981      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
982
983      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
984      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
985
986      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
987    } else {
988      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
989      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
990
991      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
992      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
993
994      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
995    }
996  }
997
998  if (Subtarget->hasSSE42orAVX())
999    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1000
1001  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1002    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1003    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1004    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1005    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1006    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1007    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1008
1009    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1010    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1011    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1012
1013    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1014    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1015    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1016    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1017    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1018    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1019
1020    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1021    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1022    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1024    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1025    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1026
1027    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1028    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1029    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1030
1031    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1032    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1033    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1034    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1035    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1036    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1037
1038    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1039    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1040
1041    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1042    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1043
1044    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1045    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1046
1047    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1048    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1049    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1050    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1051
1052    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1053    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1054    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1055
1056    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1057    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1058    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1059    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1060
1061    if (Subtarget->hasAVX2()) {
1062      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1063      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1064      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1065      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1066
1067      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1068      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1069      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1070      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1071
1072      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1073      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1074      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1075      // Don't lower v32i8 because there is no 128-bit byte mul
1076
1077      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1081
1082      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1083      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1084
1085      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1086    } else {
1087      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1088      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1089      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1090      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1091
1092      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1093      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1094      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1095      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1096
1097      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1098      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1099      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1100      // Don't lower v32i8 because there is no 128-bit byte mul
1101
1102      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1103      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1104
1105      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1107
1108      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1109    }
1110
1111    // Custom lower several nodes for 256-bit types.
1112    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1113                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1114      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1115      EVT VT = SVT;
1116
1117      // Extract subvector is special because the value type
1118      // (result) is 128-bit but the source is 256-bit wide.
1119      if (VT.is128BitVector())
1120        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1121
1122      // Do not attempt to custom lower other non-256-bit vectors
1123      if (!VT.is256BitVector())
1124        continue;
1125
1126      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1127      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1128      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1129      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1130      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1131      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1132    }
1133
1134    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1135    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1136      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1137      EVT VT = SVT;
1138
1139      // Do not attempt to promote non-256-bit vectors
1140      if (!VT.is256BitVector())
1141        continue;
1142
1143      setOperationAction(ISD::AND,    SVT, Promote);
1144      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1145      setOperationAction(ISD::OR,     SVT, Promote);
1146      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1147      setOperationAction(ISD::XOR,    SVT, Promote);
1148      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1149      setOperationAction(ISD::LOAD,   SVT, Promote);
1150      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1151      setOperationAction(ISD::SELECT, SVT, Promote);
1152      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1153    }
1154  }
1155
1156  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1157  // of this type with custom code.
1158  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1159         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1160    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1161  }
1162
1163  // We want to custom lower some of our intrinsics.
1164  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1165
1166
1167  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1168  // handle type legalization for these operations here.
1169  //
1170  // FIXME: We really should do custom legalization for addition and
1171  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1172  // than generic legalization for 64-bit multiplication-with-overflow, though.
1173  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1174    // Add/Sub/Mul with overflow operations are custom lowered.
1175    MVT VT = IntVTs[i];
1176    setOperationAction(ISD::SADDO, VT, Custom);
1177    setOperationAction(ISD::UADDO, VT, Custom);
1178    setOperationAction(ISD::SSUBO, VT, Custom);
1179    setOperationAction(ISD::USUBO, VT, Custom);
1180    setOperationAction(ISD::SMULO, VT, Custom);
1181    setOperationAction(ISD::UMULO, VT, Custom);
1182  }
1183
1184  // There are no 8-bit 3-address imul/mul instructions
1185  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1186  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1187
1188  if (!Subtarget->is64Bit()) {
1189    // These libcalls are not available in 32-bit.
1190    setLibcallName(RTLIB::SHL_I128, 0);
1191    setLibcallName(RTLIB::SRL_I128, 0);
1192    setLibcallName(RTLIB::SRA_I128, 0);
1193  }
1194
1195  // We have target-specific dag combine patterns for the following nodes:
1196  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1197  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1198  setTargetDAGCombine(ISD::BUILD_VECTOR);
1199  setTargetDAGCombine(ISD::VSELECT);
1200  setTargetDAGCombine(ISD::SELECT);
1201  setTargetDAGCombine(ISD::SHL);
1202  setTargetDAGCombine(ISD::SRA);
1203  setTargetDAGCombine(ISD::SRL);
1204  setTargetDAGCombine(ISD::OR);
1205  setTargetDAGCombine(ISD::AND);
1206  setTargetDAGCombine(ISD::ADD);
1207  setTargetDAGCombine(ISD::FADD);
1208  setTargetDAGCombine(ISD::FSUB);
1209  setTargetDAGCombine(ISD::SUB);
1210  setTargetDAGCombine(ISD::LOAD);
1211  setTargetDAGCombine(ISD::STORE);
1212  setTargetDAGCombine(ISD::ZERO_EXTEND);
1213  setTargetDAGCombine(ISD::SINT_TO_FP);
1214  if (Subtarget->is64Bit())
1215    setTargetDAGCombine(ISD::MUL);
1216  if (Subtarget->hasBMI())
1217    setTargetDAGCombine(ISD::XOR);
1218
1219  computeRegisterProperties();
1220
1221  // On Darwin, -Os means optimize for size without hurting performance,
1222  // do not reduce the limit.
1223  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1224  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1225  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1226  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1227  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1228  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1229  setPrefLoopAlignment(4); // 2^4 bytes.
1230  benefitFromCodePlacementOpt = true;
1231
1232  setPrefFunctionAlignment(4); // 2^4 bytes.
1233}
1234
1235
1236EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1237  if (!VT.isVector()) return MVT::i8;
1238  return VT.changeVectorElementTypeToInteger();
1239}
1240
1241
1242/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1243/// the desired ByVal argument alignment.
1244static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1245  if (MaxAlign == 16)
1246    return;
1247  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1248    if (VTy->getBitWidth() == 128)
1249      MaxAlign = 16;
1250  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1251    unsigned EltAlign = 0;
1252    getMaxByValAlign(ATy->getElementType(), EltAlign);
1253    if (EltAlign > MaxAlign)
1254      MaxAlign = EltAlign;
1255  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1256    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1257      unsigned EltAlign = 0;
1258      getMaxByValAlign(STy->getElementType(i), EltAlign);
1259      if (EltAlign > MaxAlign)
1260        MaxAlign = EltAlign;
1261      if (MaxAlign == 16)
1262        break;
1263    }
1264  }
1265  return;
1266}
1267
1268/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1269/// function arguments in the caller parameter area. For X86, aggregates
1270/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1271/// are at 4-byte boundaries.
1272unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1273  if (Subtarget->is64Bit()) {
1274    // Max of 8 and alignment of type.
1275    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1276    if (TyAlign > 8)
1277      return TyAlign;
1278    return 8;
1279  }
1280
1281  unsigned Align = 4;
1282  if (Subtarget->hasXMM())
1283    getMaxByValAlign(Ty, Align);
1284  return Align;
1285}
1286
1287/// getOptimalMemOpType - Returns the target specific optimal type for load
1288/// and store operations as a result of memset, memcpy, and memmove
1289/// lowering. If DstAlign is zero that means it's safe to destination
1290/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1291/// means there isn't a need to check it against alignment requirement,
1292/// probably because the source does not need to be loaded. If
1293/// 'IsZeroVal' is true, that means it's safe to return a
1294/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1295/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1296/// constant so it does not need to be loaded.
1297/// It returns EVT::Other if the type should be determined using generic
1298/// target-independent logic.
1299EVT
1300X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1301                                       unsigned DstAlign, unsigned SrcAlign,
1302                                       bool IsZeroVal,
1303                                       bool MemcpyStrSrc,
1304                                       MachineFunction &MF) const {
1305  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1306  // linux.  This is because the stack realignment code can't handle certain
1307  // cases like PR2962.  This should be removed when PR2962 is fixed.
1308  const Function *F = MF.getFunction();
1309  if (IsZeroVal &&
1310      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1311    if (Size >= 16 &&
1312        (Subtarget->isUnalignedMemAccessFast() ||
1313         ((DstAlign == 0 || DstAlign >= 16) &&
1314          (SrcAlign == 0 || SrcAlign >= 16))) &&
1315        Subtarget->getStackAlignment() >= 16) {
1316      if (Subtarget->hasAVX() &&
1317          Subtarget->getStackAlignment() >= 32)
1318        return MVT::v8f32;
1319      if (Subtarget->hasXMMInt())
1320        return MVT::v4i32;
1321      if (Subtarget->hasXMM())
1322        return MVT::v4f32;
1323    } else if (!MemcpyStrSrc && Size >= 8 &&
1324               !Subtarget->is64Bit() &&
1325               Subtarget->getStackAlignment() >= 8 &&
1326               Subtarget->hasXMMInt()) {
1327      // Do not use f64 to lower memcpy if source is string constant. It's
1328      // better to use i32 to avoid the loads.
1329      return MVT::f64;
1330    }
1331  }
1332  if (Subtarget->is64Bit() && Size >= 8)
1333    return MVT::i64;
1334  return MVT::i32;
1335}
1336
1337/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1338/// current function.  The returned value is a member of the
1339/// MachineJumpTableInfo::JTEntryKind enum.
1340unsigned X86TargetLowering::getJumpTableEncoding() const {
1341  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1342  // symbol.
1343  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1344      Subtarget->isPICStyleGOT())
1345    return MachineJumpTableInfo::EK_Custom32;
1346
1347  // Otherwise, use the normal jump table encoding heuristics.
1348  return TargetLowering::getJumpTableEncoding();
1349}
1350
1351const MCExpr *
1352X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1353                                             const MachineBasicBlock *MBB,
1354                                             unsigned uid,MCContext &Ctx) const{
1355  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1356         Subtarget->isPICStyleGOT());
1357  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1358  // entries.
1359  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1360                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1361}
1362
1363/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1364/// jumptable.
1365SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1366                                                    SelectionDAG &DAG) const {
1367  if (!Subtarget->is64Bit())
1368    // This doesn't have DebugLoc associated with it, but is not really the
1369    // same as a Register.
1370    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1371  return Table;
1372}
1373
1374/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1375/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1376/// MCExpr.
1377const MCExpr *X86TargetLowering::
1378getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1379                             MCContext &Ctx) const {
1380  // X86-64 uses RIP relative addressing based on the jump table label.
1381  if (Subtarget->isPICStyleRIPRel())
1382    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1383
1384  // Otherwise, the reference is relative to the PIC base.
1385  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1386}
1387
1388// FIXME: Why this routine is here? Move to RegInfo!
1389std::pair<const TargetRegisterClass*, uint8_t>
1390X86TargetLowering::findRepresentativeClass(EVT VT) const{
1391  const TargetRegisterClass *RRC = 0;
1392  uint8_t Cost = 1;
1393  switch (VT.getSimpleVT().SimpleTy) {
1394  default:
1395    return TargetLowering::findRepresentativeClass(VT);
1396  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1397    RRC = (Subtarget->is64Bit()
1398           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1399    break;
1400  case MVT::x86mmx:
1401    RRC = X86::VR64RegisterClass;
1402    break;
1403  case MVT::f32: case MVT::f64:
1404  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1405  case MVT::v4f32: case MVT::v2f64:
1406  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1407  case MVT::v4f64:
1408    RRC = X86::VR128RegisterClass;
1409    break;
1410  }
1411  return std::make_pair(RRC, Cost);
1412}
1413
1414bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1415                                               unsigned &Offset) const {
1416  if (!Subtarget->isTargetLinux())
1417    return false;
1418
1419  if (Subtarget->is64Bit()) {
1420    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1421    Offset = 0x28;
1422    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1423      AddressSpace = 256;
1424    else
1425      AddressSpace = 257;
1426  } else {
1427    // %gs:0x14 on i386
1428    Offset = 0x14;
1429    AddressSpace = 256;
1430  }
1431  return true;
1432}
1433
1434
1435//===----------------------------------------------------------------------===//
1436//               Return Value Calling Convention Implementation
1437//===----------------------------------------------------------------------===//
1438
1439#include "X86GenCallingConv.inc"
1440
1441bool
1442X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1443				  MachineFunction &MF, bool isVarArg,
1444                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1445                        LLVMContext &Context) const {
1446  SmallVector<CCValAssign, 16> RVLocs;
1447  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1448                 RVLocs, Context);
1449  return CCInfo.CheckReturn(Outs, RetCC_X86);
1450}
1451
1452SDValue
1453X86TargetLowering::LowerReturn(SDValue Chain,
1454                               CallingConv::ID CallConv, bool isVarArg,
1455                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1456                               const SmallVectorImpl<SDValue> &OutVals,
1457                               DebugLoc dl, SelectionDAG &DAG) const {
1458  MachineFunction &MF = DAG.getMachineFunction();
1459  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1460
1461  SmallVector<CCValAssign, 16> RVLocs;
1462  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1463                 RVLocs, *DAG.getContext());
1464  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1465
1466  // Add the regs to the liveout set for the function.
1467  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1468  for (unsigned i = 0; i != RVLocs.size(); ++i)
1469    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1470      MRI.addLiveOut(RVLocs[i].getLocReg());
1471
1472  SDValue Flag;
1473
1474  SmallVector<SDValue, 6> RetOps;
1475  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1476  // Operand #1 = Bytes To Pop
1477  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1478                   MVT::i16));
1479
1480  // Copy the result values into the output registers.
1481  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1482    CCValAssign &VA = RVLocs[i];
1483    assert(VA.isRegLoc() && "Can only return in registers!");
1484    SDValue ValToCopy = OutVals[i];
1485    EVT ValVT = ValToCopy.getValueType();
1486
1487    // If this is x86-64, and we disabled SSE, we can't return FP values,
1488    // or SSE or MMX vectors.
1489    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1490         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1491          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1492      report_fatal_error("SSE register return with SSE disabled");
1493    }
1494    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1495    // llvm-gcc has never done it right and no one has noticed, so this
1496    // should be OK for now.
1497    if (ValVT == MVT::f64 &&
1498        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1499      report_fatal_error("SSE2 register return with SSE2 disabled");
1500
1501    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1502    // the RET instruction and handled by the FP Stackifier.
1503    if (VA.getLocReg() == X86::ST0 ||
1504        VA.getLocReg() == X86::ST1) {
1505      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1506      // change the value to the FP stack register class.
1507      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1508        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1509      RetOps.push_back(ValToCopy);
1510      // Don't emit a copytoreg.
1511      continue;
1512    }
1513
1514    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1515    // which is returned in RAX / RDX.
1516    if (Subtarget->is64Bit()) {
1517      if (ValVT == MVT::x86mmx) {
1518        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1519          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1520          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1521                                  ValToCopy);
1522          // If we don't have SSE2 available, convert to v4f32 so the generated
1523          // register is legal.
1524          if (!Subtarget->hasXMMInt())
1525            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1526        }
1527      }
1528    }
1529
1530    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1531    Flag = Chain.getValue(1);
1532  }
1533
1534  // The x86-64 ABI for returning structs by value requires that we copy
1535  // the sret argument into %rax for the return. We saved the argument into
1536  // a virtual register in the entry block, so now we copy the value out
1537  // and into %rax.
1538  if (Subtarget->is64Bit() &&
1539      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1540    MachineFunction &MF = DAG.getMachineFunction();
1541    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1542    unsigned Reg = FuncInfo->getSRetReturnReg();
1543    assert(Reg &&
1544           "SRetReturnReg should have been set in LowerFormalArguments().");
1545    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1548    Flag = Chain.getValue(1);
1549
1550    // RAX now acts like a return value.
1551    MRI.addLiveOut(X86::RAX);
1552  }
1553
1554  RetOps[0] = Chain;  // Update chain.
1555
1556  // Add the flag if we have it.
1557  if (Flag.getNode())
1558    RetOps.push_back(Flag);
1559
1560  return DAG.getNode(X86ISD::RET_FLAG, dl,
1561                     MVT::Other, &RetOps[0], RetOps.size());
1562}
1563
1564bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1565  if (N->getNumValues() != 1)
1566    return false;
1567  if (!N->hasNUsesOfValue(1, 0))
1568    return false;
1569
1570  SDNode *Copy = *N->use_begin();
1571  if (Copy->getOpcode() != ISD::CopyToReg &&
1572      Copy->getOpcode() != ISD::FP_EXTEND)
1573    return false;
1574
1575  bool HasRet = false;
1576  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1577       UI != UE; ++UI) {
1578    if (UI->getOpcode() != X86ISD::RET_FLAG)
1579      return false;
1580    HasRet = true;
1581  }
1582
1583  return HasRet;
1584}
1585
1586EVT
1587X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1588                                            ISD::NodeType ExtendKind) const {
1589  MVT ReturnMVT;
1590  // TODO: Is this also valid on 32-bit?
1591  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1592    ReturnMVT = MVT::i8;
1593  else
1594    ReturnMVT = MVT::i32;
1595
1596  EVT MinVT = getRegisterType(Context, ReturnMVT);
1597  return VT.bitsLT(MinVT) ? MinVT : VT;
1598}
1599
1600/// LowerCallResult - Lower the result values of a call into the
1601/// appropriate copies out of appropriate physical registers.
1602///
1603SDValue
1604X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1605                                   CallingConv::ID CallConv, bool isVarArg,
1606                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1607                                   DebugLoc dl, SelectionDAG &DAG,
1608                                   SmallVectorImpl<SDValue> &InVals) const {
1609
1610  // Assign locations to each value returned by this call.
1611  SmallVector<CCValAssign, 16> RVLocs;
1612  bool Is64Bit = Subtarget->is64Bit();
1613  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1614		 getTargetMachine(), RVLocs, *DAG.getContext());
1615  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1616
1617  // Copy all of the result registers out of their specified physreg.
1618  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1619    CCValAssign &VA = RVLocs[i];
1620    EVT CopyVT = VA.getValVT();
1621
1622    // If this is x86-64, and we disabled SSE, we can't return FP values
1623    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1624        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1625      report_fatal_error("SSE register return with SSE disabled");
1626    }
1627
1628    SDValue Val;
1629
1630    // If this is a call to a function that returns an fp value on the floating
1631    // point stack, we must guarantee the the value is popped from the stack, so
1632    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1633    // if the return value is not used. We use the FpPOP_RETVAL instruction
1634    // instead.
1635    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1636      // If we prefer to use the value in xmm registers, copy it out as f80 and
1637      // use a truncate to move it from fp stack reg to xmm reg.
1638      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1639      SDValue Ops[] = { Chain, InFlag };
1640      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1641                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1642      Val = Chain.getValue(0);
1643
1644      // Round the f80 to the right size, which also moves it to the appropriate
1645      // xmm register.
1646      if (CopyVT != VA.getValVT())
1647        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1648                          // This truncation won't change the value.
1649                          DAG.getIntPtrConstant(1));
1650    } else {
1651      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1652                                 CopyVT, InFlag).getValue(1);
1653      Val = Chain.getValue(0);
1654    }
1655    InFlag = Chain.getValue(2);
1656    InVals.push_back(Val);
1657  }
1658
1659  return Chain;
1660}
1661
1662
1663//===----------------------------------------------------------------------===//
1664//                C & StdCall & Fast Calling Convention implementation
1665//===----------------------------------------------------------------------===//
1666//  StdCall calling convention seems to be standard for many Windows' API
1667//  routines and around. It differs from C calling convention just a little:
1668//  callee should clean up the stack, not caller. Symbols should be also
1669//  decorated in some fancy way :) It doesn't support any vector arguments.
1670//  For info on fast calling convention see Fast Calling Convention (tail call)
1671//  implementation LowerX86_32FastCCCallTo.
1672
1673/// CallIsStructReturn - Determines whether a call uses struct return
1674/// semantics.
1675static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1676  if (Outs.empty())
1677    return false;
1678
1679  return Outs[0].Flags.isSRet();
1680}
1681
1682/// ArgsAreStructReturn - Determines whether a function uses struct
1683/// return semantics.
1684static bool
1685ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1686  if (Ins.empty())
1687    return false;
1688
1689  return Ins[0].Flags.isSRet();
1690}
1691
1692/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1693/// by "Src" to address "Dst" with size and alignment information specified by
1694/// the specific parameter attribute. The copy will be passed as a byval
1695/// function parameter.
1696static SDValue
1697CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1698                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1699                          DebugLoc dl) {
1700  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1701
1702  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1703                       /*isVolatile*/false, /*AlwaysInline=*/true,
1704                       MachinePointerInfo(), MachinePointerInfo());
1705}
1706
1707/// IsTailCallConvention - Return true if the calling convention is one that
1708/// supports tail call optimization.
1709static bool IsTailCallConvention(CallingConv::ID CC) {
1710  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1711}
1712
1713bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1714  if (!CI->isTailCall())
1715    return false;
1716
1717  CallSite CS(CI);
1718  CallingConv::ID CalleeCC = CS.getCallingConv();
1719  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1720    return false;
1721
1722  return true;
1723}
1724
1725/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1726/// a tailcall target by changing its ABI.
1727static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1728                                   bool GuaranteedTailCallOpt) {
1729  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1730}
1731
1732SDValue
1733X86TargetLowering::LowerMemArgument(SDValue Chain,
1734                                    CallingConv::ID CallConv,
1735                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1736                                    DebugLoc dl, SelectionDAG &DAG,
1737                                    const CCValAssign &VA,
1738                                    MachineFrameInfo *MFI,
1739                                    unsigned i) const {
1740  // Create the nodes corresponding to a load from this parameter slot.
1741  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1742  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1743                              getTargetMachine().Options.GuaranteedTailCallOpt);
1744  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1745  EVT ValVT;
1746
1747  // If value is passed by pointer we have address passed instead of the value
1748  // itself.
1749  if (VA.getLocInfo() == CCValAssign::Indirect)
1750    ValVT = VA.getLocVT();
1751  else
1752    ValVT = VA.getValVT();
1753
1754  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1755  // changed with more analysis.
1756  // In case of tail call optimization mark all arguments mutable. Since they
1757  // could be overwritten by lowering of arguments in case of a tail call.
1758  if (Flags.isByVal()) {
1759    unsigned Bytes = Flags.getByValSize();
1760    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1761    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1762    return DAG.getFrameIndex(FI, getPointerTy());
1763  } else {
1764    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1765                                    VA.getLocMemOffset(), isImmutable);
1766    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1767    return DAG.getLoad(ValVT, dl, Chain, FIN,
1768                       MachinePointerInfo::getFixedStack(FI),
1769                       false, false, false, 0);
1770  }
1771}
1772
1773SDValue
1774X86TargetLowering::LowerFormalArguments(SDValue Chain,
1775                                        CallingConv::ID CallConv,
1776                                        bool isVarArg,
1777                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1778                                        DebugLoc dl,
1779                                        SelectionDAG &DAG,
1780                                        SmallVectorImpl<SDValue> &InVals)
1781                                          const {
1782  MachineFunction &MF = DAG.getMachineFunction();
1783  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1784
1785  const Function* Fn = MF.getFunction();
1786  if (Fn->hasExternalLinkage() &&
1787      Subtarget->isTargetCygMing() &&
1788      Fn->getName() == "main")
1789    FuncInfo->setForceFramePointer(true);
1790
1791  MachineFrameInfo *MFI = MF.getFrameInfo();
1792  bool Is64Bit = Subtarget->is64Bit();
1793  bool IsWin64 = Subtarget->isTargetWin64();
1794
1795  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1796         "Var args not supported with calling convention fastcc or ghc");
1797
1798  // Assign locations to all of the incoming arguments.
1799  SmallVector<CCValAssign, 16> ArgLocs;
1800  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1801                 ArgLocs, *DAG.getContext());
1802
1803  // Allocate shadow area for Win64
1804  if (IsWin64) {
1805    CCInfo.AllocateStack(32, 8);
1806  }
1807
1808  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1809
1810  unsigned LastVal = ~0U;
1811  SDValue ArgValue;
1812  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1813    CCValAssign &VA = ArgLocs[i];
1814    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1815    // places.
1816    assert(VA.getValNo() != LastVal &&
1817           "Don't support value assigned to multiple locs yet");
1818    (void)LastVal;
1819    LastVal = VA.getValNo();
1820
1821    if (VA.isRegLoc()) {
1822      EVT RegVT = VA.getLocVT();
1823      TargetRegisterClass *RC = NULL;
1824      if (RegVT == MVT::i32)
1825        RC = X86::GR32RegisterClass;
1826      else if (Is64Bit && RegVT == MVT::i64)
1827        RC = X86::GR64RegisterClass;
1828      else if (RegVT == MVT::f32)
1829        RC = X86::FR32RegisterClass;
1830      else if (RegVT == MVT::f64)
1831        RC = X86::FR64RegisterClass;
1832      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1833        RC = X86::VR256RegisterClass;
1834      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1835        RC = X86::VR128RegisterClass;
1836      else if (RegVT == MVT::x86mmx)
1837        RC = X86::VR64RegisterClass;
1838      else
1839        llvm_unreachable("Unknown argument type!");
1840
1841      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1842      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1843
1844      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1845      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1846      // right size.
1847      if (VA.getLocInfo() == CCValAssign::SExt)
1848        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1849                               DAG.getValueType(VA.getValVT()));
1850      else if (VA.getLocInfo() == CCValAssign::ZExt)
1851        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1852                               DAG.getValueType(VA.getValVT()));
1853      else if (VA.getLocInfo() == CCValAssign::BCvt)
1854        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1855
1856      if (VA.isExtInLoc()) {
1857        // Handle MMX values passed in XMM regs.
1858        if (RegVT.isVector()) {
1859          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1860                                 ArgValue);
1861        } else
1862          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1863      }
1864    } else {
1865      assert(VA.isMemLoc());
1866      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1867    }
1868
1869    // If value is passed via pointer - do a load.
1870    if (VA.getLocInfo() == CCValAssign::Indirect)
1871      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1872                             MachinePointerInfo(), false, false, false, 0);
1873
1874    InVals.push_back(ArgValue);
1875  }
1876
1877  // The x86-64 ABI for returning structs by value requires that we copy
1878  // the sret argument into %rax for the return. Save the argument into
1879  // a virtual register so that we can access it from the return points.
1880  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1881    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1882    unsigned Reg = FuncInfo->getSRetReturnReg();
1883    if (!Reg) {
1884      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1885      FuncInfo->setSRetReturnReg(Reg);
1886    }
1887    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1888    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1889  }
1890
1891  unsigned StackSize = CCInfo.getNextStackOffset();
1892  // Align stack specially for tail calls.
1893  if (FuncIsMadeTailCallSafe(CallConv,
1894                             MF.getTarget().Options.GuaranteedTailCallOpt))
1895    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1896
1897  // If the function takes variable number of arguments, make a frame index for
1898  // the start of the first vararg value... for expansion of llvm.va_start.
1899  if (isVarArg) {
1900    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1901                    CallConv != CallingConv::X86_ThisCall)) {
1902      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1903    }
1904    if (Is64Bit) {
1905      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1906
1907      // FIXME: We should really autogenerate these arrays
1908      static const unsigned GPR64ArgRegsWin64[] = {
1909        X86::RCX, X86::RDX, X86::R8,  X86::R9
1910      };
1911      static const unsigned GPR64ArgRegs64Bit[] = {
1912        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1913      };
1914      static const unsigned XMMArgRegs64Bit[] = {
1915        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1916        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1917      };
1918      const unsigned *GPR64ArgRegs;
1919      unsigned NumXMMRegs = 0;
1920
1921      if (IsWin64) {
1922        // The XMM registers which might contain var arg parameters are shadowed
1923        // in their paired GPR.  So we only need to save the GPR to their home
1924        // slots.
1925        TotalNumIntRegs = 4;
1926        GPR64ArgRegs = GPR64ArgRegsWin64;
1927      } else {
1928        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1929        GPR64ArgRegs = GPR64ArgRegs64Bit;
1930
1931        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1932      }
1933      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1934                                                       TotalNumIntRegs);
1935
1936      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1937      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1938             "SSE register cannot be used when SSE is disabled!");
1939      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1940               NoImplicitFloatOps) &&
1941             "SSE register cannot be used when SSE is disabled!");
1942      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1943          !Subtarget->hasXMM())
1944        // Kernel mode asks for SSE to be disabled, so don't push them
1945        // on the stack.
1946        TotalNumXMMRegs = 0;
1947
1948      if (IsWin64) {
1949        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1950        // Get to the caller-allocated home save location.  Add 8 to account
1951        // for the return address.
1952        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1953        FuncInfo->setRegSaveFrameIndex(
1954          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1955        // Fixup to set vararg frame on shadow area (4 x i64).
1956        if (NumIntRegs < 4)
1957          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1958      } else {
1959        // For X86-64, if there are vararg parameters that are passed via
1960        // registers, then we must store them to their spots on the stack so they
1961        // may be loaded by deferencing the result of va_next.
1962        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1963        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1964        FuncInfo->setRegSaveFrameIndex(
1965          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1966                               false));
1967      }
1968
1969      // Store the integer parameter registers.
1970      SmallVector<SDValue, 8> MemOps;
1971      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1972                                        getPointerTy());
1973      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1974      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1975        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1976                                  DAG.getIntPtrConstant(Offset));
1977        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1978                                     X86::GR64RegisterClass);
1979        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1980        SDValue Store =
1981          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1982                       MachinePointerInfo::getFixedStack(
1983                         FuncInfo->getRegSaveFrameIndex(), Offset),
1984                       false, false, 0);
1985        MemOps.push_back(Store);
1986        Offset += 8;
1987      }
1988
1989      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1990        // Now store the XMM (fp + vector) parameter registers.
1991        SmallVector<SDValue, 11> SaveXMMOps;
1992        SaveXMMOps.push_back(Chain);
1993
1994        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1995        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1996        SaveXMMOps.push_back(ALVal);
1997
1998        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1999                               FuncInfo->getRegSaveFrameIndex()));
2000        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2001                               FuncInfo->getVarArgsFPOffset()));
2002
2003        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2004          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2005                                       X86::VR128RegisterClass);
2006          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2007          SaveXMMOps.push_back(Val);
2008        }
2009        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2010                                     MVT::Other,
2011                                     &SaveXMMOps[0], SaveXMMOps.size()));
2012      }
2013
2014      if (!MemOps.empty())
2015        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2016                            &MemOps[0], MemOps.size());
2017    }
2018  }
2019
2020  // Some CCs need callee pop.
2021  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2022                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2023    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2024  } else {
2025    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2026    // If this is an sret function, the return should pop the hidden pointer.
2027    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
2028      FuncInfo->setBytesToPopOnReturn(4);
2029  }
2030
2031  if (!Is64Bit) {
2032    // RegSaveFrameIndex is X86-64 only.
2033    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2034    if (CallConv == CallingConv::X86_FastCall ||
2035        CallConv == CallingConv::X86_ThisCall)
2036      // fastcc functions can't have varargs.
2037      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2038  }
2039
2040  FuncInfo->setArgumentStackSize(StackSize);
2041
2042  return Chain;
2043}
2044
2045SDValue
2046X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2047                                    SDValue StackPtr, SDValue Arg,
2048                                    DebugLoc dl, SelectionDAG &DAG,
2049                                    const CCValAssign &VA,
2050                                    ISD::ArgFlagsTy Flags) const {
2051  unsigned LocMemOffset = VA.getLocMemOffset();
2052  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2053  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2054  if (Flags.isByVal())
2055    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2056
2057  return DAG.getStore(Chain, dl, Arg, PtrOff,
2058                      MachinePointerInfo::getStack(LocMemOffset),
2059                      false, false, 0);
2060}
2061
2062/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2063/// optimization is performed and it is required.
2064SDValue
2065X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2066                                           SDValue &OutRetAddr, SDValue Chain,
2067                                           bool IsTailCall, bool Is64Bit,
2068                                           int FPDiff, DebugLoc dl) const {
2069  // Adjust the Return address stack slot.
2070  EVT VT = getPointerTy();
2071  OutRetAddr = getReturnAddressFrameIndex(DAG);
2072
2073  // Load the "old" Return address.
2074  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2075                           false, false, false, 0);
2076  return SDValue(OutRetAddr.getNode(), 1);
2077}
2078
2079/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2080/// optimization is performed and it is required (FPDiff!=0).
2081static SDValue
2082EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2083                         SDValue Chain, SDValue RetAddrFrIdx,
2084                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2085  // Store the return address to the appropriate stack slot.
2086  if (!FPDiff) return Chain;
2087  // Calculate the new stack slot for the return address.
2088  int SlotSize = Is64Bit ? 8 : 4;
2089  int NewReturnAddrFI =
2090    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2091  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2092  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2093  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2094                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2095                       false, false, 0);
2096  return Chain;
2097}
2098
2099SDValue
2100X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2101                             CallingConv::ID CallConv, bool isVarArg,
2102                             bool &isTailCall,
2103                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2104                             const SmallVectorImpl<SDValue> &OutVals,
2105                             const SmallVectorImpl<ISD::InputArg> &Ins,
2106                             DebugLoc dl, SelectionDAG &DAG,
2107                             SmallVectorImpl<SDValue> &InVals) const {
2108  MachineFunction &MF = DAG.getMachineFunction();
2109  bool Is64Bit        = Subtarget->is64Bit();
2110  bool IsWin64        = Subtarget->isTargetWin64();
2111  bool IsStructRet    = CallIsStructReturn(Outs);
2112  bool IsSibcall      = false;
2113
2114  if (isTailCall) {
2115    // Check if it's really possible to do a tail call.
2116    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2117                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2118                                                   Outs, OutVals, Ins, DAG);
2119
2120    // Sibcalls are automatically detected tailcalls which do not require
2121    // ABI changes.
2122    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2123      IsSibcall = true;
2124
2125    if (isTailCall)
2126      ++NumTailCalls;
2127  }
2128
2129  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2130         "Var args not supported with calling convention fastcc or ghc");
2131
2132  // Analyze operands of the call, assigning locations to each operand.
2133  SmallVector<CCValAssign, 16> ArgLocs;
2134  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2135                 ArgLocs, *DAG.getContext());
2136
2137  // Allocate shadow area for Win64
2138  if (IsWin64) {
2139    CCInfo.AllocateStack(32, 8);
2140  }
2141
2142  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2143
2144  // Get a count of how many bytes are to be pushed on the stack.
2145  unsigned NumBytes = CCInfo.getNextStackOffset();
2146  if (IsSibcall)
2147    // This is a sibcall. The memory operands are available in caller's
2148    // own caller's stack.
2149    NumBytes = 0;
2150  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2151           IsTailCallConvention(CallConv))
2152    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2153
2154  int FPDiff = 0;
2155  if (isTailCall && !IsSibcall) {
2156    // Lower arguments at fp - stackoffset + fpdiff.
2157    unsigned NumBytesCallerPushed =
2158      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2159    FPDiff = NumBytesCallerPushed - NumBytes;
2160
2161    // Set the delta of movement of the returnaddr stackslot.
2162    // But only set if delta is greater than previous delta.
2163    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2164      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2165  }
2166
2167  if (!IsSibcall)
2168    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2169
2170  SDValue RetAddrFrIdx;
2171  // Load return address for tail calls.
2172  if (isTailCall && FPDiff)
2173    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2174                                    Is64Bit, FPDiff, dl);
2175
2176  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2177  SmallVector<SDValue, 8> MemOpChains;
2178  SDValue StackPtr;
2179
2180  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2181  // of tail call optimization arguments are handle later.
2182  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2183    CCValAssign &VA = ArgLocs[i];
2184    EVT RegVT = VA.getLocVT();
2185    SDValue Arg = OutVals[i];
2186    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2187    bool isByVal = Flags.isByVal();
2188
2189    // Promote the value if needed.
2190    switch (VA.getLocInfo()) {
2191    default: llvm_unreachable("Unknown loc info!");
2192    case CCValAssign::Full: break;
2193    case CCValAssign::SExt:
2194      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2195      break;
2196    case CCValAssign::ZExt:
2197      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2198      break;
2199    case CCValAssign::AExt:
2200      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2201        // Special case: passing MMX values in XMM registers.
2202        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2203        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2204        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2205      } else
2206        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2207      break;
2208    case CCValAssign::BCvt:
2209      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2210      break;
2211    case CCValAssign::Indirect: {
2212      // Store the argument.
2213      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2214      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2215      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2216                           MachinePointerInfo::getFixedStack(FI),
2217                           false, false, 0);
2218      Arg = SpillSlot;
2219      break;
2220    }
2221    }
2222
2223    if (VA.isRegLoc()) {
2224      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2225      if (isVarArg && IsWin64) {
2226        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2227        // shadow reg if callee is a varargs function.
2228        unsigned ShadowReg = 0;
2229        switch (VA.getLocReg()) {
2230        case X86::XMM0: ShadowReg = X86::RCX; break;
2231        case X86::XMM1: ShadowReg = X86::RDX; break;
2232        case X86::XMM2: ShadowReg = X86::R8; break;
2233        case X86::XMM3: ShadowReg = X86::R9; break;
2234        }
2235        if (ShadowReg)
2236          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2237      }
2238    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2239      assert(VA.isMemLoc());
2240      if (StackPtr.getNode() == 0)
2241        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2242      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2243                                             dl, DAG, VA, Flags));
2244    }
2245  }
2246
2247  if (!MemOpChains.empty())
2248    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2249                        &MemOpChains[0], MemOpChains.size());
2250
2251  // Build a sequence of copy-to-reg nodes chained together with token chain
2252  // and flag operands which copy the outgoing args into registers.
2253  SDValue InFlag;
2254  // Tail call byval lowering might overwrite argument registers so in case of
2255  // tail call optimization the copies to registers are lowered later.
2256  if (!isTailCall)
2257    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2258      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2259                               RegsToPass[i].second, InFlag);
2260      InFlag = Chain.getValue(1);
2261    }
2262
2263  if (Subtarget->isPICStyleGOT()) {
2264    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2265    // GOT pointer.
2266    if (!isTailCall) {
2267      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2268                               DAG.getNode(X86ISD::GlobalBaseReg,
2269                                           DebugLoc(), getPointerTy()),
2270                               InFlag);
2271      InFlag = Chain.getValue(1);
2272    } else {
2273      // If we are tail calling and generating PIC/GOT style code load the
2274      // address of the callee into ECX. The value in ecx is used as target of
2275      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2276      // for tail calls on PIC/GOT architectures. Normally we would just put the
2277      // address of GOT into ebx and then call target@PLT. But for tail calls
2278      // ebx would be restored (since ebx is callee saved) before jumping to the
2279      // target@PLT.
2280
2281      // Note: The actual moving to ECX is done further down.
2282      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2283      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2284          !G->getGlobal()->hasProtectedVisibility())
2285        Callee = LowerGlobalAddress(Callee, DAG);
2286      else if (isa<ExternalSymbolSDNode>(Callee))
2287        Callee = LowerExternalSymbol(Callee, DAG);
2288    }
2289  }
2290
2291  if (Is64Bit && isVarArg && !IsWin64) {
2292    // From AMD64 ABI document:
2293    // For calls that may call functions that use varargs or stdargs
2294    // (prototype-less calls or calls to functions containing ellipsis (...) in
2295    // the declaration) %al is used as hidden argument to specify the number
2296    // of SSE registers used. The contents of %al do not need to match exactly
2297    // the number of registers, but must be an ubound on the number of SSE
2298    // registers used and is in the range 0 - 8 inclusive.
2299
2300    // Count the number of XMM registers allocated.
2301    static const unsigned XMMArgRegs[] = {
2302      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2303      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2304    };
2305    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2306    assert((Subtarget->hasXMM() || !NumXMMRegs)
2307           && "SSE registers cannot be used when SSE is disabled");
2308
2309    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2310                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2311    InFlag = Chain.getValue(1);
2312  }
2313
2314
2315  // For tail calls lower the arguments to the 'real' stack slot.
2316  if (isTailCall) {
2317    // Force all the incoming stack arguments to be loaded from the stack
2318    // before any new outgoing arguments are stored to the stack, because the
2319    // outgoing stack slots may alias the incoming argument stack slots, and
2320    // the alias isn't otherwise explicit. This is slightly more conservative
2321    // than necessary, because it means that each store effectively depends
2322    // on every argument instead of just those arguments it would clobber.
2323    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2324
2325    SmallVector<SDValue, 8> MemOpChains2;
2326    SDValue FIN;
2327    int FI = 0;
2328    // Do not flag preceding copytoreg stuff together with the following stuff.
2329    InFlag = SDValue();
2330    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2331      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2332        CCValAssign &VA = ArgLocs[i];
2333        if (VA.isRegLoc())
2334          continue;
2335        assert(VA.isMemLoc());
2336        SDValue Arg = OutVals[i];
2337        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2338        // Create frame index.
2339        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2340        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2341        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2342        FIN = DAG.getFrameIndex(FI, getPointerTy());
2343
2344        if (Flags.isByVal()) {
2345          // Copy relative to framepointer.
2346          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2347          if (StackPtr.getNode() == 0)
2348            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2349                                          getPointerTy());
2350          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2351
2352          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2353                                                           ArgChain,
2354                                                           Flags, DAG, dl));
2355        } else {
2356          // Store relative to framepointer.
2357          MemOpChains2.push_back(
2358            DAG.getStore(ArgChain, dl, Arg, FIN,
2359                         MachinePointerInfo::getFixedStack(FI),
2360                         false, false, 0));
2361        }
2362      }
2363    }
2364
2365    if (!MemOpChains2.empty())
2366      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2367                          &MemOpChains2[0], MemOpChains2.size());
2368
2369    // Copy arguments to their registers.
2370    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2371      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2372                               RegsToPass[i].second, InFlag);
2373      InFlag = Chain.getValue(1);
2374    }
2375    InFlag =SDValue();
2376
2377    // Store the return address to the appropriate stack slot.
2378    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2379                                     FPDiff, dl);
2380  }
2381
2382  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2383    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2384    // In the 64-bit large code model, we have to make all calls
2385    // through a register, since the call instruction's 32-bit
2386    // pc-relative offset may not be large enough to hold the whole
2387    // address.
2388  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2389    // If the callee is a GlobalAddress node (quite common, every direct call
2390    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2391    // it.
2392
2393    // We should use extra load for direct calls to dllimported functions in
2394    // non-JIT mode.
2395    const GlobalValue *GV = G->getGlobal();
2396    if (!GV->hasDLLImportLinkage()) {
2397      unsigned char OpFlags = 0;
2398      bool ExtraLoad = false;
2399      unsigned WrapperKind = ISD::DELETED_NODE;
2400
2401      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2402      // external symbols most go through the PLT in PIC mode.  If the symbol
2403      // has hidden or protected visibility, or if it is static or local, then
2404      // we don't need to use the PLT - we can directly call it.
2405      if (Subtarget->isTargetELF() &&
2406          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2407          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2408        OpFlags = X86II::MO_PLT;
2409      } else if (Subtarget->isPICStyleStubAny() &&
2410                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2411                 (!Subtarget->getTargetTriple().isMacOSX() ||
2412                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2413        // PC-relative references to external symbols should go through $stub,
2414        // unless we're building with the leopard linker or later, which
2415        // automatically synthesizes these stubs.
2416        OpFlags = X86II::MO_DARWIN_STUB;
2417      } else if (Subtarget->isPICStyleRIPRel() &&
2418                 isa<Function>(GV) &&
2419                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2420        // If the function is marked as non-lazy, generate an indirect call
2421        // which loads from the GOT directly. This avoids runtime overhead
2422        // at the cost of eager binding (and one extra byte of encoding).
2423        OpFlags = X86II::MO_GOTPCREL;
2424        WrapperKind = X86ISD::WrapperRIP;
2425        ExtraLoad = true;
2426      }
2427
2428      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2429                                          G->getOffset(), OpFlags);
2430
2431      // Add a wrapper if needed.
2432      if (WrapperKind != ISD::DELETED_NODE)
2433        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2434      // Add extra indirection if needed.
2435      if (ExtraLoad)
2436        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2437                             MachinePointerInfo::getGOT(),
2438                             false, false, false, 0);
2439    }
2440  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2441    unsigned char OpFlags = 0;
2442
2443    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2444    // external symbols should go through the PLT.
2445    if (Subtarget->isTargetELF() &&
2446        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2447      OpFlags = X86II::MO_PLT;
2448    } else if (Subtarget->isPICStyleStubAny() &&
2449               (!Subtarget->getTargetTriple().isMacOSX() ||
2450                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2451      // PC-relative references to external symbols should go through $stub,
2452      // unless we're building with the leopard linker or later, which
2453      // automatically synthesizes these stubs.
2454      OpFlags = X86II::MO_DARWIN_STUB;
2455    }
2456
2457    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2458                                         OpFlags);
2459  }
2460
2461  // Returns a chain & a flag for retval copy to use.
2462  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2463  SmallVector<SDValue, 8> Ops;
2464
2465  if (!IsSibcall && isTailCall) {
2466    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2467                           DAG.getIntPtrConstant(0, true), InFlag);
2468    InFlag = Chain.getValue(1);
2469  }
2470
2471  Ops.push_back(Chain);
2472  Ops.push_back(Callee);
2473
2474  if (isTailCall)
2475    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2476
2477  // Add argument registers to the end of the list so that they are known live
2478  // into the call.
2479  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2480    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2481                                  RegsToPass[i].second.getValueType()));
2482
2483  // Add an implicit use GOT pointer in EBX.
2484  if (!isTailCall && Subtarget->isPICStyleGOT())
2485    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2486
2487  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2488  if (Is64Bit && isVarArg && !IsWin64)
2489    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2490
2491  if (InFlag.getNode())
2492    Ops.push_back(InFlag);
2493
2494  if (isTailCall) {
2495    // We used to do:
2496    //// If this is the first return lowered for this function, add the regs
2497    //// to the liveout set for the function.
2498    // This isn't right, although it's probably harmless on x86; liveouts
2499    // should be computed from returns not tail calls.  Consider a void
2500    // function making a tail call to a function returning int.
2501    return DAG.getNode(X86ISD::TC_RETURN, dl,
2502                       NodeTys, &Ops[0], Ops.size());
2503  }
2504
2505  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2506  InFlag = Chain.getValue(1);
2507
2508  // Create the CALLSEQ_END node.
2509  unsigned NumBytesForCalleeToPush;
2510  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2511                       getTargetMachine().Options.GuaranteedTailCallOpt))
2512    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2513  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2514    // If this is a call to a struct-return function, the callee
2515    // pops the hidden struct pointer, so we have to push it back.
2516    // This is common for Darwin/X86, Linux & Mingw32 targets.
2517    NumBytesForCalleeToPush = 4;
2518  else
2519    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2520
2521  // Returns a flag for retval copy to use.
2522  if (!IsSibcall) {
2523    Chain = DAG.getCALLSEQ_END(Chain,
2524                               DAG.getIntPtrConstant(NumBytes, true),
2525                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2526                                                     true),
2527                               InFlag);
2528    InFlag = Chain.getValue(1);
2529  }
2530
2531  // Handle result values, copying them out of physregs into vregs that we
2532  // return.
2533  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2534                         Ins, dl, DAG, InVals);
2535}
2536
2537
2538//===----------------------------------------------------------------------===//
2539//                Fast Calling Convention (tail call) implementation
2540//===----------------------------------------------------------------------===//
2541
2542//  Like std call, callee cleans arguments, convention except that ECX is
2543//  reserved for storing the tail called function address. Only 2 registers are
2544//  free for argument passing (inreg). Tail call optimization is performed
2545//  provided:
2546//                * tailcallopt is enabled
2547//                * caller/callee are fastcc
2548//  On X86_64 architecture with GOT-style position independent code only local
2549//  (within module) calls are supported at the moment.
2550//  To keep the stack aligned according to platform abi the function
2551//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2552//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2553//  If a tail called function callee has more arguments than the caller the
2554//  caller needs to make sure that there is room to move the RETADDR to. This is
2555//  achieved by reserving an area the size of the argument delta right after the
2556//  original REtADDR, but before the saved framepointer or the spilled registers
2557//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2558//  stack layout:
2559//    arg1
2560//    arg2
2561//    RETADDR
2562//    [ new RETADDR
2563//      move area ]
2564//    (possible EBP)
2565//    ESI
2566//    EDI
2567//    local1 ..
2568
2569/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2570/// for a 16 byte align requirement.
2571unsigned
2572X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2573                                               SelectionDAG& DAG) const {
2574  MachineFunction &MF = DAG.getMachineFunction();
2575  const TargetMachine &TM = MF.getTarget();
2576  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2577  unsigned StackAlignment = TFI.getStackAlignment();
2578  uint64_t AlignMask = StackAlignment - 1;
2579  int64_t Offset = StackSize;
2580  uint64_t SlotSize = TD->getPointerSize();
2581  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2582    // Number smaller than 12 so just add the difference.
2583    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2584  } else {
2585    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2586    Offset = ((~AlignMask) & Offset) + StackAlignment +
2587      (StackAlignment-SlotSize);
2588  }
2589  return Offset;
2590}
2591
2592/// MatchingStackOffset - Return true if the given stack call argument is
2593/// already available in the same position (relatively) of the caller's
2594/// incoming argument stack.
2595static
2596bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2597                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2598                         const X86InstrInfo *TII) {
2599  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2600  int FI = INT_MAX;
2601  if (Arg.getOpcode() == ISD::CopyFromReg) {
2602    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2603    if (!TargetRegisterInfo::isVirtualRegister(VR))
2604      return false;
2605    MachineInstr *Def = MRI->getVRegDef(VR);
2606    if (!Def)
2607      return false;
2608    if (!Flags.isByVal()) {
2609      if (!TII->isLoadFromStackSlot(Def, FI))
2610        return false;
2611    } else {
2612      unsigned Opcode = Def->getOpcode();
2613      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2614          Def->getOperand(1).isFI()) {
2615        FI = Def->getOperand(1).getIndex();
2616        Bytes = Flags.getByValSize();
2617      } else
2618        return false;
2619    }
2620  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2621    if (Flags.isByVal())
2622      // ByVal argument is passed in as a pointer but it's now being
2623      // dereferenced. e.g.
2624      // define @foo(%struct.X* %A) {
2625      //   tail call @bar(%struct.X* byval %A)
2626      // }
2627      return false;
2628    SDValue Ptr = Ld->getBasePtr();
2629    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2630    if (!FINode)
2631      return false;
2632    FI = FINode->getIndex();
2633  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2634    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2635    FI = FINode->getIndex();
2636    Bytes = Flags.getByValSize();
2637  } else
2638    return false;
2639
2640  assert(FI != INT_MAX);
2641  if (!MFI->isFixedObjectIndex(FI))
2642    return false;
2643  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2644}
2645
2646/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2647/// for tail call optimization. Targets which want to do tail call
2648/// optimization should implement this function.
2649bool
2650X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2651                                                     CallingConv::ID CalleeCC,
2652                                                     bool isVarArg,
2653                                                     bool isCalleeStructRet,
2654                                                     bool isCallerStructRet,
2655                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2656                                    const SmallVectorImpl<SDValue> &OutVals,
2657                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2658                                                     SelectionDAG& DAG) const {
2659  if (!IsTailCallConvention(CalleeCC) &&
2660      CalleeCC != CallingConv::C)
2661    return false;
2662
2663  // If -tailcallopt is specified, make fastcc functions tail-callable.
2664  const MachineFunction &MF = DAG.getMachineFunction();
2665  const Function *CallerF = DAG.getMachineFunction().getFunction();
2666  CallingConv::ID CallerCC = CallerF->getCallingConv();
2667  bool CCMatch = CallerCC == CalleeCC;
2668
2669  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2670    if (IsTailCallConvention(CalleeCC) && CCMatch)
2671      return true;
2672    return false;
2673  }
2674
2675  // Look for obvious safe cases to perform tail call optimization that do not
2676  // require ABI changes. This is what gcc calls sibcall.
2677
2678  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2679  // emit a special epilogue.
2680  if (RegInfo->needsStackRealignment(MF))
2681    return false;
2682
2683  // Also avoid sibcall optimization if either caller or callee uses struct
2684  // return semantics.
2685  if (isCalleeStructRet || isCallerStructRet)
2686    return false;
2687
2688  // An stdcall caller is expected to clean up its arguments; the callee
2689  // isn't going to do that.
2690  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2691    return false;
2692
2693  // Do not sibcall optimize vararg calls unless all arguments are passed via
2694  // registers.
2695  if (isVarArg && !Outs.empty()) {
2696
2697    // Optimizing for varargs on Win64 is unlikely to be safe without
2698    // additional testing.
2699    if (Subtarget->isTargetWin64())
2700      return false;
2701
2702    SmallVector<CCValAssign, 16> ArgLocs;
2703    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2704		   getTargetMachine(), ArgLocs, *DAG.getContext());
2705
2706    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2707    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2708      if (!ArgLocs[i].isRegLoc())
2709        return false;
2710  }
2711
2712  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2713  // Therefore if it's not used by the call it is not safe to optimize this into
2714  // a sibcall.
2715  bool Unused = false;
2716  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2717    if (!Ins[i].Used) {
2718      Unused = true;
2719      break;
2720    }
2721  }
2722  if (Unused) {
2723    SmallVector<CCValAssign, 16> RVLocs;
2724    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2725		   getTargetMachine(), RVLocs, *DAG.getContext());
2726    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2727    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2728      CCValAssign &VA = RVLocs[i];
2729      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2730        return false;
2731    }
2732  }
2733
2734  // If the calling conventions do not match, then we'd better make sure the
2735  // results are returned in the same way as what the caller expects.
2736  if (!CCMatch) {
2737    SmallVector<CCValAssign, 16> RVLocs1;
2738    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2739		    getTargetMachine(), RVLocs1, *DAG.getContext());
2740    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2741
2742    SmallVector<CCValAssign, 16> RVLocs2;
2743    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2744		    getTargetMachine(), RVLocs2, *DAG.getContext());
2745    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2746
2747    if (RVLocs1.size() != RVLocs2.size())
2748      return false;
2749    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2750      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2751        return false;
2752      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2753        return false;
2754      if (RVLocs1[i].isRegLoc()) {
2755        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2756          return false;
2757      } else {
2758        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2759          return false;
2760      }
2761    }
2762  }
2763
2764  // If the callee takes no arguments then go on to check the results of the
2765  // call.
2766  if (!Outs.empty()) {
2767    // Check if stack adjustment is needed. For now, do not do this if any
2768    // argument is passed on the stack.
2769    SmallVector<CCValAssign, 16> ArgLocs;
2770    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2771		   getTargetMachine(), ArgLocs, *DAG.getContext());
2772
2773    // Allocate shadow area for Win64
2774    if (Subtarget->isTargetWin64()) {
2775      CCInfo.AllocateStack(32, 8);
2776    }
2777
2778    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2779    if (CCInfo.getNextStackOffset()) {
2780      MachineFunction &MF = DAG.getMachineFunction();
2781      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2782        return false;
2783
2784      // Check if the arguments are already laid out in the right way as
2785      // the caller's fixed stack objects.
2786      MachineFrameInfo *MFI = MF.getFrameInfo();
2787      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2788      const X86InstrInfo *TII =
2789        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2790      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2791        CCValAssign &VA = ArgLocs[i];
2792        SDValue Arg = OutVals[i];
2793        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2794        if (VA.getLocInfo() == CCValAssign::Indirect)
2795          return false;
2796        if (!VA.isRegLoc()) {
2797          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2798                                   MFI, MRI, TII))
2799            return false;
2800        }
2801      }
2802    }
2803
2804    // If the tailcall address may be in a register, then make sure it's
2805    // possible to register allocate for it. In 32-bit, the call address can
2806    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2807    // callee-saved registers are restored. These happen to be the same
2808    // registers used to pass 'inreg' arguments so watch out for those.
2809    if (!Subtarget->is64Bit() &&
2810        !isa<GlobalAddressSDNode>(Callee) &&
2811        !isa<ExternalSymbolSDNode>(Callee)) {
2812      unsigned NumInRegs = 0;
2813      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2814        CCValAssign &VA = ArgLocs[i];
2815        if (!VA.isRegLoc())
2816          continue;
2817        unsigned Reg = VA.getLocReg();
2818        switch (Reg) {
2819        default: break;
2820        case X86::EAX: case X86::EDX: case X86::ECX:
2821          if (++NumInRegs == 3)
2822            return false;
2823          break;
2824        }
2825      }
2826    }
2827  }
2828
2829  return true;
2830}
2831
2832FastISel *
2833X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2834  return X86::createFastISel(funcInfo);
2835}
2836
2837
2838//===----------------------------------------------------------------------===//
2839//                           Other Lowering Hooks
2840//===----------------------------------------------------------------------===//
2841
2842static bool MayFoldLoad(SDValue Op) {
2843  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2844}
2845
2846static bool MayFoldIntoStore(SDValue Op) {
2847  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2848}
2849
2850static bool isTargetShuffle(unsigned Opcode) {
2851  switch(Opcode) {
2852  default: return false;
2853  case X86ISD::PSHUFD:
2854  case X86ISD::PSHUFHW:
2855  case X86ISD::PSHUFLW:
2856  case X86ISD::SHUFPD:
2857  case X86ISD::PALIGN:
2858  case X86ISD::SHUFPS:
2859  case X86ISD::MOVLHPS:
2860  case X86ISD::MOVLHPD:
2861  case X86ISD::MOVHLPS:
2862  case X86ISD::MOVLPS:
2863  case X86ISD::MOVLPD:
2864  case X86ISD::MOVSHDUP:
2865  case X86ISD::MOVSLDUP:
2866  case X86ISD::MOVDDUP:
2867  case X86ISD::MOVSS:
2868  case X86ISD::MOVSD:
2869  case X86ISD::UNPCKL:
2870  case X86ISD::UNPCKH:
2871  case X86ISD::VPERMILP:
2872  case X86ISD::VPERM2X128:
2873    return true;
2874  }
2875  return false;
2876}
2877
2878static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2879                                               SDValue V1, SelectionDAG &DAG) {
2880  switch(Opc) {
2881  default: llvm_unreachable("Unknown x86 shuffle node");
2882  case X86ISD::MOVSHDUP:
2883  case X86ISD::MOVSLDUP:
2884  case X86ISD::MOVDDUP:
2885    return DAG.getNode(Opc, dl, VT, V1);
2886  }
2887
2888  return SDValue();
2889}
2890
2891static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2892                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2893  switch(Opc) {
2894  default: llvm_unreachable("Unknown x86 shuffle node");
2895  case X86ISD::PSHUFD:
2896  case X86ISD::PSHUFHW:
2897  case X86ISD::PSHUFLW:
2898  case X86ISD::VPERMILP:
2899    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2900  }
2901
2902  return SDValue();
2903}
2904
2905static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2906               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2907  switch(Opc) {
2908  default: llvm_unreachable("Unknown x86 shuffle node");
2909  case X86ISD::PALIGN:
2910  case X86ISD::SHUFPD:
2911  case X86ISD::SHUFPS:
2912  case X86ISD::VPERM2X128:
2913    return DAG.getNode(Opc, dl, VT, V1, V2,
2914                       DAG.getConstant(TargetMask, MVT::i8));
2915  }
2916  return SDValue();
2917}
2918
2919static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2920                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2921  switch(Opc) {
2922  default: llvm_unreachable("Unknown x86 shuffle node");
2923  case X86ISD::MOVLHPS:
2924  case X86ISD::MOVLHPD:
2925  case X86ISD::MOVHLPS:
2926  case X86ISD::MOVLPS:
2927  case X86ISD::MOVLPD:
2928  case X86ISD::MOVSS:
2929  case X86ISD::MOVSD:
2930  case X86ISD::UNPCKL:
2931  case X86ISD::UNPCKH:
2932    return DAG.getNode(Opc, dl, VT, V1, V2);
2933  }
2934  return SDValue();
2935}
2936
2937SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2938  MachineFunction &MF = DAG.getMachineFunction();
2939  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2940  int ReturnAddrIndex = FuncInfo->getRAIndex();
2941
2942  if (ReturnAddrIndex == 0) {
2943    // Set up a frame object for the return address.
2944    uint64_t SlotSize = TD->getPointerSize();
2945    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2946                                                           false);
2947    FuncInfo->setRAIndex(ReturnAddrIndex);
2948  }
2949
2950  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2951}
2952
2953
2954bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2955                                       bool hasSymbolicDisplacement) {
2956  // Offset should fit into 32 bit immediate field.
2957  if (!isInt<32>(Offset))
2958    return false;
2959
2960  // If we don't have a symbolic displacement - we don't have any extra
2961  // restrictions.
2962  if (!hasSymbolicDisplacement)
2963    return true;
2964
2965  // FIXME: Some tweaks might be needed for medium code model.
2966  if (M != CodeModel::Small && M != CodeModel::Kernel)
2967    return false;
2968
2969  // For small code model we assume that latest object is 16MB before end of 31
2970  // bits boundary. We may also accept pretty large negative constants knowing
2971  // that all objects are in the positive half of address space.
2972  if (M == CodeModel::Small && Offset < 16*1024*1024)
2973    return true;
2974
2975  // For kernel code model we know that all object resist in the negative half
2976  // of 32bits address space. We may not accept negative offsets, since they may
2977  // be just off and we may accept pretty large positive ones.
2978  if (M == CodeModel::Kernel && Offset > 0)
2979    return true;
2980
2981  return false;
2982}
2983
2984/// isCalleePop - Determines whether the callee is required to pop its
2985/// own arguments. Callee pop is necessary to support tail calls.
2986bool X86::isCalleePop(CallingConv::ID CallingConv,
2987                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2988  if (IsVarArg)
2989    return false;
2990
2991  switch (CallingConv) {
2992  default:
2993    return false;
2994  case CallingConv::X86_StdCall:
2995    return !is64Bit;
2996  case CallingConv::X86_FastCall:
2997    return !is64Bit;
2998  case CallingConv::X86_ThisCall:
2999    return !is64Bit;
3000  case CallingConv::Fast:
3001    return TailCallOpt;
3002  case CallingConv::GHC:
3003    return TailCallOpt;
3004  }
3005}
3006
3007/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3008/// specific condition code, returning the condition code and the LHS/RHS of the
3009/// comparison to make.
3010static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3011                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3012  if (!isFP) {
3013    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3014      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3015        // X > -1   -> X == 0, jump !sign.
3016        RHS = DAG.getConstant(0, RHS.getValueType());
3017        return X86::COND_NS;
3018      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3019        // X < 0   -> X == 0, jump on sign.
3020        return X86::COND_S;
3021      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3022        // X < 1   -> X <= 0
3023        RHS = DAG.getConstant(0, RHS.getValueType());
3024        return X86::COND_LE;
3025      }
3026    }
3027
3028    switch (SetCCOpcode) {
3029    default: llvm_unreachable("Invalid integer condition!");
3030    case ISD::SETEQ:  return X86::COND_E;
3031    case ISD::SETGT:  return X86::COND_G;
3032    case ISD::SETGE:  return X86::COND_GE;
3033    case ISD::SETLT:  return X86::COND_L;
3034    case ISD::SETLE:  return X86::COND_LE;
3035    case ISD::SETNE:  return X86::COND_NE;
3036    case ISD::SETULT: return X86::COND_B;
3037    case ISD::SETUGT: return X86::COND_A;
3038    case ISD::SETULE: return X86::COND_BE;
3039    case ISD::SETUGE: return X86::COND_AE;
3040    }
3041  }
3042
3043  // First determine if it is required or is profitable to flip the operands.
3044
3045  // If LHS is a foldable load, but RHS is not, flip the condition.
3046  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3047      !ISD::isNON_EXTLoad(RHS.getNode())) {
3048    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3049    std::swap(LHS, RHS);
3050  }
3051
3052  switch (SetCCOpcode) {
3053  default: break;
3054  case ISD::SETOLT:
3055  case ISD::SETOLE:
3056  case ISD::SETUGT:
3057  case ISD::SETUGE:
3058    std::swap(LHS, RHS);
3059    break;
3060  }
3061
3062  // On a floating point condition, the flags are set as follows:
3063  // ZF  PF  CF   op
3064  //  0 | 0 | 0 | X > Y
3065  //  0 | 0 | 1 | X < Y
3066  //  1 | 0 | 0 | X == Y
3067  //  1 | 1 | 1 | unordered
3068  switch (SetCCOpcode) {
3069  default: llvm_unreachable("Condcode should be pre-legalized away");
3070  case ISD::SETUEQ:
3071  case ISD::SETEQ:   return X86::COND_E;
3072  case ISD::SETOLT:              // flipped
3073  case ISD::SETOGT:
3074  case ISD::SETGT:   return X86::COND_A;
3075  case ISD::SETOLE:              // flipped
3076  case ISD::SETOGE:
3077  case ISD::SETGE:   return X86::COND_AE;
3078  case ISD::SETUGT:              // flipped
3079  case ISD::SETULT:
3080  case ISD::SETLT:   return X86::COND_B;
3081  case ISD::SETUGE:              // flipped
3082  case ISD::SETULE:
3083  case ISD::SETLE:   return X86::COND_BE;
3084  case ISD::SETONE:
3085  case ISD::SETNE:   return X86::COND_NE;
3086  case ISD::SETUO:   return X86::COND_P;
3087  case ISD::SETO:    return X86::COND_NP;
3088  case ISD::SETOEQ:
3089  case ISD::SETUNE:  return X86::COND_INVALID;
3090  }
3091}
3092
3093/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3094/// code. Current x86 isa includes the following FP cmov instructions:
3095/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3096static bool hasFPCMov(unsigned X86CC) {
3097  switch (X86CC) {
3098  default:
3099    return false;
3100  case X86::COND_B:
3101  case X86::COND_BE:
3102  case X86::COND_E:
3103  case X86::COND_P:
3104  case X86::COND_A:
3105  case X86::COND_AE:
3106  case X86::COND_NE:
3107  case X86::COND_NP:
3108    return true;
3109  }
3110}
3111
3112/// isFPImmLegal - Returns true if the target can instruction select the
3113/// specified FP immediate natively. If false, the legalizer will
3114/// materialize the FP immediate as a load from a constant pool.
3115bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3116  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3117    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3118      return true;
3119  }
3120  return false;
3121}
3122
3123/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3124/// the specified range (L, H].
3125static bool isUndefOrInRange(int Val, int Low, int Hi) {
3126  return (Val < 0) || (Val >= Low && Val < Hi);
3127}
3128
3129/// isUndefOrInRange - Return true if every element in Mask, begining
3130/// from position Pos and ending in Pos+Size, falls within the specified
3131/// range (L, L+Pos]. or is undef.
3132static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3133                             int Pos, int Size, int Low, int Hi) {
3134  for (int i = Pos, e = Pos+Size; i != e; ++i)
3135    if (!isUndefOrInRange(Mask[i], Low, Hi))
3136      return false;
3137  return true;
3138}
3139
3140/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3141/// specified value.
3142static bool isUndefOrEqual(int Val, int CmpVal) {
3143  if (Val < 0 || Val == CmpVal)
3144    return true;
3145  return false;
3146}
3147
3148/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3149/// from position Pos and ending in Pos+Size, falls within the specified
3150/// sequential range (L, L+Pos]. or is undef.
3151static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3152                                       int Pos, int Size, int Low) {
3153  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3154    if (!isUndefOrEqual(Mask[i], Low))
3155      return false;
3156  return true;
3157}
3158
3159/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3160/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3161/// the second operand.
3162static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3163  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3164    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3165  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3166    return (Mask[0] < 2 && Mask[1] < 2);
3167  return false;
3168}
3169
3170bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3171  SmallVector<int, 8> M;
3172  N->getMask(M);
3173  return ::isPSHUFDMask(M, N->getValueType(0));
3174}
3175
3176/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3177/// is suitable for input to PSHUFHW.
3178static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3179  if (VT != MVT::v8i16)
3180    return false;
3181
3182  // Lower quadword copied in order or undef.
3183  for (int i = 0; i != 4; ++i)
3184    if (Mask[i] >= 0 && Mask[i] != i)
3185      return false;
3186
3187  // Upper quadword shuffled.
3188  for (int i = 4; i != 8; ++i)
3189    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3190      return false;
3191
3192  return true;
3193}
3194
3195bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3196  SmallVector<int, 8> M;
3197  N->getMask(M);
3198  return ::isPSHUFHWMask(M, N->getValueType(0));
3199}
3200
3201/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3202/// is suitable for input to PSHUFLW.
3203static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3204  if (VT != MVT::v8i16)
3205    return false;
3206
3207  // Upper quadword copied in order.
3208  for (int i = 4; i != 8; ++i)
3209    if (Mask[i] >= 0 && Mask[i] != i)
3210      return false;
3211
3212  // Lower quadword shuffled.
3213  for (int i = 0; i != 4; ++i)
3214    if (Mask[i] >= 4)
3215      return false;
3216
3217  return true;
3218}
3219
3220bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3221  SmallVector<int, 8> M;
3222  N->getMask(M);
3223  return ::isPSHUFLWMask(M, N->getValueType(0));
3224}
3225
3226/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3227/// is suitable for input to PALIGNR.
3228static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3229                          bool hasSSSE3OrAVX) {
3230  int i, e = VT.getVectorNumElements();
3231  if (VT.getSizeInBits() != 128)
3232    return false;
3233
3234  // Do not handle v2i64 / v2f64 shuffles with palignr.
3235  if (e < 4 || !hasSSSE3OrAVX)
3236    return false;
3237
3238  for (i = 0; i != e; ++i)
3239    if (Mask[i] >= 0)
3240      break;
3241
3242  // All undef, not a palignr.
3243  if (i == e)
3244    return false;
3245
3246  // Make sure we're shifting in the right direction.
3247  if (Mask[i] <= i)
3248    return false;
3249
3250  int s = Mask[i] - i;
3251
3252  // Check the rest of the elements to see if they are consecutive.
3253  for (++i; i != e; ++i) {
3254    int m = Mask[i];
3255    if (m >= 0 && m != s+i)
3256      return false;
3257  }
3258  return true;
3259}
3260
3261/// isVSHUFPYMask - Return true if the specified VECTOR_SHUFFLE operand
3262/// specifies a shuffle of elements that is suitable for input to 256-bit
3263/// VSHUFPSY.
3264static bool isVSHUFPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3265                          bool HasAVX, bool Commuted = false) {
3266  int NumElems = VT.getVectorNumElements();
3267
3268  if (!HasAVX || VT.getSizeInBits() != 256)
3269    return false;
3270
3271  if (NumElems != 4 && NumElems != 8)
3272    return false;
3273
3274  // VSHUFPSY divides the resulting vector into 4 chunks.
3275  // The sources are also splitted into 4 chunks, and each destination
3276  // chunk must come from a different source chunk.
3277  //
3278  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3279  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3280  //
3281  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3282  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3283  //
3284  // VSHUFPDY divides the resulting vector into 4 chunks.
3285  // The sources are also splitted into 4 chunks, and each destination
3286  // chunk must come from a different source chunk.
3287  //
3288  //  SRC1 =>      X3       X2       X1       X0
3289  //  SRC2 =>      Y3       Y2       Y1       Y0
3290  //
3291  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3292  //
3293  unsigned QuarterSize = NumElems/4;
3294  unsigned HalfSize = QuarterSize*2;
3295  for (unsigned l = 0; l != 2; ++l) {
3296    unsigned LaneStart = l*HalfSize;
3297    for (unsigned s = 0; s != 2; ++s) {
3298      unsigned QuarterStart = s*QuarterSize;
3299      unsigned Src = (Commuted) ? (1-s) : s;
3300      unsigned SrcStart = Src*NumElems + LaneStart;
3301      for (unsigned i = 0; i != QuarterSize; ++i) {
3302        int Idx = Mask[i+QuarterStart+LaneStart];
3303        if (!isUndefOrInRange(Idx, SrcStart, SrcStart+HalfSize))
3304          return false;
3305        // For VSHUFPSY, the mask of the second half must be the same as the first
3306        // but with the appropriate offsets. This works in the same way as
3307        // VPERMILPS works with masks.
3308        if (NumElems == 4 || l == 0 || Mask[i+QuarterStart] < 0)
3309          continue;
3310        if (!isUndefOrEqual(Idx, Mask[i+QuarterStart]+HalfSize))
3311          return false;
3312      }
3313    }
3314  }
3315
3316  return true;
3317}
3318
3319/// getShuffleVSHUFPYImmediate - Return the appropriate immediate to shuffle
3320/// the specified VECTOR_MASK mask with VSHUFPSY/VSHUFPDY instructions.
3321static unsigned getShuffleVSHUFPYImmediate(SDNode *N) {
3322  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3323  EVT VT = SVOp->getValueType(0);
3324  int NumElems = VT.getVectorNumElements();
3325
3326  assert(VT.getSizeInBits() == 256 && "Only supports 256-bit types");
3327  assert((NumElems == 4 || NumElems == 8) && "Only supports v4 and v8 types");
3328
3329  int HalfSize = NumElems/2;
3330  unsigned Mul = (NumElems == 8) ? 2 : 1;
3331  unsigned Mask = 0;
3332  for (int i = 0; i != NumElems; ++i) {
3333    int Elt = SVOp->getMaskElt(i);
3334    if (Elt < 0)
3335      continue;
3336    Elt %= HalfSize;
3337    unsigned Shamt = i;
3338    // For VSHUFPSY, the mask of the first half must be equal to the second one.
3339    if (NumElems == 8) Shamt %= HalfSize;
3340    Mask |= Elt << (Shamt*Mul);
3341  }
3342
3343  return Mask;
3344}
3345
3346/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3347/// the two vector operands have swapped position.
3348static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3349                                     unsigned NumElems) {
3350  for (unsigned i = 0; i != NumElems; ++i) {
3351    int idx = Mask[i];
3352    if (idx < 0)
3353      continue;
3354    else if (idx < (int)NumElems)
3355      Mask[i] = idx + NumElems;
3356    else
3357      Mask[i] = idx - NumElems;
3358  }
3359}
3360
3361/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3362/// specifies a shuffle of elements that is suitable for input to 128-bit
3363/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3364/// reverse of what x86 shuffles want.
3365static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3366                        bool Commuted = false) {
3367  unsigned NumElems = VT.getVectorNumElements();
3368
3369  if (VT.getSizeInBits() != 128)
3370    return false;
3371
3372  if (NumElems != 2 && NumElems != 4)
3373    return false;
3374
3375  unsigned Half = NumElems / 2;
3376  unsigned SrcStart = Commuted ? NumElems : 0;
3377  for (unsigned i = 0; i != Half; ++i)
3378    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3379      return false;
3380  SrcStart = Commuted ? 0 : NumElems;
3381  for (unsigned i = Half; i != NumElems; ++i)
3382    if (!isUndefOrInRange(Mask[i], SrcStart, SrcStart+NumElems))
3383      return false;
3384
3385  return true;
3386}
3387
3388bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3389  SmallVector<int, 8> M;
3390  N->getMask(M);
3391  return ::isSHUFPMask(M, N->getValueType(0));
3392}
3393
3394/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3395/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3396bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3397  EVT VT = N->getValueType(0);
3398  unsigned NumElems = VT.getVectorNumElements();
3399
3400  if (VT.getSizeInBits() != 128)
3401    return false;
3402
3403  if (NumElems != 4)
3404    return false;
3405
3406  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3407  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3408         isUndefOrEqual(N->getMaskElt(1), 7) &&
3409         isUndefOrEqual(N->getMaskElt(2), 2) &&
3410         isUndefOrEqual(N->getMaskElt(3), 3);
3411}
3412
3413/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3414/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3415/// <2, 3, 2, 3>
3416bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3417  EVT VT = N->getValueType(0);
3418  unsigned NumElems = VT.getVectorNumElements();
3419
3420  if (VT.getSizeInBits() != 128)
3421    return false;
3422
3423  if (NumElems != 4)
3424    return false;
3425
3426  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3427         isUndefOrEqual(N->getMaskElt(1), 3) &&
3428         isUndefOrEqual(N->getMaskElt(2), 2) &&
3429         isUndefOrEqual(N->getMaskElt(3), 3);
3430}
3431
3432/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3433/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3434bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3435  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3436
3437  if (NumElems != 2 && NumElems != 4)
3438    return false;
3439
3440  for (unsigned i = 0; i < NumElems/2; ++i)
3441    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3442      return false;
3443
3444  for (unsigned i = NumElems/2; i < NumElems; ++i)
3445    if (!isUndefOrEqual(N->getMaskElt(i), i))
3446      return false;
3447
3448  return true;
3449}
3450
3451/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3452/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3453bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3454  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3455
3456  if ((NumElems != 2 && NumElems != 4)
3457      || N->getValueType(0).getSizeInBits() > 128)
3458    return false;
3459
3460  for (unsigned i = 0; i < NumElems/2; ++i)
3461    if (!isUndefOrEqual(N->getMaskElt(i), i))
3462      return false;
3463
3464  for (unsigned i = 0; i < NumElems/2; ++i)
3465    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3466      return false;
3467
3468  return true;
3469}
3470
3471/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3472/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3473static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3474                         bool HasAVX2, bool V2IsSplat = false) {
3475  unsigned NumElts = VT.getVectorNumElements();
3476
3477  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3478         "Unsupported vector type for unpckh");
3479
3480  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3481      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3482    return false;
3483
3484  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3485  // independently on 128-bit lanes.
3486  unsigned NumLanes = VT.getSizeInBits()/128;
3487  unsigned NumLaneElts = NumElts/NumLanes;
3488
3489  for (unsigned l = 0; l != NumLanes; ++l) {
3490    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3491         i != (l+1)*NumLaneElts;
3492         i += 2, ++j) {
3493      int BitI  = Mask[i];
3494      int BitI1 = Mask[i+1];
3495      if (!isUndefOrEqual(BitI, j))
3496        return false;
3497      if (V2IsSplat) {
3498        if (!isUndefOrEqual(BitI1, NumElts))
3499          return false;
3500      } else {
3501        if (!isUndefOrEqual(BitI1, j + NumElts))
3502          return false;
3503      }
3504    }
3505  }
3506
3507  return true;
3508}
3509
3510bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3511  SmallVector<int, 8> M;
3512  N->getMask(M);
3513  return ::isUNPCKLMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3514}
3515
3516/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3517/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3518static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3519                         bool HasAVX2, bool V2IsSplat = false) {
3520  unsigned NumElts = VT.getVectorNumElements();
3521
3522  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3523         "Unsupported vector type for unpckh");
3524
3525  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3526      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3527    return false;
3528
3529  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3530  // independently on 128-bit lanes.
3531  unsigned NumLanes = VT.getSizeInBits()/128;
3532  unsigned NumLaneElts = NumElts/NumLanes;
3533
3534  for (unsigned l = 0; l != NumLanes; ++l) {
3535    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3536         i != (l+1)*NumLaneElts; i += 2, ++j) {
3537      int BitI  = Mask[i];
3538      int BitI1 = Mask[i+1];
3539      if (!isUndefOrEqual(BitI, j))
3540        return false;
3541      if (V2IsSplat) {
3542        if (isUndefOrEqual(BitI1, NumElts))
3543          return false;
3544      } else {
3545        if (!isUndefOrEqual(BitI1, j+NumElts))
3546          return false;
3547      }
3548    }
3549  }
3550  return true;
3551}
3552
3553bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3554  SmallVector<int, 8> M;
3555  N->getMask(M);
3556  return ::isUNPCKHMask(M, N->getValueType(0), HasAVX2, V2IsSplat);
3557}
3558
3559/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3560/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3561/// <0, 0, 1, 1>
3562static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3563                                  bool HasAVX2) {
3564  unsigned NumElts = VT.getVectorNumElements();
3565
3566  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3567         "Unsupported vector type for unpckh");
3568
3569  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3570      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3571    return false;
3572
3573  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3574  // FIXME: Need a better way to get rid of this, there's no latency difference
3575  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3576  // the former later. We should also remove the "_undef" special mask.
3577  if (NumElts == 4 && VT.getSizeInBits() == 256)
3578    return false;
3579
3580  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3581  // independently on 128-bit lanes.
3582  unsigned NumLanes = VT.getSizeInBits()/128;
3583  unsigned NumLaneElts = NumElts/NumLanes;
3584
3585  for (unsigned l = 0; l != NumLanes; ++l) {
3586    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3587         i != (l+1)*NumLaneElts;
3588         i += 2, ++j) {
3589      int BitI  = Mask[i];
3590      int BitI1 = Mask[i+1];
3591
3592      if (!isUndefOrEqual(BitI, j))
3593        return false;
3594      if (!isUndefOrEqual(BitI1, j))
3595        return false;
3596    }
3597  }
3598
3599  return true;
3600}
3601
3602bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3603  SmallVector<int, 8> M;
3604  N->getMask(M);
3605  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3606}
3607
3608/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3609/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3610/// <2, 2, 3, 3>
3611static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3612                                  bool HasAVX2) {
3613  unsigned NumElts = VT.getVectorNumElements();
3614
3615  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3616         "Unsupported vector type for unpckh");
3617
3618  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3619      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3620    return false;
3621
3622  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3623  // independently on 128-bit lanes.
3624  unsigned NumLanes = VT.getSizeInBits()/128;
3625  unsigned NumLaneElts = NumElts/NumLanes;
3626
3627  for (unsigned l = 0; l != NumLanes; ++l) {
3628    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3629         i != (l+1)*NumLaneElts; i += 2, ++j) {
3630      int BitI  = Mask[i];
3631      int BitI1 = Mask[i+1];
3632      if (!isUndefOrEqual(BitI, j))
3633        return false;
3634      if (!isUndefOrEqual(BitI1, j))
3635        return false;
3636    }
3637  }
3638  return true;
3639}
3640
3641bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3642  SmallVector<int, 8> M;
3643  N->getMask(M);
3644  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0), HasAVX2);
3645}
3646
3647/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3648/// specifies a shuffle of elements that is suitable for input to MOVSS,
3649/// MOVSD, and MOVD, i.e. setting the lowest element.
3650static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3651  if (VT.getVectorElementType().getSizeInBits() < 32)
3652    return false;
3653
3654  int NumElts = VT.getVectorNumElements();
3655
3656  if (!isUndefOrEqual(Mask[0], NumElts))
3657    return false;
3658
3659  for (int i = 1; i < NumElts; ++i)
3660    if (!isUndefOrEqual(Mask[i], i))
3661      return false;
3662
3663  return true;
3664}
3665
3666bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3667  SmallVector<int, 8> M;
3668  N->getMask(M);
3669  return ::isMOVLMask(M, N->getValueType(0));
3670}
3671
3672/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3673/// as permutations between 128-bit chunks or halves. As an example: this
3674/// shuffle bellow:
3675///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3676/// The first half comes from the second half of V1 and the second half from the
3677/// the second half of V2.
3678static bool isVPERM2X128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3679                             bool HasAVX) {
3680  if (!HasAVX || VT.getSizeInBits() != 256)
3681    return false;
3682
3683  // The shuffle result is divided into half A and half B. In total the two
3684  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3685  // B must come from C, D, E or F.
3686  int HalfSize = VT.getVectorNumElements()/2;
3687  bool MatchA = false, MatchB = false;
3688
3689  // Check if A comes from one of C, D, E, F.
3690  for (int Half = 0; Half < 4; ++Half) {
3691    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3692      MatchA = true;
3693      break;
3694    }
3695  }
3696
3697  // Check if B comes from one of C, D, E, F.
3698  for (int Half = 0; Half < 4; ++Half) {
3699    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3700      MatchB = true;
3701      break;
3702    }
3703  }
3704
3705  return MatchA && MatchB;
3706}
3707
3708/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3709/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3710static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3711  EVT VT = SVOp->getValueType(0);
3712
3713  int HalfSize = VT.getVectorNumElements()/2;
3714
3715  int FstHalf = 0, SndHalf = 0;
3716  for (int i = 0; i < HalfSize; ++i) {
3717    if (SVOp->getMaskElt(i) > 0) {
3718      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3719      break;
3720    }
3721  }
3722  for (int i = HalfSize; i < HalfSize*2; ++i) {
3723    if (SVOp->getMaskElt(i) > 0) {
3724      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3725      break;
3726    }
3727  }
3728
3729  return (FstHalf | (SndHalf << 4));
3730}
3731
3732/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3733/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3734/// Note that VPERMIL mask matching is different depending whether theunderlying
3735/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3736/// to the same elements of the low, but to the higher half of the source.
3737/// In VPERMILPD the two lanes could be shuffled independently of each other
3738/// with the same restriction that lanes can't be crossed.
3739static bool isVPERMILPMask(const SmallVectorImpl<int> &Mask, EVT VT,
3740                           bool HasAVX) {
3741  int NumElts = VT.getVectorNumElements();
3742  int NumLanes = VT.getSizeInBits()/128;
3743
3744  if (!HasAVX)
3745    return false;
3746
3747  // Only match 256-bit with 32/64-bit types
3748  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3749    return false;
3750
3751  int LaneSize = NumElts/NumLanes;
3752  for (int l = 0; l != NumLanes; ++l) {
3753    int LaneStart = l*LaneSize;
3754    for (int i = 0; i != LaneSize; ++i) {
3755      if (!isUndefOrInRange(Mask[i+LaneStart], LaneStart, LaneStart+LaneSize))
3756        return false;
3757      if (NumElts == 4 || l == 0)
3758        continue;
3759      // VPERMILPS handling
3760      if (Mask[i] < 0)
3761        continue;
3762      if (!isUndefOrEqual(Mask[i+LaneStart], Mask[i]+LaneSize))
3763        return false;
3764    }
3765  }
3766
3767  return true;
3768}
3769
3770/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3771/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3772static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3773  EVT VT = SVOp->getValueType(0);
3774
3775  int NumElts = VT.getVectorNumElements();
3776  int NumLanes = VT.getSizeInBits()/128;
3777  int LaneSize = NumElts/NumLanes;
3778
3779  // Although the mask is equal for both lanes do it twice to get the cases
3780  // where a mask will match because the same mask element is undef on the
3781  // first half but valid on the second. This would get pathological cases
3782  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3783  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3784  unsigned Mask = 0;
3785  for (int i = 0; i != NumElts; ++i) {
3786    int MaskElt = SVOp->getMaskElt(i);
3787    if (MaskElt < 0)
3788      continue;
3789    MaskElt %= LaneSize;
3790    unsigned Shamt = i;
3791    // VPERMILPSY, the mask of the first half must be equal to the second one
3792    if (NumElts == 8) Shamt %= LaneSize;
3793    Mask |= MaskElt << (Shamt*Shift);
3794  }
3795
3796  return Mask;
3797}
3798
3799/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3800/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3801/// element of vector 2 and the other elements to come from vector 1 in order.
3802static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3803                               bool V2IsSplat = false, bool V2IsUndef = false) {
3804  int NumOps = VT.getVectorNumElements();
3805  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3806    return false;
3807
3808  if (!isUndefOrEqual(Mask[0], 0))
3809    return false;
3810
3811  for (int i = 1; i < NumOps; ++i)
3812    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3813          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3814          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3815      return false;
3816
3817  return true;
3818}
3819
3820static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3821                           bool V2IsUndef = false) {
3822  SmallVector<int, 8> M;
3823  N->getMask(M);
3824  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3825}
3826
3827/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3828/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3829/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3830bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3831                         const X86Subtarget *Subtarget) {
3832  if (!Subtarget->hasSSE3orAVX())
3833    return false;
3834
3835  // The second vector must be undef
3836  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3837    return false;
3838
3839  EVT VT = N->getValueType(0);
3840  unsigned NumElems = VT.getVectorNumElements();
3841
3842  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3843      (VT.getSizeInBits() == 256 && NumElems != 8))
3844    return false;
3845
3846  // "i+1" is the value the indexed mask element must have
3847  for (unsigned i = 0; i < NumElems; i += 2)
3848    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3849        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3850      return false;
3851
3852  return true;
3853}
3854
3855/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3856/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3857/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3858bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3859                         const X86Subtarget *Subtarget) {
3860  if (!Subtarget->hasSSE3orAVX())
3861    return false;
3862
3863  // The second vector must be undef
3864  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3865    return false;
3866
3867  EVT VT = N->getValueType(0);
3868  unsigned NumElems = VT.getVectorNumElements();
3869
3870  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3871      (VT.getSizeInBits() == 256 && NumElems != 8))
3872    return false;
3873
3874  // "i" is the value the indexed mask element must have
3875  for (unsigned i = 0; i < NumElems; i += 2)
3876    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3877        !isUndefOrEqual(N->getMaskElt(i+1), i))
3878      return false;
3879
3880  return true;
3881}
3882
3883/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3884/// specifies a shuffle of elements that is suitable for input to 256-bit
3885/// version of MOVDDUP.
3886static bool isMOVDDUPYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3887                           bool HasAVX) {
3888  int NumElts = VT.getVectorNumElements();
3889
3890  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3891    return false;
3892
3893  for (int i = 0; i != NumElts/2; ++i)
3894    if (!isUndefOrEqual(Mask[i], 0))
3895      return false;
3896  for (int i = NumElts/2; i != NumElts; ++i)
3897    if (!isUndefOrEqual(Mask[i], NumElts/2))
3898      return false;
3899  return true;
3900}
3901
3902/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3903/// specifies a shuffle of elements that is suitable for input to 128-bit
3904/// version of MOVDDUP.
3905bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3906  EVT VT = N->getValueType(0);
3907
3908  if (VT.getSizeInBits() != 128)
3909    return false;
3910
3911  int e = VT.getVectorNumElements() / 2;
3912  for (int i = 0; i < e; ++i)
3913    if (!isUndefOrEqual(N->getMaskElt(i), i))
3914      return false;
3915  for (int i = 0; i < e; ++i)
3916    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3917      return false;
3918  return true;
3919}
3920
3921/// isVEXTRACTF128Index - Return true if the specified
3922/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3923/// suitable for input to VEXTRACTF128.
3924bool X86::isVEXTRACTF128Index(SDNode *N) {
3925  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3926    return false;
3927
3928  // The index should be aligned on a 128-bit boundary.
3929  uint64_t Index =
3930    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3931
3932  unsigned VL = N->getValueType(0).getVectorNumElements();
3933  unsigned VBits = N->getValueType(0).getSizeInBits();
3934  unsigned ElSize = VBits / VL;
3935  bool Result = (Index * ElSize) % 128 == 0;
3936
3937  return Result;
3938}
3939
3940/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3941/// operand specifies a subvector insert that is suitable for input to
3942/// VINSERTF128.
3943bool X86::isVINSERTF128Index(SDNode *N) {
3944  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3945    return false;
3946
3947  // The index should be aligned on a 128-bit boundary.
3948  uint64_t Index =
3949    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3950
3951  unsigned VL = N->getValueType(0).getVectorNumElements();
3952  unsigned VBits = N->getValueType(0).getSizeInBits();
3953  unsigned ElSize = VBits / VL;
3954  bool Result = (Index * ElSize) % 128 == 0;
3955
3956  return Result;
3957}
3958
3959/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3960/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3961unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3962  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3963  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3964
3965  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3966  unsigned Mask = 0;
3967  for (int i = 0; i < NumOperands; ++i) {
3968    int Val = SVOp->getMaskElt(NumOperands-i-1);
3969    if (Val < 0) Val = 0;
3970    if (Val >= NumOperands) Val -= NumOperands;
3971    Mask |= Val;
3972    if (i != NumOperands - 1)
3973      Mask <<= Shift;
3974  }
3975  return Mask;
3976}
3977
3978/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3979/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3980unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3981  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3982  unsigned Mask = 0;
3983  // 8 nodes, but we only care about the last 4.
3984  for (unsigned i = 7; i >= 4; --i) {
3985    int Val = SVOp->getMaskElt(i);
3986    if (Val >= 0)
3987      Mask |= (Val - 4);
3988    if (i != 4)
3989      Mask <<= 2;
3990  }
3991  return Mask;
3992}
3993
3994/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3995/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3996unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3997  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3998  unsigned Mask = 0;
3999  // 8 nodes, but we only care about the first 4.
4000  for (int i = 3; i >= 0; --i) {
4001    int Val = SVOp->getMaskElt(i);
4002    if (Val >= 0)
4003      Mask |= Val;
4004    if (i != 0)
4005      Mask <<= 2;
4006  }
4007  return Mask;
4008}
4009
4010/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4011/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4012static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4013  EVT VT = SVOp->getValueType(0);
4014  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4015  int Val = 0;
4016
4017  unsigned i, e;
4018  for (i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4019    Val = SVOp->getMaskElt(i);
4020    if (Val >= 0)
4021      break;
4022  }
4023  assert(Val - i > 0 && "PALIGNR imm should be positive");
4024  return (Val - i) * EltSize;
4025}
4026
4027/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4028/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4029/// instructions.
4030unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4031  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4032    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4033
4034  uint64_t Index =
4035    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4036
4037  EVT VecVT = N->getOperand(0).getValueType();
4038  EVT ElVT = VecVT.getVectorElementType();
4039
4040  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4041  return Index / NumElemsPerChunk;
4042}
4043
4044/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4045/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4046/// instructions.
4047unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4048  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4049    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4050
4051  uint64_t Index =
4052    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4053
4054  EVT VecVT = N->getValueType(0);
4055  EVT ElVT = VecVT.getVectorElementType();
4056
4057  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4058  return Index / NumElemsPerChunk;
4059}
4060
4061/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4062/// constant +0.0.
4063bool X86::isZeroNode(SDValue Elt) {
4064  return ((isa<ConstantSDNode>(Elt) &&
4065           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4066          (isa<ConstantFPSDNode>(Elt) &&
4067           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4068}
4069
4070/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4071/// their permute mask.
4072static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4073                                    SelectionDAG &DAG) {
4074  EVT VT = SVOp->getValueType(0);
4075  unsigned NumElems = VT.getVectorNumElements();
4076  SmallVector<int, 8> MaskVec;
4077
4078  for (unsigned i = 0; i != NumElems; ++i) {
4079    int idx = SVOp->getMaskElt(i);
4080    if (idx < 0)
4081      MaskVec.push_back(idx);
4082    else if (idx < (int)NumElems)
4083      MaskVec.push_back(idx + NumElems);
4084    else
4085      MaskVec.push_back(idx - NumElems);
4086  }
4087  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4088                              SVOp->getOperand(0), &MaskVec[0]);
4089}
4090
4091/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4092/// match movhlps. The lower half elements should come from upper half of
4093/// V1 (and in order), and the upper half elements should come from the upper
4094/// half of V2 (and in order).
4095static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4096  EVT VT = Op->getValueType(0);
4097  if (VT.getSizeInBits() != 128)
4098    return false;
4099  if (VT.getVectorNumElements() != 4)
4100    return false;
4101  for (unsigned i = 0, e = 2; i != e; ++i)
4102    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4103      return false;
4104  for (unsigned i = 2; i != 4; ++i)
4105    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4106      return false;
4107  return true;
4108}
4109
4110/// isScalarLoadToVector - Returns true if the node is a scalar load that
4111/// is promoted to a vector. It also returns the LoadSDNode by reference if
4112/// required.
4113static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4114  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4115    return false;
4116  N = N->getOperand(0).getNode();
4117  if (!ISD::isNON_EXTLoad(N))
4118    return false;
4119  if (LD)
4120    *LD = cast<LoadSDNode>(N);
4121  return true;
4122}
4123
4124// Test whether the given value is a vector value which will be legalized
4125// into a load.
4126static bool WillBeConstantPoolLoad(SDNode *N) {
4127  if (N->getOpcode() != ISD::BUILD_VECTOR)
4128    return false;
4129
4130  // Check for any non-constant elements.
4131  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4132    switch (N->getOperand(i).getNode()->getOpcode()) {
4133    case ISD::UNDEF:
4134    case ISD::ConstantFP:
4135    case ISD::Constant:
4136      break;
4137    default:
4138      return false;
4139    }
4140
4141  // Vectors of all-zeros and all-ones are materialized with special
4142  // instructions rather than being loaded.
4143  return !ISD::isBuildVectorAllZeros(N) &&
4144         !ISD::isBuildVectorAllOnes(N);
4145}
4146
4147/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4148/// match movlp{s|d}. The lower half elements should come from lower half of
4149/// V1 (and in order), and the upper half elements should come from the upper
4150/// half of V2 (and in order). And since V1 will become the source of the
4151/// MOVLP, it must be either a vector load or a scalar load to vector.
4152static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4153                               ShuffleVectorSDNode *Op) {
4154  EVT VT = Op->getValueType(0);
4155  if (VT.getSizeInBits() != 128)
4156    return false;
4157
4158  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4159    return false;
4160  // Is V2 is a vector load, don't do this transformation. We will try to use
4161  // load folding shufps op.
4162  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4163    return false;
4164
4165  unsigned NumElems = VT.getVectorNumElements();
4166
4167  if (NumElems != 2 && NumElems != 4)
4168    return false;
4169  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4170    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4171      return false;
4172  for (unsigned i = NumElems/2; i != NumElems; ++i)
4173    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4174      return false;
4175  return true;
4176}
4177
4178/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4179/// all the same.
4180static bool isSplatVector(SDNode *N) {
4181  if (N->getOpcode() != ISD::BUILD_VECTOR)
4182    return false;
4183
4184  SDValue SplatValue = N->getOperand(0);
4185  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4186    if (N->getOperand(i) != SplatValue)
4187      return false;
4188  return true;
4189}
4190
4191/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4192/// to an zero vector.
4193/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4194static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4195  SDValue V1 = N->getOperand(0);
4196  SDValue V2 = N->getOperand(1);
4197  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4198  for (unsigned i = 0; i != NumElems; ++i) {
4199    int Idx = N->getMaskElt(i);
4200    if (Idx >= (int)NumElems) {
4201      unsigned Opc = V2.getOpcode();
4202      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4203        continue;
4204      if (Opc != ISD::BUILD_VECTOR ||
4205          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4206        return false;
4207    } else if (Idx >= 0) {
4208      unsigned Opc = V1.getOpcode();
4209      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4210        continue;
4211      if (Opc != ISD::BUILD_VECTOR ||
4212          !X86::isZeroNode(V1.getOperand(Idx)))
4213        return false;
4214    }
4215  }
4216  return true;
4217}
4218
4219/// getZeroVector - Returns a vector of specified type with all zero elements.
4220///
4221static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4222                             DebugLoc dl) {
4223  assert(VT.isVector() && "Expected a vector type");
4224
4225  // Always build SSE zero vectors as <4 x i32> bitcasted
4226  // to their dest type. This ensures they get CSE'd.
4227  SDValue Vec;
4228  if (VT.getSizeInBits() == 128) {  // SSE
4229    if (HasXMMInt) {  // SSE2
4230      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4231      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4232    } else { // SSE1
4233      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4234      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4235    }
4236  } else if (VT.getSizeInBits() == 256) { // AVX
4237    // 256-bit logic and arithmetic instructions in AVX are
4238    // all floating-point, no support for integer ops. Default
4239    // to emitting fp zeroed vectors then.
4240    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4241    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4242    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4243  }
4244  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4245}
4246
4247/// getOnesVector - Returns a vector of specified type with all bits set.
4248/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4249/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4250/// Then bitcast to their original type, ensuring they get CSE'd.
4251static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4252                             DebugLoc dl) {
4253  assert(VT.isVector() && "Expected a vector type");
4254  assert((VT.is128BitVector() || VT.is256BitVector())
4255         && "Expected a 128-bit or 256-bit vector type");
4256
4257  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4258  SDValue Vec;
4259  if (VT.getSizeInBits() == 256) {
4260    if (HasAVX2) { // AVX2
4261      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4262      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4263    } else { // AVX
4264      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4265      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4266                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4267      Vec = Insert128BitVector(InsV, Vec,
4268                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4269    }
4270  } else {
4271    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4272  }
4273
4274  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4275}
4276
4277/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4278/// that point to V2 points to its first element.
4279static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4280  EVT VT = SVOp->getValueType(0);
4281  unsigned NumElems = VT.getVectorNumElements();
4282
4283  bool Changed = false;
4284  SmallVector<int, 8> MaskVec;
4285  SVOp->getMask(MaskVec);
4286
4287  for (unsigned i = 0; i != NumElems; ++i) {
4288    if (MaskVec[i] > (int)NumElems) {
4289      MaskVec[i] = NumElems;
4290      Changed = true;
4291    }
4292  }
4293  if (Changed)
4294    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4295                                SVOp->getOperand(1), &MaskVec[0]);
4296  return SDValue(SVOp, 0);
4297}
4298
4299/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4300/// operation of specified width.
4301static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4302                       SDValue V2) {
4303  unsigned NumElems = VT.getVectorNumElements();
4304  SmallVector<int, 8> Mask;
4305  Mask.push_back(NumElems);
4306  for (unsigned i = 1; i != NumElems; ++i)
4307    Mask.push_back(i);
4308  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4309}
4310
4311/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4312static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4313                          SDValue V2) {
4314  unsigned NumElems = VT.getVectorNumElements();
4315  SmallVector<int, 8> Mask;
4316  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4317    Mask.push_back(i);
4318    Mask.push_back(i + NumElems);
4319  }
4320  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4321}
4322
4323/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4324static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4325                          SDValue V2) {
4326  unsigned NumElems = VT.getVectorNumElements();
4327  unsigned Half = NumElems/2;
4328  SmallVector<int, 8> Mask;
4329  for (unsigned i = 0; i != Half; ++i) {
4330    Mask.push_back(i + Half);
4331    Mask.push_back(i + NumElems + Half);
4332  }
4333  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4334}
4335
4336// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4337// a generic shuffle instruction because the target has no such instructions.
4338// Generate shuffles which repeat i16 and i8 several times until they can be
4339// represented by v4f32 and then be manipulated by target suported shuffles.
4340static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4341  EVT VT = V.getValueType();
4342  int NumElems = VT.getVectorNumElements();
4343  DebugLoc dl = V.getDebugLoc();
4344
4345  while (NumElems > 4) {
4346    if (EltNo < NumElems/2) {
4347      V = getUnpackl(DAG, dl, VT, V, V);
4348    } else {
4349      V = getUnpackh(DAG, dl, VT, V, V);
4350      EltNo -= NumElems/2;
4351    }
4352    NumElems >>= 1;
4353  }
4354  return V;
4355}
4356
4357/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4358static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4359  EVT VT = V.getValueType();
4360  DebugLoc dl = V.getDebugLoc();
4361  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4362         && "Vector size not supported");
4363
4364  if (VT.getSizeInBits() == 128) {
4365    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4366    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4367    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4368                             &SplatMask[0]);
4369  } else {
4370    // To use VPERMILPS to splat scalars, the second half of indicies must
4371    // refer to the higher part, which is a duplication of the lower one,
4372    // because VPERMILPS can only handle in-lane permutations.
4373    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4374                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4375
4376    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4377    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4378                             &SplatMask[0]);
4379  }
4380
4381  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4382}
4383
4384/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4385static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4386  EVT SrcVT = SV->getValueType(0);
4387  SDValue V1 = SV->getOperand(0);
4388  DebugLoc dl = SV->getDebugLoc();
4389
4390  int EltNo = SV->getSplatIndex();
4391  int NumElems = SrcVT.getVectorNumElements();
4392  unsigned Size = SrcVT.getSizeInBits();
4393
4394  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4395          "Unknown how to promote splat for type");
4396
4397  // Extract the 128-bit part containing the splat element and update
4398  // the splat element index when it refers to the higher register.
4399  if (Size == 256) {
4400    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4401    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4402    if (Idx > 0)
4403      EltNo -= NumElems/2;
4404  }
4405
4406  // All i16 and i8 vector types can't be used directly by a generic shuffle
4407  // instruction because the target has no such instruction. Generate shuffles
4408  // which repeat i16 and i8 several times until they fit in i32, and then can
4409  // be manipulated by target suported shuffles.
4410  EVT EltVT = SrcVT.getVectorElementType();
4411  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4412    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4413
4414  // Recreate the 256-bit vector and place the same 128-bit vector
4415  // into the low and high part. This is necessary because we want
4416  // to use VPERM* to shuffle the vectors
4417  if (Size == 256) {
4418    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4419                         DAG.getConstant(0, MVT::i32), DAG, dl);
4420    V1 = Insert128BitVector(InsV, V1,
4421               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4422  }
4423
4424  return getLegalSplat(DAG, V1, EltNo);
4425}
4426
4427/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4428/// vector of zero or undef vector.  This produces a shuffle where the low
4429/// element of V2 is swizzled into the zero/undef vector, landing at element
4430/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4431static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4432                                           bool isZero, bool HasXMMInt,
4433                                           SelectionDAG &DAG) {
4434  EVT VT = V2.getValueType();
4435  SDValue V1 = isZero
4436    ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4437  unsigned NumElems = VT.getVectorNumElements();
4438  SmallVector<int, 16> MaskVec;
4439  for (unsigned i = 0; i != NumElems; ++i)
4440    // If this is the insertion idx, put the low elt of V2 here.
4441    MaskVec.push_back(i == Idx ? NumElems : i);
4442  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4443}
4444
4445/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4446/// element of the result of the vector shuffle.
4447static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4448                                   unsigned Depth) {
4449  if (Depth == 6)
4450    return SDValue();  // Limit search depth.
4451
4452  SDValue V = SDValue(N, 0);
4453  EVT VT = V.getValueType();
4454  unsigned Opcode = V.getOpcode();
4455
4456  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4457  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4458    Index = SV->getMaskElt(Index);
4459
4460    if (Index < 0)
4461      return DAG.getUNDEF(VT.getVectorElementType());
4462
4463    int NumElems = VT.getVectorNumElements();
4464    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4465    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4466  }
4467
4468  // Recurse into target specific vector shuffles to find scalars.
4469  if (isTargetShuffle(Opcode)) {
4470    int NumElems = VT.getVectorNumElements();
4471    SmallVector<unsigned, 16> ShuffleMask;
4472    SDValue ImmN;
4473
4474    switch(Opcode) {
4475    case X86ISD::SHUFPS:
4476    case X86ISD::SHUFPD:
4477      ImmN = N->getOperand(N->getNumOperands()-1);
4478      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4479                      ShuffleMask);
4480      break;
4481    case X86ISD::UNPCKH:
4482      DecodeUNPCKHMask(VT, ShuffleMask);
4483      break;
4484    case X86ISD::UNPCKL:
4485      DecodeUNPCKLMask(VT, ShuffleMask);
4486      break;
4487    case X86ISD::MOVHLPS:
4488      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4489      break;
4490    case X86ISD::MOVLHPS:
4491      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4492      break;
4493    case X86ISD::PSHUFD:
4494      ImmN = N->getOperand(N->getNumOperands()-1);
4495      DecodePSHUFMask(NumElems,
4496                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4497                      ShuffleMask);
4498      break;
4499    case X86ISD::PSHUFHW:
4500      ImmN = N->getOperand(N->getNumOperands()-1);
4501      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4502                        ShuffleMask);
4503      break;
4504    case X86ISD::PSHUFLW:
4505      ImmN = N->getOperand(N->getNumOperands()-1);
4506      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4507                        ShuffleMask);
4508      break;
4509    case X86ISD::MOVSS:
4510    case X86ISD::MOVSD: {
4511      // The index 0 always comes from the first element of the second source,
4512      // this is why MOVSS and MOVSD are used in the first place. The other
4513      // elements come from the other positions of the first source vector.
4514      unsigned OpNum = (Index == 0) ? 1 : 0;
4515      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4516                                 Depth+1);
4517    }
4518    case X86ISD::VPERMILP:
4519      ImmN = N->getOperand(N->getNumOperands()-1);
4520      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4521                        ShuffleMask);
4522      break;
4523    case X86ISD::VPERM2X128:
4524      ImmN = N->getOperand(N->getNumOperands()-1);
4525      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4526                           ShuffleMask);
4527      break;
4528    case X86ISD::MOVDDUP:
4529    case X86ISD::MOVLHPD:
4530    case X86ISD::MOVLPD:
4531    case X86ISD::MOVLPS:
4532    case X86ISD::MOVSHDUP:
4533    case X86ISD::MOVSLDUP:
4534    case X86ISD::PALIGN:
4535      return SDValue(); // Not yet implemented.
4536    default:
4537      assert(0 && "unknown target shuffle node");
4538      return SDValue();
4539    }
4540
4541    Index = ShuffleMask[Index];
4542    if (Index < 0)
4543      return DAG.getUNDEF(VT.getVectorElementType());
4544
4545    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4546    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4547                               Depth+1);
4548  }
4549
4550  // Actual nodes that may contain scalar elements
4551  if (Opcode == ISD::BITCAST) {
4552    V = V.getOperand(0);
4553    EVT SrcVT = V.getValueType();
4554    unsigned NumElems = VT.getVectorNumElements();
4555
4556    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4557      return SDValue();
4558  }
4559
4560  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4561    return (Index == 0) ? V.getOperand(0)
4562                          : DAG.getUNDEF(VT.getVectorElementType());
4563
4564  if (V.getOpcode() == ISD::BUILD_VECTOR)
4565    return V.getOperand(Index);
4566
4567  return SDValue();
4568}
4569
4570/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4571/// shuffle operation which come from a consecutively from a zero. The
4572/// search can start in two different directions, from left or right.
4573static
4574unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4575                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4576  int i = 0;
4577
4578  while (i < NumElems) {
4579    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4580    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4581    if (!(Elt.getNode() &&
4582         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4583      break;
4584    ++i;
4585  }
4586
4587  return i;
4588}
4589
4590/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4591/// MaskE correspond consecutively to elements from one of the vector operands,
4592/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4593static
4594bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4595                              int OpIdx, int NumElems, unsigned &OpNum) {
4596  bool SeenV1 = false;
4597  bool SeenV2 = false;
4598
4599  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4600    int Idx = SVOp->getMaskElt(i);
4601    // Ignore undef indicies
4602    if (Idx < 0)
4603      continue;
4604
4605    if (Idx < NumElems)
4606      SeenV1 = true;
4607    else
4608      SeenV2 = true;
4609
4610    // Only accept consecutive elements from the same vector
4611    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4612      return false;
4613  }
4614
4615  OpNum = SeenV1 ? 0 : 1;
4616  return true;
4617}
4618
4619/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4620/// logical left shift of a vector.
4621static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4622                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4623  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4624  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4625              false /* check zeros from right */, DAG);
4626  unsigned OpSrc;
4627
4628  if (!NumZeros)
4629    return false;
4630
4631  // Considering the elements in the mask that are not consecutive zeros,
4632  // check if they consecutively come from only one of the source vectors.
4633  //
4634  //               V1 = {X, A, B, C}     0
4635  //                         \  \  \    /
4636  //   vector_shuffle V1, V2 <1, 2, 3, X>
4637  //
4638  if (!isShuffleMaskConsecutive(SVOp,
4639            0,                   // Mask Start Index
4640            NumElems-NumZeros-1, // Mask End Index
4641            NumZeros,            // Where to start looking in the src vector
4642            NumElems,            // Number of elements in vector
4643            OpSrc))              // Which source operand ?
4644    return false;
4645
4646  isLeft = false;
4647  ShAmt = NumZeros;
4648  ShVal = SVOp->getOperand(OpSrc);
4649  return true;
4650}
4651
4652/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4653/// logical left shift of a vector.
4654static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4655                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4656  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4657  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4658              true /* check zeros from left */, DAG);
4659  unsigned OpSrc;
4660
4661  if (!NumZeros)
4662    return false;
4663
4664  // Considering the elements in the mask that are not consecutive zeros,
4665  // check if they consecutively come from only one of the source vectors.
4666  //
4667  //                           0    { A, B, X, X } = V2
4668  //                          / \    /  /
4669  //   vector_shuffle V1, V2 <X, X, 4, 5>
4670  //
4671  if (!isShuffleMaskConsecutive(SVOp,
4672            NumZeros,     // Mask Start Index
4673            NumElems-1,   // Mask End Index
4674            0,            // Where to start looking in the src vector
4675            NumElems,     // Number of elements in vector
4676            OpSrc))       // Which source operand ?
4677    return false;
4678
4679  isLeft = true;
4680  ShAmt = NumZeros;
4681  ShVal = SVOp->getOperand(OpSrc);
4682  return true;
4683}
4684
4685/// isVectorShift - Returns true if the shuffle can be implemented as a
4686/// logical left or right shift of a vector.
4687static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4688                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4689  // Although the logic below support any bitwidth size, there are no
4690  // shift instructions which handle more than 128-bit vectors.
4691  if (SVOp->getValueType(0).getSizeInBits() > 128)
4692    return false;
4693
4694  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4695      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4696    return true;
4697
4698  return false;
4699}
4700
4701/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4702///
4703static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4704                                       unsigned NumNonZero, unsigned NumZero,
4705                                       SelectionDAG &DAG,
4706                                       const TargetLowering &TLI) {
4707  if (NumNonZero > 8)
4708    return SDValue();
4709
4710  DebugLoc dl = Op.getDebugLoc();
4711  SDValue V(0, 0);
4712  bool First = true;
4713  for (unsigned i = 0; i < 16; ++i) {
4714    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4715    if (ThisIsNonZero && First) {
4716      if (NumZero)
4717        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4718      else
4719        V = DAG.getUNDEF(MVT::v8i16);
4720      First = false;
4721    }
4722
4723    if ((i & 1) != 0) {
4724      SDValue ThisElt(0, 0), LastElt(0, 0);
4725      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4726      if (LastIsNonZero) {
4727        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4728                              MVT::i16, Op.getOperand(i-1));
4729      }
4730      if (ThisIsNonZero) {
4731        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4732        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4733                              ThisElt, DAG.getConstant(8, MVT::i8));
4734        if (LastIsNonZero)
4735          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4736      } else
4737        ThisElt = LastElt;
4738
4739      if (ThisElt.getNode())
4740        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4741                        DAG.getIntPtrConstant(i/2));
4742    }
4743  }
4744
4745  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4746}
4747
4748/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4749///
4750static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4751                                     unsigned NumNonZero, unsigned NumZero,
4752                                     SelectionDAG &DAG,
4753                                     const TargetLowering &TLI) {
4754  if (NumNonZero > 4)
4755    return SDValue();
4756
4757  DebugLoc dl = Op.getDebugLoc();
4758  SDValue V(0, 0);
4759  bool First = true;
4760  for (unsigned i = 0; i < 8; ++i) {
4761    bool isNonZero = (NonZeros & (1 << i)) != 0;
4762    if (isNonZero) {
4763      if (First) {
4764        if (NumZero)
4765          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4766        else
4767          V = DAG.getUNDEF(MVT::v8i16);
4768        First = false;
4769      }
4770      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4771                      MVT::v8i16, V, Op.getOperand(i),
4772                      DAG.getIntPtrConstant(i));
4773    }
4774  }
4775
4776  return V;
4777}
4778
4779/// getVShift - Return a vector logical shift node.
4780///
4781static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4782                         unsigned NumBits, SelectionDAG &DAG,
4783                         const TargetLowering &TLI, DebugLoc dl) {
4784  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4785  EVT ShVT = MVT::v2i64;
4786  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4787  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4788  return DAG.getNode(ISD::BITCAST, dl, VT,
4789                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4790                             DAG.getConstant(NumBits,
4791                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4792}
4793
4794SDValue
4795X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4796                                          SelectionDAG &DAG) const {
4797
4798  // Check if the scalar load can be widened into a vector load. And if
4799  // the address is "base + cst" see if the cst can be "absorbed" into
4800  // the shuffle mask.
4801  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4802    SDValue Ptr = LD->getBasePtr();
4803    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4804      return SDValue();
4805    EVT PVT = LD->getValueType(0);
4806    if (PVT != MVT::i32 && PVT != MVT::f32)
4807      return SDValue();
4808
4809    int FI = -1;
4810    int64_t Offset = 0;
4811    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4812      FI = FINode->getIndex();
4813      Offset = 0;
4814    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4815               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4816      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4817      Offset = Ptr.getConstantOperandVal(1);
4818      Ptr = Ptr.getOperand(0);
4819    } else {
4820      return SDValue();
4821    }
4822
4823    // FIXME: 256-bit vector instructions don't require a strict alignment,
4824    // improve this code to support it better.
4825    unsigned RequiredAlign = VT.getSizeInBits()/8;
4826    SDValue Chain = LD->getChain();
4827    // Make sure the stack object alignment is at least 16 or 32.
4828    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4829    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4830      if (MFI->isFixedObjectIndex(FI)) {
4831        // Can't change the alignment. FIXME: It's possible to compute
4832        // the exact stack offset and reference FI + adjust offset instead.
4833        // If someone *really* cares about this. That's the way to implement it.
4834        return SDValue();
4835      } else {
4836        MFI->setObjectAlignment(FI, RequiredAlign);
4837      }
4838    }
4839
4840    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4841    // Ptr + (Offset & ~15).
4842    if (Offset < 0)
4843      return SDValue();
4844    if ((Offset % RequiredAlign) & 3)
4845      return SDValue();
4846    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4847    if (StartOffset)
4848      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4849                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4850
4851    int EltNo = (Offset - StartOffset) >> 2;
4852    int NumElems = VT.getVectorNumElements();
4853
4854    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4855    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4856    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4857                             LD->getPointerInfo().getWithOffset(StartOffset),
4858                             false, false, false, 0);
4859
4860    // Canonicalize it to a v4i32 or v8i32 shuffle.
4861    SmallVector<int, 8> Mask;
4862    for (int i = 0; i < NumElems; ++i)
4863      Mask.push_back(EltNo);
4864
4865    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4866    return DAG.getNode(ISD::BITCAST, dl, NVT,
4867                       DAG.getVectorShuffle(CanonVT, dl, V1,
4868                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4869  }
4870
4871  return SDValue();
4872}
4873
4874/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4875/// vector of type 'VT', see if the elements can be replaced by a single large
4876/// load which has the same value as a build_vector whose operands are 'elts'.
4877///
4878/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4879///
4880/// FIXME: we'd also like to handle the case where the last elements are zero
4881/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4882/// There's even a handy isZeroNode for that purpose.
4883static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4884                                        DebugLoc &DL, SelectionDAG &DAG) {
4885  EVT EltVT = VT.getVectorElementType();
4886  unsigned NumElems = Elts.size();
4887
4888  LoadSDNode *LDBase = NULL;
4889  unsigned LastLoadedElt = -1U;
4890
4891  // For each element in the initializer, see if we've found a load or an undef.
4892  // If we don't find an initial load element, or later load elements are
4893  // non-consecutive, bail out.
4894  for (unsigned i = 0; i < NumElems; ++i) {
4895    SDValue Elt = Elts[i];
4896
4897    if (!Elt.getNode() ||
4898        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4899      return SDValue();
4900    if (!LDBase) {
4901      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4902        return SDValue();
4903      LDBase = cast<LoadSDNode>(Elt.getNode());
4904      LastLoadedElt = i;
4905      continue;
4906    }
4907    if (Elt.getOpcode() == ISD::UNDEF)
4908      continue;
4909
4910    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4911    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4912      return SDValue();
4913    LastLoadedElt = i;
4914  }
4915
4916  // If we have found an entire vector of loads and undefs, then return a large
4917  // load of the entire vector width starting at the base pointer.  If we found
4918  // consecutive loads for the low half, generate a vzext_load node.
4919  if (LastLoadedElt == NumElems - 1) {
4920    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4921      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4922                         LDBase->getPointerInfo(),
4923                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4924                         LDBase->isInvariant(), 0);
4925    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4926                       LDBase->getPointerInfo(),
4927                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4928                       LDBase->isInvariant(), LDBase->getAlignment());
4929  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4930             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4931    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4932    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4933    SDValue ResNode =
4934        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4935                                LDBase->getPointerInfo(),
4936                                LDBase->getAlignment(),
4937                                false/*isVolatile*/, true/*ReadMem*/,
4938                                false/*WriteMem*/);
4939    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4940  }
4941  return SDValue();
4942}
4943
4944/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4945/// a vbroadcast node. We support two patterns:
4946/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4947/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4948/// a scalar load.
4949/// The scalar load node is returned when a pattern is found,
4950/// or SDValue() otherwise.
4951static SDValue isVectorBroadcast(SDValue &Op, bool hasAVX2) {
4952  EVT VT = Op.getValueType();
4953  SDValue V = Op;
4954
4955  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4956    V = V.getOperand(0);
4957
4958  //A suspected load to be broadcasted.
4959  SDValue Ld;
4960
4961  switch (V.getOpcode()) {
4962    default:
4963      // Unknown pattern found.
4964      return SDValue();
4965
4966    case ISD::BUILD_VECTOR: {
4967      // The BUILD_VECTOR node must be a splat.
4968      if (!isSplatVector(V.getNode()))
4969        return SDValue();
4970
4971      Ld = V.getOperand(0);
4972
4973      // The suspected load node has several users. Make sure that all
4974      // of its users are from the BUILD_VECTOR node.
4975      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4976        return SDValue();
4977      break;
4978    }
4979
4980    case ISD::VECTOR_SHUFFLE: {
4981      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4982
4983      // Shuffles must have a splat mask where the first element is
4984      // broadcasted.
4985      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4986        return SDValue();
4987
4988      SDValue Sc = Op.getOperand(0);
4989      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4990        return SDValue();
4991
4992      Ld = Sc.getOperand(0);
4993
4994      // The scalar_to_vector node and the suspected
4995      // load node must have exactly one user.
4996      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4997        return SDValue();
4998      break;
4999    }
5000  }
5001
5002  // The scalar source must be a normal load.
5003  if (!ISD::isNormalLoad(Ld.getNode()))
5004    return SDValue();
5005
5006  bool Is256 = VT.getSizeInBits() == 256;
5007  bool Is128 = VT.getSizeInBits() == 128;
5008  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5009
5010  if (hasAVX2) {
5011    // VBroadcast to YMM
5012    if (Is256 && (ScalarSize == 8  || ScalarSize == 16 ||
5013                  ScalarSize == 32 || ScalarSize == 64 ))
5014      return Ld;
5015
5016    // VBroadcast to XMM
5017    if (Is128 && (ScalarSize ==  8 || ScalarSize == 32 ||
5018                  ScalarSize == 16 || ScalarSize == 64 ))
5019      return Ld;
5020  }
5021
5022  // VBroadcast to YMM
5023  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5024    return Ld;
5025
5026  // VBroadcast to XMM
5027  if (Is128 && (ScalarSize == 32))
5028    return Ld;
5029
5030
5031  // Unsupported broadcast.
5032  return SDValue();
5033}
5034
5035SDValue
5036X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5037  DebugLoc dl = Op.getDebugLoc();
5038
5039  EVT VT = Op.getValueType();
5040  EVT ExtVT = VT.getVectorElementType();
5041  unsigned NumElems = Op.getNumOperands();
5042
5043  // Vectors containing all zeros can be matched by pxor and xorps later
5044  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5045    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5046    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5047    if (Op.getValueType() == MVT::v4i32 ||
5048        Op.getValueType() == MVT::v8i32)
5049      return Op;
5050
5051    return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5052  }
5053
5054  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5055  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5056  // vpcmpeqd on 256-bit vectors.
5057  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5058    if (Op.getValueType() == MVT::v4i32 ||
5059        (Op.getValueType() == MVT::v8i32 && Subtarget->hasAVX2()))
5060      return Op;
5061
5062    return getOnesVector(Op.getValueType(), Subtarget->hasAVX2(), DAG, dl);
5063  }
5064
5065  SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
5066  if (Subtarget->hasAVX() && LD.getNode())
5067      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5068
5069  unsigned EVTBits = ExtVT.getSizeInBits();
5070
5071  unsigned NumZero  = 0;
5072  unsigned NumNonZero = 0;
5073  unsigned NonZeros = 0;
5074  bool IsAllConstants = true;
5075  SmallSet<SDValue, 8> Values;
5076  for (unsigned i = 0; i < NumElems; ++i) {
5077    SDValue Elt = Op.getOperand(i);
5078    if (Elt.getOpcode() == ISD::UNDEF)
5079      continue;
5080    Values.insert(Elt);
5081    if (Elt.getOpcode() != ISD::Constant &&
5082        Elt.getOpcode() != ISD::ConstantFP)
5083      IsAllConstants = false;
5084    if (X86::isZeroNode(Elt))
5085      NumZero++;
5086    else {
5087      NonZeros |= (1 << i);
5088      NumNonZero++;
5089    }
5090  }
5091
5092  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5093  if (NumNonZero == 0)
5094    return DAG.getUNDEF(VT);
5095
5096  // Special case for single non-zero, non-undef, element.
5097  if (NumNonZero == 1) {
5098    unsigned Idx = CountTrailingZeros_32(NonZeros);
5099    SDValue Item = Op.getOperand(Idx);
5100
5101    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5102    // the value are obviously zero, truncate the value to i32 and do the
5103    // insertion that way.  Only do this if the value is non-constant or if the
5104    // value is a constant being inserted into element 0.  It is cheaper to do
5105    // a constant pool load than it is to do a movd + shuffle.
5106    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5107        (!IsAllConstants || Idx == 0)) {
5108      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5109        // Handle SSE only.
5110        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5111        EVT VecVT = MVT::v4i32;
5112        unsigned VecElts = 4;
5113
5114        // Truncate the value (which may itself be a constant) to i32, and
5115        // convert it to a vector with movd (S2V+shuffle to zero extend).
5116        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5117        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5118        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5119                                           Subtarget->hasXMMInt(), DAG);
5120
5121        // Now we have our 32-bit value zero extended in the low element of
5122        // a vector.  If Idx != 0, swizzle it into place.
5123        if (Idx != 0) {
5124          SmallVector<int, 4> Mask;
5125          Mask.push_back(Idx);
5126          for (unsigned i = 1; i != VecElts; ++i)
5127            Mask.push_back(i);
5128          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5129                                      DAG.getUNDEF(Item.getValueType()),
5130                                      &Mask[0]);
5131        }
5132        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5133      }
5134    }
5135
5136    // If we have a constant or non-constant insertion into the low element of
5137    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5138    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5139    // depending on what the source datatype is.
5140    if (Idx == 0) {
5141      if (NumZero == 0) {
5142        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5143      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5144          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5145        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5146        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5147        return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5148                                           DAG);
5149      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5150        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5151        unsigned NumBits = VT.getSizeInBits();
5152        assert((NumBits == 128 || NumBits == 256) &&
5153               "Expected an SSE or AVX value type!");
5154        EVT MiddleVT = NumBits == 128 ? MVT::v4i32 : MVT::v8i32;
5155        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5156        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5157                                           Subtarget->hasXMMInt(), DAG);
5158        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5159      }
5160    }
5161
5162    // Is it a vector logical left shift?
5163    if (NumElems == 2 && Idx == 1 &&
5164        X86::isZeroNode(Op.getOperand(0)) &&
5165        !X86::isZeroNode(Op.getOperand(1))) {
5166      unsigned NumBits = VT.getSizeInBits();
5167      return getVShift(true, VT,
5168                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5169                                   VT, Op.getOperand(1)),
5170                       NumBits/2, DAG, *this, dl);
5171    }
5172
5173    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5174      return SDValue();
5175
5176    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5177    // is a non-constant being inserted into an element other than the low one,
5178    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5179    // movd/movss) to move this into the low element, then shuffle it into
5180    // place.
5181    if (EVTBits == 32) {
5182      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5183
5184      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5185      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5186                                         Subtarget->hasXMMInt(), DAG);
5187      SmallVector<int, 8> MaskVec;
5188      for (unsigned i = 0; i < NumElems; i++)
5189        MaskVec.push_back(i == Idx ? 0 : 1);
5190      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5191    }
5192  }
5193
5194  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5195  if (Values.size() == 1) {
5196    if (EVTBits == 32) {
5197      // Instead of a shuffle like this:
5198      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5199      // Check if it's possible to issue this instead.
5200      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5201      unsigned Idx = CountTrailingZeros_32(NonZeros);
5202      SDValue Item = Op.getOperand(Idx);
5203      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5204        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5205    }
5206    return SDValue();
5207  }
5208
5209  // A vector full of immediates; various special cases are already
5210  // handled, so this is best done with a single constant-pool load.
5211  if (IsAllConstants)
5212    return SDValue();
5213
5214  // For AVX-length vectors, build the individual 128-bit pieces and use
5215  // shuffles to put them in place.
5216  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5217    SmallVector<SDValue, 32> V;
5218    for (unsigned i = 0; i < NumElems; ++i)
5219      V.push_back(Op.getOperand(i));
5220
5221    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5222
5223    // Build both the lower and upper subvector.
5224    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5225    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5226                                NumElems/2);
5227
5228    // Recreate the wider vector with the lower and upper part.
5229    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5230                                DAG.getConstant(0, MVT::i32), DAG, dl);
5231    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5232                              DAG, dl);
5233  }
5234
5235  // Let legalizer expand 2-wide build_vectors.
5236  if (EVTBits == 64) {
5237    if (NumNonZero == 1) {
5238      // One half is zero or undef.
5239      unsigned Idx = CountTrailingZeros_32(NonZeros);
5240      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5241                                 Op.getOperand(Idx));
5242      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5243                                         Subtarget->hasXMMInt(), DAG);
5244    }
5245    return SDValue();
5246  }
5247
5248  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5249  if (EVTBits == 8 && NumElems == 16) {
5250    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5251                                        *this);
5252    if (V.getNode()) return V;
5253  }
5254
5255  if (EVTBits == 16 && NumElems == 8) {
5256    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5257                                      *this);
5258    if (V.getNode()) return V;
5259  }
5260
5261  // If element VT is == 32 bits, turn it into a number of shuffles.
5262  SmallVector<SDValue, 8> V;
5263  V.resize(NumElems);
5264  if (NumElems == 4 && NumZero > 0) {
5265    for (unsigned i = 0; i < 4; ++i) {
5266      bool isZero = !(NonZeros & (1 << i));
5267      if (isZero)
5268        V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5269      else
5270        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5271    }
5272
5273    for (unsigned i = 0; i < 2; ++i) {
5274      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5275        default: break;
5276        case 0:
5277          V[i] = V[i*2];  // Must be a zero vector.
5278          break;
5279        case 1:
5280          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5281          break;
5282        case 2:
5283          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5284          break;
5285        case 3:
5286          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5287          break;
5288      }
5289    }
5290
5291    SmallVector<int, 8> MaskVec;
5292    bool Reverse = (NonZeros & 0x3) == 2;
5293    for (unsigned i = 0; i < 2; ++i)
5294      MaskVec.push_back(Reverse ? 1-i : i);
5295    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5296    for (unsigned i = 0; i < 2; ++i)
5297      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5298    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5299  }
5300
5301  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5302    // Check for a build vector of consecutive loads.
5303    for (unsigned i = 0; i < NumElems; ++i)
5304      V[i] = Op.getOperand(i);
5305
5306    // Check for elements which are consecutive loads.
5307    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5308    if (LD.getNode())
5309      return LD;
5310
5311    // For SSE 4.1, use insertps to put the high elements into the low element.
5312    if (getSubtarget()->hasSSE41orAVX()) {
5313      SDValue Result;
5314      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5315        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5316      else
5317        Result = DAG.getUNDEF(VT);
5318
5319      for (unsigned i = 1; i < NumElems; ++i) {
5320        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5321        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5322                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5323      }
5324      return Result;
5325    }
5326
5327    // Otherwise, expand into a number of unpckl*, start by extending each of
5328    // our (non-undef) elements to the full vector width with the element in the
5329    // bottom slot of the vector (which generates no code for SSE).
5330    for (unsigned i = 0; i < NumElems; ++i) {
5331      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5332        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5333      else
5334        V[i] = DAG.getUNDEF(VT);
5335    }
5336
5337    // Next, we iteratively mix elements, e.g. for v4f32:
5338    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5339    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5340    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5341    unsigned EltStride = NumElems >> 1;
5342    while (EltStride != 0) {
5343      for (unsigned i = 0; i < EltStride; ++i) {
5344        // If V[i+EltStride] is undef and this is the first round of mixing,
5345        // then it is safe to just drop this shuffle: V[i] is already in the
5346        // right place, the one element (since it's the first round) being
5347        // inserted as undef can be dropped.  This isn't safe for successive
5348        // rounds because they will permute elements within both vectors.
5349        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5350            EltStride == NumElems/2)
5351          continue;
5352
5353        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5354      }
5355      EltStride >>= 1;
5356    }
5357    return V[0];
5358  }
5359  return SDValue();
5360}
5361
5362// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5363// them in a MMX register.  This is better than doing a stack convert.
5364static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5365  DebugLoc dl = Op.getDebugLoc();
5366  EVT ResVT = Op.getValueType();
5367
5368  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5369         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5370  int Mask[2];
5371  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5372  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5373  InVec = Op.getOperand(1);
5374  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5375    unsigned NumElts = ResVT.getVectorNumElements();
5376    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5377    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5378                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5379  } else {
5380    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5381    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5382    Mask[0] = 0; Mask[1] = 2;
5383    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5384  }
5385  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5386}
5387
5388// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5389// to create 256-bit vectors from two other 128-bit ones.
5390static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5391  DebugLoc dl = Op.getDebugLoc();
5392  EVT ResVT = Op.getValueType();
5393
5394  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5395
5396  SDValue V1 = Op.getOperand(0);
5397  SDValue V2 = Op.getOperand(1);
5398  unsigned NumElems = ResVT.getVectorNumElements();
5399
5400  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5401                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5402  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5403                            DAG, dl);
5404}
5405
5406SDValue
5407X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5408  EVT ResVT = Op.getValueType();
5409
5410  assert(Op.getNumOperands() == 2);
5411  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5412         "Unsupported CONCAT_VECTORS for value type");
5413
5414  // We support concatenate two MMX registers and place them in a MMX register.
5415  // This is better than doing a stack convert.
5416  if (ResVT.is128BitVector())
5417    return LowerMMXCONCAT_VECTORS(Op, DAG);
5418
5419  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5420  // from two other 128-bit ones.
5421  return LowerAVXCONCAT_VECTORS(Op, DAG);
5422}
5423
5424// v8i16 shuffles - Prefer shuffles in the following order:
5425// 1. [all]   pshuflw, pshufhw, optional move
5426// 2. [ssse3] 1 x pshufb
5427// 3. [ssse3] 2 x pshufb + 1 x por
5428// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5429SDValue
5430X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5431                                            SelectionDAG &DAG) const {
5432  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5433  SDValue V1 = SVOp->getOperand(0);
5434  SDValue V2 = SVOp->getOperand(1);
5435  DebugLoc dl = SVOp->getDebugLoc();
5436  SmallVector<int, 8> MaskVals;
5437
5438  // Determine if more than 1 of the words in each of the low and high quadwords
5439  // of the result come from the same quadword of one of the two inputs.  Undef
5440  // mask values count as coming from any quadword, for better codegen.
5441  unsigned LoQuad[] = { 0, 0, 0, 0 };
5442  unsigned HiQuad[] = { 0, 0, 0, 0 };
5443  BitVector InputQuads(4);
5444  for (unsigned i = 0; i < 8; ++i) {
5445    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5446    int EltIdx = SVOp->getMaskElt(i);
5447    MaskVals.push_back(EltIdx);
5448    if (EltIdx < 0) {
5449      ++Quad[0];
5450      ++Quad[1];
5451      ++Quad[2];
5452      ++Quad[3];
5453      continue;
5454    }
5455    ++Quad[EltIdx / 4];
5456    InputQuads.set(EltIdx / 4);
5457  }
5458
5459  int BestLoQuad = -1;
5460  unsigned MaxQuad = 1;
5461  for (unsigned i = 0; i < 4; ++i) {
5462    if (LoQuad[i] > MaxQuad) {
5463      BestLoQuad = i;
5464      MaxQuad = LoQuad[i];
5465    }
5466  }
5467
5468  int BestHiQuad = -1;
5469  MaxQuad = 1;
5470  for (unsigned i = 0; i < 4; ++i) {
5471    if (HiQuad[i] > MaxQuad) {
5472      BestHiQuad = i;
5473      MaxQuad = HiQuad[i];
5474    }
5475  }
5476
5477  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5478  // of the two input vectors, shuffle them into one input vector so only a
5479  // single pshufb instruction is necessary. If There are more than 2 input
5480  // quads, disable the next transformation since it does not help SSSE3.
5481  bool V1Used = InputQuads[0] || InputQuads[1];
5482  bool V2Used = InputQuads[2] || InputQuads[3];
5483  if (Subtarget->hasSSSE3orAVX()) {
5484    if (InputQuads.count() == 2 && V1Used && V2Used) {
5485      BestLoQuad = InputQuads.find_first();
5486      BestHiQuad = InputQuads.find_next(BestLoQuad);
5487    }
5488    if (InputQuads.count() > 2) {
5489      BestLoQuad = -1;
5490      BestHiQuad = -1;
5491    }
5492  }
5493
5494  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5495  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5496  // words from all 4 input quadwords.
5497  SDValue NewV;
5498  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5499    SmallVector<int, 8> MaskV;
5500    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5501    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5502    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5503                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5504                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5505    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5506
5507    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5508    // source words for the shuffle, to aid later transformations.
5509    bool AllWordsInNewV = true;
5510    bool InOrder[2] = { true, true };
5511    for (unsigned i = 0; i != 8; ++i) {
5512      int idx = MaskVals[i];
5513      if (idx != (int)i)
5514        InOrder[i/4] = false;
5515      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5516        continue;
5517      AllWordsInNewV = false;
5518      break;
5519    }
5520
5521    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5522    if (AllWordsInNewV) {
5523      for (int i = 0; i != 8; ++i) {
5524        int idx = MaskVals[i];
5525        if (idx < 0)
5526          continue;
5527        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5528        if ((idx != i) && idx < 4)
5529          pshufhw = false;
5530        if ((idx != i) && idx > 3)
5531          pshuflw = false;
5532      }
5533      V1 = NewV;
5534      V2Used = false;
5535      BestLoQuad = 0;
5536      BestHiQuad = 1;
5537    }
5538
5539    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5540    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5541    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5542      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5543      unsigned TargetMask = 0;
5544      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5545                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5546      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5547                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5548      V1 = NewV.getOperand(0);
5549      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5550    }
5551  }
5552
5553  // If we have SSSE3, and all words of the result are from 1 input vector,
5554  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5555  // is present, fall back to case 4.
5556  if (Subtarget->hasSSSE3orAVX()) {
5557    SmallVector<SDValue,16> pshufbMask;
5558
5559    // If we have elements from both input vectors, set the high bit of the
5560    // shuffle mask element to zero out elements that come from V2 in the V1
5561    // mask, and elements that come from V1 in the V2 mask, so that the two
5562    // results can be OR'd together.
5563    bool TwoInputs = V1Used && V2Used;
5564    for (unsigned i = 0; i != 8; ++i) {
5565      int EltIdx = MaskVals[i] * 2;
5566      if (TwoInputs && (EltIdx >= 16)) {
5567        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5568        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5569        continue;
5570      }
5571      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5572      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5573    }
5574    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5575    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5576                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5577                                 MVT::v16i8, &pshufbMask[0], 16));
5578    if (!TwoInputs)
5579      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5580
5581    // Calculate the shuffle mask for the second input, shuffle it, and
5582    // OR it with the first shuffled input.
5583    pshufbMask.clear();
5584    for (unsigned i = 0; i != 8; ++i) {
5585      int EltIdx = MaskVals[i] * 2;
5586      if (EltIdx < 16) {
5587        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5588        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5589        continue;
5590      }
5591      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5592      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5593    }
5594    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5595    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5596                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5597                                 MVT::v16i8, &pshufbMask[0], 16));
5598    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5599    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5600  }
5601
5602  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5603  // and update MaskVals with new element order.
5604  BitVector InOrder(8);
5605  if (BestLoQuad >= 0) {
5606    SmallVector<int, 8> MaskV;
5607    for (int i = 0; i != 4; ++i) {
5608      int idx = MaskVals[i];
5609      if (idx < 0) {
5610        MaskV.push_back(-1);
5611        InOrder.set(i);
5612      } else if ((idx / 4) == BestLoQuad) {
5613        MaskV.push_back(idx & 3);
5614        InOrder.set(i);
5615      } else {
5616        MaskV.push_back(-1);
5617      }
5618    }
5619    for (unsigned i = 4; i != 8; ++i)
5620      MaskV.push_back(i);
5621    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5622                                &MaskV[0]);
5623
5624    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5625      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5626                               NewV.getOperand(0),
5627                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5628                               DAG);
5629  }
5630
5631  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5632  // and update MaskVals with the new element order.
5633  if (BestHiQuad >= 0) {
5634    SmallVector<int, 8> MaskV;
5635    for (unsigned i = 0; i != 4; ++i)
5636      MaskV.push_back(i);
5637    for (unsigned i = 4; i != 8; ++i) {
5638      int idx = MaskVals[i];
5639      if (idx < 0) {
5640        MaskV.push_back(-1);
5641        InOrder.set(i);
5642      } else if ((idx / 4) == BestHiQuad) {
5643        MaskV.push_back((idx & 3) + 4);
5644        InOrder.set(i);
5645      } else {
5646        MaskV.push_back(-1);
5647      }
5648    }
5649    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5650                                &MaskV[0]);
5651
5652    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3orAVX())
5653      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5654                              NewV.getOperand(0),
5655                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5656                              DAG);
5657  }
5658
5659  // In case BestHi & BestLo were both -1, which means each quadword has a word
5660  // from each of the four input quadwords, calculate the InOrder bitvector now
5661  // before falling through to the insert/extract cleanup.
5662  if (BestLoQuad == -1 && BestHiQuad == -1) {
5663    NewV = V1;
5664    for (int i = 0; i != 8; ++i)
5665      if (MaskVals[i] < 0 || MaskVals[i] == i)
5666        InOrder.set(i);
5667  }
5668
5669  // The other elements are put in the right place using pextrw and pinsrw.
5670  for (unsigned i = 0; i != 8; ++i) {
5671    if (InOrder[i])
5672      continue;
5673    int EltIdx = MaskVals[i];
5674    if (EltIdx < 0)
5675      continue;
5676    SDValue ExtOp = (EltIdx < 8)
5677    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5678                  DAG.getIntPtrConstant(EltIdx))
5679    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5680                  DAG.getIntPtrConstant(EltIdx - 8));
5681    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5682                       DAG.getIntPtrConstant(i));
5683  }
5684  return NewV;
5685}
5686
5687// v16i8 shuffles - Prefer shuffles in the following order:
5688// 1. [ssse3] 1 x pshufb
5689// 2. [ssse3] 2 x pshufb + 1 x por
5690// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5691static
5692SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5693                                 SelectionDAG &DAG,
5694                                 const X86TargetLowering &TLI) {
5695  SDValue V1 = SVOp->getOperand(0);
5696  SDValue V2 = SVOp->getOperand(1);
5697  DebugLoc dl = SVOp->getDebugLoc();
5698  SmallVector<int, 16> MaskVals;
5699  SVOp->getMask(MaskVals);
5700
5701  // If we have SSSE3, case 1 is generated when all result bytes come from
5702  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5703  // present, fall back to case 3.
5704  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5705  bool V1Only = true;
5706  bool V2Only = true;
5707  for (unsigned i = 0; i < 16; ++i) {
5708    int EltIdx = MaskVals[i];
5709    if (EltIdx < 0)
5710      continue;
5711    if (EltIdx < 16)
5712      V2Only = false;
5713    else
5714      V1Only = false;
5715  }
5716
5717  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5718  if (TLI.getSubtarget()->hasSSSE3orAVX()) {
5719    SmallVector<SDValue,16> pshufbMask;
5720
5721    // If all result elements are from one input vector, then only translate
5722    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5723    //
5724    // Otherwise, we have elements from both input vectors, and must zero out
5725    // elements that come from V2 in the first mask, and V1 in the second mask
5726    // so that we can OR them together.
5727    bool TwoInputs = !(V1Only || V2Only);
5728    for (unsigned i = 0; i != 16; ++i) {
5729      int EltIdx = MaskVals[i];
5730      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5731        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5732        continue;
5733      }
5734      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5735    }
5736    // If all the elements are from V2, assign it to V1 and return after
5737    // building the first pshufb.
5738    if (V2Only)
5739      V1 = V2;
5740    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5741                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5742                                 MVT::v16i8, &pshufbMask[0], 16));
5743    if (!TwoInputs)
5744      return V1;
5745
5746    // Calculate the shuffle mask for the second input, shuffle it, and
5747    // OR it with the first shuffled input.
5748    pshufbMask.clear();
5749    for (unsigned i = 0; i != 16; ++i) {
5750      int EltIdx = MaskVals[i];
5751      if (EltIdx < 16) {
5752        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5753        continue;
5754      }
5755      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5756    }
5757    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5758                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5759                                 MVT::v16i8, &pshufbMask[0], 16));
5760    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5761  }
5762
5763  // No SSSE3 - Calculate in place words and then fix all out of place words
5764  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5765  // the 16 different words that comprise the two doublequadword input vectors.
5766  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5767  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5768  SDValue NewV = V2Only ? V2 : V1;
5769  for (int i = 0; i != 8; ++i) {
5770    int Elt0 = MaskVals[i*2];
5771    int Elt1 = MaskVals[i*2+1];
5772
5773    // This word of the result is all undef, skip it.
5774    if (Elt0 < 0 && Elt1 < 0)
5775      continue;
5776
5777    // This word of the result is already in the correct place, skip it.
5778    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5779      continue;
5780    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5781      continue;
5782
5783    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5784    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5785    SDValue InsElt;
5786
5787    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5788    // using a single extract together, load it and store it.
5789    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5790      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5791                           DAG.getIntPtrConstant(Elt1 / 2));
5792      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5793                        DAG.getIntPtrConstant(i));
5794      continue;
5795    }
5796
5797    // If Elt1 is defined, extract it from the appropriate source.  If the
5798    // source byte is not also odd, shift the extracted word left 8 bits
5799    // otherwise clear the bottom 8 bits if we need to do an or.
5800    if (Elt1 >= 0) {
5801      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5802                           DAG.getIntPtrConstant(Elt1 / 2));
5803      if ((Elt1 & 1) == 0)
5804        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5805                             DAG.getConstant(8,
5806                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5807      else if (Elt0 >= 0)
5808        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5809                             DAG.getConstant(0xFF00, MVT::i16));
5810    }
5811    // If Elt0 is defined, extract it from the appropriate source.  If the
5812    // source byte is not also even, shift the extracted word right 8 bits. If
5813    // Elt1 was also defined, OR the extracted values together before
5814    // inserting them in the result.
5815    if (Elt0 >= 0) {
5816      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5817                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5818      if ((Elt0 & 1) != 0)
5819        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5820                              DAG.getConstant(8,
5821                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5822      else if (Elt1 >= 0)
5823        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5824                             DAG.getConstant(0x00FF, MVT::i16));
5825      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5826                         : InsElt0;
5827    }
5828    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5829                       DAG.getIntPtrConstant(i));
5830  }
5831  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5832}
5833
5834/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5835/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5836/// done when every pair / quad of shuffle mask elements point to elements in
5837/// the right sequence. e.g.
5838/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5839static
5840SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5841                                 SelectionDAG &DAG, DebugLoc dl) {
5842  EVT VT = SVOp->getValueType(0);
5843  SDValue V1 = SVOp->getOperand(0);
5844  SDValue V2 = SVOp->getOperand(1);
5845  unsigned NumElems = VT.getVectorNumElements();
5846  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5847  EVT NewVT;
5848  switch (VT.getSimpleVT().SimpleTy) {
5849  default: assert(false && "Unexpected!");
5850  case MVT::v4f32: NewVT = MVT::v2f64; break;
5851  case MVT::v4i32: NewVT = MVT::v2i64; break;
5852  case MVT::v8i16: NewVT = MVT::v4i32; break;
5853  case MVT::v16i8: NewVT = MVT::v4i32; break;
5854  }
5855
5856  int Scale = NumElems / NewWidth;
5857  SmallVector<int, 8> MaskVec;
5858  for (unsigned i = 0; i < NumElems; i += Scale) {
5859    int StartIdx = -1;
5860    for (int j = 0; j < Scale; ++j) {
5861      int EltIdx = SVOp->getMaskElt(i+j);
5862      if (EltIdx < 0)
5863        continue;
5864      if (StartIdx == -1)
5865        StartIdx = EltIdx - (EltIdx % Scale);
5866      if (EltIdx != StartIdx + j)
5867        return SDValue();
5868    }
5869    if (StartIdx == -1)
5870      MaskVec.push_back(-1);
5871    else
5872      MaskVec.push_back(StartIdx / Scale);
5873  }
5874
5875  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5876  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5877  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5878}
5879
5880/// getVZextMovL - Return a zero-extending vector move low node.
5881///
5882static SDValue getVZextMovL(EVT VT, EVT OpVT,
5883                            SDValue SrcOp, SelectionDAG &DAG,
5884                            const X86Subtarget *Subtarget, DebugLoc dl) {
5885  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5886    LoadSDNode *LD = NULL;
5887    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5888      LD = dyn_cast<LoadSDNode>(SrcOp);
5889    if (!LD) {
5890      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5891      // instead.
5892      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5893      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5894          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5895          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5896          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5897        // PR2108
5898        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5899        return DAG.getNode(ISD::BITCAST, dl, VT,
5900                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5901                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5902                                                   OpVT,
5903                                                   SrcOp.getOperand(0)
5904                                                          .getOperand(0))));
5905      }
5906    }
5907  }
5908
5909  return DAG.getNode(ISD::BITCAST, dl, VT,
5910                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5911                                 DAG.getNode(ISD::BITCAST, dl,
5912                                             OpVT, SrcOp)));
5913}
5914
5915/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5916/// shuffle node referes to only one lane in the sources.
5917static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5918  EVT VT = SVOp->getValueType(0);
5919  int NumElems = VT.getVectorNumElements();
5920  int HalfSize = NumElems/2;
5921  SmallVector<int, 16> M;
5922  SVOp->getMask(M);
5923  bool MatchA = false, MatchB = false;
5924
5925  for (int l = 0; l < NumElems*2; l += HalfSize) {
5926    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5927      MatchA = true;
5928      break;
5929    }
5930  }
5931
5932  for (int l = 0; l < NumElems*2; l += HalfSize) {
5933    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5934      MatchB = true;
5935      break;
5936    }
5937  }
5938
5939  return MatchA && MatchB;
5940}
5941
5942/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5943/// which could not be matched by any known target speficic shuffle
5944static SDValue
5945LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5946  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5947    // If each half of a vector shuffle node referes to only one lane in the
5948    // source vectors, extract each used 128-bit lane and shuffle them using
5949    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5950    // the work to the legalizer.
5951    DebugLoc dl = SVOp->getDebugLoc();
5952    EVT VT = SVOp->getValueType(0);
5953    int NumElems = VT.getVectorNumElements();
5954    int HalfSize = NumElems/2;
5955
5956    // Extract the reference for each half
5957    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5958    int FstVecOpNum = 0, SndVecOpNum = 0;
5959    for (int i = 0; i < HalfSize; ++i) {
5960      int Elt = SVOp->getMaskElt(i);
5961      if (SVOp->getMaskElt(i) < 0)
5962        continue;
5963      FstVecOpNum = Elt/NumElems;
5964      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5965      break;
5966    }
5967    for (int i = HalfSize; i < NumElems; ++i) {
5968      int Elt = SVOp->getMaskElt(i);
5969      if (SVOp->getMaskElt(i) < 0)
5970        continue;
5971      SndVecOpNum = Elt/NumElems;
5972      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5973      break;
5974    }
5975
5976    // Extract the subvectors
5977    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5978                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5979    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5980                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5981
5982    // Generate 128-bit shuffles
5983    SmallVector<int, 16> MaskV1, MaskV2;
5984    for (int i = 0; i < HalfSize; ++i) {
5985      int Elt = SVOp->getMaskElt(i);
5986      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5987    }
5988    for (int i = HalfSize; i < NumElems; ++i) {
5989      int Elt = SVOp->getMaskElt(i);
5990      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5991    }
5992
5993    EVT NVT = V1.getValueType();
5994    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5995    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5996
5997    // Concatenate the result back
5998    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
5999                                   DAG.getConstant(0, MVT::i32), DAG, dl);
6000    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6001                              DAG, dl);
6002  }
6003
6004  return SDValue();
6005}
6006
6007/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6008/// 4 elements, and match them with several different shuffle types.
6009static SDValue
6010LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6011  SDValue V1 = SVOp->getOperand(0);
6012  SDValue V2 = SVOp->getOperand(1);
6013  DebugLoc dl = SVOp->getDebugLoc();
6014  EVT VT = SVOp->getValueType(0);
6015
6016  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6017
6018  SmallVector<std::pair<int, int>, 8> Locs;
6019  Locs.resize(4);
6020  SmallVector<int, 8> Mask1(4U, -1);
6021  SmallVector<int, 8> PermMask;
6022  SVOp->getMask(PermMask);
6023
6024  unsigned NumHi = 0;
6025  unsigned NumLo = 0;
6026  for (unsigned i = 0; i != 4; ++i) {
6027    int Idx = PermMask[i];
6028    if (Idx < 0) {
6029      Locs[i] = std::make_pair(-1, -1);
6030    } else {
6031      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6032      if (Idx < 4) {
6033        Locs[i] = std::make_pair(0, NumLo);
6034        Mask1[NumLo] = Idx;
6035        NumLo++;
6036      } else {
6037        Locs[i] = std::make_pair(1, NumHi);
6038        if (2+NumHi < 4)
6039          Mask1[2+NumHi] = Idx;
6040        NumHi++;
6041      }
6042    }
6043  }
6044
6045  if (NumLo <= 2 && NumHi <= 2) {
6046    // If no more than two elements come from either vector. This can be
6047    // implemented with two shuffles. First shuffle gather the elements.
6048    // The second shuffle, which takes the first shuffle as both of its
6049    // vector operands, put the elements into the right order.
6050    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6051
6052    SmallVector<int, 8> Mask2(4U, -1);
6053
6054    for (unsigned i = 0; i != 4; ++i) {
6055      if (Locs[i].first == -1)
6056        continue;
6057      else {
6058        unsigned Idx = (i < 2) ? 0 : 4;
6059        Idx += Locs[i].first * 2 + Locs[i].second;
6060        Mask2[i] = Idx;
6061      }
6062    }
6063
6064    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6065  } else if (NumLo == 3 || NumHi == 3) {
6066    // Otherwise, we must have three elements from one vector, call it X, and
6067    // one element from the other, call it Y.  First, use a shufps to build an
6068    // intermediate vector with the one element from Y and the element from X
6069    // that will be in the same half in the final destination (the indexes don't
6070    // matter). Then, use a shufps to build the final vector, taking the half
6071    // containing the element from Y from the intermediate, and the other half
6072    // from X.
6073    if (NumHi == 3) {
6074      // Normalize it so the 3 elements come from V1.
6075      CommuteVectorShuffleMask(PermMask, 4);
6076      std::swap(V1, V2);
6077    }
6078
6079    // Find the element from V2.
6080    unsigned HiIndex;
6081    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6082      int Val = PermMask[HiIndex];
6083      if (Val < 0)
6084        continue;
6085      if (Val >= 4)
6086        break;
6087    }
6088
6089    Mask1[0] = PermMask[HiIndex];
6090    Mask1[1] = -1;
6091    Mask1[2] = PermMask[HiIndex^1];
6092    Mask1[3] = -1;
6093    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6094
6095    if (HiIndex >= 2) {
6096      Mask1[0] = PermMask[0];
6097      Mask1[1] = PermMask[1];
6098      Mask1[2] = HiIndex & 1 ? 6 : 4;
6099      Mask1[3] = HiIndex & 1 ? 4 : 6;
6100      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6101    } else {
6102      Mask1[0] = HiIndex & 1 ? 2 : 0;
6103      Mask1[1] = HiIndex & 1 ? 0 : 2;
6104      Mask1[2] = PermMask[2];
6105      Mask1[3] = PermMask[3];
6106      if (Mask1[2] >= 0)
6107        Mask1[2] += 4;
6108      if (Mask1[3] >= 0)
6109        Mask1[3] += 4;
6110      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6111    }
6112  }
6113
6114  // Break it into (shuffle shuffle_hi, shuffle_lo).
6115  Locs.clear();
6116  Locs.resize(4);
6117  SmallVector<int,8> LoMask(4U, -1);
6118  SmallVector<int,8> HiMask(4U, -1);
6119
6120  SmallVector<int,8> *MaskPtr = &LoMask;
6121  unsigned MaskIdx = 0;
6122  unsigned LoIdx = 0;
6123  unsigned HiIdx = 2;
6124  for (unsigned i = 0; i != 4; ++i) {
6125    if (i == 2) {
6126      MaskPtr = &HiMask;
6127      MaskIdx = 1;
6128      LoIdx = 0;
6129      HiIdx = 2;
6130    }
6131    int Idx = PermMask[i];
6132    if (Idx < 0) {
6133      Locs[i] = std::make_pair(-1, -1);
6134    } else if (Idx < 4) {
6135      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6136      (*MaskPtr)[LoIdx] = Idx;
6137      LoIdx++;
6138    } else {
6139      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6140      (*MaskPtr)[HiIdx] = Idx;
6141      HiIdx++;
6142    }
6143  }
6144
6145  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6146  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6147  SmallVector<int, 8> MaskOps;
6148  for (unsigned i = 0; i != 4; ++i) {
6149    if (Locs[i].first == -1) {
6150      MaskOps.push_back(-1);
6151    } else {
6152      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6153      MaskOps.push_back(Idx);
6154    }
6155  }
6156  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6157}
6158
6159static bool MayFoldVectorLoad(SDValue V) {
6160  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6161    V = V.getOperand(0);
6162  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6163    V = V.getOperand(0);
6164  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6165      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6166    // BUILD_VECTOR (load), undef
6167    V = V.getOperand(0);
6168  if (MayFoldLoad(V))
6169    return true;
6170  return false;
6171}
6172
6173// FIXME: the version above should always be used. Since there's
6174// a bug where several vector shuffles can't be folded because the
6175// DAG is not updated during lowering and a node claims to have two
6176// uses while it only has one, use this version, and let isel match
6177// another instruction if the load really happens to have more than
6178// one use. Remove this version after this bug get fixed.
6179// rdar://8434668, PR8156
6180static bool RelaxedMayFoldVectorLoad(SDValue V) {
6181  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6182    V = V.getOperand(0);
6183  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6184    V = V.getOperand(0);
6185  if (ISD::isNormalLoad(V.getNode()))
6186    return true;
6187  return false;
6188}
6189
6190/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6191/// a vector extract, and if both can be later optimized into a single load.
6192/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6193/// here because otherwise a target specific shuffle node is going to be
6194/// emitted for this shuffle, and the optimization not done.
6195/// FIXME: This is probably not the best approach, but fix the problem
6196/// until the right path is decided.
6197static
6198bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6199                                         const TargetLowering &TLI) {
6200  EVT VT = V.getValueType();
6201  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6202
6203  // Be sure that the vector shuffle is present in a pattern like this:
6204  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6205  if (!V.hasOneUse())
6206    return false;
6207
6208  SDNode *N = *V.getNode()->use_begin();
6209  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6210    return false;
6211
6212  SDValue EltNo = N->getOperand(1);
6213  if (!isa<ConstantSDNode>(EltNo))
6214    return false;
6215
6216  // If the bit convert changed the number of elements, it is unsafe
6217  // to examine the mask.
6218  bool HasShuffleIntoBitcast = false;
6219  if (V.getOpcode() == ISD::BITCAST) {
6220    EVT SrcVT = V.getOperand(0).getValueType();
6221    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6222      return false;
6223    V = V.getOperand(0);
6224    HasShuffleIntoBitcast = true;
6225  }
6226
6227  // Select the input vector, guarding against out of range extract vector.
6228  unsigned NumElems = VT.getVectorNumElements();
6229  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6230  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6231  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6232
6233  // Skip one more bit_convert if necessary
6234  if (V.getOpcode() == ISD::BITCAST)
6235    V = V.getOperand(0);
6236
6237  if (ISD::isNormalLoad(V.getNode())) {
6238    // Is the original load suitable?
6239    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6240
6241    // FIXME: avoid the multi-use bug that is preventing lots of
6242    // of foldings to be detected, this is still wrong of course, but
6243    // give the temporary desired behavior, and if it happens that
6244    // the load has real more uses, during isel it will not fold, and
6245    // will generate poor code.
6246    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6247      return false;
6248
6249    if (!HasShuffleIntoBitcast)
6250      return true;
6251
6252    // If there's a bitcast before the shuffle, check if the load type and
6253    // alignment is valid.
6254    unsigned Align = LN0->getAlignment();
6255    unsigned NewAlign =
6256      TLI.getTargetData()->getABITypeAlignment(
6257                                    VT.getTypeForEVT(*DAG.getContext()));
6258
6259    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6260      return false;
6261  }
6262
6263  return true;
6264}
6265
6266static
6267SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6268  EVT VT = Op.getValueType();
6269
6270  // Canonizalize to v2f64.
6271  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6272  return DAG.getNode(ISD::BITCAST, dl, VT,
6273                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6274                                          V1, DAG));
6275}
6276
6277static
6278SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6279                        bool HasXMMInt) {
6280  SDValue V1 = Op.getOperand(0);
6281  SDValue V2 = Op.getOperand(1);
6282  EVT VT = Op.getValueType();
6283
6284  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6285
6286  if (HasXMMInt && VT == MVT::v2f64)
6287    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6288
6289  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6290  return DAG.getNode(ISD::BITCAST, dl, VT,
6291                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6292                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6293                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6294}
6295
6296static
6297SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6298  SDValue V1 = Op.getOperand(0);
6299  SDValue V2 = Op.getOperand(1);
6300  EVT VT = Op.getValueType();
6301
6302  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6303         "unsupported shuffle type");
6304
6305  if (V2.getOpcode() == ISD::UNDEF)
6306    V2 = V1;
6307
6308  // v4i32 or v4f32
6309  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6310}
6311
6312static inline unsigned getSHUFPOpcode(EVT VT) {
6313  switch(VT.getSimpleVT().SimpleTy) {
6314  case MVT::v8i32: // Use fp unit for int unpack.
6315  case MVT::v8f32:
6316  case MVT::v4i32: // Use fp unit for int unpack.
6317  case MVT::v4f32: return X86ISD::SHUFPS;
6318  case MVT::v4i64: // Use fp unit for int unpack.
6319  case MVT::v4f64:
6320  case MVT::v2i64: // Use fp unit for int unpack.
6321  case MVT::v2f64: return X86ISD::SHUFPD;
6322  default:
6323    llvm_unreachable("Unknown type for shufp*");
6324  }
6325  return 0;
6326}
6327
6328static
6329SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6330  SDValue V1 = Op.getOperand(0);
6331  SDValue V2 = Op.getOperand(1);
6332  EVT VT = Op.getValueType();
6333  unsigned NumElems = VT.getVectorNumElements();
6334
6335  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6336  // operand of these instructions is only memory, so check if there's a
6337  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6338  // same masks.
6339  bool CanFoldLoad = false;
6340
6341  // Trivial case, when V2 comes from a load.
6342  if (MayFoldVectorLoad(V2))
6343    CanFoldLoad = true;
6344
6345  // When V1 is a load, it can be folded later into a store in isel, example:
6346  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6347  //    turns into:
6348  //  (MOVLPSmr addr:$src1, VR128:$src2)
6349  // So, recognize this potential and also use MOVLPS or MOVLPD
6350  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6351    CanFoldLoad = true;
6352
6353  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6354  if (CanFoldLoad) {
6355    if (HasXMMInt && NumElems == 2)
6356      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6357
6358    if (NumElems == 4)
6359      // If we don't care about the second element, procede to use movss.
6360      if (SVOp->getMaskElt(1) != -1)
6361        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6362  }
6363
6364  // movl and movlp will both match v2i64, but v2i64 is never matched by
6365  // movl earlier because we make it strict to avoid messing with the movlp load
6366  // folding logic (see the code above getMOVLP call). Match it here then,
6367  // this is horrible, but will stay like this until we move all shuffle
6368  // matching to x86 specific nodes. Note that for the 1st condition all
6369  // types are matched with movsd.
6370  if (HasXMMInt) {
6371    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6372    // as to remove this logic from here, as much as possible
6373    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6374      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6375    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6376  }
6377
6378  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6379
6380  // Invert the operand order and use SHUFPS to match it.
6381  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6382                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6383}
6384
6385static
6386SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6387                               const TargetLowering &TLI,
6388                               const X86Subtarget *Subtarget) {
6389  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6390  EVT VT = Op.getValueType();
6391  DebugLoc dl = Op.getDebugLoc();
6392  SDValue V1 = Op.getOperand(0);
6393  SDValue V2 = Op.getOperand(1);
6394
6395  if (isZeroShuffle(SVOp))
6396    return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6397
6398  // Handle splat operations
6399  if (SVOp->isSplat()) {
6400    unsigned NumElem = VT.getVectorNumElements();
6401    int Size = VT.getSizeInBits();
6402    // Special case, this is the only place now where it's allowed to return
6403    // a vector_shuffle operation without using a target specific node, because
6404    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6405    // this be moved to DAGCombine instead?
6406    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6407      return Op;
6408
6409    // Use vbroadcast whenever the splat comes from a foldable load
6410    SDValue LD = isVectorBroadcast(Op, Subtarget->hasAVX2());
6411    if (Subtarget->hasAVX() && LD.getNode())
6412      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6413
6414    // Handle splats by matching through known shuffle masks
6415    if ((Size == 128 && NumElem <= 4) ||
6416        (Size == 256 && NumElem < 8))
6417      return SDValue();
6418
6419    // All remaning splats are promoted to target supported vector shuffles.
6420    return PromoteSplat(SVOp, DAG);
6421  }
6422
6423  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6424  // do it!
6425  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6426    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6427    if (NewOp.getNode())
6428      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6429  } else if ((VT == MVT::v4i32 ||
6430             (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6431    // FIXME: Figure out a cleaner way to do this.
6432    // Try to make use of movq to zero out the top part.
6433    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6434      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6435      if (NewOp.getNode()) {
6436        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6437          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6438                              DAG, Subtarget, dl);
6439      }
6440    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6441      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6442      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6443        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6444                            DAG, Subtarget, dl);
6445    }
6446  }
6447  return SDValue();
6448}
6449
6450SDValue
6451X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6452  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6453  SDValue V1 = Op.getOperand(0);
6454  SDValue V2 = Op.getOperand(1);
6455  EVT VT = Op.getValueType();
6456  DebugLoc dl = Op.getDebugLoc();
6457  unsigned NumElems = VT.getVectorNumElements();
6458  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6459  bool V1IsSplat = false;
6460  bool V2IsSplat = false;
6461  bool HasXMMInt = Subtarget->hasXMMInt();
6462  bool HasAVX    = Subtarget->hasAVX();
6463  bool HasAVX2   = Subtarget->hasAVX2();
6464  MachineFunction &MF = DAG.getMachineFunction();
6465  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6466
6467  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6468
6469  assert(V1.getOpcode() != ISD::UNDEF && "Op 1 of shuffle should not be undef");
6470
6471  // Vector shuffle lowering takes 3 steps:
6472  //
6473  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6474  //    narrowing and commutation of operands should be handled.
6475  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6476  //    shuffle nodes.
6477  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6478  //    so the shuffle can be broken into other shuffles and the legalizer can
6479  //    try the lowering again.
6480  //
6481  // The general idea is that no vector_shuffle operation should be left to
6482  // be matched during isel, all of them must be converted to a target specific
6483  // node here.
6484
6485  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6486  // narrowing and commutation of operands should be handled. The actual code
6487  // doesn't include all of those, work in progress...
6488  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6489  if (NewOp.getNode())
6490    return NewOp;
6491
6492  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6493  // unpckh_undef). Only use pshufd if speed is more important than size.
6494  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6495    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6496  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6497    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6498
6499  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3orAVX() &&
6500      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6501    return getMOVDDup(Op, dl, V1, DAG);
6502
6503  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6504    return getMOVHighToLow(Op, dl, DAG);
6505
6506  // Use to match splats
6507  if (HasXMMInt && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6508      (VT == MVT::v2f64 || VT == MVT::v2i64))
6509    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6510
6511  if (X86::isPSHUFDMask(SVOp)) {
6512    // The actual implementation will match the mask in the if above and then
6513    // during isel it can match several different instructions, not only pshufd
6514    // as its name says, sad but true, emulate the behavior for now...
6515    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6516        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6517
6518    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6519
6520    if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6521      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6522
6523    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6524                                TargetMask, DAG);
6525  }
6526
6527  // Check if this can be converted into a logical shift.
6528  bool isLeft = false;
6529  unsigned ShAmt = 0;
6530  SDValue ShVal;
6531  bool isShift = HasXMMInt && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6532  if (isShift && ShVal.hasOneUse()) {
6533    // If the shifted value has multiple uses, it may be cheaper to use
6534    // v_set0 + movlhps or movhlps, etc.
6535    EVT EltVT = VT.getVectorElementType();
6536    ShAmt *= EltVT.getSizeInBits();
6537    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6538  }
6539
6540  if (X86::isMOVLMask(SVOp)) {
6541    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6542      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6543    if (!X86::isMOVLPMask(SVOp)) {
6544      if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6545        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6546
6547      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6548        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6549    }
6550  }
6551
6552  // FIXME: fold these into legal mask.
6553  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6554    return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6555
6556  if (X86::isMOVHLPSMask(SVOp))
6557    return getMOVHighToLow(Op, dl, DAG);
6558
6559  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6560    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6561
6562  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6563    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6564
6565  if (X86::isMOVLPMask(SVOp))
6566    return getMOVLP(Op, dl, DAG, HasXMMInt);
6567
6568  if (ShouldXformToMOVHLPS(SVOp) ||
6569      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6570    return CommuteVectorShuffle(SVOp, DAG);
6571
6572  if (isShift) {
6573    // No better options. Use a vshl / vsrl.
6574    EVT EltVT = VT.getVectorElementType();
6575    ShAmt *= EltVT.getSizeInBits();
6576    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6577  }
6578
6579  bool Commuted = false;
6580  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6581  // 1,1,1,1 -> v8i16 though.
6582  V1IsSplat = isSplatVector(V1.getNode());
6583  V2IsSplat = isSplatVector(V2.getNode());
6584
6585  // Canonicalize the splat or undef, if present, to be on the RHS.
6586  if (V1IsSplat && !V2IsSplat) {
6587    Op = CommuteVectorShuffle(SVOp, DAG);
6588    SVOp = cast<ShuffleVectorSDNode>(Op);
6589    V1 = SVOp->getOperand(0);
6590    V2 = SVOp->getOperand(1);
6591    std::swap(V1IsSplat, V2IsSplat);
6592    Commuted = true;
6593  }
6594
6595  SmallVector<int, 32> M;
6596  SVOp->getMask(M);
6597
6598  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6599    // Shuffling low element of v1 into undef, just return v1.
6600    if (V2IsUndef)
6601      return V1;
6602    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6603    // the instruction selector will not match, so get a canonical MOVL with
6604    // swapped operands to undo the commute.
6605    return getMOVL(DAG, dl, VT, V2, V1);
6606  }
6607
6608  if (isUNPCKLMask(M, VT, HasAVX2))
6609    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6610
6611  if (isUNPCKHMask(M, VT, HasAVX2))
6612    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6613
6614  if (V2IsSplat) {
6615    // Normalize mask so all entries that point to V2 points to its first
6616    // element then try to match unpck{h|l} again. If match, return a
6617    // new vector_shuffle with the corrected mask.
6618    SDValue NewMask = NormalizeMask(SVOp, DAG);
6619    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6620    if (NSVOp != SVOp) {
6621      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6622        return NewMask;
6623      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6624        return NewMask;
6625      }
6626    }
6627  }
6628
6629  if (Commuted) {
6630    // Commute is back and try unpck* again.
6631    // FIXME: this seems wrong.
6632    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6633    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6634
6635    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6636      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6637
6638    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6639      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6640  }
6641
6642  // Normalize the node to match x86 shuffle ops if needed
6643  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true) ||
6644                     isVSHUFPYMask(M, VT, HasAVX, /* Commuted */ true)))
6645    return CommuteVectorShuffle(SVOp, DAG);
6646
6647  // The checks below are all present in isShuffleMaskLegal, but they are
6648  // inlined here right now to enable us to directly emit target specific
6649  // nodes, and remove one by one until they don't return Op anymore.
6650
6651  if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()))
6652    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6653                                getShufflePALIGNRImmediate(SVOp),
6654                                DAG);
6655
6656  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6657      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6658    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6659      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6660  }
6661
6662  if (isPSHUFHWMask(M, VT))
6663    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6664                                X86::getShufflePSHUFHWImmediate(SVOp),
6665                                DAG);
6666
6667  if (isPSHUFLWMask(M, VT))
6668    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6669                                X86::getShufflePSHUFLWImmediate(SVOp),
6670                                DAG);
6671
6672  if (isSHUFPMask(M, VT))
6673    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6674                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6675
6676  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6677    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6678  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6679    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6680
6681  //===--------------------------------------------------------------------===//
6682  // Generate target specific nodes for 128 or 256-bit shuffles only
6683  // supported in the AVX instruction set.
6684  //
6685
6686  // Handle VMOVDDUPY permutations
6687  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6688    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6689
6690  // Handle VPERMILPS/D* permutations
6691  if (isVPERMILPMask(M, VT, HasAVX))
6692    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6693                                getShuffleVPERMILPImmediate(SVOp), DAG);
6694
6695  // Handle VPERM2F128/VPERM2I128 permutations
6696  if (isVPERM2X128Mask(M, VT, HasAVX))
6697    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6698                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6699
6700  // Handle VSHUFPS/DY permutations
6701  if (isVSHUFPYMask(M, VT, HasAVX))
6702    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6703                                getShuffleVSHUFPYImmediate(SVOp), DAG);
6704
6705  //===--------------------------------------------------------------------===//
6706  // Since no target specific shuffle was selected for this generic one,
6707  // lower it into other known shuffles. FIXME: this isn't true yet, but
6708  // this is the plan.
6709  //
6710
6711  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6712  if (VT == MVT::v8i16) {
6713    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6714    if (NewOp.getNode())
6715      return NewOp;
6716  }
6717
6718  if (VT == MVT::v16i8) {
6719    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6720    if (NewOp.getNode())
6721      return NewOp;
6722  }
6723
6724  // Handle all 128-bit wide vectors with 4 elements, and match them with
6725  // several different shuffle types.
6726  if (NumElems == 4 && VT.getSizeInBits() == 128)
6727    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6728
6729  // Handle general 256-bit shuffles
6730  if (VT.is256BitVector())
6731    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6732
6733  return SDValue();
6734}
6735
6736SDValue
6737X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6738                                                SelectionDAG &DAG) const {
6739  EVT VT = Op.getValueType();
6740  DebugLoc dl = Op.getDebugLoc();
6741
6742  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6743    return SDValue();
6744
6745  if (VT.getSizeInBits() == 8) {
6746    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6747                                    Op.getOperand(0), Op.getOperand(1));
6748    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6749                                    DAG.getValueType(VT));
6750    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6751  } else if (VT.getSizeInBits() == 16) {
6752    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6753    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6754    if (Idx == 0)
6755      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6756                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6757                                     DAG.getNode(ISD::BITCAST, dl,
6758                                                 MVT::v4i32,
6759                                                 Op.getOperand(0)),
6760                                     Op.getOperand(1)));
6761    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6762                                    Op.getOperand(0), Op.getOperand(1));
6763    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6764                                    DAG.getValueType(VT));
6765    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6766  } else if (VT == MVT::f32) {
6767    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6768    // the result back to FR32 register. It's only worth matching if the
6769    // result has a single use which is a store or a bitcast to i32.  And in
6770    // the case of a store, it's not worth it if the index is a constant 0,
6771    // because a MOVSSmr can be used instead, which is smaller and faster.
6772    if (!Op.hasOneUse())
6773      return SDValue();
6774    SDNode *User = *Op.getNode()->use_begin();
6775    if ((User->getOpcode() != ISD::STORE ||
6776         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6777          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6778        (User->getOpcode() != ISD::BITCAST ||
6779         User->getValueType(0) != MVT::i32))
6780      return SDValue();
6781    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6782                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6783                                              Op.getOperand(0)),
6784                                              Op.getOperand(1));
6785    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6786  } else if (VT == MVT::i32 || VT == MVT::i64) {
6787    // ExtractPS/pextrq works with constant index.
6788    if (isa<ConstantSDNode>(Op.getOperand(1)))
6789      return Op;
6790  }
6791  return SDValue();
6792}
6793
6794
6795SDValue
6796X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6797                                           SelectionDAG &DAG) const {
6798  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6799    return SDValue();
6800
6801  SDValue Vec = Op.getOperand(0);
6802  EVT VecVT = Vec.getValueType();
6803
6804  // If this is a 256-bit vector result, first extract the 128-bit vector and
6805  // then extract the element from the 128-bit vector.
6806  if (VecVT.getSizeInBits() == 256) {
6807    DebugLoc dl = Op.getNode()->getDebugLoc();
6808    unsigned NumElems = VecVT.getVectorNumElements();
6809    SDValue Idx = Op.getOperand(1);
6810    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6811
6812    // Get the 128-bit vector.
6813    bool Upper = IdxVal >= NumElems/2;
6814    Vec = Extract128BitVector(Vec,
6815                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6816
6817    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6818                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6819  }
6820
6821  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6822
6823  if (Subtarget->hasSSE41orAVX()) {
6824    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6825    if (Res.getNode())
6826      return Res;
6827  }
6828
6829  EVT VT = Op.getValueType();
6830  DebugLoc dl = Op.getDebugLoc();
6831  // TODO: handle v16i8.
6832  if (VT.getSizeInBits() == 16) {
6833    SDValue Vec = Op.getOperand(0);
6834    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6835    if (Idx == 0)
6836      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6837                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6838                                     DAG.getNode(ISD::BITCAST, dl,
6839                                                 MVT::v4i32, Vec),
6840                                     Op.getOperand(1)));
6841    // Transform it so it match pextrw which produces a 32-bit result.
6842    EVT EltVT = MVT::i32;
6843    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6844                                    Op.getOperand(0), Op.getOperand(1));
6845    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6846                                    DAG.getValueType(VT));
6847    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6848  } else if (VT.getSizeInBits() == 32) {
6849    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6850    if (Idx == 0)
6851      return Op;
6852
6853    // SHUFPS the element to the lowest double word, then movss.
6854    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6855    EVT VVT = Op.getOperand(0).getValueType();
6856    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6857                                       DAG.getUNDEF(VVT), Mask);
6858    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6859                       DAG.getIntPtrConstant(0));
6860  } else if (VT.getSizeInBits() == 64) {
6861    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6862    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6863    //        to match extract_elt for f64.
6864    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6865    if (Idx == 0)
6866      return Op;
6867
6868    // UNPCKHPD the element to the lowest double word, then movsd.
6869    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6870    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6871    int Mask[2] = { 1, -1 };
6872    EVT VVT = Op.getOperand(0).getValueType();
6873    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6874                                       DAG.getUNDEF(VVT), Mask);
6875    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6876                       DAG.getIntPtrConstant(0));
6877  }
6878
6879  return SDValue();
6880}
6881
6882SDValue
6883X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6884                                               SelectionDAG &DAG) const {
6885  EVT VT = Op.getValueType();
6886  EVT EltVT = VT.getVectorElementType();
6887  DebugLoc dl = Op.getDebugLoc();
6888
6889  SDValue N0 = Op.getOperand(0);
6890  SDValue N1 = Op.getOperand(1);
6891  SDValue N2 = Op.getOperand(2);
6892
6893  if (VT.getSizeInBits() == 256)
6894    return SDValue();
6895
6896  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6897      isa<ConstantSDNode>(N2)) {
6898    unsigned Opc;
6899    if (VT == MVT::v8i16)
6900      Opc = X86ISD::PINSRW;
6901    else if (VT == MVT::v16i8)
6902      Opc = X86ISD::PINSRB;
6903    else
6904      Opc = X86ISD::PINSRB;
6905
6906    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6907    // argument.
6908    if (N1.getValueType() != MVT::i32)
6909      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6910    if (N2.getValueType() != MVT::i32)
6911      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6912    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6913  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6914    // Bits [7:6] of the constant are the source select.  This will always be
6915    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6916    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6917    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6918    // Bits [5:4] of the constant are the destination select.  This is the
6919    //  value of the incoming immediate.
6920    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6921    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6922    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6923    // Create this as a scalar to vector..
6924    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6925    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6926  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6927             isa<ConstantSDNode>(N2)) {
6928    // PINSR* works with constant index.
6929    return Op;
6930  }
6931  return SDValue();
6932}
6933
6934SDValue
6935X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6936  EVT VT = Op.getValueType();
6937  EVT EltVT = VT.getVectorElementType();
6938
6939  DebugLoc dl = Op.getDebugLoc();
6940  SDValue N0 = Op.getOperand(0);
6941  SDValue N1 = Op.getOperand(1);
6942  SDValue N2 = Op.getOperand(2);
6943
6944  // If this is a 256-bit vector result, first extract the 128-bit vector,
6945  // insert the element into the extracted half and then place it back.
6946  if (VT.getSizeInBits() == 256) {
6947    if (!isa<ConstantSDNode>(N2))
6948      return SDValue();
6949
6950    // Get the desired 128-bit vector half.
6951    unsigned NumElems = VT.getVectorNumElements();
6952    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6953    bool Upper = IdxVal >= NumElems/2;
6954    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6955    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6956
6957    // Insert the element into the desired half.
6958    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6959                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6960
6961    // Insert the changed part back to the 256-bit vector
6962    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6963  }
6964
6965  if (Subtarget->hasSSE41orAVX())
6966    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6967
6968  if (EltVT == MVT::i8)
6969    return SDValue();
6970
6971  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6972    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6973    // as its second argument.
6974    if (N1.getValueType() != MVT::i32)
6975      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6976    if (N2.getValueType() != MVT::i32)
6977      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6978    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6979  }
6980  return SDValue();
6981}
6982
6983SDValue
6984X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6985  LLVMContext *Context = DAG.getContext();
6986  DebugLoc dl = Op.getDebugLoc();
6987  EVT OpVT = Op.getValueType();
6988
6989  // If this is a 256-bit vector result, first insert into a 128-bit
6990  // vector and then insert into the 256-bit vector.
6991  if (OpVT.getSizeInBits() > 128) {
6992    // Insert into a 128-bit vector.
6993    EVT VT128 = EVT::getVectorVT(*Context,
6994                                 OpVT.getVectorElementType(),
6995                                 OpVT.getVectorNumElements() / 2);
6996
6997    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6998
6999    // Insert the 128-bit vector.
7000    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7001                              DAG.getConstant(0, MVT::i32),
7002                              DAG, dl);
7003  }
7004
7005  if (Op.getValueType() == MVT::v1i64 &&
7006      Op.getOperand(0).getValueType() == MVT::i64)
7007    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7008
7009  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7010  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7011         "Expected an SSE type!");
7012  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7013                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7014}
7015
7016// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7017// a simple subregister reference or explicit instructions to grab
7018// upper bits of a vector.
7019SDValue
7020X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7021  if (Subtarget->hasAVX()) {
7022    DebugLoc dl = Op.getNode()->getDebugLoc();
7023    SDValue Vec = Op.getNode()->getOperand(0);
7024    SDValue Idx = Op.getNode()->getOperand(1);
7025
7026    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7027        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7028        return Extract128BitVector(Vec, Idx, DAG, dl);
7029    }
7030  }
7031  return SDValue();
7032}
7033
7034// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7035// simple superregister reference or explicit instructions to insert
7036// the upper bits of a vector.
7037SDValue
7038X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7039  if (Subtarget->hasAVX()) {
7040    DebugLoc dl = Op.getNode()->getDebugLoc();
7041    SDValue Vec = Op.getNode()->getOperand(0);
7042    SDValue SubVec = Op.getNode()->getOperand(1);
7043    SDValue Idx = Op.getNode()->getOperand(2);
7044
7045    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7046        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7047      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7048    }
7049  }
7050  return SDValue();
7051}
7052
7053// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7054// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7055// one of the above mentioned nodes. It has to be wrapped because otherwise
7056// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7057// be used to form addressing mode. These wrapped nodes will be selected
7058// into MOV32ri.
7059SDValue
7060X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7061  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7062
7063  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7064  // global base reg.
7065  unsigned char OpFlag = 0;
7066  unsigned WrapperKind = X86ISD::Wrapper;
7067  CodeModel::Model M = getTargetMachine().getCodeModel();
7068
7069  if (Subtarget->isPICStyleRIPRel() &&
7070      (M == CodeModel::Small || M == CodeModel::Kernel))
7071    WrapperKind = X86ISD::WrapperRIP;
7072  else if (Subtarget->isPICStyleGOT())
7073    OpFlag = X86II::MO_GOTOFF;
7074  else if (Subtarget->isPICStyleStubPIC())
7075    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7076
7077  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7078                                             CP->getAlignment(),
7079                                             CP->getOffset(), OpFlag);
7080  DebugLoc DL = CP->getDebugLoc();
7081  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7082  // With PIC, the address is actually $g + Offset.
7083  if (OpFlag) {
7084    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7085                         DAG.getNode(X86ISD::GlobalBaseReg,
7086                                     DebugLoc(), getPointerTy()),
7087                         Result);
7088  }
7089
7090  return Result;
7091}
7092
7093SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7094  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7095
7096  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7097  // global base reg.
7098  unsigned char OpFlag = 0;
7099  unsigned WrapperKind = X86ISD::Wrapper;
7100  CodeModel::Model M = getTargetMachine().getCodeModel();
7101
7102  if (Subtarget->isPICStyleRIPRel() &&
7103      (M == CodeModel::Small || M == CodeModel::Kernel))
7104    WrapperKind = X86ISD::WrapperRIP;
7105  else if (Subtarget->isPICStyleGOT())
7106    OpFlag = X86II::MO_GOTOFF;
7107  else if (Subtarget->isPICStyleStubPIC())
7108    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7109
7110  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7111                                          OpFlag);
7112  DebugLoc DL = JT->getDebugLoc();
7113  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7114
7115  // With PIC, the address is actually $g + Offset.
7116  if (OpFlag)
7117    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7118                         DAG.getNode(X86ISD::GlobalBaseReg,
7119                                     DebugLoc(), getPointerTy()),
7120                         Result);
7121
7122  return Result;
7123}
7124
7125SDValue
7126X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7127  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7128
7129  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7130  // global base reg.
7131  unsigned char OpFlag = 0;
7132  unsigned WrapperKind = X86ISD::Wrapper;
7133  CodeModel::Model M = getTargetMachine().getCodeModel();
7134
7135  if (Subtarget->isPICStyleRIPRel() &&
7136      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7137    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7138      OpFlag = X86II::MO_GOTPCREL;
7139    WrapperKind = X86ISD::WrapperRIP;
7140  } else if (Subtarget->isPICStyleGOT()) {
7141    OpFlag = X86II::MO_GOT;
7142  } else if (Subtarget->isPICStyleStubPIC()) {
7143    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7144  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7145    OpFlag = X86II::MO_DARWIN_NONLAZY;
7146  }
7147
7148  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7149
7150  DebugLoc DL = Op.getDebugLoc();
7151  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7152
7153
7154  // With PIC, the address is actually $g + Offset.
7155  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7156      !Subtarget->is64Bit()) {
7157    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7158                         DAG.getNode(X86ISD::GlobalBaseReg,
7159                                     DebugLoc(), getPointerTy()),
7160                         Result);
7161  }
7162
7163  // For symbols that require a load from a stub to get the address, emit the
7164  // load.
7165  if (isGlobalStubReference(OpFlag))
7166    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7167                         MachinePointerInfo::getGOT(), false, false, false, 0);
7168
7169  return Result;
7170}
7171
7172SDValue
7173X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7174  // Create the TargetBlockAddressAddress node.
7175  unsigned char OpFlags =
7176    Subtarget->ClassifyBlockAddressReference();
7177  CodeModel::Model M = getTargetMachine().getCodeModel();
7178  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7179  DebugLoc dl = Op.getDebugLoc();
7180  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7181                                       /*isTarget=*/true, OpFlags);
7182
7183  if (Subtarget->isPICStyleRIPRel() &&
7184      (M == CodeModel::Small || M == CodeModel::Kernel))
7185    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7186  else
7187    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7188
7189  // With PIC, the address is actually $g + Offset.
7190  if (isGlobalRelativeToPICBase(OpFlags)) {
7191    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7192                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7193                         Result);
7194  }
7195
7196  return Result;
7197}
7198
7199SDValue
7200X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7201                                      int64_t Offset,
7202                                      SelectionDAG &DAG) const {
7203  // Create the TargetGlobalAddress node, folding in the constant
7204  // offset if it is legal.
7205  unsigned char OpFlags =
7206    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7207  CodeModel::Model M = getTargetMachine().getCodeModel();
7208  SDValue Result;
7209  if (OpFlags == X86II::MO_NO_FLAG &&
7210      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7211    // A direct static reference to a global.
7212    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7213    Offset = 0;
7214  } else {
7215    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7216  }
7217
7218  if (Subtarget->isPICStyleRIPRel() &&
7219      (M == CodeModel::Small || M == CodeModel::Kernel))
7220    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7221  else
7222    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7223
7224  // With PIC, the address is actually $g + Offset.
7225  if (isGlobalRelativeToPICBase(OpFlags)) {
7226    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7227                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7228                         Result);
7229  }
7230
7231  // For globals that require a load from a stub to get the address, emit the
7232  // load.
7233  if (isGlobalStubReference(OpFlags))
7234    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7235                         MachinePointerInfo::getGOT(), false, false, false, 0);
7236
7237  // If there was a non-zero offset that we didn't fold, create an explicit
7238  // addition for it.
7239  if (Offset != 0)
7240    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7241                         DAG.getConstant(Offset, getPointerTy()));
7242
7243  return Result;
7244}
7245
7246SDValue
7247X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7248  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7249  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7250  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7251}
7252
7253static SDValue
7254GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7255           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7256           unsigned char OperandFlags) {
7257  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7258  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7259  DebugLoc dl = GA->getDebugLoc();
7260  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7261                                           GA->getValueType(0),
7262                                           GA->getOffset(),
7263                                           OperandFlags);
7264  if (InFlag) {
7265    SDValue Ops[] = { Chain,  TGA, *InFlag };
7266    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7267  } else {
7268    SDValue Ops[]  = { Chain, TGA };
7269    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7270  }
7271
7272  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7273  MFI->setAdjustsStack(true);
7274
7275  SDValue Flag = Chain.getValue(1);
7276  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7277}
7278
7279// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7280static SDValue
7281LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7282                                const EVT PtrVT) {
7283  SDValue InFlag;
7284  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7285  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7286                                     DAG.getNode(X86ISD::GlobalBaseReg,
7287                                                 DebugLoc(), PtrVT), InFlag);
7288  InFlag = Chain.getValue(1);
7289
7290  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7291}
7292
7293// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7294static SDValue
7295LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7296                                const EVT PtrVT) {
7297  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7298                    X86::RAX, X86II::MO_TLSGD);
7299}
7300
7301// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7302// "local exec" model.
7303static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7304                                   const EVT PtrVT, TLSModel::Model model,
7305                                   bool is64Bit) {
7306  DebugLoc dl = GA->getDebugLoc();
7307
7308  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7309  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7310                                                         is64Bit ? 257 : 256));
7311
7312  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7313                                      DAG.getIntPtrConstant(0),
7314                                      MachinePointerInfo(Ptr),
7315                                      false, false, false, 0);
7316
7317  unsigned char OperandFlags = 0;
7318  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7319  // initialexec.
7320  unsigned WrapperKind = X86ISD::Wrapper;
7321  if (model == TLSModel::LocalExec) {
7322    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7323  } else if (is64Bit) {
7324    assert(model == TLSModel::InitialExec);
7325    OperandFlags = X86II::MO_GOTTPOFF;
7326    WrapperKind = X86ISD::WrapperRIP;
7327  } else {
7328    assert(model == TLSModel::InitialExec);
7329    OperandFlags = X86II::MO_INDNTPOFF;
7330  }
7331
7332  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7333  // exec)
7334  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7335                                           GA->getValueType(0),
7336                                           GA->getOffset(), OperandFlags);
7337  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7338
7339  if (model == TLSModel::InitialExec)
7340    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7341                         MachinePointerInfo::getGOT(), false, false, false, 0);
7342
7343  // The address of the thread local variable is the add of the thread
7344  // pointer with the offset of the variable.
7345  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7346}
7347
7348SDValue
7349X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7350
7351  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7352  const GlobalValue *GV = GA->getGlobal();
7353
7354  if (Subtarget->isTargetELF()) {
7355    // TODO: implement the "local dynamic" model
7356    // TODO: implement the "initial exec"model for pic executables
7357
7358    // If GV is an alias then use the aliasee for determining
7359    // thread-localness.
7360    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7361      GV = GA->resolveAliasedGlobal(false);
7362
7363    TLSModel::Model model
7364      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7365
7366    switch (model) {
7367      case TLSModel::GeneralDynamic:
7368      case TLSModel::LocalDynamic: // not implemented
7369        if (Subtarget->is64Bit())
7370          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7371        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7372
7373      case TLSModel::InitialExec:
7374      case TLSModel::LocalExec:
7375        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7376                                   Subtarget->is64Bit());
7377    }
7378  } else if (Subtarget->isTargetDarwin()) {
7379    // Darwin only has one model of TLS.  Lower to that.
7380    unsigned char OpFlag = 0;
7381    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7382                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7383
7384    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7385    // global base reg.
7386    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7387                  !Subtarget->is64Bit();
7388    if (PIC32)
7389      OpFlag = X86II::MO_TLVP_PIC_BASE;
7390    else
7391      OpFlag = X86II::MO_TLVP;
7392    DebugLoc DL = Op.getDebugLoc();
7393    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7394                                                GA->getValueType(0),
7395                                                GA->getOffset(), OpFlag);
7396    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7397
7398    // With PIC32, the address is actually $g + Offset.
7399    if (PIC32)
7400      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7401                           DAG.getNode(X86ISD::GlobalBaseReg,
7402                                       DebugLoc(), getPointerTy()),
7403                           Offset);
7404
7405    // Lowering the machine isd will make sure everything is in the right
7406    // location.
7407    SDValue Chain = DAG.getEntryNode();
7408    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7409    SDValue Args[] = { Chain, Offset };
7410    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7411
7412    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7413    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7414    MFI->setAdjustsStack(true);
7415
7416    // And our return value (tls address) is in the standard call return value
7417    // location.
7418    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7419    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7420                              Chain.getValue(1));
7421  }
7422
7423  assert(false &&
7424         "TLS not implemented for this target.");
7425
7426  llvm_unreachable("Unreachable");
7427  return SDValue();
7428}
7429
7430
7431/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7432/// take a 2 x i32 value to shift plus a shift amount.
7433SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7434  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7435  EVT VT = Op.getValueType();
7436  unsigned VTBits = VT.getSizeInBits();
7437  DebugLoc dl = Op.getDebugLoc();
7438  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7439  SDValue ShOpLo = Op.getOperand(0);
7440  SDValue ShOpHi = Op.getOperand(1);
7441  SDValue ShAmt  = Op.getOperand(2);
7442  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7443                                     DAG.getConstant(VTBits - 1, MVT::i8))
7444                       : DAG.getConstant(0, VT);
7445
7446  SDValue Tmp2, Tmp3;
7447  if (Op.getOpcode() == ISD::SHL_PARTS) {
7448    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7449    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7450  } else {
7451    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7452    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7453  }
7454
7455  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7456                                DAG.getConstant(VTBits, MVT::i8));
7457  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7458                             AndNode, DAG.getConstant(0, MVT::i8));
7459
7460  SDValue Hi, Lo;
7461  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7462  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7463  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7464
7465  if (Op.getOpcode() == ISD::SHL_PARTS) {
7466    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7467    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7468  } else {
7469    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7470    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7471  }
7472
7473  SDValue Ops[2] = { Lo, Hi };
7474  return DAG.getMergeValues(Ops, 2, dl);
7475}
7476
7477SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7478                                           SelectionDAG &DAG) const {
7479  EVT SrcVT = Op.getOperand(0).getValueType();
7480
7481  if (SrcVT.isVector())
7482    return SDValue();
7483
7484  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7485         "Unknown SINT_TO_FP to lower!");
7486
7487  // These are really Legal; return the operand so the caller accepts it as
7488  // Legal.
7489  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7490    return Op;
7491  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7492      Subtarget->is64Bit()) {
7493    return Op;
7494  }
7495
7496  DebugLoc dl = Op.getDebugLoc();
7497  unsigned Size = SrcVT.getSizeInBits()/8;
7498  MachineFunction &MF = DAG.getMachineFunction();
7499  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7500  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7501  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7502                               StackSlot,
7503                               MachinePointerInfo::getFixedStack(SSFI),
7504                               false, false, 0);
7505  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7506}
7507
7508SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7509                                     SDValue StackSlot,
7510                                     SelectionDAG &DAG) const {
7511  // Build the FILD
7512  DebugLoc DL = Op.getDebugLoc();
7513  SDVTList Tys;
7514  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7515  if (useSSE)
7516    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7517  else
7518    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7519
7520  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7521
7522  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7523  MachineMemOperand *MMO;
7524  if (FI) {
7525    int SSFI = FI->getIndex();
7526    MMO =
7527      DAG.getMachineFunction()
7528      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7529                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7530  } else {
7531    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7532    StackSlot = StackSlot.getOperand(1);
7533  }
7534  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7535  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7536                                           X86ISD::FILD, DL,
7537                                           Tys, Ops, array_lengthof(Ops),
7538                                           SrcVT, MMO);
7539
7540  if (useSSE) {
7541    Chain = Result.getValue(1);
7542    SDValue InFlag = Result.getValue(2);
7543
7544    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7545    // shouldn't be necessary except that RFP cannot be live across
7546    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7547    MachineFunction &MF = DAG.getMachineFunction();
7548    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7549    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7550    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7551    Tys = DAG.getVTList(MVT::Other);
7552    SDValue Ops[] = {
7553      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7554    };
7555    MachineMemOperand *MMO =
7556      DAG.getMachineFunction()
7557      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7558                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7559
7560    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7561                                    Ops, array_lengthof(Ops),
7562                                    Op.getValueType(), MMO);
7563    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7564                         MachinePointerInfo::getFixedStack(SSFI),
7565                         false, false, false, 0);
7566  }
7567
7568  return Result;
7569}
7570
7571// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7572SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7573                                               SelectionDAG &DAG) const {
7574  // This algorithm is not obvious. Here it is in C code, more or less:
7575  /*
7576    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7577      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7578      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7579
7580      // Copy ints to xmm registers.
7581      __m128i xh = _mm_cvtsi32_si128( hi );
7582      __m128i xl = _mm_cvtsi32_si128( lo );
7583
7584      // Combine into low half of a single xmm register.
7585      __m128i x = _mm_unpacklo_epi32( xh, xl );
7586      __m128d d;
7587      double sd;
7588
7589      // Merge in appropriate exponents to give the integer bits the right
7590      // magnitude.
7591      x = _mm_unpacklo_epi32( x, exp );
7592
7593      // Subtract away the biases to deal with the IEEE-754 double precision
7594      // implicit 1.
7595      d = _mm_sub_pd( (__m128d) x, bias );
7596
7597      // All conversions up to here are exact. The correctly rounded result is
7598      // calculated using the current rounding mode using the following
7599      // horizontal add.
7600      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7601      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7602                                // store doesn't really need to be here (except
7603                                // maybe to zero the other double)
7604      return sd;
7605    }
7606  */
7607
7608  DebugLoc dl = Op.getDebugLoc();
7609  LLVMContext *Context = DAG.getContext();
7610
7611  // Build some magic constants.
7612  SmallVector<Constant*,4> CV0;
7613  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7614  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7615  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7616  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7617  Constant *C0 = ConstantVector::get(CV0);
7618  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7619
7620  SmallVector<Constant*,2> CV1;
7621  CV1.push_back(
7622    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7623  CV1.push_back(
7624    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7625  Constant *C1 = ConstantVector::get(CV1);
7626  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7627
7628  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7629                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7630                                        Op.getOperand(0),
7631                                        DAG.getIntPtrConstant(1)));
7632  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7633                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7634                                        Op.getOperand(0),
7635                                        DAG.getIntPtrConstant(0)));
7636  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7637  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7638                              MachinePointerInfo::getConstantPool(),
7639                              false, false, false, 16);
7640  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7641  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7642  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7643                              MachinePointerInfo::getConstantPool(),
7644                              false, false, false, 16);
7645  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7646
7647  // Add the halves; easiest way is to swap them into another reg first.
7648  int ShufMask[2] = { 1, -1 };
7649  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7650                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7651  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7652  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7653                     DAG.getIntPtrConstant(0));
7654}
7655
7656// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7657SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7658                                               SelectionDAG &DAG) const {
7659  DebugLoc dl = Op.getDebugLoc();
7660  // FP constant to bias correct the final result.
7661  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7662                                   MVT::f64);
7663
7664  // Load the 32-bit value into an XMM register.
7665  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7666                             Op.getOperand(0));
7667
7668  // Zero out the upper parts of the register.
7669  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7670                                     DAG);
7671
7672  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7673                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7674                     DAG.getIntPtrConstant(0));
7675
7676  // Or the load with the bias.
7677  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7678                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7679                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7680                                                   MVT::v2f64, Load)),
7681                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7682                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7683                                                   MVT::v2f64, Bias)));
7684  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7685                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7686                   DAG.getIntPtrConstant(0));
7687
7688  // Subtract the bias.
7689  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7690
7691  // Handle final rounding.
7692  EVT DestVT = Op.getValueType();
7693
7694  if (DestVT.bitsLT(MVT::f64)) {
7695    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7696                       DAG.getIntPtrConstant(0));
7697  } else if (DestVT.bitsGT(MVT::f64)) {
7698    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7699  }
7700
7701  // Handle final rounding.
7702  return Sub;
7703}
7704
7705SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7706                                           SelectionDAG &DAG) const {
7707  SDValue N0 = Op.getOperand(0);
7708  DebugLoc dl = Op.getDebugLoc();
7709
7710  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7711  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7712  // the optimization here.
7713  if (DAG.SignBitIsZero(N0))
7714    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7715
7716  EVT SrcVT = N0.getValueType();
7717  EVT DstVT = Op.getValueType();
7718  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7719    return LowerUINT_TO_FP_i64(Op, DAG);
7720  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7721    return LowerUINT_TO_FP_i32(Op, DAG);
7722
7723  // Make a 64-bit buffer, and use it to build an FILD.
7724  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7725  if (SrcVT == MVT::i32) {
7726    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7727    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7728                                     getPointerTy(), StackSlot, WordOff);
7729    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7730                                  StackSlot, MachinePointerInfo(),
7731                                  false, false, 0);
7732    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7733                                  OffsetSlot, MachinePointerInfo(),
7734                                  false, false, 0);
7735    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7736    return Fild;
7737  }
7738
7739  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7740  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7741                                StackSlot, MachinePointerInfo(),
7742                               false, false, 0);
7743  // For i64 source, we need to add the appropriate power of 2 if the input
7744  // was negative.  This is the same as the optimization in
7745  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7746  // we must be careful to do the computation in x87 extended precision, not
7747  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7748  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7749  MachineMemOperand *MMO =
7750    DAG.getMachineFunction()
7751    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7752                          MachineMemOperand::MOLoad, 8, 8);
7753
7754  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7755  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7756  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7757                                         MVT::i64, MMO);
7758
7759  APInt FF(32, 0x5F800000ULL);
7760
7761  // Check whether the sign bit is set.
7762  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7763                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7764                                 ISD::SETLT);
7765
7766  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7767  SDValue FudgePtr = DAG.getConstantPool(
7768                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7769                                         getPointerTy());
7770
7771  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7772  SDValue Zero = DAG.getIntPtrConstant(0);
7773  SDValue Four = DAG.getIntPtrConstant(4);
7774  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7775                               Zero, Four);
7776  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7777
7778  // Load the value out, extending it from f32 to f80.
7779  // FIXME: Avoid the extend by constructing the right constant pool?
7780  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7781                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7782                                 MVT::f32, false, false, 4);
7783  // Extend everything to 80 bits to force it to be done on x87.
7784  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7785  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7786}
7787
7788std::pair<SDValue,SDValue> X86TargetLowering::
7789FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7790  DebugLoc DL = Op.getDebugLoc();
7791
7792  EVT DstTy = Op.getValueType();
7793
7794  if (!IsSigned) {
7795    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7796    DstTy = MVT::i64;
7797  }
7798
7799  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7800         DstTy.getSimpleVT() >= MVT::i16 &&
7801         "Unknown FP_TO_SINT to lower!");
7802
7803  // These are really Legal.
7804  if (DstTy == MVT::i32 &&
7805      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7806    return std::make_pair(SDValue(), SDValue());
7807  if (Subtarget->is64Bit() &&
7808      DstTy == MVT::i64 &&
7809      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7810    return std::make_pair(SDValue(), SDValue());
7811
7812  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7813  // stack slot.
7814  MachineFunction &MF = DAG.getMachineFunction();
7815  unsigned MemSize = DstTy.getSizeInBits()/8;
7816  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7817  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7818
7819
7820
7821  unsigned Opc;
7822  switch (DstTy.getSimpleVT().SimpleTy) {
7823  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7824  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7825  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7826  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7827  }
7828
7829  SDValue Chain = DAG.getEntryNode();
7830  SDValue Value = Op.getOperand(0);
7831  EVT TheVT = Op.getOperand(0).getValueType();
7832  if (isScalarFPTypeInSSEReg(TheVT)) {
7833    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7834    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7835                         MachinePointerInfo::getFixedStack(SSFI),
7836                         false, false, 0);
7837    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7838    SDValue Ops[] = {
7839      Chain, StackSlot, DAG.getValueType(TheVT)
7840    };
7841
7842    MachineMemOperand *MMO =
7843      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7844                              MachineMemOperand::MOLoad, MemSize, MemSize);
7845    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7846                                    DstTy, MMO);
7847    Chain = Value.getValue(1);
7848    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7849    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7850  }
7851
7852  MachineMemOperand *MMO =
7853    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7854                            MachineMemOperand::MOStore, MemSize, MemSize);
7855
7856  // Build the FP_TO_INT*_IN_MEM
7857  SDValue Ops[] = { Chain, Value, StackSlot };
7858  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7859                                         Ops, 3, DstTy, MMO);
7860
7861  return std::make_pair(FIST, StackSlot);
7862}
7863
7864SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7865                                           SelectionDAG &DAG) const {
7866  if (Op.getValueType().isVector())
7867    return SDValue();
7868
7869  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7870  SDValue FIST = Vals.first, StackSlot = Vals.second;
7871  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7872  if (FIST.getNode() == 0) return Op;
7873
7874  // Load the result.
7875  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7876                     FIST, StackSlot, MachinePointerInfo(),
7877                     false, false, false, 0);
7878}
7879
7880SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7881                                           SelectionDAG &DAG) const {
7882  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7883  SDValue FIST = Vals.first, StackSlot = Vals.second;
7884  assert(FIST.getNode() && "Unexpected failure");
7885
7886  // Load the result.
7887  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7888                     FIST, StackSlot, MachinePointerInfo(),
7889                     false, false, false, 0);
7890}
7891
7892SDValue X86TargetLowering::LowerFABS(SDValue Op,
7893                                     SelectionDAG &DAG) const {
7894  LLVMContext *Context = DAG.getContext();
7895  DebugLoc dl = Op.getDebugLoc();
7896  EVT VT = Op.getValueType();
7897  EVT EltVT = VT;
7898  if (VT.isVector())
7899    EltVT = VT.getVectorElementType();
7900  SmallVector<Constant*,4> CV;
7901  if (EltVT == MVT::f64) {
7902    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7903    CV.assign(2, C);
7904  } else {
7905    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7906    CV.assign(4, C);
7907  }
7908  Constant *C = ConstantVector::get(CV);
7909  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7910  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7911                             MachinePointerInfo::getConstantPool(),
7912                             false, false, false, 16);
7913  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7914}
7915
7916SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7917  LLVMContext *Context = DAG.getContext();
7918  DebugLoc dl = Op.getDebugLoc();
7919  EVT VT = Op.getValueType();
7920  EVT EltVT = VT;
7921  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7922  if (VT.isVector()) {
7923    EltVT = VT.getVectorElementType();
7924    NumElts = VT.getVectorNumElements();
7925  }
7926  SmallVector<Constant*,8> CV;
7927  if (EltVT == MVT::f64) {
7928    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7929    CV.assign(NumElts, C);
7930  } else {
7931    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7932    CV.assign(NumElts, C);
7933  }
7934  Constant *C = ConstantVector::get(CV);
7935  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7936  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7937                             MachinePointerInfo::getConstantPool(),
7938                             false, false, false, 16);
7939  if (VT.isVector()) {
7940    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7941    return DAG.getNode(ISD::BITCAST, dl, VT,
7942                       DAG.getNode(ISD::XOR, dl, XORVT,
7943                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7944                                Op.getOperand(0)),
7945                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7946  } else {
7947    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7948  }
7949}
7950
7951SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7952  LLVMContext *Context = DAG.getContext();
7953  SDValue Op0 = Op.getOperand(0);
7954  SDValue Op1 = Op.getOperand(1);
7955  DebugLoc dl = Op.getDebugLoc();
7956  EVT VT = Op.getValueType();
7957  EVT SrcVT = Op1.getValueType();
7958
7959  // If second operand is smaller, extend it first.
7960  if (SrcVT.bitsLT(VT)) {
7961    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7962    SrcVT = VT;
7963  }
7964  // And if it is bigger, shrink it first.
7965  if (SrcVT.bitsGT(VT)) {
7966    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7967    SrcVT = VT;
7968  }
7969
7970  // At this point the operands and the result should have the same
7971  // type, and that won't be f80 since that is not custom lowered.
7972
7973  // First get the sign bit of second operand.
7974  SmallVector<Constant*,4> CV;
7975  if (SrcVT == MVT::f64) {
7976    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7977    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7978  } else {
7979    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7980    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7981    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7982    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7983  }
7984  Constant *C = ConstantVector::get(CV);
7985  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7986  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7987                              MachinePointerInfo::getConstantPool(),
7988                              false, false, false, 16);
7989  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7990
7991  // Shift sign bit right or left if the two operands have different types.
7992  if (SrcVT.bitsGT(VT)) {
7993    // Op0 is MVT::f32, Op1 is MVT::f64.
7994    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7995    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7996                          DAG.getConstant(32, MVT::i32));
7997    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7998    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7999                          DAG.getIntPtrConstant(0));
8000  }
8001
8002  // Clear first operand sign bit.
8003  CV.clear();
8004  if (VT == MVT::f64) {
8005    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8006    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8007  } else {
8008    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8009    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8010    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8011    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8012  }
8013  C = ConstantVector::get(CV);
8014  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8015  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8016                              MachinePointerInfo::getConstantPool(),
8017                              false, false, false, 16);
8018  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8019
8020  // Or the value with the sign bit.
8021  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8022}
8023
8024SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8025  SDValue N0 = Op.getOperand(0);
8026  DebugLoc dl = Op.getDebugLoc();
8027  EVT VT = Op.getValueType();
8028
8029  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8030  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8031                                  DAG.getConstant(1, VT));
8032  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8033}
8034
8035/// Emit nodes that will be selected as "test Op0,Op0", or something
8036/// equivalent.
8037SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8038                                    SelectionDAG &DAG) const {
8039  DebugLoc dl = Op.getDebugLoc();
8040
8041  // CF and OF aren't always set the way we want. Determine which
8042  // of these we need.
8043  bool NeedCF = false;
8044  bool NeedOF = false;
8045  switch (X86CC) {
8046  default: break;
8047  case X86::COND_A: case X86::COND_AE:
8048  case X86::COND_B: case X86::COND_BE:
8049    NeedCF = true;
8050    break;
8051  case X86::COND_G: case X86::COND_GE:
8052  case X86::COND_L: case X86::COND_LE:
8053  case X86::COND_O: case X86::COND_NO:
8054    NeedOF = true;
8055    break;
8056  }
8057
8058  // See if we can use the EFLAGS value from the operand instead of
8059  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8060  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8061  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8062    // Emit a CMP with 0, which is the TEST pattern.
8063    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8064                       DAG.getConstant(0, Op.getValueType()));
8065
8066  unsigned Opcode = 0;
8067  unsigned NumOperands = 0;
8068  switch (Op.getNode()->getOpcode()) {
8069  case ISD::ADD:
8070    // Due to an isel shortcoming, be conservative if this add is likely to be
8071    // selected as part of a load-modify-store instruction. When the root node
8072    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8073    // uses of other nodes in the match, such as the ADD in this case. This
8074    // leads to the ADD being left around and reselected, with the result being
8075    // two adds in the output.  Alas, even if none our users are stores, that
8076    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8077    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8078    // climbing the DAG back to the root, and it doesn't seem to be worth the
8079    // effort.
8080    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8081         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8082      if (UI->getOpcode() != ISD::CopyToReg &&
8083          UI->getOpcode() != ISD::SETCC &&
8084          UI->getOpcode() != ISD::STORE)
8085        goto default_case;
8086
8087    if (ConstantSDNode *C =
8088        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8089      // An add of one will be selected as an INC.
8090      if (C->getAPIntValue() == 1) {
8091        Opcode = X86ISD::INC;
8092        NumOperands = 1;
8093        break;
8094      }
8095
8096      // An add of negative one (subtract of one) will be selected as a DEC.
8097      if (C->getAPIntValue().isAllOnesValue()) {
8098        Opcode = X86ISD::DEC;
8099        NumOperands = 1;
8100        break;
8101      }
8102    }
8103
8104    // Otherwise use a regular EFLAGS-setting add.
8105    Opcode = X86ISD::ADD;
8106    NumOperands = 2;
8107    break;
8108  case ISD::AND: {
8109    // If the primary and result isn't used, don't bother using X86ISD::AND,
8110    // because a TEST instruction will be better.
8111    bool NonFlagUse = false;
8112    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8113           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8114      SDNode *User = *UI;
8115      unsigned UOpNo = UI.getOperandNo();
8116      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8117        // Look pass truncate.
8118        UOpNo = User->use_begin().getOperandNo();
8119        User = *User->use_begin();
8120      }
8121
8122      if (User->getOpcode() != ISD::BRCOND &&
8123          User->getOpcode() != ISD::SETCC &&
8124          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8125        NonFlagUse = true;
8126        break;
8127      }
8128    }
8129
8130    if (!NonFlagUse)
8131      break;
8132  }
8133    // FALL THROUGH
8134  case ISD::SUB:
8135  case ISD::OR:
8136  case ISD::XOR:
8137    // Due to the ISEL shortcoming noted above, be conservative if this op is
8138    // likely to be selected as part of a load-modify-store instruction.
8139    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8140           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8141      if (UI->getOpcode() == ISD::STORE)
8142        goto default_case;
8143
8144    // Otherwise use a regular EFLAGS-setting instruction.
8145    switch (Op.getNode()->getOpcode()) {
8146    default: llvm_unreachable("unexpected operator!");
8147    case ISD::SUB: Opcode = X86ISD::SUB; break;
8148    case ISD::OR:  Opcode = X86ISD::OR;  break;
8149    case ISD::XOR: Opcode = X86ISD::XOR; break;
8150    case ISD::AND: Opcode = X86ISD::AND; break;
8151    }
8152
8153    NumOperands = 2;
8154    break;
8155  case X86ISD::ADD:
8156  case X86ISD::SUB:
8157  case X86ISD::INC:
8158  case X86ISD::DEC:
8159  case X86ISD::OR:
8160  case X86ISD::XOR:
8161  case X86ISD::AND:
8162    return SDValue(Op.getNode(), 1);
8163  default:
8164  default_case:
8165    break;
8166  }
8167
8168  if (Opcode == 0)
8169    // Emit a CMP with 0, which is the TEST pattern.
8170    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8171                       DAG.getConstant(0, Op.getValueType()));
8172
8173  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8174  SmallVector<SDValue, 4> Ops;
8175  for (unsigned i = 0; i != NumOperands; ++i)
8176    Ops.push_back(Op.getOperand(i));
8177
8178  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8179  DAG.ReplaceAllUsesWith(Op, New);
8180  return SDValue(New.getNode(), 1);
8181}
8182
8183/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8184/// equivalent.
8185SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8186                                   SelectionDAG &DAG) const {
8187  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8188    if (C->getAPIntValue() == 0)
8189      return EmitTest(Op0, X86CC, DAG);
8190
8191  DebugLoc dl = Op0.getDebugLoc();
8192  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8193}
8194
8195/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8196/// if it's possible.
8197SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8198                                     DebugLoc dl, SelectionDAG &DAG) const {
8199  SDValue Op0 = And.getOperand(0);
8200  SDValue Op1 = And.getOperand(1);
8201  if (Op0.getOpcode() == ISD::TRUNCATE)
8202    Op0 = Op0.getOperand(0);
8203  if (Op1.getOpcode() == ISD::TRUNCATE)
8204    Op1 = Op1.getOperand(0);
8205
8206  SDValue LHS, RHS;
8207  if (Op1.getOpcode() == ISD::SHL)
8208    std::swap(Op0, Op1);
8209  if (Op0.getOpcode() == ISD::SHL) {
8210    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8211      if (And00C->getZExtValue() == 1) {
8212        // If we looked past a truncate, check that it's only truncating away
8213        // known zeros.
8214        unsigned BitWidth = Op0.getValueSizeInBits();
8215        unsigned AndBitWidth = And.getValueSizeInBits();
8216        if (BitWidth > AndBitWidth) {
8217          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8218          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8219          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8220            return SDValue();
8221        }
8222        LHS = Op1;
8223        RHS = Op0.getOperand(1);
8224      }
8225  } else if (Op1.getOpcode() == ISD::Constant) {
8226    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8227    uint64_t AndRHSVal = AndRHS->getZExtValue();
8228    SDValue AndLHS = Op0;
8229
8230    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8231      LHS = AndLHS.getOperand(0);
8232      RHS = AndLHS.getOperand(1);
8233    }
8234
8235    // Use BT if the immediate can't be encoded in a TEST instruction.
8236    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8237      LHS = AndLHS;
8238      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8239    }
8240  }
8241
8242  if (LHS.getNode()) {
8243    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8244    // instruction.  Since the shift amount is in-range-or-undefined, we know
8245    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8246    // the encoding for the i16 version is larger than the i32 version.
8247    // Also promote i16 to i32 for performance / code size reason.
8248    if (LHS.getValueType() == MVT::i8 ||
8249        LHS.getValueType() == MVT::i16)
8250      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8251
8252    // If the operand types disagree, extend the shift amount to match.  Since
8253    // BT ignores high bits (like shifts) we can use anyextend.
8254    if (LHS.getValueType() != RHS.getValueType())
8255      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8256
8257    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8258    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8259    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8260                       DAG.getConstant(Cond, MVT::i8), BT);
8261  }
8262
8263  return SDValue();
8264}
8265
8266SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8267
8268  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8269
8270  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8271  SDValue Op0 = Op.getOperand(0);
8272  SDValue Op1 = Op.getOperand(1);
8273  DebugLoc dl = Op.getDebugLoc();
8274  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8275
8276  // Optimize to BT if possible.
8277  // Lower (X & (1 << N)) == 0 to BT(X, N).
8278  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8279  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8280  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8281      Op1.getOpcode() == ISD::Constant &&
8282      cast<ConstantSDNode>(Op1)->isNullValue() &&
8283      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8284    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8285    if (NewSetCC.getNode())
8286      return NewSetCC;
8287  }
8288
8289  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8290  // these.
8291  if (Op1.getOpcode() == ISD::Constant &&
8292      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8293       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8294      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8295
8296    // If the input is a setcc, then reuse the input setcc or use a new one with
8297    // the inverted condition.
8298    if (Op0.getOpcode() == X86ISD::SETCC) {
8299      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8300      bool Invert = (CC == ISD::SETNE) ^
8301        cast<ConstantSDNode>(Op1)->isNullValue();
8302      if (!Invert) return Op0;
8303
8304      CCode = X86::GetOppositeBranchCondition(CCode);
8305      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8306                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8307    }
8308  }
8309
8310  bool isFP = Op1.getValueType().isFloatingPoint();
8311  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8312  if (X86CC == X86::COND_INVALID)
8313    return SDValue();
8314
8315  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8316  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8317                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8318}
8319
8320// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8321// ones, and then concatenate the result back.
8322static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8323  EVT VT = Op.getValueType();
8324
8325  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8326         "Unsupported value type for operation");
8327
8328  int NumElems = VT.getVectorNumElements();
8329  DebugLoc dl = Op.getDebugLoc();
8330  SDValue CC = Op.getOperand(2);
8331  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8332  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8333
8334  // Extract the LHS vectors
8335  SDValue LHS = Op.getOperand(0);
8336  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8337  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8338
8339  // Extract the RHS vectors
8340  SDValue RHS = Op.getOperand(1);
8341  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8342  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8343
8344  // Issue the operation on the smaller types and concatenate the result back
8345  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8346  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8347  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8348                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8349                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8350}
8351
8352
8353SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8354  SDValue Cond;
8355  SDValue Op0 = Op.getOperand(0);
8356  SDValue Op1 = Op.getOperand(1);
8357  SDValue CC = Op.getOperand(2);
8358  EVT VT = Op.getValueType();
8359  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8360  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8361  DebugLoc dl = Op.getDebugLoc();
8362
8363  if (isFP) {
8364    unsigned SSECC = 8;
8365    EVT EltVT = Op0.getValueType().getVectorElementType();
8366    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8367
8368    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8369    bool Swap = false;
8370
8371    // SSE Condition code mapping:
8372    //  0 - EQ
8373    //  1 - LT
8374    //  2 - LE
8375    //  3 - UNORD
8376    //  4 - NEQ
8377    //  5 - NLT
8378    //  6 - NLE
8379    //  7 - ORD
8380    switch (SetCCOpcode) {
8381    default: break;
8382    case ISD::SETOEQ:
8383    case ISD::SETEQ:  SSECC = 0; break;
8384    case ISD::SETOGT:
8385    case ISD::SETGT: Swap = true; // Fallthrough
8386    case ISD::SETLT:
8387    case ISD::SETOLT: SSECC = 1; break;
8388    case ISD::SETOGE:
8389    case ISD::SETGE: Swap = true; // Fallthrough
8390    case ISD::SETLE:
8391    case ISD::SETOLE: SSECC = 2; break;
8392    case ISD::SETUO:  SSECC = 3; break;
8393    case ISD::SETUNE:
8394    case ISD::SETNE:  SSECC = 4; break;
8395    case ISD::SETULE: Swap = true;
8396    case ISD::SETUGE: SSECC = 5; break;
8397    case ISD::SETULT: Swap = true;
8398    case ISD::SETUGT: SSECC = 6; break;
8399    case ISD::SETO:   SSECC = 7; break;
8400    }
8401    if (Swap)
8402      std::swap(Op0, Op1);
8403
8404    // In the two special cases we can't handle, emit two comparisons.
8405    if (SSECC == 8) {
8406      if (SetCCOpcode == ISD::SETUEQ) {
8407        SDValue UNORD, EQ;
8408        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8409        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8410        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8411      } else if (SetCCOpcode == ISD::SETONE) {
8412        SDValue ORD, NEQ;
8413        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8414        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8415        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8416      }
8417      llvm_unreachable("Illegal FP comparison");
8418    }
8419    // Handle all other FP comparisons here.
8420    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8421  }
8422
8423  // Break 256-bit integer vector compare into smaller ones.
8424  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8425    return Lower256IntVSETCC(Op, DAG);
8426
8427  // We are handling one of the integer comparisons here.  Since SSE only has
8428  // GT and EQ comparisons for integer, swapping operands and multiple
8429  // operations may be required for some comparisons.
8430  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8431  bool Swap = false, Invert = false, FlipSigns = false;
8432
8433  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8434  default: break;
8435  case MVT::i8:   EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8436  case MVT::i16:  EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8437  case MVT::i32:  EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8438  case MVT::i64:  EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8439  }
8440
8441  switch (SetCCOpcode) {
8442  default: break;
8443  case ISD::SETNE:  Invert = true;
8444  case ISD::SETEQ:  Opc = EQOpc; break;
8445  case ISD::SETLT:  Swap = true;
8446  case ISD::SETGT:  Opc = GTOpc; break;
8447  case ISD::SETGE:  Swap = true;
8448  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8449  case ISD::SETULT: Swap = true;
8450  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8451  case ISD::SETUGE: Swap = true;
8452  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8453  }
8454  if (Swap)
8455    std::swap(Op0, Op1);
8456
8457  // Check that the operation in question is available (most are plain SSE2,
8458  // but PCMPGTQ and PCMPEQQ have different requirements).
8459  if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42orAVX())
8460    return SDValue();
8461  if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41orAVX())
8462    return SDValue();
8463
8464  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8465  // bits of the inputs before performing those operations.
8466  if (FlipSigns) {
8467    EVT EltVT = VT.getVectorElementType();
8468    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8469                                      EltVT);
8470    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8471    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8472                                    SignBits.size());
8473    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8474    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8475  }
8476
8477  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8478
8479  // If the logical-not of the result is required, perform that now.
8480  if (Invert)
8481    Result = DAG.getNOT(dl, Result, VT);
8482
8483  return Result;
8484}
8485
8486// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8487static bool isX86LogicalCmp(SDValue Op) {
8488  unsigned Opc = Op.getNode()->getOpcode();
8489  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8490    return true;
8491  if (Op.getResNo() == 1 &&
8492      (Opc == X86ISD::ADD ||
8493       Opc == X86ISD::SUB ||
8494       Opc == X86ISD::ADC ||
8495       Opc == X86ISD::SBB ||
8496       Opc == X86ISD::SMUL ||
8497       Opc == X86ISD::UMUL ||
8498       Opc == X86ISD::INC ||
8499       Opc == X86ISD::DEC ||
8500       Opc == X86ISD::OR ||
8501       Opc == X86ISD::XOR ||
8502       Opc == X86ISD::AND))
8503    return true;
8504
8505  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8506    return true;
8507
8508  return false;
8509}
8510
8511static bool isZero(SDValue V) {
8512  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8513  return C && C->isNullValue();
8514}
8515
8516static bool isAllOnes(SDValue V) {
8517  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8518  return C && C->isAllOnesValue();
8519}
8520
8521SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8522  bool addTest = true;
8523  SDValue Cond  = Op.getOperand(0);
8524  SDValue Op1 = Op.getOperand(1);
8525  SDValue Op2 = Op.getOperand(2);
8526  DebugLoc DL = Op.getDebugLoc();
8527  SDValue CC;
8528
8529  if (Cond.getOpcode() == ISD::SETCC) {
8530    SDValue NewCond = LowerSETCC(Cond, DAG);
8531    if (NewCond.getNode())
8532      Cond = NewCond;
8533  }
8534
8535  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8536  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8537  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8538  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8539  if (Cond.getOpcode() == X86ISD::SETCC &&
8540      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8541      isZero(Cond.getOperand(1).getOperand(1))) {
8542    SDValue Cmp = Cond.getOperand(1);
8543
8544    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8545
8546    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8547        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8548      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8549
8550      SDValue CmpOp0 = Cmp.getOperand(0);
8551      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8552                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8553
8554      SDValue Res =   // Res = 0 or -1.
8555        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8556                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8557
8558      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8559        Res = DAG.getNOT(DL, Res, Res.getValueType());
8560
8561      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8562      if (N2C == 0 || !N2C->isNullValue())
8563        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8564      return Res;
8565    }
8566  }
8567
8568  // Look past (and (setcc_carry (cmp ...)), 1).
8569  if (Cond.getOpcode() == ISD::AND &&
8570      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8571    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8572    if (C && C->getAPIntValue() == 1)
8573      Cond = Cond.getOperand(0);
8574  }
8575
8576  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8577  // setting operand in place of the X86ISD::SETCC.
8578  unsigned CondOpcode = Cond.getOpcode();
8579  if (CondOpcode == X86ISD::SETCC ||
8580      CondOpcode == X86ISD::SETCC_CARRY) {
8581    CC = Cond.getOperand(0);
8582
8583    SDValue Cmp = Cond.getOperand(1);
8584    unsigned Opc = Cmp.getOpcode();
8585    EVT VT = Op.getValueType();
8586
8587    bool IllegalFPCMov = false;
8588    if (VT.isFloatingPoint() && !VT.isVector() &&
8589        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8590      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8591
8592    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8593        Opc == X86ISD::BT) { // FIXME
8594      Cond = Cmp;
8595      addTest = false;
8596    }
8597  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8598             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8599             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8600              Cond.getOperand(0).getValueType() != MVT::i8)) {
8601    SDValue LHS = Cond.getOperand(0);
8602    SDValue RHS = Cond.getOperand(1);
8603    unsigned X86Opcode;
8604    unsigned X86Cond;
8605    SDVTList VTs;
8606    switch (CondOpcode) {
8607    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8608    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8609    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8610    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8611    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8612    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8613    default: llvm_unreachable("unexpected overflowing operator");
8614    }
8615    if (CondOpcode == ISD::UMULO)
8616      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8617                          MVT::i32);
8618    else
8619      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8620
8621    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8622
8623    if (CondOpcode == ISD::UMULO)
8624      Cond = X86Op.getValue(2);
8625    else
8626      Cond = X86Op.getValue(1);
8627
8628    CC = DAG.getConstant(X86Cond, MVT::i8);
8629    addTest = false;
8630  }
8631
8632  if (addTest) {
8633    // Look pass the truncate.
8634    if (Cond.getOpcode() == ISD::TRUNCATE)
8635      Cond = Cond.getOperand(0);
8636
8637    // We know the result of AND is compared against zero. Try to match
8638    // it to BT.
8639    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8640      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8641      if (NewSetCC.getNode()) {
8642        CC = NewSetCC.getOperand(0);
8643        Cond = NewSetCC.getOperand(1);
8644        addTest = false;
8645      }
8646    }
8647  }
8648
8649  if (addTest) {
8650    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8651    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8652  }
8653
8654  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8655  // a <  b ?  0 : -1 -> RES = setcc_carry
8656  // a >= b ? -1 :  0 -> RES = setcc_carry
8657  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8658  if (Cond.getOpcode() == X86ISD::CMP) {
8659    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8660
8661    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8662        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8663      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8664                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8665      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8666        return DAG.getNOT(DL, Res, Res.getValueType());
8667      return Res;
8668    }
8669  }
8670
8671  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8672  // condition is true.
8673  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8674  SDValue Ops[] = { Op2, Op1, CC, Cond };
8675  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8676}
8677
8678// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8679// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8680// from the AND / OR.
8681static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8682  Opc = Op.getOpcode();
8683  if (Opc != ISD::OR && Opc != ISD::AND)
8684    return false;
8685  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8686          Op.getOperand(0).hasOneUse() &&
8687          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8688          Op.getOperand(1).hasOneUse());
8689}
8690
8691// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8692// 1 and that the SETCC node has a single use.
8693static bool isXor1OfSetCC(SDValue Op) {
8694  if (Op.getOpcode() != ISD::XOR)
8695    return false;
8696  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8697  if (N1C && N1C->getAPIntValue() == 1) {
8698    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8699      Op.getOperand(0).hasOneUse();
8700  }
8701  return false;
8702}
8703
8704SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8705  bool addTest = true;
8706  SDValue Chain = Op.getOperand(0);
8707  SDValue Cond  = Op.getOperand(1);
8708  SDValue Dest  = Op.getOperand(2);
8709  DebugLoc dl = Op.getDebugLoc();
8710  SDValue CC;
8711  bool Inverted = false;
8712
8713  if (Cond.getOpcode() == ISD::SETCC) {
8714    // Check for setcc([su]{add,sub,mul}o == 0).
8715    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8716        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8717        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8718        Cond.getOperand(0).getResNo() == 1 &&
8719        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8720         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8721         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8722         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8723         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8724         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8725      Inverted = true;
8726      Cond = Cond.getOperand(0);
8727    } else {
8728      SDValue NewCond = LowerSETCC(Cond, DAG);
8729      if (NewCond.getNode())
8730        Cond = NewCond;
8731    }
8732  }
8733#if 0
8734  // FIXME: LowerXALUO doesn't handle these!!
8735  else if (Cond.getOpcode() == X86ISD::ADD  ||
8736           Cond.getOpcode() == X86ISD::SUB  ||
8737           Cond.getOpcode() == X86ISD::SMUL ||
8738           Cond.getOpcode() == X86ISD::UMUL)
8739    Cond = LowerXALUO(Cond, DAG);
8740#endif
8741
8742  // Look pass (and (setcc_carry (cmp ...)), 1).
8743  if (Cond.getOpcode() == ISD::AND &&
8744      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8745    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8746    if (C && C->getAPIntValue() == 1)
8747      Cond = Cond.getOperand(0);
8748  }
8749
8750  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8751  // setting operand in place of the X86ISD::SETCC.
8752  unsigned CondOpcode = Cond.getOpcode();
8753  if (CondOpcode == X86ISD::SETCC ||
8754      CondOpcode == X86ISD::SETCC_CARRY) {
8755    CC = Cond.getOperand(0);
8756
8757    SDValue Cmp = Cond.getOperand(1);
8758    unsigned Opc = Cmp.getOpcode();
8759    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8760    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8761      Cond = Cmp;
8762      addTest = false;
8763    } else {
8764      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8765      default: break;
8766      case X86::COND_O:
8767      case X86::COND_B:
8768        // These can only come from an arithmetic instruction with overflow,
8769        // e.g. SADDO, UADDO.
8770        Cond = Cond.getNode()->getOperand(1);
8771        addTest = false;
8772        break;
8773      }
8774    }
8775  }
8776  CondOpcode = Cond.getOpcode();
8777  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8778      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8779      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8780       Cond.getOperand(0).getValueType() != MVT::i8)) {
8781    SDValue LHS = Cond.getOperand(0);
8782    SDValue RHS = Cond.getOperand(1);
8783    unsigned X86Opcode;
8784    unsigned X86Cond;
8785    SDVTList VTs;
8786    switch (CondOpcode) {
8787    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8788    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8789    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8790    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8791    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8792    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8793    default: llvm_unreachable("unexpected overflowing operator");
8794    }
8795    if (Inverted)
8796      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8797    if (CondOpcode == ISD::UMULO)
8798      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8799                          MVT::i32);
8800    else
8801      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8802
8803    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8804
8805    if (CondOpcode == ISD::UMULO)
8806      Cond = X86Op.getValue(2);
8807    else
8808      Cond = X86Op.getValue(1);
8809
8810    CC = DAG.getConstant(X86Cond, MVT::i8);
8811    addTest = false;
8812  } else {
8813    unsigned CondOpc;
8814    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8815      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8816      if (CondOpc == ISD::OR) {
8817        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8818        // two branches instead of an explicit OR instruction with a
8819        // separate test.
8820        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8821            isX86LogicalCmp(Cmp)) {
8822          CC = Cond.getOperand(0).getOperand(0);
8823          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8824                              Chain, Dest, CC, Cmp);
8825          CC = Cond.getOperand(1).getOperand(0);
8826          Cond = Cmp;
8827          addTest = false;
8828        }
8829      } else { // ISD::AND
8830        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8831        // two branches instead of an explicit AND instruction with a
8832        // separate test. However, we only do this if this block doesn't
8833        // have a fall-through edge, because this requires an explicit
8834        // jmp when the condition is false.
8835        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8836            isX86LogicalCmp(Cmp) &&
8837            Op.getNode()->hasOneUse()) {
8838          X86::CondCode CCode =
8839            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8840          CCode = X86::GetOppositeBranchCondition(CCode);
8841          CC = DAG.getConstant(CCode, MVT::i8);
8842          SDNode *User = *Op.getNode()->use_begin();
8843          // Look for an unconditional branch following this conditional branch.
8844          // We need this because we need to reverse the successors in order
8845          // to implement FCMP_OEQ.
8846          if (User->getOpcode() == ISD::BR) {
8847            SDValue FalseBB = User->getOperand(1);
8848            SDNode *NewBR =
8849              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8850            assert(NewBR == User);
8851            (void)NewBR;
8852            Dest = FalseBB;
8853
8854            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8855                                Chain, Dest, CC, Cmp);
8856            X86::CondCode CCode =
8857              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8858            CCode = X86::GetOppositeBranchCondition(CCode);
8859            CC = DAG.getConstant(CCode, MVT::i8);
8860            Cond = Cmp;
8861            addTest = false;
8862          }
8863        }
8864      }
8865    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8866      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8867      // It should be transformed during dag combiner except when the condition
8868      // is set by a arithmetics with overflow node.
8869      X86::CondCode CCode =
8870        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8871      CCode = X86::GetOppositeBranchCondition(CCode);
8872      CC = DAG.getConstant(CCode, MVT::i8);
8873      Cond = Cond.getOperand(0).getOperand(1);
8874      addTest = false;
8875    } else if (Cond.getOpcode() == ISD::SETCC &&
8876               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8877      // For FCMP_OEQ, we can emit
8878      // two branches instead of an explicit AND instruction with a
8879      // separate test. However, we only do this if this block doesn't
8880      // have a fall-through edge, because this requires an explicit
8881      // jmp when the condition is false.
8882      if (Op.getNode()->hasOneUse()) {
8883        SDNode *User = *Op.getNode()->use_begin();
8884        // Look for an unconditional branch following this conditional branch.
8885        // We need this because we need to reverse the successors in order
8886        // to implement FCMP_OEQ.
8887        if (User->getOpcode() == ISD::BR) {
8888          SDValue FalseBB = User->getOperand(1);
8889          SDNode *NewBR =
8890            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8891          assert(NewBR == User);
8892          (void)NewBR;
8893          Dest = FalseBB;
8894
8895          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8896                                    Cond.getOperand(0), Cond.getOperand(1));
8897          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8898          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8899                              Chain, Dest, CC, Cmp);
8900          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8901          Cond = Cmp;
8902          addTest = false;
8903        }
8904      }
8905    } else if (Cond.getOpcode() == ISD::SETCC &&
8906               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8907      // For FCMP_UNE, we can emit
8908      // two branches instead of an explicit AND instruction with a
8909      // separate test. However, we only do this if this block doesn't
8910      // have a fall-through edge, because this requires an explicit
8911      // jmp when the condition is false.
8912      if (Op.getNode()->hasOneUse()) {
8913        SDNode *User = *Op.getNode()->use_begin();
8914        // Look for an unconditional branch following this conditional branch.
8915        // We need this because we need to reverse the successors in order
8916        // to implement FCMP_UNE.
8917        if (User->getOpcode() == ISD::BR) {
8918          SDValue FalseBB = User->getOperand(1);
8919          SDNode *NewBR =
8920            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8921          assert(NewBR == User);
8922          (void)NewBR;
8923
8924          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8925                                    Cond.getOperand(0), Cond.getOperand(1));
8926          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8927          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8928                              Chain, Dest, CC, Cmp);
8929          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8930          Cond = Cmp;
8931          addTest = false;
8932          Dest = FalseBB;
8933        }
8934      }
8935    }
8936  }
8937
8938  if (addTest) {
8939    // Look pass the truncate.
8940    if (Cond.getOpcode() == ISD::TRUNCATE)
8941      Cond = Cond.getOperand(0);
8942
8943    // We know the result of AND is compared against zero. Try to match
8944    // it to BT.
8945    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8946      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8947      if (NewSetCC.getNode()) {
8948        CC = NewSetCC.getOperand(0);
8949        Cond = NewSetCC.getOperand(1);
8950        addTest = false;
8951      }
8952    }
8953  }
8954
8955  if (addTest) {
8956    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8957    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8958  }
8959  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8960                     Chain, Dest, CC, Cond);
8961}
8962
8963
8964// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8965// Calls to _alloca is needed to probe the stack when allocating more than 4k
8966// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8967// that the guard pages used by the OS virtual memory manager are allocated in
8968// correct sequence.
8969SDValue
8970X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8971                                           SelectionDAG &DAG) const {
8972  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8973          getTargetMachine().Options.EnableSegmentedStacks) &&
8974         "This should be used only on Windows targets or when segmented stacks "
8975         "are being used");
8976  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8977  DebugLoc dl = Op.getDebugLoc();
8978
8979  // Get the inputs.
8980  SDValue Chain = Op.getOperand(0);
8981  SDValue Size  = Op.getOperand(1);
8982  // FIXME: Ensure alignment here
8983
8984  bool Is64Bit = Subtarget->is64Bit();
8985  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8986
8987  if (getTargetMachine().Options.EnableSegmentedStacks) {
8988    MachineFunction &MF = DAG.getMachineFunction();
8989    MachineRegisterInfo &MRI = MF.getRegInfo();
8990
8991    if (Is64Bit) {
8992      // The 64 bit implementation of segmented stacks needs to clobber both r10
8993      // r11. This makes it impossible to use it along with nested parameters.
8994      const Function *F = MF.getFunction();
8995
8996      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8997           I != E; I++)
8998        if (I->hasNestAttr())
8999          report_fatal_error("Cannot use segmented stacks with functions that "
9000                             "have nested arguments.");
9001    }
9002
9003    const TargetRegisterClass *AddrRegClass =
9004      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9005    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9006    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9007    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9008                                DAG.getRegister(Vreg, SPTy));
9009    SDValue Ops1[2] = { Value, Chain };
9010    return DAG.getMergeValues(Ops1, 2, dl);
9011  } else {
9012    SDValue Flag;
9013    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9014
9015    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9016    Flag = Chain.getValue(1);
9017    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9018
9019    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9020    Flag = Chain.getValue(1);
9021
9022    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9023
9024    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9025    return DAG.getMergeValues(Ops1, 2, dl);
9026  }
9027}
9028
9029SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9030  MachineFunction &MF = DAG.getMachineFunction();
9031  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9032
9033  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9034  DebugLoc DL = Op.getDebugLoc();
9035
9036  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9037    // vastart just stores the address of the VarArgsFrameIndex slot into the
9038    // memory location argument.
9039    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9040                                   getPointerTy());
9041    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9042                        MachinePointerInfo(SV), false, false, 0);
9043  }
9044
9045  // __va_list_tag:
9046  //   gp_offset         (0 - 6 * 8)
9047  //   fp_offset         (48 - 48 + 8 * 16)
9048  //   overflow_arg_area (point to parameters coming in memory).
9049  //   reg_save_area
9050  SmallVector<SDValue, 8> MemOps;
9051  SDValue FIN = Op.getOperand(1);
9052  // Store gp_offset
9053  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9054                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9055                                               MVT::i32),
9056                               FIN, MachinePointerInfo(SV), false, false, 0);
9057  MemOps.push_back(Store);
9058
9059  // Store fp_offset
9060  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9061                    FIN, DAG.getIntPtrConstant(4));
9062  Store = DAG.getStore(Op.getOperand(0), DL,
9063                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9064                                       MVT::i32),
9065                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9066  MemOps.push_back(Store);
9067
9068  // Store ptr to overflow_arg_area
9069  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9070                    FIN, DAG.getIntPtrConstant(4));
9071  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9072                                    getPointerTy());
9073  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9074                       MachinePointerInfo(SV, 8),
9075                       false, false, 0);
9076  MemOps.push_back(Store);
9077
9078  // Store ptr to reg_save_area.
9079  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9080                    FIN, DAG.getIntPtrConstant(8));
9081  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9082                                    getPointerTy());
9083  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9084                       MachinePointerInfo(SV, 16), false, false, 0);
9085  MemOps.push_back(Store);
9086  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9087                     &MemOps[0], MemOps.size());
9088}
9089
9090SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9091  assert(Subtarget->is64Bit() &&
9092         "LowerVAARG only handles 64-bit va_arg!");
9093  assert((Subtarget->isTargetLinux() ||
9094          Subtarget->isTargetDarwin()) &&
9095          "Unhandled target in LowerVAARG");
9096  assert(Op.getNode()->getNumOperands() == 4);
9097  SDValue Chain = Op.getOperand(0);
9098  SDValue SrcPtr = Op.getOperand(1);
9099  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9100  unsigned Align = Op.getConstantOperandVal(3);
9101  DebugLoc dl = Op.getDebugLoc();
9102
9103  EVT ArgVT = Op.getNode()->getValueType(0);
9104  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9105  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9106  uint8_t ArgMode;
9107
9108  // Decide which area this value should be read from.
9109  // TODO: Implement the AMD64 ABI in its entirety. This simple
9110  // selection mechanism works only for the basic types.
9111  if (ArgVT == MVT::f80) {
9112    llvm_unreachable("va_arg for f80 not yet implemented");
9113  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9114    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9115  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9116    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9117  } else {
9118    llvm_unreachable("Unhandled argument type in LowerVAARG");
9119  }
9120
9121  if (ArgMode == 2) {
9122    // Sanity Check: Make sure using fp_offset makes sense.
9123    assert(!getTargetMachine().Options.UseSoftFloat &&
9124           !(DAG.getMachineFunction()
9125                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9126           Subtarget->hasXMM());
9127  }
9128
9129  // Insert VAARG_64 node into the DAG
9130  // VAARG_64 returns two values: Variable Argument Address, Chain
9131  SmallVector<SDValue, 11> InstOps;
9132  InstOps.push_back(Chain);
9133  InstOps.push_back(SrcPtr);
9134  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9135  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9136  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9137  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9138  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9139                                          VTs, &InstOps[0], InstOps.size(),
9140                                          MVT::i64,
9141                                          MachinePointerInfo(SV),
9142                                          /*Align=*/0,
9143                                          /*Volatile=*/false,
9144                                          /*ReadMem=*/true,
9145                                          /*WriteMem=*/true);
9146  Chain = VAARG.getValue(1);
9147
9148  // Load the next argument and return it
9149  return DAG.getLoad(ArgVT, dl,
9150                     Chain,
9151                     VAARG,
9152                     MachinePointerInfo(),
9153                     false, false, false, 0);
9154}
9155
9156SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9157  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9158  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9159  SDValue Chain = Op.getOperand(0);
9160  SDValue DstPtr = Op.getOperand(1);
9161  SDValue SrcPtr = Op.getOperand(2);
9162  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9163  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9164  DebugLoc DL = Op.getDebugLoc();
9165
9166  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9167                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9168                       false,
9169                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9170}
9171
9172SDValue
9173X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9174  DebugLoc dl = Op.getDebugLoc();
9175  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9176  switch (IntNo) {
9177  default: return SDValue();    // Don't custom lower most intrinsics.
9178  // Comparison intrinsics.
9179  case Intrinsic::x86_sse_comieq_ss:
9180  case Intrinsic::x86_sse_comilt_ss:
9181  case Intrinsic::x86_sse_comile_ss:
9182  case Intrinsic::x86_sse_comigt_ss:
9183  case Intrinsic::x86_sse_comige_ss:
9184  case Intrinsic::x86_sse_comineq_ss:
9185  case Intrinsic::x86_sse_ucomieq_ss:
9186  case Intrinsic::x86_sse_ucomilt_ss:
9187  case Intrinsic::x86_sse_ucomile_ss:
9188  case Intrinsic::x86_sse_ucomigt_ss:
9189  case Intrinsic::x86_sse_ucomige_ss:
9190  case Intrinsic::x86_sse_ucomineq_ss:
9191  case Intrinsic::x86_sse2_comieq_sd:
9192  case Intrinsic::x86_sse2_comilt_sd:
9193  case Intrinsic::x86_sse2_comile_sd:
9194  case Intrinsic::x86_sse2_comigt_sd:
9195  case Intrinsic::x86_sse2_comige_sd:
9196  case Intrinsic::x86_sse2_comineq_sd:
9197  case Intrinsic::x86_sse2_ucomieq_sd:
9198  case Intrinsic::x86_sse2_ucomilt_sd:
9199  case Intrinsic::x86_sse2_ucomile_sd:
9200  case Intrinsic::x86_sse2_ucomigt_sd:
9201  case Intrinsic::x86_sse2_ucomige_sd:
9202  case Intrinsic::x86_sse2_ucomineq_sd: {
9203    unsigned Opc = 0;
9204    ISD::CondCode CC = ISD::SETCC_INVALID;
9205    switch (IntNo) {
9206    default: break;
9207    case Intrinsic::x86_sse_comieq_ss:
9208    case Intrinsic::x86_sse2_comieq_sd:
9209      Opc = X86ISD::COMI;
9210      CC = ISD::SETEQ;
9211      break;
9212    case Intrinsic::x86_sse_comilt_ss:
9213    case Intrinsic::x86_sse2_comilt_sd:
9214      Opc = X86ISD::COMI;
9215      CC = ISD::SETLT;
9216      break;
9217    case Intrinsic::x86_sse_comile_ss:
9218    case Intrinsic::x86_sse2_comile_sd:
9219      Opc = X86ISD::COMI;
9220      CC = ISD::SETLE;
9221      break;
9222    case Intrinsic::x86_sse_comigt_ss:
9223    case Intrinsic::x86_sse2_comigt_sd:
9224      Opc = X86ISD::COMI;
9225      CC = ISD::SETGT;
9226      break;
9227    case Intrinsic::x86_sse_comige_ss:
9228    case Intrinsic::x86_sse2_comige_sd:
9229      Opc = X86ISD::COMI;
9230      CC = ISD::SETGE;
9231      break;
9232    case Intrinsic::x86_sse_comineq_ss:
9233    case Intrinsic::x86_sse2_comineq_sd:
9234      Opc = X86ISD::COMI;
9235      CC = ISD::SETNE;
9236      break;
9237    case Intrinsic::x86_sse_ucomieq_ss:
9238    case Intrinsic::x86_sse2_ucomieq_sd:
9239      Opc = X86ISD::UCOMI;
9240      CC = ISD::SETEQ;
9241      break;
9242    case Intrinsic::x86_sse_ucomilt_ss:
9243    case Intrinsic::x86_sse2_ucomilt_sd:
9244      Opc = X86ISD::UCOMI;
9245      CC = ISD::SETLT;
9246      break;
9247    case Intrinsic::x86_sse_ucomile_ss:
9248    case Intrinsic::x86_sse2_ucomile_sd:
9249      Opc = X86ISD::UCOMI;
9250      CC = ISD::SETLE;
9251      break;
9252    case Intrinsic::x86_sse_ucomigt_ss:
9253    case Intrinsic::x86_sse2_ucomigt_sd:
9254      Opc = X86ISD::UCOMI;
9255      CC = ISD::SETGT;
9256      break;
9257    case Intrinsic::x86_sse_ucomige_ss:
9258    case Intrinsic::x86_sse2_ucomige_sd:
9259      Opc = X86ISD::UCOMI;
9260      CC = ISD::SETGE;
9261      break;
9262    case Intrinsic::x86_sse_ucomineq_ss:
9263    case Intrinsic::x86_sse2_ucomineq_sd:
9264      Opc = X86ISD::UCOMI;
9265      CC = ISD::SETNE;
9266      break;
9267    }
9268
9269    SDValue LHS = Op.getOperand(1);
9270    SDValue RHS = Op.getOperand(2);
9271    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9272    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9273    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9274    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9275                                DAG.getConstant(X86CC, MVT::i8), Cond);
9276    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9277  }
9278  // Arithmetic intrinsics.
9279  case Intrinsic::x86_sse3_hadd_ps:
9280  case Intrinsic::x86_sse3_hadd_pd:
9281  case Intrinsic::x86_avx_hadd_ps_256:
9282  case Intrinsic::x86_avx_hadd_pd_256:
9283    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9284                       Op.getOperand(1), Op.getOperand(2));
9285  case Intrinsic::x86_sse3_hsub_ps:
9286  case Intrinsic::x86_sse3_hsub_pd:
9287  case Intrinsic::x86_avx_hsub_ps_256:
9288  case Intrinsic::x86_avx_hsub_pd_256:
9289    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9290                       Op.getOperand(1), Op.getOperand(2));
9291  case Intrinsic::x86_avx2_psllv_d:
9292  case Intrinsic::x86_avx2_psllv_q:
9293  case Intrinsic::x86_avx2_psllv_d_256:
9294  case Intrinsic::x86_avx2_psllv_q_256:
9295    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9296                      Op.getOperand(1), Op.getOperand(2));
9297  case Intrinsic::x86_avx2_psrlv_d:
9298  case Intrinsic::x86_avx2_psrlv_q:
9299  case Intrinsic::x86_avx2_psrlv_d_256:
9300  case Intrinsic::x86_avx2_psrlv_q_256:
9301    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9302                      Op.getOperand(1), Op.getOperand(2));
9303  case Intrinsic::x86_avx2_psrav_d:
9304  case Intrinsic::x86_avx2_psrav_d_256:
9305    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9306                      Op.getOperand(1), Op.getOperand(2));
9307
9308  // ptest and testp intrinsics. The intrinsic these come from are designed to
9309  // return an integer value, not just an instruction so lower it to the ptest
9310  // or testp pattern and a setcc for the result.
9311  case Intrinsic::x86_sse41_ptestz:
9312  case Intrinsic::x86_sse41_ptestc:
9313  case Intrinsic::x86_sse41_ptestnzc:
9314  case Intrinsic::x86_avx_ptestz_256:
9315  case Intrinsic::x86_avx_ptestc_256:
9316  case Intrinsic::x86_avx_ptestnzc_256:
9317  case Intrinsic::x86_avx_vtestz_ps:
9318  case Intrinsic::x86_avx_vtestc_ps:
9319  case Intrinsic::x86_avx_vtestnzc_ps:
9320  case Intrinsic::x86_avx_vtestz_pd:
9321  case Intrinsic::x86_avx_vtestc_pd:
9322  case Intrinsic::x86_avx_vtestnzc_pd:
9323  case Intrinsic::x86_avx_vtestz_ps_256:
9324  case Intrinsic::x86_avx_vtestc_ps_256:
9325  case Intrinsic::x86_avx_vtestnzc_ps_256:
9326  case Intrinsic::x86_avx_vtestz_pd_256:
9327  case Intrinsic::x86_avx_vtestc_pd_256:
9328  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9329    bool IsTestPacked = false;
9330    unsigned X86CC = 0;
9331    switch (IntNo) {
9332    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9333    case Intrinsic::x86_avx_vtestz_ps:
9334    case Intrinsic::x86_avx_vtestz_pd:
9335    case Intrinsic::x86_avx_vtestz_ps_256:
9336    case Intrinsic::x86_avx_vtestz_pd_256:
9337      IsTestPacked = true; // Fallthrough
9338    case Intrinsic::x86_sse41_ptestz:
9339    case Intrinsic::x86_avx_ptestz_256:
9340      // ZF = 1
9341      X86CC = X86::COND_E;
9342      break;
9343    case Intrinsic::x86_avx_vtestc_ps:
9344    case Intrinsic::x86_avx_vtestc_pd:
9345    case Intrinsic::x86_avx_vtestc_ps_256:
9346    case Intrinsic::x86_avx_vtestc_pd_256:
9347      IsTestPacked = true; // Fallthrough
9348    case Intrinsic::x86_sse41_ptestc:
9349    case Intrinsic::x86_avx_ptestc_256:
9350      // CF = 1
9351      X86CC = X86::COND_B;
9352      break;
9353    case Intrinsic::x86_avx_vtestnzc_ps:
9354    case Intrinsic::x86_avx_vtestnzc_pd:
9355    case Intrinsic::x86_avx_vtestnzc_ps_256:
9356    case Intrinsic::x86_avx_vtestnzc_pd_256:
9357      IsTestPacked = true; // Fallthrough
9358    case Intrinsic::x86_sse41_ptestnzc:
9359    case Intrinsic::x86_avx_ptestnzc_256:
9360      // ZF and CF = 0
9361      X86CC = X86::COND_A;
9362      break;
9363    }
9364
9365    SDValue LHS = Op.getOperand(1);
9366    SDValue RHS = Op.getOperand(2);
9367    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9368    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9369    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9370    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9371    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9372  }
9373
9374  // Fix vector shift instructions where the last operand is a non-immediate
9375  // i32 value.
9376  case Intrinsic::x86_avx2_pslli_w:
9377  case Intrinsic::x86_avx2_pslli_d:
9378  case Intrinsic::x86_avx2_pslli_q:
9379  case Intrinsic::x86_avx2_psrli_w:
9380  case Intrinsic::x86_avx2_psrli_d:
9381  case Intrinsic::x86_avx2_psrli_q:
9382  case Intrinsic::x86_avx2_psrai_w:
9383  case Intrinsic::x86_avx2_psrai_d:
9384  case Intrinsic::x86_sse2_pslli_w:
9385  case Intrinsic::x86_sse2_pslli_d:
9386  case Intrinsic::x86_sse2_pslli_q:
9387  case Intrinsic::x86_sse2_psrli_w:
9388  case Intrinsic::x86_sse2_psrli_d:
9389  case Intrinsic::x86_sse2_psrli_q:
9390  case Intrinsic::x86_sse2_psrai_w:
9391  case Intrinsic::x86_sse2_psrai_d:
9392  case Intrinsic::x86_mmx_pslli_w:
9393  case Intrinsic::x86_mmx_pslli_d:
9394  case Intrinsic::x86_mmx_pslli_q:
9395  case Intrinsic::x86_mmx_psrli_w:
9396  case Intrinsic::x86_mmx_psrli_d:
9397  case Intrinsic::x86_mmx_psrli_q:
9398  case Intrinsic::x86_mmx_psrai_w:
9399  case Intrinsic::x86_mmx_psrai_d: {
9400    SDValue ShAmt = Op.getOperand(2);
9401    if (isa<ConstantSDNode>(ShAmt))
9402      return SDValue();
9403
9404    unsigned NewIntNo = 0;
9405    EVT ShAmtVT = MVT::v4i32;
9406    switch (IntNo) {
9407    case Intrinsic::x86_sse2_pslli_w:
9408      NewIntNo = Intrinsic::x86_sse2_psll_w;
9409      break;
9410    case Intrinsic::x86_sse2_pslli_d:
9411      NewIntNo = Intrinsic::x86_sse2_psll_d;
9412      break;
9413    case Intrinsic::x86_sse2_pslli_q:
9414      NewIntNo = Intrinsic::x86_sse2_psll_q;
9415      break;
9416    case Intrinsic::x86_sse2_psrli_w:
9417      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9418      break;
9419    case Intrinsic::x86_sse2_psrli_d:
9420      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9421      break;
9422    case Intrinsic::x86_sse2_psrli_q:
9423      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9424      break;
9425    case Intrinsic::x86_sse2_psrai_w:
9426      NewIntNo = Intrinsic::x86_sse2_psra_w;
9427      break;
9428    case Intrinsic::x86_sse2_psrai_d:
9429      NewIntNo = Intrinsic::x86_sse2_psra_d;
9430      break;
9431    case Intrinsic::x86_avx2_pslli_w:
9432      NewIntNo = Intrinsic::x86_avx2_psll_w;
9433      break;
9434    case Intrinsic::x86_avx2_pslli_d:
9435      NewIntNo = Intrinsic::x86_avx2_psll_d;
9436      break;
9437    case Intrinsic::x86_avx2_pslli_q:
9438      NewIntNo = Intrinsic::x86_avx2_psll_q;
9439      break;
9440    case Intrinsic::x86_avx2_psrli_w:
9441      NewIntNo = Intrinsic::x86_avx2_psrl_w;
9442      break;
9443    case Intrinsic::x86_avx2_psrli_d:
9444      NewIntNo = Intrinsic::x86_avx2_psrl_d;
9445      break;
9446    case Intrinsic::x86_avx2_psrli_q:
9447      NewIntNo = Intrinsic::x86_avx2_psrl_q;
9448      break;
9449    case Intrinsic::x86_avx2_psrai_w:
9450      NewIntNo = Intrinsic::x86_avx2_psra_w;
9451      break;
9452    case Intrinsic::x86_avx2_psrai_d:
9453      NewIntNo = Intrinsic::x86_avx2_psra_d;
9454      break;
9455    default: {
9456      ShAmtVT = MVT::v2i32;
9457      switch (IntNo) {
9458      case Intrinsic::x86_mmx_pslli_w:
9459        NewIntNo = Intrinsic::x86_mmx_psll_w;
9460        break;
9461      case Intrinsic::x86_mmx_pslli_d:
9462        NewIntNo = Intrinsic::x86_mmx_psll_d;
9463        break;
9464      case Intrinsic::x86_mmx_pslli_q:
9465        NewIntNo = Intrinsic::x86_mmx_psll_q;
9466        break;
9467      case Intrinsic::x86_mmx_psrli_w:
9468        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9469        break;
9470      case Intrinsic::x86_mmx_psrli_d:
9471        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9472        break;
9473      case Intrinsic::x86_mmx_psrli_q:
9474        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9475        break;
9476      case Intrinsic::x86_mmx_psrai_w:
9477        NewIntNo = Intrinsic::x86_mmx_psra_w;
9478        break;
9479      case Intrinsic::x86_mmx_psrai_d:
9480        NewIntNo = Intrinsic::x86_mmx_psra_d;
9481        break;
9482      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9483      }
9484      break;
9485    }
9486    }
9487
9488    // The vector shift intrinsics with scalars uses 32b shift amounts but
9489    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9490    // to be zero.
9491    SDValue ShOps[4];
9492    ShOps[0] = ShAmt;
9493    ShOps[1] = DAG.getConstant(0, MVT::i32);
9494    if (ShAmtVT == MVT::v4i32) {
9495      ShOps[2] = DAG.getUNDEF(MVT::i32);
9496      ShOps[3] = DAG.getUNDEF(MVT::i32);
9497      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9498    } else {
9499      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9500// FIXME this must be lowered to get rid of the invalid type.
9501    }
9502
9503    EVT VT = Op.getValueType();
9504    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9505    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9506                       DAG.getConstant(NewIntNo, MVT::i32),
9507                       Op.getOperand(1), ShAmt);
9508  }
9509  }
9510}
9511
9512SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9513                                           SelectionDAG &DAG) const {
9514  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9515  MFI->setReturnAddressIsTaken(true);
9516
9517  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9518  DebugLoc dl = Op.getDebugLoc();
9519
9520  if (Depth > 0) {
9521    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9522    SDValue Offset =
9523      DAG.getConstant(TD->getPointerSize(),
9524                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9525    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9526                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9527                                   FrameAddr, Offset),
9528                       MachinePointerInfo(), false, false, false, 0);
9529  }
9530
9531  // Just load the return address.
9532  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9533  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9534                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9535}
9536
9537SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9538  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9539  MFI->setFrameAddressIsTaken(true);
9540
9541  EVT VT = Op.getValueType();
9542  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9543  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9544  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9545  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9546  while (Depth--)
9547    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9548                            MachinePointerInfo(),
9549                            false, false, false, 0);
9550  return FrameAddr;
9551}
9552
9553SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9554                                                     SelectionDAG &DAG) const {
9555  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9556}
9557
9558SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9559  MachineFunction &MF = DAG.getMachineFunction();
9560  SDValue Chain     = Op.getOperand(0);
9561  SDValue Offset    = Op.getOperand(1);
9562  SDValue Handler   = Op.getOperand(2);
9563  DebugLoc dl       = Op.getDebugLoc();
9564
9565  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9566                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9567                                     getPointerTy());
9568  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9569
9570  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9571                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9572  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9573  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9574                       false, false, 0);
9575  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9576  MF.getRegInfo().addLiveOut(StoreAddrReg);
9577
9578  return DAG.getNode(X86ISD::EH_RETURN, dl,
9579                     MVT::Other,
9580                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9581}
9582
9583SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9584                                                  SelectionDAG &DAG) const {
9585  return Op.getOperand(0);
9586}
9587
9588SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9589                                                SelectionDAG &DAG) const {
9590  SDValue Root = Op.getOperand(0);
9591  SDValue Trmp = Op.getOperand(1); // trampoline
9592  SDValue FPtr = Op.getOperand(2); // nested function
9593  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9594  DebugLoc dl  = Op.getDebugLoc();
9595
9596  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9597
9598  if (Subtarget->is64Bit()) {
9599    SDValue OutChains[6];
9600
9601    // Large code-model.
9602    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9603    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9604
9605    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9606    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9607
9608    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9609
9610    // Load the pointer to the nested function into R11.
9611    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9612    SDValue Addr = Trmp;
9613    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9614                                Addr, MachinePointerInfo(TrmpAddr),
9615                                false, false, 0);
9616
9617    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9618                       DAG.getConstant(2, MVT::i64));
9619    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9620                                MachinePointerInfo(TrmpAddr, 2),
9621                                false, false, 2);
9622
9623    // Load the 'nest' parameter value into R10.
9624    // R10 is specified in X86CallingConv.td
9625    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9626    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9627                       DAG.getConstant(10, MVT::i64));
9628    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9629                                Addr, MachinePointerInfo(TrmpAddr, 10),
9630                                false, false, 0);
9631
9632    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9633                       DAG.getConstant(12, MVT::i64));
9634    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9635                                MachinePointerInfo(TrmpAddr, 12),
9636                                false, false, 2);
9637
9638    // Jump to the nested function.
9639    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9640    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9641                       DAG.getConstant(20, MVT::i64));
9642    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9643                                Addr, MachinePointerInfo(TrmpAddr, 20),
9644                                false, false, 0);
9645
9646    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9647    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9648                       DAG.getConstant(22, MVT::i64));
9649    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9650                                MachinePointerInfo(TrmpAddr, 22),
9651                                false, false, 0);
9652
9653    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9654  } else {
9655    const Function *Func =
9656      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9657    CallingConv::ID CC = Func->getCallingConv();
9658    unsigned NestReg;
9659
9660    switch (CC) {
9661    default:
9662      llvm_unreachable("Unsupported calling convention");
9663    case CallingConv::C:
9664    case CallingConv::X86_StdCall: {
9665      // Pass 'nest' parameter in ECX.
9666      // Must be kept in sync with X86CallingConv.td
9667      NestReg = X86::ECX;
9668
9669      // Check that ECX wasn't needed by an 'inreg' parameter.
9670      FunctionType *FTy = Func->getFunctionType();
9671      const AttrListPtr &Attrs = Func->getAttributes();
9672
9673      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9674        unsigned InRegCount = 0;
9675        unsigned Idx = 1;
9676
9677        for (FunctionType::param_iterator I = FTy->param_begin(),
9678             E = FTy->param_end(); I != E; ++I, ++Idx)
9679          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9680            // FIXME: should only count parameters that are lowered to integers.
9681            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9682
9683        if (InRegCount > 2) {
9684          report_fatal_error("Nest register in use - reduce number of inreg"
9685                             " parameters!");
9686        }
9687      }
9688      break;
9689    }
9690    case CallingConv::X86_FastCall:
9691    case CallingConv::X86_ThisCall:
9692    case CallingConv::Fast:
9693      // Pass 'nest' parameter in EAX.
9694      // Must be kept in sync with X86CallingConv.td
9695      NestReg = X86::EAX;
9696      break;
9697    }
9698
9699    SDValue OutChains[4];
9700    SDValue Addr, Disp;
9701
9702    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9703                       DAG.getConstant(10, MVT::i32));
9704    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9705
9706    // This is storing the opcode for MOV32ri.
9707    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9708    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9709    OutChains[0] = DAG.getStore(Root, dl,
9710                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9711                                Trmp, MachinePointerInfo(TrmpAddr),
9712                                false, false, 0);
9713
9714    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9715                       DAG.getConstant(1, MVT::i32));
9716    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9717                                MachinePointerInfo(TrmpAddr, 1),
9718                                false, false, 1);
9719
9720    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9721    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9722                       DAG.getConstant(5, MVT::i32));
9723    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9724                                MachinePointerInfo(TrmpAddr, 5),
9725                                false, false, 1);
9726
9727    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9728                       DAG.getConstant(6, MVT::i32));
9729    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9730                                MachinePointerInfo(TrmpAddr, 6),
9731                                false, false, 1);
9732
9733    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9734  }
9735}
9736
9737SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9738                                            SelectionDAG &DAG) const {
9739  /*
9740   The rounding mode is in bits 11:10 of FPSR, and has the following
9741   settings:
9742     00 Round to nearest
9743     01 Round to -inf
9744     10 Round to +inf
9745     11 Round to 0
9746
9747  FLT_ROUNDS, on the other hand, expects the following:
9748    -1 Undefined
9749     0 Round to 0
9750     1 Round to nearest
9751     2 Round to +inf
9752     3 Round to -inf
9753
9754  To perform the conversion, we do:
9755    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9756  */
9757
9758  MachineFunction &MF = DAG.getMachineFunction();
9759  const TargetMachine &TM = MF.getTarget();
9760  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9761  unsigned StackAlignment = TFI.getStackAlignment();
9762  EVT VT = Op.getValueType();
9763  DebugLoc DL = Op.getDebugLoc();
9764
9765  // Save FP Control Word to stack slot
9766  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9767  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9768
9769
9770  MachineMemOperand *MMO =
9771   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9772                           MachineMemOperand::MOStore, 2, 2);
9773
9774  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9775  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9776                                          DAG.getVTList(MVT::Other),
9777                                          Ops, 2, MVT::i16, MMO);
9778
9779  // Load FP Control Word from stack slot
9780  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9781                            MachinePointerInfo(), false, false, false, 0);
9782
9783  // Transform as necessary
9784  SDValue CWD1 =
9785    DAG.getNode(ISD::SRL, DL, MVT::i16,
9786                DAG.getNode(ISD::AND, DL, MVT::i16,
9787                            CWD, DAG.getConstant(0x800, MVT::i16)),
9788                DAG.getConstant(11, MVT::i8));
9789  SDValue CWD2 =
9790    DAG.getNode(ISD::SRL, DL, MVT::i16,
9791                DAG.getNode(ISD::AND, DL, MVT::i16,
9792                            CWD, DAG.getConstant(0x400, MVT::i16)),
9793                DAG.getConstant(9, MVT::i8));
9794
9795  SDValue RetVal =
9796    DAG.getNode(ISD::AND, DL, MVT::i16,
9797                DAG.getNode(ISD::ADD, DL, MVT::i16,
9798                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9799                            DAG.getConstant(1, MVT::i16)),
9800                DAG.getConstant(3, MVT::i16));
9801
9802
9803  return DAG.getNode((VT.getSizeInBits() < 16 ?
9804                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9805}
9806
9807SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9808  EVT VT = Op.getValueType();
9809  EVT OpVT = VT;
9810  unsigned NumBits = VT.getSizeInBits();
9811  DebugLoc dl = Op.getDebugLoc();
9812
9813  Op = Op.getOperand(0);
9814  if (VT == MVT::i8) {
9815    // Zero extend to i32 since there is not an i8 bsr.
9816    OpVT = MVT::i32;
9817    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9818  }
9819
9820  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9821  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9822  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9823
9824  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9825  SDValue Ops[] = {
9826    Op,
9827    DAG.getConstant(NumBits+NumBits-1, OpVT),
9828    DAG.getConstant(X86::COND_E, MVT::i8),
9829    Op.getValue(1)
9830  };
9831  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9832
9833  // Finally xor with NumBits-1.
9834  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9835
9836  if (VT == MVT::i8)
9837    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9838  return Op;
9839}
9840
9841SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9842  EVT VT = Op.getValueType();
9843  EVT OpVT = VT;
9844  unsigned NumBits = VT.getSizeInBits();
9845  DebugLoc dl = Op.getDebugLoc();
9846
9847  Op = Op.getOperand(0);
9848  if (VT == MVT::i8) {
9849    OpVT = MVT::i32;
9850    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9851  }
9852
9853  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9854  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9855  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9856
9857  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9858  SDValue Ops[] = {
9859    Op,
9860    DAG.getConstant(NumBits, OpVT),
9861    DAG.getConstant(X86::COND_E, MVT::i8),
9862    Op.getValue(1)
9863  };
9864  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9865
9866  if (VT == MVT::i8)
9867    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9868  return Op;
9869}
9870
9871// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9872// ones, and then concatenate the result back.
9873static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9874  EVT VT = Op.getValueType();
9875
9876  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9877         "Unsupported value type for operation");
9878
9879  int NumElems = VT.getVectorNumElements();
9880  DebugLoc dl = Op.getDebugLoc();
9881  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9882  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9883
9884  // Extract the LHS vectors
9885  SDValue LHS = Op.getOperand(0);
9886  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9887  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9888
9889  // Extract the RHS vectors
9890  SDValue RHS = Op.getOperand(1);
9891  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9892  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9893
9894  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9895  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9896
9897  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9898                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9899                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9900}
9901
9902SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9903  assert(Op.getValueType().getSizeInBits() == 256 &&
9904         Op.getValueType().isInteger() &&
9905         "Only handle AVX 256-bit vector integer operation");
9906  return Lower256IntArith(Op, DAG);
9907}
9908
9909SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9910  assert(Op.getValueType().getSizeInBits() == 256 &&
9911         Op.getValueType().isInteger() &&
9912         "Only handle AVX 256-bit vector integer operation");
9913  return Lower256IntArith(Op, DAG);
9914}
9915
9916SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9917  EVT VT = Op.getValueType();
9918
9919  // Decompose 256-bit ops into smaller 128-bit ops.
9920  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
9921    return Lower256IntArith(Op, DAG);
9922
9923  DebugLoc dl = Op.getDebugLoc();
9924
9925  SDValue A = Op.getOperand(0);
9926  SDValue B = Op.getOperand(1);
9927
9928  if (VT == MVT::v4i64) {
9929    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
9930
9931    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
9932    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
9933    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
9934    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
9935    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
9936    //
9937    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
9938    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
9939    //  return AloBlo + AloBhi + AhiBlo;
9940
9941    SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9942                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9943                         A, DAG.getConstant(32, MVT::i32));
9944    SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9945                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
9946                         B, DAG.getConstant(32, MVT::i32));
9947    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9948                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9949                         A, B);
9950    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9951                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9952                         A, Bhi);
9953    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9954                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
9955                         Ahi, B);
9956    AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9957                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9958                         AloBhi, DAG.getConstant(32, MVT::i32));
9959    AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9960                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
9961                         AhiBlo, DAG.getConstant(32, MVT::i32));
9962    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9963    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9964    return Res;
9965  }
9966
9967  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9968
9969  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9970  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9971  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9972  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9973  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9974  //
9975  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9976  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9977  //  return AloBlo + AloBhi + AhiBlo;
9978
9979  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9980                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9981                       A, DAG.getConstant(32, MVT::i32));
9982  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9983                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9984                       B, DAG.getConstant(32, MVT::i32));
9985  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9986                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9987                       A, B);
9988  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9989                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9990                       A, Bhi);
9991  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9992                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9993                       Ahi, B);
9994  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9995                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9996                       AloBhi, DAG.getConstant(32, MVT::i32));
9997  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9998                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9999                       AhiBlo, DAG.getConstant(32, MVT::i32));
10000  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10001  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10002  return Res;
10003}
10004
10005SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10006
10007  EVT VT = Op.getValueType();
10008  DebugLoc dl = Op.getDebugLoc();
10009  SDValue R = Op.getOperand(0);
10010  SDValue Amt = Op.getOperand(1);
10011  LLVMContext *Context = DAG.getContext();
10012
10013  if (!Subtarget->hasXMMInt())
10014    return SDValue();
10015
10016  // Optimize shl/srl/sra with constant shift amount.
10017  if (isSplatVector(Amt.getNode())) {
10018    SDValue SclrAmt = Amt->getOperand(0);
10019    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10020      uint64_t ShiftAmt = C->getZExtValue();
10021
10022      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SHL) {
10023        // Make a large shift.
10024        SDValue SHL =
10025          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10026                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10027                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10028        // Zero out the rightmost bits.
10029        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10030                                                       MVT::i8));
10031        return DAG.getNode(ISD::AND, dl, VT, SHL,
10032                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10033      }
10034
10035      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
10036       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10037                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10038                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10039
10040      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
10041       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10042                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10043                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10044
10045      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
10046       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10047                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10048                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10049
10050      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRL) {
10051        // Make a large shift.
10052        SDValue SRL =
10053          DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10054                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10055                      R, DAG.getConstant(ShiftAmt, MVT::i32));
10056        // Zero out the leftmost bits.
10057        SmallVector<SDValue, 16> V(16, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10058                                                       MVT::i8));
10059        return DAG.getNode(ISD::AND, dl, VT, SRL,
10060                           DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10061      }
10062
10063      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
10064       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10065                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10066                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10067
10068      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
10069       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10070                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10071                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10072
10073      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
10074       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10075                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10076                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10077
10078      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
10079       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10080                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10081                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10082
10083      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
10084       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10085                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10086                     R, DAG.getConstant(ShiftAmt, MVT::i32));
10087
10088      if (VT == MVT::v16i8 && Op.getOpcode() == ISD::SRA) {
10089        if (ShiftAmt == 7) {
10090          // R s>> 7  ===  R s< 0
10091          SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10092          return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10093        }
10094
10095        // R s>> a === ((R u>> a) ^ m) - m
10096        SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10097        SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10098                                                       MVT::i8));
10099        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10100        Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10101        Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10102        return Res;
10103      }
10104
10105      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10106        if (Op.getOpcode() == ISD::SHL) {
10107          // Make a large shift.
10108          SDValue SHL =
10109            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10110                        DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
10111                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10112          // Zero out the rightmost bits.
10113          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U << ShiftAmt),
10114                                                         MVT::i8));
10115          return DAG.getNode(ISD::AND, dl, VT, SHL,
10116                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10117        }
10118        if (Op.getOpcode() == ISD::SRL) {
10119          // Make a large shift.
10120          SDValue SRL =
10121            DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10122                        DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
10123                        R, DAG.getConstant(ShiftAmt, MVT::i32));
10124          // Zero out the leftmost bits.
10125          SmallVector<SDValue, 32> V(32, DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10126                                                         MVT::i8));
10127          return DAG.getNode(ISD::AND, dl, VT, SRL,
10128                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10129        }
10130        if (Op.getOpcode() == ISD::SRA) {
10131          if (ShiftAmt == 7) {
10132            // R s>> 7  ===  R s< 0
10133            SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
10134            return DAG.getNode(X86ISD::PCMPGTB, dl, VT, Zeros, R);
10135          }
10136
10137          // R s>> a === ((R u>> a) ^ m) - m
10138          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10139          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10140                                                         MVT::i8));
10141          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10142          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10143          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10144          return Res;
10145        }
10146      }
10147    }
10148  }
10149
10150  // Lower SHL with variable shift amount.
10151  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10152    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10153                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10154                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
10155
10156    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10157
10158    std::vector<Constant*> CV(4, CI);
10159    Constant *C = ConstantVector::get(CV);
10160    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10161    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10162                                 MachinePointerInfo::getConstantPool(),
10163                                 false, false, false, 16);
10164
10165    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10166    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10167    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10168    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10169  }
10170  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10171    assert((Subtarget->hasSSE2() || Subtarget->hasAVX()) &&
10172            "Need SSE2 for pslli/pcmpeq.");
10173
10174    // a = a << 5;
10175    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10176                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10177                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
10178
10179    // Turn 'a' into a mask suitable for VSELECT
10180    SDValue VSelM = DAG.getConstant(0x80, VT);
10181    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10182    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10183                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10184                        OpVSel, VSelM);
10185
10186    SDValue CM1 = DAG.getConstant(0x0f, VT);
10187    SDValue CM2 = DAG.getConstant(0x3f, VT);
10188
10189    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10190    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10191    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10192                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10193                    DAG.getConstant(4, MVT::i32));
10194    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10195
10196    // a += a
10197    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10198    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10199    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10200                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10201                        OpVSel, VSelM);
10202
10203    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10204    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10205    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10206                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10207                    DAG.getConstant(2, MVT::i32));
10208    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10209
10210    // a += a
10211    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10212    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10213    OpVSel = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10214                        DAG.getConstant(Intrinsic::x86_sse2_pcmpeq_b, MVT::i32),
10215                        OpVSel, VSelM);
10216
10217    // return VSELECT(r, r+r, a);
10218    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10219                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10220    return R;
10221  }
10222
10223  // Decompose 256-bit shifts into smaller 128-bit shifts.
10224  if (VT.getSizeInBits() == 256) {
10225    int NumElems = VT.getVectorNumElements();
10226    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10227    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10228
10229    // Extract the two vectors
10230    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10231    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10232                                     DAG, dl);
10233
10234    // Recreate the shift amount vectors
10235    SDValue Amt1, Amt2;
10236    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10237      // Constant shift amount
10238      SmallVector<SDValue, 4> Amt1Csts;
10239      SmallVector<SDValue, 4> Amt2Csts;
10240      for (int i = 0; i < NumElems/2; ++i)
10241        Amt1Csts.push_back(Amt->getOperand(i));
10242      for (int i = NumElems/2; i < NumElems; ++i)
10243        Amt2Csts.push_back(Amt->getOperand(i));
10244
10245      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10246                                 &Amt1Csts[0], NumElems/2);
10247      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10248                                 &Amt2Csts[0], NumElems/2);
10249    } else {
10250      // Variable shift amount
10251      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10252      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10253                                 DAG, dl);
10254    }
10255
10256    // Issue new vector shifts for the smaller types
10257    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10258    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10259
10260    // Concatenate the result back
10261    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10262  }
10263
10264  return SDValue();
10265}
10266
10267SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10268  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10269  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10270  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10271  // has only one use.
10272  SDNode *N = Op.getNode();
10273  SDValue LHS = N->getOperand(0);
10274  SDValue RHS = N->getOperand(1);
10275  unsigned BaseOp = 0;
10276  unsigned Cond = 0;
10277  DebugLoc DL = Op.getDebugLoc();
10278  switch (Op.getOpcode()) {
10279  default: llvm_unreachable("Unknown ovf instruction!");
10280  case ISD::SADDO:
10281    // A subtract of one will be selected as a INC. Note that INC doesn't
10282    // set CF, so we can't do this for UADDO.
10283    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10284      if (C->isOne()) {
10285        BaseOp = X86ISD::INC;
10286        Cond = X86::COND_O;
10287        break;
10288      }
10289    BaseOp = X86ISD::ADD;
10290    Cond = X86::COND_O;
10291    break;
10292  case ISD::UADDO:
10293    BaseOp = X86ISD::ADD;
10294    Cond = X86::COND_B;
10295    break;
10296  case ISD::SSUBO:
10297    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10298    // set CF, so we can't do this for USUBO.
10299    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10300      if (C->isOne()) {
10301        BaseOp = X86ISD::DEC;
10302        Cond = X86::COND_O;
10303        break;
10304      }
10305    BaseOp = X86ISD::SUB;
10306    Cond = X86::COND_O;
10307    break;
10308  case ISD::USUBO:
10309    BaseOp = X86ISD::SUB;
10310    Cond = X86::COND_B;
10311    break;
10312  case ISD::SMULO:
10313    BaseOp = X86ISD::SMUL;
10314    Cond = X86::COND_O;
10315    break;
10316  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10317    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10318                                 MVT::i32);
10319    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10320
10321    SDValue SetCC =
10322      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10323                  DAG.getConstant(X86::COND_O, MVT::i32),
10324                  SDValue(Sum.getNode(), 2));
10325
10326    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10327  }
10328  }
10329
10330  // Also sets EFLAGS.
10331  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10332  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10333
10334  SDValue SetCC =
10335    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10336                DAG.getConstant(Cond, MVT::i32),
10337                SDValue(Sum.getNode(), 1));
10338
10339  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10340}
10341
10342SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10343  DebugLoc dl = Op.getDebugLoc();
10344  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10345  EVT VT = Op.getValueType();
10346
10347  if (Subtarget->hasXMMInt() && VT.isVector()) {
10348    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10349                        ExtraVT.getScalarType().getSizeInBits();
10350    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10351
10352    unsigned SHLIntrinsicsID = 0;
10353    unsigned SRAIntrinsicsID = 0;
10354    switch (VT.getSimpleVT().SimpleTy) {
10355      default:
10356        return SDValue();
10357      case MVT::v4i32:
10358        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10359        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10360        break;
10361      case MVT::v8i16:
10362        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10363        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10364        break;
10365      case MVT::v8i32:
10366      case MVT::v16i16:
10367        if (!Subtarget->hasAVX())
10368          return SDValue();
10369        if (!Subtarget->hasAVX2()) {
10370          // needs to be split
10371          int NumElems = VT.getVectorNumElements();
10372          SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10373          SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10374
10375          // Extract the LHS vectors
10376          SDValue LHS = Op.getOperand(0);
10377          SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10378          SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10379
10380          MVT EltVT = VT.getVectorElementType().getSimpleVT();
10381          EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10382
10383          EVT ExtraEltVT = ExtraVT.getVectorElementType();
10384          int ExtraNumElems = ExtraVT.getVectorNumElements();
10385          ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10386                                     ExtraNumElems/2);
10387          SDValue Extra = DAG.getValueType(ExtraVT);
10388
10389          LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10390          LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10391
10392          return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10393        }
10394        if (VT == MVT::v8i32) {
10395          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_d;
10396          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_d;
10397        } else {
10398          SHLIntrinsicsID = Intrinsic::x86_avx2_pslli_w;
10399          SRAIntrinsicsID = Intrinsic::x86_avx2_psrai_w;
10400        }
10401    }
10402
10403    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10404                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10405                         Op.getOperand(0), ShAmt);
10406
10407    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10408                       DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10409                       Tmp1, ShAmt);
10410  }
10411
10412  return SDValue();
10413}
10414
10415
10416SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10417  DebugLoc dl = Op.getDebugLoc();
10418
10419  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10420  // There isn't any reason to disable it if the target processor supports it.
10421  if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10422    SDValue Chain = Op.getOperand(0);
10423    SDValue Zero = DAG.getConstant(0, MVT::i32);
10424    SDValue Ops[] = {
10425      DAG.getRegister(X86::ESP, MVT::i32), // Base
10426      DAG.getTargetConstant(1, MVT::i8),   // Scale
10427      DAG.getRegister(0, MVT::i32),        // Index
10428      DAG.getTargetConstant(0, MVT::i32),  // Disp
10429      DAG.getRegister(0, MVT::i32),        // Segment.
10430      Zero,
10431      Chain
10432    };
10433    SDNode *Res =
10434      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10435                          array_lengthof(Ops));
10436    return SDValue(Res, 0);
10437  }
10438
10439  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10440  if (!isDev)
10441    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10442
10443  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10444  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10445  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10446  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10447
10448  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10449  if (!Op1 && !Op2 && !Op3 && Op4)
10450    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10451
10452  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10453  if (Op1 && !Op2 && !Op3 && !Op4)
10454    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10455
10456  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10457  //           (MFENCE)>;
10458  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10459}
10460
10461SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10462                                             SelectionDAG &DAG) const {
10463  DebugLoc dl = Op.getDebugLoc();
10464  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10465    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10466  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10467    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10468
10469  // The only fence that needs an instruction is a sequentially-consistent
10470  // cross-thread fence.
10471  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10472    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10473    // no-sse2). There isn't any reason to disable it if the target processor
10474    // supports it.
10475    if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10476      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10477
10478    SDValue Chain = Op.getOperand(0);
10479    SDValue Zero = DAG.getConstant(0, MVT::i32);
10480    SDValue Ops[] = {
10481      DAG.getRegister(X86::ESP, MVT::i32), // Base
10482      DAG.getTargetConstant(1, MVT::i8),   // Scale
10483      DAG.getRegister(0, MVT::i32),        // Index
10484      DAG.getTargetConstant(0, MVT::i32),  // Disp
10485      DAG.getRegister(0, MVT::i32),        // Segment.
10486      Zero,
10487      Chain
10488    };
10489    SDNode *Res =
10490      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10491                         array_lengthof(Ops));
10492    return SDValue(Res, 0);
10493  }
10494
10495  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10496  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10497}
10498
10499
10500SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10501  EVT T = Op.getValueType();
10502  DebugLoc DL = Op.getDebugLoc();
10503  unsigned Reg = 0;
10504  unsigned size = 0;
10505  switch(T.getSimpleVT().SimpleTy) {
10506  default:
10507    assert(false && "Invalid value type!");
10508  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10509  case MVT::i16: Reg = X86::AX;  size = 2; break;
10510  case MVT::i32: Reg = X86::EAX; size = 4; break;
10511  case MVT::i64:
10512    assert(Subtarget->is64Bit() && "Node not type legal!");
10513    Reg = X86::RAX; size = 8;
10514    break;
10515  }
10516  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10517                                    Op.getOperand(2), SDValue());
10518  SDValue Ops[] = { cpIn.getValue(0),
10519                    Op.getOperand(1),
10520                    Op.getOperand(3),
10521                    DAG.getTargetConstant(size, MVT::i8),
10522                    cpIn.getValue(1) };
10523  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10524  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10525  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10526                                           Ops, 5, T, MMO);
10527  SDValue cpOut =
10528    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10529  return cpOut;
10530}
10531
10532SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10533                                                 SelectionDAG &DAG) const {
10534  assert(Subtarget->is64Bit() && "Result not type legalized?");
10535  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10536  SDValue TheChain = Op.getOperand(0);
10537  DebugLoc dl = Op.getDebugLoc();
10538  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10539  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10540  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10541                                   rax.getValue(2));
10542  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10543                            DAG.getConstant(32, MVT::i8));
10544  SDValue Ops[] = {
10545    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10546    rdx.getValue(1)
10547  };
10548  return DAG.getMergeValues(Ops, 2, dl);
10549}
10550
10551SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10552                                            SelectionDAG &DAG) const {
10553  EVT SrcVT = Op.getOperand(0).getValueType();
10554  EVT DstVT = Op.getValueType();
10555  assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10556         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10557  assert((DstVT == MVT::i64 ||
10558          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10559         "Unexpected custom BITCAST");
10560  // i64 <=> MMX conversions are Legal.
10561  if (SrcVT==MVT::i64 && DstVT.isVector())
10562    return Op;
10563  if (DstVT==MVT::i64 && SrcVT.isVector())
10564    return Op;
10565  // MMX <=> MMX conversions are Legal.
10566  if (SrcVT.isVector() && DstVT.isVector())
10567    return Op;
10568  // All other conversions need to be expanded.
10569  return SDValue();
10570}
10571
10572SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10573  SDNode *Node = Op.getNode();
10574  DebugLoc dl = Node->getDebugLoc();
10575  EVT T = Node->getValueType(0);
10576  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10577                              DAG.getConstant(0, T), Node->getOperand(2));
10578  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10579                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10580                       Node->getOperand(0),
10581                       Node->getOperand(1), negOp,
10582                       cast<AtomicSDNode>(Node)->getSrcValue(),
10583                       cast<AtomicSDNode>(Node)->getAlignment(),
10584                       cast<AtomicSDNode>(Node)->getOrdering(),
10585                       cast<AtomicSDNode>(Node)->getSynchScope());
10586}
10587
10588static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10589  SDNode *Node = Op.getNode();
10590  DebugLoc dl = Node->getDebugLoc();
10591  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10592
10593  // Convert seq_cst store -> xchg
10594  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10595  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10596  //        (The only way to get a 16-byte store is cmpxchg16b)
10597  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10598  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10599      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10600    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10601                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10602                                 Node->getOperand(0),
10603                                 Node->getOperand(1), Node->getOperand(2),
10604                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10605                                 cast<AtomicSDNode>(Node)->getOrdering(),
10606                                 cast<AtomicSDNode>(Node)->getSynchScope());
10607    return Swap.getValue(1);
10608  }
10609  // Other atomic stores have a simple pattern.
10610  return Op;
10611}
10612
10613static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10614  EVT VT = Op.getNode()->getValueType(0);
10615
10616  // Let legalize expand this if it isn't a legal type yet.
10617  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10618    return SDValue();
10619
10620  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10621
10622  unsigned Opc;
10623  bool ExtraOp = false;
10624  switch (Op.getOpcode()) {
10625  default: assert(0 && "Invalid code");
10626  case ISD::ADDC: Opc = X86ISD::ADD; break;
10627  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10628  case ISD::SUBC: Opc = X86ISD::SUB; break;
10629  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10630  }
10631
10632  if (!ExtraOp)
10633    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10634                       Op.getOperand(1));
10635  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10636                     Op.getOperand(1), Op.getOperand(2));
10637}
10638
10639/// LowerOperation - Provide custom lowering hooks for some operations.
10640///
10641SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10642  switch (Op.getOpcode()) {
10643  default: llvm_unreachable("Should not custom lower this!");
10644  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10645  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10646  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10647  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10648  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10649  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10650  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10651  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10652  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10653  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10654  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10655  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10656  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10657  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10658  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10659  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10660  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10661  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10662  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10663  case ISD::SHL_PARTS:
10664  case ISD::SRA_PARTS:
10665  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10666  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10667  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10668  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10669  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10670  case ISD::FABS:               return LowerFABS(Op, DAG);
10671  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10672  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10673  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10674  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10675  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10676  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10677  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10678  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10679  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10680  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10681  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10682  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10683  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10684  case ISD::FRAME_TO_ARGS_OFFSET:
10685                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10686  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10687  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10688  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10689  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10690  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10691  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10692  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10693  case ISD::MUL:                return LowerMUL(Op, DAG);
10694  case ISD::SRA:
10695  case ISD::SRL:
10696  case ISD::SHL:                return LowerShift(Op, DAG);
10697  case ISD::SADDO:
10698  case ISD::UADDO:
10699  case ISD::SSUBO:
10700  case ISD::USUBO:
10701  case ISD::SMULO:
10702  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10703  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10704  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10705  case ISD::ADDC:
10706  case ISD::ADDE:
10707  case ISD::SUBC:
10708  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10709  case ISD::ADD:                return LowerADD(Op, DAG);
10710  case ISD::SUB:                return LowerSUB(Op, DAG);
10711  }
10712}
10713
10714static void ReplaceATOMIC_LOAD(SDNode *Node,
10715                                  SmallVectorImpl<SDValue> &Results,
10716                                  SelectionDAG &DAG) {
10717  DebugLoc dl = Node->getDebugLoc();
10718  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10719
10720  // Convert wide load -> cmpxchg8b/cmpxchg16b
10721  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10722  //        (The only way to get a 16-byte load is cmpxchg16b)
10723  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10724  SDValue Zero = DAG.getConstant(0, VT);
10725  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10726                               Node->getOperand(0),
10727                               Node->getOperand(1), Zero, Zero,
10728                               cast<AtomicSDNode>(Node)->getMemOperand(),
10729                               cast<AtomicSDNode>(Node)->getOrdering(),
10730                               cast<AtomicSDNode>(Node)->getSynchScope());
10731  Results.push_back(Swap.getValue(0));
10732  Results.push_back(Swap.getValue(1));
10733}
10734
10735void X86TargetLowering::
10736ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10737                        SelectionDAG &DAG, unsigned NewOp) const {
10738  DebugLoc dl = Node->getDebugLoc();
10739  assert (Node->getValueType(0) == MVT::i64 &&
10740          "Only know how to expand i64 atomics");
10741
10742  SDValue Chain = Node->getOperand(0);
10743  SDValue In1 = Node->getOperand(1);
10744  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10745                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10746  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10747                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10748  SDValue Ops[] = { Chain, In1, In2L, In2H };
10749  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10750  SDValue Result =
10751    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10752                            cast<MemSDNode>(Node)->getMemOperand());
10753  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10754  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10755  Results.push_back(Result.getValue(2));
10756}
10757
10758/// ReplaceNodeResults - Replace a node with an illegal result type
10759/// with a new node built out of custom code.
10760void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10761                                           SmallVectorImpl<SDValue>&Results,
10762                                           SelectionDAG &DAG) const {
10763  DebugLoc dl = N->getDebugLoc();
10764  switch (N->getOpcode()) {
10765  default:
10766    assert(false && "Do not know how to custom type legalize this operation!");
10767    return;
10768  case ISD::SIGN_EXTEND_INREG:
10769  case ISD::ADDC:
10770  case ISD::ADDE:
10771  case ISD::SUBC:
10772  case ISD::SUBE:
10773    // We don't want to expand or promote these.
10774    return;
10775  case ISD::FP_TO_SINT: {
10776    std::pair<SDValue,SDValue> Vals =
10777        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10778    SDValue FIST = Vals.first, StackSlot = Vals.second;
10779    if (FIST.getNode() != 0) {
10780      EVT VT = N->getValueType(0);
10781      // Return a load from the stack slot.
10782      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10783                                    MachinePointerInfo(),
10784                                    false, false, false, 0));
10785    }
10786    return;
10787  }
10788  case ISD::READCYCLECOUNTER: {
10789    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10790    SDValue TheChain = N->getOperand(0);
10791    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10792    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10793                                     rd.getValue(1));
10794    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10795                                     eax.getValue(2));
10796    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10797    SDValue Ops[] = { eax, edx };
10798    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10799    Results.push_back(edx.getValue(1));
10800    return;
10801  }
10802  case ISD::ATOMIC_CMP_SWAP: {
10803    EVT T = N->getValueType(0);
10804    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10805    bool Regs64bit = T == MVT::i128;
10806    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10807    SDValue cpInL, cpInH;
10808    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10809                        DAG.getConstant(0, HalfT));
10810    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10811                        DAG.getConstant(1, HalfT));
10812    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10813                             Regs64bit ? X86::RAX : X86::EAX,
10814                             cpInL, SDValue());
10815    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10816                             Regs64bit ? X86::RDX : X86::EDX,
10817                             cpInH, cpInL.getValue(1));
10818    SDValue swapInL, swapInH;
10819    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10820                          DAG.getConstant(0, HalfT));
10821    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10822                          DAG.getConstant(1, HalfT));
10823    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10824                               Regs64bit ? X86::RBX : X86::EBX,
10825                               swapInL, cpInH.getValue(1));
10826    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10827                               Regs64bit ? X86::RCX : X86::ECX,
10828                               swapInH, swapInL.getValue(1));
10829    SDValue Ops[] = { swapInH.getValue(0),
10830                      N->getOperand(1),
10831                      swapInH.getValue(1) };
10832    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10833    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10834    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10835                                  X86ISD::LCMPXCHG8_DAG;
10836    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10837                                             Ops, 3, T, MMO);
10838    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10839                                        Regs64bit ? X86::RAX : X86::EAX,
10840                                        HalfT, Result.getValue(1));
10841    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10842                                        Regs64bit ? X86::RDX : X86::EDX,
10843                                        HalfT, cpOutL.getValue(2));
10844    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10845    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10846    Results.push_back(cpOutH.getValue(1));
10847    return;
10848  }
10849  case ISD::ATOMIC_LOAD_ADD:
10850    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10851    return;
10852  case ISD::ATOMIC_LOAD_AND:
10853    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10854    return;
10855  case ISD::ATOMIC_LOAD_NAND:
10856    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10857    return;
10858  case ISD::ATOMIC_LOAD_OR:
10859    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10860    return;
10861  case ISD::ATOMIC_LOAD_SUB:
10862    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10863    return;
10864  case ISD::ATOMIC_LOAD_XOR:
10865    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10866    return;
10867  case ISD::ATOMIC_SWAP:
10868    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10869    return;
10870  case ISD::ATOMIC_LOAD:
10871    ReplaceATOMIC_LOAD(N, Results, DAG);
10872  }
10873}
10874
10875const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10876  switch (Opcode) {
10877  default: return NULL;
10878  case X86ISD::BSF:                return "X86ISD::BSF";
10879  case X86ISD::BSR:                return "X86ISD::BSR";
10880  case X86ISD::SHLD:               return "X86ISD::SHLD";
10881  case X86ISD::SHRD:               return "X86ISD::SHRD";
10882  case X86ISD::FAND:               return "X86ISD::FAND";
10883  case X86ISD::FOR:                return "X86ISD::FOR";
10884  case X86ISD::FXOR:               return "X86ISD::FXOR";
10885  case X86ISD::FSRL:               return "X86ISD::FSRL";
10886  case X86ISD::FILD:               return "X86ISD::FILD";
10887  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10888  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10889  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10890  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10891  case X86ISD::FLD:                return "X86ISD::FLD";
10892  case X86ISD::FST:                return "X86ISD::FST";
10893  case X86ISD::CALL:               return "X86ISD::CALL";
10894  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10895  case X86ISD::BT:                 return "X86ISD::BT";
10896  case X86ISD::CMP:                return "X86ISD::CMP";
10897  case X86ISD::COMI:               return "X86ISD::COMI";
10898  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10899  case X86ISD::SETCC:              return "X86ISD::SETCC";
10900  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10901  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10902  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10903  case X86ISD::CMOV:               return "X86ISD::CMOV";
10904  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10905  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10906  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10907  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10908  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10909  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10910  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10911  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10912  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10913  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10914  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10915  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10916  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10917  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10918  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
10919  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
10920  case X86ISD::HADD:               return "X86ISD::HADD";
10921  case X86ISD::HSUB:               return "X86ISD::HSUB";
10922  case X86ISD::FHADD:              return "X86ISD::FHADD";
10923  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10924  case X86ISD::FMAX:               return "X86ISD::FMAX";
10925  case X86ISD::FMIN:               return "X86ISD::FMIN";
10926  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10927  case X86ISD::FRCP:               return "X86ISD::FRCP";
10928  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10929  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10930  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10931  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10932  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10933  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10934  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10935  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10936  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10937  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10938  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10939  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10940  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10941  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10942  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10943  case X86ISD::VSHL:               return "X86ISD::VSHL";
10944  case X86ISD::VSRL:               return "X86ISD::VSRL";
10945  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10946  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10947  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10948  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10949  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10950  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10951  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10952  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10953  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10954  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10955  case X86ISD::ADD:                return "X86ISD::ADD";
10956  case X86ISD::SUB:                return "X86ISD::SUB";
10957  case X86ISD::ADC:                return "X86ISD::ADC";
10958  case X86ISD::SBB:                return "X86ISD::SBB";
10959  case X86ISD::SMUL:               return "X86ISD::SMUL";
10960  case X86ISD::UMUL:               return "X86ISD::UMUL";
10961  case X86ISD::INC:                return "X86ISD::INC";
10962  case X86ISD::DEC:                return "X86ISD::DEC";
10963  case X86ISD::OR:                 return "X86ISD::OR";
10964  case X86ISD::XOR:                return "X86ISD::XOR";
10965  case X86ISD::AND:                return "X86ISD::AND";
10966  case X86ISD::ANDN:               return "X86ISD::ANDN";
10967  case X86ISD::BLSI:               return "X86ISD::BLSI";
10968  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
10969  case X86ISD::BLSR:               return "X86ISD::BLSR";
10970  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10971  case X86ISD::PTEST:              return "X86ISD::PTEST";
10972  case X86ISD::TESTP:              return "X86ISD::TESTP";
10973  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10974  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10975  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10976  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10977  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10978  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10979  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10980  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10981  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10982  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10983  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10984  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10985  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10986  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10987  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10988  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10989  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10990  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10991  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10992  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10993  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10994  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
10995  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
10996  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10997  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
10998  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
10999  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11000  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11001  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11002  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11003  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11004  }
11005}
11006
11007// isLegalAddressingMode - Return true if the addressing mode represented
11008// by AM is legal for this target, for a load/store of the specified type.
11009bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11010                                              Type *Ty) const {
11011  // X86 supports extremely general addressing modes.
11012  CodeModel::Model M = getTargetMachine().getCodeModel();
11013  Reloc::Model R = getTargetMachine().getRelocationModel();
11014
11015  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11016  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11017    return false;
11018
11019  if (AM.BaseGV) {
11020    unsigned GVFlags =
11021      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11022
11023    // If a reference to this global requires an extra load, we can't fold it.
11024    if (isGlobalStubReference(GVFlags))
11025      return false;
11026
11027    // If BaseGV requires a register for the PIC base, we cannot also have a
11028    // BaseReg specified.
11029    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11030      return false;
11031
11032    // If lower 4G is not available, then we must use rip-relative addressing.
11033    if ((M != CodeModel::Small || R != Reloc::Static) &&
11034        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11035      return false;
11036  }
11037
11038  switch (AM.Scale) {
11039  case 0:
11040  case 1:
11041  case 2:
11042  case 4:
11043  case 8:
11044    // These scales always work.
11045    break;
11046  case 3:
11047  case 5:
11048  case 9:
11049    // These scales are formed with basereg+scalereg.  Only accept if there is
11050    // no basereg yet.
11051    if (AM.HasBaseReg)
11052      return false;
11053    break;
11054  default:  // Other stuff never works.
11055    return false;
11056  }
11057
11058  return true;
11059}
11060
11061
11062bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11063  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11064    return false;
11065  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11066  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11067  if (NumBits1 <= NumBits2)
11068    return false;
11069  return true;
11070}
11071
11072bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11073  if (!VT1.isInteger() || !VT2.isInteger())
11074    return false;
11075  unsigned NumBits1 = VT1.getSizeInBits();
11076  unsigned NumBits2 = VT2.getSizeInBits();
11077  if (NumBits1 <= NumBits2)
11078    return false;
11079  return true;
11080}
11081
11082bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11083  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11084  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11085}
11086
11087bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11088  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11089  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11090}
11091
11092bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11093  // i16 instructions are longer (0x66 prefix) and potentially slower.
11094  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11095}
11096
11097/// isShuffleMaskLegal - Targets can use this to indicate that they only
11098/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11099/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11100/// are assumed to be legal.
11101bool
11102X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11103                                      EVT VT) const {
11104  // Very little shuffling can be done for 64-bit vectors right now.
11105  if (VT.getSizeInBits() == 64)
11106    return false;
11107
11108  // FIXME: pshufb, blends, shifts.
11109  return (VT.getVectorNumElements() == 2 ||
11110          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11111          isMOVLMask(M, VT) ||
11112          isSHUFPMask(M, VT) ||
11113          isPSHUFDMask(M, VT) ||
11114          isPSHUFHWMask(M, VT) ||
11115          isPSHUFLWMask(M, VT) ||
11116          isPALIGNRMask(M, VT, Subtarget->hasSSSE3orAVX()) ||
11117          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11118          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11119          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11120          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11121}
11122
11123bool
11124X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11125                                          EVT VT) const {
11126  unsigned NumElts = VT.getVectorNumElements();
11127  // FIXME: This collection of masks seems suspect.
11128  if (NumElts == 2)
11129    return true;
11130  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11131    return (isMOVLMask(Mask, VT)  ||
11132            isCommutedMOVLMask(Mask, VT, true) ||
11133            isSHUFPMask(Mask, VT) ||
11134            isSHUFPMask(Mask, VT, /* Commuted */ true));
11135  }
11136  return false;
11137}
11138
11139//===----------------------------------------------------------------------===//
11140//                           X86 Scheduler Hooks
11141//===----------------------------------------------------------------------===//
11142
11143// private utility function
11144MachineBasicBlock *
11145X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11146                                                       MachineBasicBlock *MBB,
11147                                                       unsigned regOpc,
11148                                                       unsigned immOpc,
11149                                                       unsigned LoadOpc,
11150                                                       unsigned CXchgOpc,
11151                                                       unsigned notOpc,
11152                                                       unsigned EAXreg,
11153                                                       TargetRegisterClass *RC,
11154                                                       bool invSrc) const {
11155  // For the atomic bitwise operator, we generate
11156  //   thisMBB:
11157  //   newMBB:
11158  //     ld  t1 = [bitinstr.addr]
11159  //     op  t2 = t1, [bitinstr.val]
11160  //     mov EAX = t1
11161  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11162  //     bz  newMBB
11163  //     fallthrough -->nextMBB
11164  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11165  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11166  MachineFunction::iterator MBBIter = MBB;
11167  ++MBBIter;
11168
11169  /// First build the CFG
11170  MachineFunction *F = MBB->getParent();
11171  MachineBasicBlock *thisMBB = MBB;
11172  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11173  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11174  F->insert(MBBIter, newMBB);
11175  F->insert(MBBIter, nextMBB);
11176
11177  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11178  nextMBB->splice(nextMBB->begin(), thisMBB,
11179                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11180                  thisMBB->end());
11181  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11182
11183  // Update thisMBB to fall through to newMBB
11184  thisMBB->addSuccessor(newMBB);
11185
11186  // newMBB jumps to itself and fall through to nextMBB
11187  newMBB->addSuccessor(nextMBB);
11188  newMBB->addSuccessor(newMBB);
11189
11190  // Insert instructions into newMBB based on incoming instruction
11191  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11192         "unexpected number of operands");
11193  DebugLoc dl = bInstr->getDebugLoc();
11194  MachineOperand& destOper = bInstr->getOperand(0);
11195  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11196  int numArgs = bInstr->getNumOperands() - 1;
11197  for (int i=0; i < numArgs; ++i)
11198    argOpers[i] = &bInstr->getOperand(i+1);
11199
11200  // x86 address has 4 operands: base, index, scale, and displacement
11201  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11202  int valArgIndx = lastAddrIndx + 1;
11203
11204  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11205  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11206  for (int i=0; i <= lastAddrIndx; ++i)
11207    (*MIB).addOperand(*argOpers[i]);
11208
11209  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11210  if (invSrc) {
11211    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11212  }
11213  else
11214    tt = t1;
11215
11216  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11217  assert((argOpers[valArgIndx]->isReg() ||
11218          argOpers[valArgIndx]->isImm()) &&
11219         "invalid operand");
11220  if (argOpers[valArgIndx]->isReg())
11221    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11222  else
11223    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11224  MIB.addReg(tt);
11225  (*MIB).addOperand(*argOpers[valArgIndx]);
11226
11227  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11228  MIB.addReg(t1);
11229
11230  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11231  for (int i=0; i <= lastAddrIndx; ++i)
11232    (*MIB).addOperand(*argOpers[i]);
11233  MIB.addReg(t2);
11234  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11235  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11236                    bInstr->memoperands_end());
11237
11238  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11239  MIB.addReg(EAXreg);
11240
11241  // insert branch
11242  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11243
11244  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11245  return nextMBB;
11246}
11247
11248// private utility function:  64 bit atomics on 32 bit host.
11249MachineBasicBlock *
11250X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11251                                                       MachineBasicBlock *MBB,
11252                                                       unsigned regOpcL,
11253                                                       unsigned regOpcH,
11254                                                       unsigned immOpcL,
11255                                                       unsigned immOpcH,
11256                                                       bool invSrc) const {
11257  // For the atomic bitwise operator, we generate
11258  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11259  //     ld t1,t2 = [bitinstr.addr]
11260  //   newMBB:
11261  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11262  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11263  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11264  //     mov ECX, EBX <- t5, t6
11265  //     mov EAX, EDX <- t1, t2
11266  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11267  //     mov t3, t4 <- EAX, EDX
11268  //     bz  newMBB
11269  //     result in out1, out2
11270  //     fallthrough -->nextMBB
11271
11272  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11273  const unsigned LoadOpc = X86::MOV32rm;
11274  const unsigned NotOpc = X86::NOT32r;
11275  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11276  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11277  MachineFunction::iterator MBBIter = MBB;
11278  ++MBBIter;
11279
11280  /// First build the CFG
11281  MachineFunction *F = MBB->getParent();
11282  MachineBasicBlock *thisMBB = MBB;
11283  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11284  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11285  F->insert(MBBIter, newMBB);
11286  F->insert(MBBIter, nextMBB);
11287
11288  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11289  nextMBB->splice(nextMBB->begin(), thisMBB,
11290                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11291                  thisMBB->end());
11292  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11293
11294  // Update thisMBB to fall through to newMBB
11295  thisMBB->addSuccessor(newMBB);
11296
11297  // newMBB jumps to itself and fall through to nextMBB
11298  newMBB->addSuccessor(nextMBB);
11299  newMBB->addSuccessor(newMBB);
11300
11301  DebugLoc dl = bInstr->getDebugLoc();
11302  // Insert instructions into newMBB based on incoming instruction
11303  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11304  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11305         "unexpected number of operands");
11306  MachineOperand& dest1Oper = bInstr->getOperand(0);
11307  MachineOperand& dest2Oper = bInstr->getOperand(1);
11308  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11309  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11310    argOpers[i] = &bInstr->getOperand(i+2);
11311
11312    // We use some of the operands multiple times, so conservatively just
11313    // clear any kill flags that might be present.
11314    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11315      argOpers[i]->setIsKill(false);
11316  }
11317
11318  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11319  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11320
11321  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11322  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11323  for (int i=0; i <= lastAddrIndx; ++i)
11324    (*MIB).addOperand(*argOpers[i]);
11325  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11326  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11327  // add 4 to displacement.
11328  for (int i=0; i <= lastAddrIndx-2; ++i)
11329    (*MIB).addOperand(*argOpers[i]);
11330  MachineOperand newOp3 = *(argOpers[3]);
11331  if (newOp3.isImm())
11332    newOp3.setImm(newOp3.getImm()+4);
11333  else
11334    newOp3.setOffset(newOp3.getOffset()+4);
11335  (*MIB).addOperand(newOp3);
11336  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11337
11338  // t3/4 are defined later, at the bottom of the loop
11339  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11340  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11341  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11342    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11343  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11344    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11345
11346  // The subsequent operations should be using the destination registers of
11347  //the PHI instructions.
11348  if (invSrc) {
11349    t1 = F->getRegInfo().createVirtualRegister(RC);
11350    t2 = F->getRegInfo().createVirtualRegister(RC);
11351    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11352    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11353  } else {
11354    t1 = dest1Oper.getReg();
11355    t2 = dest2Oper.getReg();
11356  }
11357
11358  int valArgIndx = lastAddrIndx + 1;
11359  assert((argOpers[valArgIndx]->isReg() ||
11360          argOpers[valArgIndx]->isImm()) &&
11361         "invalid operand");
11362  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11363  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11364  if (argOpers[valArgIndx]->isReg())
11365    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11366  else
11367    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11368  if (regOpcL != X86::MOV32rr)
11369    MIB.addReg(t1);
11370  (*MIB).addOperand(*argOpers[valArgIndx]);
11371  assert(argOpers[valArgIndx + 1]->isReg() ==
11372         argOpers[valArgIndx]->isReg());
11373  assert(argOpers[valArgIndx + 1]->isImm() ==
11374         argOpers[valArgIndx]->isImm());
11375  if (argOpers[valArgIndx + 1]->isReg())
11376    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11377  else
11378    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11379  if (regOpcH != X86::MOV32rr)
11380    MIB.addReg(t2);
11381  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11382
11383  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11384  MIB.addReg(t1);
11385  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11386  MIB.addReg(t2);
11387
11388  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11389  MIB.addReg(t5);
11390  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11391  MIB.addReg(t6);
11392
11393  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11394  for (int i=0; i <= lastAddrIndx; ++i)
11395    (*MIB).addOperand(*argOpers[i]);
11396
11397  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11398  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11399                    bInstr->memoperands_end());
11400
11401  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11402  MIB.addReg(X86::EAX);
11403  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11404  MIB.addReg(X86::EDX);
11405
11406  // insert branch
11407  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11408
11409  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11410  return nextMBB;
11411}
11412
11413// private utility function
11414MachineBasicBlock *
11415X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11416                                                      MachineBasicBlock *MBB,
11417                                                      unsigned cmovOpc) const {
11418  // For the atomic min/max operator, we generate
11419  //   thisMBB:
11420  //   newMBB:
11421  //     ld t1 = [min/max.addr]
11422  //     mov t2 = [min/max.val]
11423  //     cmp  t1, t2
11424  //     cmov[cond] t2 = t1
11425  //     mov EAX = t1
11426  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11427  //     bz   newMBB
11428  //     fallthrough -->nextMBB
11429  //
11430  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11431  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11432  MachineFunction::iterator MBBIter = MBB;
11433  ++MBBIter;
11434
11435  /// First build the CFG
11436  MachineFunction *F = MBB->getParent();
11437  MachineBasicBlock *thisMBB = MBB;
11438  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11439  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11440  F->insert(MBBIter, newMBB);
11441  F->insert(MBBIter, nextMBB);
11442
11443  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11444  nextMBB->splice(nextMBB->begin(), thisMBB,
11445                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11446                  thisMBB->end());
11447  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11448
11449  // Update thisMBB to fall through to newMBB
11450  thisMBB->addSuccessor(newMBB);
11451
11452  // newMBB jumps to newMBB and fall through to nextMBB
11453  newMBB->addSuccessor(nextMBB);
11454  newMBB->addSuccessor(newMBB);
11455
11456  DebugLoc dl = mInstr->getDebugLoc();
11457  // Insert instructions into newMBB based on incoming instruction
11458  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11459         "unexpected number of operands");
11460  MachineOperand& destOper = mInstr->getOperand(0);
11461  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11462  int numArgs = mInstr->getNumOperands() - 1;
11463  for (int i=0; i < numArgs; ++i)
11464    argOpers[i] = &mInstr->getOperand(i+1);
11465
11466  // x86 address has 4 operands: base, index, scale, and displacement
11467  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11468  int valArgIndx = lastAddrIndx + 1;
11469
11470  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11471  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11472  for (int i=0; i <= lastAddrIndx; ++i)
11473    (*MIB).addOperand(*argOpers[i]);
11474
11475  // We only support register and immediate values
11476  assert((argOpers[valArgIndx]->isReg() ||
11477          argOpers[valArgIndx]->isImm()) &&
11478         "invalid operand");
11479
11480  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11481  if (argOpers[valArgIndx]->isReg())
11482    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11483  else
11484    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11485  (*MIB).addOperand(*argOpers[valArgIndx]);
11486
11487  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11488  MIB.addReg(t1);
11489
11490  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11491  MIB.addReg(t1);
11492  MIB.addReg(t2);
11493
11494  // Generate movc
11495  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11496  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11497  MIB.addReg(t2);
11498  MIB.addReg(t1);
11499
11500  // Cmp and exchange if none has modified the memory location
11501  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11502  for (int i=0; i <= lastAddrIndx; ++i)
11503    (*MIB).addOperand(*argOpers[i]);
11504  MIB.addReg(t3);
11505  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11506  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11507                    mInstr->memoperands_end());
11508
11509  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11510  MIB.addReg(X86::EAX);
11511
11512  // insert branch
11513  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11514
11515  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11516  return nextMBB;
11517}
11518
11519// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11520// or XMM0_V32I8 in AVX all of this code can be replaced with that
11521// in the .td file.
11522MachineBasicBlock *
11523X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11524                            unsigned numArgs, bool memArg) const {
11525  assert(Subtarget->hasSSE42orAVX() &&
11526         "Target must have SSE4.2 or AVX features enabled");
11527
11528  DebugLoc dl = MI->getDebugLoc();
11529  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11530  unsigned Opc;
11531  if (!Subtarget->hasAVX()) {
11532    if (memArg)
11533      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11534    else
11535      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11536  } else {
11537    if (memArg)
11538      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11539    else
11540      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11541  }
11542
11543  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11544  for (unsigned i = 0; i < numArgs; ++i) {
11545    MachineOperand &Op = MI->getOperand(i+1);
11546    if (!(Op.isReg() && Op.isImplicit()))
11547      MIB.addOperand(Op);
11548  }
11549  BuildMI(*BB, MI, dl,
11550    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11551             MI->getOperand(0).getReg())
11552    .addReg(X86::XMM0);
11553
11554  MI->eraseFromParent();
11555  return BB;
11556}
11557
11558MachineBasicBlock *
11559X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11560  DebugLoc dl = MI->getDebugLoc();
11561  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11562
11563  // Address into RAX/EAX, other two args into ECX, EDX.
11564  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11565  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11566  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11567  for (int i = 0; i < X86::AddrNumOperands; ++i)
11568    MIB.addOperand(MI->getOperand(i));
11569
11570  unsigned ValOps = X86::AddrNumOperands;
11571  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11572    .addReg(MI->getOperand(ValOps).getReg());
11573  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11574    .addReg(MI->getOperand(ValOps+1).getReg());
11575
11576  // The instruction doesn't actually take any operands though.
11577  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11578
11579  MI->eraseFromParent(); // The pseudo is gone now.
11580  return BB;
11581}
11582
11583MachineBasicBlock *
11584X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11585  DebugLoc dl = MI->getDebugLoc();
11586  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11587
11588  // First arg in ECX, the second in EAX.
11589  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11590    .addReg(MI->getOperand(0).getReg());
11591  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11592    .addReg(MI->getOperand(1).getReg());
11593
11594  // The instruction doesn't actually take any operands though.
11595  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11596
11597  MI->eraseFromParent(); // The pseudo is gone now.
11598  return BB;
11599}
11600
11601MachineBasicBlock *
11602X86TargetLowering::EmitVAARG64WithCustomInserter(
11603                   MachineInstr *MI,
11604                   MachineBasicBlock *MBB) const {
11605  // Emit va_arg instruction on X86-64.
11606
11607  // Operands to this pseudo-instruction:
11608  // 0  ) Output        : destination address (reg)
11609  // 1-5) Input         : va_list address (addr, i64mem)
11610  // 6  ) ArgSize       : Size (in bytes) of vararg type
11611  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11612  // 8  ) Align         : Alignment of type
11613  // 9  ) EFLAGS (implicit-def)
11614
11615  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11616  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11617
11618  unsigned DestReg = MI->getOperand(0).getReg();
11619  MachineOperand &Base = MI->getOperand(1);
11620  MachineOperand &Scale = MI->getOperand(2);
11621  MachineOperand &Index = MI->getOperand(3);
11622  MachineOperand &Disp = MI->getOperand(4);
11623  MachineOperand &Segment = MI->getOperand(5);
11624  unsigned ArgSize = MI->getOperand(6).getImm();
11625  unsigned ArgMode = MI->getOperand(7).getImm();
11626  unsigned Align = MI->getOperand(8).getImm();
11627
11628  // Memory Reference
11629  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11630  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11631  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11632
11633  // Machine Information
11634  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11635  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11636  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11637  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11638  DebugLoc DL = MI->getDebugLoc();
11639
11640  // struct va_list {
11641  //   i32   gp_offset
11642  //   i32   fp_offset
11643  //   i64   overflow_area (address)
11644  //   i64   reg_save_area (address)
11645  // }
11646  // sizeof(va_list) = 24
11647  // alignment(va_list) = 8
11648
11649  unsigned TotalNumIntRegs = 6;
11650  unsigned TotalNumXMMRegs = 8;
11651  bool UseGPOffset = (ArgMode == 1);
11652  bool UseFPOffset = (ArgMode == 2);
11653  unsigned MaxOffset = TotalNumIntRegs * 8 +
11654                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11655
11656  /* Align ArgSize to a multiple of 8 */
11657  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11658  bool NeedsAlign = (Align > 8);
11659
11660  MachineBasicBlock *thisMBB = MBB;
11661  MachineBasicBlock *overflowMBB;
11662  MachineBasicBlock *offsetMBB;
11663  MachineBasicBlock *endMBB;
11664
11665  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11666  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11667  unsigned OffsetReg = 0;
11668
11669  if (!UseGPOffset && !UseFPOffset) {
11670    // If we only pull from the overflow region, we don't create a branch.
11671    // We don't need to alter control flow.
11672    OffsetDestReg = 0; // unused
11673    OverflowDestReg = DestReg;
11674
11675    offsetMBB = NULL;
11676    overflowMBB = thisMBB;
11677    endMBB = thisMBB;
11678  } else {
11679    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11680    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11681    // If not, pull from overflow_area. (branch to overflowMBB)
11682    //
11683    //       thisMBB
11684    //         |     .
11685    //         |        .
11686    //     offsetMBB   overflowMBB
11687    //         |        .
11688    //         |     .
11689    //        endMBB
11690
11691    // Registers for the PHI in endMBB
11692    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11693    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11694
11695    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11696    MachineFunction *MF = MBB->getParent();
11697    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11698    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11699    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11700
11701    MachineFunction::iterator MBBIter = MBB;
11702    ++MBBIter;
11703
11704    // Insert the new basic blocks
11705    MF->insert(MBBIter, offsetMBB);
11706    MF->insert(MBBIter, overflowMBB);
11707    MF->insert(MBBIter, endMBB);
11708
11709    // Transfer the remainder of MBB and its successor edges to endMBB.
11710    endMBB->splice(endMBB->begin(), thisMBB,
11711                    llvm::next(MachineBasicBlock::iterator(MI)),
11712                    thisMBB->end());
11713    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11714
11715    // Make offsetMBB and overflowMBB successors of thisMBB
11716    thisMBB->addSuccessor(offsetMBB);
11717    thisMBB->addSuccessor(overflowMBB);
11718
11719    // endMBB is a successor of both offsetMBB and overflowMBB
11720    offsetMBB->addSuccessor(endMBB);
11721    overflowMBB->addSuccessor(endMBB);
11722
11723    // Load the offset value into a register
11724    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11725    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11726      .addOperand(Base)
11727      .addOperand(Scale)
11728      .addOperand(Index)
11729      .addDisp(Disp, UseFPOffset ? 4 : 0)
11730      .addOperand(Segment)
11731      .setMemRefs(MMOBegin, MMOEnd);
11732
11733    // Check if there is enough room left to pull this argument.
11734    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11735      .addReg(OffsetReg)
11736      .addImm(MaxOffset + 8 - ArgSizeA8);
11737
11738    // Branch to "overflowMBB" if offset >= max
11739    // Fall through to "offsetMBB" otherwise
11740    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11741      .addMBB(overflowMBB);
11742  }
11743
11744  // In offsetMBB, emit code to use the reg_save_area.
11745  if (offsetMBB) {
11746    assert(OffsetReg != 0);
11747
11748    // Read the reg_save_area address.
11749    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11750    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11751      .addOperand(Base)
11752      .addOperand(Scale)
11753      .addOperand(Index)
11754      .addDisp(Disp, 16)
11755      .addOperand(Segment)
11756      .setMemRefs(MMOBegin, MMOEnd);
11757
11758    // Zero-extend the offset
11759    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11760      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11761        .addImm(0)
11762        .addReg(OffsetReg)
11763        .addImm(X86::sub_32bit);
11764
11765    // Add the offset to the reg_save_area to get the final address.
11766    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11767      .addReg(OffsetReg64)
11768      .addReg(RegSaveReg);
11769
11770    // Compute the offset for the next argument
11771    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11772    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11773      .addReg(OffsetReg)
11774      .addImm(UseFPOffset ? 16 : 8);
11775
11776    // Store it back into the va_list.
11777    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11778      .addOperand(Base)
11779      .addOperand(Scale)
11780      .addOperand(Index)
11781      .addDisp(Disp, UseFPOffset ? 4 : 0)
11782      .addOperand(Segment)
11783      .addReg(NextOffsetReg)
11784      .setMemRefs(MMOBegin, MMOEnd);
11785
11786    // Jump to endMBB
11787    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11788      .addMBB(endMBB);
11789  }
11790
11791  //
11792  // Emit code to use overflow area
11793  //
11794
11795  // Load the overflow_area address into a register.
11796  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11797  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11798    .addOperand(Base)
11799    .addOperand(Scale)
11800    .addOperand(Index)
11801    .addDisp(Disp, 8)
11802    .addOperand(Segment)
11803    .setMemRefs(MMOBegin, MMOEnd);
11804
11805  // If we need to align it, do so. Otherwise, just copy the address
11806  // to OverflowDestReg.
11807  if (NeedsAlign) {
11808    // Align the overflow address
11809    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11810    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11811
11812    // aligned_addr = (addr + (align-1)) & ~(align-1)
11813    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11814      .addReg(OverflowAddrReg)
11815      .addImm(Align-1);
11816
11817    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11818      .addReg(TmpReg)
11819      .addImm(~(uint64_t)(Align-1));
11820  } else {
11821    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11822      .addReg(OverflowAddrReg);
11823  }
11824
11825  // Compute the next overflow address after this argument.
11826  // (the overflow address should be kept 8-byte aligned)
11827  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11828  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11829    .addReg(OverflowDestReg)
11830    .addImm(ArgSizeA8);
11831
11832  // Store the new overflow address.
11833  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11834    .addOperand(Base)
11835    .addOperand(Scale)
11836    .addOperand(Index)
11837    .addDisp(Disp, 8)
11838    .addOperand(Segment)
11839    .addReg(NextAddrReg)
11840    .setMemRefs(MMOBegin, MMOEnd);
11841
11842  // If we branched, emit the PHI to the front of endMBB.
11843  if (offsetMBB) {
11844    BuildMI(*endMBB, endMBB->begin(), DL,
11845            TII->get(X86::PHI), DestReg)
11846      .addReg(OffsetDestReg).addMBB(offsetMBB)
11847      .addReg(OverflowDestReg).addMBB(overflowMBB);
11848  }
11849
11850  // Erase the pseudo instruction
11851  MI->eraseFromParent();
11852
11853  return endMBB;
11854}
11855
11856MachineBasicBlock *
11857X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11858                                                 MachineInstr *MI,
11859                                                 MachineBasicBlock *MBB) const {
11860  // Emit code to save XMM registers to the stack. The ABI says that the
11861  // number of registers to save is given in %al, so it's theoretically
11862  // possible to do an indirect jump trick to avoid saving all of them,
11863  // however this code takes a simpler approach and just executes all
11864  // of the stores if %al is non-zero. It's less code, and it's probably
11865  // easier on the hardware branch predictor, and stores aren't all that
11866  // expensive anyway.
11867
11868  // Create the new basic blocks. One block contains all the XMM stores,
11869  // and one block is the final destination regardless of whether any
11870  // stores were performed.
11871  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11872  MachineFunction *F = MBB->getParent();
11873  MachineFunction::iterator MBBIter = MBB;
11874  ++MBBIter;
11875  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11876  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11877  F->insert(MBBIter, XMMSaveMBB);
11878  F->insert(MBBIter, EndMBB);
11879
11880  // Transfer the remainder of MBB and its successor edges to EndMBB.
11881  EndMBB->splice(EndMBB->begin(), MBB,
11882                 llvm::next(MachineBasicBlock::iterator(MI)),
11883                 MBB->end());
11884  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11885
11886  // The original block will now fall through to the XMM save block.
11887  MBB->addSuccessor(XMMSaveMBB);
11888  // The XMMSaveMBB will fall through to the end block.
11889  XMMSaveMBB->addSuccessor(EndMBB);
11890
11891  // Now add the instructions.
11892  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11893  DebugLoc DL = MI->getDebugLoc();
11894
11895  unsigned CountReg = MI->getOperand(0).getReg();
11896  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11897  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11898
11899  if (!Subtarget->isTargetWin64()) {
11900    // If %al is 0, branch around the XMM save block.
11901    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11902    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11903    MBB->addSuccessor(EndMBB);
11904  }
11905
11906  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11907  // In the XMM save block, save all the XMM argument registers.
11908  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11909    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11910    MachineMemOperand *MMO =
11911      F->getMachineMemOperand(
11912          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11913        MachineMemOperand::MOStore,
11914        /*Size=*/16, /*Align=*/16);
11915    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11916      .addFrameIndex(RegSaveFrameIndex)
11917      .addImm(/*Scale=*/1)
11918      .addReg(/*IndexReg=*/0)
11919      .addImm(/*Disp=*/Offset)
11920      .addReg(/*Segment=*/0)
11921      .addReg(MI->getOperand(i).getReg())
11922      .addMemOperand(MMO);
11923  }
11924
11925  MI->eraseFromParent();   // The pseudo instruction is gone now.
11926
11927  return EndMBB;
11928}
11929
11930MachineBasicBlock *
11931X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11932                                     MachineBasicBlock *BB) const {
11933  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11934  DebugLoc DL = MI->getDebugLoc();
11935
11936  // To "insert" a SELECT_CC instruction, we actually have to insert the
11937  // diamond control-flow pattern.  The incoming instruction knows the
11938  // destination vreg to set, the condition code register to branch on, the
11939  // true/false values to select between, and a branch opcode to use.
11940  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11941  MachineFunction::iterator It = BB;
11942  ++It;
11943
11944  //  thisMBB:
11945  //  ...
11946  //   TrueVal = ...
11947  //   cmpTY ccX, r1, r2
11948  //   bCC copy1MBB
11949  //   fallthrough --> copy0MBB
11950  MachineBasicBlock *thisMBB = BB;
11951  MachineFunction *F = BB->getParent();
11952  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11953  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11954  F->insert(It, copy0MBB);
11955  F->insert(It, sinkMBB);
11956
11957  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11958  // live into the sink and copy blocks.
11959  if (!MI->killsRegister(X86::EFLAGS)) {
11960    copy0MBB->addLiveIn(X86::EFLAGS);
11961    sinkMBB->addLiveIn(X86::EFLAGS);
11962  }
11963
11964  // Transfer the remainder of BB and its successor edges to sinkMBB.
11965  sinkMBB->splice(sinkMBB->begin(), BB,
11966                  llvm::next(MachineBasicBlock::iterator(MI)),
11967                  BB->end());
11968  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11969
11970  // Add the true and fallthrough blocks as its successors.
11971  BB->addSuccessor(copy0MBB);
11972  BB->addSuccessor(sinkMBB);
11973
11974  // Create the conditional branch instruction.
11975  unsigned Opc =
11976    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11977  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11978
11979  //  copy0MBB:
11980  //   %FalseValue = ...
11981  //   # fallthrough to sinkMBB
11982  copy0MBB->addSuccessor(sinkMBB);
11983
11984  //  sinkMBB:
11985  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11986  //  ...
11987  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11988          TII->get(X86::PHI), MI->getOperand(0).getReg())
11989    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11990    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11991
11992  MI->eraseFromParent();   // The pseudo instruction is gone now.
11993  return sinkMBB;
11994}
11995
11996MachineBasicBlock *
11997X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11998                                        bool Is64Bit) const {
11999  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12000  DebugLoc DL = MI->getDebugLoc();
12001  MachineFunction *MF = BB->getParent();
12002  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12003
12004  assert(getTargetMachine().Options.EnableSegmentedStacks);
12005
12006  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12007  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12008
12009  // BB:
12010  //  ... [Till the alloca]
12011  // If stacklet is not large enough, jump to mallocMBB
12012  //
12013  // bumpMBB:
12014  //  Allocate by subtracting from RSP
12015  //  Jump to continueMBB
12016  //
12017  // mallocMBB:
12018  //  Allocate by call to runtime
12019  //
12020  // continueMBB:
12021  //  ...
12022  //  [rest of original BB]
12023  //
12024
12025  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12026  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12027  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12028
12029  MachineRegisterInfo &MRI = MF->getRegInfo();
12030  const TargetRegisterClass *AddrRegClass =
12031    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12032
12033  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12034    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12035    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12036    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12037    sizeVReg = MI->getOperand(1).getReg(),
12038    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12039
12040  MachineFunction::iterator MBBIter = BB;
12041  ++MBBIter;
12042
12043  MF->insert(MBBIter, bumpMBB);
12044  MF->insert(MBBIter, mallocMBB);
12045  MF->insert(MBBIter, continueMBB);
12046
12047  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12048                      (MachineBasicBlock::iterator(MI)), BB->end());
12049  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12050
12051  // Add code to the main basic block to check if the stack limit has been hit,
12052  // and if so, jump to mallocMBB otherwise to bumpMBB.
12053  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12054  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12055    .addReg(tmpSPVReg).addReg(sizeVReg);
12056  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12057    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12058    .addReg(SPLimitVReg);
12059  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12060
12061  // bumpMBB simply decreases the stack pointer, since we know the current
12062  // stacklet has enough space.
12063  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12064    .addReg(SPLimitVReg);
12065  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12066    .addReg(SPLimitVReg);
12067  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12068
12069  // Calls into a routine in libgcc to allocate more space from the heap.
12070  if (Is64Bit) {
12071    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12072      .addReg(sizeVReg);
12073    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12074    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12075  } else {
12076    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12077      .addImm(12);
12078    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12079    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12080      .addExternalSymbol("__morestack_allocate_stack_space");
12081  }
12082
12083  if (!Is64Bit)
12084    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12085      .addImm(16);
12086
12087  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12088    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12089  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12090
12091  // Set up the CFG correctly.
12092  BB->addSuccessor(bumpMBB);
12093  BB->addSuccessor(mallocMBB);
12094  mallocMBB->addSuccessor(continueMBB);
12095  bumpMBB->addSuccessor(continueMBB);
12096
12097  // Take care of the PHI nodes.
12098  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12099          MI->getOperand(0).getReg())
12100    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12101    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12102
12103  // Delete the original pseudo instruction.
12104  MI->eraseFromParent();
12105
12106  // And we're done.
12107  return continueMBB;
12108}
12109
12110MachineBasicBlock *
12111X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12112                                          MachineBasicBlock *BB) const {
12113  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12114  DebugLoc DL = MI->getDebugLoc();
12115
12116  assert(!Subtarget->isTargetEnvMacho());
12117
12118  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12119  // non-trivial part is impdef of ESP.
12120
12121  if (Subtarget->isTargetWin64()) {
12122    if (Subtarget->isTargetCygMing()) {
12123      // ___chkstk(Mingw64):
12124      // Clobbers R10, R11, RAX and EFLAGS.
12125      // Updates RSP.
12126      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12127        .addExternalSymbol("___chkstk")
12128        .addReg(X86::RAX, RegState::Implicit)
12129        .addReg(X86::RSP, RegState::Implicit)
12130        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12131        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12132        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12133    } else {
12134      // __chkstk(MSVCRT): does not update stack pointer.
12135      // Clobbers R10, R11 and EFLAGS.
12136      // FIXME: RAX(allocated size) might be reused and not killed.
12137      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12138        .addExternalSymbol("__chkstk")
12139        .addReg(X86::RAX, RegState::Implicit)
12140        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12141      // RAX has the offset to subtracted from RSP.
12142      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12143        .addReg(X86::RSP)
12144        .addReg(X86::RAX);
12145    }
12146  } else {
12147    const char *StackProbeSymbol =
12148      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12149
12150    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12151      .addExternalSymbol(StackProbeSymbol)
12152      .addReg(X86::EAX, RegState::Implicit)
12153      .addReg(X86::ESP, RegState::Implicit)
12154      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12155      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12156      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12157  }
12158
12159  MI->eraseFromParent();   // The pseudo instruction is gone now.
12160  return BB;
12161}
12162
12163MachineBasicBlock *
12164X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12165                                      MachineBasicBlock *BB) const {
12166  // This is pretty easy.  We're taking the value that we received from
12167  // our load from the relocation, sticking it in either RDI (x86-64)
12168  // or EAX and doing an indirect call.  The return value will then
12169  // be in the normal return register.
12170  const X86InstrInfo *TII
12171    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12172  DebugLoc DL = MI->getDebugLoc();
12173  MachineFunction *F = BB->getParent();
12174
12175  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12176  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12177
12178  if (Subtarget->is64Bit()) {
12179    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12180                                      TII->get(X86::MOV64rm), X86::RDI)
12181    .addReg(X86::RIP)
12182    .addImm(0).addReg(0)
12183    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12184                      MI->getOperand(3).getTargetFlags())
12185    .addReg(0);
12186    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12187    addDirectMem(MIB, X86::RDI);
12188  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12189    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12190                                      TII->get(X86::MOV32rm), X86::EAX)
12191    .addReg(0)
12192    .addImm(0).addReg(0)
12193    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12194                      MI->getOperand(3).getTargetFlags())
12195    .addReg(0);
12196    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12197    addDirectMem(MIB, X86::EAX);
12198  } else {
12199    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12200                                      TII->get(X86::MOV32rm), X86::EAX)
12201    .addReg(TII->getGlobalBaseReg(F))
12202    .addImm(0).addReg(0)
12203    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12204                      MI->getOperand(3).getTargetFlags())
12205    .addReg(0);
12206    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12207    addDirectMem(MIB, X86::EAX);
12208  }
12209
12210  MI->eraseFromParent(); // The pseudo instruction is gone now.
12211  return BB;
12212}
12213
12214MachineBasicBlock *
12215X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12216                                               MachineBasicBlock *BB) const {
12217  switch (MI->getOpcode()) {
12218  default: assert(0 && "Unexpected instr type to insert");
12219  case X86::TAILJMPd64:
12220  case X86::TAILJMPr64:
12221  case X86::TAILJMPm64:
12222    assert(0 && "TAILJMP64 would not be touched here.");
12223  case X86::TCRETURNdi64:
12224  case X86::TCRETURNri64:
12225  case X86::TCRETURNmi64:
12226    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12227    // On AMD64, additional defs should be added before register allocation.
12228    if (!Subtarget->isTargetWin64()) {
12229      MI->addRegisterDefined(X86::RSI);
12230      MI->addRegisterDefined(X86::RDI);
12231      MI->addRegisterDefined(X86::XMM6);
12232      MI->addRegisterDefined(X86::XMM7);
12233      MI->addRegisterDefined(X86::XMM8);
12234      MI->addRegisterDefined(X86::XMM9);
12235      MI->addRegisterDefined(X86::XMM10);
12236      MI->addRegisterDefined(X86::XMM11);
12237      MI->addRegisterDefined(X86::XMM12);
12238      MI->addRegisterDefined(X86::XMM13);
12239      MI->addRegisterDefined(X86::XMM14);
12240      MI->addRegisterDefined(X86::XMM15);
12241    }
12242    return BB;
12243  case X86::WIN_ALLOCA:
12244    return EmitLoweredWinAlloca(MI, BB);
12245  case X86::SEG_ALLOCA_32:
12246    return EmitLoweredSegAlloca(MI, BB, false);
12247  case X86::SEG_ALLOCA_64:
12248    return EmitLoweredSegAlloca(MI, BB, true);
12249  case X86::TLSCall_32:
12250  case X86::TLSCall_64:
12251    return EmitLoweredTLSCall(MI, BB);
12252  case X86::CMOV_GR8:
12253  case X86::CMOV_FR32:
12254  case X86::CMOV_FR64:
12255  case X86::CMOV_V4F32:
12256  case X86::CMOV_V2F64:
12257  case X86::CMOV_V2I64:
12258  case X86::CMOV_V8F32:
12259  case X86::CMOV_V4F64:
12260  case X86::CMOV_V4I64:
12261  case X86::CMOV_GR16:
12262  case X86::CMOV_GR32:
12263  case X86::CMOV_RFP32:
12264  case X86::CMOV_RFP64:
12265  case X86::CMOV_RFP80:
12266    return EmitLoweredSelect(MI, BB);
12267
12268  case X86::FP32_TO_INT16_IN_MEM:
12269  case X86::FP32_TO_INT32_IN_MEM:
12270  case X86::FP32_TO_INT64_IN_MEM:
12271  case X86::FP64_TO_INT16_IN_MEM:
12272  case X86::FP64_TO_INT32_IN_MEM:
12273  case X86::FP64_TO_INT64_IN_MEM:
12274  case X86::FP80_TO_INT16_IN_MEM:
12275  case X86::FP80_TO_INT32_IN_MEM:
12276  case X86::FP80_TO_INT64_IN_MEM: {
12277    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12278    DebugLoc DL = MI->getDebugLoc();
12279
12280    // Change the floating point control register to use "round towards zero"
12281    // mode when truncating to an integer value.
12282    MachineFunction *F = BB->getParent();
12283    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12284    addFrameReference(BuildMI(*BB, MI, DL,
12285                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12286
12287    // Load the old value of the high byte of the control word...
12288    unsigned OldCW =
12289      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12290    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12291                      CWFrameIdx);
12292
12293    // Set the high part to be round to zero...
12294    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12295      .addImm(0xC7F);
12296
12297    // Reload the modified control word now...
12298    addFrameReference(BuildMI(*BB, MI, DL,
12299                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12300
12301    // Restore the memory image of control word to original value
12302    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12303      .addReg(OldCW);
12304
12305    // Get the X86 opcode to use.
12306    unsigned Opc;
12307    switch (MI->getOpcode()) {
12308    default: llvm_unreachable("illegal opcode!");
12309    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12310    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12311    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12312    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12313    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12314    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12315    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12316    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12317    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12318    }
12319
12320    X86AddressMode AM;
12321    MachineOperand &Op = MI->getOperand(0);
12322    if (Op.isReg()) {
12323      AM.BaseType = X86AddressMode::RegBase;
12324      AM.Base.Reg = Op.getReg();
12325    } else {
12326      AM.BaseType = X86AddressMode::FrameIndexBase;
12327      AM.Base.FrameIndex = Op.getIndex();
12328    }
12329    Op = MI->getOperand(1);
12330    if (Op.isImm())
12331      AM.Scale = Op.getImm();
12332    Op = MI->getOperand(2);
12333    if (Op.isImm())
12334      AM.IndexReg = Op.getImm();
12335    Op = MI->getOperand(3);
12336    if (Op.isGlobal()) {
12337      AM.GV = Op.getGlobal();
12338    } else {
12339      AM.Disp = Op.getImm();
12340    }
12341    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12342                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12343
12344    // Reload the original control word now.
12345    addFrameReference(BuildMI(*BB, MI, DL,
12346                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12347
12348    MI->eraseFromParent();   // The pseudo instruction is gone now.
12349    return BB;
12350  }
12351    // String/text processing lowering.
12352  case X86::PCMPISTRM128REG:
12353  case X86::VPCMPISTRM128REG:
12354    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12355  case X86::PCMPISTRM128MEM:
12356  case X86::VPCMPISTRM128MEM:
12357    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12358  case X86::PCMPESTRM128REG:
12359  case X86::VPCMPESTRM128REG:
12360    return EmitPCMP(MI, BB, 5, false /* in mem */);
12361  case X86::PCMPESTRM128MEM:
12362  case X86::VPCMPESTRM128MEM:
12363    return EmitPCMP(MI, BB, 5, true /* in mem */);
12364
12365    // Thread synchronization.
12366  case X86::MONITOR:
12367    return EmitMonitor(MI, BB);
12368  case X86::MWAIT:
12369    return EmitMwait(MI, BB);
12370
12371    // Atomic Lowering.
12372  case X86::ATOMAND32:
12373    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12374                                               X86::AND32ri, X86::MOV32rm,
12375                                               X86::LCMPXCHG32,
12376                                               X86::NOT32r, X86::EAX,
12377                                               X86::GR32RegisterClass);
12378  case X86::ATOMOR32:
12379    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12380                                               X86::OR32ri, X86::MOV32rm,
12381                                               X86::LCMPXCHG32,
12382                                               X86::NOT32r, X86::EAX,
12383                                               X86::GR32RegisterClass);
12384  case X86::ATOMXOR32:
12385    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12386                                               X86::XOR32ri, X86::MOV32rm,
12387                                               X86::LCMPXCHG32,
12388                                               X86::NOT32r, X86::EAX,
12389                                               X86::GR32RegisterClass);
12390  case X86::ATOMNAND32:
12391    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12392                                               X86::AND32ri, X86::MOV32rm,
12393                                               X86::LCMPXCHG32,
12394                                               X86::NOT32r, X86::EAX,
12395                                               X86::GR32RegisterClass, true);
12396  case X86::ATOMMIN32:
12397    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12398  case X86::ATOMMAX32:
12399    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12400  case X86::ATOMUMIN32:
12401    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12402  case X86::ATOMUMAX32:
12403    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12404
12405  case X86::ATOMAND16:
12406    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12407                                               X86::AND16ri, X86::MOV16rm,
12408                                               X86::LCMPXCHG16,
12409                                               X86::NOT16r, X86::AX,
12410                                               X86::GR16RegisterClass);
12411  case X86::ATOMOR16:
12412    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12413                                               X86::OR16ri, X86::MOV16rm,
12414                                               X86::LCMPXCHG16,
12415                                               X86::NOT16r, X86::AX,
12416                                               X86::GR16RegisterClass);
12417  case X86::ATOMXOR16:
12418    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12419                                               X86::XOR16ri, X86::MOV16rm,
12420                                               X86::LCMPXCHG16,
12421                                               X86::NOT16r, X86::AX,
12422                                               X86::GR16RegisterClass);
12423  case X86::ATOMNAND16:
12424    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12425                                               X86::AND16ri, X86::MOV16rm,
12426                                               X86::LCMPXCHG16,
12427                                               X86::NOT16r, X86::AX,
12428                                               X86::GR16RegisterClass, true);
12429  case X86::ATOMMIN16:
12430    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12431  case X86::ATOMMAX16:
12432    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12433  case X86::ATOMUMIN16:
12434    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12435  case X86::ATOMUMAX16:
12436    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12437
12438  case X86::ATOMAND8:
12439    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12440                                               X86::AND8ri, X86::MOV8rm,
12441                                               X86::LCMPXCHG8,
12442                                               X86::NOT8r, X86::AL,
12443                                               X86::GR8RegisterClass);
12444  case X86::ATOMOR8:
12445    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12446                                               X86::OR8ri, X86::MOV8rm,
12447                                               X86::LCMPXCHG8,
12448                                               X86::NOT8r, X86::AL,
12449                                               X86::GR8RegisterClass);
12450  case X86::ATOMXOR8:
12451    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12452                                               X86::XOR8ri, X86::MOV8rm,
12453                                               X86::LCMPXCHG8,
12454                                               X86::NOT8r, X86::AL,
12455                                               X86::GR8RegisterClass);
12456  case X86::ATOMNAND8:
12457    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12458                                               X86::AND8ri, X86::MOV8rm,
12459                                               X86::LCMPXCHG8,
12460                                               X86::NOT8r, X86::AL,
12461                                               X86::GR8RegisterClass, true);
12462  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12463  // This group is for 64-bit host.
12464  case X86::ATOMAND64:
12465    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12466                                               X86::AND64ri32, X86::MOV64rm,
12467                                               X86::LCMPXCHG64,
12468                                               X86::NOT64r, X86::RAX,
12469                                               X86::GR64RegisterClass);
12470  case X86::ATOMOR64:
12471    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12472                                               X86::OR64ri32, X86::MOV64rm,
12473                                               X86::LCMPXCHG64,
12474                                               X86::NOT64r, X86::RAX,
12475                                               X86::GR64RegisterClass);
12476  case X86::ATOMXOR64:
12477    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12478                                               X86::XOR64ri32, X86::MOV64rm,
12479                                               X86::LCMPXCHG64,
12480                                               X86::NOT64r, X86::RAX,
12481                                               X86::GR64RegisterClass);
12482  case X86::ATOMNAND64:
12483    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12484                                               X86::AND64ri32, X86::MOV64rm,
12485                                               X86::LCMPXCHG64,
12486                                               X86::NOT64r, X86::RAX,
12487                                               X86::GR64RegisterClass, true);
12488  case X86::ATOMMIN64:
12489    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12490  case X86::ATOMMAX64:
12491    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12492  case X86::ATOMUMIN64:
12493    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12494  case X86::ATOMUMAX64:
12495    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12496
12497  // This group does 64-bit operations on a 32-bit host.
12498  case X86::ATOMAND6432:
12499    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12500                                               X86::AND32rr, X86::AND32rr,
12501                                               X86::AND32ri, X86::AND32ri,
12502                                               false);
12503  case X86::ATOMOR6432:
12504    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12505                                               X86::OR32rr, X86::OR32rr,
12506                                               X86::OR32ri, X86::OR32ri,
12507                                               false);
12508  case X86::ATOMXOR6432:
12509    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12510                                               X86::XOR32rr, X86::XOR32rr,
12511                                               X86::XOR32ri, X86::XOR32ri,
12512                                               false);
12513  case X86::ATOMNAND6432:
12514    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12515                                               X86::AND32rr, X86::AND32rr,
12516                                               X86::AND32ri, X86::AND32ri,
12517                                               true);
12518  case X86::ATOMADD6432:
12519    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12520                                               X86::ADD32rr, X86::ADC32rr,
12521                                               X86::ADD32ri, X86::ADC32ri,
12522                                               false);
12523  case X86::ATOMSUB6432:
12524    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12525                                               X86::SUB32rr, X86::SBB32rr,
12526                                               X86::SUB32ri, X86::SBB32ri,
12527                                               false);
12528  case X86::ATOMSWAP6432:
12529    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12530                                               X86::MOV32rr, X86::MOV32rr,
12531                                               X86::MOV32ri, X86::MOV32ri,
12532                                               false);
12533  case X86::VASTART_SAVE_XMM_REGS:
12534    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12535
12536  case X86::VAARG_64:
12537    return EmitVAARG64WithCustomInserter(MI, BB);
12538  }
12539}
12540
12541//===----------------------------------------------------------------------===//
12542//                           X86 Optimization Hooks
12543//===----------------------------------------------------------------------===//
12544
12545void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12546                                                       const APInt &Mask,
12547                                                       APInt &KnownZero,
12548                                                       APInt &KnownOne,
12549                                                       const SelectionDAG &DAG,
12550                                                       unsigned Depth) const {
12551  unsigned Opc = Op.getOpcode();
12552  assert((Opc >= ISD::BUILTIN_OP_END ||
12553          Opc == ISD::INTRINSIC_WO_CHAIN ||
12554          Opc == ISD::INTRINSIC_W_CHAIN ||
12555          Opc == ISD::INTRINSIC_VOID) &&
12556         "Should use MaskedValueIsZero if you don't know whether Op"
12557         " is a target node!");
12558
12559  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12560  switch (Opc) {
12561  default: break;
12562  case X86ISD::ADD:
12563  case X86ISD::SUB:
12564  case X86ISD::ADC:
12565  case X86ISD::SBB:
12566  case X86ISD::SMUL:
12567  case X86ISD::UMUL:
12568  case X86ISD::INC:
12569  case X86ISD::DEC:
12570  case X86ISD::OR:
12571  case X86ISD::XOR:
12572  case X86ISD::AND:
12573    // These nodes' second result is a boolean.
12574    if (Op.getResNo() == 0)
12575      break;
12576    // Fallthrough
12577  case X86ISD::SETCC:
12578    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12579                                       Mask.getBitWidth() - 1);
12580    break;
12581  case ISD::INTRINSIC_WO_CHAIN: {
12582    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12583    unsigned NumLoBits = 0;
12584    switch (IntId) {
12585    default: break;
12586    case Intrinsic::x86_sse_movmsk_ps:
12587    case Intrinsic::x86_avx_movmsk_ps_256:
12588    case Intrinsic::x86_sse2_movmsk_pd:
12589    case Intrinsic::x86_avx_movmsk_pd_256:
12590    case Intrinsic::x86_mmx_pmovmskb:
12591    case Intrinsic::x86_sse2_pmovmskb_128: {
12592      // High bits of movmskp{s|d}, pmovmskb are known zero.
12593      switch (IntId) {
12594        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12595        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12596        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12597        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12598        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12599        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12600      }
12601      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12602                                        Mask.getBitWidth() - NumLoBits);
12603      break;
12604    }
12605    }
12606    break;
12607  }
12608  }
12609}
12610
12611unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12612                                                         unsigned Depth) const {
12613  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12614  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12615    return Op.getValueType().getScalarType().getSizeInBits();
12616
12617  // Fallback case.
12618  return 1;
12619}
12620
12621/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12622/// node is a GlobalAddress + offset.
12623bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12624                                       const GlobalValue* &GA,
12625                                       int64_t &Offset) const {
12626  if (N->getOpcode() == X86ISD::Wrapper) {
12627    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12628      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12629      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12630      return true;
12631    }
12632  }
12633  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12634}
12635
12636/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12637/// same as extracting the high 128-bit part of 256-bit vector and then
12638/// inserting the result into the low part of a new 256-bit vector
12639static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12640  EVT VT = SVOp->getValueType(0);
12641  int NumElems = VT.getVectorNumElements();
12642
12643  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12644  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12645    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12646        SVOp->getMaskElt(j) >= 0)
12647      return false;
12648
12649  return true;
12650}
12651
12652/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12653/// same as extracting the low 128-bit part of 256-bit vector and then
12654/// inserting the result into the high part of a new 256-bit vector
12655static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12656  EVT VT = SVOp->getValueType(0);
12657  int NumElems = VT.getVectorNumElements();
12658
12659  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12660  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12661    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12662        SVOp->getMaskElt(j) >= 0)
12663      return false;
12664
12665  return true;
12666}
12667
12668/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12669static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12670                                        TargetLowering::DAGCombinerInfo &DCI) {
12671  DebugLoc dl = N->getDebugLoc();
12672  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12673  SDValue V1 = SVOp->getOperand(0);
12674  SDValue V2 = SVOp->getOperand(1);
12675  EVT VT = SVOp->getValueType(0);
12676  int NumElems = VT.getVectorNumElements();
12677
12678  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12679      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12680    //
12681    //                   0,0,0,...
12682    //                      |
12683    //    V      UNDEF    BUILD_VECTOR    UNDEF
12684    //     \      /           \           /
12685    //  CONCAT_VECTOR         CONCAT_VECTOR
12686    //         \                  /
12687    //          \                /
12688    //          RESULT: V + zero extended
12689    //
12690    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12691        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12692        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12693      return SDValue();
12694
12695    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12696      return SDValue();
12697
12698    // To match the shuffle mask, the first half of the mask should
12699    // be exactly the first vector, and all the rest a splat with the
12700    // first element of the second one.
12701    for (int i = 0; i < NumElems/2; ++i)
12702      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12703          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12704        return SDValue();
12705
12706    // Emit a zeroed vector and insert the desired subvector on its
12707    // first half.
12708    SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12709    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12710                         DAG.getConstant(0, MVT::i32), DAG, dl);
12711    return DCI.CombineTo(N, InsV);
12712  }
12713
12714  //===--------------------------------------------------------------------===//
12715  // Combine some shuffles into subvector extracts and inserts:
12716  //
12717
12718  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12719  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12720    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12721                                    DAG, dl);
12722    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12723                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12724    return DCI.CombineTo(N, InsV);
12725  }
12726
12727  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12728  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12729    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12730    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12731                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12732    return DCI.CombineTo(N, InsV);
12733  }
12734
12735  return SDValue();
12736}
12737
12738/// PerformShuffleCombine - Performs several different shuffle combines.
12739static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12740                                     TargetLowering::DAGCombinerInfo &DCI,
12741                                     const X86Subtarget *Subtarget) {
12742  DebugLoc dl = N->getDebugLoc();
12743  EVT VT = N->getValueType(0);
12744
12745  // Don't create instructions with illegal types after legalize types has run.
12746  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12747  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12748    return SDValue();
12749
12750  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12751  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12752      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12753    return PerformShuffleCombine256(N, DAG, DCI);
12754
12755  // Only handle 128 wide vector from here on.
12756  if (VT.getSizeInBits() != 128)
12757    return SDValue();
12758
12759  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12760  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12761  // consecutive, non-overlapping, and in the right order.
12762  SmallVector<SDValue, 16> Elts;
12763  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12764    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12765
12766  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12767}
12768
12769/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12770/// generation and convert it from being a bunch of shuffles and extracts
12771/// to a simple store and scalar loads to extract the elements.
12772static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12773                                                const TargetLowering &TLI) {
12774  SDValue InputVector = N->getOperand(0);
12775
12776  // Only operate on vectors of 4 elements, where the alternative shuffling
12777  // gets to be more expensive.
12778  if (InputVector.getValueType() != MVT::v4i32)
12779    return SDValue();
12780
12781  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12782  // single use which is a sign-extend or zero-extend, and all elements are
12783  // used.
12784  SmallVector<SDNode *, 4> Uses;
12785  unsigned ExtractedElements = 0;
12786  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12787       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12788    if (UI.getUse().getResNo() != InputVector.getResNo())
12789      return SDValue();
12790
12791    SDNode *Extract = *UI;
12792    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12793      return SDValue();
12794
12795    if (Extract->getValueType(0) != MVT::i32)
12796      return SDValue();
12797    if (!Extract->hasOneUse())
12798      return SDValue();
12799    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12800        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12801      return SDValue();
12802    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12803      return SDValue();
12804
12805    // Record which element was extracted.
12806    ExtractedElements |=
12807      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12808
12809    Uses.push_back(Extract);
12810  }
12811
12812  // If not all the elements were used, this may not be worthwhile.
12813  if (ExtractedElements != 15)
12814    return SDValue();
12815
12816  // Ok, we've now decided to do the transformation.
12817  DebugLoc dl = InputVector.getDebugLoc();
12818
12819  // Store the value to a temporary stack slot.
12820  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12821  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12822                            MachinePointerInfo(), false, false, 0);
12823
12824  // Replace each use (extract) with a load of the appropriate element.
12825  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12826       UE = Uses.end(); UI != UE; ++UI) {
12827    SDNode *Extract = *UI;
12828
12829    // cOMpute the element's address.
12830    SDValue Idx = Extract->getOperand(1);
12831    unsigned EltSize =
12832        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12833    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12834    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12835
12836    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12837                                     StackPtr, OffsetVal);
12838
12839    // Load the scalar.
12840    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12841                                     ScalarAddr, MachinePointerInfo(),
12842                                     false, false, false, 0);
12843
12844    // Replace the exact with the load.
12845    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12846  }
12847
12848  // The replacement was made in place; don't return anything.
12849  return SDValue();
12850}
12851
12852/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12853/// nodes.
12854static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12855                                    const X86Subtarget *Subtarget) {
12856  DebugLoc DL = N->getDebugLoc();
12857  SDValue Cond = N->getOperand(0);
12858  // Get the LHS/RHS of the select.
12859  SDValue LHS = N->getOperand(1);
12860  SDValue RHS = N->getOperand(2);
12861  EVT VT = LHS.getValueType();
12862
12863  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12864  // instructions match the semantics of the common C idiom x<y?x:y but not
12865  // x<=y?x:y, because of how they handle negative zero (which can be
12866  // ignored in unsafe-math mode).
12867  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12868      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12869      (Subtarget->hasXMMInt() ||
12870       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12871    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12872
12873    unsigned Opcode = 0;
12874    // Check for x CC y ? x : y.
12875    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12876        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12877      switch (CC) {
12878      default: break;
12879      case ISD::SETULT:
12880        // Converting this to a min would handle NaNs incorrectly, and swapping
12881        // the operands would cause it to handle comparisons between positive
12882        // and negative zero incorrectly.
12883        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12884          if (!DAG.getTarget().Options.UnsafeFPMath &&
12885              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12886            break;
12887          std::swap(LHS, RHS);
12888        }
12889        Opcode = X86ISD::FMIN;
12890        break;
12891      case ISD::SETOLE:
12892        // Converting this to a min would handle comparisons between positive
12893        // and negative zero incorrectly.
12894        if (!DAG.getTarget().Options.UnsafeFPMath &&
12895            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12896          break;
12897        Opcode = X86ISD::FMIN;
12898        break;
12899      case ISD::SETULE:
12900        // Converting this to a min would handle both negative zeros and NaNs
12901        // incorrectly, but we can swap the operands to fix both.
12902        std::swap(LHS, RHS);
12903      case ISD::SETOLT:
12904      case ISD::SETLT:
12905      case ISD::SETLE:
12906        Opcode = X86ISD::FMIN;
12907        break;
12908
12909      case ISD::SETOGE:
12910        // Converting this to a max would handle comparisons between positive
12911        // and negative zero incorrectly.
12912        if (!DAG.getTarget().Options.UnsafeFPMath &&
12913            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12914          break;
12915        Opcode = X86ISD::FMAX;
12916        break;
12917      case ISD::SETUGT:
12918        // Converting this to a max would handle NaNs incorrectly, and swapping
12919        // the operands would cause it to handle comparisons between positive
12920        // and negative zero incorrectly.
12921        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12922          if (!DAG.getTarget().Options.UnsafeFPMath &&
12923              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12924            break;
12925          std::swap(LHS, RHS);
12926        }
12927        Opcode = X86ISD::FMAX;
12928        break;
12929      case ISD::SETUGE:
12930        // Converting this to a max would handle both negative zeros and NaNs
12931        // incorrectly, but we can swap the operands to fix both.
12932        std::swap(LHS, RHS);
12933      case ISD::SETOGT:
12934      case ISD::SETGT:
12935      case ISD::SETGE:
12936        Opcode = X86ISD::FMAX;
12937        break;
12938      }
12939    // Check for x CC y ? y : x -- a min/max with reversed arms.
12940    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12941               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12942      switch (CC) {
12943      default: break;
12944      case ISD::SETOGE:
12945        // Converting this to a min would handle comparisons between positive
12946        // and negative zero incorrectly, and swapping the operands would
12947        // cause it to handle NaNs incorrectly.
12948        if (!DAG.getTarget().Options.UnsafeFPMath &&
12949            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12950          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12951            break;
12952          std::swap(LHS, RHS);
12953        }
12954        Opcode = X86ISD::FMIN;
12955        break;
12956      case ISD::SETUGT:
12957        // Converting this to a min would handle NaNs incorrectly.
12958        if (!DAG.getTarget().Options.UnsafeFPMath &&
12959            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12960          break;
12961        Opcode = X86ISD::FMIN;
12962        break;
12963      case ISD::SETUGE:
12964        // Converting this to a min would handle both negative zeros and NaNs
12965        // incorrectly, but we can swap the operands to fix both.
12966        std::swap(LHS, RHS);
12967      case ISD::SETOGT:
12968      case ISD::SETGT:
12969      case ISD::SETGE:
12970        Opcode = X86ISD::FMIN;
12971        break;
12972
12973      case ISD::SETULT:
12974        // Converting this to a max would handle NaNs incorrectly.
12975        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12976          break;
12977        Opcode = X86ISD::FMAX;
12978        break;
12979      case ISD::SETOLE:
12980        // Converting this to a max would handle comparisons between positive
12981        // and negative zero incorrectly, and swapping the operands would
12982        // cause it to handle NaNs incorrectly.
12983        if (!DAG.getTarget().Options.UnsafeFPMath &&
12984            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12985          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12986            break;
12987          std::swap(LHS, RHS);
12988        }
12989        Opcode = X86ISD::FMAX;
12990        break;
12991      case ISD::SETULE:
12992        // Converting this to a max would handle both negative zeros and NaNs
12993        // incorrectly, but we can swap the operands to fix both.
12994        std::swap(LHS, RHS);
12995      case ISD::SETOLT:
12996      case ISD::SETLT:
12997      case ISD::SETLE:
12998        Opcode = X86ISD::FMAX;
12999        break;
13000      }
13001    }
13002
13003    if (Opcode)
13004      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13005  }
13006
13007  // If this is a select between two integer constants, try to do some
13008  // optimizations.
13009  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13010    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13011      // Don't do this for crazy integer types.
13012      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13013        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13014        // so that TrueC (the true value) is larger than FalseC.
13015        bool NeedsCondInvert = false;
13016
13017        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13018            // Efficiently invertible.
13019            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13020             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13021              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13022          NeedsCondInvert = true;
13023          std::swap(TrueC, FalseC);
13024        }
13025
13026        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13027        if (FalseC->getAPIntValue() == 0 &&
13028            TrueC->getAPIntValue().isPowerOf2()) {
13029          if (NeedsCondInvert) // Invert the condition if needed.
13030            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13031                               DAG.getConstant(1, Cond.getValueType()));
13032
13033          // Zero extend the condition if needed.
13034          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13035
13036          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13037          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13038                             DAG.getConstant(ShAmt, MVT::i8));
13039        }
13040
13041        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13042        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13043          if (NeedsCondInvert) // Invert the condition if needed.
13044            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13045                               DAG.getConstant(1, Cond.getValueType()));
13046
13047          // Zero extend the condition if needed.
13048          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13049                             FalseC->getValueType(0), Cond);
13050          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13051                             SDValue(FalseC, 0));
13052        }
13053
13054        // Optimize cases that will turn into an LEA instruction.  This requires
13055        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13056        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13057          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13058          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13059
13060          bool isFastMultiplier = false;
13061          if (Diff < 10) {
13062            switch ((unsigned char)Diff) {
13063              default: break;
13064              case 1:  // result = add base, cond
13065              case 2:  // result = lea base(    , cond*2)
13066              case 3:  // result = lea base(cond, cond*2)
13067              case 4:  // result = lea base(    , cond*4)
13068              case 5:  // result = lea base(cond, cond*4)
13069              case 8:  // result = lea base(    , cond*8)
13070              case 9:  // result = lea base(cond, cond*8)
13071                isFastMultiplier = true;
13072                break;
13073            }
13074          }
13075
13076          if (isFastMultiplier) {
13077            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13078            if (NeedsCondInvert) // Invert the condition if needed.
13079              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13080                                 DAG.getConstant(1, Cond.getValueType()));
13081
13082            // Zero extend the condition if needed.
13083            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13084                               Cond);
13085            // Scale the condition by the difference.
13086            if (Diff != 1)
13087              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13088                                 DAG.getConstant(Diff, Cond.getValueType()));
13089
13090            // Add the base if non-zero.
13091            if (FalseC->getAPIntValue() != 0)
13092              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13093                                 SDValue(FalseC, 0));
13094            return Cond;
13095          }
13096        }
13097      }
13098  }
13099
13100  return SDValue();
13101}
13102
13103/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13104static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13105                                  TargetLowering::DAGCombinerInfo &DCI) {
13106  DebugLoc DL = N->getDebugLoc();
13107
13108  // If the flag operand isn't dead, don't touch this CMOV.
13109  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13110    return SDValue();
13111
13112  SDValue FalseOp = N->getOperand(0);
13113  SDValue TrueOp = N->getOperand(1);
13114  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13115  SDValue Cond = N->getOperand(3);
13116  if (CC == X86::COND_E || CC == X86::COND_NE) {
13117    switch (Cond.getOpcode()) {
13118    default: break;
13119    case X86ISD::BSR:
13120    case X86ISD::BSF:
13121      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13122      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13123        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13124    }
13125  }
13126
13127  // If this is a select between two integer constants, try to do some
13128  // optimizations.  Note that the operands are ordered the opposite of SELECT
13129  // operands.
13130  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13131    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13132      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13133      // larger than FalseC (the false value).
13134      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13135        CC = X86::GetOppositeBranchCondition(CC);
13136        std::swap(TrueC, FalseC);
13137      }
13138
13139      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13140      // This is efficient for any integer data type (including i8/i16) and
13141      // shift amount.
13142      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13143        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13144                           DAG.getConstant(CC, MVT::i8), Cond);
13145
13146        // Zero extend the condition if needed.
13147        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13148
13149        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13150        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13151                           DAG.getConstant(ShAmt, MVT::i8));
13152        if (N->getNumValues() == 2)  // Dead flag value?
13153          return DCI.CombineTo(N, Cond, SDValue());
13154        return Cond;
13155      }
13156
13157      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13158      // for any integer data type, including i8/i16.
13159      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13160        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13161                           DAG.getConstant(CC, MVT::i8), Cond);
13162
13163        // Zero extend the condition if needed.
13164        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13165                           FalseC->getValueType(0), Cond);
13166        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13167                           SDValue(FalseC, 0));
13168
13169        if (N->getNumValues() == 2)  // Dead flag value?
13170          return DCI.CombineTo(N, Cond, SDValue());
13171        return Cond;
13172      }
13173
13174      // Optimize cases that will turn into an LEA instruction.  This requires
13175      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13176      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13177        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13178        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13179
13180        bool isFastMultiplier = false;
13181        if (Diff < 10) {
13182          switch ((unsigned char)Diff) {
13183          default: break;
13184          case 1:  // result = add base, cond
13185          case 2:  // result = lea base(    , cond*2)
13186          case 3:  // result = lea base(cond, cond*2)
13187          case 4:  // result = lea base(    , cond*4)
13188          case 5:  // result = lea base(cond, cond*4)
13189          case 8:  // result = lea base(    , cond*8)
13190          case 9:  // result = lea base(cond, cond*8)
13191            isFastMultiplier = true;
13192            break;
13193          }
13194        }
13195
13196        if (isFastMultiplier) {
13197          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13198          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13199                             DAG.getConstant(CC, MVT::i8), Cond);
13200          // Zero extend the condition if needed.
13201          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13202                             Cond);
13203          // Scale the condition by the difference.
13204          if (Diff != 1)
13205            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13206                               DAG.getConstant(Diff, Cond.getValueType()));
13207
13208          // Add the base if non-zero.
13209          if (FalseC->getAPIntValue() != 0)
13210            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13211                               SDValue(FalseC, 0));
13212          if (N->getNumValues() == 2)  // Dead flag value?
13213            return DCI.CombineTo(N, Cond, SDValue());
13214          return Cond;
13215        }
13216      }
13217    }
13218  }
13219  return SDValue();
13220}
13221
13222
13223/// PerformMulCombine - Optimize a single multiply with constant into two
13224/// in order to implement it with two cheaper instructions, e.g.
13225/// LEA + SHL, LEA + LEA.
13226static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13227                                 TargetLowering::DAGCombinerInfo &DCI) {
13228  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13229    return SDValue();
13230
13231  EVT VT = N->getValueType(0);
13232  if (VT != MVT::i64)
13233    return SDValue();
13234
13235  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13236  if (!C)
13237    return SDValue();
13238  uint64_t MulAmt = C->getZExtValue();
13239  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13240    return SDValue();
13241
13242  uint64_t MulAmt1 = 0;
13243  uint64_t MulAmt2 = 0;
13244  if ((MulAmt % 9) == 0) {
13245    MulAmt1 = 9;
13246    MulAmt2 = MulAmt / 9;
13247  } else if ((MulAmt % 5) == 0) {
13248    MulAmt1 = 5;
13249    MulAmt2 = MulAmt / 5;
13250  } else if ((MulAmt % 3) == 0) {
13251    MulAmt1 = 3;
13252    MulAmt2 = MulAmt / 3;
13253  }
13254  if (MulAmt2 &&
13255      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13256    DebugLoc DL = N->getDebugLoc();
13257
13258    if (isPowerOf2_64(MulAmt2) &&
13259        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13260      // If second multiplifer is pow2, issue it first. We want the multiply by
13261      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13262      // is an add.
13263      std::swap(MulAmt1, MulAmt2);
13264
13265    SDValue NewMul;
13266    if (isPowerOf2_64(MulAmt1))
13267      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13268                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13269    else
13270      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13271                           DAG.getConstant(MulAmt1, VT));
13272
13273    if (isPowerOf2_64(MulAmt2))
13274      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13275                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13276    else
13277      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13278                           DAG.getConstant(MulAmt2, VT));
13279
13280    // Do not add new nodes to DAG combiner worklist.
13281    DCI.CombineTo(N, NewMul, false);
13282  }
13283  return SDValue();
13284}
13285
13286static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13287  SDValue N0 = N->getOperand(0);
13288  SDValue N1 = N->getOperand(1);
13289  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13290  EVT VT = N0.getValueType();
13291
13292  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13293  // since the result of setcc_c is all zero's or all ones.
13294  if (VT.isInteger() && !VT.isVector() &&
13295      N1C && N0.getOpcode() == ISD::AND &&
13296      N0.getOperand(1).getOpcode() == ISD::Constant) {
13297    SDValue N00 = N0.getOperand(0);
13298    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13299        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13300          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13301         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13302      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13303      APInt ShAmt = N1C->getAPIntValue();
13304      Mask = Mask.shl(ShAmt);
13305      if (Mask != 0)
13306        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13307                           N00, DAG.getConstant(Mask, VT));
13308    }
13309  }
13310
13311
13312  // Hardware support for vector shifts is sparse which makes us scalarize the
13313  // vector operations in many cases. Also, on sandybridge ADD is faster than
13314  // shl.
13315  // (shl V, 1) -> add V,V
13316  if (isSplatVector(N1.getNode())) {
13317    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13318    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13319    // We shift all of the values by one. In many cases we do not have
13320    // hardware support for this operation. This is better expressed as an ADD
13321    // of two values.
13322    if (N1C && (1 == N1C->getZExtValue())) {
13323      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13324    }
13325  }
13326
13327  return SDValue();
13328}
13329
13330/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13331///                       when possible.
13332static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13333                                   const X86Subtarget *Subtarget) {
13334  EVT VT = N->getValueType(0);
13335  if (N->getOpcode() == ISD::SHL) {
13336    SDValue V = PerformSHLCombine(N, DAG);
13337    if (V.getNode()) return V;
13338  }
13339
13340  // On X86 with SSE2 support, we can transform this to a vector shift if
13341  // all elements are shifted by the same amount.  We can't do this in legalize
13342  // because the a constant vector is typically transformed to a constant pool
13343  // so we have no knowledge of the shift amount.
13344  if (!Subtarget->hasXMMInt())
13345    return SDValue();
13346
13347  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13348      (!Subtarget->hasAVX2() ||
13349       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13350    return SDValue();
13351
13352  SDValue ShAmtOp = N->getOperand(1);
13353  EVT EltVT = VT.getVectorElementType();
13354  DebugLoc DL = N->getDebugLoc();
13355  SDValue BaseShAmt = SDValue();
13356  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13357    unsigned NumElts = VT.getVectorNumElements();
13358    unsigned i = 0;
13359    for (; i != NumElts; ++i) {
13360      SDValue Arg = ShAmtOp.getOperand(i);
13361      if (Arg.getOpcode() == ISD::UNDEF) continue;
13362      BaseShAmt = Arg;
13363      break;
13364    }
13365    for (; i != NumElts; ++i) {
13366      SDValue Arg = ShAmtOp.getOperand(i);
13367      if (Arg.getOpcode() == ISD::UNDEF) continue;
13368      if (Arg != BaseShAmt) {
13369        return SDValue();
13370      }
13371    }
13372  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13373             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13374    SDValue InVec = ShAmtOp.getOperand(0);
13375    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13376      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13377      unsigned i = 0;
13378      for (; i != NumElts; ++i) {
13379        SDValue Arg = InVec.getOperand(i);
13380        if (Arg.getOpcode() == ISD::UNDEF) continue;
13381        BaseShAmt = Arg;
13382        break;
13383      }
13384    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13385       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13386         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13387         if (C->getZExtValue() == SplatIdx)
13388           BaseShAmt = InVec.getOperand(1);
13389       }
13390    }
13391    if (BaseShAmt.getNode() == 0)
13392      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13393                              DAG.getIntPtrConstant(0));
13394  } else
13395    return SDValue();
13396
13397  // The shift amount is an i32.
13398  if (EltVT.bitsGT(MVT::i32))
13399    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13400  else if (EltVT.bitsLT(MVT::i32))
13401    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13402
13403  // The shift amount is identical so we can do a vector shift.
13404  SDValue  ValOp = N->getOperand(0);
13405  switch (N->getOpcode()) {
13406  default:
13407    llvm_unreachable("Unknown shift opcode!");
13408    break;
13409  case ISD::SHL:
13410    if (VT == MVT::v2i64)
13411      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13412                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13413                         ValOp, BaseShAmt);
13414    if (VT == MVT::v4i32)
13415      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13416                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13417                         ValOp, BaseShAmt);
13418    if (VT == MVT::v8i16)
13419      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13420                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13421                         ValOp, BaseShAmt);
13422    if (VT == MVT::v4i64)
13423      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13424                         DAG.getConstant(Intrinsic::x86_avx2_pslli_q, MVT::i32),
13425                         ValOp, BaseShAmt);
13426    if (VT == MVT::v8i32)
13427      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13428                         DAG.getConstant(Intrinsic::x86_avx2_pslli_d, MVT::i32),
13429                         ValOp, BaseShAmt);
13430    if (VT == MVT::v16i16)
13431      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13432                         DAG.getConstant(Intrinsic::x86_avx2_pslli_w, MVT::i32),
13433                         ValOp, BaseShAmt);
13434    break;
13435  case ISD::SRA:
13436    if (VT == MVT::v4i32)
13437      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13438                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13439                         ValOp, BaseShAmt);
13440    if (VT == MVT::v8i16)
13441      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13442                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13443                         ValOp, BaseShAmt);
13444    if (VT == MVT::v8i32)
13445      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13446                         DAG.getConstant(Intrinsic::x86_avx2_psrai_d, MVT::i32),
13447                         ValOp, BaseShAmt);
13448    if (VT == MVT::v16i16)
13449      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13450                         DAG.getConstant(Intrinsic::x86_avx2_psrai_w, MVT::i32),
13451                         ValOp, BaseShAmt);
13452    break;
13453  case ISD::SRL:
13454    if (VT == MVT::v2i64)
13455      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13456                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13457                         ValOp, BaseShAmt);
13458    if (VT == MVT::v4i32)
13459      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13460                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13461                         ValOp, BaseShAmt);
13462    if (VT ==  MVT::v8i16)
13463      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13464                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13465                         ValOp, BaseShAmt);
13466    if (VT == MVT::v4i64)
13467      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13468                         DAG.getConstant(Intrinsic::x86_avx2_psrli_q, MVT::i32),
13469                         ValOp, BaseShAmt);
13470    if (VT == MVT::v8i32)
13471      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13472                         DAG.getConstant(Intrinsic::x86_avx2_psrli_d, MVT::i32),
13473                         ValOp, BaseShAmt);
13474    if (VT ==  MVT::v16i16)
13475      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13476                         DAG.getConstant(Intrinsic::x86_avx2_psrli_w, MVT::i32),
13477                         ValOp, BaseShAmt);
13478    break;
13479  }
13480  return SDValue();
13481}
13482
13483
13484// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13485// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13486// and friends.  Likewise for OR -> CMPNEQSS.
13487static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13488                            TargetLowering::DAGCombinerInfo &DCI,
13489                            const X86Subtarget *Subtarget) {
13490  unsigned opcode;
13491
13492  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13493  // we're requiring SSE2 for both.
13494  if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13495    SDValue N0 = N->getOperand(0);
13496    SDValue N1 = N->getOperand(1);
13497    SDValue CMP0 = N0->getOperand(1);
13498    SDValue CMP1 = N1->getOperand(1);
13499    DebugLoc DL = N->getDebugLoc();
13500
13501    // The SETCCs should both refer to the same CMP.
13502    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13503      return SDValue();
13504
13505    SDValue CMP00 = CMP0->getOperand(0);
13506    SDValue CMP01 = CMP0->getOperand(1);
13507    EVT     VT    = CMP00.getValueType();
13508
13509    if (VT == MVT::f32 || VT == MVT::f64) {
13510      bool ExpectingFlags = false;
13511      // Check for any users that want flags:
13512      for (SDNode::use_iterator UI = N->use_begin(),
13513             UE = N->use_end();
13514           !ExpectingFlags && UI != UE; ++UI)
13515        switch (UI->getOpcode()) {
13516        default:
13517        case ISD::BR_CC:
13518        case ISD::BRCOND:
13519        case ISD::SELECT:
13520          ExpectingFlags = true;
13521          break;
13522        case ISD::CopyToReg:
13523        case ISD::SIGN_EXTEND:
13524        case ISD::ZERO_EXTEND:
13525        case ISD::ANY_EXTEND:
13526          break;
13527        }
13528
13529      if (!ExpectingFlags) {
13530        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13531        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13532
13533        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13534          X86::CondCode tmp = cc0;
13535          cc0 = cc1;
13536          cc1 = tmp;
13537        }
13538
13539        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13540            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13541          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13542          X86ISD::NodeType NTOperator = is64BitFP ?
13543            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13544          // FIXME: need symbolic constants for these magic numbers.
13545          // See X86ATTInstPrinter.cpp:printSSECC().
13546          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13547          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13548                                              DAG.getConstant(x86cc, MVT::i8));
13549          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13550                                              OnesOrZeroesF);
13551          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13552                                      DAG.getConstant(1, MVT::i32));
13553          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13554          return OneBitOfTruth;
13555        }
13556      }
13557    }
13558  }
13559  return SDValue();
13560}
13561
13562/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13563/// so it can be folded inside ANDNP.
13564static bool CanFoldXORWithAllOnes(const SDNode *N) {
13565  EVT VT = N->getValueType(0);
13566
13567  // Match direct AllOnes for 128 and 256-bit vectors
13568  if (ISD::isBuildVectorAllOnes(N))
13569    return true;
13570
13571  // Look through a bit convert.
13572  if (N->getOpcode() == ISD::BITCAST)
13573    N = N->getOperand(0).getNode();
13574
13575  // Sometimes the operand may come from a insert_subvector building a 256-bit
13576  // allones vector
13577  if (VT.getSizeInBits() == 256 &&
13578      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13579    SDValue V1 = N->getOperand(0);
13580    SDValue V2 = N->getOperand(1);
13581
13582    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13583        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13584        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13585        ISD::isBuildVectorAllOnes(V2.getNode()))
13586      return true;
13587  }
13588
13589  return false;
13590}
13591
13592static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13593                                 TargetLowering::DAGCombinerInfo &DCI,
13594                                 const X86Subtarget *Subtarget) {
13595  if (DCI.isBeforeLegalizeOps())
13596    return SDValue();
13597
13598  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13599  if (R.getNode())
13600    return R;
13601
13602  EVT VT = N->getValueType(0);
13603
13604  // Create ANDN, BLSI, and BLSR instructions
13605  // BLSI is X & (-X)
13606  // BLSR is X & (X-1)
13607  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13608    SDValue N0 = N->getOperand(0);
13609    SDValue N1 = N->getOperand(1);
13610    DebugLoc DL = N->getDebugLoc();
13611
13612    // Check LHS for not
13613    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13614      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13615    // Check RHS for not
13616    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13617      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13618
13619    // Check LHS for neg
13620    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13621        isZero(N0.getOperand(0)))
13622      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13623
13624    // Check RHS for neg
13625    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13626        isZero(N1.getOperand(0)))
13627      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13628
13629    // Check LHS for X-1
13630    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13631        isAllOnes(N0.getOperand(1)))
13632      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13633
13634    // Check RHS for X-1
13635    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13636        isAllOnes(N1.getOperand(1)))
13637      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13638
13639    return SDValue();
13640  }
13641
13642  // Want to form ANDNP nodes:
13643  // 1) In the hopes of then easily combining them with OR and AND nodes
13644  //    to form PBLEND/PSIGN.
13645  // 2) To match ANDN packed intrinsics
13646  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13647    return SDValue();
13648
13649  SDValue N0 = N->getOperand(0);
13650  SDValue N1 = N->getOperand(1);
13651  DebugLoc DL = N->getDebugLoc();
13652
13653  // Check LHS for vnot
13654  if (N0.getOpcode() == ISD::XOR &&
13655      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13656      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13657    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13658
13659  // Check RHS for vnot
13660  if (N1.getOpcode() == ISD::XOR &&
13661      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13662      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13663    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13664
13665  return SDValue();
13666}
13667
13668static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13669                                TargetLowering::DAGCombinerInfo &DCI,
13670                                const X86Subtarget *Subtarget) {
13671  if (DCI.isBeforeLegalizeOps())
13672    return SDValue();
13673
13674  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13675  if (R.getNode())
13676    return R;
13677
13678  EVT VT = N->getValueType(0);
13679
13680  SDValue N0 = N->getOperand(0);
13681  SDValue N1 = N->getOperand(1);
13682
13683  // look for psign/blend
13684  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13685    if (!Subtarget->hasSSSE3orAVX() ||
13686        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13687      return SDValue();
13688
13689    // Canonicalize pandn to RHS
13690    if (N0.getOpcode() == X86ISD::ANDNP)
13691      std::swap(N0, N1);
13692    // or (and (m, x), (pandn m, y))
13693    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13694      SDValue Mask = N1.getOperand(0);
13695      SDValue X    = N1.getOperand(1);
13696      SDValue Y;
13697      if (N0.getOperand(0) == Mask)
13698        Y = N0.getOperand(1);
13699      if (N0.getOperand(1) == Mask)
13700        Y = N0.getOperand(0);
13701
13702      // Check to see if the mask appeared in both the AND and ANDNP and
13703      if (!Y.getNode())
13704        return SDValue();
13705
13706      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13707      if (Mask.getOpcode() != ISD::BITCAST ||
13708          X.getOpcode() != ISD::BITCAST ||
13709          Y.getOpcode() != ISD::BITCAST)
13710        return SDValue();
13711
13712      // Look through mask bitcast.
13713      Mask = Mask.getOperand(0);
13714      EVT MaskVT = Mask.getValueType();
13715
13716      // Validate that the Mask operand is a vector sra node.  The sra node
13717      // will be an intrinsic.
13718      if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13719        return SDValue();
13720
13721      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13722      // there is no psrai.b
13723      switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13724      case Intrinsic::x86_sse2_psrai_w:
13725      case Intrinsic::x86_sse2_psrai_d:
13726      case Intrinsic::x86_avx2_psrai_w:
13727      case Intrinsic::x86_avx2_psrai_d:
13728        break;
13729      default: return SDValue();
13730      }
13731
13732      // Check that the SRA is all signbits.
13733      SDValue SraC = Mask.getOperand(2);
13734      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13735      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13736      if ((SraAmt + 1) != EltBits)
13737        return SDValue();
13738
13739      DebugLoc DL = N->getDebugLoc();
13740
13741      // Now we know we at least have a plendvb with the mask val.  See if
13742      // we can form a psignb/w/d.
13743      // psign = x.type == y.type == mask.type && y = sub(0, x);
13744      X = X.getOperand(0);
13745      Y = Y.getOperand(0);
13746      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13747          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13748          X.getValueType() == MaskVT && X.getValueType() == Y.getValueType() &&
13749          (EltBits == 8 || EltBits == 16 || EltBits == 32)) {
13750        SDValue Sign = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X,
13751                                   Mask.getOperand(1));
13752        return DAG.getNode(ISD::BITCAST, DL, VT, Sign);
13753      }
13754      // PBLENDVB only available on SSE 4.1
13755      if (!Subtarget->hasSSE41orAVX())
13756        return SDValue();
13757
13758      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13759
13760      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13761      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13762      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13763      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13764      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13765    }
13766  }
13767
13768  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13769    return SDValue();
13770
13771  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13772  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13773    std::swap(N0, N1);
13774  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13775    return SDValue();
13776  if (!N0.hasOneUse() || !N1.hasOneUse())
13777    return SDValue();
13778
13779  SDValue ShAmt0 = N0.getOperand(1);
13780  if (ShAmt0.getValueType() != MVT::i8)
13781    return SDValue();
13782  SDValue ShAmt1 = N1.getOperand(1);
13783  if (ShAmt1.getValueType() != MVT::i8)
13784    return SDValue();
13785  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13786    ShAmt0 = ShAmt0.getOperand(0);
13787  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13788    ShAmt1 = ShAmt1.getOperand(0);
13789
13790  DebugLoc DL = N->getDebugLoc();
13791  unsigned Opc = X86ISD::SHLD;
13792  SDValue Op0 = N0.getOperand(0);
13793  SDValue Op1 = N1.getOperand(0);
13794  if (ShAmt0.getOpcode() == ISD::SUB) {
13795    Opc = X86ISD::SHRD;
13796    std::swap(Op0, Op1);
13797    std::swap(ShAmt0, ShAmt1);
13798  }
13799
13800  unsigned Bits = VT.getSizeInBits();
13801  if (ShAmt1.getOpcode() == ISD::SUB) {
13802    SDValue Sum = ShAmt1.getOperand(0);
13803    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13804      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13805      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13806        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13807      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13808        return DAG.getNode(Opc, DL, VT,
13809                           Op0, Op1,
13810                           DAG.getNode(ISD::TRUNCATE, DL,
13811                                       MVT::i8, ShAmt0));
13812    }
13813  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13814    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13815    if (ShAmt0C &&
13816        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13817      return DAG.getNode(Opc, DL, VT,
13818                         N0.getOperand(0), N1.getOperand(0),
13819                         DAG.getNode(ISD::TRUNCATE, DL,
13820                                       MVT::i8, ShAmt0));
13821  }
13822
13823  return SDValue();
13824}
13825
13826static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13827                                 TargetLowering::DAGCombinerInfo &DCI,
13828                                 const X86Subtarget *Subtarget) {
13829  if (DCI.isBeforeLegalizeOps())
13830    return SDValue();
13831
13832  EVT VT = N->getValueType(0);
13833
13834  if (VT != MVT::i32 && VT != MVT::i64)
13835    return SDValue();
13836
13837  // Create BLSMSK instructions by finding X ^ (X-1)
13838  SDValue N0 = N->getOperand(0);
13839  SDValue N1 = N->getOperand(1);
13840  DebugLoc DL = N->getDebugLoc();
13841
13842  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13843      isAllOnes(N0.getOperand(1)))
13844    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
13845
13846  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13847      isAllOnes(N1.getOperand(1)))
13848    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
13849
13850  return SDValue();
13851}
13852
13853/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
13854static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13855                                   const X86Subtarget *Subtarget) {
13856  LoadSDNode *Ld = cast<LoadSDNode>(N);
13857  EVT RegVT = Ld->getValueType(0);
13858  EVT MemVT = Ld->getMemoryVT();
13859  DebugLoc dl = Ld->getDebugLoc();
13860  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13861
13862  ISD::LoadExtType Ext = Ld->getExtensionType();
13863
13864  // If this is a vector EXT Load then attempt to optimize it using a
13865  // shuffle. We need SSE4 for the shuffles.
13866  // TODO: It is possible to support ZExt by zeroing the undef values
13867  // during the shuffle phase or after the shuffle.
13868  if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13869    assert(MemVT != RegVT && "Cannot extend to the same type");
13870    assert(MemVT.isVector() && "Must load a vector from memory");
13871
13872    unsigned NumElems = RegVT.getVectorNumElements();
13873    unsigned RegSz = RegVT.getSizeInBits();
13874    unsigned MemSz = MemVT.getSizeInBits();
13875    assert(RegSz > MemSz && "Register size must be greater than the mem size");
13876    // All sizes must be a power of two
13877    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13878
13879    // Attempt to load the original value using a single load op.
13880    // Find a scalar type which is equal to the loaded word size.
13881    MVT SclrLoadTy = MVT::i8;
13882    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13883         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13884      MVT Tp = (MVT::SimpleValueType)tp;
13885      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13886        SclrLoadTy = Tp;
13887        break;
13888      }
13889    }
13890
13891    // Proceed if a load word is found.
13892    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13893
13894    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13895      RegSz/SclrLoadTy.getSizeInBits());
13896
13897    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13898                                  RegSz/MemVT.getScalarType().getSizeInBits());
13899    // Can't shuffle using an illegal type.
13900    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13901
13902    // Perform a single load.
13903    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13904                                  Ld->getBasePtr(),
13905                                  Ld->getPointerInfo(), Ld->isVolatile(),
13906                                  Ld->isNonTemporal(), Ld->isInvariant(),
13907                                  Ld->getAlignment());
13908
13909    // Insert the word loaded into a vector.
13910    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13911      LoadUnitVecVT, ScalarLoad);
13912
13913    // Bitcast the loaded value to a vector of the original element type, in
13914    // the size of the target vector type.
13915    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13916    unsigned SizeRatio = RegSz/MemSz;
13917
13918    // Redistribute the loaded elements into the different locations.
13919    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13920    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13921
13922    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13923                                DAG.getUNDEF(SlicedVec.getValueType()),
13924                                ShuffleVec.data());
13925
13926    // Bitcast to the requested type.
13927    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13928    // Replace the original load with the new sequence
13929    // and return the new chain.
13930    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13931    return SDValue(ScalarLoad.getNode(), 1);
13932  }
13933
13934  return SDValue();
13935}
13936
13937/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13938static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13939                                   const X86Subtarget *Subtarget) {
13940  StoreSDNode *St = cast<StoreSDNode>(N);
13941  EVT VT = St->getValue().getValueType();
13942  EVT StVT = St->getMemoryVT();
13943  DebugLoc dl = St->getDebugLoc();
13944  SDValue StoredVal = St->getOperand(1);
13945  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13946
13947  // If we are saving a concatenation of two XMM registers, perform two stores.
13948  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13949  // 128-bit ones. If in the future the cost becomes only one memory access the
13950  // first version would be better.
13951  if (VT.getSizeInBits() == 256 &&
13952    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13953    StoredVal.getNumOperands() == 2) {
13954
13955    SDValue Value0 = StoredVal.getOperand(0);
13956    SDValue Value1 = StoredVal.getOperand(1);
13957
13958    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13959    SDValue Ptr0 = St->getBasePtr();
13960    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13961
13962    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13963                                St->getPointerInfo(), St->isVolatile(),
13964                                St->isNonTemporal(), St->getAlignment());
13965    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13966                                St->getPointerInfo(), St->isVolatile(),
13967                                St->isNonTemporal(), St->getAlignment());
13968    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13969  }
13970
13971  // Optimize trunc store (of multiple scalars) to shuffle and store.
13972  // First, pack all of the elements in one place. Next, store to memory
13973  // in fewer chunks.
13974  if (St->isTruncatingStore() && VT.isVector()) {
13975    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13976    unsigned NumElems = VT.getVectorNumElements();
13977    assert(StVT != VT && "Cannot truncate to the same type");
13978    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13979    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13980
13981    // From, To sizes and ElemCount must be pow of two
13982    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13983    // We are going to use the original vector elt for storing.
13984    // Accumulated smaller vector elements must be a multiple of the store size.
13985    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
13986
13987    unsigned SizeRatio  = FromSz / ToSz;
13988
13989    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13990
13991    // Create a type on which we perform the shuffle
13992    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13993            StVT.getScalarType(), NumElems*SizeRatio);
13994
13995    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13996
13997    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13998    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13999    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14000
14001    // Can't shuffle using an illegal type
14002    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14003
14004    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14005                                DAG.getUNDEF(WideVec.getValueType()),
14006                                ShuffleVec.data());
14007    // At this point all of the data is stored at the bottom of the
14008    // register. We now need to save it to mem.
14009
14010    // Find the largest store unit
14011    MVT StoreType = MVT::i8;
14012    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14013         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14014      MVT Tp = (MVT::SimpleValueType)tp;
14015      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14016        StoreType = Tp;
14017    }
14018
14019    // Bitcast the original vector into a vector of store-size units
14020    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14021            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14022    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14023    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14024    SmallVector<SDValue, 8> Chains;
14025    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14026                                        TLI.getPointerTy());
14027    SDValue Ptr = St->getBasePtr();
14028
14029    // Perform one or more big stores into memory.
14030    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14031      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14032                                   StoreType, ShuffWide,
14033                                   DAG.getIntPtrConstant(i));
14034      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14035                                St->getPointerInfo(), St->isVolatile(),
14036                                St->isNonTemporal(), St->getAlignment());
14037      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14038      Chains.push_back(Ch);
14039    }
14040
14041    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14042                               Chains.size());
14043  }
14044
14045
14046  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14047  // the FP state in cases where an emms may be missing.
14048  // A preferable solution to the general problem is to figure out the right
14049  // places to insert EMMS.  This qualifies as a quick hack.
14050
14051  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14052  if (VT.getSizeInBits() != 64)
14053    return SDValue();
14054
14055  const Function *F = DAG.getMachineFunction().getFunction();
14056  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14057  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14058                     && Subtarget->hasXMMInt();
14059  if ((VT.isVector() ||
14060       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14061      isa<LoadSDNode>(St->getValue()) &&
14062      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14063      St->getChain().hasOneUse() && !St->isVolatile()) {
14064    SDNode* LdVal = St->getValue().getNode();
14065    LoadSDNode *Ld = 0;
14066    int TokenFactorIndex = -1;
14067    SmallVector<SDValue, 8> Ops;
14068    SDNode* ChainVal = St->getChain().getNode();
14069    // Must be a store of a load.  We currently handle two cases:  the load
14070    // is a direct child, and it's under an intervening TokenFactor.  It is
14071    // possible to dig deeper under nested TokenFactors.
14072    if (ChainVal == LdVal)
14073      Ld = cast<LoadSDNode>(St->getChain());
14074    else if (St->getValue().hasOneUse() &&
14075             ChainVal->getOpcode() == ISD::TokenFactor) {
14076      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14077        if (ChainVal->getOperand(i).getNode() == LdVal) {
14078          TokenFactorIndex = i;
14079          Ld = cast<LoadSDNode>(St->getValue());
14080        } else
14081          Ops.push_back(ChainVal->getOperand(i));
14082      }
14083    }
14084
14085    if (!Ld || !ISD::isNormalLoad(Ld))
14086      return SDValue();
14087
14088    // If this is not the MMX case, i.e. we are just turning i64 load/store
14089    // into f64 load/store, avoid the transformation if there are multiple
14090    // uses of the loaded value.
14091    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14092      return SDValue();
14093
14094    DebugLoc LdDL = Ld->getDebugLoc();
14095    DebugLoc StDL = N->getDebugLoc();
14096    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14097    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14098    // pair instead.
14099    if (Subtarget->is64Bit() || F64IsLegal) {
14100      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14101      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14102                                  Ld->getPointerInfo(), Ld->isVolatile(),
14103                                  Ld->isNonTemporal(), Ld->isInvariant(),
14104                                  Ld->getAlignment());
14105      SDValue NewChain = NewLd.getValue(1);
14106      if (TokenFactorIndex != -1) {
14107        Ops.push_back(NewChain);
14108        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14109                               Ops.size());
14110      }
14111      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14112                          St->getPointerInfo(),
14113                          St->isVolatile(), St->isNonTemporal(),
14114                          St->getAlignment());
14115    }
14116
14117    // Otherwise, lower to two pairs of 32-bit loads / stores.
14118    SDValue LoAddr = Ld->getBasePtr();
14119    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14120                                 DAG.getConstant(4, MVT::i32));
14121
14122    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14123                               Ld->getPointerInfo(),
14124                               Ld->isVolatile(), Ld->isNonTemporal(),
14125                               Ld->isInvariant(), Ld->getAlignment());
14126    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14127                               Ld->getPointerInfo().getWithOffset(4),
14128                               Ld->isVolatile(), Ld->isNonTemporal(),
14129                               Ld->isInvariant(),
14130                               MinAlign(Ld->getAlignment(), 4));
14131
14132    SDValue NewChain = LoLd.getValue(1);
14133    if (TokenFactorIndex != -1) {
14134      Ops.push_back(LoLd);
14135      Ops.push_back(HiLd);
14136      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14137                             Ops.size());
14138    }
14139
14140    LoAddr = St->getBasePtr();
14141    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14142                         DAG.getConstant(4, MVT::i32));
14143
14144    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14145                                St->getPointerInfo(),
14146                                St->isVolatile(), St->isNonTemporal(),
14147                                St->getAlignment());
14148    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14149                                St->getPointerInfo().getWithOffset(4),
14150                                St->isVolatile(),
14151                                St->isNonTemporal(),
14152                                MinAlign(St->getAlignment(), 4));
14153    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14154  }
14155  return SDValue();
14156}
14157
14158/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14159/// and return the operands for the horizontal operation in LHS and RHS.  A
14160/// horizontal operation performs the binary operation on successive elements
14161/// of its first operand, then on successive elements of its second operand,
14162/// returning the resulting values in a vector.  For example, if
14163///   A = < float a0, float a1, float a2, float a3 >
14164/// and
14165///   B = < float b0, float b1, float b2, float b3 >
14166/// then the result of doing a horizontal operation on A and B is
14167///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14168/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14169/// A horizontal-op B, for some already available A and B, and if so then LHS is
14170/// set to A, RHS to B, and the routine returns 'true'.
14171/// Note that the binary operation should have the property that if one of the
14172/// operands is UNDEF then the result is UNDEF.
14173static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14174  // Look for the following pattern: if
14175  //   A = < float a0, float a1, float a2, float a3 >
14176  //   B = < float b0, float b1, float b2, float b3 >
14177  // and
14178  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14179  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14180  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14181  // which is A horizontal-op B.
14182
14183  // At least one of the operands should be a vector shuffle.
14184  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14185      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14186    return false;
14187
14188  EVT VT = LHS.getValueType();
14189
14190  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14191         "Unsupported vector type for horizontal add/sub");
14192
14193  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14194  // operate independently on 128-bit lanes.
14195  unsigned NumElts = VT.getVectorNumElements();
14196  unsigned NumLanes = VT.getSizeInBits()/128;
14197  unsigned NumLaneElts = NumElts / NumLanes;
14198  assert((NumLaneElts % 2 == 0) &&
14199         "Vector type should have an even number of elements in each lane");
14200  unsigned HalfLaneElts = NumLaneElts/2;
14201
14202  // View LHS in the form
14203  //   LHS = VECTOR_SHUFFLE A, B, LMask
14204  // If LHS is not a shuffle then pretend it is the shuffle
14205  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14206  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14207  // type VT.
14208  SDValue A, B;
14209  SmallVector<int, 16> LMask(NumElts);
14210  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14211    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14212      A = LHS.getOperand(0);
14213    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14214      B = LHS.getOperand(1);
14215    cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
14216  } else {
14217    if (LHS.getOpcode() != ISD::UNDEF)
14218      A = LHS;
14219    for (unsigned i = 0; i != NumElts; ++i)
14220      LMask[i] = i;
14221  }
14222
14223  // Likewise, view RHS in the form
14224  //   RHS = VECTOR_SHUFFLE C, D, RMask
14225  SDValue C, D;
14226  SmallVector<int, 16> RMask(NumElts);
14227  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14228    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14229      C = RHS.getOperand(0);
14230    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14231      D = RHS.getOperand(1);
14232    cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
14233  } else {
14234    if (RHS.getOpcode() != ISD::UNDEF)
14235      C = RHS;
14236    for (unsigned i = 0; i != NumElts; ++i)
14237      RMask[i] = i;
14238  }
14239
14240  // Check that the shuffles are both shuffling the same vectors.
14241  if (!(A == C && B == D) && !(A == D && B == C))
14242    return false;
14243
14244  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14245  if (!A.getNode() && !B.getNode())
14246    return false;
14247
14248  // If A and B occur in reverse order in RHS, then "swap" them (which means
14249  // rewriting the mask).
14250  if (A != C)
14251    CommuteVectorShuffleMask(RMask, NumElts);
14252
14253  // At this point LHS and RHS are equivalent to
14254  //   LHS = VECTOR_SHUFFLE A, B, LMask
14255  //   RHS = VECTOR_SHUFFLE A, B, RMask
14256  // Check that the masks correspond to performing a horizontal operation.
14257  for (unsigned i = 0; i != NumElts; ++i) {
14258    int LIdx = LMask[i], RIdx = RMask[i];
14259
14260    // Ignore any UNDEF components.
14261    if (LIdx < 0 || RIdx < 0 ||
14262        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14263        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14264      continue;
14265
14266    // Check that successive elements are being operated on.  If not, this is
14267    // not a horizontal operation.
14268    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14269    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14270    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14271    if (!(LIdx == Index && RIdx == Index + 1) &&
14272        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14273      return false;
14274  }
14275
14276  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14277  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14278  return true;
14279}
14280
14281/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14282static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14283                                  const X86Subtarget *Subtarget) {
14284  EVT VT = N->getValueType(0);
14285  SDValue LHS = N->getOperand(0);
14286  SDValue RHS = N->getOperand(1);
14287
14288  // Try to synthesize horizontal adds from adds of shuffles.
14289  if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14290       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14291      isHorizontalBinOp(LHS, RHS, true))
14292    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14293  return SDValue();
14294}
14295
14296/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14297static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14298                                  const X86Subtarget *Subtarget) {
14299  EVT VT = N->getValueType(0);
14300  SDValue LHS = N->getOperand(0);
14301  SDValue RHS = N->getOperand(1);
14302
14303  // Try to synthesize horizontal subs from subs of shuffles.
14304  if (((Subtarget->hasSSE3orAVX() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14305       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14306      isHorizontalBinOp(LHS, RHS, false))
14307    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14308  return SDValue();
14309}
14310
14311/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14312/// X86ISD::FXOR nodes.
14313static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14314  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14315  // F[X]OR(0.0, x) -> x
14316  // F[X]OR(x, 0.0) -> x
14317  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14318    if (C->getValueAPF().isPosZero())
14319      return N->getOperand(1);
14320  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14321    if (C->getValueAPF().isPosZero())
14322      return N->getOperand(0);
14323  return SDValue();
14324}
14325
14326/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14327static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14328  // FAND(0.0, x) -> 0.0
14329  // FAND(x, 0.0) -> 0.0
14330  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14331    if (C->getValueAPF().isPosZero())
14332      return N->getOperand(0);
14333  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14334    if (C->getValueAPF().isPosZero())
14335      return N->getOperand(1);
14336  return SDValue();
14337}
14338
14339static SDValue PerformBTCombine(SDNode *N,
14340                                SelectionDAG &DAG,
14341                                TargetLowering::DAGCombinerInfo &DCI) {
14342  // BT ignores high bits in the bit index operand.
14343  SDValue Op1 = N->getOperand(1);
14344  if (Op1.hasOneUse()) {
14345    unsigned BitWidth = Op1.getValueSizeInBits();
14346    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14347    APInt KnownZero, KnownOne;
14348    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14349                                          !DCI.isBeforeLegalizeOps());
14350    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14351    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14352        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14353      DCI.CommitTargetLoweringOpt(TLO);
14354  }
14355  return SDValue();
14356}
14357
14358static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14359  SDValue Op = N->getOperand(0);
14360  if (Op.getOpcode() == ISD::BITCAST)
14361    Op = Op.getOperand(0);
14362  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14363  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14364      VT.getVectorElementType().getSizeInBits() ==
14365      OpVT.getVectorElementType().getSizeInBits()) {
14366    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14367  }
14368  return SDValue();
14369}
14370
14371static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14372  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14373  //           (and (i32 x86isd::setcc_carry), 1)
14374  // This eliminates the zext. This transformation is necessary because
14375  // ISD::SETCC is always legalized to i8.
14376  DebugLoc dl = N->getDebugLoc();
14377  SDValue N0 = N->getOperand(0);
14378  EVT VT = N->getValueType(0);
14379  if (N0.getOpcode() == ISD::AND &&
14380      N0.hasOneUse() &&
14381      N0.getOperand(0).hasOneUse()) {
14382    SDValue N00 = N0.getOperand(0);
14383    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14384      return SDValue();
14385    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14386    if (!C || C->getZExtValue() != 1)
14387      return SDValue();
14388    return DAG.getNode(ISD::AND, dl, VT,
14389                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14390                                   N00.getOperand(0), N00.getOperand(1)),
14391                       DAG.getConstant(1, VT));
14392  }
14393
14394  return SDValue();
14395}
14396
14397// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14398static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14399  unsigned X86CC = N->getConstantOperandVal(0);
14400  SDValue EFLAG = N->getOperand(1);
14401  DebugLoc DL = N->getDebugLoc();
14402
14403  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14404  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14405  // cases.
14406  if (X86CC == X86::COND_B)
14407    return DAG.getNode(ISD::AND, DL, MVT::i8,
14408                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14409                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14410                       DAG.getConstant(1, MVT::i8));
14411
14412  return SDValue();
14413}
14414
14415static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14416                                        const X86TargetLowering *XTLI) {
14417  SDValue Op0 = N->getOperand(0);
14418  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14419  // a 32-bit target where SSE doesn't support i64->FP operations.
14420  if (Op0.getOpcode() == ISD::LOAD) {
14421    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14422    EVT VT = Ld->getValueType(0);
14423    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14424        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14425        !XTLI->getSubtarget()->is64Bit() &&
14426        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14427      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14428                                          Ld->getChain(), Op0, DAG);
14429      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14430      return FILDChain;
14431    }
14432  }
14433  return SDValue();
14434}
14435
14436// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14437static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14438                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14439  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14440  // the result is either zero or one (depending on the input carry bit).
14441  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14442  if (X86::isZeroNode(N->getOperand(0)) &&
14443      X86::isZeroNode(N->getOperand(1)) &&
14444      // We don't have a good way to replace an EFLAGS use, so only do this when
14445      // dead right now.
14446      SDValue(N, 1).use_empty()) {
14447    DebugLoc DL = N->getDebugLoc();
14448    EVT VT = N->getValueType(0);
14449    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14450    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14451                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14452                                           DAG.getConstant(X86::COND_B,MVT::i8),
14453                                           N->getOperand(2)),
14454                               DAG.getConstant(1, VT));
14455    return DCI.CombineTo(N, Res1, CarryOut);
14456  }
14457
14458  return SDValue();
14459}
14460
14461// fold (add Y, (sete  X, 0)) -> adc  0, Y
14462//      (add Y, (setne X, 0)) -> sbb -1, Y
14463//      (sub (sete  X, 0), Y) -> sbb  0, Y
14464//      (sub (setne X, 0), Y) -> adc -1, Y
14465static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14466  DebugLoc DL = N->getDebugLoc();
14467
14468  // Look through ZExts.
14469  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14470  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14471    return SDValue();
14472
14473  SDValue SetCC = Ext.getOperand(0);
14474  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14475    return SDValue();
14476
14477  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14478  if (CC != X86::COND_E && CC != X86::COND_NE)
14479    return SDValue();
14480
14481  SDValue Cmp = SetCC.getOperand(1);
14482  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14483      !X86::isZeroNode(Cmp.getOperand(1)) ||
14484      !Cmp.getOperand(0).getValueType().isInteger())
14485    return SDValue();
14486
14487  SDValue CmpOp0 = Cmp.getOperand(0);
14488  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14489                               DAG.getConstant(1, CmpOp0.getValueType()));
14490
14491  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14492  if (CC == X86::COND_NE)
14493    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14494                       DL, OtherVal.getValueType(), OtherVal,
14495                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14496  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14497                     DL, OtherVal.getValueType(), OtherVal,
14498                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14499}
14500
14501/// PerformADDCombine - Do target-specific dag combines on integer adds.
14502static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14503                                 const X86Subtarget *Subtarget) {
14504  EVT VT = N->getValueType(0);
14505  SDValue Op0 = N->getOperand(0);
14506  SDValue Op1 = N->getOperand(1);
14507
14508  // Try to synthesize horizontal adds from adds of shuffles.
14509  if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14510       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || MVT::v8i32))) &&
14511      isHorizontalBinOp(Op0, Op1, true))
14512    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14513
14514  return OptimizeConditionalInDecrement(N, DAG);
14515}
14516
14517static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14518                                 const X86Subtarget *Subtarget) {
14519  SDValue Op0 = N->getOperand(0);
14520  SDValue Op1 = N->getOperand(1);
14521
14522  // X86 can't encode an immediate LHS of a sub. See if we can push the
14523  // negation into a preceding instruction.
14524  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14525    // If the RHS of the sub is a XOR with one use and a constant, invert the
14526    // immediate. Then add one to the LHS of the sub so we can turn
14527    // X-Y -> X+~Y+1, saving one register.
14528    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14529        isa<ConstantSDNode>(Op1.getOperand(1))) {
14530      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14531      EVT VT = Op0.getValueType();
14532      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14533                                   Op1.getOperand(0),
14534                                   DAG.getConstant(~XorC, VT));
14535      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14536                         DAG.getConstant(C->getAPIntValue()+1, VT));
14537    }
14538  }
14539
14540  // Try to synthesize horizontal adds from adds of shuffles.
14541  EVT VT = N->getValueType(0);
14542  if (((Subtarget->hasSSSE3orAVX() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14543       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14544      isHorizontalBinOp(Op0, Op1, true))
14545    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14546
14547  return OptimizeConditionalInDecrement(N, DAG);
14548}
14549
14550SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14551                                             DAGCombinerInfo &DCI) const {
14552  SelectionDAG &DAG = DCI.DAG;
14553  switch (N->getOpcode()) {
14554  default: break;
14555  case ISD::EXTRACT_VECTOR_ELT:
14556    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14557  case ISD::VSELECT:
14558  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14559  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14560  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14561  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14562  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14563  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14564  case ISD::SHL:
14565  case ISD::SRA:
14566  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14567  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14568  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14569  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14570  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14571  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14572  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14573  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14574  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14575  case X86ISD::FXOR:
14576  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14577  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14578  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14579  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14580  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14581  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14582  case X86ISD::SHUFPS:      // Handle all target specific shuffles
14583  case X86ISD::SHUFPD:
14584  case X86ISD::PALIGN:
14585  case X86ISD::UNPCKH:
14586  case X86ISD::UNPCKL:
14587  case X86ISD::MOVHLPS:
14588  case X86ISD::MOVLHPS:
14589  case X86ISD::PSHUFD:
14590  case X86ISD::PSHUFHW:
14591  case X86ISD::PSHUFLW:
14592  case X86ISD::MOVSS:
14593  case X86ISD::MOVSD:
14594  case X86ISD::VPERMILP:
14595  case X86ISD::VPERM2X128:
14596  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14597  }
14598
14599  return SDValue();
14600}
14601
14602/// isTypeDesirableForOp - Return true if the target has native support for
14603/// the specified value type and it is 'desirable' to use the type for the
14604/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14605/// instruction encodings are longer and some i16 instructions are slow.
14606bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14607  if (!isTypeLegal(VT))
14608    return false;
14609  if (VT != MVT::i16)
14610    return true;
14611
14612  switch (Opc) {
14613  default:
14614    return true;
14615  case ISD::LOAD:
14616  case ISD::SIGN_EXTEND:
14617  case ISD::ZERO_EXTEND:
14618  case ISD::ANY_EXTEND:
14619  case ISD::SHL:
14620  case ISD::SRL:
14621  case ISD::SUB:
14622  case ISD::ADD:
14623  case ISD::MUL:
14624  case ISD::AND:
14625  case ISD::OR:
14626  case ISD::XOR:
14627    return false;
14628  }
14629}
14630
14631/// IsDesirableToPromoteOp - This method query the target whether it is
14632/// beneficial for dag combiner to promote the specified node. If true, it
14633/// should return the desired promotion type by reference.
14634bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14635  EVT VT = Op.getValueType();
14636  if (VT != MVT::i16)
14637    return false;
14638
14639  bool Promote = false;
14640  bool Commute = false;
14641  switch (Op.getOpcode()) {
14642  default: break;
14643  case ISD::LOAD: {
14644    LoadSDNode *LD = cast<LoadSDNode>(Op);
14645    // If the non-extending load has a single use and it's not live out, then it
14646    // might be folded.
14647    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14648                                                     Op.hasOneUse()*/) {
14649      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14650             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14651        // The only case where we'd want to promote LOAD (rather then it being
14652        // promoted as an operand is when it's only use is liveout.
14653        if (UI->getOpcode() != ISD::CopyToReg)
14654          return false;
14655      }
14656    }
14657    Promote = true;
14658    break;
14659  }
14660  case ISD::SIGN_EXTEND:
14661  case ISD::ZERO_EXTEND:
14662  case ISD::ANY_EXTEND:
14663    Promote = true;
14664    break;
14665  case ISD::SHL:
14666  case ISD::SRL: {
14667    SDValue N0 = Op.getOperand(0);
14668    // Look out for (store (shl (load), x)).
14669    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14670      return false;
14671    Promote = true;
14672    break;
14673  }
14674  case ISD::ADD:
14675  case ISD::MUL:
14676  case ISD::AND:
14677  case ISD::OR:
14678  case ISD::XOR:
14679    Commute = true;
14680    // fallthrough
14681  case ISD::SUB: {
14682    SDValue N0 = Op.getOperand(0);
14683    SDValue N1 = Op.getOperand(1);
14684    if (!Commute && MayFoldLoad(N1))
14685      return false;
14686    // Avoid disabling potential load folding opportunities.
14687    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14688      return false;
14689    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14690      return false;
14691    Promote = true;
14692  }
14693  }
14694
14695  PVT = MVT::i32;
14696  return Promote;
14697}
14698
14699//===----------------------------------------------------------------------===//
14700//                           X86 Inline Assembly Support
14701//===----------------------------------------------------------------------===//
14702
14703bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14704  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14705
14706  std::string AsmStr = IA->getAsmString();
14707
14708  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14709  SmallVector<StringRef, 4> AsmPieces;
14710  SplitString(AsmStr, AsmPieces, ";\n");
14711
14712  switch (AsmPieces.size()) {
14713  default: return false;
14714  case 1:
14715    AsmStr = AsmPieces[0];
14716    AsmPieces.clear();
14717    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14718
14719    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14720    // we will turn this bswap into something that will be lowered to logical ops
14721    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14722    // so don't worry about this.
14723    // bswap $0
14724    if (AsmPieces.size() == 2 &&
14725        (AsmPieces[0] == "bswap" ||
14726         AsmPieces[0] == "bswapq" ||
14727         AsmPieces[0] == "bswapl") &&
14728        (AsmPieces[1] == "$0" ||
14729         AsmPieces[1] == "${0:q}")) {
14730      // No need to check constraints, nothing other than the equivalent of
14731      // "=r,0" would be valid here.
14732      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14733      if (!Ty || Ty->getBitWidth() % 16 != 0)
14734        return false;
14735      return IntrinsicLowering::LowerToByteSwap(CI);
14736    }
14737    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14738    if (CI->getType()->isIntegerTy(16) &&
14739        AsmPieces.size() == 3 &&
14740        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14741        AsmPieces[1] == "$$8," &&
14742        AsmPieces[2] == "${0:w}" &&
14743        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14744      AsmPieces.clear();
14745      const std::string &ConstraintsStr = IA->getConstraintString();
14746      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14747      std::sort(AsmPieces.begin(), AsmPieces.end());
14748      if (AsmPieces.size() == 4 &&
14749          AsmPieces[0] == "~{cc}" &&
14750          AsmPieces[1] == "~{dirflag}" &&
14751          AsmPieces[2] == "~{flags}" &&
14752          AsmPieces[3] == "~{fpsr}") {
14753        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14754        if (!Ty || Ty->getBitWidth() % 16 != 0)
14755          return false;
14756        return IntrinsicLowering::LowerToByteSwap(CI);
14757      }
14758    }
14759    break;
14760  case 3:
14761    if (CI->getType()->isIntegerTy(32) &&
14762        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14763      SmallVector<StringRef, 4> Words;
14764      SplitString(AsmPieces[0], Words, " \t,");
14765      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14766          Words[2] == "${0:w}") {
14767        Words.clear();
14768        SplitString(AsmPieces[1], Words, " \t,");
14769        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14770            Words[2] == "$0") {
14771          Words.clear();
14772          SplitString(AsmPieces[2], Words, " \t,");
14773          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14774              Words[2] == "${0:w}") {
14775            AsmPieces.clear();
14776            const std::string &ConstraintsStr = IA->getConstraintString();
14777            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14778            std::sort(AsmPieces.begin(), AsmPieces.end());
14779            if (AsmPieces.size() == 4 &&
14780                AsmPieces[0] == "~{cc}" &&
14781                AsmPieces[1] == "~{dirflag}" &&
14782                AsmPieces[2] == "~{flags}" &&
14783                AsmPieces[3] == "~{fpsr}") {
14784              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14785              if (!Ty || Ty->getBitWidth() % 16 != 0)
14786                return false;
14787              return IntrinsicLowering::LowerToByteSwap(CI);
14788            }
14789          }
14790        }
14791      }
14792    }
14793
14794    if (CI->getType()->isIntegerTy(64)) {
14795      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14796      if (Constraints.size() >= 2 &&
14797          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14798          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14799        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14800        SmallVector<StringRef, 4> Words;
14801        SplitString(AsmPieces[0], Words, " \t");
14802        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14803          Words.clear();
14804          SplitString(AsmPieces[1], Words, " \t");
14805          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14806            Words.clear();
14807            SplitString(AsmPieces[2], Words, " \t,");
14808            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14809                Words[2] == "%edx") {
14810              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14811              if (!Ty || Ty->getBitWidth() % 16 != 0)
14812                return false;
14813              return IntrinsicLowering::LowerToByteSwap(CI);
14814            }
14815          }
14816        }
14817      }
14818    }
14819    break;
14820  }
14821  return false;
14822}
14823
14824
14825
14826/// getConstraintType - Given a constraint letter, return the type of
14827/// constraint it is for this target.
14828X86TargetLowering::ConstraintType
14829X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14830  if (Constraint.size() == 1) {
14831    switch (Constraint[0]) {
14832    case 'R':
14833    case 'q':
14834    case 'Q':
14835    case 'f':
14836    case 't':
14837    case 'u':
14838    case 'y':
14839    case 'x':
14840    case 'Y':
14841    case 'l':
14842      return C_RegisterClass;
14843    case 'a':
14844    case 'b':
14845    case 'c':
14846    case 'd':
14847    case 'S':
14848    case 'D':
14849    case 'A':
14850      return C_Register;
14851    case 'I':
14852    case 'J':
14853    case 'K':
14854    case 'L':
14855    case 'M':
14856    case 'N':
14857    case 'G':
14858    case 'C':
14859    case 'e':
14860    case 'Z':
14861      return C_Other;
14862    default:
14863      break;
14864    }
14865  }
14866  return TargetLowering::getConstraintType(Constraint);
14867}
14868
14869/// Examine constraint type and operand type and determine a weight value.
14870/// This object must already have been set up with the operand type
14871/// and the current alternative constraint selected.
14872TargetLowering::ConstraintWeight
14873  X86TargetLowering::getSingleConstraintMatchWeight(
14874    AsmOperandInfo &info, const char *constraint) const {
14875  ConstraintWeight weight = CW_Invalid;
14876  Value *CallOperandVal = info.CallOperandVal;
14877    // If we don't have a value, we can't do a match,
14878    // but allow it at the lowest weight.
14879  if (CallOperandVal == NULL)
14880    return CW_Default;
14881  Type *type = CallOperandVal->getType();
14882  // Look at the constraint type.
14883  switch (*constraint) {
14884  default:
14885    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14886  case 'R':
14887  case 'q':
14888  case 'Q':
14889  case 'a':
14890  case 'b':
14891  case 'c':
14892  case 'd':
14893  case 'S':
14894  case 'D':
14895  case 'A':
14896    if (CallOperandVal->getType()->isIntegerTy())
14897      weight = CW_SpecificReg;
14898    break;
14899  case 'f':
14900  case 't':
14901  case 'u':
14902      if (type->isFloatingPointTy())
14903        weight = CW_SpecificReg;
14904      break;
14905  case 'y':
14906      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14907        weight = CW_SpecificReg;
14908      break;
14909  case 'x':
14910  case 'Y':
14911    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14912      weight = CW_Register;
14913    break;
14914  case 'I':
14915    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14916      if (C->getZExtValue() <= 31)
14917        weight = CW_Constant;
14918    }
14919    break;
14920  case 'J':
14921    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14922      if (C->getZExtValue() <= 63)
14923        weight = CW_Constant;
14924    }
14925    break;
14926  case 'K':
14927    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14928      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14929        weight = CW_Constant;
14930    }
14931    break;
14932  case 'L':
14933    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14934      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14935        weight = CW_Constant;
14936    }
14937    break;
14938  case 'M':
14939    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14940      if (C->getZExtValue() <= 3)
14941        weight = CW_Constant;
14942    }
14943    break;
14944  case 'N':
14945    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14946      if (C->getZExtValue() <= 0xff)
14947        weight = CW_Constant;
14948    }
14949    break;
14950  case 'G':
14951  case 'C':
14952    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14953      weight = CW_Constant;
14954    }
14955    break;
14956  case 'e':
14957    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14958      if ((C->getSExtValue() >= -0x80000000LL) &&
14959          (C->getSExtValue() <= 0x7fffffffLL))
14960        weight = CW_Constant;
14961    }
14962    break;
14963  case 'Z':
14964    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14965      if (C->getZExtValue() <= 0xffffffff)
14966        weight = CW_Constant;
14967    }
14968    break;
14969  }
14970  return weight;
14971}
14972
14973/// LowerXConstraint - try to replace an X constraint, which matches anything,
14974/// with another that has more specific requirements based on the type of the
14975/// corresponding operand.
14976const char *X86TargetLowering::
14977LowerXConstraint(EVT ConstraintVT) const {
14978  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14979  // 'f' like normal targets.
14980  if (ConstraintVT.isFloatingPoint()) {
14981    if (Subtarget->hasXMMInt())
14982      return "Y";
14983    if (Subtarget->hasXMM())
14984      return "x";
14985  }
14986
14987  return TargetLowering::LowerXConstraint(ConstraintVT);
14988}
14989
14990/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14991/// vector.  If it is invalid, don't add anything to Ops.
14992void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14993                                                     std::string &Constraint,
14994                                                     std::vector<SDValue>&Ops,
14995                                                     SelectionDAG &DAG) const {
14996  SDValue Result(0, 0);
14997
14998  // Only support length 1 constraints for now.
14999  if (Constraint.length() > 1) return;
15000
15001  char ConstraintLetter = Constraint[0];
15002  switch (ConstraintLetter) {
15003  default: break;
15004  case 'I':
15005    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15006      if (C->getZExtValue() <= 31) {
15007        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15008        break;
15009      }
15010    }
15011    return;
15012  case 'J':
15013    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15014      if (C->getZExtValue() <= 63) {
15015        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15016        break;
15017      }
15018    }
15019    return;
15020  case 'K':
15021    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15022      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15023        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15024        break;
15025      }
15026    }
15027    return;
15028  case 'N':
15029    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15030      if (C->getZExtValue() <= 255) {
15031        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15032        break;
15033      }
15034    }
15035    return;
15036  case 'e': {
15037    // 32-bit signed value
15038    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15039      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15040                                           C->getSExtValue())) {
15041        // Widen to 64 bits here to get it sign extended.
15042        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15043        break;
15044      }
15045    // FIXME gcc accepts some relocatable values here too, but only in certain
15046    // memory models; it's complicated.
15047    }
15048    return;
15049  }
15050  case 'Z': {
15051    // 32-bit unsigned value
15052    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15053      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15054                                           C->getZExtValue())) {
15055        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15056        break;
15057      }
15058    }
15059    // FIXME gcc accepts some relocatable values here too, but only in certain
15060    // memory models; it's complicated.
15061    return;
15062  }
15063  case 'i': {
15064    // Literal immediates are always ok.
15065    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15066      // Widen to 64 bits here to get it sign extended.
15067      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15068      break;
15069    }
15070
15071    // In any sort of PIC mode addresses need to be computed at runtime by
15072    // adding in a register or some sort of table lookup.  These can't
15073    // be used as immediates.
15074    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15075      return;
15076
15077    // If we are in non-pic codegen mode, we allow the address of a global (with
15078    // an optional displacement) to be used with 'i'.
15079    GlobalAddressSDNode *GA = 0;
15080    int64_t Offset = 0;
15081
15082    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15083    while (1) {
15084      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15085        Offset += GA->getOffset();
15086        break;
15087      } else if (Op.getOpcode() == ISD::ADD) {
15088        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15089          Offset += C->getZExtValue();
15090          Op = Op.getOperand(0);
15091          continue;
15092        }
15093      } else if (Op.getOpcode() == ISD::SUB) {
15094        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15095          Offset += -C->getZExtValue();
15096          Op = Op.getOperand(0);
15097          continue;
15098        }
15099      }
15100
15101      // Otherwise, this isn't something we can handle, reject it.
15102      return;
15103    }
15104
15105    const GlobalValue *GV = GA->getGlobal();
15106    // If we require an extra load to get this address, as in PIC mode, we
15107    // can't accept it.
15108    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15109                                                        getTargetMachine())))
15110      return;
15111
15112    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15113                                        GA->getValueType(0), Offset);
15114    break;
15115  }
15116  }
15117
15118  if (Result.getNode()) {
15119    Ops.push_back(Result);
15120    return;
15121  }
15122  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15123}
15124
15125std::pair<unsigned, const TargetRegisterClass*>
15126X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15127                                                EVT VT) const {
15128  // First, see if this is a constraint that directly corresponds to an LLVM
15129  // register class.
15130  if (Constraint.size() == 1) {
15131    // GCC Constraint Letters
15132    switch (Constraint[0]) {
15133    default: break;
15134      // TODO: Slight differences here in allocation order and leaving
15135      // RIP in the class. Do they matter any more here than they do
15136      // in the normal allocation?
15137    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15138      if (Subtarget->is64Bit()) {
15139	if (VT == MVT::i32 || VT == MVT::f32)
15140	  return std::make_pair(0U, X86::GR32RegisterClass);
15141	else if (VT == MVT::i16)
15142	  return std::make_pair(0U, X86::GR16RegisterClass);
15143	else if (VT == MVT::i8 || VT == MVT::i1)
15144	  return std::make_pair(0U, X86::GR8RegisterClass);
15145	else if (VT == MVT::i64 || VT == MVT::f64)
15146	  return std::make_pair(0U, X86::GR64RegisterClass);
15147	break;
15148      }
15149      // 32-bit fallthrough
15150    case 'Q':   // Q_REGS
15151      if (VT == MVT::i32 || VT == MVT::f32)
15152	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15153      else if (VT == MVT::i16)
15154	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15155      else if (VT == MVT::i8 || VT == MVT::i1)
15156	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15157      else if (VT == MVT::i64)
15158	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15159      break;
15160    case 'r':   // GENERAL_REGS
15161    case 'l':   // INDEX_REGS
15162      if (VT == MVT::i8 || VT == MVT::i1)
15163        return std::make_pair(0U, X86::GR8RegisterClass);
15164      if (VT == MVT::i16)
15165        return std::make_pair(0U, X86::GR16RegisterClass);
15166      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15167        return std::make_pair(0U, X86::GR32RegisterClass);
15168      return std::make_pair(0U, X86::GR64RegisterClass);
15169    case 'R':   // LEGACY_REGS
15170      if (VT == MVT::i8 || VT == MVT::i1)
15171        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15172      if (VT == MVT::i16)
15173        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15174      if (VT == MVT::i32 || !Subtarget->is64Bit())
15175        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15176      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15177    case 'f':  // FP Stack registers.
15178      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15179      // value to the correct fpstack register class.
15180      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15181        return std::make_pair(0U, X86::RFP32RegisterClass);
15182      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15183        return std::make_pair(0U, X86::RFP64RegisterClass);
15184      return std::make_pair(0U, X86::RFP80RegisterClass);
15185    case 'y':   // MMX_REGS if MMX allowed.
15186      if (!Subtarget->hasMMX()) break;
15187      return std::make_pair(0U, X86::VR64RegisterClass);
15188    case 'Y':   // SSE_REGS if SSE2 allowed
15189      if (!Subtarget->hasXMMInt()) break;
15190      // FALL THROUGH.
15191    case 'x':   // SSE_REGS if SSE1 allowed
15192      if (!Subtarget->hasXMM()) break;
15193
15194      switch (VT.getSimpleVT().SimpleTy) {
15195      default: break;
15196      // Scalar SSE types.
15197      case MVT::f32:
15198      case MVT::i32:
15199        return std::make_pair(0U, X86::FR32RegisterClass);
15200      case MVT::f64:
15201      case MVT::i64:
15202        return std::make_pair(0U, X86::FR64RegisterClass);
15203      // Vector types.
15204      case MVT::v16i8:
15205      case MVT::v8i16:
15206      case MVT::v4i32:
15207      case MVT::v2i64:
15208      case MVT::v4f32:
15209      case MVT::v2f64:
15210        return std::make_pair(0U, X86::VR128RegisterClass);
15211      }
15212      break;
15213    }
15214  }
15215
15216  // Use the default implementation in TargetLowering to convert the register
15217  // constraint into a member of a register class.
15218  std::pair<unsigned, const TargetRegisterClass*> Res;
15219  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15220
15221  // Not found as a standard register?
15222  if (Res.second == 0) {
15223    // Map st(0) -> st(7) -> ST0
15224    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15225        tolower(Constraint[1]) == 's' &&
15226        tolower(Constraint[2]) == 't' &&
15227        Constraint[3] == '(' &&
15228        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15229        Constraint[5] == ')' &&
15230        Constraint[6] == '}') {
15231
15232      Res.first = X86::ST0+Constraint[4]-'0';
15233      Res.second = X86::RFP80RegisterClass;
15234      return Res;
15235    }
15236
15237    // GCC allows "st(0)" to be called just plain "st".
15238    if (StringRef("{st}").equals_lower(Constraint)) {
15239      Res.first = X86::ST0;
15240      Res.second = X86::RFP80RegisterClass;
15241      return Res;
15242    }
15243
15244    // flags -> EFLAGS
15245    if (StringRef("{flags}").equals_lower(Constraint)) {
15246      Res.first = X86::EFLAGS;
15247      Res.second = X86::CCRRegisterClass;
15248      return Res;
15249    }
15250
15251    // 'A' means EAX + EDX.
15252    if (Constraint == "A") {
15253      Res.first = X86::EAX;
15254      Res.second = X86::GR32_ADRegisterClass;
15255      return Res;
15256    }
15257    return Res;
15258  }
15259
15260  // Otherwise, check to see if this is a register class of the wrong value
15261  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15262  // turn into {ax},{dx}.
15263  if (Res.second->hasType(VT))
15264    return Res;   // Correct type already, nothing to do.
15265
15266  // All of the single-register GCC register classes map their values onto
15267  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15268  // really want an 8-bit or 32-bit register, map to the appropriate register
15269  // class and return the appropriate register.
15270  if (Res.second == X86::GR16RegisterClass) {
15271    if (VT == MVT::i8) {
15272      unsigned DestReg = 0;
15273      switch (Res.first) {
15274      default: break;
15275      case X86::AX: DestReg = X86::AL; break;
15276      case X86::DX: DestReg = X86::DL; break;
15277      case X86::CX: DestReg = X86::CL; break;
15278      case X86::BX: DestReg = X86::BL; break;
15279      }
15280      if (DestReg) {
15281        Res.first = DestReg;
15282        Res.second = X86::GR8RegisterClass;
15283      }
15284    } else if (VT == MVT::i32) {
15285      unsigned DestReg = 0;
15286      switch (Res.first) {
15287      default: break;
15288      case X86::AX: DestReg = X86::EAX; break;
15289      case X86::DX: DestReg = X86::EDX; break;
15290      case X86::CX: DestReg = X86::ECX; break;
15291      case X86::BX: DestReg = X86::EBX; break;
15292      case X86::SI: DestReg = X86::ESI; break;
15293      case X86::DI: DestReg = X86::EDI; break;
15294      case X86::BP: DestReg = X86::EBP; break;
15295      case X86::SP: DestReg = X86::ESP; break;
15296      }
15297      if (DestReg) {
15298        Res.first = DestReg;
15299        Res.second = X86::GR32RegisterClass;
15300      }
15301    } else if (VT == MVT::i64) {
15302      unsigned DestReg = 0;
15303      switch (Res.first) {
15304      default: break;
15305      case X86::AX: DestReg = X86::RAX; break;
15306      case X86::DX: DestReg = X86::RDX; break;
15307      case X86::CX: DestReg = X86::RCX; break;
15308      case X86::BX: DestReg = X86::RBX; break;
15309      case X86::SI: DestReg = X86::RSI; break;
15310      case X86::DI: DestReg = X86::RDI; break;
15311      case X86::BP: DestReg = X86::RBP; break;
15312      case X86::SP: DestReg = X86::RSP; break;
15313      }
15314      if (DestReg) {
15315        Res.first = DestReg;
15316        Res.second = X86::GR64RegisterClass;
15317      }
15318    }
15319  } else if (Res.second == X86::FR32RegisterClass ||
15320             Res.second == X86::FR64RegisterClass ||
15321             Res.second == X86::VR128RegisterClass) {
15322    // Handle references to XMM physical registers that got mapped into the
15323    // wrong class.  This can happen with constraints like {xmm0} where the
15324    // target independent register mapper will just pick the first match it can
15325    // find, ignoring the required type.
15326    if (VT == MVT::f32)
15327      Res.second = X86::FR32RegisterClass;
15328    else if (VT == MVT::f64)
15329      Res.second = X86::FR64RegisterClass;
15330    else if (X86::VR128RegisterClass->hasType(VT))
15331      Res.second = X86::VR128RegisterClass;
15332  }
15333
15334  return Res;
15335}
15336