X86ISelLowering.cpp revision 8f00ae6a3f8d392ce0f42a81223e479f97876d7f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getTargetData();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  // Bypass i32 with i8 on Atom when compiling with O2
186  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
187    addBypassSlowDivType(Type::getInt32Ty(getGlobalContext()), Type::getInt8Ty(getGlobalContext()));
188
189  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
190    // Setup Windows compiler runtime calls.
191    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
192    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
193    setLibcallName(RTLIB::SREM_I64, "_allrem");
194    setLibcallName(RTLIB::UREM_I64, "_aullrem");
195    setLibcallName(RTLIB::MUL_I64, "_allmul");
196    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
201
202    // The _ftol2 runtime function has an unusual calling conv, which
203    // is modeled by a special pseudo-instruction.
204    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
206    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
207    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, &X86::GR8RegClass);
225  addRegisterClass(MVT::i16, &X86::GR16RegClass);
226  addRegisterClass(MVT::i32, &X86::GR32RegClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, &X86::GR64RegClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257  } else if (!TM.Options.UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!TM.Options.UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!TM.Options.UseSoftFloat) {
315    // Since AVX is a superset of SSE3, only check for SSE here.
316    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
317      // Expand FP_TO_UINT into a select.
318      // FIXME: We would like to use a Custom expander here eventually to do
319      // the optimal thing for SSE vs. the default expansion in the legalizer.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
321    else
322      // With SSE3 we can use fisttpll to convert to a signed i64; without
323      // SSE, we're stuck with a fistpll.
324      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
325  }
326
327  if (isTargetFTOL()) {
328    // Use the _ftol2 runtime function, which has a pseudo-instruction
329    // to handle its weird calling convention.
330    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460
461  // Darwin ABI issue.
462  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
463  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
464  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
465  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
466  if (Subtarget->is64Bit())
467    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
468  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
469  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
470  if (Subtarget->is64Bit()) {
471    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
472    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
473    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
474    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
475    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
476  }
477  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
478  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
479  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
480  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
481  if (Subtarget->is64Bit()) {
482    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
483    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
484    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
485  }
486
487  if (Subtarget->hasSSE1())
488    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
489
490  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
491  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
492
493  // On X86 and X86-64, atomic operations are lowered to locked instructions.
494  // Locked instructions, in turn, have implicit fence semantics (all memory
495  // operations are flushed before issuing the locked instruction, and they
496  // are not buffered), so we can fold away the common pattern of
497  // fence-atomic-fence.
498  setShouldFoldAtomicFences(true);
499
500  // Expand certain atomics
501  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
502    MVT VT = IntVTs[i];
503    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
505    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
506  }
507
508  if (!Subtarget->is64Bit()) {
509    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
514    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
515    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
516    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
517    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
521  }
522
523  if (Subtarget->hasCmpxchg16b()) {
524    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
525  }
526
527  // FIXME - use subtarget debug flags
528  if (!Subtarget->isTargetDarwin() &&
529      !Subtarget->isTargetELF() &&
530      !Subtarget->isTargetCygMing()) {
531    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
532  }
533
534  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
535  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
536  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
537  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
538  if (Subtarget->is64Bit()) {
539    setExceptionPointerRegister(X86::RAX);
540    setExceptionSelectorRegister(X86::RDX);
541  } else {
542    setExceptionPointerRegister(X86::EAX);
543    setExceptionSelectorRegister(X86::EDX);
544  }
545  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
546  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
547
548  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
549  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
550
551  setOperationAction(ISD::TRAP, MVT::Other, Legal);
552
553  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
554  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
555  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
556  if (Subtarget->is64Bit()) {
557    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
558    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
559  } else {
560    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
561    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
562  }
563
564  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
565  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
566
567  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
568    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
569                       MVT::i64 : MVT::i32, Custom);
570  else if (TM.Options.EnableSegmentedStacks)
571    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
572                       MVT::i64 : MVT::i32, Custom);
573  else
574    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
575                       MVT::i64 : MVT::i32, Expand);
576
577  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
578    // f32 and f64 use SSE.
579    // Set up the FP register classes.
580    addRegisterClass(MVT::f32, &X86::FR32RegClass);
581    addRegisterClass(MVT::f64, &X86::FR64RegClass);
582
583    // Use ANDPD to simulate FABS.
584    setOperationAction(ISD::FABS , MVT::f64, Custom);
585    setOperationAction(ISD::FABS , MVT::f32, Custom);
586
587    // Use XORP to simulate FNEG.
588    setOperationAction(ISD::FNEG , MVT::f64, Custom);
589    setOperationAction(ISD::FNEG , MVT::f32, Custom);
590
591    // Use ANDPD and ORPD to simulate FCOPYSIGN.
592    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
593    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
594
595    // Lower this to FGETSIGNx86 plus an AND.
596    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
597    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
598
599    // We don't support sin/cos/fmod
600    setOperationAction(ISD::FSIN , MVT::f64, Expand);
601    setOperationAction(ISD::FCOS , MVT::f64, Expand);
602    setOperationAction(ISD::FSIN , MVT::f32, Expand);
603    setOperationAction(ISD::FCOS , MVT::f32, Expand);
604
605    // Expand FP immediates into loads from the stack, except for the special
606    // cases we handle.
607    addLegalFPImmediate(APFloat(+0.0)); // xorpd
608    addLegalFPImmediate(APFloat(+0.0f)); // xorps
609  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
610    // Use SSE for f32, x87 for f64.
611    // Set up the FP register classes.
612    addRegisterClass(MVT::f32, &X86::FR32RegClass);
613    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
614
615    // Use ANDPS to simulate FABS.
616    setOperationAction(ISD::FABS , MVT::f32, Custom);
617
618    // Use XORP to simulate FNEG.
619    setOperationAction(ISD::FNEG , MVT::f32, Custom);
620
621    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
622
623    // Use ANDPS and ORPS to simulate FCOPYSIGN.
624    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
625    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
626
627    // We don't support sin/cos/fmod
628    setOperationAction(ISD::FSIN , MVT::f32, Expand);
629    setOperationAction(ISD::FCOS , MVT::f32, Expand);
630
631    // Special cases we handle for FP constants.
632    addLegalFPImmediate(APFloat(+0.0f)); // xorps
633    addLegalFPImmediate(APFloat(+0.0)); // FLD0
634    addLegalFPImmediate(APFloat(+1.0)); // FLD1
635    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
636    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
637
638    if (!TM.Options.UnsafeFPMath) {
639      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
640      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
641    }
642  } else if (!TM.Options.UseSoftFloat) {
643    // f32 and f64 in x87.
644    // Set up the FP register classes.
645    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
646    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
647
648    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
649    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
650    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
651    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
652
653    if (!TM.Options.UnsafeFPMath) {
654      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
655      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
656      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
657      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
658    }
659    addLegalFPImmediate(APFloat(+0.0)); // FLD0
660    addLegalFPImmediate(APFloat(+1.0)); // FLD1
661    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
662    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
663    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
664    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
665    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
666    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
667  }
668
669  // We don't support FMA.
670  setOperationAction(ISD::FMA, MVT::f64, Expand);
671  setOperationAction(ISD::FMA, MVT::f32, Expand);
672
673  // Long double always uses X87.
674  if (!TM.Options.UseSoftFloat) {
675    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
676    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
677    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
678    {
679      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
680      addLegalFPImmediate(TmpFlt);  // FLD0
681      TmpFlt.changeSign();
682      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
683
684      bool ignored;
685      APFloat TmpFlt2(+1.0);
686      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
687                      &ignored);
688      addLegalFPImmediate(TmpFlt2);  // FLD1
689      TmpFlt2.changeSign();
690      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
691    }
692
693    if (!TM.Options.UnsafeFPMath) {
694      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
695      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
696    }
697
698    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
699    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
700    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
701    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
702    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
703    setOperationAction(ISD::FMA, MVT::f80, Expand);
704  }
705
706  // Always use a library call for pow.
707  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
708  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
709  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
710
711  setOperationAction(ISD::FLOG, MVT::f80, Expand);
712  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
713  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
714  setOperationAction(ISD::FEXP, MVT::f80, Expand);
715  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
716
717  // First set operation action for all vector types to either promote
718  // (for widening) or expand (for scalarization). Then we will selectively
719  // turn on ones that can be effectively codegen'd.
720  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
721           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
722    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
737    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
739    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
740    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
770    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
772    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
773    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
774    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
775    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
776    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
777    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
778    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
779    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
780    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
781    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
782             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
783      setTruncStoreAction((MVT::SimpleValueType)VT,
784                          (MVT::SimpleValueType)InnerVT, Expand);
785    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
786    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
787    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
788  }
789
790  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
791  // with -msoft-float, disable use of MMX as well.
792  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
793    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
794    // No operations on x86mmx supported, everything uses intrinsics.
795  }
796
797  // MMX-sized vectors (other than x86mmx) are expected to be expanded
798  // into smaller operations.
799  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
800  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
801  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
802  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
803  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
804  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
805  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
806  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
807  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
808  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
809  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
810  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
811  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
812  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
813  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
814  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
815  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
816  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
817  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
818  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
819  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
820  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
821  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
822  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
823  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
824  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
825  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
826  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
827  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
828
829  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
830    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
831
832    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
833    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
834    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
835    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
836    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
837    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
838    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
839    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
840    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
841    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
842    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
843    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
844  }
845
846  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
847    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
848
849    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
850    // registers cannot be used even for integer operations.
851    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
852    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
853    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
854    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
855
856    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
857    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
858    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
859    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
860    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
861    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
862    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
863    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
864    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
865    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
866    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
867    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
868    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
869    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
870    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
871    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
872    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
873
874    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
875    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
876    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
877    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
878
879    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
880    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
881    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
882    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
883    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
884
885    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
886    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
887      MVT VT = (MVT::SimpleValueType)i;
888      // Do not attempt to custom lower non-power-of-2 vectors
889      if (!isPowerOf2_32(VT.getVectorNumElements()))
890        continue;
891      // Do not attempt to custom lower non-128-bit vectors
892      if (!VT.is128BitVector())
893        continue;
894      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
895      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
896      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
897    }
898
899    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
900    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
901    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
902    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
903    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
904    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
905
906    if (Subtarget->is64Bit()) {
907      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
908      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
909    }
910
911    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
912    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
913      MVT VT = (MVT::SimpleValueType)i;
914
915      // Do not attempt to promote non-128-bit vectors
916      if (!VT.is128BitVector())
917        continue;
918
919      setOperationAction(ISD::AND,    VT, Promote);
920      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
921      setOperationAction(ISD::OR,     VT, Promote);
922      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
923      setOperationAction(ISD::XOR,    VT, Promote);
924      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
925      setOperationAction(ISD::LOAD,   VT, Promote);
926      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
927      setOperationAction(ISD::SELECT, VT, Promote);
928      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
929    }
930
931    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
932
933    // Custom lower v2i64 and v2f64 selects.
934    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
935    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
936    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
937    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
938
939    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
940    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
941
942    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
943  }
944
945  if (Subtarget->hasSSE41()) {
946    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
947    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
948    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
949    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
950    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
951    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
952    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
953    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
954    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
955    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
956
957    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
958    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
959
960    // FIXME: Do we need to handle scalar-to-vector here?
961    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
962
963    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
964    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
965    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
966    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
967    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
968
969    // i8 and i16 vectors are custom , because the source register and source
970    // source memory operand types are not the same width.  f32 vectors are
971    // custom since the immediate controlling the insert encodes additional
972    // information.
973    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
974    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
975    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
976    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
977
978    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
979    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
980    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
981    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
982
983    // FIXME: these should be Legal but thats only for the case where
984    // the index is constant.  For now custom expand to deal with that.
985    if (Subtarget->is64Bit()) {
986      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
987      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
988    }
989  }
990
991  if (Subtarget->hasSSE2()) {
992    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
993    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
994
995    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
996    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
997
998    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
999    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1000
1001    if (Subtarget->hasAVX2()) {
1002      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1003      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1004
1005      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1006      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1007
1008      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1009    } else {
1010      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1011      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1012
1013      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1014      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1015
1016      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1017    }
1018  }
1019
1020  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1021    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1022    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1023    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1024    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1025    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1026    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1027
1028    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1031
1032    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1037    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1038    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1039    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1040
1041    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1042    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1043    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1044    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1045    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1046    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1047    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1048    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1049
1050    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1051    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1052    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1053
1054    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1055
1056    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1060    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1061
1062    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1063    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1064
1065    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1066    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1067    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1068    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1069
1070    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1071    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1072    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1073
1074    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1075    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1076    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1077    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1078
1079    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1080      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1081      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1082      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1083      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1084      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1085      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1086    }
1087
1088    if (Subtarget->hasAVX2()) {
1089      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1090      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1091      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1092      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1093
1094      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1096      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1097      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1098
1099      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1101      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1102      // Don't lower v32i8 because there is no 128-bit byte mul
1103
1104      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1105
1106      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1107      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1108
1109      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1110      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1111
1112      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1113    } else {
1114      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1116      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1117      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1118
1119      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1120      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1121      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1122      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1123
1124      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1125      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1126      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1127      // Don't lower v32i8 because there is no 128-bit byte mul
1128
1129      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1130      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1131
1132      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1133      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1134
1135      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1136    }
1137
1138    // Custom lower several nodes for 256-bit types.
1139    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1140             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1141      MVT VT = (MVT::SimpleValueType)i;
1142
1143      // Extract subvector is special because the value type
1144      // (result) is 128-bit but the source is 256-bit wide.
1145      if (VT.is128BitVector())
1146        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1147
1148      // Do not attempt to custom lower other non-256-bit vectors
1149      if (!VT.is256BitVector())
1150        continue;
1151
1152      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1153      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1154      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1155      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1156      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1157      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1158      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1159    }
1160
1161    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1162    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1163      MVT VT = (MVT::SimpleValueType)i;
1164
1165      // Do not attempt to promote non-256-bit vectors
1166      if (!VT.is256BitVector())
1167        continue;
1168
1169      setOperationAction(ISD::AND,    VT, Promote);
1170      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1171      setOperationAction(ISD::OR,     VT, Promote);
1172      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1173      setOperationAction(ISD::XOR,    VT, Promote);
1174      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1175      setOperationAction(ISD::LOAD,   VT, Promote);
1176      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1177      setOperationAction(ISD::SELECT, VT, Promote);
1178      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1179    }
1180  }
1181
1182  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1183  // of this type with custom code.
1184  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1185           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1186    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1187                       Custom);
1188  }
1189
1190  // We want to custom lower some of our intrinsics.
1191  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1192  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1193
1194
1195  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1196  // handle type legalization for these operations here.
1197  //
1198  // FIXME: We really should do custom legalization for addition and
1199  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1200  // than generic legalization for 64-bit multiplication-with-overflow, though.
1201  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1202    // Add/Sub/Mul with overflow operations are custom lowered.
1203    MVT VT = IntVTs[i];
1204    setOperationAction(ISD::SADDO, VT, Custom);
1205    setOperationAction(ISD::UADDO, VT, Custom);
1206    setOperationAction(ISD::SSUBO, VT, Custom);
1207    setOperationAction(ISD::USUBO, VT, Custom);
1208    setOperationAction(ISD::SMULO, VT, Custom);
1209    setOperationAction(ISD::UMULO, VT, Custom);
1210  }
1211
1212  // There are no 8-bit 3-address imul/mul instructions
1213  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1214  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1215
1216  if (!Subtarget->is64Bit()) {
1217    // These libcalls are not available in 32-bit.
1218    setLibcallName(RTLIB::SHL_I128, 0);
1219    setLibcallName(RTLIB::SRL_I128, 0);
1220    setLibcallName(RTLIB::SRA_I128, 0);
1221  }
1222
1223  // We have target-specific dag combine patterns for the following nodes:
1224  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1225  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1226  setTargetDAGCombine(ISD::VSELECT);
1227  setTargetDAGCombine(ISD::SELECT);
1228  setTargetDAGCombine(ISD::SHL);
1229  setTargetDAGCombine(ISD::SRA);
1230  setTargetDAGCombine(ISD::SRL);
1231  setTargetDAGCombine(ISD::OR);
1232  setTargetDAGCombine(ISD::AND);
1233  setTargetDAGCombine(ISD::ADD);
1234  setTargetDAGCombine(ISD::FADD);
1235  setTargetDAGCombine(ISD::FSUB);
1236  setTargetDAGCombine(ISD::FMA);
1237  setTargetDAGCombine(ISD::SUB);
1238  setTargetDAGCombine(ISD::LOAD);
1239  setTargetDAGCombine(ISD::STORE);
1240  setTargetDAGCombine(ISD::ZERO_EXTEND);
1241  setTargetDAGCombine(ISD::ANY_EXTEND);
1242  setTargetDAGCombine(ISD::SIGN_EXTEND);
1243  setTargetDAGCombine(ISD::TRUNCATE);
1244  setTargetDAGCombine(ISD::UINT_TO_FP);
1245  setTargetDAGCombine(ISD::SINT_TO_FP);
1246  setTargetDAGCombine(ISD::SETCC);
1247  setTargetDAGCombine(ISD::FP_TO_SINT);
1248  if (Subtarget->is64Bit())
1249    setTargetDAGCombine(ISD::MUL);
1250  setTargetDAGCombine(ISD::XOR);
1251
1252  computeRegisterProperties();
1253
1254  // On Darwin, -Os means optimize for size without hurting performance,
1255  // do not reduce the limit.
1256  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1257  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1258  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1259  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1260  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1261  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1262  setPrefLoopAlignment(4); // 2^4 bytes.
1263  benefitFromCodePlacementOpt = true;
1264
1265  // Predictable cmov don't hurt on atom because it's in-order.
1266  predictableSelectIsExpensive = !Subtarget->isAtom();
1267
1268  setPrefFunctionAlignment(4); // 2^4 bytes.
1269}
1270
1271
1272EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1273  if (!VT.isVector()) return MVT::i8;
1274  return VT.changeVectorElementTypeToInteger();
1275}
1276
1277
1278/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1279/// the desired ByVal argument alignment.
1280static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1281  if (MaxAlign == 16)
1282    return;
1283  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1284    if (VTy->getBitWidth() == 128)
1285      MaxAlign = 16;
1286  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1287    unsigned EltAlign = 0;
1288    getMaxByValAlign(ATy->getElementType(), EltAlign);
1289    if (EltAlign > MaxAlign)
1290      MaxAlign = EltAlign;
1291  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1292    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1293      unsigned EltAlign = 0;
1294      getMaxByValAlign(STy->getElementType(i), EltAlign);
1295      if (EltAlign > MaxAlign)
1296        MaxAlign = EltAlign;
1297      if (MaxAlign == 16)
1298        break;
1299    }
1300  }
1301}
1302
1303/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1304/// function arguments in the caller parameter area. For X86, aggregates
1305/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1306/// are at 4-byte boundaries.
1307unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1308  if (Subtarget->is64Bit()) {
1309    // Max of 8 and alignment of type.
1310    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1311    if (TyAlign > 8)
1312      return TyAlign;
1313    return 8;
1314  }
1315
1316  unsigned Align = 4;
1317  if (Subtarget->hasSSE1())
1318    getMaxByValAlign(Ty, Align);
1319  return Align;
1320}
1321
1322/// getOptimalMemOpType - Returns the target specific optimal type for load
1323/// and store operations as a result of memset, memcpy, and memmove
1324/// lowering. If DstAlign is zero that means it's safe to destination
1325/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1326/// means there isn't a need to check it against alignment requirement,
1327/// probably because the source does not need to be loaded. If
1328/// 'IsZeroVal' is true, that means it's safe to return a
1329/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1330/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1331/// constant so it does not need to be loaded.
1332/// It returns EVT::Other if the type should be determined using generic
1333/// target-independent logic.
1334EVT
1335X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1336                                       unsigned DstAlign, unsigned SrcAlign,
1337                                       bool IsZeroVal,
1338                                       bool MemcpyStrSrc,
1339                                       MachineFunction &MF) const {
1340  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1341  // linux.  This is because the stack realignment code can't handle certain
1342  // cases like PR2962.  This should be removed when PR2962 is fixed.
1343  const Function *F = MF.getFunction();
1344  if (IsZeroVal &&
1345      !F->getFnAttributes().hasNoImplicitFloatAttr()) {
1346    if (Size >= 16 &&
1347        (Subtarget->isUnalignedMemAccessFast() ||
1348         ((DstAlign == 0 || DstAlign >= 16) &&
1349          (SrcAlign == 0 || SrcAlign >= 16))) &&
1350        Subtarget->getStackAlignment() >= 16) {
1351      if (Subtarget->getStackAlignment() >= 32) {
1352        if (Subtarget->hasAVX2())
1353          return MVT::v8i32;
1354        if (Subtarget->hasAVX())
1355          return MVT::v8f32;
1356      }
1357      if (Subtarget->hasSSE2())
1358        return MVT::v4i32;
1359      if (Subtarget->hasSSE1())
1360        return MVT::v4f32;
1361    } else if (!MemcpyStrSrc && Size >= 8 &&
1362               !Subtarget->is64Bit() &&
1363               Subtarget->getStackAlignment() >= 8 &&
1364               Subtarget->hasSSE2()) {
1365      // Do not use f64 to lower memcpy if source is string constant. It's
1366      // better to use i32 to avoid the loads.
1367      return MVT::f64;
1368    }
1369  }
1370  if (Subtarget->is64Bit() && Size >= 8)
1371    return MVT::i64;
1372  return MVT::i32;
1373}
1374
1375/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1376/// current function.  The returned value is a member of the
1377/// MachineJumpTableInfo::JTEntryKind enum.
1378unsigned X86TargetLowering::getJumpTableEncoding() const {
1379  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1380  // symbol.
1381  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1382      Subtarget->isPICStyleGOT())
1383    return MachineJumpTableInfo::EK_Custom32;
1384
1385  // Otherwise, use the normal jump table encoding heuristics.
1386  return TargetLowering::getJumpTableEncoding();
1387}
1388
1389const MCExpr *
1390X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1391                                             const MachineBasicBlock *MBB,
1392                                             unsigned uid,MCContext &Ctx) const{
1393  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1394         Subtarget->isPICStyleGOT());
1395  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1396  // entries.
1397  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1398                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1399}
1400
1401/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1402/// jumptable.
1403SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1404                                                    SelectionDAG &DAG) const {
1405  if (!Subtarget->is64Bit())
1406    // This doesn't have DebugLoc associated with it, but is not really the
1407    // same as a Register.
1408    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1409  return Table;
1410}
1411
1412/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1413/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1414/// MCExpr.
1415const MCExpr *X86TargetLowering::
1416getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1417                             MCContext &Ctx) const {
1418  // X86-64 uses RIP relative addressing based on the jump table label.
1419  if (Subtarget->isPICStyleRIPRel())
1420    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1421
1422  // Otherwise, the reference is relative to the PIC base.
1423  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1424}
1425
1426// FIXME: Why this routine is here? Move to RegInfo!
1427std::pair<const TargetRegisterClass*, uint8_t>
1428X86TargetLowering::findRepresentativeClass(EVT VT) const{
1429  const TargetRegisterClass *RRC = 0;
1430  uint8_t Cost = 1;
1431  switch (VT.getSimpleVT().SimpleTy) {
1432  default:
1433    return TargetLowering::findRepresentativeClass(VT);
1434  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1435    RRC = Subtarget->is64Bit() ?
1436      (const TargetRegisterClass*)&X86::GR64RegClass :
1437      (const TargetRegisterClass*)&X86::GR32RegClass;
1438    break;
1439  case MVT::x86mmx:
1440    RRC = &X86::VR64RegClass;
1441    break;
1442  case MVT::f32: case MVT::f64:
1443  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1444  case MVT::v4f32: case MVT::v2f64:
1445  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1446  case MVT::v4f64:
1447    RRC = &X86::VR128RegClass;
1448    break;
1449  }
1450  return std::make_pair(RRC, Cost);
1451}
1452
1453bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1454                                               unsigned &Offset) const {
1455  if (!Subtarget->isTargetLinux())
1456    return false;
1457
1458  if (Subtarget->is64Bit()) {
1459    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1460    Offset = 0x28;
1461    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1462      AddressSpace = 256;
1463    else
1464      AddressSpace = 257;
1465  } else {
1466    // %gs:0x14 on i386
1467    Offset = 0x14;
1468    AddressSpace = 256;
1469  }
1470  return true;
1471}
1472
1473
1474//===----------------------------------------------------------------------===//
1475//               Return Value Calling Convention Implementation
1476//===----------------------------------------------------------------------===//
1477
1478#include "X86GenCallingConv.inc"
1479
1480bool
1481X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1482                                  MachineFunction &MF, bool isVarArg,
1483                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1484                        LLVMContext &Context) const {
1485  SmallVector<CCValAssign, 16> RVLocs;
1486  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1487                 RVLocs, Context);
1488  return CCInfo.CheckReturn(Outs, RetCC_X86);
1489}
1490
1491SDValue
1492X86TargetLowering::LowerReturn(SDValue Chain,
1493                               CallingConv::ID CallConv, bool isVarArg,
1494                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1495                               const SmallVectorImpl<SDValue> &OutVals,
1496                               DebugLoc dl, SelectionDAG &DAG) const {
1497  MachineFunction &MF = DAG.getMachineFunction();
1498  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1499
1500  SmallVector<CCValAssign, 16> RVLocs;
1501  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1502                 RVLocs, *DAG.getContext());
1503  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1504
1505  // Add the regs to the liveout set for the function.
1506  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1507  for (unsigned i = 0; i != RVLocs.size(); ++i)
1508    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1509      MRI.addLiveOut(RVLocs[i].getLocReg());
1510
1511  SDValue Flag;
1512
1513  SmallVector<SDValue, 6> RetOps;
1514  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1515  // Operand #1 = Bytes To Pop
1516  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1517                   MVT::i16));
1518
1519  // Copy the result values into the output registers.
1520  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1521    CCValAssign &VA = RVLocs[i];
1522    assert(VA.isRegLoc() && "Can only return in registers!");
1523    SDValue ValToCopy = OutVals[i];
1524    EVT ValVT = ValToCopy.getValueType();
1525
1526    // Promote values to the appropriate types
1527    if (VA.getLocInfo() == CCValAssign::SExt)
1528      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1529    else if (VA.getLocInfo() == CCValAssign::ZExt)
1530      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1531    else if (VA.getLocInfo() == CCValAssign::AExt)
1532      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1533    else if (VA.getLocInfo() == CCValAssign::BCvt)
1534      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1535
1536    // If this is x86-64, and we disabled SSE, we can't return FP values,
1537    // or SSE or MMX vectors.
1538    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1539         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1540          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1541      report_fatal_error("SSE register return with SSE disabled");
1542    }
1543    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1544    // llvm-gcc has never done it right and no one has noticed, so this
1545    // should be OK for now.
1546    if (ValVT == MVT::f64 &&
1547        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1548      report_fatal_error("SSE2 register return with SSE2 disabled");
1549
1550    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1551    // the RET instruction and handled by the FP Stackifier.
1552    if (VA.getLocReg() == X86::ST0 ||
1553        VA.getLocReg() == X86::ST1) {
1554      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1555      // change the value to the FP stack register class.
1556      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1557        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1558      RetOps.push_back(ValToCopy);
1559      // Don't emit a copytoreg.
1560      continue;
1561    }
1562
1563    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1564    // which is returned in RAX / RDX.
1565    if (Subtarget->is64Bit()) {
1566      if (ValVT == MVT::x86mmx) {
1567        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1568          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1569          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1570                                  ValToCopy);
1571          // If we don't have SSE2 available, convert to v4f32 so the generated
1572          // register is legal.
1573          if (!Subtarget->hasSSE2())
1574            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1575        }
1576      }
1577    }
1578
1579    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1580    Flag = Chain.getValue(1);
1581  }
1582
1583  // The x86-64 ABI for returning structs by value requires that we copy
1584  // the sret argument into %rax for the return. We saved the argument into
1585  // a virtual register in the entry block, so now we copy the value out
1586  // and into %rax.
1587  if (Subtarget->is64Bit() &&
1588      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1589    MachineFunction &MF = DAG.getMachineFunction();
1590    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1591    unsigned Reg = FuncInfo->getSRetReturnReg();
1592    assert(Reg &&
1593           "SRetReturnReg should have been set in LowerFormalArguments().");
1594    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1595
1596    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1597    Flag = Chain.getValue(1);
1598
1599    // RAX now acts like a return value.
1600    MRI.addLiveOut(X86::RAX);
1601  }
1602
1603  RetOps[0] = Chain;  // Update chain.
1604
1605  // Add the flag if we have it.
1606  if (Flag.getNode())
1607    RetOps.push_back(Flag);
1608
1609  return DAG.getNode(X86ISD::RET_FLAG, dl,
1610                     MVT::Other, &RetOps[0], RetOps.size());
1611}
1612
1613bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1614  if (N->getNumValues() != 1)
1615    return false;
1616  if (!N->hasNUsesOfValue(1, 0))
1617    return false;
1618
1619  SDValue TCChain = Chain;
1620  SDNode *Copy = *N->use_begin();
1621  if (Copy->getOpcode() == ISD::CopyToReg) {
1622    // If the copy has a glue operand, we conservatively assume it isn't safe to
1623    // perform a tail call.
1624    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1625      return false;
1626    TCChain = Copy->getOperand(0);
1627  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1628    return false;
1629
1630  bool HasRet = false;
1631  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1632       UI != UE; ++UI) {
1633    if (UI->getOpcode() != X86ISD::RET_FLAG)
1634      return false;
1635    HasRet = true;
1636  }
1637
1638  if (!HasRet)
1639    return false;
1640
1641  Chain = TCChain;
1642  return true;
1643}
1644
1645EVT
1646X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1647                                            ISD::NodeType ExtendKind) const {
1648  MVT ReturnMVT;
1649  // TODO: Is this also valid on 32-bit?
1650  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1651    ReturnMVT = MVT::i8;
1652  else
1653    ReturnMVT = MVT::i32;
1654
1655  EVT MinVT = getRegisterType(Context, ReturnMVT);
1656  return VT.bitsLT(MinVT) ? MinVT : VT;
1657}
1658
1659/// LowerCallResult - Lower the result values of a call into the
1660/// appropriate copies out of appropriate physical registers.
1661///
1662SDValue
1663X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1664                                   CallingConv::ID CallConv, bool isVarArg,
1665                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1666                                   DebugLoc dl, SelectionDAG &DAG,
1667                                   SmallVectorImpl<SDValue> &InVals) const {
1668
1669  // Assign locations to each value returned by this call.
1670  SmallVector<CCValAssign, 16> RVLocs;
1671  bool Is64Bit = Subtarget->is64Bit();
1672  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1673                 getTargetMachine(), RVLocs, *DAG.getContext());
1674  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1675
1676  // Copy all of the result registers out of their specified physreg.
1677  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1678    CCValAssign &VA = RVLocs[i];
1679    EVT CopyVT = VA.getValVT();
1680
1681    // If this is x86-64, and we disabled SSE, we can't return FP values
1682    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1683        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1684      report_fatal_error("SSE register return with SSE disabled");
1685    }
1686
1687    SDValue Val;
1688
1689    // If this is a call to a function that returns an fp value on the floating
1690    // point stack, we must guarantee the value is popped from the stack, so
1691    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1692    // if the return value is not used. We use the FpPOP_RETVAL instruction
1693    // instead.
1694    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1695      // If we prefer to use the value in xmm registers, copy it out as f80 and
1696      // use a truncate to move it from fp stack reg to xmm reg.
1697      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1698      SDValue Ops[] = { Chain, InFlag };
1699      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1700                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1701      Val = Chain.getValue(0);
1702
1703      // Round the f80 to the right size, which also moves it to the appropriate
1704      // xmm register.
1705      if (CopyVT != VA.getValVT())
1706        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1707                          // This truncation won't change the value.
1708                          DAG.getIntPtrConstant(1));
1709    } else {
1710      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1711                                 CopyVT, InFlag).getValue(1);
1712      Val = Chain.getValue(0);
1713    }
1714    InFlag = Chain.getValue(2);
1715    InVals.push_back(Val);
1716  }
1717
1718  return Chain;
1719}
1720
1721
1722//===----------------------------------------------------------------------===//
1723//                C & StdCall & Fast Calling Convention implementation
1724//===----------------------------------------------------------------------===//
1725//  StdCall calling convention seems to be standard for many Windows' API
1726//  routines and around. It differs from C calling convention just a little:
1727//  callee should clean up the stack, not caller. Symbols should be also
1728//  decorated in some fancy way :) It doesn't support any vector arguments.
1729//  For info on fast calling convention see Fast Calling Convention (tail call)
1730//  implementation LowerX86_32FastCCCallTo.
1731
1732/// CallIsStructReturn - Determines whether a call uses struct return
1733/// semantics.
1734enum StructReturnType {
1735  NotStructReturn,
1736  RegStructReturn,
1737  StackStructReturn
1738};
1739static StructReturnType
1740callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1741  if (Outs.empty())
1742    return NotStructReturn;
1743
1744  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1745  if (!Flags.isSRet())
1746    return NotStructReturn;
1747  if (Flags.isInReg())
1748    return RegStructReturn;
1749  return StackStructReturn;
1750}
1751
1752/// ArgsAreStructReturn - Determines whether a function uses struct
1753/// return semantics.
1754static StructReturnType
1755argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1756  if (Ins.empty())
1757    return NotStructReturn;
1758
1759  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1760  if (!Flags.isSRet())
1761    return NotStructReturn;
1762  if (Flags.isInReg())
1763    return RegStructReturn;
1764  return StackStructReturn;
1765}
1766
1767/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1768/// by "Src" to address "Dst" with size and alignment information specified by
1769/// the specific parameter attribute. The copy will be passed as a byval
1770/// function parameter.
1771static SDValue
1772CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1773                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1774                          DebugLoc dl) {
1775  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1776
1777  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1778                       /*isVolatile*/false, /*AlwaysInline=*/true,
1779                       MachinePointerInfo(), MachinePointerInfo());
1780}
1781
1782/// IsTailCallConvention - Return true if the calling convention is one that
1783/// supports tail call optimization.
1784static bool IsTailCallConvention(CallingConv::ID CC) {
1785  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1786}
1787
1788bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1789  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1790    return false;
1791
1792  CallSite CS(CI);
1793  CallingConv::ID CalleeCC = CS.getCallingConv();
1794  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1795    return false;
1796
1797  return true;
1798}
1799
1800/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1801/// a tailcall target by changing its ABI.
1802static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1803                                   bool GuaranteedTailCallOpt) {
1804  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1805}
1806
1807SDValue
1808X86TargetLowering::LowerMemArgument(SDValue Chain,
1809                                    CallingConv::ID CallConv,
1810                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1811                                    DebugLoc dl, SelectionDAG &DAG,
1812                                    const CCValAssign &VA,
1813                                    MachineFrameInfo *MFI,
1814                                    unsigned i) const {
1815  // Create the nodes corresponding to a load from this parameter slot.
1816  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1817  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1818                              getTargetMachine().Options.GuaranteedTailCallOpt);
1819  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1820  EVT ValVT;
1821
1822  // If value is passed by pointer we have address passed instead of the value
1823  // itself.
1824  if (VA.getLocInfo() == CCValAssign::Indirect)
1825    ValVT = VA.getLocVT();
1826  else
1827    ValVT = VA.getValVT();
1828
1829  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1830  // changed with more analysis.
1831  // In case of tail call optimization mark all arguments mutable. Since they
1832  // could be overwritten by lowering of arguments in case of a tail call.
1833  if (Flags.isByVal()) {
1834    unsigned Bytes = Flags.getByValSize();
1835    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1836    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1837    return DAG.getFrameIndex(FI, getPointerTy());
1838  } else {
1839    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1840                                    VA.getLocMemOffset(), isImmutable);
1841    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1842    return DAG.getLoad(ValVT, dl, Chain, FIN,
1843                       MachinePointerInfo::getFixedStack(FI),
1844                       false, false, false, 0);
1845  }
1846}
1847
1848SDValue
1849X86TargetLowering::LowerFormalArguments(SDValue Chain,
1850                                        CallingConv::ID CallConv,
1851                                        bool isVarArg,
1852                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1853                                        DebugLoc dl,
1854                                        SelectionDAG &DAG,
1855                                        SmallVectorImpl<SDValue> &InVals)
1856                                          const {
1857  MachineFunction &MF = DAG.getMachineFunction();
1858  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1859
1860  const Function* Fn = MF.getFunction();
1861  if (Fn->hasExternalLinkage() &&
1862      Subtarget->isTargetCygMing() &&
1863      Fn->getName() == "main")
1864    FuncInfo->setForceFramePointer(true);
1865
1866  MachineFrameInfo *MFI = MF.getFrameInfo();
1867  bool Is64Bit = Subtarget->is64Bit();
1868  bool IsWindows = Subtarget->isTargetWindows();
1869  bool IsWin64 = Subtarget->isTargetWin64();
1870
1871  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1872         "Var args not supported with calling convention fastcc or ghc");
1873
1874  // Assign locations to all of the incoming arguments.
1875  SmallVector<CCValAssign, 16> ArgLocs;
1876  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1877                 ArgLocs, *DAG.getContext());
1878
1879  // Allocate shadow area for Win64
1880  if (IsWin64) {
1881    CCInfo.AllocateStack(32, 8);
1882  }
1883
1884  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1885
1886  unsigned LastVal = ~0U;
1887  SDValue ArgValue;
1888  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1889    CCValAssign &VA = ArgLocs[i];
1890    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1891    // places.
1892    assert(VA.getValNo() != LastVal &&
1893           "Don't support value assigned to multiple locs yet");
1894    (void)LastVal;
1895    LastVal = VA.getValNo();
1896
1897    if (VA.isRegLoc()) {
1898      EVT RegVT = VA.getLocVT();
1899      const TargetRegisterClass *RC;
1900      if (RegVT == MVT::i32)
1901        RC = &X86::GR32RegClass;
1902      else if (Is64Bit && RegVT == MVT::i64)
1903        RC = &X86::GR64RegClass;
1904      else if (RegVT == MVT::f32)
1905        RC = &X86::FR32RegClass;
1906      else if (RegVT == MVT::f64)
1907        RC = &X86::FR64RegClass;
1908      else if (RegVT.is256BitVector())
1909        RC = &X86::VR256RegClass;
1910      else if (RegVT.is128BitVector())
1911        RC = &X86::VR128RegClass;
1912      else if (RegVT == MVT::x86mmx)
1913        RC = &X86::VR64RegClass;
1914      else
1915        llvm_unreachable("Unknown argument type!");
1916
1917      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1918      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1919
1920      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1921      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1922      // right size.
1923      if (VA.getLocInfo() == CCValAssign::SExt)
1924        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1925                               DAG.getValueType(VA.getValVT()));
1926      else if (VA.getLocInfo() == CCValAssign::ZExt)
1927        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1928                               DAG.getValueType(VA.getValVT()));
1929      else if (VA.getLocInfo() == CCValAssign::BCvt)
1930        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1931
1932      if (VA.isExtInLoc()) {
1933        // Handle MMX values passed in XMM regs.
1934        if (RegVT.isVector()) {
1935          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1936                                 ArgValue);
1937        } else
1938          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1939      }
1940    } else {
1941      assert(VA.isMemLoc());
1942      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1943    }
1944
1945    // If value is passed via pointer - do a load.
1946    if (VA.getLocInfo() == CCValAssign::Indirect)
1947      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1948                             MachinePointerInfo(), false, false, false, 0);
1949
1950    InVals.push_back(ArgValue);
1951  }
1952
1953  // The x86-64 ABI for returning structs by value requires that we copy
1954  // the sret argument into %rax for the return. Save the argument into
1955  // a virtual register so that we can access it from the return points.
1956  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1957    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1958    unsigned Reg = FuncInfo->getSRetReturnReg();
1959    if (!Reg) {
1960      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1961      FuncInfo->setSRetReturnReg(Reg);
1962    }
1963    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1964    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1965  }
1966
1967  unsigned StackSize = CCInfo.getNextStackOffset();
1968  // Align stack specially for tail calls.
1969  if (FuncIsMadeTailCallSafe(CallConv,
1970                             MF.getTarget().Options.GuaranteedTailCallOpt))
1971    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1972
1973  // If the function takes variable number of arguments, make a frame index for
1974  // the start of the first vararg value... for expansion of llvm.va_start.
1975  if (isVarArg) {
1976    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1977                    CallConv != CallingConv::X86_ThisCall)) {
1978      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1979    }
1980    if (Is64Bit) {
1981      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1982
1983      // FIXME: We should really autogenerate these arrays
1984      static const uint16_t GPR64ArgRegsWin64[] = {
1985        X86::RCX, X86::RDX, X86::R8,  X86::R9
1986      };
1987      static const uint16_t GPR64ArgRegs64Bit[] = {
1988        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1989      };
1990      static const uint16_t XMMArgRegs64Bit[] = {
1991        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1992        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1993      };
1994      const uint16_t *GPR64ArgRegs;
1995      unsigned NumXMMRegs = 0;
1996
1997      if (IsWin64) {
1998        // The XMM registers which might contain var arg parameters are shadowed
1999        // in their paired GPR.  So we only need to save the GPR to their home
2000        // slots.
2001        TotalNumIntRegs = 4;
2002        GPR64ArgRegs = GPR64ArgRegsWin64;
2003      } else {
2004        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2005        GPR64ArgRegs = GPR64ArgRegs64Bit;
2006
2007        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2008                                                TotalNumXMMRegs);
2009      }
2010      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2011                                                       TotalNumIntRegs);
2012
2013      bool NoImplicitFloatOps = Fn->getFnAttributes().hasNoImplicitFloatAttr();
2014      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2015             "SSE register cannot be used when SSE is disabled!");
2016      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2017               NoImplicitFloatOps) &&
2018             "SSE register cannot be used when SSE is disabled!");
2019      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2020          !Subtarget->hasSSE1())
2021        // Kernel mode asks for SSE to be disabled, so don't push them
2022        // on the stack.
2023        TotalNumXMMRegs = 0;
2024
2025      if (IsWin64) {
2026        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2027        // Get to the caller-allocated home save location.  Add 8 to account
2028        // for the return address.
2029        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2030        FuncInfo->setRegSaveFrameIndex(
2031          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2032        // Fixup to set vararg frame on shadow area (4 x i64).
2033        if (NumIntRegs < 4)
2034          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2035      } else {
2036        // For X86-64, if there are vararg parameters that are passed via
2037        // registers, then we must store them to their spots on the stack so
2038        // they may be loaded by deferencing the result of va_next.
2039        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2040        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2041        FuncInfo->setRegSaveFrameIndex(
2042          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2043                               false));
2044      }
2045
2046      // Store the integer parameter registers.
2047      SmallVector<SDValue, 8> MemOps;
2048      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2049                                        getPointerTy());
2050      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2051      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2052        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2053                                  DAG.getIntPtrConstant(Offset));
2054        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2055                                     &X86::GR64RegClass);
2056        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2057        SDValue Store =
2058          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2059                       MachinePointerInfo::getFixedStack(
2060                         FuncInfo->getRegSaveFrameIndex(), Offset),
2061                       false, false, 0);
2062        MemOps.push_back(Store);
2063        Offset += 8;
2064      }
2065
2066      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2067        // Now store the XMM (fp + vector) parameter registers.
2068        SmallVector<SDValue, 11> SaveXMMOps;
2069        SaveXMMOps.push_back(Chain);
2070
2071        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2072        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2073        SaveXMMOps.push_back(ALVal);
2074
2075        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2076                               FuncInfo->getRegSaveFrameIndex()));
2077        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2078                               FuncInfo->getVarArgsFPOffset()));
2079
2080        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2081          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2082                                       &X86::VR128RegClass);
2083          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2084          SaveXMMOps.push_back(Val);
2085        }
2086        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2087                                     MVT::Other,
2088                                     &SaveXMMOps[0], SaveXMMOps.size()));
2089      }
2090
2091      if (!MemOps.empty())
2092        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2093                            &MemOps[0], MemOps.size());
2094    }
2095  }
2096
2097  // Some CCs need callee pop.
2098  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2099                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2100    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2101  } else {
2102    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2103    // If this is an sret function, the return should pop the hidden pointer.
2104    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2105        argsAreStructReturn(Ins) == StackStructReturn)
2106      FuncInfo->setBytesToPopOnReturn(4);
2107  }
2108
2109  if (!Is64Bit) {
2110    // RegSaveFrameIndex is X86-64 only.
2111    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2112    if (CallConv == CallingConv::X86_FastCall ||
2113        CallConv == CallingConv::X86_ThisCall)
2114      // fastcc functions can't have varargs.
2115      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2116  }
2117
2118  FuncInfo->setArgumentStackSize(StackSize);
2119
2120  return Chain;
2121}
2122
2123SDValue
2124X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2125                                    SDValue StackPtr, SDValue Arg,
2126                                    DebugLoc dl, SelectionDAG &DAG,
2127                                    const CCValAssign &VA,
2128                                    ISD::ArgFlagsTy Flags) const {
2129  unsigned LocMemOffset = VA.getLocMemOffset();
2130  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2131  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2132  if (Flags.isByVal())
2133    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2134
2135  return DAG.getStore(Chain, dl, Arg, PtrOff,
2136                      MachinePointerInfo::getStack(LocMemOffset),
2137                      false, false, 0);
2138}
2139
2140/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2141/// optimization is performed and it is required.
2142SDValue
2143X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2144                                           SDValue &OutRetAddr, SDValue Chain,
2145                                           bool IsTailCall, bool Is64Bit,
2146                                           int FPDiff, DebugLoc dl) const {
2147  // Adjust the Return address stack slot.
2148  EVT VT = getPointerTy();
2149  OutRetAddr = getReturnAddressFrameIndex(DAG);
2150
2151  // Load the "old" Return address.
2152  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2153                           false, false, false, 0);
2154  return SDValue(OutRetAddr.getNode(), 1);
2155}
2156
2157/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2158/// optimization is performed and it is required (FPDiff!=0).
2159static SDValue
2160EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2161                         SDValue Chain, SDValue RetAddrFrIdx,
2162                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2163  // Store the return address to the appropriate stack slot.
2164  if (!FPDiff) return Chain;
2165  // Calculate the new stack slot for the return address.
2166  int SlotSize = Is64Bit ? 8 : 4;
2167  int NewReturnAddrFI =
2168    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2169  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2170  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2171  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2172                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2173                       false, false, 0);
2174  return Chain;
2175}
2176
2177SDValue
2178X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2179                             SmallVectorImpl<SDValue> &InVals) const {
2180  SelectionDAG &DAG                     = CLI.DAG;
2181  DebugLoc &dl                          = CLI.DL;
2182  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2183  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2184  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2185  SDValue Chain                         = CLI.Chain;
2186  SDValue Callee                        = CLI.Callee;
2187  CallingConv::ID CallConv              = CLI.CallConv;
2188  bool &isTailCall                      = CLI.IsTailCall;
2189  bool isVarArg                         = CLI.IsVarArg;
2190
2191  MachineFunction &MF = DAG.getMachineFunction();
2192  bool Is64Bit        = Subtarget->is64Bit();
2193  bool IsWin64        = Subtarget->isTargetWin64();
2194  bool IsWindows      = Subtarget->isTargetWindows();
2195  StructReturnType SR = callIsStructReturn(Outs);
2196  bool IsSibcall      = false;
2197
2198  if (MF.getTarget().Options.DisableTailCalls)
2199    isTailCall = false;
2200
2201  if (isTailCall) {
2202    // Check if it's really possible to do a tail call.
2203    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2204                    isVarArg, SR != NotStructReturn,
2205                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2206                    Outs, OutVals, Ins, DAG);
2207
2208    // Sibcalls are automatically detected tailcalls which do not require
2209    // ABI changes.
2210    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2211      IsSibcall = true;
2212
2213    if (isTailCall)
2214      ++NumTailCalls;
2215  }
2216
2217  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2218         "Var args not supported with calling convention fastcc or ghc");
2219
2220  // Analyze operands of the call, assigning locations to each operand.
2221  SmallVector<CCValAssign, 16> ArgLocs;
2222  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2223                 ArgLocs, *DAG.getContext());
2224
2225  // Allocate shadow area for Win64
2226  if (IsWin64) {
2227    CCInfo.AllocateStack(32, 8);
2228  }
2229
2230  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2231
2232  // Get a count of how many bytes are to be pushed on the stack.
2233  unsigned NumBytes = CCInfo.getNextStackOffset();
2234  if (IsSibcall)
2235    // This is a sibcall. The memory operands are available in caller's
2236    // own caller's stack.
2237    NumBytes = 0;
2238  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2239           IsTailCallConvention(CallConv))
2240    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2241
2242  int FPDiff = 0;
2243  if (isTailCall && !IsSibcall) {
2244    // Lower arguments at fp - stackoffset + fpdiff.
2245    unsigned NumBytesCallerPushed =
2246      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2247    FPDiff = NumBytesCallerPushed - NumBytes;
2248
2249    // Set the delta of movement of the returnaddr stackslot.
2250    // But only set if delta is greater than previous delta.
2251    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2252      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2253  }
2254
2255  if (!IsSibcall)
2256    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2257
2258  SDValue RetAddrFrIdx;
2259  // Load return address for tail calls.
2260  if (isTailCall && FPDiff)
2261    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2262                                    Is64Bit, FPDiff, dl);
2263
2264  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2265  SmallVector<SDValue, 8> MemOpChains;
2266  SDValue StackPtr;
2267
2268  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2269  // of tail call optimization arguments are handle later.
2270  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2271    CCValAssign &VA = ArgLocs[i];
2272    EVT RegVT = VA.getLocVT();
2273    SDValue Arg = OutVals[i];
2274    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2275    bool isByVal = Flags.isByVal();
2276
2277    // Promote the value if needed.
2278    switch (VA.getLocInfo()) {
2279    default: llvm_unreachable("Unknown loc info!");
2280    case CCValAssign::Full: break;
2281    case CCValAssign::SExt:
2282      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2283      break;
2284    case CCValAssign::ZExt:
2285      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2286      break;
2287    case CCValAssign::AExt:
2288      if (RegVT.is128BitVector()) {
2289        // Special case: passing MMX values in XMM registers.
2290        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2291        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2292        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2293      } else
2294        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2295      break;
2296    case CCValAssign::BCvt:
2297      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2298      break;
2299    case CCValAssign::Indirect: {
2300      // Store the argument.
2301      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2302      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2303      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2304                           MachinePointerInfo::getFixedStack(FI),
2305                           false, false, 0);
2306      Arg = SpillSlot;
2307      break;
2308    }
2309    }
2310
2311    if (VA.isRegLoc()) {
2312      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2313      if (isVarArg && IsWin64) {
2314        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2315        // shadow reg if callee is a varargs function.
2316        unsigned ShadowReg = 0;
2317        switch (VA.getLocReg()) {
2318        case X86::XMM0: ShadowReg = X86::RCX; break;
2319        case X86::XMM1: ShadowReg = X86::RDX; break;
2320        case X86::XMM2: ShadowReg = X86::R8; break;
2321        case X86::XMM3: ShadowReg = X86::R9; break;
2322        }
2323        if (ShadowReg)
2324          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2325      }
2326    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2327      assert(VA.isMemLoc());
2328      if (StackPtr.getNode() == 0)
2329        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2330      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2331                                             dl, DAG, VA, Flags));
2332    }
2333  }
2334
2335  if (!MemOpChains.empty())
2336    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2337                        &MemOpChains[0], MemOpChains.size());
2338
2339  if (Subtarget->isPICStyleGOT()) {
2340    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2341    // GOT pointer.
2342    if (!isTailCall) {
2343      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2344               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2345    } else {
2346      // If we are tail calling and generating PIC/GOT style code load the
2347      // address of the callee into ECX. The value in ecx is used as target of
2348      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2349      // for tail calls on PIC/GOT architectures. Normally we would just put the
2350      // address of GOT into ebx and then call target@PLT. But for tail calls
2351      // ebx would be restored (since ebx is callee saved) before jumping to the
2352      // target@PLT.
2353
2354      // Note: The actual moving to ECX is done further down.
2355      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2356      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2357          !G->getGlobal()->hasProtectedVisibility())
2358        Callee = LowerGlobalAddress(Callee, DAG);
2359      else if (isa<ExternalSymbolSDNode>(Callee))
2360        Callee = LowerExternalSymbol(Callee, DAG);
2361    }
2362  }
2363
2364  if (Is64Bit && isVarArg && !IsWin64) {
2365    // From AMD64 ABI document:
2366    // For calls that may call functions that use varargs or stdargs
2367    // (prototype-less calls or calls to functions containing ellipsis (...) in
2368    // the declaration) %al is used as hidden argument to specify the number
2369    // of SSE registers used. The contents of %al do not need to match exactly
2370    // the number of registers, but must be an ubound on the number of SSE
2371    // registers used and is in the range 0 - 8 inclusive.
2372
2373    // Count the number of XMM registers allocated.
2374    static const uint16_t XMMArgRegs[] = {
2375      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2376      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2377    };
2378    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2379    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2380           && "SSE registers cannot be used when SSE is disabled");
2381
2382    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2383                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2384  }
2385
2386  // For tail calls lower the arguments to the 'real' stack slot.
2387  if (isTailCall) {
2388    // Force all the incoming stack arguments to be loaded from the stack
2389    // before any new outgoing arguments are stored to the stack, because the
2390    // outgoing stack slots may alias the incoming argument stack slots, and
2391    // the alias isn't otherwise explicit. This is slightly more conservative
2392    // than necessary, because it means that each store effectively depends
2393    // on every argument instead of just those arguments it would clobber.
2394    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2395
2396    SmallVector<SDValue, 8> MemOpChains2;
2397    SDValue FIN;
2398    int FI = 0;
2399    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2400      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2401        CCValAssign &VA = ArgLocs[i];
2402        if (VA.isRegLoc())
2403          continue;
2404        assert(VA.isMemLoc());
2405        SDValue Arg = OutVals[i];
2406        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2407        // Create frame index.
2408        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2409        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2410        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2411        FIN = DAG.getFrameIndex(FI, getPointerTy());
2412
2413        if (Flags.isByVal()) {
2414          // Copy relative to framepointer.
2415          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2416          if (StackPtr.getNode() == 0)
2417            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2418                                          getPointerTy());
2419          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2420
2421          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2422                                                           ArgChain,
2423                                                           Flags, DAG, dl));
2424        } else {
2425          // Store relative to framepointer.
2426          MemOpChains2.push_back(
2427            DAG.getStore(ArgChain, dl, Arg, FIN,
2428                         MachinePointerInfo::getFixedStack(FI),
2429                         false, false, 0));
2430        }
2431      }
2432    }
2433
2434    if (!MemOpChains2.empty())
2435      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2436                          &MemOpChains2[0], MemOpChains2.size());
2437
2438    // Store the return address to the appropriate stack slot.
2439    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2440                                     FPDiff, dl);
2441  }
2442
2443  // Build a sequence of copy-to-reg nodes chained together with token chain
2444  // and flag operands which copy the outgoing args into registers.
2445  SDValue InFlag;
2446  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2447    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2448                             RegsToPass[i].second, InFlag);
2449    InFlag = Chain.getValue(1);
2450  }
2451
2452  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2453    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2454    // In the 64-bit large code model, we have to make all calls
2455    // through a register, since the call instruction's 32-bit
2456    // pc-relative offset may not be large enough to hold the whole
2457    // address.
2458  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2459    // If the callee is a GlobalAddress node (quite common, every direct call
2460    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2461    // it.
2462
2463    // We should use extra load for direct calls to dllimported functions in
2464    // non-JIT mode.
2465    const GlobalValue *GV = G->getGlobal();
2466    if (!GV->hasDLLImportLinkage()) {
2467      unsigned char OpFlags = 0;
2468      bool ExtraLoad = false;
2469      unsigned WrapperKind = ISD::DELETED_NODE;
2470
2471      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2472      // external symbols most go through the PLT in PIC mode.  If the symbol
2473      // has hidden or protected visibility, or if it is static or local, then
2474      // we don't need to use the PLT - we can directly call it.
2475      if (Subtarget->isTargetELF() &&
2476          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2477          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2478        OpFlags = X86II::MO_PLT;
2479      } else if (Subtarget->isPICStyleStubAny() &&
2480                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2481                 (!Subtarget->getTargetTriple().isMacOSX() ||
2482                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2483        // PC-relative references to external symbols should go through $stub,
2484        // unless we're building with the leopard linker or later, which
2485        // automatically synthesizes these stubs.
2486        OpFlags = X86II::MO_DARWIN_STUB;
2487      } else if (Subtarget->isPICStyleRIPRel() &&
2488                 isa<Function>(GV) &&
2489                 cast<Function>(GV)->getFnAttributes().hasNonLazyBindAttr()) {
2490        // If the function is marked as non-lazy, generate an indirect call
2491        // which loads from the GOT directly. This avoids runtime overhead
2492        // at the cost of eager binding (and one extra byte of encoding).
2493        OpFlags = X86II::MO_GOTPCREL;
2494        WrapperKind = X86ISD::WrapperRIP;
2495        ExtraLoad = true;
2496      }
2497
2498      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2499                                          G->getOffset(), OpFlags);
2500
2501      // Add a wrapper if needed.
2502      if (WrapperKind != ISD::DELETED_NODE)
2503        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2504      // Add extra indirection if needed.
2505      if (ExtraLoad)
2506        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2507                             MachinePointerInfo::getGOT(),
2508                             false, false, false, 0);
2509    }
2510  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2511    unsigned char OpFlags = 0;
2512
2513    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2514    // external symbols should go through the PLT.
2515    if (Subtarget->isTargetELF() &&
2516        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2517      OpFlags = X86II::MO_PLT;
2518    } else if (Subtarget->isPICStyleStubAny() &&
2519               (!Subtarget->getTargetTriple().isMacOSX() ||
2520                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2521      // PC-relative references to external symbols should go through $stub,
2522      // unless we're building with the leopard linker or later, which
2523      // automatically synthesizes these stubs.
2524      OpFlags = X86II::MO_DARWIN_STUB;
2525    }
2526
2527    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2528                                         OpFlags);
2529  }
2530
2531  // Returns a chain & a flag for retval copy to use.
2532  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2533  SmallVector<SDValue, 8> Ops;
2534
2535  if (!IsSibcall && isTailCall) {
2536    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2537                           DAG.getIntPtrConstant(0, true), InFlag);
2538    InFlag = Chain.getValue(1);
2539  }
2540
2541  Ops.push_back(Chain);
2542  Ops.push_back(Callee);
2543
2544  if (isTailCall)
2545    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2546
2547  // Add argument registers to the end of the list so that they are known live
2548  // into the call.
2549  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2550    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2551                                  RegsToPass[i].second.getValueType()));
2552
2553  // Add a register mask operand representing the call-preserved registers.
2554  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2555  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2556  assert(Mask && "Missing call preserved mask for calling convention");
2557  Ops.push_back(DAG.getRegisterMask(Mask));
2558
2559  if (InFlag.getNode())
2560    Ops.push_back(InFlag);
2561
2562  if (isTailCall) {
2563    // We used to do:
2564    //// If this is the first return lowered for this function, add the regs
2565    //// to the liveout set for the function.
2566    // This isn't right, although it's probably harmless on x86; liveouts
2567    // should be computed from returns not tail calls.  Consider a void
2568    // function making a tail call to a function returning int.
2569    return DAG.getNode(X86ISD::TC_RETURN, dl,
2570                       NodeTys, &Ops[0], Ops.size());
2571  }
2572
2573  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2574  InFlag = Chain.getValue(1);
2575
2576  // Create the CALLSEQ_END node.
2577  unsigned NumBytesForCalleeToPush;
2578  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2579                       getTargetMachine().Options.GuaranteedTailCallOpt))
2580    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2581  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2582           SR == StackStructReturn)
2583    // If this is a call to a struct-return function, the callee
2584    // pops the hidden struct pointer, so we have to push it back.
2585    // This is common for Darwin/X86, Linux & Mingw32 targets.
2586    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2587    NumBytesForCalleeToPush = 4;
2588  else
2589    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2590
2591  // Returns a flag for retval copy to use.
2592  if (!IsSibcall) {
2593    Chain = DAG.getCALLSEQ_END(Chain,
2594                               DAG.getIntPtrConstant(NumBytes, true),
2595                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2596                                                     true),
2597                               InFlag);
2598    InFlag = Chain.getValue(1);
2599  }
2600
2601  // Handle result values, copying them out of physregs into vregs that we
2602  // return.
2603  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2604                         Ins, dl, DAG, InVals);
2605}
2606
2607
2608//===----------------------------------------------------------------------===//
2609//                Fast Calling Convention (tail call) implementation
2610//===----------------------------------------------------------------------===//
2611
2612//  Like std call, callee cleans arguments, convention except that ECX is
2613//  reserved for storing the tail called function address. Only 2 registers are
2614//  free for argument passing (inreg). Tail call optimization is performed
2615//  provided:
2616//                * tailcallopt is enabled
2617//                * caller/callee are fastcc
2618//  On X86_64 architecture with GOT-style position independent code only local
2619//  (within module) calls are supported at the moment.
2620//  To keep the stack aligned according to platform abi the function
2621//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2622//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2623//  If a tail called function callee has more arguments than the caller the
2624//  caller needs to make sure that there is room to move the RETADDR to. This is
2625//  achieved by reserving an area the size of the argument delta right after the
2626//  original REtADDR, but before the saved framepointer or the spilled registers
2627//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2628//  stack layout:
2629//    arg1
2630//    arg2
2631//    RETADDR
2632//    [ new RETADDR
2633//      move area ]
2634//    (possible EBP)
2635//    ESI
2636//    EDI
2637//    local1 ..
2638
2639/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2640/// for a 16 byte align requirement.
2641unsigned
2642X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2643                                               SelectionDAG& DAG) const {
2644  MachineFunction &MF = DAG.getMachineFunction();
2645  const TargetMachine &TM = MF.getTarget();
2646  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2647  unsigned StackAlignment = TFI.getStackAlignment();
2648  uint64_t AlignMask = StackAlignment - 1;
2649  int64_t Offset = StackSize;
2650  uint64_t SlotSize = TD->getPointerSize();
2651  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2652    // Number smaller than 12 so just add the difference.
2653    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2654  } else {
2655    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2656    Offset = ((~AlignMask) & Offset) + StackAlignment +
2657      (StackAlignment-SlotSize);
2658  }
2659  return Offset;
2660}
2661
2662/// MatchingStackOffset - Return true if the given stack call argument is
2663/// already available in the same position (relatively) of the caller's
2664/// incoming argument stack.
2665static
2666bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2667                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2668                         const X86InstrInfo *TII) {
2669  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2670  int FI = INT_MAX;
2671  if (Arg.getOpcode() == ISD::CopyFromReg) {
2672    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2673    if (!TargetRegisterInfo::isVirtualRegister(VR))
2674      return false;
2675    MachineInstr *Def = MRI->getVRegDef(VR);
2676    if (!Def)
2677      return false;
2678    if (!Flags.isByVal()) {
2679      if (!TII->isLoadFromStackSlot(Def, FI))
2680        return false;
2681    } else {
2682      unsigned Opcode = Def->getOpcode();
2683      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2684          Def->getOperand(1).isFI()) {
2685        FI = Def->getOperand(1).getIndex();
2686        Bytes = Flags.getByValSize();
2687      } else
2688        return false;
2689    }
2690  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2691    if (Flags.isByVal())
2692      // ByVal argument is passed in as a pointer but it's now being
2693      // dereferenced. e.g.
2694      // define @foo(%struct.X* %A) {
2695      //   tail call @bar(%struct.X* byval %A)
2696      // }
2697      return false;
2698    SDValue Ptr = Ld->getBasePtr();
2699    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2700    if (!FINode)
2701      return false;
2702    FI = FINode->getIndex();
2703  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2704    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2705    FI = FINode->getIndex();
2706    Bytes = Flags.getByValSize();
2707  } else
2708    return false;
2709
2710  assert(FI != INT_MAX);
2711  if (!MFI->isFixedObjectIndex(FI))
2712    return false;
2713  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2714}
2715
2716/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2717/// for tail call optimization. Targets which want to do tail call
2718/// optimization should implement this function.
2719bool
2720X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2721                                                     CallingConv::ID CalleeCC,
2722                                                     bool isVarArg,
2723                                                     bool isCalleeStructRet,
2724                                                     bool isCallerStructRet,
2725                                                     Type *RetTy,
2726                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2727                                    const SmallVectorImpl<SDValue> &OutVals,
2728                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2729                                                     SelectionDAG& DAG) const {
2730  if (!IsTailCallConvention(CalleeCC) &&
2731      CalleeCC != CallingConv::C)
2732    return false;
2733
2734  // If -tailcallopt is specified, make fastcc functions tail-callable.
2735  const MachineFunction &MF = DAG.getMachineFunction();
2736  const Function *CallerF = DAG.getMachineFunction().getFunction();
2737
2738  // If the function return type is x86_fp80 and the callee return type is not,
2739  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2740  // perform a tailcall optimization here.
2741  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2742    return false;
2743
2744  CallingConv::ID CallerCC = CallerF->getCallingConv();
2745  bool CCMatch = CallerCC == CalleeCC;
2746
2747  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2748    if (IsTailCallConvention(CalleeCC) && CCMatch)
2749      return true;
2750    return false;
2751  }
2752
2753  // Look for obvious safe cases to perform tail call optimization that do not
2754  // require ABI changes. This is what gcc calls sibcall.
2755
2756  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2757  // emit a special epilogue.
2758  if (RegInfo->needsStackRealignment(MF))
2759    return false;
2760
2761  // Also avoid sibcall optimization if either caller or callee uses struct
2762  // return semantics.
2763  if (isCalleeStructRet || isCallerStructRet)
2764    return false;
2765
2766  // An stdcall caller is expected to clean up its arguments; the callee
2767  // isn't going to do that.
2768  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2769    return false;
2770
2771  // Do not sibcall optimize vararg calls unless all arguments are passed via
2772  // registers.
2773  if (isVarArg && !Outs.empty()) {
2774
2775    // Optimizing for varargs on Win64 is unlikely to be safe without
2776    // additional testing.
2777    if (Subtarget->isTargetWin64())
2778      return false;
2779
2780    SmallVector<CCValAssign, 16> ArgLocs;
2781    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2782                   getTargetMachine(), ArgLocs, *DAG.getContext());
2783
2784    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2785    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2786      if (!ArgLocs[i].isRegLoc())
2787        return false;
2788  }
2789
2790  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2791  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2792  // this into a sibcall.
2793  bool Unused = false;
2794  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2795    if (!Ins[i].Used) {
2796      Unused = true;
2797      break;
2798    }
2799  }
2800  if (Unused) {
2801    SmallVector<CCValAssign, 16> RVLocs;
2802    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2803                   getTargetMachine(), RVLocs, *DAG.getContext());
2804    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2805    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2806      CCValAssign &VA = RVLocs[i];
2807      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2808        return false;
2809    }
2810  }
2811
2812  // If the calling conventions do not match, then we'd better make sure the
2813  // results are returned in the same way as what the caller expects.
2814  if (!CCMatch) {
2815    SmallVector<CCValAssign, 16> RVLocs1;
2816    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2817                    getTargetMachine(), RVLocs1, *DAG.getContext());
2818    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2819
2820    SmallVector<CCValAssign, 16> RVLocs2;
2821    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2822                    getTargetMachine(), RVLocs2, *DAG.getContext());
2823    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2824
2825    if (RVLocs1.size() != RVLocs2.size())
2826      return false;
2827    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2828      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2829        return false;
2830      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2831        return false;
2832      if (RVLocs1[i].isRegLoc()) {
2833        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2834          return false;
2835      } else {
2836        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2837          return false;
2838      }
2839    }
2840  }
2841
2842  // If the callee takes no arguments then go on to check the results of the
2843  // call.
2844  if (!Outs.empty()) {
2845    // Check if stack adjustment is needed. For now, do not do this if any
2846    // argument is passed on the stack.
2847    SmallVector<CCValAssign, 16> ArgLocs;
2848    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2849                   getTargetMachine(), ArgLocs, *DAG.getContext());
2850
2851    // Allocate shadow area for Win64
2852    if (Subtarget->isTargetWin64()) {
2853      CCInfo.AllocateStack(32, 8);
2854    }
2855
2856    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2857    if (CCInfo.getNextStackOffset()) {
2858      MachineFunction &MF = DAG.getMachineFunction();
2859      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2860        return false;
2861
2862      // Check if the arguments are already laid out in the right way as
2863      // the caller's fixed stack objects.
2864      MachineFrameInfo *MFI = MF.getFrameInfo();
2865      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2866      const X86InstrInfo *TII =
2867        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2868      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2869        CCValAssign &VA = ArgLocs[i];
2870        SDValue Arg = OutVals[i];
2871        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2872        if (VA.getLocInfo() == CCValAssign::Indirect)
2873          return false;
2874        if (!VA.isRegLoc()) {
2875          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2876                                   MFI, MRI, TII))
2877            return false;
2878        }
2879      }
2880    }
2881
2882    // If the tailcall address may be in a register, then make sure it's
2883    // possible to register allocate for it. In 32-bit, the call address can
2884    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2885    // callee-saved registers are restored. These happen to be the same
2886    // registers used to pass 'inreg' arguments so watch out for those.
2887    if (!Subtarget->is64Bit() &&
2888        !isa<GlobalAddressSDNode>(Callee) &&
2889        !isa<ExternalSymbolSDNode>(Callee)) {
2890      unsigned NumInRegs = 0;
2891      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2892        CCValAssign &VA = ArgLocs[i];
2893        if (!VA.isRegLoc())
2894          continue;
2895        unsigned Reg = VA.getLocReg();
2896        switch (Reg) {
2897        default: break;
2898        case X86::EAX: case X86::EDX: case X86::ECX:
2899          if (++NumInRegs == 3)
2900            return false;
2901          break;
2902        }
2903      }
2904    }
2905  }
2906
2907  return true;
2908}
2909
2910FastISel *
2911X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2912                                  const TargetLibraryInfo *libInfo) const {
2913  return X86::createFastISel(funcInfo, libInfo);
2914}
2915
2916
2917//===----------------------------------------------------------------------===//
2918//                           Other Lowering Hooks
2919//===----------------------------------------------------------------------===//
2920
2921static bool MayFoldLoad(SDValue Op) {
2922  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2923}
2924
2925static bool MayFoldIntoStore(SDValue Op) {
2926  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2927}
2928
2929static bool isTargetShuffle(unsigned Opcode) {
2930  switch(Opcode) {
2931  default: return false;
2932  case X86ISD::PSHUFD:
2933  case X86ISD::PSHUFHW:
2934  case X86ISD::PSHUFLW:
2935  case X86ISD::SHUFP:
2936  case X86ISD::PALIGN:
2937  case X86ISD::MOVLHPS:
2938  case X86ISD::MOVLHPD:
2939  case X86ISD::MOVHLPS:
2940  case X86ISD::MOVLPS:
2941  case X86ISD::MOVLPD:
2942  case X86ISD::MOVSHDUP:
2943  case X86ISD::MOVSLDUP:
2944  case X86ISD::MOVDDUP:
2945  case X86ISD::MOVSS:
2946  case X86ISD::MOVSD:
2947  case X86ISD::UNPCKL:
2948  case X86ISD::UNPCKH:
2949  case X86ISD::VPERMILP:
2950  case X86ISD::VPERM2X128:
2951  case X86ISD::VPERMI:
2952    return true;
2953  }
2954}
2955
2956static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2957                                    SDValue V1, SelectionDAG &DAG) {
2958  switch(Opc) {
2959  default: llvm_unreachable("Unknown x86 shuffle node");
2960  case X86ISD::MOVSHDUP:
2961  case X86ISD::MOVSLDUP:
2962  case X86ISD::MOVDDUP:
2963    return DAG.getNode(Opc, dl, VT, V1);
2964  }
2965}
2966
2967static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2968                                    SDValue V1, unsigned TargetMask,
2969                                    SelectionDAG &DAG) {
2970  switch(Opc) {
2971  default: llvm_unreachable("Unknown x86 shuffle node");
2972  case X86ISD::PSHUFD:
2973  case X86ISD::PSHUFHW:
2974  case X86ISD::PSHUFLW:
2975  case X86ISD::VPERMILP:
2976  case X86ISD::VPERMI:
2977    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2978  }
2979}
2980
2981static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2982                                    SDValue V1, SDValue V2, unsigned TargetMask,
2983                                    SelectionDAG &DAG) {
2984  switch(Opc) {
2985  default: llvm_unreachable("Unknown x86 shuffle node");
2986  case X86ISD::PALIGN:
2987  case X86ISD::SHUFP:
2988  case X86ISD::VPERM2X128:
2989    return DAG.getNode(Opc, dl, VT, V1, V2,
2990                       DAG.getConstant(TargetMask, MVT::i8));
2991  }
2992}
2993
2994static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2995                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2996  switch(Opc) {
2997  default: llvm_unreachable("Unknown x86 shuffle node");
2998  case X86ISD::MOVLHPS:
2999  case X86ISD::MOVLHPD:
3000  case X86ISD::MOVHLPS:
3001  case X86ISD::MOVLPS:
3002  case X86ISD::MOVLPD:
3003  case X86ISD::MOVSS:
3004  case X86ISD::MOVSD:
3005  case X86ISD::UNPCKL:
3006  case X86ISD::UNPCKH:
3007    return DAG.getNode(Opc, dl, VT, V1, V2);
3008  }
3009}
3010
3011SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3012  MachineFunction &MF = DAG.getMachineFunction();
3013  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3014  int ReturnAddrIndex = FuncInfo->getRAIndex();
3015
3016  if (ReturnAddrIndex == 0) {
3017    // Set up a frame object for the return address.
3018    uint64_t SlotSize = TD->getPointerSize();
3019    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3020                                                           false);
3021    FuncInfo->setRAIndex(ReturnAddrIndex);
3022  }
3023
3024  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3025}
3026
3027
3028bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3029                                       bool hasSymbolicDisplacement) {
3030  // Offset should fit into 32 bit immediate field.
3031  if (!isInt<32>(Offset))
3032    return false;
3033
3034  // If we don't have a symbolic displacement - we don't have any extra
3035  // restrictions.
3036  if (!hasSymbolicDisplacement)
3037    return true;
3038
3039  // FIXME: Some tweaks might be needed for medium code model.
3040  if (M != CodeModel::Small && M != CodeModel::Kernel)
3041    return false;
3042
3043  // For small code model we assume that latest object is 16MB before end of 31
3044  // bits boundary. We may also accept pretty large negative constants knowing
3045  // that all objects are in the positive half of address space.
3046  if (M == CodeModel::Small && Offset < 16*1024*1024)
3047    return true;
3048
3049  // For kernel code model we know that all object resist in the negative half
3050  // of 32bits address space. We may not accept negative offsets, since they may
3051  // be just off and we may accept pretty large positive ones.
3052  if (M == CodeModel::Kernel && Offset > 0)
3053    return true;
3054
3055  return false;
3056}
3057
3058/// isCalleePop - Determines whether the callee is required to pop its
3059/// own arguments. Callee pop is necessary to support tail calls.
3060bool X86::isCalleePop(CallingConv::ID CallingConv,
3061                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3062  if (IsVarArg)
3063    return false;
3064
3065  switch (CallingConv) {
3066  default:
3067    return false;
3068  case CallingConv::X86_StdCall:
3069    return !is64Bit;
3070  case CallingConv::X86_FastCall:
3071    return !is64Bit;
3072  case CallingConv::X86_ThisCall:
3073    return !is64Bit;
3074  case CallingConv::Fast:
3075    return TailCallOpt;
3076  case CallingConv::GHC:
3077    return TailCallOpt;
3078  }
3079}
3080
3081/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3082/// specific condition code, returning the condition code and the LHS/RHS of the
3083/// comparison to make.
3084static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3085                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3086  if (!isFP) {
3087    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3088      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3089        // X > -1   -> X == 0, jump !sign.
3090        RHS = DAG.getConstant(0, RHS.getValueType());
3091        return X86::COND_NS;
3092      }
3093      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3094        // X < 0   -> X == 0, jump on sign.
3095        return X86::COND_S;
3096      }
3097      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3098        // X < 1   -> X <= 0
3099        RHS = DAG.getConstant(0, RHS.getValueType());
3100        return X86::COND_LE;
3101      }
3102    }
3103
3104    switch (SetCCOpcode) {
3105    default: llvm_unreachable("Invalid integer condition!");
3106    case ISD::SETEQ:  return X86::COND_E;
3107    case ISD::SETGT:  return X86::COND_G;
3108    case ISD::SETGE:  return X86::COND_GE;
3109    case ISD::SETLT:  return X86::COND_L;
3110    case ISD::SETLE:  return X86::COND_LE;
3111    case ISD::SETNE:  return X86::COND_NE;
3112    case ISD::SETULT: return X86::COND_B;
3113    case ISD::SETUGT: return X86::COND_A;
3114    case ISD::SETULE: return X86::COND_BE;
3115    case ISD::SETUGE: return X86::COND_AE;
3116    }
3117  }
3118
3119  // First determine if it is required or is profitable to flip the operands.
3120
3121  // If LHS is a foldable load, but RHS is not, flip the condition.
3122  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3123      !ISD::isNON_EXTLoad(RHS.getNode())) {
3124    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3125    std::swap(LHS, RHS);
3126  }
3127
3128  switch (SetCCOpcode) {
3129  default: break;
3130  case ISD::SETOLT:
3131  case ISD::SETOLE:
3132  case ISD::SETUGT:
3133  case ISD::SETUGE:
3134    std::swap(LHS, RHS);
3135    break;
3136  }
3137
3138  // On a floating point condition, the flags are set as follows:
3139  // ZF  PF  CF   op
3140  //  0 | 0 | 0 | X > Y
3141  //  0 | 0 | 1 | X < Y
3142  //  1 | 0 | 0 | X == Y
3143  //  1 | 1 | 1 | unordered
3144  switch (SetCCOpcode) {
3145  default: llvm_unreachable("Condcode should be pre-legalized away");
3146  case ISD::SETUEQ:
3147  case ISD::SETEQ:   return X86::COND_E;
3148  case ISD::SETOLT:              // flipped
3149  case ISD::SETOGT:
3150  case ISD::SETGT:   return X86::COND_A;
3151  case ISD::SETOLE:              // flipped
3152  case ISD::SETOGE:
3153  case ISD::SETGE:   return X86::COND_AE;
3154  case ISD::SETUGT:              // flipped
3155  case ISD::SETULT:
3156  case ISD::SETLT:   return X86::COND_B;
3157  case ISD::SETUGE:              // flipped
3158  case ISD::SETULE:
3159  case ISD::SETLE:   return X86::COND_BE;
3160  case ISD::SETONE:
3161  case ISD::SETNE:   return X86::COND_NE;
3162  case ISD::SETUO:   return X86::COND_P;
3163  case ISD::SETO:    return X86::COND_NP;
3164  case ISD::SETOEQ:
3165  case ISD::SETUNE:  return X86::COND_INVALID;
3166  }
3167}
3168
3169/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3170/// code. Current x86 isa includes the following FP cmov instructions:
3171/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3172static bool hasFPCMov(unsigned X86CC) {
3173  switch (X86CC) {
3174  default:
3175    return false;
3176  case X86::COND_B:
3177  case X86::COND_BE:
3178  case X86::COND_E:
3179  case X86::COND_P:
3180  case X86::COND_A:
3181  case X86::COND_AE:
3182  case X86::COND_NE:
3183  case X86::COND_NP:
3184    return true;
3185  }
3186}
3187
3188/// isFPImmLegal - Returns true if the target can instruction select the
3189/// specified FP immediate natively. If false, the legalizer will
3190/// materialize the FP immediate as a load from a constant pool.
3191bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3192  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3193    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3194      return true;
3195  }
3196  return false;
3197}
3198
3199/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3200/// the specified range (L, H].
3201static bool isUndefOrInRange(int Val, int Low, int Hi) {
3202  return (Val < 0) || (Val >= Low && Val < Hi);
3203}
3204
3205/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3206/// specified value.
3207static bool isUndefOrEqual(int Val, int CmpVal) {
3208  if (Val < 0 || Val == CmpVal)
3209    return true;
3210  return false;
3211}
3212
3213/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3214/// from position Pos and ending in Pos+Size, falls within the specified
3215/// sequential range (L, L+Pos]. or is undef.
3216static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3217                                       unsigned Pos, unsigned Size, int Low) {
3218  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3219    if (!isUndefOrEqual(Mask[i], Low))
3220      return false;
3221  return true;
3222}
3223
3224/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3225/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3226/// the second operand.
3227static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3228  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3229    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3230  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3231    return (Mask[0] < 2 && Mask[1] < 2);
3232  return false;
3233}
3234
3235/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3236/// is suitable for input to PSHUFHW.
3237static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3238  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3239    return false;
3240
3241  // Lower quadword copied in order or undef.
3242  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3243    return false;
3244
3245  // Upper quadword shuffled.
3246  for (unsigned i = 4; i != 8; ++i)
3247    if (!isUndefOrInRange(Mask[i], 4, 8))
3248      return false;
3249
3250  if (VT == MVT::v16i16) {
3251    // Lower quadword copied in order or undef.
3252    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3253      return false;
3254
3255    // Upper quadword shuffled.
3256    for (unsigned i = 12; i != 16; ++i)
3257      if (!isUndefOrInRange(Mask[i], 12, 16))
3258        return false;
3259  }
3260
3261  return true;
3262}
3263
3264/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3265/// is suitable for input to PSHUFLW.
3266static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3267  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3268    return false;
3269
3270  // Upper quadword copied in order.
3271  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3272    return false;
3273
3274  // Lower quadword shuffled.
3275  for (unsigned i = 0; i != 4; ++i)
3276    if (!isUndefOrInRange(Mask[i], 0, 4))
3277      return false;
3278
3279  if (VT == MVT::v16i16) {
3280    // Upper quadword copied in order.
3281    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3282      return false;
3283
3284    // Lower quadword shuffled.
3285    for (unsigned i = 8; i != 12; ++i)
3286      if (!isUndefOrInRange(Mask[i], 8, 12))
3287        return false;
3288  }
3289
3290  return true;
3291}
3292
3293/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3294/// is suitable for input to PALIGNR.
3295static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3296                          const X86Subtarget *Subtarget) {
3297  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3298      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3299    return false;
3300
3301  unsigned NumElts = VT.getVectorNumElements();
3302  unsigned NumLanes = VT.getSizeInBits()/128;
3303  unsigned NumLaneElts = NumElts/NumLanes;
3304
3305  // Do not handle 64-bit element shuffles with palignr.
3306  if (NumLaneElts == 2)
3307    return false;
3308
3309  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3310    unsigned i;
3311    for (i = 0; i != NumLaneElts; ++i) {
3312      if (Mask[i+l] >= 0)
3313        break;
3314    }
3315
3316    // Lane is all undef, go to next lane
3317    if (i == NumLaneElts)
3318      continue;
3319
3320    int Start = Mask[i+l];
3321
3322    // Make sure its in this lane in one of the sources
3323    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3324        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3325      return false;
3326
3327    // If not lane 0, then we must match lane 0
3328    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3329      return false;
3330
3331    // Correct second source to be contiguous with first source
3332    if (Start >= (int)NumElts)
3333      Start -= NumElts - NumLaneElts;
3334
3335    // Make sure we're shifting in the right direction.
3336    if (Start <= (int)(i+l))
3337      return false;
3338
3339    Start -= i;
3340
3341    // Check the rest of the elements to see if they are consecutive.
3342    for (++i; i != NumLaneElts; ++i) {
3343      int Idx = Mask[i+l];
3344
3345      // Make sure its in this lane
3346      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3347          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3348        return false;
3349
3350      // If not lane 0, then we must match lane 0
3351      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3352        return false;
3353
3354      if (Idx >= (int)NumElts)
3355        Idx -= NumElts - NumLaneElts;
3356
3357      if (!isUndefOrEqual(Idx, Start+i))
3358        return false;
3359
3360    }
3361  }
3362
3363  return true;
3364}
3365
3366/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3367/// the two vector operands have swapped position.
3368static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3369                                     unsigned NumElems) {
3370  for (unsigned i = 0; i != NumElems; ++i) {
3371    int idx = Mask[i];
3372    if (idx < 0)
3373      continue;
3374    else if (idx < (int)NumElems)
3375      Mask[i] = idx + NumElems;
3376    else
3377      Mask[i] = idx - NumElems;
3378  }
3379}
3380
3381/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3382/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3383/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3384/// reverse of what x86 shuffles want.
3385static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3386                        bool Commuted = false) {
3387  if (!HasAVX && VT.getSizeInBits() == 256)
3388    return false;
3389
3390  unsigned NumElems = VT.getVectorNumElements();
3391  unsigned NumLanes = VT.getSizeInBits()/128;
3392  unsigned NumLaneElems = NumElems/NumLanes;
3393
3394  if (NumLaneElems != 2 && NumLaneElems != 4)
3395    return false;
3396
3397  // VSHUFPSY divides the resulting vector into 4 chunks.
3398  // The sources are also splitted into 4 chunks, and each destination
3399  // chunk must come from a different source chunk.
3400  //
3401  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3402  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3403  //
3404  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3405  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3406  //
3407  // VSHUFPDY divides the resulting vector into 4 chunks.
3408  // The sources are also splitted into 4 chunks, and each destination
3409  // chunk must come from a different source chunk.
3410  //
3411  //  SRC1 =>      X3       X2       X1       X0
3412  //  SRC2 =>      Y3       Y2       Y1       Y0
3413  //
3414  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3415  //
3416  unsigned HalfLaneElems = NumLaneElems/2;
3417  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3418    for (unsigned i = 0; i != NumLaneElems; ++i) {
3419      int Idx = Mask[i+l];
3420      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3421      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3422        return false;
3423      // For VSHUFPSY, the mask of the second half must be the same as the
3424      // first but with the appropriate offsets. This works in the same way as
3425      // VPERMILPS works with masks.
3426      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3427        continue;
3428      if (!isUndefOrEqual(Idx, Mask[i]+l))
3429        return false;
3430    }
3431  }
3432
3433  return true;
3434}
3435
3436/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3437/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3438static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3439  if (!VT.is128BitVector())
3440    return false;
3441
3442  unsigned NumElems = VT.getVectorNumElements();
3443
3444  if (NumElems != 4)
3445    return false;
3446
3447  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3448  return isUndefOrEqual(Mask[0], 6) &&
3449         isUndefOrEqual(Mask[1], 7) &&
3450         isUndefOrEqual(Mask[2], 2) &&
3451         isUndefOrEqual(Mask[3], 3);
3452}
3453
3454/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3455/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3456/// <2, 3, 2, 3>
3457static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3458  if (!VT.is128BitVector())
3459    return false;
3460
3461  unsigned NumElems = VT.getVectorNumElements();
3462
3463  if (NumElems != 4)
3464    return false;
3465
3466  return isUndefOrEqual(Mask[0], 2) &&
3467         isUndefOrEqual(Mask[1], 3) &&
3468         isUndefOrEqual(Mask[2], 2) &&
3469         isUndefOrEqual(Mask[3], 3);
3470}
3471
3472/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3473/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3474static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3475  if (!VT.is128BitVector())
3476    return false;
3477
3478  unsigned NumElems = VT.getVectorNumElements();
3479
3480  if (NumElems != 2 && NumElems != 4)
3481    return false;
3482
3483  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3484    if (!isUndefOrEqual(Mask[i], i + NumElems))
3485      return false;
3486
3487  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3488    if (!isUndefOrEqual(Mask[i], i))
3489      return false;
3490
3491  return true;
3492}
3493
3494/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3495/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3496static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3497  if (!VT.is128BitVector())
3498    return false;
3499
3500  unsigned NumElems = VT.getVectorNumElements();
3501
3502  if (NumElems != 2 && NumElems != 4)
3503    return false;
3504
3505  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3506    if (!isUndefOrEqual(Mask[i], i))
3507      return false;
3508
3509  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3510    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3511      return false;
3512
3513  return true;
3514}
3515
3516//
3517// Some special combinations that can be optimized.
3518//
3519static
3520SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3521                               SelectionDAG &DAG) {
3522  EVT VT = SVOp->getValueType(0);
3523  DebugLoc dl = SVOp->getDebugLoc();
3524
3525  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3526    return SDValue();
3527
3528  ArrayRef<int> Mask = SVOp->getMask();
3529
3530  // These are the special masks that may be optimized.
3531  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3532  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3533  bool MatchEvenMask = true;
3534  bool MatchOddMask  = true;
3535  for (int i=0; i<8; ++i) {
3536    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3537      MatchEvenMask = false;
3538    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3539      MatchOddMask = false;
3540  }
3541
3542  if (!MatchEvenMask && !MatchOddMask)
3543    return SDValue();
3544
3545  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3546
3547  SDValue Op0 = SVOp->getOperand(0);
3548  SDValue Op1 = SVOp->getOperand(1);
3549
3550  if (MatchEvenMask) {
3551    // Shift the second operand right to 32 bits.
3552    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3553    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3554  } else {
3555    // Shift the first operand left to 32 bits.
3556    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3557    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3558  }
3559  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3560  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3561}
3562
3563/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3564/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3565static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3566                         bool HasAVX2, bool V2IsSplat = false) {
3567  unsigned NumElts = VT.getVectorNumElements();
3568
3569  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3570         "Unsupported vector type for unpckh");
3571
3572  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3573      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3574    return false;
3575
3576  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3577  // independently on 128-bit lanes.
3578  unsigned NumLanes = VT.getSizeInBits()/128;
3579  unsigned NumLaneElts = NumElts/NumLanes;
3580
3581  for (unsigned l = 0; l != NumLanes; ++l) {
3582    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3583         i != (l+1)*NumLaneElts;
3584         i += 2, ++j) {
3585      int BitI  = Mask[i];
3586      int BitI1 = Mask[i+1];
3587      if (!isUndefOrEqual(BitI, j))
3588        return false;
3589      if (V2IsSplat) {
3590        if (!isUndefOrEqual(BitI1, NumElts))
3591          return false;
3592      } else {
3593        if (!isUndefOrEqual(BitI1, j + NumElts))
3594          return false;
3595      }
3596    }
3597  }
3598
3599  return true;
3600}
3601
3602/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3603/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3604static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3605                         bool HasAVX2, bool V2IsSplat = false) {
3606  unsigned NumElts = VT.getVectorNumElements();
3607
3608  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3609         "Unsupported vector type for unpckh");
3610
3611  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3612      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3613    return false;
3614
3615  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3616  // independently on 128-bit lanes.
3617  unsigned NumLanes = VT.getSizeInBits()/128;
3618  unsigned NumLaneElts = NumElts/NumLanes;
3619
3620  for (unsigned l = 0; l != NumLanes; ++l) {
3621    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3622         i != (l+1)*NumLaneElts; i += 2, ++j) {
3623      int BitI  = Mask[i];
3624      int BitI1 = Mask[i+1];
3625      if (!isUndefOrEqual(BitI, j))
3626        return false;
3627      if (V2IsSplat) {
3628        if (isUndefOrEqual(BitI1, NumElts))
3629          return false;
3630      } else {
3631        if (!isUndefOrEqual(BitI1, j+NumElts))
3632          return false;
3633      }
3634    }
3635  }
3636  return true;
3637}
3638
3639/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3640/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3641/// <0, 0, 1, 1>
3642static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3643                                  bool HasAVX2) {
3644  unsigned NumElts = VT.getVectorNumElements();
3645
3646  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3647         "Unsupported vector type for unpckh");
3648
3649  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3650      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3651    return false;
3652
3653  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3654  // FIXME: Need a better way to get rid of this, there's no latency difference
3655  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3656  // the former later. We should also remove the "_undef" special mask.
3657  if (NumElts == 4 && VT.getSizeInBits() == 256)
3658    return false;
3659
3660  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3661  // independently on 128-bit lanes.
3662  unsigned NumLanes = VT.getSizeInBits()/128;
3663  unsigned NumLaneElts = NumElts/NumLanes;
3664
3665  for (unsigned l = 0; l != NumLanes; ++l) {
3666    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3667         i != (l+1)*NumLaneElts;
3668         i += 2, ++j) {
3669      int BitI  = Mask[i];
3670      int BitI1 = Mask[i+1];
3671
3672      if (!isUndefOrEqual(BitI, j))
3673        return false;
3674      if (!isUndefOrEqual(BitI1, j))
3675        return false;
3676    }
3677  }
3678
3679  return true;
3680}
3681
3682/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3683/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3684/// <2, 2, 3, 3>
3685static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3686  unsigned NumElts = VT.getVectorNumElements();
3687
3688  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3689         "Unsupported vector type for unpckh");
3690
3691  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3692      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3693    return false;
3694
3695  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3696  // independently on 128-bit lanes.
3697  unsigned NumLanes = VT.getSizeInBits()/128;
3698  unsigned NumLaneElts = NumElts/NumLanes;
3699
3700  for (unsigned l = 0; l != NumLanes; ++l) {
3701    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3702         i != (l+1)*NumLaneElts; i += 2, ++j) {
3703      int BitI  = Mask[i];
3704      int BitI1 = Mask[i+1];
3705      if (!isUndefOrEqual(BitI, j))
3706        return false;
3707      if (!isUndefOrEqual(BitI1, j))
3708        return false;
3709    }
3710  }
3711  return true;
3712}
3713
3714/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3715/// specifies a shuffle of elements that is suitable for input to MOVSS,
3716/// MOVSD, and MOVD, i.e. setting the lowest element.
3717static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3718  if (VT.getVectorElementType().getSizeInBits() < 32)
3719    return false;
3720  if (!VT.is128BitVector())
3721    return false;
3722
3723  unsigned NumElts = VT.getVectorNumElements();
3724
3725  if (!isUndefOrEqual(Mask[0], NumElts))
3726    return false;
3727
3728  for (unsigned i = 1; i != NumElts; ++i)
3729    if (!isUndefOrEqual(Mask[i], i))
3730      return false;
3731
3732  return true;
3733}
3734
3735/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3736/// as permutations between 128-bit chunks or halves. As an example: this
3737/// shuffle bellow:
3738///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3739/// The first half comes from the second half of V1 and the second half from the
3740/// the second half of V2.
3741static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3742  if (!HasAVX || !VT.is256BitVector())
3743    return false;
3744
3745  // The shuffle result is divided into half A and half B. In total the two
3746  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3747  // B must come from C, D, E or F.
3748  unsigned HalfSize = VT.getVectorNumElements()/2;
3749  bool MatchA = false, MatchB = false;
3750
3751  // Check if A comes from one of C, D, E, F.
3752  for (unsigned Half = 0; Half != 4; ++Half) {
3753    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3754      MatchA = true;
3755      break;
3756    }
3757  }
3758
3759  // Check if B comes from one of C, D, E, F.
3760  for (unsigned Half = 0; Half != 4; ++Half) {
3761    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3762      MatchB = true;
3763      break;
3764    }
3765  }
3766
3767  return MatchA && MatchB;
3768}
3769
3770/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3771/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3772static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3773  EVT VT = SVOp->getValueType(0);
3774
3775  unsigned HalfSize = VT.getVectorNumElements()/2;
3776
3777  unsigned FstHalf = 0, SndHalf = 0;
3778  for (unsigned i = 0; i < HalfSize; ++i) {
3779    if (SVOp->getMaskElt(i) > 0) {
3780      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3781      break;
3782    }
3783  }
3784  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3785    if (SVOp->getMaskElt(i) > 0) {
3786      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3787      break;
3788    }
3789  }
3790
3791  return (FstHalf | (SndHalf << 4));
3792}
3793
3794/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3795/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3796/// Note that VPERMIL mask matching is different depending whether theunderlying
3797/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3798/// to the same elements of the low, but to the higher half of the source.
3799/// In VPERMILPD the two lanes could be shuffled independently of each other
3800/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3801static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3802  if (!HasAVX)
3803    return false;
3804
3805  unsigned NumElts = VT.getVectorNumElements();
3806  // Only match 256-bit with 32/64-bit types
3807  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3808    return false;
3809
3810  unsigned NumLanes = VT.getSizeInBits()/128;
3811  unsigned LaneSize = NumElts/NumLanes;
3812  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3813    for (unsigned i = 0; i != LaneSize; ++i) {
3814      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3815        return false;
3816      if (NumElts != 8 || l == 0)
3817        continue;
3818      // VPERMILPS handling
3819      if (Mask[i] < 0)
3820        continue;
3821      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3822        return false;
3823    }
3824  }
3825
3826  return true;
3827}
3828
3829/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3830/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3831/// element of vector 2 and the other elements to come from vector 1 in order.
3832static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3833                               bool V2IsSplat = false, bool V2IsUndef = false) {
3834  if (!VT.is128BitVector())
3835    return false;
3836
3837  unsigned NumOps = VT.getVectorNumElements();
3838  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3839    return false;
3840
3841  if (!isUndefOrEqual(Mask[0], 0))
3842    return false;
3843
3844  for (unsigned i = 1; i != NumOps; ++i)
3845    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3846          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3847          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3848      return false;
3849
3850  return true;
3851}
3852
3853/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3854/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3855/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3856static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3857                           const X86Subtarget *Subtarget) {
3858  if (!Subtarget->hasSSE3())
3859    return false;
3860
3861  unsigned NumElems = VT.getVectorNumElements();
3862
3863  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3864      (VT.getSizeInBits() == 256 && NumElems != 8))
3865    return false;
3866
3867  // "i+1" is the value the indexed mask element must have
3868  for (unsigned i = 0; i != NumElems; i += 2)
3869    if (!isUndefOrEqual(Mask[i], i+1) ||
3870        !isUndefOrEqual(Mask[i+1], i+1))
3871      return false;
3872
3873  return true;
3874}
3875
3876/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3877/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3878/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3879static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3880                           const X86Subtarget *Subtarget) {
3881  if (!Subtarget->hasSSE3())
3882    return false;
3883
3884  unsigned NumElems = VT.getVectorNumElements();
3885
3886  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3887      (VT.getSizeInBits() == 256 && NumElems != 8))
3888    return false;
3889
3890  // "i" is the value the indexed mask element must have
3891  for (unsigned i = 0; i != NumElems; i += 2)
3892    if (!isUndefOrEqual(Mask[i], i) ||
3893        !isUndefOrEqual(Mask[i+1], i))
3894      return false;
3895
3896  return true;
3897}
3898
3899/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3900/// specifies a shuffle of elements that is suitable for input to 256-bit
3901/// version of MOVDDUP.
3902static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3903  if (!HasAVX || !VT.is256BitVector())
3904    return false;
3905
3906  unsigned NumElts = VT.getVectorNumElements();
3907  if (NumElts != 4)
3908    return false;
3909
3910  for (unsigned i = 0; i != NumElts/2; ++i)
3911    if (!isUndefOrEqual(Mask[i], 0))
3912      return false;
3913  for (unsigned i = NumElts/2; i != NumElts; ++i)
3914    if (!isUndefOrEqual(Mask[i], NumElts/2))
3915      return false;
3916  return true;
3917}
3918
3919/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3920/// specifies a shuffle of elements that is suitable for input to 128-bit
3921/// version of MOVDDUP.
3922static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3923  if (!VT.is128BitVector())
3924    return false;
3925
3926  unsigned e = VT.getVectorNumElements() / 2;
3927  for (unsigned i = 0; i != e; ++i)
3928    if (!isUndefOrEqual(Mask[i], i))
3929      return false;
3930  for (unsigned i = 0; i != e; ++i)
3931    if (!isUndefOrEqual(Mask[e+i], i))
3932      return false;
3933  return true;
3934}
3935
3936/// isVEXTRACTF128Index - Return true if the specified
3937/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3938/// suitable for input to VEXTRACTF128.
3939bool X86::isVEXTRACTF128Index(SDNode *N) {
3940  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3941    return false;
3942
3943  // The index should be aligned on a 128-bit boundary.
3944  uint64_t Index =
3945    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3946
3947  unsigned VL = N->getValueType(0).getVectorNumElements();
3948  unsigned VBits = N->getValueType(0).getSizeInBits();
3949  unsigned ElSize = VBits / VL;
3950  bool Result = (Index * ElSize) % 128 == 0;
3951
3952  return Result;
3953}
3954
3955/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3956/// operand specifies a subvector insert that is suitable for input to
3957/// VINSERTF128.
3958bool X86::isVINSERTF128Index(SDNode *N) {
3959  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3960    return false;
3961
3962  // The index should be aligned on a 128-bit boundary.
3963  uint64_t Index =
3964    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3965
3966  unsigned VL = N->getValueType(0).getVectorNumElements();
3967  unsigned VBits = N->getValueType(0).getSizeInBits();
3968  unsigned ElSize = VBits / VL;
3969  bool Result = (Index * ElSize) % 128 == 0;
3970
3971  return Result;
3972}
3973
3974/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3975/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3976/// Handles 128-bit and 256-bit.
3977static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3978  EVT VT = N->getValueType(0);
3979
3980  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3981         "Unsupported vector type for PSHUF/SHUFP");
3982
3983  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3984  // independently on 128-bit lanes.
3985  unsigned NumElts = VT.getVectorNumElements();
3986  unsigned NumLanes = VT.getSizeInBits()/128;
3987  unsigned NumLaneElts = NumElts/NumLanes;
3988
3989  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3990         "Only supports 2 or 4 elements per lane");
3991
3992  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3993  unsigned Mask = 0;
3994  for (unsigned i = 0; i != NumElts; ++i) {
3995    int Elt = N->getMaskElt(i);
3996    if (Elt < 0) continue;
3997    Elt &= NumLaneElts - 1;
3998    unsigned ShAmt = (i << Shift) % 8;
3999    Mask |= Elt << ShAmt;
4000  }
4001
4002  return Mask;
4003}
4004
4005/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4006/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4007static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4008  EVT VT = N->getValueType(0);
4009
4010  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4011         "Unsupported vector type for PSHUFHW");
4012
4013  unsigned NumElts = VT.getVectorNumElements();
4014
4015  unsigned Mask = 0;
4016  for (unsigned l = 0; l != NumElts; l += 8) {
4017    // 8 nodes per lane, but we only care about the last 4.
4018    for (unsigned i = 0; i < 4; ++i) {
4019      int Elt = N->getMaskElt(l+i+4);
4020      if (Elt < 0) continue;
4021      Elt &= 0x3; // only 2-bits.
4022      Mask |= Elt << (i * 2);
4023    }
4024  }
4025
4026  return Mask;
4027}
4028
4029/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4030/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4031static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4032  EVT VT = N->getValueType(0);
4033
4034  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4035         "Unsupported vector type for PSHUFHW");
4036
4037  unsigned NumElts = VT.getVectorNumElements();
4038
4039  unsigned Mask = 0;
4040  for (unsigned l = 0; l != NumElts; l += 8) {
4041    // 8 nodes per lane, but we only care about the first 4.
4042    for (unsigned i = 0; i < 4; ++i) {
4043      int Elt = N->getMaskElt(l+i);
4044      if (Elt < 0) continue;
4045      Elt &= 0x3; // only 2-bits
4046      Mask |= Elt << (i * 2);
4047    }
4048  }
4049
4050  return Mask;
4051}
4052
4053/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4054/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4055static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4056  EVT VT = SVOp->getValueType(0);
4057  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4058
4059  unsigned NumElts = VT.getVectorNumElements();
4060  unsigned NumLanes = VT.getSizeInBits()/128;
4061  unsigned NumLaneElts = NumElts/NumLanes;
4062
4063  int Val = 0;
4064  unsigned i;
4065  for (i = 0; i != NumElts; ++i) {
4066    Val = SVOp->getMaskElt(i);
4067    if (Val >= 0)
4068      break;
4069  }
4070  if (Val >= (int)NumElts)
4071    Val -= NumElts - NumLaneElts;
4072
4073  assert(Val - i > 0 && "PALIGNR imm should be positive");
4074  return (Val - i) * EltSize;
4075}
4076
4077/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4078/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4079/// instructions.
4080unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4081  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4082    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4083
4084  uint64_t Index =
4085    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4086
4087  EVT VecVT = N->getOperand(0).getValueType();
4088  EVT ElVT = VecVT.getVectorElementType();
4089
4090  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4091  return Index / NumElemsPerChunk;
4092}
4093
4094/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4095/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4096/// instructions.
4097unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4098  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4099    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4100
4101  uint64_t Index =
4102    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4103
4104  EVT VecVT = N->getValueType(0);
4105  EVT ElVT = VecVT.getVectorElementType();
4106
4107  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4108  return Index / NumElemsPerChunk;
4109}
4110
4111/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4112/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4113/// Handles 256-bit.
4114static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4115  EVT VT = N->getValueType(0);
4116
4117  unsigned NumElts = VT.getVectorNumElements();
4118
4119  assert((VT.is256BitVector() && NumElts == 4) &&
4120         "Unsupported vector type for VPERMQ/VPERMPD");
4121
4122  unsigned Mask = 0;
4123  for (unsigned i = 0; i != NumElts; ++i) {
4124    int Elt = N->getMaskElt(i);
4125    if (Elt < 0)
4126      continue;
4127    Mask |= Elt << (i*2);
4128  }
4129
4130  return Mask;
4131}
4132/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4133/// constant +0.0.
4134bool X86::isZeroNode(SDValue Elt) {
4135  return ((isa<ConstantSDNode>(Elt) &&
4136           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4137          (isa<ConstantFPSDNode>(Elt) &&
4138           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4139}
4140
4141/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4142/// their permute mask.
4143static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4144                                    SelectionDAG &DAG) {
4145  EVT VT = SVOp->getValueType(0);
4146  unsigned NumElems = VT.getVectorNumElements();
4147  SmallVector<int, 8> MaskVec;
4148
4149  for (unsigned i = 0; i != NumElems; ++i) {
4150    int Idx = SVOp->getMaskElt(i);
4151    if (Idx >= 0) {
4152      if (Idx < (int)NumElems)
4153        Idx += NumElems;
4154      else
4155        Idx -= NumElems;
4156    }
4157    MaskVec.push_back(Idx);
4158  }
4159  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4160                              SVOp->getOperand(0), &MaskVec[0]);
4161}
4162
4163/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4164/// match movhlps. The lower half elements should come from upper half of
4165/// V1 (and in order), and the upper half elements should come from the upper
4166/// half of V2 (and in order).
4167static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4168  if (!VT.is128BitVector())
4169    return false;
4170  if (VT.getVectorNumElements() != 4)
4171    return false;
4172  for (unsigned i = 0, e = 2; i != e; ++i)
4173    if (!isUndefOrEqual(Mask[i], i+2))
4174      return false;
4175  for (unsigned i = 2; i != 4; ++i)
4176    if (!isUndefOrEqual(Mask[i], i+4))
4177      return false;
4178  return true;
4179}
4180
4181/// isScalarLoadToVector - Returns true if the node is a scalar load that
4182/// is promoted to a vector. It also returns the LoadSDNode by reference if
4183/// required.
4184static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4185  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4186    return false;
4187  N = N->getOperand(0).getNode();
4188  if (!ISD::isNON_EXTLoad(N))
4189    return false;
4190  if (LD)
4191    *LD = cast<LoadSDNode>(N);
4192  return true;
4193}
4194
4195// Test whether the given value is a vector value which will be legalized
4196// into a load.
4197static bool WillBeConstantPoolLoad(SDNode *N) {
4198  if (N->getOpcode() != ISD::BUILD_VECTOR)
4199    return false;
4200
4201  // Check for any non-constant elements.
4202  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4203    switch (N->getOperand(i).getNode()->getOpcode()) {
4204    case ISD::UNDEF:
4205    case ISD::ConstantFP:
4206    case ISD::Constant:
4207      break;
4208    default:
4209      return false;
4210    }
4211
4212  // Vectors of all-zeros and all-ones are materialized with special
4213  // instructions rather than being loaded.
4214  return !ISD::isBuildVectorAllZeros(N) &&
4215         !ISD::isBuildVectorAllOnes(N);
4216}
4217
4218/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4219/// match movlp{s|d}. The lower half elements should come from lower half of
4220/// V1 (and in order), and the upper half elements should come from the upper
4221/// half of V2 (and in order). And since V1 will become the source of the
4222/// MOVLP, it must be either a vector load or a scalar load to vector.
4223static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4224                               ArrayRef<int> Mask, EVT VT) {
4225  if (!VT.is128BitVector())
4226    return false;
4227
4228  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4229    return false;
4230  // Is V2 is a vector load, don't do this transformation. We will try to use
4231  // load folding shufps op.
4232  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4233    return false;
4234
4235  unsigned NumElems = VT.getVectorNumElements();
4236
4237  if (NumElems != 2 && NumElems != 4)
4238    return false;
4239  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4240    if (!isUndefOrEqual(Mask[i], i))
4241      return false;
4242  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4243    if (!isUndefOrEqual(Mask[i], i+NumElems))
4244      return false;
4245  return true;
4246}
4247
4248/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4249/// all the same.
4250static bool isSplatVector(SDNode *N) {
4251  if (N->getOpcode() != ISD::BUILD_VECTOR)
4252    return false;
4253
4254  SDValue SplatValue = N->getOperand(0);
4255  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4256    if (N->getOperand(i) != SplatValue)
4257      return false;
4258  return true;
4259}
4260
4261/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4262/// to an zero vector.
4263/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4264static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4265  SDValue V1 = N->getOperand(0);
4266  SDValue V2 = N->getOperand(1);
4267  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4268  for (unsigned i = 0; i != NumElems; ++i) {
4269    int Idx = N->getMaskElt(i);
4270    if (Idx >= (int)NumElems) {
4271      unsigned Opc = V2.getOpcode();
4272      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4273        continue;
4274      if (Opc != ISD::BUILD_VECTOR ||
4275          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4276        return false;
4277    } else if (Idx >= 0) {
4278      unsigned Opc = V1.getOpcode();
4279      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4280        continue;
4281      if (Opc != ISD::BUILD_VECTOR ||
4282          !X86::isZeroNode(V1.getOperand(Idx)))
4283        return false;
4284    }
4285  }
4286  return true;
4287}
4288
4289/// getZeroVector - Returns a vector of specified type with all zero elements.
4290///
4291static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4292                             SelectionDAG &DAG, DebugLoc dl) {
4293  assert(VT.isVector() && "Expected a vector type");
4294  unsigned Size = VT.getSizeInBits();
4295
4296  // Always build SSE zero vectors as <4 x i32> bitcasted
4297  // to their dest type. This ensures they get CSE'd.
4298  SDValue Vec;
4299  if (Size == 128) {  // SSE
4300    if (Subtarget->hasSSE2()) {  // SSE2
4301      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4302      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4303    } else { // SSE1
4304      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4305      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4306    }
4307  } else if (Size == 256) { // AVX
4308    if (Subtarget->hasAVX2()) { // AVX2
4309      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4310      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4311      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4312    } else {
4313      // 256-bit logic and arithmetic instructions in AVX are all
4314      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4315      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4316      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4317      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4318    }
4319  } else
4320    llvm_unreachable("Unexpected vector type");
4321
4322  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4323}
4324
4325/// getOnesVector - Returns a vector of specified type with all bits set.
4326/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4327/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4328/// Then bitcast to their original type, ensuring they get CSE'd.
4329static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4330                             DebugLoc dl) {
4331  assert(VT.isVector() && "Expected a vector type");
4332  unsigned Size = VT.getSizeInBits();
4333
4334  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4335  SDValue Vec;
4336  if (Size == 256) {
4337    if (HasAVX2) { // AVX2
4338      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4339      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4340    } else { // AVX
4341      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4342      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4343    }
4344  } else if (Size == 128) {
4345    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4346  } else
4347    llvm_unreachable("Unexpected vector type");
4348
4349  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4350}
4351
4352/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4353/// that point to V2 points to its first element.
4354static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4355  for (unsigned i = 0; i != NumElems; ++i) {
4356    if (Mask[i] > (int)NumElems) {
4357      Mask[i] = NumElems;
4358    }
4359  }
4360}
4361
4362/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4363/// operation of specified width.
4364static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4365                       SDValue V2) {
4366  unsigned NumElems = VT.getVectorNumElements();
4367  SmallVector<int, 8> Mask;
4368  Mask.push_back(NumElems);
4369  for (unsigned i = 1; i != NumElems; ++i)
4370    Mask.push_back(i);
4371  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4372}
4373
4374/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4375static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4376                          SDValue V2) {
4377  unsigned NumElems = VT.getVectorNumElements();
4378  SmallVector<int, 8> Mask;
4379  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4380    Mask.push_back(i);
4381    Mask.push_back(i + NumElems);
4382  }
4383  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4384}
4385
4386/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4387static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4388                          SDValue V2) {
4389  unsigned NumElems = VT.getVectorNumElements();
4390  SmallVector<int, 8> Mask;
4391  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4392    Mask.push_back(i + Half);
4393    Mask.push_back(i + NumElems + Half);
4394  }
4395  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4396}
4397
4398// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4399// a generic shuffle instruction because the target has no such instructions.
4400// Generate shuffles which repeat i16 and i8 several times until they can be
4401// represented by v4f32 and then be manipulated by target suported shuffles.
4402static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4403  EVT VT = V.getValueType();
4404  int NumElems = VT.getVectorNumElements();
4405  DebugLoc dl = V.getDebugLoc();
4406
4407  while (NumElems > 4) {
4408    if (EltNo < NumElems/2) {
4409      V = getUnpackl(DAG, dl, VT, V, V);
4410    } else {
4411      V = getUnpackh(DAG, dl, VT, V, V);
4412      EltNo -= NumElems/2;
4413    }
4414    NumElems >>= 1;
4415  }
4416  return V;
4417}
4418
4419/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4420static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4421  EVT VT = V.getValueType();
4422  DebugLoc dl = V.getDebugLoc();
4423  unsigned Size = VT.getSizeInBits();
4424
4425  if (Size == 128) {
4426    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4427    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4428    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4429                             &SplatMask[0]);
4430  } else if (Size == 256) {
4431    // To use VPERMILPS to splat scalars, the second half of indicies must
4432    // refer to the higher part, which is a duplication of the lower one,
4433    // because VPERMILPS can only handle in-lane permutations.
4434    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4435                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4436
4437    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4438    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4439                             &SplatMask[0]);
4440  } else
4441    llvm_unreachable("Vector size not supported");
4442
4443  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4444}
4445
4446/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4447static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4448  EVT SrcVT = SV->getValueType(0);
4449  SDValue V1 = SV->getOperand(0);
4450  DebugLoc dl = SV->getDebugLoc();
4451
4452  int EltNo = SV->getSplatIndex();
4453  int NumElems = SrcVT.getVectorNumElements();
4454  unsigned Size = SrcVT.getSizeInBits();
4455
4456  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4457          "Unknown how to promote splat for type");
4458
4459  // Extract the 128-bit part containing the splat element and update
4460  // the splat element index when it refers to the higher register.
4461  if (Size == 256) {
4462    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4463    if (EltNo >= NumElems/2)
4464      EltNo -= NumElems/2;
4465  }
4466
4467  // All i16 and i8 vector types can't be used directly by a generic shuffle
4468  // instruction because the target has no such instruction. Generate shuffles
4469  // which repeat i16 and i8 several times until they fit in i32, and then can
4470  // be manipulated by target suported shuffles.
4471  EVT EltVT = SrcVT.getVectorElementType();
4472  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4473    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4474
4475  // Recreate the 256-bit vector and place the same 128-bit vector
4476  // into the low and high part. This is necessary because we want
4477  // to use VPERM* to shuffle the vectors
4478  if (Size == 256) {
4479    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4480  }
4481
4482  return getLegalSplat(DAG, V1, EltNo);
4483}
4484
4485/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4486/// vector of zero or undef vector.  This produces a shuffle where the low
4487/// element of V2 is swizzled into the zero/undef vector, landing at element
4488/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4489static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4490                                           bool IsZero,
4491                                           const X86Subtarget *Subtarget,
4492                                           SelectionDAG &DAG) {
4493  EVT VT = V2.getValueType();
4494  SDValue V1 = IsZero
4495    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4496  unsigned NumElems = VT.getVectorNumElements();
4497  SmallVector<int, 16> MaskVec;
4498  for (unsigned i = 0; i != NumElems; ++i)
4499    // If this is the insertion idx, put the low elt of V2 here.
4500    MaskVec.push_back(i == Idx ? NumElems : i);
4501  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4502}
4503
4504/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4505/// target specific opcode. Returns true if the Mask could be calculated.
4506/// Sets IsUnary to true if only uses one source.
4507static bool getTargetShuffleMask(SDNode *N, MVT VT,
4508                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4509  unsigned NumElems = VT.getVectorNumElements();
4510  SDValue ImmN;
4511
4512  IsUnary = false;
4513  switch(N->getOpcode()) {
4514  case X86ISD::SHUFP:
4515    ImmN = N->getOperand(N->getNumOperands()-1);
4516    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4517    break;
4518  case X86ISD::UNPCKH:
4519    DecodeUNPCKHMask(VT, Mask);
4520    break;
4521  case X86ISD::UNPCKL:
4522    DecodeUNPCKLMask(VT, Mask);
4523    break;
4524  case X86ISD::MOVHLPS:
4525    DecodeMOVHLPSMask(NumElems, Mask);
4526    break;
4527  case X86ISD::MOVLHPS:
4528    DecodeMOVLHPSMask(NumElems, Mask);
4529    break;
4530  case X86ISD::PSHUFD:
4531  case X86ISD::VPERMILP:
4532    ImmN = N->getOperand(N->getNumOperands()-1);
4533    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4534    IsUnary = true;
4535    break;
4536  case X86ISD::PSHUFHW:
4537    ImmN = N->getOperand(N->getNumOperands()-1);
4538    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4539    IsUnary = true;
4540    break;
4541  case X86ISD::PSHUFLW:
4542    ImmN = N->getOperand(N->getNumOperands()-1);
4543    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4544    IsUnary = true;
4545    break;
4546  case X86ISD::VPERMI:
4547    ImmN = N->getOperand(N->getNumOperands()-1);
4548    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4549    IsUnary = true;
4550    break;
4551  case X86ISD::MOVSS:
4552  case X86ISD::MOVSD: {
4553    // The index 0 always comes from the first element of the second source,
4554    // this is why MOVSS and MOVSD are used in the first place. The other
4555    // elements come from the other positions of the first source vector
4556    Mask.push_back(NumElems);
4557    for (unsigned i = 1; i != NumElems; ++i) {
4558      Mask.push_back(i);
4559    }
4560    break;
4561  }
4562  case X86ISD::VPERM2X128:
4563    ImmN = N->getOperand(N->getNumOperands()-1);
4564    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4565    if (Mask.empty()) return false;
4566    break;
4567  case X86ISD::MOVDDUP:
4568  case X86ISD::MOVLHPD:
4569  case X86ISD::MOVLPD:
4570  case X86ISD::MOVLPS:
4571  case X86ISD::MOVSHDUP:
4572  case X86ISD::MOVSLDUP:
4573  case X86ISD::PALIGN:
4574    // Not yet implemented
4575    return false;
4576  default: llvm_unreachable("unknown target shuffle node");
4577  }
4578
4579  return true;
4580}
4581
4582/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4583/// element of the result of the vector shuffle.
4584static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4585                                   unsigned Depth) {
4586  if (Depth == 6)
4587    return SDValue();  // Limit search depth.
4588
4589  SDValue V = SDValue(N, 0);
4590  EVT VT = V.getValueType();
4591  unsigned Opcode = V.getOpcode();
4592
4593  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4594  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4595    int Elt = SV->getMaskElt(Index);
4596
4597    if (Elt < 0)
4598      return DAG.getUNDEF(VT.getVectorElementType());
4599
4600    unsigned NumElems = VT.getVectorNumElements();
4601    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4602                                         : SV->getOperand(1);
4603    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4604  }
4605
4606  // Recurse into target specific vector shuffles to find scalars.
4607  if (isTargetShuffle(Opcode)) {
4608    MVT ShufVT = V.getValueType().getSimpleVT();
4609    unsigned NumElems = ShufVT.getVectorNumElements();
4610    SmallVector<int, 16> ShuffleMask;
4611    SDValue ImmN;
4612    bool IsUnary;
4613
4614    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4615      return SDValue();
4616
4617    int Elt = ShuffleMask[Index];
4618    if (Elt < 0)
4619      return DAG.getUNDEF(ShufVT.getVectorElementType());
4620
4621    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4622                                         : N->getOperand(1);
4623    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4624                               Depth+1);
4625  }
4626
4627  // Actual nodes that may contain scalar elements
4628  if (Opcode == ISD::BITCAST) {
4629    V = V.getOperand(0);
4630    EVT SrcVT = V.getValueType();
4631    unsigned NumElems = VT.getVectorNumElements();
4632
4633    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4634      return SDValue();
4635  }
4636
4637  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4638    return (Index == 0) ? V.getOperand(0)
4639                        : DAG.getUNDEF(VT.getVectorElementType());
4640
4641  if (V.getOpcode() == ISD::BUILD_VECTOR)
4642    return V.getOperand(Index);
4643
4644  return SDValue();
4645}
4646
4647/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4648/// shuffle operation which come from a consecutively from a zero. The
4649/// search can start in two different directions, from left or right.
4650static
4651unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4652                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4653  unsigned i;
4654  for (i = 0; i != NumElems; ++i) {
4655    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4656    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4657    if (!(Elt.getNode() &&
4658         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4659      break;
4660  }
4661
4662  return i;
4663}
4664
4665/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4666/// correspond consecutively to elements from one of the vector operands,
4667/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4668static
4669bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4670                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4671                              unsigned NumElems, unsigned &OpNum) {
4672  bool SeenV1 = false;
4673  bool SeenV2 = false;
4674
4675  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4676    int Idx = SVOp->getMaskElt(i);
4677    // Ignore undef indicies
4678    if (Idx < 0)
4679      continue;
4680
4681    if (Idx < (int)NumElems)
4682      SeenV1 = true;
4683    else
4684      SeenV2 = true;
4685
4686    // Only accept consecutive elements from the same vector
4687    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4688      return false;
4689  }
4690
4691  OpNum = SeenV1 ? 0 : 1;
4692  return true;
4693}
4694
4695/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4696/// logical left shift of a vector.
4697static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4698                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4699  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4700  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4701              false /* check zeros from right */, DAG);
4702  unsigned OpSrc;
4703
4704  if (!NumZeros)
4705    return false;
4706
4707  // Considering the elements in the mask that are not consecutive zeros,
4708  // check if they consecutively come from only one of the source vectors.
4709  //
4710  //               V1 = {X, A, B, C}     0
4711  //                         \  \  \    /
4712  //   vector_shuffle V1, V2 <1, 2, 3, X>
4713  //
4714  if (!isShuffleMaskConsecutive(SVOp,
4715            0,                   // Mask Start Index
4716            NumElems-NumZeros,   // Mask End Index(exclusive)
4717            NumZeros,            // Where to start looking in the src vector
4718            NumElems,            // Number of elements in vector
4719            OpSrc))              // Which source operand ?
4720    return false;
4721
4722  isLeft = false;
4723  ShAmt = NumZeros;
4724  ShVal = SVOp->getOperand(OpSrc);
4725  return true;
4726}
4727
4728/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4729/// logical left shift of a vector.
4730static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4731                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4732  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4733  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4734              true /* check zeros from left */, DAG);
4735  unsigned OpSrc;
4736
4737  if (!NumZeros)
4738    return false;
4739
4740  // Considering the elements in the mask that are not consecutive zeros,
4741  // check if they consecutively come from only one of the source vectors.
4742  //
4743  //                           0    { A, B, X, X } = V2
4744  //                          / \    /  /
4745  //   vector_shuffle V1, V2 <X, X, 4, 5>
4746  //
4747  if (!isShuffleMaskConsecutive(SVOp,
4748            NumZeros,     // Mask Start Index
4749            NumElems,     // Mask End Index(exclusive)
4750            0,            // Where to start looking in the src vector
4751            NumElems,     // Number of elements in vector
4752            OpSrc))       // Which source operand ?
4753    return false;
4754
4755  isLeft = true;
4756  ShAmt = NumZeros;
4757  ShVal = SVOp->getOperand(OpSrc);
4758  return true;
4759}
4760
4761/// isVectorShift - Returns true if the shuffle can be implemented as a
4762/// logical left or right shift of a vector.
4763static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4764                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4765  // Although the logic below support any bitwidth size, there are no
4766  // shift instructions which handle more than 128-bit vectors.
4767  if (!SVOp->getValueType(0).is128BitVector())
4768    return false;
4769
4770  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4771      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4772    return true;
4773
4774  return false;
4775}
4776
4777/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4778///
4779static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4780                                       unsigned NumNonZero, unsigned NumZero,
4781                                       SelectionDAG &DAG,
4782                                       const X86Subtarget* Subtarget,
4783                                       const TargetLowering &TLI) {
4784  if (NumNonZero > 8)
4785    return SDValue();
4786
4787  DebugLoc dl = Op.getDebugLoc();
4788  SDValue V(0, 0);
4789  bool First = true;
4790  for (unsigned i = 0; i < 16; ++i) {
4791    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4792    if (ThisIsNonZero && First) {
4793      if (NumZero)
4794        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4795      else
4796        V = DAG.getUNDEF(MVT::v8i16);
4797      First = false;
4798    }
4799
4800    if ((i & 1) != 0) {
4801      SDValue ThisElt(0, 0), LastElt(0, 0);
4802      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4803      if (LastIsNonZero) {
4804        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4805                              MVT::i16, Op.getOperand(i-1));
4806      }
4807      if (ThisIsNonZero) {
4808        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4809        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4810                              ThisElt, DAG.getConstant(8, MVT::i8));
4811        if (LastIsNonZero)
4812          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4813      } else
4814        ThisElt = LastElt;
4815
4816      if (ThisElt.getNode())
4817        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4818                        DAG.getIntPtrConstant(i/2));
4819    }
4820  }
4821
4822  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4823}
4824
4825/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4826///
4827static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4828                                     unsigned NumNonZero, unsigned NumZero,
4829                                     SelectionDAG &DAG,
4830                                     const X86Subtarget* Subtarget,
4831                                     const TargetLowering &TLI) {
4832  if (NumNonZero > 4)
4833    return SDValue();
4834
4835  DebugLoc dl = Op.getDebugLoc();
4836  SDValue V(0, 0);
4837  bool First = true;
4838  for (unsigned i = 0; i < 8; ++i) {
4839    bool isNonZero = (NonZeros & (1 << i)) != 0;
4840    if (isNonZero) {
4841      if (First) {
4842        if (NumZero)
4843          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4844        else
4845          V = DAG.getUNDEF(MVT::v8i16);
4846        First = false;
4847      }
4848      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4849                      MVT::v8i16, V, Op.getOperand(i),
4850                      DAG.getIntPtrConstant(i));
4851    }
4852  }
4853
4854  return V;
4855}
4856
4857/// getVShift - Return a vector logical shift node.
4858///
4859static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4860                         unsigned NumBits, SelectionDAG &DAG,
4861                         const TargetLowering &TLI, DebugLoc dl) {
4862  assert(VT.is128BitVector() && "Unknown type for VShift");
4863  EVT ShVT = MVT::v2i64;
4864  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4865  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4866  return DAG.getNode(ISD::BITCAST, dl, VT,
4867                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4868                             DAG.getConstant(NumBits,
4869                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4870}
4871
4872SDValue
4873X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4874                                          SelectionDAG &DAG) const {
4875
4876  // Check if the scalar load can be widened into a vector load. And if
4877  // the address is "base + cst" see if the cst can be "absorbed" into
4878  // the shuffle mask.
4879  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4880    SDValue Ptr = LD->getBasePtr();
4881    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4882      return SDValue();
4883    EVT PVT = LD->getValueType(0);
4884    if (PVT != MVT::i32 && PVT != MVT::f32)
4885      return SDValue();
4886
4887    int FI = -1;
4888    int64_t Offset = 0;
4889    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4890      FI = FINode->getIndex();
4891      Offset = 0;
4892    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4893               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4894      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4895      Offset = Ptr.getConstantOperandVal(1);
4896      Ptr = Ptr.getOperand(0);
4897    } else {
4898      return SDValue();
4899    }
4900
4901    // FIXME: 256-bit vector instructions don't require a strict alignment,
4902    // improve this code to support it better.
4903    unsigned RequiredAlign = VT.getSizeInBits()/8;
4904    SDValue Chain = LD->getChain();
4905    // Make sure the stack object alignment is at least 16 or 32.
4906    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4907    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4908      if (MFI->isFixedObjectIndex(FI)) {
4909        // Can't change the alignment. FIXME: It's possible to compute
4910        // the exact stack offset and reference FI + adjust offset instead.
4911        // If someone *really* cares about this. That's the way to implement it.
4912        return SDValue();
4913      } else {
4914        MFI->setObjectAlignment(FI, RequiredAlign);
4915      }
4916    }
4917
4918    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4919    // Ptr + (Offset & ~15).
4920    if (Offset < 0)
4921      return SDValue();
4922    if ((Offset % RequiredAlign) & 3)
4923      return SDValue();
4924    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4925    if (StartOffset)
4926      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4927                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4928
4929    int EltNo = (Offset - StartOffset) >> 2;
4930    unsigned NumElems = VT.getVectorNumElements();
4931
4932    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4933    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4934                             LD->getPointerInfo().getWithOffset(StartOffset),
4935                             false, false, false, 0);
4936
4937    SmallVector<int, 8> Mask;
4938    for (unsigned i = 0; i != NumElems; ++i)
4939      Mask.push_back(EltNo);
4940
4941    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4942  }
4943
4944  return SDValue();
4945}
4946
4947/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4948/// vector of type 'VT', see if the elements can be replaced by a single large
4949/// load which has the same value as a build_vector whose operands are 'elts'.
4950///
4951/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4952///
4953/// FIXME: we'd also like to handle the case where the last elements are zero
4954/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4955/// There's even a handy isZeroNode for that purpose.
4956static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4957                                        DebugLoc &DL, SelectionDAG &DAG) {
4958  EVT EltVT = VT.getVectorElementType();
4959  unsigned NumElems = Elts.size();
4960
4961  LoadSDNode *LDBase = NULL;
4962  unsigned LastLoadedElt = -1U;
4963
4964  // For each element in the initializer, see if we've found a load or an undef.
4965  // If we don't find an initial load element, or later load elements are
4966  // non-consecutive, bail out.
4967  for (unsigned i = 0; i < NumElems; ++i) {
4968    SDValue Elt = Elts[i];
4969
4970    if (!Elt.getNode() ||
4971        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4972      return SDValue();
4973    if (!LDBase) {
4974      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4975        return SDValue();
4976      LDBase = cast<LoadSDNode>(Elt.getNode());
4977      LastLoadedElt = i;
4978      continue;
4979    }
4980    if (Elt.getOpcode() == ISD::UNDEF)
4981      continue;
4982
4983    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4984    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4985      return SDValue();
4986    LastLoadedElt = i;
4987  }
4988
4989  // If we have found an entire vector of loads and undefs, then return a large
4990  // load of the entire vector width starting at the base pointer.  If we found
4991  // consecutive loads for the low half, generate a vzext_load node.
4992  if (LastLoadedElt == NumElems - 1) {
4993    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4994      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4995                         LDBase->getPointerInfo(),
4996                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4997                         LDBase->isInvariant(), 0);
4998    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4999                       LDBase->getPointerInfo(),
5000                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5001                       LDBase->isInvariant(), LDBase->getAlignment());
5002  }
5003  if (NumElems == 4 && LastLoadedElt == 1 &&
5004      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5005    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5006    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5007    SDValue ResNode =
5008        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5009                                LDBase->getPointerInfo(),
5010                                LDBase->getAlignment(),
5011                                false/*isVolatile*/, true/*ReadMem*/,
5012                                false/*WriteMem*/);
5013
5014    // Make sure the newly-created LOAD is in the same position as LDBase in
5015    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5016    // update uses of LDBase's output chain to use the TokenFactor.
5017    if (LDBase->hasAnyUseOfValue(1)) {
5018      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5019                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5020      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5021      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5022                             SDValue(ResNode.getNode(), 1));
5023    }
5024
5025    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5026  }
5027  return SDValue();
5028}
5029
5030/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5031/// to generate a splat value for the following cases:
5032/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5033/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5034/// a scalar load, or a constant.
5035/// The VBROADCAST node is returned when a pattern is found,
5036/// or SDValue() otherwise.
5037SDValue
5038X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5039  if (!Subtarget->hasAVX())
5040    return SDValue();
5041
5042  EVT VT = Op.getValueType();
5043  DebugLoc dl = Op.getDebugLoc();
5044
5045  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5046         "Unsupported vector type for broadcast.");
5047
5048  SDValue Ld;
5049  bool ConstSplatVal;
5050
5051  switch (Op.getOpcode()) {
5052    default:
5053      // Unknown pattern found.
5054      return SDValue();
5055
5056    case ISD::BUILD_VECTOR: {
5057      // The BUILD_VECTOR node must be a splat.
5058      if (!isSplatVector(Op.getNode()))
5059        return SDValue();
5060
5061      Ld = Op.getOperand(0);
5062      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5063                     Ld.getOpcode() == ISD::ConstantFP);
5064
5065      // The suspected load node has several users. Make sure that all
5066      // of its users are from the BUILD_VECTOR node.
5067      // Constants may have multiple users.
5068      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5069        return SDValue();
5070      break;
5071    }
5072
5073    case ISD::VECTOR_SHUFFLE: {
5074      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5075
5076      // Shuffles must have a splat mask where the first element is
5077      // broadcasted.
5078      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5079        return SDValue();
5080
5081      SDValue Sc = Op.getOperand(0);
5082      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5083          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5084
5085        if (!Subtarget->hasAVX2())
5086          return SDValue();
5087
5088        // Use the register form of the broadcast instruction available on AVX2.
5089        if (VT.is256BitVector())
5090          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5091        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5092      }
5093
5094      Ld = Sc.getOperand(0);
5095      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5096                       Ld.getOpcode() == ISD::ConstantFP);
5097
5098      // The scalar_to_vector node and the suspected
5099      // load node must have exactly one user.
5100      // Constants may have multiple users.
5101      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5102        return SDValue();
5103      break;
5104    }
5105  }
5106
5107  bool Is256 = VT.is256BitVector();
5108
5109  // Handle the broadcasting a single constant scalar from the constant pool
5110  // into a vector. On Sandybridge it is still better to load a constant vector
5111  // from the constant pool and not to broadcast it from a scalar.
5112  if (ConstSplatVal && Subtarget->hasAVX2()) {
5113    EVT CVT = Ld.getValueType();
5114    assert(!CVT.isVector() && "Must not broadcast a vector type");
5115    unsigned ScalarSize = CVT.getSizeInBits();
5116
5117    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5118      const Constant *C = 0;
5119      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5120        C = CI->getConstantIntValue();
5121      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5122        C = CF->getConstantFPValue();
5123
5124      assert(C && "Invalid constant type");
5125
5126      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5127      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5128      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5129                       MachinePointerInfo::getConstantPool(),
5130                       false, false, false, Alignment);
5131
5132      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5133    }
5134  }
5135
5136  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5137  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5138
5139  // Handle AVX2 in-register broadcasts.
5140  if (!IsLoad && Subtarget->hasAVX2() &&
5141      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5142    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5143
5144  // The scalar source must be a normal load.
5145  if (!IsLoad)
5146    return SDValue();
5147
5148  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5149    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5150
5151  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5152  // double since there is no vbroadcastsd xmm
5153  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5154    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5155      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5156  }
5157
5158  // Unsupported broadcast.
5159  return SDValue();
5160}
5161
5162// LowerVectorFpExtend - Recognize the scalarized FP_EXTEND from v2f32 to v2f64
5163// and convert it into X86ISD::VFPEXT due to the current ISD::FP_EXTEND has the
5164// constraint of matching input/output vector elements.
5165SDValue
5166X86TargetLowering::LowerVectorFpExtend(SDValue &Op, SelectionDAG &DAG) const {
5167  DebugLoc DL = Op.getDebugLoc();
5168  SDNode *N = Op.getNode();
5169  EVT VT = Op.getValueType();
5170  unsigned NumElts = Op.getNumOperands();
5171
5172  // Check supported types and sub-targets.
5173  //
5174  // Only v2f32 -> v2f64 needs special handling.
5175  if (VT != MVT::v2f64 || !Subtarget->hasSSE2())
5176    return SDValue();
5177
5178  SDValue VecIn;
5179  EVT VecInVT;
5180  SmallVector<int, 8> Mask;
5181  EVT SrcVT = MVT::Other;
5182
5183  // Check the patterns could be translated into X86vfpext.
5184  for (unsigned i = 0; i < NumElts; ++i) {
5185    SDValue In = N->getOperand(i);
5186    unsigned Opcode = In.getOpcode();
5187
5188    // Skip if the element is undefined.
5189    if (Opcode == ISD::UNDEF) {
5190      Mask.push_back(-1);
5191      continue;
5192    }
5193
5194    // Quit if one of the elements is not defined from 'fpext'.
5195    if (Opcode != ISD::FP_EXTEND)
5196      return SDValue();
5197
5198    // Check how the source of 'fpext' is defined.
5199    SDValue L2In = In.getOperand(0);
5200    EVT L2InVT = L2In.getValueType();
5201
5202    // Check the original type
5203    if (SrcVT == MVT::Other)
5204      SrcVT = L2InVT;
5205    else if (SrcVT != L2InVT) // Quit if non-homogenous typed.
5206      return SDValue();
5207
5208    // Check whether the value being 'fpext'ed is extracted from the same
5209    // source.
5210    Opcode = L2In.getOpcode();
5211
5212    // Quit if it's not extracted with a constant index.
5213    if (Opcode != ISD::EXTRACT_VECTOR_ELT ||
5214        !isa<ConstantSDNode>(L2In.getOperand(1)))
5215      return SDValue();
5216
5217    SDValue ExtractedFromVec = L2In.getOperand(0);
5218
5219    if (VecIn.getNode() == 0) {
5220      VecIn = ExtractedFromVec;
5221      VecInVT = ExtractedFromVec.getValueType();
5222    } else if (VecIn != ExtractedFromVec) // Quit if built from more than 1 vec.
5223      return SDValue();
5224
5225    Mask.push_back(cast<ConstantSDNode>(L2In.getOperand(1))->getZExtValue());
5226  }
5227
5228  // Quit if all operands of BUILD_VECTOR are undefined.
5229  if (!VecIn.getNode())
5230    return SDValue();
5231
5232  // Fill the remaining mask as undef.
5233  for (unsigned i = NumElts; i < VecInVT.getVectorNumElements(); ++i)
5234    Mask.push_back(-1);
5235
5236  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
5237                     DAG.getVectorShuffle(VecInVT, DL,
5238                                          VecIn, DAG.getUNDEF(VecInVT),
5239                                          &Mask[0]));
5240}
5241
5242SDValue
5243X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5244  DebugLoc dl = Op.getDebugLoc();
5245
5246  EVT VT = Op.getValueType();
5247  EVT ExtVT = VT.getVectorElementType();
5248  unsigned NumElems = Op.getNumOperands();
5249
5250  // Vectors containing all zeros can be matched by pxor and xorps later
5251  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5252    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5253    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5254    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5255      return Op;
5256
5257    return getZeroVector(VT, Subtarget, DAG, dl);
5258  }
5259
5260  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5261  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5262  // vpcmpeqd on 256-bit vectors.
5263  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5264    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5265      return Op;
5266
5267    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5268  }
5269
5270  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5271  if (Broadcast.getNode())
5272    return Broadcast;
5273
5274  SDValue FpExt = LowerVectorFpExtend(Op, DAG);
5275  if (FpExt.getNode())
5276    return FpExt;
5277
5278  unsigned EVTBits = ExtVT.getSizeInBits();
5279
5280  unsigned NumZero  = 0;
5281  unsigned NumNonZero = 0;
5282  unsigned NonZeros = 0;
5283  bool IsAllConstants = true;
5284  SmallSet<SDValue, 8> Values;
5285  for (unsigned i = 0; i < NumElems; ++i) {
5286    SDValue Elt = Op.getOperand(i);
5287    if (Elt.getOpcode() == ISD::UNDEF)
5288      continue;
5289    Values.insert(Elt);
5290    if (Elt.getOpcode() != ISD::Constant &&
5291        Elt.getOpcode() != ISD::ConstantFP)
5292      IsAllConstants = false;
5293    if (X86::isZeroNode(Elt))
5294      NumZero++;
5295    else {
5296      NonZeros |= (1 << i);
5297      NumNonZero++;
5298    }
5299  }
5300
5301  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5302  if (NumNonZero == 0)
5303    return DAG.getUNDEF(VT);
5304
5305  // Special case for single non-zero, non-undef, element.
5306  if (NumNonZero == 1) {
5307    unsigned Idx = CountTrailingZeros_32(NonZeros);
5308    SDValue Item = Op.getOperand(Idx);
5309
5310    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5311    // the value are obviously zero, truncate the value to i32 and do the
5312    // insertion that way.  Only do this if the value is non-constant or if the
5313    // value is a constant being inserted into element 0.  It is cheaper to do
5314    // a constant pool load than it is to do a movd + shuffle.
5315    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5316        (!IsAllConstants || Idx == 0)) {
5317      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5318        // Handle SSE only.
5319        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5320        EVT VecVT = MVT::v4i32;
5321        unsigned VecElts = 4;
5322
5323        // Truncate the value (which may itself be a constant) to i32, and
5324        // convert it to a vector with movd (S2V+shuffle to zero extend).
5325        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5326        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5327        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5328
5329        // Now we have our 32-bit value zero extended in the low element of
5330        // a vector.  If Idx != 0, swizzle it into place.
5331        if (Idx != 0) {
5332          SmallVector<int, 4> Mask;
5333          Mask.push_back(Idx);
5334          for (unsigned i = 1; i != VecElts; ++i)
5335            Mask.push_back(i);
5336          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5337                                      &Mask[0]);
5338        }
5339        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5340      }
5341    }
5342
5343    // If we have a constant or non-constant insertion into the low element of
5344    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5345    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5346    // depending on what the source datatype is.
5347    if (Idx == 0) {
5348      if (NumZero == 0)
5349        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5350
5351      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5352          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5353        if (VT.is256BitVector()) {
5354          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5355          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5356                             Item, DAG.getIntPtrConstant(0));
5357        }
5358        assert(VT.is128BitVector() && "Expected an SSE value type!");
5359        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5360        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5361        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5362      }
5363
5364      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5365        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5366        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5367        if (VT.is256BitVector()) {
5368          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5369          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5370        } else {
5371          assert(VT.is128BitVector() && "Expected an SSE value type!");
5372          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5373        }
5374        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5375      }
5376    }
5377
5378    // Is it a vector logical left shift?
5379    if (NumElems == 2 && Idx == 1 &&
5380        X86::isZeroNode(Op.getOperand(0)) &&
5381        !X86::isZeroNode(Op.getOperand(1))) {
5382      unsigned NumBits = VT.getSizeInBits();
5383      return getVShift(true, VT,
5384                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5385                                   VT, Op.getOperand(1)),
5386                       NumBits/2, DAG, *this, dl);
5387    }
5388
5389    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5390      return SDValue();
5391
5392    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5393    // is a non-constant being inserted into an element other than the low one,
5394    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5395    // movd/movss) to move this into the low element, then shuffle it into
5396    // place.
5397    if (EVTBits == 32) {
5398      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5399
5400      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5401      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5402      SmallVector<int, 8> MaskVec;
5403      for (unsigned i = 0; i != NumElems; ++i)
5404        MaskVec.push_back(i == Idx ? 0 : 1);
5405      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5406    }
5407  }
5408
5409  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5410  if (Values.size() == 1) {
5411    if (EVTBits == 32) {
5412      // Instead of a shuffle like this:
5413      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5414      // Check if it's possible to issue this instead.
5415      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5416      unsigned Idx = CountTrailingZeros_32(NonZeros);
5417      SDValue Item = Op.getOperand(Idx);
5418      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5419        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5420    }
5421    return SDValue();
5422  }
5423
5424  // A vector full of immediates; various special cases are already
5425  // handled, so this is best done with a single constant-pool load.
5426  if (IsAllConstants)
5427    return SDValue();
5428
5429  // For AVX-length vectors, build the individual 128-bit pieces and use
5430  // shuffles to put them in place.
5431  if (VT.is256BitVector()) {
5432    SmallVector<SDValue, 32> V;
5433    for (unsigned i = 0; i != NumElems; ++i)
5434      V.push_back(Op.getOperand(i));
5435
5436    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5437
5438    // Build both the lower and upper subvector.
5439    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5440    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5441                                NumElems/2);
5442
5443    // Recreate the wider vector with the lower and upper part.
5444    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5445  }
5446
5447  // Let legalizer expand 2-wide build_vectors.
5448  if (EVTBits == 64) {
5449    if (NumNonZero == 1) {
5450      // One half is zero or undef.
5451      unsigned Idx = CountTrailingZeros_32(NonZeros);
5452      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5453                                 Op.getOperand(Idx));
5454      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5455    }
5456    return SDValue();
5457  }
5458
5459  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5460  if (EVTBits == 8 && NumElems == 16) {
5461    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5462                                        Subtarget, *this);
5463    if (V.getNode()) return V;
5464  }
5465
5466  if (EVTBits == 16 && NumElems == 8) {
5467    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5468                                      Subtarget, *this);
5469    if (V.getNode()) return V;
5470  }
5471
5472  // If element VT is == 32 bits, turn it into a number of shuffles.
5473  SmallVector<SDValue, 8> V(NumElems);
5474  if (NumElems == 4 && NumZero > 0) {
5475    for (unsigned i = 0; i < 4; ++i) {
5476      bool isZero = !(NonZeros & (1 << i));
5477      if (isZero)
5478        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5479      else
5480        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5481    }
5482
5483    for (unsigned i = 0; i < 2; ++i) {
5484      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5485        default: break;
5486        case 0:
5487          V[i] = V[i*2];  // Must be a zero vector.
5488          break;
5489        case 1:
5490          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5491          break;
5492        case 2:
5493          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5494          break;
5495        case 3:
5496          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5497          break;
5498      }
5499    }
5500
5501    bool Reverse1 = (NonZeros & 0x3) == 2;
5502    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5503    int MaskVec[] = {
5504      Reverse1 ? 1 : 0,
5505      Reverse1 ? 0 : 1,
5506      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5507      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5508    };
5509    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5510  }
5511
5512  if (Values.size() > 1 && VT.is128BitVector()) {
5513    // Check for a build vector of consecutive loads.
5514    for (unsigned i = 0; i < NumElems; ++i)
5515      V[i] = Op.getOperand(i);
5516
5517    // Check for elements which are consecutive loads.
5518    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5519    if (LD.getNode())
5520      return LD;
5521
5522    // For SSE 4.1, use insertps to put the high elements into the low element.
5523    if (getSubtarget()->hasSSE41()) {
5524      SDValue Result;
5525      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5526        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5527      else
5528        Result = DAG.getUNDEF(VT);
5529
5530      for (unsigned i = 1; i < NumElems; ++i) {
5531        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5532        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5533                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5534      }
5535      return Result;
5536    }
5537
5538    // Otherwise, expand into a number of unpckl*, start by extending each of
5539    // our (non-undef) elements to the full vector width with the element in the
5540    // bottom slot of the vector (which generates no code for SSE).
5541    for (unsigned i = 0; i < NumElems; ++i) {
5542      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5543        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5544      else
5545        V[i] = DAG.getUNDEF(VT);
5546    }
5547
5548    // Next, we iteratively mix elements, e.g. for v4f32:
5549    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5550    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5551    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5552    unsigned EltStride = NumElems >> 1;
5553    while (EltStride != 0) {
5554      for (unsigned i = 0; i < EltStride; ++i) {
5555        // If V[i+EltStride] is undef and this is the first round of mixing,
5556        // then it is safe to just drop this shuffle: V[i] is already in the
5557        // right place, the one element (since it's the first round) being
5558        // inserted as undef can be dropped.  This isn't safe for successive
5559        // rounds because they will permute elements within both vectors.
5560        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5561            EltStride == NumElems/2)
5562          continue;
5563
5564        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5565      }
5566      EltStride >>= 1;
5567    }
5568    return V[0];
5569  }
5570  return SDValue();
5571}
5572
5573// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5574// to create 256-bit vectors from two other 128-bit ones.
5575static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5576  DebugLoc dl = Op.getDebugLoc();
5577  EVT ResVT = Op.getValueType();
5578
5579  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5580
5581  SDValue V1 = Op.getOperand(0);
5582  SDValue V2 = Op.getOperand(1);
5583  unsigned NumElems = ResVT.getVectorNumElements();
5584
5585  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5586}
5587
5588static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5589  assert(Op.getNumOperands() == 2);
5590
5591  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5592  // from two other 128-bit ones.
5593  return LowerAVXCONCAT_VECTORS(Op, DAG);
5594}
5595
5596// Try to lower a shuffle node into a simple blend instruction.
5597static SDValue
5598LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5599                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5600  SDValue V1 = SVOp->getOperand(0);
5601  SDValue V2 = SVOp->getOperand(1);
5602  DebugLoc dl = SVOp->getDebugLoc();
5603  MVT VT = SVOp->getValueType(0).getSimpleVT();
5604  unsigned NumElems = VT.getVectorNumElements();
5605
5606  if (!Subtarget->hasSSE41())
5607    return SDValue();
5608
5609  unsigned ISDNo = 0;
5610  MVT OpTy;
5611
5612  switch (VT.SimpleTy) {
5613  default: return SDValue();
5614  case MVT::v8i16:
5615    ISDNo = X86ISD::BLENDPW;
5616    OpTy = MVT::v8i16;
5617    break;
5618  case MVT::v4i32:
5619  case MVT::v4f32:
5620    ISDNo = X86ISD::BLENDPS;
5621    OpTy = MVT::v4f32;
5622    break;
5623  case MVT::v2i64:
5624  case MVT::v2f64:
5625    ISDNo = X86ISD::BLENDPD;
5626    OpTy = MVT::v2f64;
5627    break;
5628  case MVT::v8i32:
5629  case MVT::v8f32:
5630    if (!Subtarget->hasAVX())
5631      return SDValue();
5632    ISDNo = X86ISD::BLENDPS;
5633    OpTy = MVT::v8f32;
5634    break;
5635  case MVT::v4i64:
5636  case MVT::v4f64:
5637    if (!Subtarget->hasAVX())
5638      return SDValue();
5639    ISDNo = X86ISD::BLENDPD;
5640    OpTy = MVT::v4f64;
5641    break;
5642  }
5643  assert(ISDNo && "Invalid Op Number");
5644
5645  unsigned MaskVals = 0;
5646
5647  for (unsigned i = 0; i != NumElems; ++i) {
5648    int EltIdx = SVOp->getMaskElt(i);
5649    if (EltIdx == (int)i || EltIdx < 0)
5650      MaskVals |= (1<<i);
5651    else if (EltIdx == (int)(i + NumElems))
5652      continue; // Bit is set to zero;
5653    else
5654      return SDValue();
5655  }
5656
5657  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5658  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5659  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5660                             DAG.getConstant(MaskVals, MVT::i32));
5661  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5662}
5663
5664// v8i16 shuffles - Prefer shuffles in the following order:
5665// 1. [all]   pshuflw, pshufhw, optional move
5666// 2. [ssse3] 1 x pshufb
5667// 3. [ssse3] 2 x pshufb + 1 x por
5668// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5669static SDValue
5670LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5671                         SelectionDAG &DAG) {
5672  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5673  SDValue V1 = SVOp->getOperand(0);
5674  SDValue V2 = SVOp->getOperand(1);
5675  DebugLoc dl = SVOp->getDebugLoc();
5676  SmallVector<int, 8> MaskVals;
5677
5678  // Determine if more than 1 of the words in each of the low and high quadwords
5679  // of the result come from the same quadword of one of the two inputs.  Undef
5680  // mask values count as coming from any quadword, for better codegen.
5681  unsigned LoQuad[] = { 0, 0, 0, 0 };
5682  unsigned HiQuad[] = { 0, 0, 0, 0 };
5683  std::bitset<4> InputQuads;
5684  for (unsigned i = 0; i < 8; ++i) {
5685    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5686    int EltIdx = SVOp->getMaskElt(i);
5687    MaskVals.push_back(EltIdx);
5688    if (EltIdx < 0) {
5689      ++Quad[0];
5690      ++Quad[1];
5691      ++Quad[2];
5692      ++Quad[3];
5693      continue;
5694    }
5695    ++Quad[EltIdx / 4];
5696    InputQuads.set(EltIdx / 4);
5697  }
5698
5699  int BestLoQuad = -1;
5700  unsigned MaxQuad = 1;
5701  for (unsigned i = 0; i < 4; ++i) {
5702    if (LoQuad[i] > MaxQuad) {
5703      BestLoQuad = i;
5704      MaxQuad = LoQuad[i];
5705    }
5706  }
5707
5708  int BestHiQuad = -1;
5709  MaxQuad = 1;
5710  for (unsigned i = 0; i < 4; ++i) {
5711    if (HiQuad[i] > MaxQuad) {
5712      BestHiQuad = i;
5713      MaxQuad = HiQuad[i];
5714    }
5715  }
5716
5717  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5718  // of the two input vectors, shuffle them into one input vector so only a
5719  // single pshufb instruction is necessary. If There are more than 2 input
5720  // quads, disable the next transformation since it does not help SSSE3.
5721  bool V1Used = InputQuads[0] || InputQuads[1];
5722  bool V2Used = InputQuads[2] || InputQuads[3];
5723  if (Subtarget->hasSSSE3()) {
5724    if (InputQuads.count() == 2 && V1Used && V2Used) {
5725      BestLoQuad = InputQuads[0] ? 0 : 1;
5726      BestHiQuad = InputQuads[2] ? 2 : 3;
5727    }
5728    if (InputQuads.count() > 2) {
5729      BestLoQuad = -1;
5730      BestHiQuad = -1;
5731    }
5732  }
5733
5734  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5735  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5736  // words from all 4 input quadwords.
5737  SDValue NewV;
5738  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5739    int MaskV[] = {
5740      BestLoQuad < 0 ? 0 : BestLoQuad,
5741      BestHiQuad < 0 ? 1 : BestHiQuad
5742    };
5743    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5744                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5745                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5746    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5747
5748    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5749    // source words for the shuffle, to aid later transformations.
5750    bool AllWordsInNewV = true;
5751    bool InOrder[2] = { true, true };
5752    for (unsigned i = 0; i != 8; ++i) {
5753      int idx = MaskVals[i];
5754      if (idx != (int)i)
5755        InOrder[i/4] = false;
5756      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5757        continue;
5758      AllWordsInNewV = false;
5759      break;
5760    }
5761
5762    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5763    if (AllWordsInNewV) {
5764      for (int i = 0; i != 8; ++i) {
5765        int idx = MaskVals[i];
5766        if (idx < 0)
5767          continue;
5768        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5769        if ((idx != i) && idx < 4)
5770          pshufhw = false;
5771        if ((idx != i) && idx > 3)
5772          pshuflw = false;
5773      }
5774      V1 = NewV;
5775      V2Used = false;
5776      BestLoQuad = 0;
5777      BestHiQuad = 1;
5778    }
5779
5780    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5781    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5782    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5783      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5784      unsigned TargetMask = 0;
5785      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5786                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5787      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5788      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5789                             getShufflePSHUFLWImmediate(SVOp);
5790      V1 = NewV.getOperand(0);
5791      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5792    }
5793  }
5794
5795  // If we have SSSE3, and all words of the result are from 1 input vector,
5796  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5797  // is present, fall back to case 4.
5798  if (Subtarget->hasSSSE3()) {
5799    SmallVector<SDValue,16> pshufbMask;
5800
5801    // If we have elements from both input vectors, set the high bit of the
5802    // shuffle mask element to zero out elements that come from V2 in the V1
5803    // mask, and elements that come from V1 in the V2 mask, so that the two
5804    // results can be OR'd together.
5805    bool TwoInputs = V1Used && V2Used;
5806    for (unsigned i = 0; i != 8; ++i) {
5807      int EltIdx = MaskVals[i] * 2;
5808      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5809      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5810      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5811      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5812    }
5813    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5814    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5815                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5816                                 MVT::v16i8, &pshufbMask[0], 16));
5817    if (!TwoInputs)
5818      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5819
5820    // Calculate the shuffle mask for the second input, shuffle it, and
5821    // OR it with the first shuffled input.
5822    pshufbMask.clear();
5823    for (unsigned i = 0; i != 8; ++i) {
5824      int EltIdx = MaskVals[i] * 2;
5825      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5826      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5827      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5828      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5829    }
5830    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5831    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5832                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5833                                 MVT::v16i8, &pshufbMask[0], 16));
5834    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5835    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5836  }
5837
5838  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5839  // and update MaskVals with new element order.
5840  std::bitset<8> InOrder;
5841  if (BestLoQuad >= 0) {
5842    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5843    for (int i = 0; i != 4; ++i) {
5844      int idx = MaskVals[i];
5845      if (idx < 0) {
5846        InOrder.set(i);
5847      } else if ((idx / 4) == BestLoQuad) {
5848        MaskV[i] = idx & 3;
5849        InOrder.set(i);
5850      }
5851    }
5852    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5853                                &MaskV[0]);
5854
5855    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5856      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5857      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5858                                  NewV.getOperand(0),
5859                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5860    }
5861  }
5862
5863  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5864  // and update MaskVals with the new element order.
5865  if (BestHiQuad >= 0) {
5866    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5867    for (unsigned i = 4; i != 8; ++i) {
5868      int idx = MaskVals[i];
5869      if (idx < 0) {
5870        InOrder.set(i);
5871      } else if ((idx / 4) == BestHiQuad) {
5872        MaskV[i] = (idx & 3) + 4;
5873        InOrder.set(i);
5874      }
5875    }
5876    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5877                                &MaskV[0]);
5878
5879    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5880      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5881      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5882                                  NewV.getOperand(0),
5883                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5884    }
5885  }
5886
5887  // In case BestHi & BestLo were both -1, which means each quadword has a word
5888  // from each of the four input quadwords, calculate the InOrder bitvector now
5889  // before falling through to the insert/extract cleanup.
5890  if (BestLoQuad == -1 && BestHiQuad == -1) {
5891    NewV = V1;
5892    for (int i = 0; i != 8; ++i)
5893      if (MaskVals[i] < 0 || MaskVals[i] == i)
5894        InOrder.set(i);
5895  }
5896
5897  // The other elements are put in the right place using pextrw and pinsrw.
5898  for (unsigned i = 0; i != 8; ++i) {
5899    if (InOrder[i])
5900      continue;
5901    int EltIdx = MaskVals[i];
5902    if (EltIdx < 0)
5903      continue;
5904    SDValue ExtOp = (EltIdx < 8) ?
5905      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5906                  DAG.getIntPtrConstant(EltIdx)) :
5907      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5908                  DAG.getIntPtrConstant(EltIdx - 8));
5909    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5910                       DAG.getIntPtrConstant(i));
5911  }
5912  return NewV;
5913}
5914
5915// v16i8 shuffles - Prefer shuffles in the following order:
5916// 1. [ssse3] 1 x pshufb
5917// 2. [ssse3] 2 x pshufb + 1 x por
5918// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5919static
5920SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5921                                 SelectionDAG &DAG,
5922                                 const X86TargetLowering &TLI) {
5923  SDValue V1 = SVOp->getOperand(0);
5924  SDValue V2 = SVOp->getOperand(1);
5925  DebugLoc dl = SVOp->getDebugLoc();
5926  ArrayRef<int> MaskVals = SVOp->getMask();
5927
5928  // If we have SSSE3, case 1 is generated when all result bytes come from
5929  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5930  // present, fall back to case 3.
5931
5932  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5933  if (TLI.getSubtarget()->hasSSSE3()) {
5934    SmallVector<SDValue,16> pshufbMask;
5935
5936    // If all result elements are from one input vector, then only translate
5937    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5938    //
5939    // Otherwise, we have elements from both input vectors, and must zero out
5940    // elements that come from V2 in the first mask, and V1 in the second mask
5941    // so that we can OR them together.
5942    for (unsigned i = 0; i != 16; ++i) {
5943      int EltIdx = MaskVals[i];
5944      if (EltIdx < 0 || EltIdx >= 16)
5945        EltIdx = 0x80;
5946      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5947    }
5948    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5949                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5950                                 MVT::v16i8, &pshufbMask[0], 16));
5951
5952    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5953    // the 2nd operand if it's undefined or zero.
5954    if (V2.getOpcode() == ISD::UNDEF ||
5955        ISD::isBuildVectorAllZeros(V2.getNode()))
5956      return V1;
5957
5958    // Calculate the shuffle mask for the second input, shuffle it, and
5959    // OR it with the first shuffled input.
5960    pshufbMask.clear();
5961    for (unsigned i = 0; i != 16; ++i) {
5962      int EltIdx = MaskVals[i];
5963      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5964      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5965    }
5966    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5967                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5968                                 MVT::v16i8, &pshufbMask[0], 16));
5969    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5970  }
5971
5972  // No SSSE3 - Calculate in place words and then fix all out of place words
5973  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5974  // the 16 different words that comprise the two doublequadword input vectors.
5975  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5976  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5977  SDValue NewV = V1;
5978  for (int i = 0; i != 8; ++i) {
5979    int Elt0 = MaskVals[i*2];
5980    int Elt1 = MaskVals[i*2+1];
5981
5982    // This word of the result is all undef, skip it.
5983    if (Elt0 < 0 && Elt1 < 0)
5984      continue;
5985
5986    // This word of the result is already in the correct place, skip it.
5987    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5988      continue;
5989
5990    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5991    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5992    SDValue InsElt;
5993
5994    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5995    // using a single extract together, load it and store it.
5996    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5997      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5998                           DAG.getIntPtrConstant(Elt1 / 2));
5999      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6000                        DAG.getIntPtrConstant(i));
6001      continue;
6002    }
6003
6004    // If Elt1 is defined, extract it from the appropriate source.  If the
6005    // source byte is not also odd, shift the extracted word left 8 bits
6006    // otherwise clear the bottom 8 bits if we need to do an or.
6007    if (Elt1 >= 0) {
6008      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6009                           DAG.getIntPtrConstant(Elt1 / 2));
6010      if ((Elt1 & 1) == 0)
6011        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6012                             DAG.getConstant(8,
6013                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6014      else if (Elt0 >= 0)
6015        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6016                             DAG.getConstant(0xFF00, MVT::i16));
6017    }
6018    // If Elt0 is defined, extract it from the appropriate source.  If the
6019    // source byte is not also even, shift the extracted word right 8 bits. If
6020    // Elt1 was also defined, OR the extracted values together before
6021    // inserting them in the result.
6022    if (Elt0 >= 0) {
6023      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6024                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6025      if ((Elt0 & 1) != 0)
6026        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6027                              DAG.getConstant(8,
6028                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6029      else if (Elt1 >= 0)
6030        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6031                             DAG.getConstant(0x00FF, MVT::i16));
6032      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6033                         : InsElt0;
6034    }
6035    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6036                       DAG.getIntPtrConstant(i));
6037  }
6038  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6039}
6040
6041// v32i8 shuffles - Translate to VPSHUFB if possible.
6042static
6043SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6044                                 const X86Subtarget *Subtarget,
6045                                 SelectionDAG &DAG) {
6046  EVT VT = SVOp->getValueType(0);
6047  SDValue V1 = SVOp->getOperand(0);
6048  SDValue V2 = SVOp->getOperand(1);
6049  DebugLoc dl = SVOp->getDebugLoc();
6050  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6051
6052  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6053  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6054  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6055
6056  // VPSHUFB may be generated if
6057  // (1) one of input vector is undefined or zeroinitializer.
6058  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6059  // And (2) the mask indexes don't cross the 128-bit lane.
6060  if (VT != MVT::v32i8 || !Subtarget->hasAVX2() ||
6061      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6062    return SDValue();
6063
6064  if (V1IsAllZero && !V2IsAllZero) {
6065    CommuteVectorShuffleMask(MaskVals, 32);
6066    V1 = V2;
6067  }
6068  SmallVector<SDValue, 32> pshufbMask;
6069  for (unsigned i = 0; i != 32; i++) {
6070    int EltIdx = MaskVals[i];
6071    if (EltIdx < 0 || EltIdx >= 32)
6072      EltIdx = 0x80;
6073    else {
6074      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6075        // Cross lane is not allowed.
6076        return SDValue();
6077      EltIdx &= 0xf;
6078    }
6079    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6080  }
6081  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6082                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6083                                  MVT::v32i8, &pshufbMask[0], 32));
6084}
6085
6086/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6087/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6088/// done when every pair / quad of shuffle mask elements point to elements in
6089/// the right sequence. e.g.
6090/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6091static
6092SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6093                                 SelectionDAG &DAG, DebugLoc dl) {
6094  MVT VT = SVOp->getValueType(0).getSimpleVT();
6095  unsigned NumElems = VT.getVectorNumElements();
6096  MVT NewVT;
6097  unsigned Scale;
6098  switch (VT.SimpleTy) {
6099  default: llvm_unreachable("Unexpected!");
6100  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6101  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6102  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6103  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6104  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6105  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6106  }
6107
6108  SmallVector<int, 8> MaskVec;
6109  for (unsigned i = 0; i != NumElems; i += Scale) {
6110    int StartIdx = -1;
6111    for (unsigned j = 0; j != Scale; ++j) {
6112      int EltIdx = SVOp->getMaskElt(i+j);
6113      if (EltIdx < 0)
6114        continue;
6115      if (StartIdx < 0)
6116        StartIdx = (EltIdx / Scale);
6117      if (EltIdx != (int)(StartIdx*Scale + j))
6118        return SDValue();
6119    }
6120    MaskVec.push_back(StartIdx);
6121  }
6122
6123  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6124  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6125  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6126}
6127
6128/// getVZextMovL - Return a zero-extending vector move low node.
6129///
6130static SDValue getVZextMovL(EVT VT, EVT OpVT,
6131                            SDValue SrcOp, SelectionDAG &DAG,
6132                            const X86Subtarget *Subtarget, DebugLoc dl) {
6133  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6134    LoadSDNode *LD = NULL;
6135    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6136      LD = dyn_cast<LoadSDNode>(SrcOp);
6137    if (!LD) {
6138      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6139      // instead.
6140      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6141      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6142          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6143          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6144          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6145        // PR2108
6146        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6147        return DAG.getNode(ISD::BITCAST, dl, VT,
6148                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6149                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6150                                                   OpVT,
6151                                                   SrcOp.getOperand(0)
6152                                                          .getOperand(0))));
6153      }
6154    }
6155  }
6156
6157  return DAG.getNode(ISD::BITCAST, dl, VT,
6158                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6159                                 DAG.getNode(ISD::BITCAST, dl,
6160                                             OpVT, SrcOp)));
6161}
6162
6163/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6164/// which could not be matched by any known target speficic shuffle
6165static SDValue
6166LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6167
6168  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6169  if (NewOp.getNode())
6170    return NewOp;
6171
6172  EVT VT = SVOp->getValueType(0);
6173
6174  unsigned NumElems = VT.getVectorNumElements();
6175  unsigned NumLaneElems = NumElems / 2;
6176
6177  DebugLoc dl = SVOp->getDebugLoc();
6178  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6179  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6180  SDValue Output[2];
6181
6182  SmallVector<int, 16> Mask;
6183  for (unsigned l = 0; l < 2; ++l) {
6184    // Build a shuffle mask for the output, discovering on the fly which
6185    // input vectors to use as shuffle operands (recorded in InputUsed).
6186    // If building a suitable shuffle vector proves too hard, then bail
6187    // out with UseBuildVector set.
6188    bool UseBuildVector = false;
6189    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6190    unsigned LaneStart = l * NumLaneElems;
6191    for (unsigned i = 0; i != NumLaneElems; ++i) {
6192      // The mask element.  This indexes into the input.
6193      int Idx = SVOp->getMaskElt(i+LaneStart);
6194      if (Idx < 0) {
6195        // the mask element does not index into any input vector.
6196        Mask.push_back(-1);
6197        continue;
6198      }
6199
6200      // The input vector this mask element indexes into.
6201      int Input = Idx / NumLaneElems;
6202
6203      // Turn the index into an offset from the start of the input vector.
6204      Idx -= Input * NumLaneElems;
6205
6206      // Find or create a shuffle vector operand to hold this input.
6207      unsigned OpNo;
6208      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6209        if (InputUsed[OpNo] == Input)
6210          // This input vector is already an operand.
6211          break;
6212        if (InputUsed[OpNo] < 0) {
6213          // Create a new operand for this input vector.
6214          InputUsed[OpNo] = Input;
6215          break;
6216        }
6217      }
6218
6219      if (OpNo >= array_lengthof(InputUsed)) {
6220        // More than two input vectors used!  Give up on trying to create a
6221        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6222        UseBuildVector = true;
6223        break;
6224      }
6225
6226      // Add the mask index for the new shuffle vector.
6227      Mask.push_back(Idx + OpNo * NumLaneElems);
6228    }
6229
6230    if (UseBuildVector) {
6231      SmallVector<SDValue, 16> SVOps;
6232      for (unsigned i = 0; i != NumLaneElems; ++i) {
6233        // The mask element.  This indexes into the input.
6234        int Idx = SVOp->getMaskElt(i+LaneStart);
6235        if (Idx < 0) {
6236          SVOps.push_back(DAG.getUNDEF(EltVT));
6237          continue;
6238        }
6239
6240        // The input vector this mask element indexes into.
6241        int Input = Idx / NumElems;
6242
6243        // Turn the index into an offset from the start of the input vector.
6244        Idx -= Input * NumElems;
6245
6246        // Extract the vector element by hand.
6247        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6248                                    SVOp->getOperand(Input),
6249                                    DAG.getIntPtrConstant(Idx)));
6250      }
6251
6252      // Construct the output using a BUILD_VECTOR.
6253      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6254                              SVOps.size());
6255    } else if (InputUsed[0] < 0) {
6256      // No input vectors were used! The result is undefined.
6257      Output[l] = DAG.getUNDEF(NVT);
6258    } else {
6259      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6260                                        (InputUsed[0] % 2) * NumLaneElems,
6261                                        DAG, dl);
6262      // If only one input was used, use an undefined vector for the other.
6263      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6264        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6265                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6266      // At least one input vector was used. Create a new shuffle vector.
6267      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6268    }
6269
6270    Mask.clear();
6271  }
6272
6273  // Concatenate the result back
6274  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6275}
6276
6277/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6278/// 4 elements, and match them with several different shuffle types.
6279static SDValue
6280LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6281  SDValue V1 = SVOp->getOperand(0);
6282  SDValue V2 = SVOp->getOperand(1);
6283  DebugLoc dl = SVOp->getDebugLoc();
6284  EVT VT = SVOp->getValueType(0);
6285
6286  assert(VT.is128BitVector() && "Unsupported vector size");
6287
6288  std::pair<int, int> Locs[4];
6289  int Mask1[] = { -1, -1, -1, -1 };
6290  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6291
6292  unsigned NumHi = 0;
6293  unsigned NumLo = 0;
6294  for (unsigned i = 0; i != 4; ++i) {
6295    int Idx = PermMask[i];
6296    if (Idx < 0) {
6297      Locs[i] = std::make_pair(-1, -1);
6298    } else {
6299      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6300      if (Idx < 4) {
6301        Locs[i] = std::make_pair(0, NumLo);
6302        Mask1[NumLo] = Idx;
6303        NumLo++;
6304      } else {
6305        Locs[i] = std::make_pair(1, NumHi);
6306        if (2+NumHi < 4)
6307          Mask1[2+NumHi] = Idx;
6308        NumHi++;
6309      }
6310    }
6311  }
6312
6313  if (NumLo <= 2 && NumHi <= 2) {
6314    // If no more than two elements come from either vector. This can be
6315    // implemented with two shuffles. First shuffle gather the elements.
6316    // The second shuffle, which takes the first shuffle as both of its
6317    // vector operands, put the elements into the right order.
6318    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6319
6320    int Mask2[] = { -1, -1, -1, -1 };
6321
6322    for (unsigned i = 0; i != 4; ++i)
6323      if (Locs[i].first != -1) {
6324        unsigned Idx = (i < 2) ? 0 : 4;
6325        Idx += Locs[i].first * 2 + Locs[i].second;
6326        Mask2[i] = Idx;
6327      }
6328
6329    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6330  }
6331
6332  if (NumLo == 3 || NumHi == 3) {
6333    // Otherwise, we must have three elements from one vector, call it X, and
6334    // one element from the other, call it Y.  First, use a shufps to build an
6335    // intermediate vector with the one element from Y and the element from X
6336    // that will be in the same half in the final destination (the indexes don't
6337    // matter). Then, use a shufps to build the final vector, taking the half
6338    // containing the element from Y from the intermediate, and the other half
6339    // from X.
6340    if (NumHi == 3) {
6341      // Normalize it so the 3 elements come from V1.
6342      CommuteVectorShuffleMask(PermMask, 4);
6343      std::swap(V1, V2);
6344    }
6345
6346    // Find the element from V2.
6347    unsigned HiIndex;
6348    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6349      int Val = PermMask[HiIndex];
6350      if (Val < 0)
6351        continue;
6352      if (Val >= 4)
6353        break;
6354    }
6355
6356    Mask1[0] = PermMask[HiIndex];
6357    Mask1[1] = -1;
6358    Mask1[2] = PermMask[HiIndex^1];
6359    Mask1[3] = -1;
6360    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6361
6362    if (HiIndex >= 2) {
6363      Mask1[0] = PermMask[0];
6364      Mask1[1] = PermMask[1];
6365      Mask1[2] = HiIndex & 1 ? 6 : 4;
6366      Mask1[3] = HiIndex & 1 ? 4 : 6;
6367      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6368    }
6369
6370    Mask1[0] = HiIndex & 1 ? 2 : 0;
6371    Mask1[1] = HiIndex & 1 ? 0 : 2;
6372    Mask1[2] = PermMask[2];
6373    Mask1[3] = PermMask[3];
6374    if (Mask1[2] >= 0)
6375      Mask1[2] += 4;
6376    if (Mask1[3] >= 0)
6377      Mask1[3] += 4;
6378    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6379  }
6380
6381  // Break it into (shuffle shuffle_hi, shuffle_lo).
6382  int LoMask[] = { -1, -1, -1, -1 };
6383  int HiMask[] = { -1, -1, -1, -1 };
6384
6385  int *MaskPtr = LoMask;
6386  unsigned MaskIdx = 0;
6387  unsigned LoIdx = 0;
6388  unsigned HiIdx = 2;
6389  for (unsigned i = 0; i != 4; ++i) {
6390    if (i == 2) {
6391      MaskPtr = HiMask;
6392      MaskIdx = 1;
6393      LoIdx = 0;
6394      HiIdx = 2;
6395    }
6396    int Idx = PermMask[i];
6397    if (Idx < 0) {
6398      Locs[i] = std::make_pair(-1, -1);
6399    } else if (Idx < 4) {
6400      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6401      MaskPtr[LoIdx] = Idx;
6402      LoIdx++;
6403    } else {
6404      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6405      MaskPtr[HiIdx] = Idx;
6406      HiIdx++;
6407    }
6408  }
6409
6410  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6411  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6412  int MaskOps[] = { -1, -1, -1, -1 };
6413  for (unsigned i = 0; i != 4; ++i)
6414    if (Locs[i].first != -1)
6415      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6416  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6417}
6418
6419static bool MayFoldVectorLoad(SDValue V) {
6420  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6421    V = V.getOperand(0);
6422  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6423    V = V.getOperand(0);
6424  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6425      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6426    // BUILD_VECTOR (load), undef
6427    V = V.getOperand(0);
6428  if (MayFoldLoad(V))
6429    return true;
6430  return false;
6431}
6432
6433// FIXME: the version above should always be used. Since there's
6434// a bug where several vector shuffles can't be folded because the
6435// DAG is not updated during lowering and a node claims to have two
6436// uses while it only has one, use this version, and let isel match
6437// another instruction if the load really happens to have more than
6438// one use. Remove this version after this bug get fixed.
6439// rdar://8434668, PR8156
6440static bool RelaxedMayFoldVectorLoad(SDValue V) {
6441  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6442    V = V.getOperand(0);
6443  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6444    V = V.getOperand(0);
6445  if (ISD::isNormalLoad(V.getNode()))
6446    return true;
6447  return false;
6448}
6449
6450static
6451SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6452  EVT VT = Op.getValueType();
6453
6454  // Canonizalize to v2f64.
6455  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6456  return DAG.getNode(ISD::BITCAST, dl, VT,
6457                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6458                                          V1, DAG));
6459}
6460
6461static
6462SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6463                        bool HasSSE2) {
6464  SDValue V1 = Op.getOperand(0);
6465  SDValue V2 = Op.getOperand(1);
6466  EVT VT = Op.getValueType();
6467
6468  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6469
6470  if (HasSSE2 && VT == MVT::v2f64)
6471    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6472
6473  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6474  return DAG.getNode(ISD::BITCAST, dl, VT,
6475                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6476                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6477                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6478}
6479
6480static
6481SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6482  SDValue V1 = Op.getOperand(0);
6483  SDValue V2 = Op.getOperand(1);
6484  EVT VT = Op.getValueType();
6485
6486  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6487         "unsupported shuffle type");
6488
6489  if (V2.getOpcode() == ISD::UNDEF)
6490    V2 = V1;
6491
6492  // v4i32 or v4f32
6493  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6494}
6495
6496static
6497SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6498  SDValue V1 = Op.getOperand(0);
6499  SDValue V2 = Op.getOperand(1);
6500  EVT VT = Op.getValueType();
6501  unsigned NumElems = VT.getVectorNumElements();
6502
6503  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6504  // operand of these instructions is only memory, so check if there's a
6505  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6506  // same masks.
6507  bool CanFoldLoad = false;
6508
6509  // Trivial case, when V2 comes from a load.
6510  if (MayFoldVectorLoad(V2))
6511    CanFoldLoad = true;
6512
6513  // When V1 is a load, it can be folded later into a store in isel, example:
6514  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6515  //    turns into:
6516  //  (MOVLPSmr addr:$src1, VR128:$src2)
6517  // So, recognize this potential and also use MOVLPS or MOVLPD
6518  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6519    CanFoldLoad = true;
6520
6521  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6522  if (CanFoldLoad) {
6523    if (HasSSE2 && NumElems == 2)
6524      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6525
6526    if (NumElems == 4)
6527      // If we don't care about the second element, proceed to use movss.
6528      if (SVOp->getMaskElt(1) != -1)
6529        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6530  }
6531
6532  // movl and movlp will both match v2i64, but v2i64 is never matched by
6533  // movl earlier because we make it strict to avoid messing with the movlp load
6534  // folding logic (see the code above getMOVLP call). Match it here then,
6535  // this is horrible, but will stay like this until we move all shuffle
6536  // matching to x86 specific nodes. Note that for the 1st condition all
6537  // types are matched with movsd.
6538  if (HasSSE2) {
6539    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6540    // as to remove this logic from here, as much as possible
6541    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6542      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6543    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6544  }
6545
6546  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6547
6548  // Invert the operand order and use SHUFPS to match it.
6549  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6550                              getShuffleSHUFImmediate(SVOp), DAG);
6551}
6552
6553SDValue
6554X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6555  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6556  EVT VT = Op.getValueType();
6557  DebugLoc dl = Op.getDebugLoc();
6558  SDValue V1 = Op.getOperand(0);
6559  SDValue V2 = Op.getOperand(1);
6560
6561  if (isZeroShuffle(SVOp))
6562    return getZeroVector(VT, Subtarget, DAG, dl);
6563
6564  // Handle splat operations
6565  if (SVOp->isSplat()) {
6566    unsigned NumElem = VT.getVectorNumElements();
6567    int Size = VT.getSizeInBits();
6568
6569    // Use vbroadcast whenever the splat comes from a foldable load
6570    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6571    if (Broadcast.getNode())
6572      return Broadcast;
6573
6574    // Handle splats by matching through known shuffle masks
6575    if ((Size == 128 && NumElem <= 4) ||
6576        (Size == 256 && NumElem < 8))
6577      return SDValue();
6578
6579    // All remaning splats are promoted to target supported vector shuffles.
6580    return PromoteSplat(SVOp, DAG);
6581  }
6582
6583  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6584  // do it!
6585  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6586      VT == MVT::v16i16 || VT == MVT::v32i8) {
6587    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6588    if (NewOp.getNode())
6589      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6590  } else if ((VT == MVT::v4i32 ||
6591             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6592    // FIXME: Figure out a cleaner way to do this.
6593    // Try to make use of movq to zero out the top part.
6594    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6595      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6596      if (NewOp.getNode()) {
6597        EVT NewVT = NewOp.getValueType();
6598        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6599                               NewVT, true, false))
6600          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6601                              DAG, Subtarget, dl);
6602      }
6603    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6604      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6605      if (NewOp.getNode()) {
6606        EVT NewVT = NewOp.getValueType();
6607        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6608          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6609                              DAG, Subtarget, dl);
6610      }
6611    }
6612  }
6613  return SDValue();
6614}
6615
6616SDValue
6617X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6618  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6619  SDValue V1 = Op.getOperand(0);
6620  SDValue V2 = Op.getOperand(1);
6621  EVT VT = Op.getValueType();
6622  DebugLoc dl = Op.getDebugLoc();
6623  unsigned NumElems = VT.getVectorNumElements();
6624  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6625  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6626  bool V1IsSplat = false;
6627  bool V2IsSplat = false;
6628  bool HasSSE2 = Subtarget->hasSSE2();
6629  bool HasAVX    = Subtarget->hasAVX();
6630  bool HasAVX2   = Subtarget->hasAVX2();
6631  MachineFunction &MF = DAG.getMachineFunction();
6632  bool OptForSize = MF.getFunction()->getFnAttributes().hasOptimizeForSizeAttr();
6633
6634  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6635
6636  if (V1IsUndef && V2IsUndef)
6637    return DAG.getUNDEF(VT);
6638
6639  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6640
6641  // Vector shuffle lowering takes 3 steps:
6642  //
6643  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6644  //    narrowing and commutation of operands should be handled.
6645  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6646  //    shuffle nodes.
6647  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6648  //    so the shuffle can be broken into other shuffles and the legalizer can
6649  //    try the lowering again.
6650  //
6651  // The general idea is that no vector_shuffle operation should be left to
6652  // be matched during isel, all of them must be converted to a target specific
6653  // node here.
6654
6655  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6656  // narrowing and commutation of operands should be handled. The actual code
6657  // doesn't include all of those, work in progress...
6658  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6659  if (NewOp.getNode())
6660    return NewOp;
6661
6662  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6663
6664  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6665  // unpckh_undef). Only use pshufd if speed is more important than size.
6666  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6667    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6668  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6669    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6670
6671  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6672      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6673    return getMOVDDup(Op, dl, V1, DAG);
6674
6675  if (isMOVHLPS_v_undef_Mask(M, VT))
6676    return getMOVHighToLow(Op, dl, DAG);
6677
6678  // Use to match splats
6679  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6680      (VT == MVT::v2f64 || VT == MVT::v2i64))
6681    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6682
6683  if (isPSHUFDMask(M, VT)) {
6684    // The actual implementation will match the mask in the if above and then
6685    // during isel it can match several different instructions, not only pshufd
6686    // as its name says, sad but true, emulate the behavior for now...
6687    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6688      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6689
6690    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6691
6692    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6693      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6694
6695    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6696      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6697
6698    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6699                                TargetMask, DAG);
6700  }
6701
6702  // Check if this can be converted into a logical shift.
6703  bool isLeft = false;
6704  unsigned ShAmt = 0;
6705  SDValue ShVal;
6706  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6707  if (isShift && ShVal.hasOneUse()) {
6708    // If the shifted value has multiple uses, it may be cheaper to use
6709    // v_set0 + movlhps or movhlps, etc.
6710    EVT EltVT = VT.getVectorElementType();
6711    ShAmt *= EltVT.getSizeInBits();
6712    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6713  }
6714
6715  if (isMOVLMask(M, VT)) {
6716    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6717      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6718    if (!isMOVLPMask(M, VT)) {
6719      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6720        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6721
6722      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6723        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6724    }
6725  }
6726
6727  // FIXME: fold these into legal mask.
6728  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6729    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6730
6731  if (isMOVHLPSMask(M, VT))
6732    return getMOVHighToLow(Op, dl, DAG);
6733
6734  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6735    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6736
6737  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6738    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6739
6740  if (isMOVLPMask(M, VT))
6741    return getMOVLP(Op, dl, DAG, HasSSE2);
6742
6743  if (ShouldXformToMOVHLPS(M, VT) ||
6744      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6745    return CommuteVectorShuffle(SVOp, DAG);
6746
6747  if (isShift) {
6748    // No better options. Use a vshldq / vsrldq.
6749    EVT EltVT = VT.getVectorElementType();
6750    ShAmt *= EltVT.getSizeInBits();
6751    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6752  }
6753
6754  bool Commuted = false;
6755  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6756  // 1,1,1,1 -> v8i16 though.
6757  V1IsSplat = isSplatVector(V1.getNode());
6758  V2IsSplat = isSplatVector(V2.getNode());
6759
6760  // Canonicalize the splat or undef, if present, to be on the RHS.
6761  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6762    CommuteVectorShuffleMask(M, NumElems);
6763    std::swap(V1, V2);
6764    std::swap(V1IsSplat, V2IsSplat);
6765    Commuted = true;
6766  }
6767
6768  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6769    // Shuffling low element of v1 into undef, just return v1.
6770    if (V2IsUndef)
6771      return V1;
6772    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6773    // the instruction selector will not match, so get a canonical MOVL with
6774    // swapped operands to undo the commute.
6775    return getMOVL(DAG, dl, VT, V2, V1);
6776  }
6777
6778  if (isUNPCKLMask(M, VT, HasAVX2))
6779    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6780
6781  if (isUNPCKHMask(M, VT, HasAVX2))
6782    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6783
6784  if (V2IsSplat) {
6785    // Normalize mask so all entries that point to V2 points to its first
6786    // element then try to match unpck{h|l} again. If match, return a
6787    // new vector_shuffle with the corrected mask.p
6788    SmallVector<int, 8> NewMask(M.begin(), M.end());
6789    NormalizeMask(NewMask, NumElems);
6790    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6791      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6792    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6793      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6794  }
6795
6796  if (Commuted) {
6797    // Commute is back and try unpck* again.
6798    // FIXME: this seems wrong.
6799    CommuteVectorShuffleMask(M, NumElems);
6800    std::swap(V1, V2);
6801    std::swap(V1IsSplat, V2IsSplat);
6802    Commuted = false;
6803
6804    if (isUNPCKLMask(M, VT, HasAVX2))
6805      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6806
6807    if (isUNPCKHMask(M, VT, HasAVX2))
6808      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6809  }
6810
6811  // Normalize the node to match x86 shuffle ops if needed
6812  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6813    return CommuteVectorShuffle(SVOp, DAG);
6814
6815  // The checks below are all present in isShuffleMaskLegal, but they are
6816  // inlined here right now to enable us to directly emit target specific
6817  // nodes, and remove one by one until they don't return Op anymore.
6818
6819  if (isPALIGNRMask(M, VT, Subtarget))
6820    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6821                                getShufflePALIGNRImmediate(SVOp),
6822                                DAG);
6823
6824  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6825      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6826    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6827      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6828  }
6829
6830  if (isPSHUFHWMask(M, VT, HasAVX2))
6831    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6832                                getShufflePSHUFHWImmediate(SVOp),
6833                                DAG);
6834
6835  if (isPSHUFLWMask(M, VT, HasAVX2))
6836    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6837                                getShufflePSHUFLWImmediate(SVOp),
6838                                DAG);
6839
6840  if (isSHUFPMask(M, VT, HasAVX))
6841    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6842                                getShuffleSHUFImmediate(SVOp), DAG);
6843
6844  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6845    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6846  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6847    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6848
6849  //===--------------------------------------------------------------------===//
6850  // Generate target specific nodes for 128 or 256-bit shuffles only
6851  // supported in the AVX instruction set.
6852  //
6853
6854  // Handle VMOVDDUPY permutations
6855  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6856    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6857
6858  // Handle VPERMILPS/D* permutations
6859  if (isVPERMILPMask(M, VT, HasAVX)) {
6860    if (HasAVX2 && VT == MVT::v8i32)
6861      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6862                                  getShuffleSHUFImmediate(SVOp), DAG);
6863    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6864                                getShuffleSHUFImmediate(SVOp), DAG);
6865  }
6866
6867  // Handle VPERM2F128/VPERM2I128 permutations
6868  if (isVPERM2X128Mask(M, VT, HasAVX))
6869    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6870                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6871
6872  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6873  if (BlendOp.getNode())
6874    return BlendOp;
6875
6876  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6877    SmallVector<SDValue, 8> permclMask;
6878    for (unsigned i = 0; i != 8; ++i) {
6879      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6880    }
6881    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6882                               &permclMask[0], 8);
6883    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6884    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6885                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6886  }
6887
6888  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6889    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6890                                getShuffleCLImmediate(SVOp), DAG);
6891
6892
6893  //===--------------------------------------------------------------------===//
6894  // Since no target specific shuffle was selected for this generic one,
6895  // lower it into other known shuffles. FIXME: this isn't true yet, but
6896  // this is the plan.
6897  //
6898
6899  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6900  if (VT == MVT::v8i16) {
6901    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
6902    if (NewOp.getNode())
6903      return NewOp;
6904  }
6905
6906  if (VT == MVT::v16i8) {
6907    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6908    if (NewOp.getNode())
6909      return NewOp;
6910  }
6911
6912  if (VT == MVT::v32i8) {
6913    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
6914    if (NewOp.getNode())
6915      return NewOp;
6916  }
6917
6918  // Handle all 128-bit wide vectors with 4 elements, and match them with
6919  // several different shuffle types.
6920  if (NumElems == 4 && VT.is128BitVector())
6921    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6922
6923  // Handle general 256-bit shuffles
6924  if (VT.is256BitVector())
6925    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6926
6927  return SDValue();
6928}
6929
6930SDValue
6931X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6932                                                SelectionDAG &DAG) const {
6933  EVT VT = Op.getValueType();
6934  DebugLoc dl = Op.getDebugLoc();
6935
6936  if (!Op.getOperand(0).getValueType().is128BitVector())
6937    return SDValue();
6938
6939  if (VT.getSizeInBits() == 8) {
6940    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6941                                  Op.getOperand(0), Op.getOperand(1));
6942    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6943                                  DAG.getValueType(VT));
6944    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6945  }
6946
6947  if (VT.getSizeInBits() == 16) {
6948    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6949    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6950    if (Idx == 0)
6951      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6952                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6953                                     DAG.getNode(ISD::BITCAST, dl,
6954                                                 MVT::v4i32,
6955                                                 Op.getOperand(0)),
6956                                     Op.getOperand(1)));
6957    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6958                                  Op.getOperand(0), Op.getOperand(1));
6959    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6960                                  DAG.getValueType(VT));
6961    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6962  }
6963
6964  if (VT == MVT::f32) {
6965    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6966    // the result back to FR32 register. It's only worth matching if the
6967    // result has a single use which is a store or a bitcast to i32.  And in
6968    // the case of a store, it's not worth it if the index is a constant 0,
6969    // because a MOVSSmr can be used instead, which is smaller and faster.
6970    if (!Op.hasOneUse())
6971      return SDValue();
6972    SDNode *User = *Op.getNode()->use_begin();
6973    if ((User->getOpcode() != ISD::STORE ||
6974         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6975          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6976        (User->getOpcode() != ISD::BITCAST ||
6977         User->getValueType(0) != MVT::i32))
6978      return SDValue();
6979    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6980                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6981                                              Op.getOperand(0)),
6982                                              Op.getOperand(1));
6983    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6984  }
6985
6986  if (VT == MVT::i32 || VT == MVT::i64) {
6987    // ExtractPS/pextrq works with constant index.
6988    if (isa<ConstantSDNode>(Op.getOperand(1)))
6989      return Op;
6990  }
6991  return SDValue();
6992}
6993
6994
6995SDValue
6996X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6997                                           SelectionDAG &DAG) const {
6998  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6999    return SDValue();
7000
7001  SDValue Vec = Op.getOperand(0);
7002  EVT VecVT = Vec.getValueType();
7003
7004  // If this is a 256-bit vector result, first extract the 128-bit vector and
7005  // then extract the element from the 128-bit vector.
7006  if (VecVT.is256BitVector()) {
7007    DebugLoc dl = Op.getNode()->getDebugLoc();
7008    unsigned NumElems = VecVT.getVectorNumElements();
7009    SDValue Idx = Op.getOperand(1);
7010    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7011
7012    // Get the 128-bit vector.
7013    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7014
7015    if (IdxVal >= NumElems/2)
7016      IdxVal -= NumElems/2;
7017    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7018                       DAG.getConstant(IdxVal, MVT::i32));
7019  }
7020
7021  assert(VecVT.is128BitVector() && "Unexpected vector length");
7022
7023  if (Subtarget->hasSSE41()) {
7024    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7025    if (Res.getNode())
7026      return Res;
7027  }
7028
7029  EVT VT = Op.getValueType();
7030  DebugLoc dl = Op.getDebugLoc();
7031  // TODO: handle v16i8.
7032  if (VT.getSizeInBits() == 16) {
7033    SDValue Vec = Op.getOperand(0);
7034    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7035    if (Idx == 0)
7036      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7037                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7038                                     DAG.getNode(ISD::BITCAST, dl,
7039                                                 MVT::v4i32, Vec),
7040                                     Op.getOperand(1)));
7041    // Transform it so it match pextrw which produces a 32-bit result.
7042    EVT EltVT = MVT::i32;
7043    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7044                                  Op.getOperand(0), Op.getOperand(1));
7045    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7046                                  DAG.getValueType(VT));
7047    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7048  }
7049
7050  if (VT.getSizeInBits() == 32) {
7051    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7052    if (Idx == 0)
7053      return Op;
7054
7055    // SHUFPS the element to the lowest double word, then movss.
7056    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7057    EVT VVT = Op.getOperand(0).getValueType();
7058    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7059                                       DAG.getUNDEF(VVT), Mask);
7060    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7061                       DAG.getIntPtrConstant(0));
7062  }
7063
7064  if (VT.getSizeInBits() == 64) {
7065    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7066    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7067    //        to match extract_elt for f64.
7068    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7069    if (Idx == 0)
7070      return Op;
7071
7072    // UNPCKHPD the element to the lowest double word, then movsd.
7073    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7074    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7075    int Mask[2] = { 1, -1 };
7076    EVT VVT = Op.getOperand(0).getValueType();
7077    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7078                                       DAG.getUNDEF(VVT), Mask);
7079    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7080                       DAG.getIntPtrConstant(0));
7081  }
7082
7083  return SDValue();
7084}
7085
7086SDValue
7087X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7088                                               SelectionDAG &DAG) const {
7089  EVT VT = Op.getValueType();
7090  EVT EltVT = VT.getVectorElementType();
7091  DebugLoc dl = Op.getDebugLoc();
7092
7093  SDValue N0 = Op.getOperand(0);
7094  SDValue N1 = Op.getOperand(1);
7095  SDValue N2 = Op.getOperand(2);
7096
7097  if (!VT.is128BitVector())
7098    return SDValue();
7099
7100  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7101      isa<ConstantSDNode>(N2)) {
7102    unsigned Opc;
7103    if (VT == MVT::v8i16)
7104      Opc = X86ISD::PINSRW;
7105    else if (VT == MVT::v16i8)
7106      Opc = X86ISD::PINSRB;
7107    else
7108      Opc = X86ISD::PINSRB;
7109
7110    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7111    // argument.
7112    if (N1.getValueType() != MVT::i32)
7113      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7114    if (N2.getValueType() != MVT::i32)
7115      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7116    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7117  }
7118
7119  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7120    // Bits [7:6] of the constant are the source select.  This will always be
7121    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7122    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7123    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7124    // Bits [5:4] of the constant are the destination select.  This is the
7125    //  value of the incoming immediate.
7126    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7127    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7128    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7129    // Create this as a scalar to vector..
7130    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7131    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7132  }
7133
7134  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7135    // PINSR* works with constant index.
7136    return Op;
7137  }
7138  return SDValue();
7139}
7140
7141SDValue
7142X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7143  EVT VT = Op.getValueType();
7144  EVT EltVT = VT.getVectorElementType();
7145
7146  DebugLoc dl = Op.getDebugLoc();
7147  SDValue N0 = Op.getOperand(0);
7148  SDValue N1 = Op.getOperand(1);
7149  SDValue N2 = Op.getOperand(2);
7150
7151  // If this is a 256-bit vector result, first extract the 128-bit vector,
7152  // insert the element into the extracted half and then place it back.
7153  if (VT.is256BitVector()) {
7154    if (!isa<ConstantSDNode>(N2))
7155      return SDValue();
7156
7157    // Get the desired 128-bit vector half.
7158    unsigned NumElems = VT.getVectorNumElements();
7159    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7160    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7161
7162    // Insert the element into the desired half.
7163    bool Upper = IdxVal >= NumElems/2;
7164    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7165                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7166
7167    // Insert the changed part back to the 256-bit vector
7168    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7169  }
7170
7171  if (Subtarget->hasSSE41())
7172    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7173
7174  if (EltVT == MVT::i8)
7175    return SDValue();
7176
7177  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7178    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7179    // as its second argument.
7180    if (N1.getValueType() != MVT::i32)
7181      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7182    if (N2.getValueType() != MVT::i32)
7183      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7184    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7185  }
7186  return SDValue();
7187}
7188
7189static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7190  LLVMContext *Context = DAG.getContext();
7191  DebugLoc dl = Op.getDebugLoc();
7192  EVT OpVT = Op.getValueType();
7193
7194  // If this is a 256-bit vector result, first insert into a 128-bit
7195  // vector and then insert into the 256-bit vector.
7196  if (!OpVT.is128BitVector()) {
7197    // Insert into a 128-bit vector.
7198    EVT VT128 = EVT::getVectorVT(*Context,
7199                                 OpVT.getVectorElementType(),
7200                                 OpVT.getVectorNumElements() / 2);
7201
7202    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7203
7204    // Insert the 128-bit vector.
7205    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7206  }
7207
7208  if (OpVT == MVT::v1i64 &&
7209      Op.getOperand(0).getValueType() == MVT::i64)
7210    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7211
7212  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7213  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7214  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7215                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7216}
7217
7218// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7219// a simple subregister reference or explicit instructions to grab
7220// upper bits of a vector.
7221static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7222                                      SelectionDAG &DAG) {
7223  if (Subtarget->hasAVX()) {
7224    DebugLoc dl = Op.getNode()->getDebugLoc();
7225    SDValue Vec = Op.getNode()->getOperand(0);
7226    SDValue Idx = Op.getNode()->getOperand(1);
7227
7228    if (Op.getNode()->getValueType(0).is128BitVector() &&
7229        Vec.getNode()->getValueType(0).is256BitVector() &&
7230        isa<ConstantSDNode>(Idx)) {
7231      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7232      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7233    }
7234  }
7235  return SDValue();
7236}
7237
7238// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7239// simple superregister reference or explicit instructions to insert
7240// the upper bits of a vector.
7241static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7242                                     SelectionDAG &DAG) {
7243  if (Subtarget->hasAVX()) {
7244    DebugLoc dl = Op.getNode()->getDebugLoc();
7245    SDValue Vec = Op.getNode()->getOperand(0);
7246    SDValue SubVec = Op.getNode()->getOperand(1);
7247    SDValue Idx = Op.getNode()->getOperand(2);
7248
7249    if (Op.getNode()->getValueType(0).is256BitVector() &&
7250        SubVec.getNode()->getValueType(0).is128BitVector() &&
7251        isa<ConstantSDNode>(Idx)) {
7252      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7253      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7254    }
7255  }
7256  return SDValue();
7257}
7258
7259// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7260// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7261// one of the above mentioned nodes. It has to be wrapped because otherwise
7262// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7263// be used to form addressing mode. These wrapped nodes will be selected
7264// into MOV32ri.
7265SDValue
7266X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7267  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7268
7269  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7270  // global base reg.
7271  unsigned char OpFlag = 0;
7272  unsigned WrapperKind = X86ISD::Wrapper;
7273  CodeModel::Model M = getTargetMachine().getCodeModel();
7274
7275  if (Subtarget->isPICStyleRIPRel() &&
7276      (M == CodeModel::Small || M == CodeModel::Kernel))
7277    WrapperKind = X86ISD::WrapperRIP;
7278  else if (Subtarget->isPICStyleGOT())
7279    OpFlag = X86II::MO_GOTOFF;
7280  else if (Subtarget->isPICStyleStubPIC())
7281    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7282
7283  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7284                                             CP->getAlignment(),
7285                                             CP->getOffset(), OpFlag);
7286  DebugLoc DL = CP->getDebugLoc();
7287  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7288  // With PIC, the address is actually $g + Offset.
7289  if (OpFlag) {
7290    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7291                         DAG.getNode(X86ISD::GlobalBaseReg,
7292                                     DebugLoc(), getPointerTy()),
7293                         Result);
7294  }
7295
7296  return Result;
7297}
7298
7299SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7300  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7301
7302  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7303  // global base reg.
7304  unsigned char OpFlag = 0;
7305  unsigned WrapperKind = X86ISD::Wrapper;
7306  CodeModel::Model M = getTargetMachine().getCodeModel();
7307
7308  if (Subtarget->isPICStyleRIPRel() &&
7309      (M == CodeModel::Small || M == CodeModel::Kernel))
7310    WrapperKind = X86ISD::WrapperRIP;
7311  else if (Subtarget->isPICStyleGOT())
7312    OpFlag = X86II::MO_GOTOFF;
7313  else if (Subtarget->isPICStyleStubPIC())
7314    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7315
7316  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7317                                          OpFlag);
7318  DebugLoc DL = JT->getDebugLoc();
7319  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7320
7321  // With PIC, the address is actually $g + Offset.
7322  if (OpFlag)
7323    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7324                         DAG.getNode(X86ISD::GlobalBaseReg,
7325                                     DebugLoc(), getPointerTy()),
7326                         Result);
7327
7328  return Result;
7329}
7330
7331SDValue
7332X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7333  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7334
7335  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7336  // global base reg.
7337  unsigned char OpFlag = 0;
7338  unsigned WrapperKind = X86ISD::Wrapper;
7339  CodeModel::Model M = getTargetMachine().getCodeModel();
7340
7341  if (Subtarget->isPICStyleRIPRel() &&
7342      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7343    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7344      OpFlag = X86II::MO_GOTPCREL;
7345    WrapperKind = X86ISD::WrapperRIP;
7346  } else if (Subtarget->isPICStyleGOT()) {
7347    OpFlag = X86II::MO_GOT;
7348  } else if (Subtarget->isPICStyleStubPIC()) {
7349    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7350  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7351    OpFlag = X86II::MO_DARWIN_NONLAZY;
7352  }
7353
7354  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7355
7356  DebugLoc DL = Op.getDebugLoc();
7357  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7358
7359
7360  // With PIC, the address is actually $g + Offset.
7361  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7362      !Subtarget->is64Bit()) {
7363    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7364                         DAG.getNode(X86ISD::GlobalBaseReg,
7365                                     DebugLoc(), getPointerTy()),
7366                         Result);
7367  }
7368
7369  // For symbols that require a load from a stub to get the address, emit the
7370  // load.
7371  if (isGlobalStubReference(OpFlag))
7372    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7373                         MachinePointerInfo::getGOT(), false, false, false, 0);
7374
7375  return Result;
7376}
7377
7378SDValue
7379X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7380  // Create the TargetBlockAddressAddress node.
7381  unsigned char OpFlags =
7382    Subtarget->ClassifyBlockAddressReference();
7383  CodeModel::Model M = getTargetMachine().getCodeModel();
7384  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7385  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7386  DebugLoc dl = Op.getDebugLoc();
7387  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7388                                             OpFlags);
7389
7390  if (Subtarget->isPICStyleRIPRel() &&
7391      (M == CodeModel::Small || M == CodeModel::Kernel))
7392    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7393  else
7394    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7395
7396  // With PIC, the address is actually $g + Offset.
7397  if (isGlobalRelativeToPICBase(OpFlags)) {
7398    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7399                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7400                         Result);
7401  }
7402
7403  return Result;
7404}
7405
7406SDValue
7407X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7408                                      int64_t Offset,
7409                                      SelectionDAG &DAG) const {
7410  // Create the TargetGlobalAddress node, folding in the constant
7411  // offset if it is legal.
7412  unsigned char OpFlags =
7413    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7414  CodeModel::Model M = getTargetMachine().getCodeModel();
7415  SDValue Result;
7416  if (OpFlags == X86II::MO_NO_FLAG &&
7417      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7418    // A direct static reference to a global.
7419    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7420    Offset = 0;
7421  } else {
7422    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7423  }
7424
7425  if (Subtarget->isPICStyleRIPRel() &&
7426      (M == CodeModel::Small || M == CodeModel::Kernel))
7427    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7428  else
7429    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7430
7431  // With PIC, the address is actually $g + Offset.
7432  if (isGlobalRelativeToPICBase(OpFlags)) {
7433    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7434                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7435                         Result);
7436  }
7437
7438  // For globals that require a load from a stub to get the address, emit the
7439  // load.
7440  if (isGlobalStubReference(OpFlags))
7441    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7442                         MachinePointerInfo::getGOT(), false, false, false, 0);
7443
7444  // If there was a non-zero offset that we didn't fold, create an explicit
7445  // addition for it.
7446  if (Offset != 0)
7447    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7448                         DAG.getConstant(Offset, getPointerTy()));
7449
7450  return Result;
7451}
7452
7453SDValue
7454X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7455  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7456  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7457  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7458}
7459
7460static SDValue
7461GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7462           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7463           unsigned char OperandFlags, bool LocalDynamic = false) {
7464  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7465  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7466  DebugLoc dl = GA->getDebugLoc();
7467  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7468                                           GA->getValueType(0),
7469                                           GA->getOffset(),
7470                                           OperandFlags);
7471
7472  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7473                                           : X86ISD::TLSADDR;
7474
7475  if (InFlag) {
7476    SDValue Ops[] = { Chain,  TGA, *InFlag };
7477    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7478  } else {
7479    SDValue Ops[]  = { Chain, TGA };
7480    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7481  }
7482
7483  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7484  MFI->setAdjustsStack(true);
7485
7486  SDValue Flag = Chain.getValue(1);
7487  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7488}
7489
7490// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7491static SDValue
7492LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7493                                const EVT PtrVT) {
7494  SDValue InFlag;
7495  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7496  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7497                                   DAG.getNode(X86ISD::GlobalBaseReg,
7498                                               DebugLoc(), PtrVT), InFlag);
7499  InFlag = Chain.getValue(1);
7500
7501  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7502}
7503
7504// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7505static SDValue
7506LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7507                                const EVT PtrVT) {
7508  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7509                    X86::RAX, X86II::MO_TLSGD);
7510}
7511
7512static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7513                                           SelectionDAG &DAG,
7514                                           const EVT PtrVT,
7515                                           bool is64Bit) {
7516  DebugLoc dl = GA->getDebugLoc();
7517
7518  // Get the start address of the TLS block for this module.
7519  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7520      .getInfo<X86MachineFunctionInfo>();
7521  MFI->incNumLocalDynamicTLSAccesses();
7522
7523  SDValue Base;
7524  if (is64Bit) {
7525    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7526                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7527  } else {
7528    SDValue InFlag;
7529    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7530        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7531    InFlag = Chain.getValue(1);
7532    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7533                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7534  }
7535
7536  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7537  // of Base.
7538
7539  // Build x@dtpoff.
7540  unsigned char OperandFlags = X86II::MO_DTPOFF;
7541  unsigned WrapperKind = X86ISD::Wrapper;
7542  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7543                                           GA->getValueType(0),
7544                                           GA->getOffset(), OperandFlags);
7545  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7546
7547  // Add x@dtpoff with the base.
7548  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7549}
7550
7551// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7552static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7553                                   const EVT PtrVT, TLSModel::Model model,
7554                                   bool is64Bit, bool isPIC) {
7555  DebugLoc dl = GA->getDebugLoc();
7556
7557  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7558  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7559                                                         is64Bit ? 257 : 256));
7560
7561  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7562                                      DAG.getIntPtrConstant(0),
7563                                      MachinePointerInfo(Ptr),
7564                                      false, false, false, 0);
7565
7566  unsigned char OperandFlags = 0;
7567  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7568  // initialexec.
7569  unsigned WrapperKind = X86ISD::Wrapper;
7570  if (model == TLSModel::LocalExec) {
7571    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7572  } else if (model == TLSModel::InitialExec) {
7573    if (is64Bit) {
7574      OperandFlags = X86II::MO_GOTTPOFF;
7575      WrapperKind = X86ISD::WrapperRIP;
7576    } else {
7577      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7578    }
7579  } else {
7580    llvm_unreachable("Unexpected model");
7581  }
7582
7583  // emit "addl x@ntpoff,%eax" (local exec)
7584  // or "addl x@indntpoff,%eax" (initial exec)
7585  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7586  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7587                                           GA->getValueType(0),
7588                                           GA->getOffset(), OperandFlags);
7589  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7590
7591  if (model == TLSModel::InitialExec) {
7592    if (isPIC && !is64Bit) {
7593      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7594                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7595                           Offset);
7596    }
7597
7598    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7599                         MachinePointerInfo::getGOT(), false, false, false,
7600                         0);
7601  }
7602
7603  // The address of the thread local variable is the add of the thread
7604  // pointer with the offset of the variable.
7605  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7606}
7607
7608SDValue
7609X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7610
7611  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7612  const GlobalValue *GV = GA->getGlobal();
7613
7614  if (Subtarget->isTargetELF()) {
7615    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7616
7617    switch (model) {
7618      case TLSModel::GeneralDynamic:
7619        if (Subtarget->is64Bit())
7620          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7621        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7622      case TLSModel::LocalDynamic:
7623        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7624                                           Subtarget->is64Bit());
7625      case TLSModel::InitialExec:
7626      case TLSModel::LocalExec:
7627        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7628                                   Subtarget->is64Bit(),
7629                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7630    }
7631    llvm_unreachable("Unknown TLS model.");
7632  }
7633
7634  if (Subtarget->isTargetDarwin()) {
7635    // Darwin only has one model of TLS.  Lower to that.
7636    unsigned char OpFlag = 0;
7637    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7638                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7639
7640    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7641    // global base reg.
7642    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7643                  !Subtarget->is64Bit();
7644    if (PIC32)
7645      OpFlag = X86II::MO_TLVP_PIC_BASE;
7646    else
7647      OpFlag = X86II::MO_TLVP;
7648    DebugLoc DL = Op.getDebugLoc();
7649    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7650                                                GA->getValueType(0),
7651                                                GA->getOffset(), OpFlag);
7652    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7653
7654    // With PIC32, the address is actually $g + Offset.
7655    if (PIC32)
7656      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7657                           DAG.getNode(X86ISD::GlobalBaseReg,
7658                                       DebugLoc(), getPointerTy()),
7659                           Offset);
7660
7661    // Lowering the machine isd will make sure everything is in the right
7662    // location.
7663    SDValue Chain = DAG.getEntryNode();
7664    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7665    SDValue Args[] = { Chain, Offset };
7666    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7667
7668    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7669    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7670    MFI->setAdjustsStack(true);
7671
7672    // And our return value (tls address) is in the standard call return value
7673    // location.
7674    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7675    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7676                              Chain.getValue(1));
7677  }
7678
7679  if (Subtarget->isTargetWindows()) {
7680    // Just use the implicit TLS architecture
7681    // Need to generate someting similar to:
7682    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7683    //                                  ; from TEB
7684    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7685    //   mov     rcx, qword [rdx+rcx*8]
7686    //   mov     eax, .tls$:tlsvar
7687    //   [rax+rcx] contains the address
7688    // Windows 64bit: gs:0x58
7689    // Windows 32bit: fs:__tls_array
7690
7691    // If GV is an alias then use the aliasee for determining
7692    // thread-localness.
7693    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7694      GV = GA->resolveAliasedGlobal(false);
7695    DebugLoc dl = GA->getDebugLoc();
7696    SDValue Chain = DAG.getEntryNode();
7697
7698    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7699    // %gs:0x58 (64-bit).
7700    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7701                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7702                                                             256)
7703                                        : Type::getInt32PtrTy(*DAG.getContext(),
7704                                                              257));
7705
7706    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7707                                        Subtarget->is64Bit()
7708                                        ? DAG.getIntPtrConstant(0x58)
7709                                        : DAG.getExternalSymbol("_tls_array",
7710                                                                getPointerTy()),
7711                                        MachinePointerInfo(Ptr),
7712                                        false, false, false, 0);
7713
7714    // Load the _tls_index variable
7715    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7716    if (Subtarget->is64Bit())
7717      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7718                           IDX, MachinePointerInfo(), MVT::i32,
7719                           false, false, 0);
7720    else
7721      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7722                        false, false, false, 0);
7723
7724    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7725                                    getPointerTy());
7726    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7727
7728    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7729    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7730                      false, false, false, 0);
7731
7732    // Get the offset of start of .tls section
7733    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7734                                             GA->getValueType(0),
7735                                             GA->getOffset(), X86II::MO_SECREL);
7736    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7737
7738    // The address of the thread local variable is the add of the thread
7739    // pointer with the offset of the variable.
7740    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7741  }
7742
7743  llvm_unreachable("TLS not implemented for this target.");
7744}
7745
7746
7747/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7748/// and take a 2 x i32 value to shift plus a shift amount.
7749SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7750  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7751  EVT VT = Op.getValueType();
7752  unsigned VTBits = VT.getSizeInBits();
7753  DebugLoc dl = Op.getDebugLoc();
7754  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7755  SDValue ShOpLo = Op.getOperand(0);
7756  SDValue ShOpHi = Op.getOperand(1);
7757  SDValue ShAmt  = Op.getOperand(2);
7758  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7759                                     DAG.getConstant(VTBits - 1, MVT::i8))
7760                       : DAG.getConstant(0, VT);
7761
7762  SDValue Tmp2, Tmp3;
7763  if (Op.getOpcode() == ISD::SHL_PARTS) {
7764    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7765    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7766  } else {
7767    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7768    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7769  }
7770
7771  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7772                                DAG.getConstant(VTBits, MVT::i8));
7773  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7774                             AndNode, DAG.getConstant(0, MVT::i8));
7775
7776  SDValue Hi, Lo;
7777  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7778  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7779  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7780
7781  if (Op.getOpcode() == ISD::SHL_PARTS) {
7782    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7783    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7784  } else {
7785    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7786    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7787  }
7788
7789  SDValue Ops[2] = { Lo, Hi };
7790  return DAG.getMergeValues(Ops, 2, dl);
7791}
7792
7793SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7794                                           SelectionDAG &DAG) const {
7795  EVT SrcVT = Op.getOperand(0).getValueType();
7796
7797  if (SrcVT.isVector())
7798    return SDValue();
7799
7800  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7801         "Unknown SINT_TO_FP to lower!");
7802
7803  // These are really Legal; return the operand so the caller accepts it as
7804  // Legal.
7805  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7806    return Op;
7807  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7808      Subtarget->is64Bit()) {
7809    return Op;
7810  }
7811
7812  DebugLoc dl = Op.getDebugLoc();
7813  unsigned Size = SrcVT.getSizeInBits()/8;
7814  MachineFunction &MF = DAG.getMachineFunction();
7815  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7816  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7817  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7818                               StackSlot,
7819                               MachinePointerInfo::getFixedStack(SSFI),
7820                               false, false, 0);
7821  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7822}
7823
7824SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7825                                     SDValue StackSlot,
7826                                     SelectionDAG &DAG) const {
7827  // Build the FILD
7828  DebugLoc DL = Op.getDebugLoc();
7829  SDVTList Tys;
7830  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7831  if (useSSE)
7832    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7833  else
7834    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7835
7836  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7837
7838  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7839  MachineMemOperand *MMO;
7840  if (FI) {
7841    int SSFI = FI->getIndex();
7842    MMO =
7843      DAG.getMachineFunction()
7844      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7845                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7846  } else {
7847    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7848    StackSlot = StackSlot.getOperand(1);
7849  }
7850  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7851  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7852                                           X86ISD::FILD, DL,
7853                                           Tys, Ops, array_lengthof(Ops),
7854                                           SrcVT, MMO);
7855
7856  if (useSSE) {
7857    Chain = Result.getValue(1);
7858    SDValue InFlag = Result.getValue(2);
7859
7860    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7861    // shouldn't be necessary except that RFP cannot be live across
7862    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7863    MachineFunction &MF = DAG.getMachineFunction();
7864    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7865    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7866    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7867    Tys = DAG.getVTList(MVT::Other);
7868    SDValue Ops[] = {
7869      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7870    };
7871    MachineMemOperand *MMO =
7872      DAG.getMachineFunction()
7873      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7874                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7875
7876    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7877                                    Ops, array_lengthof(Ops),
7878                                    Op.getValueType(), MMO);
7879    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7880                         MachinePointerInfo::getFixedStack(SSFI),
7881                         false, false, false, 0);
7882  }
7883
7884  return Result;
7885}
7886
7887// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7888SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7889                                               SelectionDAG &DAG) const {
7890  // This algorithm is not obvious. Here it is what we're trying to output:
7891  /*
7892     movq       %rax,  %xmm0
7893     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7894     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7895     #ifdef __SSE3__
7896       haddpd   %xmm0, %xmm0
7897     #else
7898       pshufd   $0x4e, %xmm0, %xmm1
7899       addpd    %xmm1, %xmm0
7900     #endif
7901  */
7902
7903  DebugLoc dl = Op.getDebugLoc();
7904  LLVMContext *Context = DAG.getContext();
7905
7906  // Build some magic constants.
7907  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7908  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7909  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7910
7911  SmallVector<Constant*,2> CV1;
7912  CV1.push_back(
7913        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7914  CV1.push_back(
7915        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7916  Constant *C1 = ConstantVector::get(CV1);
7917  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7918
7919  // Load the 64-bit value into an XMM register.
7920  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7921                            Op.getOperand(0));
7922  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7923                              MachinePointerInfo::getConstantPool(),
7924                              false, false, false, 16);
7925  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7926                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7927                              CLod0);
7928
7929  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7930                              MachinePointerInfo::getConstantPool(),
7931                              false, false, false, 16);
7932  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7933  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7934  SDValue Result;
7935
7936  if (Subtarget->hasSSE3()) {
7937    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7938    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7939  } else {
7940    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7941    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7942                                           S2F, 0x4E, DAG);
7943    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7944                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7945                         Sub);
7946  }
7947
7948  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7949                     DAG.getIntPtrConstant(0));
7950}
7951
7952// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7953SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7954                                               SelectionDAG &DAG) const {
7955  DebugLoc dl = Op.getDebugLoc();
7956  // FP constant to bias correct the final result.
7957  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7958                                   MVT::f64);
7959
7960  // Load the 32-bit value into an XMM register.
7961  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7962                             Op.getOperand(0));
7963
7964  // Zero out the upper parts of the register.
7965  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7966
7967  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7968                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7969                     DAG.getIntPtrConstant(0));
7970
7971  // Or the load with the bias.
7972  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7973                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7974                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7975                                                   MVT::v2f64, Load)),
7976                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7977                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7978                                                   MVT::v2f64, Bias)));
7979  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7980                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7981                   DAG.getIntPtrConstant(0));
7982
7983  // Subtract the bias.
7984  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7985
7986  // Handle final rounding.
7987  EVT DestVT = Op.getValueType();
7988
7989  if (DestVT.bitsLT(MVT::f64))
7990    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7991                       DAG.getIntPtrConstant(0));
7992  if (DestVT.bitsGT(MVT::f64))
7993    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7994
7995  // Handle final rounding.
7996  return Sub;
7997}
7998
7999SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8000                                           SelectionDAG &DAG) const {
8001  SDValue N0 = Op.getOperand(0);
8002  DebugLoc dl = Op.getDebugLoc();
8003
8004  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8005  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8006  // the optimization here.
8007  if (DAG.SignBitIsZero(N0))
8008    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8009
8010  EVT SrcVT = N0.getValueType();
8011  EVT DstVT = Op.getValueType();
8012  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8013    return LowerUINT_TO_FP_i64(Op, DAG);
8014  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8015    return LowerUINT_TO_FP_i32(Op, DAG);
8016  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8017    return SDValue();
8018
8019  // Make a 64-bit buffer, and use it to build an FILD.
8020  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8021  if (SrcVT == MVT::i32) {
8022    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8023    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8024                                     getPointerTy(), StackSlot, WordOff);
8025    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8026                                  StackSlot, MachinePointerInfo(),
8027                                  false, false, 0);
8028    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8029                                  OffsetSlot, MachinePointerInfo(),
8030                                  false, false, 0);
8031    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8032    return Fild;
8033  }
8034
8035  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8036  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8037                               StackSlot, MachinePointerInfo(),
8038                               false, false, 0);
8039  // For i64 source, we need to add the appropriate power of 2 if the input
8040  // was negative.  This is the same as the optimization in
8041  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8042  // we must be careful to do the computation in x87 extended precision, not
8043  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8044  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8045  MachineMemOperand *MMO =
8046    DAG.getMachineFunction()
8047    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8048                          MachineMemOperand::MOLoad, 8, 8);
8049
8050  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8051  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8052  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8053                                         MVT::i64, MMO);
8054
8055  APInt FF(32, 0x5F800000ULL);
8056
8057  // Check whether the sign bit is set.
8058  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8059                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8060                                 ISD::SETLT);
8061
8062  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8063  SDValue FudgePtr = DAG.getConstantPool(
8064                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8065                                         getPointerTy());
8066
8067  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8068  SDValue Zero = DAG.getIntPtrConstant(0);
8069  SDValue Four = DAG.getIntPtrConstant(4);
8070  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8071                               Zero, Four);
8072  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8073
8074  // Load the value out, extending it from f32 to f80.
8075  // FIXME: Avoid the extend by constructing the right constant pool?
8076  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8077                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8078                                 MVT::f32, false, false, 4);
8079  // Extend everything to 80 bits to force it to be done on x87.
8080  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8081  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8082}
8083
8084std::pair<SDValue,SDValue> X86TargetLowering::
8085FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8086  DebugLoc DL = Op.getDebugLoc();
8087
8088  EVT DstTy = Op.getValueType();
8089
8090  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8091    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8092    DstTy = MVT::i64;
8093  }
8094
8095  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8096         DstTy.getSimpleVT() >= MVT::i16 &&
8097         "Unknown FP_TO_INT to lower!");
8098
8099  // These are really Legal.
8100  if (DstTy == MVT::i32 &&
8101      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8102    return std::make_pair(SDValue(), SDValue());
8103  if (Subtarget->is64Bit() &&
8104      DstTy == MVT::i64 &&
8105      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8106    return std::make_pair(SDValue(), SDValue());
8107
8108  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8109  // stack slot, or into the FTOL runtime function.
8110  MachineFunction &MF = DAG.getMachineFunction();
8111  unsigned MemSize = DstTy.getSizeInBits()/8;
8112  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8113  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8114
8115  unsigned Opc;
8116  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8117    Opc = X86ISD::WIN_FTOL;
8118  else
8119    switch (DstTy.getSimpleVT().SimpleTy) {
8120    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8121    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8122    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8123    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8124    }
8125
8126  SDValue Chain = DAG.getEntryNode();
8127  SDValue Value = Op.getOperand(0);
8128  EVT TheVT = Op.getOperand(0).getValueType();
8129  // FIXME This causes a redundant load/store if the SSE-class value is already
8130  // in memory, such as if it is on the callstack.
8131  if (isScalarFPTypeInSSEReg(TheVT)) {
8132    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8133    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8134                         MachinePointerInfo::getFixedStack(SSFI),
8135                         false, false, 0);
8136    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8137    SDValue Ops[] = {
8138      Chain, StackSlot, DAG.getValueType(TheVT)
8139    };
8140
8141    MachineMemOperand *MMO =
8142      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8143                              MachineMemOperand::MOLoad, MemSize, MemSize);
8144    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8145                                    DstTy, MMO);
8146    Chain = Value.getValue(1);
8147    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8148    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8149  }
8150
8151  MachineMemOperand *MMO =
8152    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8153                            MachineMemOperand::MOStore, MemSize, MemSize);
8154
8155  if (Opc != X86ISD::WIN_FTOL) {
8156    // Build the FP_TO_INT*_IN_MEM
8157    SDValue Ops[] = { Chain, Value, StackSlot };
8158    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8159                                           Ops, 3, DstTy, MMO);
8160    return std::make_pair(FIST, StackSlot);
8161  } else {
8162    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8163      DAG.getVTList(MVT::Other, MVT::Glue),
8164      Chain, Value);
8165    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8166      MVT::i32, ftol.getValue(1));
8167    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8168      MVT::i32, eax.getValue(2));
8169    SDValue Ops[] = { eax, edx };
8170    SDValue pair = IsReplace
8171      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8172      : DAG.getMergeValues(Ops, 2, DL);
8173    return std::make_pair(pair, SDValue());
8174  }
8175}
8176
8177SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8178                                           SelectionDAG &DAG) const {
8179  if (Op.getValueType().isVector())
8180    return SDValue();
8181
8182  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8183    /*IsSigned=*/ true, /*IsReplace=*/ false);
8184  SDValue FIST = Vals.first, StackSlot = Vals.second;
8185  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8186  if (FIST.getNode() == 0) return Op;
8187
8188  if (StackSlot.getNode())
8189    // Load the result.
8190    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8191                       FIST, StackSlot, MachinePointerInfo(),
8192                       false, false, false, 0);
8193
8194  // The node is the result.
8195  return FIST;
8196}
8197
8198SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8199                                           SelectionDAG &DAG) const {
8200  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8201    /*IsSigned=*/ false, /*IsReplace=*/ false);
8202  SDValue FIST = Vals.first, StackSlot = Vals.second;
8203  assert(FIST.getNode() && "Unexpected failure");
8204
8205  if (StackSlot.getNode())
8206    // Load the result.
8207    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8208                       FIST, StackSlot, MachinePointerInfo(),
8209                       false, false, false, 0);
8210
8211  // The node is the result.
8212  return FIST;
8213}
8214
8215SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8216  LLVMContext *Context = DAG.getContext();
8217  DebugLoc dl = Op.getDebugLoc();
8218  EVT VT = Op.getValueType();
8219  EVT EltVT = VT;
8220  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8221  if (VT.isVector()) {
8222    EltVT = VT.getVectorElementType();
8223    NumElts = VT.getVectorNumElements();
8224  }
8225  Constant *C;
8226  if (EltVT == MVT::f64)
8227    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8228  else
8229    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8230  C = ConstantVector::getSplat(NumElts, C);
8231  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8232  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8233  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8234                             MachinePointerInfo::getConstantPool(),
8235                             false, false, false, Alignment);
8236  if (VT.isVector()) {
8237    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8238    return DAG.getNode(ISD::BITCAST, dl, VT,
8239                       DAG.getNode(ISD::AND, dl, ANDVT,
8240                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8241                                               Op.getOperand(0)),
8242                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8243  }
8244  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8245}
8246
8247SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8248  LLVMContext *Context = DAG.getContext();
8249  DebugLoc dl = Op.getDebugLoc();
8250  EVT VT = Op.getValueType();
8251  EVT EltVT = VT;
8252  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8253  if (VT.isVector()) {
8254    EltVT = VT.getVectorElementType();
8255    NumElts = VT.getVectorNumElements();
8256  }
8257  Constant *C;
8258  if (EltVT == MVT::f64)
8259    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8260  else
8261    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8262  C = ConstantVector::getSplat(NumElts, C);
8263  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8264  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8265  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8266                             MachinePointerInfo::getConstantPool(),
8267                             false, false, false, Alignment);
8268  if (VT.isVector()) {
8269    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8270    return DAG.getNode(ISD::BITCAST, dl, VT,
8271                       DAG.getNode(ISD::XOR, dl, XORVT,
8272                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8273                                               Op.getOperand(0)),
8274                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8275  }
8276
8277  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8278}
8279
8280SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8281  LLVMContext *Context = DAG.getContext();
8282  SDValue Op0 = Op.getOperand(0);
8283  SDValue Op1 = Op.getOperand(1);
8284  DebugLoc dl = Op.getDebugLoc();
8285  EVT VT = Op.getValueType();
8286  EVT SrcVT = Op1.getValueType();
8287
8288  // If second operand is smaller, extend it first.
8289  if (SrcVT.bitsLT(VT)) {
8290    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8291    SrcVT = VT;
8292  }
8293  // And if it is bigger, shrink it first.
8294  if (SrcVT.bitsGT(VT)) {
8295    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8296    SrcVT = VT;
8297  }
8298
8299  // At this point the operands and the result should have the same
8300  // type, and that won't be f80 since that is not custom lowered.
8301
8302  // First get the sign bit of second operand.
8303  SmallVector<Constant*,4> CV;
8304  if (SrcVT == MVT::f64) {
8305    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8306    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8307  } else {
8308    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8309    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8310    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8311    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8312  }
8313  Constant *C = ConstantVector::get(CV);
8314  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8315  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8316                              MachinePointerInfo::getConstantPool(),
8317                              false, false, false, 16);
8318  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8319
8320  // Shift sign bit right or left if the two operands have different types.
8321  if (SrcVT.bitsGT(VT)) {
8322    // Op0 is MVT::f32, Op1 is MVT::f64.
8323    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8324    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8325                          DAG.getConstant(32, MVT::i32));
8326    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8327    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8328                          DAG.getIntPtrConstant(0));
8329  }
8330
8331  // Clear first operand sign bit.
8332  CV.clear();
8333  if (VT == MVT::f64) {
8334    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8335    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8336  } else {
8337    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8338    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8339    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8340    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8341  }
8342  C = ConstantVector::get(CV);
8343  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8344  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8345                              MachinePointerInfo::getConstantPool(),
8346                              false, false, false, 16);
8347  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8348
8349  // Or the value with the sign bit.
8350  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8351}
8352
8353static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8354  SDValue N0 = Op.getOperand(0);
8355  DebugLoc dl = Op.getDebugLoc();
8356  EVT VT = Op.getValueType();
8357
8358  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8359  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8360                                  DAG.getConstant(1, VT));
8361  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8362}
8363
8364// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8365//
8366SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8367  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8368
8369  if (!Subtarget->hasSSE41())
8370    return SDValue();
8371
8372  if (!Op->hasOneUse())
8373    return SDValue();
8374
8375  SDNode *N = Op.getNode();
8376  DebugLoc DL = N->getDebugLoc();
8377
8378  SmallVector<SDValue, 8> Opnds;
8379  DenseMap<SDValue, unsigned> VecInMap;
8380  EVT VT = MVT::Other;
8381
8382  // Recognize a special case where a vector is casted into wide integer to
8383  // test all 0s.
8384  Opnds.push_back(N->getOperand(0));
8385  Opnds.push_back(N->getOperand(1));
8386
8387  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8388    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8389    // BFS traverse all OR'd operands.
8390    if (I->getOpcode() == ISD::OR) {
8391      Opnds.push_back(I->getOperand(0));
8392      Opnds.push_back(I->getOperand(1));
8393      // Re-evaluate the number of nodes to be traversed.
8394      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8395      continue;
8396    }
8397
8398    // Quit if a non-EXTRACT_VECTOR_ELT
8399    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8400      return SDValue();
8401
8402    // Quit if without a constant index.
8403    SDValue Idx = I->getOperand(1);
8404    if (!isa<ConstantSDNode>(Idx))
8405      return SDValue();
8406
8407    SDValue ExtractedFromVec = I->getOperand(0);
8408    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8409    if (M == VecInMap.end()) {
8410      VT = ExtractedFromVec.getValueType();
8411      // Quit if not 128/256-bit vector.
8412      if (!VT.is128BitVector() && !VT.is256BitVector())
8413        return SDValue();
8414      // Quit if not the same type.
8415      if (VecInMap.begin() != VecInMap.end() &&
8416          VT != VecInMap.begin()->first.getValueType())
8417        return SDValue();
8418      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8419    }
8420    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8421  }
8422
8423  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8424         "Not extracted from 128-/256-bit vector.");
8425
8426  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8427  SmallVector<SDValue, 8> VecIns;
8428
8429  for (DenseMap<SDValue, unsigned>::const_iterator
8430        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8431    // Quit if not all elements are used.
8432    if (I->second != FullMask)
8433      return SDValue();
8434    VecIns.push_back(I->first);
8435  }
8436
8437  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8438
8439  // Cast all vectors into TestVT for PTEST.
8440  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8441    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8442
8443  // If more than one full vectors are evaluated, OR them first before PTEST.
8444  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8445    // Each iteration will OR 2 nodes and append the result until there is only
8446    // 1 node left, i.e. the final OR'd value of all vectors.
8447    SDValue LHS = VecIns[Slot];
8448    SDValue RHS = VecIns[Slot + 1];
8449    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8450  }
8451
8452  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8453                     VecIns.back(), VecIns.back());
8454}
8455
8456/// Emit nodes that will be selected as "test Op0,Op0", or something
8457/// equivalent.
8458SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8459                                    SelectionDAG &DAG) const {
8460  DebugLoc dl = Op.getDebugLoc();
8461
8462  // CF and OF aren't always set the way we want. Determine which
8463  // of these we need.
8464  bool NeedCF = false;
8465  bool NeedOF = false;
8466  switch (X86CC) {
8467  default: break;
8468  case X86::COND_A: case X86::COND_AE:
8469  case X86::COND_B: case X86::COND_BE:
8470    NeedCF = true;
8471    break;
8472  case X86::COND_G: case X86::COND_GE:
8473  case X86::COND_L: case X86::COND_LE:
8474  case X86::COND_O: case X86::COND_NO:
8475    NeedOF = true;
8476    break;
8477  }
8478
8479  // See if we can use the EFLAGS value from the operand instead of
8480  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8481  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8482  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8483    // Emit a CMP with 0, which is the TEST pattern.
8484    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8485                       DAG.getConstant(0, Op.getValueType()));
8486
8487  unsigned Opcode = 0;
8488  unsigned NumOperands = 0;
8489
8490  // Truncate operations may prevent the merge of the SETCC instruction
8491  // and the arithmetic intruction before it. Attempt to truncate the operands
8492  // of the arithmetic instruction and use a reduced bit-width instruction.
8493  bool NeedTruncation = false;
8494  SDValue ArithOp = Op;
8495  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8496    SDValue Arith = Op->getOperand(0);
8497    // Both the trunc and the arithmetic op need to have one user each.
8498    if (Arith->hasOneUse())
8499      switch (Arith.getOpcode()) {
8500        default: break;
8501        case ISD::ADD:
8502        case ISD::SUB:
8503        case ISD::AND:
8504        case ISD::OR:
8505        case ISD::XOR: {
8506          NeedTruncation = true;
8507          ArithOp = Arith;
8508        }
8509      }
8510  }
8511
8512  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8513  // which may be the result of a CAST.  We use the variable 'Op', which is the
8514  // non-casted variable when we check for possible users.
8515  switch (ArithOp.getOpcode()) {
8516  case ISD::ADD:
8517    // Due to an isel shortcoming, be conservative if this add is likely to be
8518    // selected as part of a load-modify-store instruction. When the root node
8519    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8520    // uses of other nodes in the match, such as the ADD in this case. This
8521    // leads to the ADD being left around and reselected, with the result being
8522    // two adds in the output.  Alas, even if none our users are stores, that
8523    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8524    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8525    // climbing the DAG back to the root, and it doesn't seem to be worth the
8526    // effort.
8527    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8528         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8529      if (UI->getOpcode() != ISD::CopyToReg &&
8530          UI->getOpcode() != ISD::SETCC &&
8531          UI->getOpcode() != ISD::STORE)
8532        goto default_case;
8533
8534    if (ConstantSDNode *C =
8535        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8536      // An add of one will be selected as an INC.
8537      if (C->getAPIntValue() == 1) {
8538        Opcode = X86ISD::INC;
8539        NumOperands = 1;
8540        break;
8541      }
8542
8543      // An add of negative one (subtract of one) will be selected as a DEC.
8544      if (C->getAPIntValue().isAllOnesValue()) {
8545        Opcode = X86ISD::DEC;
8546        NumOperands = 1;
8547        break;
8548      }
8549    }
8550
8551    // Otherwise use a regular EFLAGS-setting add.
8552    Opcode = X86ISD::ADD;
8553    NumOperands = 2;
8554    break;
8555  case ISD::AND: {
8556    // If the primary and result isn't used, don't bother using X86ISD::AND,
8557    // because a TEST instruction will be better.
8558    bool NonFlagUse = false;
8559    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8560           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8561      SDNode *User = *UI;
8562      unsigned UOpNo = UI.getOperandNo();
8563      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8564        // Look pass truncate.
8565        UOpNo = User->use_begin().getOperandNo();
8566        User = *User->use_begin();
8567      }
8568
8569      if (User->getOpcode() != ISD::BRCOND &&
8570          User->getOpcode() != ISD::SETCC &&
8571          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8572        NonFlagUse = true;
8573        break;
8574      }
8575    }
8576
8577    if (!NonFlagUse)
8578      break;
8579  }
8580    // FALL THROUGH
8581  case ISD::SUB:
8582  case ISD::OR:
8583  case ISD::XOR:
8584    // Due to the ISEL shortcoming noted above, be conservative if this op is
8585    // likely to be selected as part of a load-modify-store instruction.
8586    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8587           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8588      if (UI->getOpcode() == ISD::STORE)
8589        goto default_case;
8590
8591    // Otherwise use a regular EFLAGS-setting instruction.
8592    switch (ArithOp.getOpcode()) {
8593    default: llvm_unreachable("unexpected operator!");
8594    case ISD::SUB: Opcode = X86ISD::SUB; break;
8595    case ISD::XOR: Opcode = X86ISD::XOR; break;
8596    case ISD::AND: Opcode = X86ISD::AND; break;
8597    case ISD::OR: {
8598      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8599        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8600        if (EFLAGS.getNode())
8601          return EFLAGS;
8602      }
8603      Opcode = X86ISD::OR;
8604      break;
8605    }
8606    }
8607
8608    NumOperands = 2;
8609    break;
8610  case X86ISD::ADD:
8611  case X86ISD::SUB:
8612  case X86ISD::INC:
8613  case X86ISD::DEC:
8614  case X86ISD::OR:
8615  case X86ISD::XOR:
8616  case X86ISD::AND:
8617    return SDValue(Op.getNode(), 1);
8618  default:
8619  default_case:
8620    break;
8621  }
8622
8623  // If we found that truncation is beneficial, perform the truncation and
8624  // update 'Op'.
8625  if (NeedTruncation) {
8626    EVT VT = Op.getValueType();
8627    SDValue WideVal = Op->getOperand(0);
8628    EVT WideVT = WideVal.getValueType();
8629    unsigned ConvertedOp = 0;
8630    // Use a target machine opcode to prevent further DAGCombine
8631    // optimizations that may separate the arithmetic operations
8632    // from the setcc node.
8633    switch (WideVal.getOpcode()) {
8634      default: break;
8635      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8636      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8637      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8638      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8639      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8640    }
8641
8642    if (ConvertedOp) {
8643      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8644      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8645        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8646        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8647        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8648      }
8649    }
8650  }
8651
8652  if (Opcode == 0)
8653    // Emit a CMP with 0, which is the TEST pattern.
8654    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8655                       DAG.getConstant(0, Op.getValueType()));
8656
8657  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8658  SmallVector<SDValue, 4> Ops;
8659  for (unsigned i = 0; i != NumOperands; ++i)
8660    Ops.push_back(Op.getOperand(i));
8661
8662  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8663  DAG.ReplaceAllUsesWith(Op, New);
8664  return SDValue(New.getNode(), 1);
8665}
8666
8667/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8668/// equivalent.
8669SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8670                                   SelectionDAG &DAG) const {
8671  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8672    if (C->getAPIntValue() == 0)
8673      return EmitTest(Op0, X86CC, DAG);
8674
8675  DebugLoc dl = Op0.getDebugLoc();
8676  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8677       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8678    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8679    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8680    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8681                              Op0, Op1);
8682    return SDValue(Sub.getNode(), 1);
8683  }
8684  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8685}
8686
8687/// Convert a comparison if required by the subtarget.
8688SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8689                                                 SelectionDAG &DAG) const {
8690  // If the subtarget does not support the FUCOMI instruction, floating-point
8691  // comparisons have to be converted.
8692  if (Subtarget->hasCMov() ||
8693      Cmp.getOpcode() != X86ISD::CMP ||
8694      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8695      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8696    return Cmp;
8697
8698  // The instruction selector will select an FUCOM instruction instead of
8699  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8700  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8701  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8702  DebugLoc dl = Cmp.getDebugLoc();
8703  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8704  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8705  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8706                            DAG.getConstant(8, MVT::i8));
8707  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8708  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8709}
8710
8711/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8712/// if it's possible.
8713SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8714                                     DebugLoc dl, SelectionDAG &DAG) const {
8715  SDValue Op0 = And.getOperand(0);
8716  SDValue Op1 = And.getOperand(1);
8717  if (Op0.getOpcode() == ISD::TRUNCATE)
8718    Op0 = Op0.getOperand(0);
8719  if (Op1.getOpcode() == ISD::TRUNCATE)
8720    Op1 = Op1.getOperand(0);
8721
8722  SDValue LHS, RHS;
8723  if (Op1.getOpcode() == ISD::SHL)
8724    std::swap(Op0, Op1);
8725  if (Op0.getOpcode() == ISD::SHL) {
8726    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8727      if (And00C->getZExtValue() == 1) {
8728        // If we looked past a truncate, check that it's only truncating away
8729        // known zeros.
8730        unsigned BitWidth = Op0.getValueSizeInBits();
8731        unsigned AndBitWidth = And.getValueSizeInBits();
8732        if (BitWidth > AndBitWidth) {
8733          APInt Zeros, Ones;
8734          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8735          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8736            return SDValue();
8737        }
8738        LHS = Op1;
8739        RHS = Op0.getOperand(1);
8740      }
8741  } else if (Op1.getOpcode() == ISD::Constant) {
8742    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8743    uint64_t AndRHSVal = AndRHS->getZExtValue();
8744    SDValue AndLHS = Op0;
8745
8746    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8747      LHS = AndLHS.getOperand(0);
8748      RHS = AndLHS.getOperand(1);
8749    }
8750
8751    // Use BT if the immediate can't be encoded in a TEST instruction.
8752    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8753      LHS = AndLHS;
8754      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8755    }
8756  }
8757
8758  if (LHS.getNode()) {
8759    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8760    // instruction.  Since the shift amount is in-range-or-undefined, we know
8761    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8762    // the encoding for the i16 version is larger than the i32 version.
8763    // Also promote i16 to i32 for performance / code size reason.
8764    if (LHS.getValueType() == MVT::i8 ||
8765        LHS.getValueType() == MVT::i16)
8766      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8767
8768    // If the operand types disagree, extend the shift amount to match.  Since
8769    // BT ignores high bits (like shifts) we can use anyextend.
8770    if (LHS.getValueType() != RHS.getValueType())
8771      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8772
8773    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8774    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8775    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8776                       DAG.getConstant(Cond, MVT::i8), BT);
8777  }
8778
8779  return SDValue();
8780}
8781
8782SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8783
8784  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8785
8786  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8787  SDValue Op0 = Op.getOperand(0);
8788  SDValue Op1 = Op.getOperand(1);
8789  DebugLoc dl = Op.getDebugLoc();
8790  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8791
8792  // Optimize to BT if possible.
8793  // Lower (X & (1 << N)) == 0 to BT(X, N).
8794  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8795  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8796  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8797      Op1.getOpcode() == ISD::Constant &&
8798      cast<ConstantSDNode>(Op1)->isNullValue() &&
8799      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8800    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8801    if (NewSetCC.getNode())
8802      return NewSetCC;
8803  }
8804
8805  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8806  // these.
8807  if (Op1.getOpcode() == ISD::Constant &&
8808      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8809       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8810      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8811
8812    // If the input is a setcc, then reuse the input setcc or use a new one with
8813    // the inverted condition.
8814    if (Op0.getOpcode() == X86ISD::SETCC) {
8815      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8816      bool Invert = (CC == ISD::SETNE) ^
8817        cast<ConstantSDNode>(Op1)->isNullValue();
8818      if (!Invert) return Op0;
8819
8820      CCode = X86::GetOppositeBranchCondition(CCode);
8821      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8822                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8823    }
8824  }
8825
8826  bool isFP = Op1.getValueType().isFloatingPoint();
8827  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8828  if (X86CC == X86::COND_INVALID)
8829    return SDValue();
8830
8831  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8832  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8833  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8834                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8835}
8836
8837// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8838// ones, and then concatenate the result back.
8839static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8840  EVT VT = Op.getValueType();
8841
8842  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
8843         "Unsupported value type for operation");
8844
8845  unsigned NumElems = VT.getVectorNumElements();
8846  DebugLoc dl = Op.getDebugLoc();
8847  SDValue CC = Op.getOperand(2);
8848
8849  // Extract the LHS vectors
8850  SDValue LHS = Op.getOperand(0);
8851  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8852  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8853
8854  // Extract the RHS vectors
8855  SDValue RHS = Op.getOperand(1);
8856  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8857  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8858
8859  // Issue the operation on the smaller types and concatenate the result back
8860  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8861  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8862  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8863                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8864                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8865}
8866
8867
8868SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8869  SDValue Cond;
8870  SDValue Op0 = Op.getOperand(0);
8871  SDValue Op1 = Op.getOperand(1);
8872  SDValue CC = Op.getOperand(2);
8873  EVT VT = Op.getValueType();
8874  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8875  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8876  DebugLoc dl = Op.getDebugLoc();
8877
8878  if (isFP) {
8879#ifndef NDEBUG
8880    EVT EltVT = Op0.getValueType().getVectorElementType();
8881    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8882#endif
8883
8884    unsigned SSECC;
8885    bool Swap = false;
8886
8887    // SSE Condition code mapping:
8888    //  0 - EQ
8889    //  1 - LT
8890    //  2 - LE
8891    //  3 - UNORD
8892    //  4 - NEQ
8893    //  5 - NLT
8894    //  6 - NLE
8895    //  7 - ORD
8896    switch (SetCCOpcode) {
8897    default: llvm_unreachable("Unexpected SETCC condition");
8898    case ISD::SETOEQ:
8899    case ISD::SETEQ:  SSECC = 0; break;
8900    case ISD::SETOGT:
8901    case ISD::SETGT: Swap = true; // Fallthrough
8902    case ISD::SETLT:
8903    case ISD::SETOLT: SSECC = 1; break;
8904    case ISD::SETOGE:
8905    case ISD::SETGE: Swap = true; // Fallthrough
8906    case ISD::SETLE:
8907    case ISD::SETOLE: SSECC = 2; break;
8908    case ISD::SETUO:  SSECC = 3; break;
8909    case ISD::SETUNE:
8910    case ISD::SETNE:  SSECC = 4; break;
8911    case ISD::SETULE: Swap = true; // Fallthrough
8912    case ISD::SETUGE: SSECC = 5; break;
8913    case ISD::SETULT: Swap = true; // Fallthrough
8914    case ISD::SETUGT: SSECC = 6; break;
8915    case ISD::SETO:   SSECC = 7; break;
8916    case ISD::SETUEQ:
8917    case ISD::SETONE: SSECC = 8; break;
8918    }
8919    if (Swap)
8920      std::swap(Op0, Op1);
8921
8922    // In the two special cases we can't handle, emit two comparisons.
8923    if (SSECC == 8) {
8924      unsigned CC0, CC1;
8925      unsigned CombineOpc;
8926      if (SetCCOpcode == ISD::SETUEQ) {
8927        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
8928      } else {
8929        assert(SetCCOpcode == ISD::SETONE);
8930        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
8931      }
8932
8933      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8934                                 DAG.getConstant(CC0, MVT::i8));
8935      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8936                                 DAG.getConstant(CC1, MVT::i8));
8937      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
8938    }
8939    // Handle all other FP comparisons here.
8940    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8941                       DAG.getConstant(SSECC, MVT::i8));
8942  }
8943
8944  // Break 256-bit integer vector compare into smaller ones.
8945  if (VT.is256BitVector() && !Subtarget->hasAVX2())
8946    return Lower256IntVSETCC(Op, DAG);
8947
8948  // We are handling one of the integer comparisons here.  Since SSE only has
8949  // GT and EQ comparisons for integer, swapping operands and multiple
8950  // operations may be required for some comparisons.
8951  unsigned Opc;
8952  bool Swap = false, Invert = false, FlipSigns = false;
8953
8954  switch (SetCCOpcode) {
8955  default: llvm_unreachable("Unexpected SETCC condition");
8956  case ISD::SETNE:  Invert = true;
8957  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8958  case ISD::SETLT:  Swap = true;
8959  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8960  case ISD::SETGE:  Swap = true;
8961  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8962  case ISD::SETULT: Swap = true;
8963  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8964  case ISD::SETUGE: Swap = true;
8965  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8966  }
8967  if (Swap)
8968    std::swap(Op0, Op1);
8969
8970  // Check that the operation in question is available (most are plain SSE2,
8971  // but PCMPGTQ and PCMPEQQ have different requirements).
8972  if (VT == MVT::v2i64) {
8973    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
8974      return SDValue();
8975    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
8976      return SDValue();
8977  }
8978
8979  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8980  // bits of the inputs before performing those operations.
8981  if (FlipSigns) {
8982    EVT EltVT = VT.getVectorElementType();
8983    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8984                                      EltVT);
8985    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8986    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8987                                    SignBits.size());
8988    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8989    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8990  }
8991
8992  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8993
8994  // If the logical-not of the result is required, perform that now.
8995  if (Invert)
8996    Result = DAG.getNOT(dl, Result, VT);
8997
8998  return Result;
8999}
9000
9001// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9002static bool isX86LogicalCmp(SDValue Op) {
9003  unsigned Opc = Op.getNode()->getOpcode();
9004  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9005      Opc == X86ISD::SAHF)
9006    return true;
9007  if (Op.getResNo() == 1 &&
9008      (Opc == X86ISD::ADD ||
9009       Opc == X86ISD::SUB ||
9010       Opc == X86ISD::ADC ||
9011       Opc == X86ISD::SBB ||
9012       Opc == X86ISD::SMUL ||
9013       Opc == X86ISD::UMUL ||
9014       Opc == X86ISD::INC ||
9015       Opc == X86ISD::DEC ||
9016       Opc == X86ISD::OR ||
9017       Opc == X86ISD::XOR ||
9018       Opc == X86ISD::AND))
9019    return true;
9020
9021  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9022    return true;
9023
9024  return false;
9025}
9026
9027static bool isZero(SDValue V) {
9028  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9029  return C && C->isNullValue();
9030}
9031
9032static bool isAllOnes(SDValue V) {
9033  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9034  return C && C->isAllOnesValue();
9035}
9036
9037static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9038  if (V.getOpcode() != ISD::TRUNCATE)
9039    return false;
9040
9041  SDValue VOp0 = V.getOperand(0);
9042  unsigned InBits = VOp0.getValueSizeInBits();
9043  unsigned Bits = V.getValueSizeInBits();
9044  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9045}
9046
9047SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9048  bool addTest = true;
9049  SDValue Cond  = Op.getOperand(0);
9050  SDValue Op1 = Op.getOperand(1);
9051  SDValue Op2 = Op.getOperand(2);
9052  DebugLoc DL = Op.getDebugLoc();
9053  SDValue CC;
9054
9055  if (Cond.getOpcode() == ISD::SETCC) {
9056    SDValue NewCond = LowerSETCC(Cond, DAG);
9057    if (NewCond.getNode())
9058      Cond = NewCond;
9059  }
9060
9061  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9062  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9063  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9064  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9065  if (Cond.getOpcode() == X86ISD::SETCC &&
9066      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9067      isZero(Cond.getOperand(1).getOperand(1))) {
9068    SDValue Cmp = Cond.getOperand(1);
9069
9070    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9071
9072    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9073        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9074      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9075
9076      SDValue CmpOp0 = Cmp.getOperand(0);
9077      // Apply further optimizations for special cases
9078      // (select (x != 0), -1, 0) -> neg & sbb
9079      // (select (x == 0), 0, -1) -> neg & sbb
9080      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9081        if (YC->isNullValue() &&
9082            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9083          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9084          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9085                                    DAG.getConstant(0, CmpOp0.getValueType()),
9086                                    CmpOp0);
9087          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9088                                    DAG.getConstant(X86::COND_B, MVT::i8),
9089                                    SDValue(Neg.getNode(), 1));
9090          return Res;
9091        }
9092
9093      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9094                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9095      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9096
9097      SDValue Res =   // Res = 0 or -1.
9098        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9099                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9100
9101      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9102        Res = DAG.getNOT(DL, Res, Res.getValueType());
9103
9104      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9105      if (N2C == 0 || !N2C->isNullValue())
9106        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9107      return Res;
9108    }
9109  }
9110
9111  // Look past (and (setcc_carry (cmp ...)), 1).
9112  if (Cond.getOpcode() == ISD::AND &&
9113      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9114    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9115    if (C && C->getAPIntValue() == 1)
9116      Cond = Cond.getOperand(0);
9117  }
9118
9119  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9120  // setting operand in place of the X86ISD::SETCC.
9121  unsigned CondOpcode = Cond.getOpcode();
9122  if (CondOpcode == X86ISD::SETCC ||
9123      CondOpcode == X86ISD::SETCC_CARRY) {
9124    CC = Cond.getOperand(0);
9125
9126    SDValue Cmp = Cond.getOperand(1);
9127    unsigned Opc = Cmp.getOpcode();
9128    EVT VT = Op.getValueType();
9129
9130    bool IllegalFPCMov = false;
9131    if (VT.isFloatingPoint() && !VT.isVector() &&
9132        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9133      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9134
9135    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9136        Opc == X86ISD::BT) { // FIXME
9137      Cond = Cmp;
9138      addTest = false;
9139    }
9140  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9141             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9142             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9143              Cond.getOperand(0).getValueType() != MVT::i8)) {
9144    SDValue LHS = Cond.getOperand(0);
9145    SDValue RHS = Cond.getOperand(1);
9146    unsigned X86Opcode;
9147    unsigned X86Cond;
9148    SDVTList VTs;
9149    switch (CondOpcode) {
9150    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9151    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9152    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9153    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9154    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9155    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9156    default: llvm_unreachable("unexpected overflowing operator");
9157    }
9158    if (CondOpcode == ISD::UMULO)
9159      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9160                          MVT::i32);
9161    else
9162      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9163
9164    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9165
9166    if (CondOpcode == ISD::UMULO)
9167      Cond = X86Op.getValue(2);
9168    else
9169      Cond = X86Op.getValue(1);
9170
9171    CC = DAG.getConstant(X86Cond, MVT::i8);
9172    addTest = false;
9173  }
9174
9175  if (addTest) {
9176    // Look pass the truncate if the high bits are known zero.
9177    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9178        Cond = Cond.getOperand(0);
9179
9180    // We know the result of AND is compared against zero. Try to match
9181    // it to BT.
9182    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9183      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9184      if (NewSetCC.getNode()) {
9185        CC = NewSetCC.getOperand(0);
9186        Cond = NewSetCC.getOperand(1);
9187        addTest = false;
9188      }
9189    }
9190  }
9191
9192  if (addTest) {
9193    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9194    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9195  }
9196
9197  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9198  // a <  b ?  0 : -1 -> RES = setcc_carry
9199  // a >= b ? -1 :  0 -> RES = setcc_carry
9200  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9201  if (Cond.getOpcode() == X86ISD::SUB) {
9202    Cond = ConvertCmpIfNecessary(Cond, DAG);
9203    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9204
9205    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9206        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9207      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9208                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9209      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9210        return DAG.getNOT(DL, Res, Res.getValueType());
9211      return Res;
9212    }
9213  }
9214
9215  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9216  // condition is true.
9217  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9218  SDValue Ops[] = { Op2, Op1, CC, Cond };
9219  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9220}
9221
9222// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9223// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9224// from the AND / OR.
9225static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9226  Opc = Op.getOpcode();
9227  if (Opc != ISD::OR && Opc != ISD::AND)
9228    return false;
9229  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9230          Op.getOperand(0).hasOneUse() &&
9231          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9232          Op.getOperand(1).hasOneUse());
9233}
9234
9235// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9236// 1 and that the SETCC node has a single use.
9237static bool isXor1OfSetCC(SDValue Op) {
9238  if (Op.getOpcode() != ISD::XOR)
9239    return false;
9240  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9241  if (N1C && N1C->getAPIntValue() == 1) {
9242    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9243      Op.getOperand(0).hasOneUse();
9244  }
9245  return false;
9246}
9247
9248SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9249  bool addTest = true;
9250  SDValue Chain = Op.getOperand(0);
9251  SDValue Cond  = Op.getOperand(1);
9252  SDValue Dest  = Op.getOperand(2);
9253  DebugLoc dl = Op.getDebugLoc();
9254  SDValue CC;
9255  bool Inverted = false;
9256
9257  if (Cond.getOpcode() == ISD::SETCC) {
9258    // Check for setcc([su]{add,sub,mul}o == 0).
9259    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9260        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9261        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9262        Cond.getOperand(0).getResNo() == 1 &&
9263        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9264         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9265         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9266         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9267         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9268         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9269      Inverted = true;
9270      Cond = Cond.getOperand(0);
9271    } else {
9272      SDValue NewCond = LowerSETCC(Cond, DAG);
9273      if (NewCond.getNode())
9274        Cond = NewCond;
9275    }
9276  }
9277#if 0
9278  // FIXME: LowerXALUO doesn't handle these!!
9279  else if (Cond.getOpcode() == X86ISD::ADD  ||
9280           Cond.getOpcode() == X86ISD::SUB  ||
9281           Cond.getOpcode() == X86ISD::SMUL ||
9282           Cond.getOpcode() == X86ISD::UMUL)
9283    Cond = LowerXALUO(Cond, DAG);
9284#endif
9285
9286  // Look pass (and (setcc_carry (cmp ...)), 1).
9287  if (Cond.getOpcode() == ISD::AND &&
9288      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9289    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9290    if (C && C->getAPIntValue() == 1)
9291      Cond = Cond.getOperand(0);
9292  }
9293
9294  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9295  // setting operand in place of the X86ISD::SETCC.
9296  unsigned CondOpcode = Cond.getOpcode();
9297  if (CondOpcode == X86ISD::SETCC ||
9298      CondOpcode == X86ISD::SETCC_CARRY) {
9299    CC = Cond.getOperand(0);
9300
9301    SDValue Cmp = Cond.getOperand(1);
9302    unsigned Opc = Cmp.getOpcode();
9303    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9304    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9305      Cond = Cmp;
9306      addTest = false;
9307    } else {
9308      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9309      default: break;
9310      case X86::COND_O:
9311      case X86::COND_B:
9312        // These can only come from an arithmetic instruction with overflow,
9313        // e.g. SADDO, UADDO.
9314        Cond = Cond.getNode()->getOperand(1);
9315        addTest = false;
9316        break;
9317      }
9318    }
9319  }
9320  CondOpcode = Cond.getOpcode();
9321  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9322      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9323      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9324       Cond.getOperand(0).getValueType() != MVT::i8)) {
9325    SDValue LHS = Cond.getOperand(0);
9326    SDValue RHS = Cond.getOperand(1);
9327    unsigned X86Opcode;
9328    unsigned X86Cond;
9329    SDVTList VTs;
9330    switch (CondOpcode) {
9331    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9332    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9333    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9334    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9335    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9336    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9337    default: llvm_unreachable("unexpected overflowing operator");
9338    }
9339    if (Inverted)
9340      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9341    if (CondOpcode == ISD::UMULO)
9342      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9343                          MVT::i32);
9344    else
9345      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9346
9347    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9348
9349    if (CondOpcode == ISD::UMULO)
9350      Cond = X86Op.getValue(2);
9351    else
9352      Cond = X86Op.getValue(1);
9353
9354    CC = DAG.getConstant(X86Cond, MVT::i8);
9355    addTest = false;
9356  } else {
9357    unsigned CondOpc;
9358    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9359      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9360      if (CondOpc == ISD::OR) {
9361        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9362        // two branches instead of an explicit OR instruction with a
9363        // separate test.
9364        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9365            isX86LogicalCmp(Cmp)) {
9366          CC = Cond.getOperand(0).getOperand(0);
9367          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9368                              Chain, Dest, CC, Cmp);
9369          CC = Cond.getOperand(1).getOperand(0);
9370          Cond = Cmp;
9371          addTest = false;
9372        }
9373      } else { // ISD::AND
9374        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9375        // two branches instead of an explicit AND instruction with a
9376        // separate test. However, we only do this if this block doesn't
9377        // have a fall-through edge, because this requires an explicit
9378        // jmp when the condition is false.
9379        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9380            isX86LogicalCmp(Cmp) &&
9381            Op.getNode()->hasOneUse()) {
9382          X86::CondCode CCode =
9383            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9384          CCode = X86::GetOppositeBranchCondition(CCode);
9385          CC = DAG.getConstant(CCode, MVT::i8);
9386          SDNode *User = *Op.getNode()->use_begin();
9387          // Look for an unconditional branch following this conditional branch.
9388          // We need this because we need to reverse the successors in order
9389          // to implement FCMP_OEQ.
9390          if (User->getOpcode() == ISD::BR) {
9391            SDValue FalseBB = User->getOperand(1);
9392            SDNode *NewBR =
9393              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9394            assert(NewBR == User);
9395            (void)NewBR;
9396            Dest = FalseBB;
9397
9398            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9399                                Chain, Dest, CC, Cmp);
9400            X86::CondCode CCode =
9401              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9402            CCode = X86::GetOppositeBranchCondition(CCode);
9403            CC = DAG.getConstant(CCode, MVT::i8);
9404            Cond = Cmp;
9405            addTest = false;
9406          }
9407        }
9408      }
9409    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9410      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9411      // It should be transformed during dag combiner except when the condition
9412      // is set by a arithmetics with overflow node.
9413      X86::CondCode CCode =
9414        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9415      CCode = X86::GetOppositeBranchCondition(CCode);
9416      CC = DAG.getConstant(CCode, MVT::i8);
9417      Cond = Cond.getOperand(0).getOperand(1);
9418      addTest = false;
9419    } else if (Cond.getOpcode() == ISD::SETCC &&
9420               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9421      // For FCMP_OEQ, we can emit
9422      // two branches instead of an explicit AND instruction with a
9423      // separate test. However, we only do this if this block doesn't
9424      // have a fall-through edge, because this requires an explicit
9425      // jmp when the condition is false.
9426      if (Op.getNode()->hasOneUse()) {
9427        SDNode *User = *Op.getNode()->use_begin();
9428        // Look for an unconditional branch following this conditional branch.
9429        // We need this because we need to reverse the successors in order
9430        // to implement FCMP_OEQ.
9431        if (User->getOpcode() == ISD::BR) {
9432          SDValue FalseBB = User->getOperand(1);
9433          SDNode *NewBR =
9434            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9435          assert(NewBR == User);
9436          (void)NewBR;
9437          Dest = FalseBB;
9438
9439          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9440                                    Cond.getOperand(0), Cond.getOperand(1));
9441          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9442          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9443          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9444                              Chain, Dest, CC, Cmp);
9445          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9446          Cond = Cmp;
9447          addTest = false;
9448        }
9449      }
9450    } else if (Cond.getOpcode() == ISD::SETCC &&
9451               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9452      // For FCMP_UNE, we can emit
9453      // two branches instead of an explicit AND instruction with a
9454      // separate test. However, we only do this if this block doesn't
9455      // have a fall-through edge, because this requires an explicit
9456      // jmp when the condition is false.
9457      if (Op.getNode()->hasOneUse()) {
9458        SDNode *User = *Op.getNode()->use_begin();
9459        // Look for an unconditional branch following this conditional branch.
9460        // We need this because we need to reverse the successors in order
9461        // to implement FCMP_UNE.
9462        if (User->getOpcode() == ISD::BR) {
9463          SDValue FalseBB = User->getOperand(1);
9464          SDNode *NewBR =
9465            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9466          assert(NewBR == User);
9467          (void)NewBR;
9468
9469          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9470                                    Cond.getOperand(0), Cond.getOperand(1));
9471          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9472          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9473          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9474                              Chain, Dest, CC, Cmp);
9475          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9476          Cond = Cmp;
9477          addTest = false;
9478          Dest = FalseBB;
9479        }
9480      }
9481    }
9482  }
9483
9484  if (addTest) {
9485    // Look pass the truncate if the high bits are known zero.
9486    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9487        Cond = Cond.getOperand(0);
9488
9489    // We know the result of AND is compared against zero. Try to match
9490    // it to BT.
9491    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9492      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9493      if (NewSetCC.getNode()) {
9494        CC = NewSetCC.getOperand(0);
9495        Cond = NewSetCC.getOperand(1);
9496        addTest = false;
9497      }
9498    }
9499  }
9500
9501  if (addTest) {
9502    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9503    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9504  }
9505  Cond = ConvertCmpIfNecessary(Cond, DAG);
9506  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9507                     Chain, Dest, CC, Cond);
9508}
9509
9510
9511// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9512// Calls to _alloca is needed to probe the stack when allocating more than 4k
9513// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9514// that the guard pages used by the OS virtual memory manager are allocated in
9515// correct sequence.
9516SDValue
9517X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9518                                           SelectionDAG &DAG) const {
9519  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9520          getTargetMachine().Options.EnableSegmentedStacks) &&
9521         "This should be used only on Windows targets or when segmented stacks "
9522         "are being used");
9523  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9524  DebugLoc dl = Op.getDebugLoc();
9525
9526  // Get the inputs.
9527  SDValue Chain = Op.getOperand(0);
9528  SDValue Size  = Op.getOperand(1);
9529  // FIXME: Ensure alignment here
9530
9531  bool Is64Bit = Subtarget->is64Bit();
9532  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9533
9534  if (getTargetMachine().Options.EnableSegmentedStacks) {
9535    MachineFunction &MF = DAG.getMachineFunction();
9536    MachineRegisterInfo &MRI = MF.getRegInfo();
9537
9538    if (Is64Bit) {
9539      // The 64 bit implementation of segmented stacks needs to clobber both r10
9540      // r11. This makes it impossible to use it along with nested parameters.
9541      const Function *F = MF.getFunction();
9542
9543      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9544           I != E; ++I)
9545        if (I->hasNestAttr())
9546          report_fatal_error("Cannot use segmented stacks with functions that "
9547                             "have nested arguments.");
9548    }
9549
9550    const TargetRegisterClass *AddrRegClass =
9551      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9552    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9553    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9554    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9555                                DAG.getRegister(Vreg, SPTy));
9556    SDValue Ops1[2] = { Value, Chain };
9557    return DAG.getMergeValues(Ops1, 2, dl);
9558  } else {
9559    SDValue Flag;
9560    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9561
9562    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9563    Flag = Chain.getValue(1);
9564    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9565
9566    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9567    Flag = Chain.getValue(1);
9568
9569    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9570
9571    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9572    return DAG.getMergeValues(Ops1, 2, dl);
9573  }
9574}
9575
9576SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9577  MachineFunction &MF = DAG.getMachineFunction();
9578  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9579
9580  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9581  DebugLoc DL = Op.getDebugLoc();
9582
9583  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9584    // vastart just stores the address of the VarArgsFrameIndex slot into the
9585    // memory location argument.
9586    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9587                                   getPointerTy());
9588    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9589                        MachinePointerInfo(SV), false, false, 0);
9590  }
9591
9592  // __va_list_tag:
9593  //   gp_offset         (0 - 6 * 8)
9594  //   fp_offset         (48 - 48 + 8 * 16)
9595  //   overflow_arg_area (point to parameters coming in memory).
9596  //   reg_save_area
9597  SmallVector<SDValue, 8> MemOps;
9598  SDValue FIN = Op.getOperand(1);
9599  // Store gp_offset
9600  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9601                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9602                                               MVT::i32),
9603                               FIN, MachinePointerInfo(SV), false, false, 0);
9604  MemOps.push_back(Store);
9605
9606  // Store fp_offset
9607  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9608                    FIN, DAG.getIntPtrConstant(4));
9609  Store = DAG.getStore(Op.getOperand(0), DL,
9610                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9611                                       MVT::i32),
9612                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9613  MemOps.push_back(Store);
9614
9615  // Store ptr to overflow_arg_area
9616  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9617                    FIN, DAG.getIntPtrConstant(4));
9618  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9619                                    getPointerTy());
9620  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9621                       MachinePointerInfo(SV, 8),
9622                       false, false, 0);
9623  MemOps.push_back(Store);
9624
9625  // Store ptr to reg_save_area.
9626  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9627                    FIN, DAG.getIntPtrConstant(8));
9628  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9629                                    getPointerTy());
9630  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9631                       MachinePointerInfo(SV, 16), false, false, 0);
9632  MemOps.push_back(Store);
9633  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9634                     &MemOps[0], MemOps.size());
9635}
9636
9637SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9638  assert(Subtarget->is64Bit() &&
9639         "LowerVAARG only handles 64-bit va_arg!");
9640  assert((Subtarget->isTargetLinux() ||
9641          Subtarget->isTargetDarwin()) &&
9642          "Unhandled target in LowerVAARG");
9643  assert(Op.getNode()->getNumOperands() == 4);
9644  SDValue Chain = Op.getOperand(0);
9645  SDValue SrcPtr = Op.getOperand(1);
9646  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9647  unsigned Align = Op.getConstantOperandVal(3);
9648  DebugLoc dl = Op.getDebugLoc();
9649
9650  EVT ArgVT = Op.getNode()->getValueType(0);
9651  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9652  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9653  uint8_t ArgMode;
9654
9655  // Decide which area this value should be read from.
9656  // TODO: Implement the AMD64 ABI in its entirety. This simple
9657  // selection mechanism works only for the basic types.
9658  if (ArgVT == MVT::f80) {
9659    llvm_unreachable("va_arg for f80 not yet implemented");
9660  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9661    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9662  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9663    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9664  } else {
9665    llvm_unreachable("Unhandled argument type in LowerVAARG");
9666  }
9667
9668  if (ArgMode == 2) {
9669    // Sanity Check: Make sure using fp_offset makes sense.
9670    assert(!getTargetMachine().Options.UseSoftFloat &&
9671           !(DAG.getMachineFunction()
9672                .getFunction()->getFnAttributes().hasNoImplicitFloatAttr()) &&
9673           Subtarget->hasSSE1());
9674  }
9675
9676  // Insert VAARG_64 node into the DAG
9677  // VAARG_64 returns two values: Variable Argument Address, Chain
9678  SmallVector<SDValue, 11> InstOps;
9679  InstOps.push_back(Chain);
9680  InstOps.push_back(SrcPtr);
9681  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9682  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9683  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9684  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9685  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9686                                          VTs, &InstOps[0], InstOps.size(),
9687                                          MVT::i64,
9688                                          MachinePointerInfo(SV),
9689                                          /*Align=*/0,
9690                                          /*Volatile=*/false,
9691                                          /*ReadMem=*/true,
9692                                          /*WriteMem=*/true);
9693  Chain = VAARG.getValue(1);
9694
9695  // Load the next argument and return it
9696  return DAG.getLoad(ArgVT, dl,
9697                     Chain,
9698                     VAARG,
9699                     MachinePointerInfo(),
9700                     false, false, false, 0);
9701}
9702
9703static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
9704                           SelectionDAG &DAG) {
9705  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9706  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9707  SDValue Chain = Op.getOperand(0);
9708  SDValue DstPtr = Op.getOperand(1);
9709  SDValue SrcPtr = Op.getOperand(2);
9710  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9711  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9712  DebugLoc DL = Op.getDebugLoc();
9713
9714  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9715                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9716                       false,
9717                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9718}
9719
9720// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9721// may or may not be a constant. Takes immediate version of shift as input.
9722static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9723                                   SDValue SrcOp, SDValue ShAmt,
9724                                   SelectionDAG &DAG) {
9725  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9726
9727  if (isa<ConstantSDNode>(ShAmt)) {
9728    // Constant may be a TargetConstant. Use a regular constant.
9729    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9730    switch (Opc) {
9731      default: llvm_unreachable("Unknown target vector shift node");
9732      case X86ISD::VSHLI:
9733      case X86ISD::VSRLI:
9734      case X86ISD::VSRAI:
9735        return DAG.getNode(Opc, dl, VT, SrcOp,
9736                           DAG.getConstant(ShiftAmt, MVT::i32));
9737    }
9738  }
9739
9740  // Change opcode to non-immediate version
9741  switch (Opc) {
9742    default: llvm_unreachable("Unknown target vector shift node");
9743    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9744    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9745    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9746  }
9747
9748  // Need to build a vector containing shift amount
9749  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9750  SDValue ShOps[4];
9751  ShOps[0] = ShAmt;
9752  ShOps[1] = DAG.getConstant(0, MVT::i32);
9753  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9754  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9755
9756  // The return type has to be a 128-bit type with the same element
9757  // type as the input type.
9758  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9759  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9760
9761  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9762  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9763}
9764
9765static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
9766  DebugLoc dl = Op.getDebugLoc();
9767  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9768  switch (IntNo) {
9769  default: return SDValue();    // Don't custom lower most intrinsics.
9770  // Comparison intrinsics.
9771  case Intrinsic::x86_sse_comieq_ss:
9772  case Intrinsic::x86_sse_comilt_ss:
9773  case Intrinsic::x86_sse_comile_ss:
9774  case Intrinsic::x86_sse_comigt_ss:
9775  case Intrinsic::x86_sse_comige_ss:
9776  case Intrinsic::x86_sse_comineq_ss:
9777  case Intrinsic::x86_sse_ucomieq_ss:
9778  case Intrinsic::x86_sse_ucomilt_ss:
9779  case Intrinsic::x86_sse_ucomile_ss:
9780  case Intrinsic::x86_sse_ucomigt_ss:
9781  case Intrinsic::x86_sse_ucomige_ss:
9782  case Intrinsic::x86_sse_ucomineq_ss:
9783  case Intrinsic::x86_sse2_comieq_sd:
9784  case Intrinsic::x86_sse2_comilt_sd:
9785  case Intrinsic::x86_sse2_comile_sd:
9786  case Intrinsic::x86_sse2_comigt_sd:
9787  case Intrinsic::x86_sse2_comige_sd:
9788  case Intrinsic::x86_sse2_comineq_sd:
9789  case Intrinsic::x86_sse2_ucomieq_sd:
9790  case Intrinsic::x86_sse2_ucomilt_sd:
9791  case Intrinsic::x86_sse2_ucomile_sd:
9792  case Intrinsic::x86_sse2_ucomigt_sd:
9793  case Intrinsic::x86_sse2_ucomige_sd:
9794  case Intrinsic::x86_sse2_ucomineq_sd: {
9795    unsigned Opc;
9796    ISD::CondCode CC;
9797    switch (IntNo) {
9798    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9799    case Intrinsic::x86_sse_comieq_ss:
9800    case Intrinsic::x86_sse2_comieq_sd:
9801      Opc = X86ISD::COMI;
9802      CC = ISD::SETEQ;
9803      break;
9804    case Intrinsic::x86_sse_comilt_ss:
9805    case Intrinsic::x86_sse2_comilt_sd:
9806      Opc = X86ISD::COMI;
9807      CC = ISD::SETLT;
9808      break;
9809    case Intrinsic::x86_sse_comile_ss:
9810    case Intrinsic::x86_sse2_comile_sd:
9811      Opc = X86ISD::COMI;
9812      CC = ISD::SETLE;
9813      break;
9814    case Intrinsic::x86_sse_comigt_ss:
9815    case Intrinsic::x86_sse2_comigt_sd:
9816      Opc = X86ISD::COMI;
9817      CC = ISD::SETGT;
9818      break;
9819    case Intrinsic::x86_sse_comige_ss:
9820    case Intrinsic::x86_sse2_comige_sd:
9821      Opc = X86ISD::COMI;
9822      CC = ISD::SETGE;
9823      break;
9824    case Intrinsic::x86_sse_comineq_ss:
9825    case Intrinsic::x86_sse2_comineq_sd:
9826      Opc = X86ISD::COMI;
9827      CC = ISD::SETNE;
9828      break;
9829    case Intrinsic::x86_sse_ucomieq_ss:
9830    case Intrinsic::x86_sse2_ucomieq_sd:
9831      Opc = X86ISD::UCOMI;
9832      CC = ISD::SETEQ;
9833      break;
9834    case Intrinsic::x86_sse_ucomilt_ss:
9835    case Intrinsic::x86_sse2_ucomilt_sd:
9836      Opc = X86ISD::UCOMI;
9837      CC = ISD::SETLT;
9838      break;
9839    case Intrinsic::x86_sse_ucomile_ss:
9840    case Intrinsic::x86_sse2_ucomile_sd:
9841      Opc = X86ISD::UCOMI;
9842      CC = ISD::SETLE;
9843      break;
9844    case Intrinsic::x86_sse_ucomigt_ss:
9845    case Intrinsic::x86_sse2_ucomigt_sd:
9846      Opc = X86ISD::UCOMI;
9847      CC = ISD::SETGT;
9848      break;
9849    case Intrinsic::x86_sse_ucomige_ss:
9850    case Intrinsic::x86_sse2_ucomige_sd:
9851      Opc = X86ISD::UCOMI;
9852      CC = ISD::SETGE;
9853      break;
9854    case Intrinsic::x86_sse_ucomineq_ss:
9855    case Intrinsic::x86_sse2_ucomineq_sd:
9856      Opc = X86ISD::UCOMI;
9857      CC = ISD::SETNE;
9858      break;
9859    }
9860
9861    SDValue LHS = Op.getOperand(1);
9862    SDValue RHS = Op.getOperand(2);
9863    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9864    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9865    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9866    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9867                                DAG.getConstant(X86CC, MVT::i8), Cond);
9868    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9869  }
9870
9871  // Arithmetic intrinsics.
9872  case Intrinsic::x86_sse2_pmulu_dq:
9873  case Intrinsic::x86_avx2_pmulu_dq:
9874    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9875                       Op.getOperand(1), Op.getOperand(2));
9876
9877  // SSE3/AVX horizontal add/sub intrinsics
9878  case Intrinsic::x86_sse3_hadd_ps:
9879  case Intrinsic::x86_sse3_hadd_pd:
9880  case Intrinsic::x86_avx_hadd_ps_256:
9881  case Intrinsic::x86_avx_hadd_pd_256:
9882  case Intrinsic::x86_sse3_hsub_ps:
9883  case Intrinsic::x86_sse3_hsub_pd:
9884  case Intrinsic::x86_avx_hsub_ps_256:
9885  case Intrinsic::x86_avx_hsub_pd_256:
9886  case Intrinsic::x86_ssse3_phadd_w_128:
9887  case Intrinsic::x86_ssse3_phadd_d_128:
9888  case Intrinsic::x86_avx2_phadd_w:
9889  case Intrinsic::x86_avx2_phadd_d:
9890  case Intrinsic::x86_ssse3_phsub_w_128:
9891  case Intrinsic::x86_ssse3_phsub_d_128:
9892  case Intrinsic::x86_avx2_phsub_w:
9893  case Intrinsic::x86_avx2_phsub_d: {
9894    unsigned Opcode;
9895    switch (IntNo) {
9896    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9897    case Intrinsic::x86_sse3_hadd_ps:
9898    case Intrinsic::x86_sse3_hadd_pd:
9899    case Intrinsic::x86_avx_hadd_ps_256:
9900    case Intrinsic::x86_avx_hadd_pd_256:
9901      Opcode = X86ISD::FHADD;
9902      break;
9903    case Intrinsic::x86_sse3_hsub_ps:
9904    case Intrinsic::x86_sse3_hsub_pd:
9905    case Intrinsic::x86_avx_hsub_ps_256:
9906    case Intrinsic::x86_avx_hsub_pd_256:
9907      Opcode = X86ISD::FHSUB;
9908      break;
9909    case Intrinsic::x86_ssse3_phadd_w_128:
9910    case Intrinsic::x86_ssse3_phadd_d_128:
9911    case Intrinsic::x86_avx2_phadd_w:
9912    case Intrinsic::x86_avx2_phadd_d:
9913      Opcode = X86ISD::HADD;
9914      break;
9915    case Intrinsic::x86_ssse3_phsub_w_128:
9916    case Intrinsic::x86_ssse3_phsub_d_128:
9917    case Intrinsic::x86_avx2_phsub_w:
9918    case Intrinsic::x86_avx2_phsub_d:
9919      Opcode = X86ISD::HSUB;
9920      break;
9921    }
9922    return DAG.getNode(Opcode, dl, Op.getValueType(),
9923                       Op.getOperand(1), Op.getOperand(2));
9924  }
9925
9926  // AVX2 variable shift intrinsics
9927  case Intrinsic::x86_avx2_psllv_d:
9928  case Intrinsic::x86_avx2_psllv_q:
9929  case Intrinsic::x86_avx2_psllv_d_256:
9930  case Intrinsic::x86_avx2_psllv_q_256:
9931  case Intrinsic::x86_avx2_psrlv_d:
9932  case Intrinsic::x86_avx2_psrlv_q:
9933  case Intrinsic::x86_avx2_psrlv_d_256:
9934  case Intrinsic::x86_avx2_psrlv_q_256:
9935  case Intrinsic::x86_avx2_psrav_d:
9936  case Intrinsic::x86_avx2_psrav_d_256: {
9937    unsigned Opcode;
9938    switch (IntNo) {
9939    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9940    case Intrinsic::x86_avx2_psllv_d:
9941    case Intrinsic::x86_avx2_psllv_q:
9942    case Intrinsic::x86_avx2_psllv_d_256:
9943    case Intrinsic::x86_avx2_psllv_q_256:
9944      Opcode = ISD::SHL;
9945      break;
9946    case Intrinsic::x86_avx2_psrlv_d:
9947    case Intrinsic::x86_avx2_psrlv_q:
9948    case Intrinsic::x86_avx2_psrlv_d_256:
9949    case Intrinsic::x86_avx2_psrlv_q_256:
9950      Opcode = ISD::SRL;
9951      break;
9952    case Intrinsic::x86_avx2_psrav_d:
9953    case Intrinsic::x86_avx2_psrav_d_256:
9954      Opcode = ISD::SRA;
9955      break;
9956    }
9957    return DAG.getNode(Opcode, dl, Op.getValueType(),
9958                       Op.getOperand(1), Op.getOperand(2));
9959  }
9960
9961  case Intrinsic::x86_ssse3_pshuf_b_128:
9962  case Intrinsic::x86_avx2_pshuf_b:
9963    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9964                       Op.getOperand(1), Op.getOperand(2));
9965
9966  case Intrinsic::x86_ssse3_psign_b_128:
9967  case Intrinsic::x86_ssse3_psign_w_128:
9968  case Intrinsic::x86_ssse3_psign_d_128:
9969  case Intrinsic::x86_avx2_psign_b:
9970  case Intrinsic::x86_avx2_psign_w:
9971  case Intrinsic::x86_avx2_psign_d:
9972    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9973                       Op.getOperand(1), Op.getOperand(2));
9974
9975  case Intrinsic::x86_sse41_insertps:
9976    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9977                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9978
9979  case Intrinsic::x86_avx_vperm2f128_ps_256:
9980  case Intrinsic::x86_avx_vperm2f128_pd_256:
9981  case Intrinsic::x86_avx_vperm2f128_si_256:
9982  case Intrinsic::x86_avx2_vperm2i128:
9983    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9984                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9985
9986  case Intrinsic::x86_avx2_permd:
9987  case Intrinsic::x86_avx2_permps:
9988    // Operands intentionally swapped. Mask is last operand to intrinsic,
9989    // but second operand for node/intruction.
9990    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9991                       Op.getOperand(2), Op.getOperand(1));
9992
9993  // ptest and testp intrinsics. The intrinsic these come from are designed to
9994  // return an integer value, not just an instruction so lower it to the ptest
9995  // or testp pattern and a setcc for the result.
9996  case Intrinsic::x86_sse41_ptestz:
9997  case Intrinsic::x86_sse41_ptestc:
9998  case Intrinsic::x86_sse41_ptestnzc:
9999  case Intrinsic::x86_avx_ptestz_256:
10000  case Intrinsic::x86_avx_ptestc_256:
10001  case Intrinsic::x86_avx_ptestnzc_256:
10002  case Intrinsic::x86_avx_vtestz_ps:
10003  case Intrinsic::x86_avx_vtestc_ps:
10004  case Intrinsic::x86_avx_vtestnzc_ps:
10005  case Intrinsic::x86_avx_vtestz_pd:
10006  case Intrinsic::x86_avx_vtestc_pd:
10007  case Intrinsic::x86_avx_vtestnzc_pd:
10008  case Intrinsic::x86_avx_vtestz_ps_256:
10009  case Intrinsic::x86_avx_vtestc_ps_256:
10010  case Intrinsic::x86_avx_vtestnzc_ps_256:
10011  case Intrinsic::x86_avx_vtestz_pd_256:
10012  case Intrinsic::x86_avx_vtestc_pd_256:
10013  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10014    bool IsTestPacked = false;
10015    unsigned X86CC;
10016    switch (IntNo) {
10017    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10018    case Intrinsic::x86_avx_vtestz_ps:
10019    case Intrinsic::x86_avx_vtestz_pd:
10020    case Intrinsic::x86_avx_vtestz_ps_256:
10021    case Intrinsic::x86_avx_vtestz_pd_256:
10022      IsTestPacked = true; // Fallthrough
10023    case Intrinsic::x86_sse41_ptestz:
10024    case Intrinsic::x86_avx_ptestz_256:
10025      // ZF = 1
10026      X86CC = X86::COND_E;
10027      break;
10028    case Intrinsic::x86_avx_vtestc_ps:
10029    case Intrinsic::x86_avx_vtestc_pd:
10030    case Intrinsic::x86_avx_vtestc_ps_256:
10031    case Intrinsic::x86_avx_vtestc_pd_256:
10032      IsTestPacked = true; // Fallthrough
10033    case Intrinsic::x86_sse41_ptestc:
10034    case Intrinsic::x86_avx_ptestc_256:
10035      // CF = 1
10036      X86CC = X86::COND_B;
10037      break;
10038    case Intrinsic::x86_avx_vtestnzc_ps:
10039    case Intrinsic::x86_avx_vtestnzc_pd:
10040    case Intrinsic::x86_avx_vtestnzc_ps_256:
10041    case Intrinsic::x86_avx_vtestnzc_pd_256:
10042      IsTestPacked = true; // Fallthrough
10043    case Intrinsic::x86_sse41_ptestnzc:
10044    case Intrinsic::x86_avx_ptestnzc_256:
10045      // ZF and CF = 0
10046      X86CC = X86::COND_A;
10047      break;
10048    }
10049
10050    SDValue LHS = Op.getOperand(1);
10051    SDValue RHS = Op.getOperand(2);
10052    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10053    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10054    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10055    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10056    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10057  }
10058
10059  // SSE/AVX shift intrinsics
10060  case Intrinsic::x86_sse2_psll_w:
10061  case Intrinsic::x86_sse2_psll_d:
10062  case Intrinsic::x86_sse2_psll_q:
10063  case Intrinsic::x86_avx2_psll_w:
10064  case Intrinsic::x86_avx2_psll_d:
10065  case Intrinsic::x86_avx2_psll_q:
10066  case Intrinsic::x86_sse2_psrl_w:
10067  case Intrinsic::x86_sse2_psrl_d:
10068  case Intrinsic::x86_sse2_psrl_q:
10069  case Intrinsic::x86_avx2_psrl_w:
10070  case Intrinsic::x86_avx2_psrl_d:
10071  case Intrinsic::x86_avx2_psrl_q:
10072  case Intrinsic::x86_sse2_psra_w:
10073  case Intrinsic::x86_sse2_psra_d:
10074  case Intrinsic::x86_avx2_psra_w:
10075  case Intrinsic::x86_avx2_psra_d: {
10076    unsigned Opcode;
10077    switch (IntNo) {
10078    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10079    case Intrinsic::x86_sse2_psll_w:
10080    case Intrinsic::x86_sse2_psll_d:
10081    case Intrinsic::x86_sse2_psll_q:
10082    case Intrinsic::x86_avx2_psll_w:
10083    case Intrinsic::x86_avx2_psll_d:
10084    case Intrinsic::x86_avx2_psll_q:
10085      Opcode = X86ISD::VSHL;
10086      break;
10087    case Intrinsic::x86_sse2_psrl_w:
10088    case Intrinsic::x86_sse2_psrl_d:
10089    case Intrinsic::x86_sse2_psrl_q:
10090    case Intrinsic::x86_avx2_psrl_w:
10091    case Intrinsic::x86_avx2_psrl_d:
10092    case Intrinsic::x86_avx2_psrl_q:
10093      Opcode = X86ISD::VSRL;
10094      break;
10095    case Intrinsic::x86_sse2_psra_w:
10096    case Intrinsic::x86_sse2_psra_d:
10097    case Intrinsic::x86_avx2_psra_w:
10098    case Intrinsic::x86_avx2_psra_d:
10099      Opcode = X86ISD::VSRA;
10100      break;
10101    }
10102    return DAG.getNode(Opcode, dl, Op.getValueType(),
10103                       Op.getOperand(1), Op.getOperand(2));
10104  }
10105
10106  // SSE/AVX immediate shift intrinsics
10107  case Intrinsic::x86_sse2_pslli_w:
10108  case Intrinsic::x86_sse2_pslli_d:
10109  case Intrinsic::x86_sse2_pslli_q:
10110  case Intrinsic::x86_avx2_pslli_w:
10111  case Intrinsic::x86_avx2_pslli_d:
10112  case Intrinsic::x86_avx2_pslli_q:
10113  case Intrinsic::x86_sse2_psrli_w:
10114  case Intrinsic::x86_sse2_psrli_d:
10115  case Intrinsic::x86_sse2_psrli_q:
10116  case Intrinsic::x86_avx2_psrli_w:
10117  case Intrinsic::x86_avx2_psrli_d:
10118  case Intrinsic::x86_avx2_psrli_q:
10119  case Intrinsic::x86_sse2_psrai_w:
10120  case Intrinsic::x86_sse2_psrai_d:
10121  case Intrinsic::x86_avx2_psrai_w:
10122  case Intrinsic::x86_avx2_psrai_d: {
10123    unsigned Opcode;
10124    switch (IntNo) {
10125    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10126    case Intrinsic::x86_sse2_pslli_w:
10127    case Intrinsic::x86_sse2_pslli_d:
10128    case Intrinsic::x86_sse2_pslli_q:
10129    case Intrinsic::x86_avx2_pslli_w:
10130    case Intrinsic::x86_avx2_pslli_d:
10131    case Intrinsic::x86_avx2_pslli_q:
10132      Opcode = X86ISD::VSHLI;
10133      break;
10134    case Intrinsic::x86_sse2_psrli_w:
10135    case Intrinsic::x86_sse2_psrli_d:
10136    case Intrinsic::x86_sse2_psrli_q:
10137    case Intrinsic::x86_avx2_psrli_w:
10138    case Intrinsic::x86_avx2_psrli_d:
10139    case Intrinsic::x86_avx2_psrli_q:
10140      Opcode = X86ISD::VSRLI;
10141      break;
10142    case Intrinsic::x86_sse2_psrai_w:
10143    case Intrinsic::x86_sse2_psrai_d:
10144    case Intrinsic::x86_avx2_psrai_w:
10145    case Intrinsic::x86_avx2_psrai_d:
10146      Opcode = X86ISD::VSRAI;
10147      break;
10148    }
10149    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10150                               Op.getOperand(1), Op.getOperand(2), DAG);
10151  }
10152
10153  case Intrinsic::x86_sse42_pcmpistria128:
10154  case Intrinsic::x86_sse42_pcmpestria128:
10155  case Intrinsic::x86_sse42_pcmpistric128:
10156  case Intrinsic::x86_sse42_pcmpestric128:
10157  case Intrinsic::x86_sse42_pcmpistrio128:
10158  case Intrinsic::x86_sse42_pcmpestrio128:
10159  case Intrinsic::x86_sse42_pcmpistris128:
10160  case Intrinsic::x86_sse42_pcmpestris128:
10161  case Intrinsic::x86_sse42_pcmpistriz128:
10162  case Intrinsic::x86_sse42_pcmpestriz128: {
10163    unsigned Opcode;
10164    unsigned X86CC;
10165    switch (IntNo) {
10166    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10167    case Intrinsic::x86_sse42_pcmpistria128:
10168      Opcode = X86ISD::PCMPISTRI;
10169      X86CC = X86::COND_A;
10170      break;
10171    case Intrinsic::x86_sse42_pcmpestria128:
10172      Opcode = X86ISD::PCMPESTRI;
10173      X86CC = X86::COND_A;
10174      break;
10175    case Intrinsic::x86_sse42_pcmpistric128:
10176      Opcode = X86ISD::PCMPISTRI;
10177      X86CC = X86::COND_B;
10178      break;
10179    case Intrinsic::x86_sse42_pcmpestric128:
10180      Opcode = X86ISD::PCMPESTRI;
10181      X86CC = X86::COND_B;
10182      break;
10183    case Intrinsic::x86_sse42_pcmpistrio128:
10184      Opcode = X86ISD::PCMPISTRI;
10185      X86CC = X86::COND_O;
10186      break;
10187    case Intrinsic::x86_sse42_pcmpestrio128:
10188      Opcode = X86ISD::PCMPESTRI;
10189      X86CC = X86::COND_O;
10190      break;
10191    case Intrinsic::x86_sse42_pcmpistris128:
10192      Opcode = X86ISD::PCMPISTRI;
10193      X86CC = X86::COND_S;
10194      break;
10195    case Intrinsic::x86_sse42_pcmpestris128:
10196      Opcode = X86ISD::PCMPESTRI;
10197      X86CC = X86::COND_S;
10198      break;
10199    case Intrinsic::x86_sse42_pcmpistriz128:
10200      Opcode = X86ISD::PCMPISTRI;
10201      X86CC = X86::COND_E;
10202      break;
10203    case Intrinsic::x86_sse42_pcmpestriz128:
10204      Opcode = X86ISD::PCMPESTRI;
10205      X86CC = X86::COND_E;
10206      break;
10207    }
10208    SmallVector<SDValue, 5> NewOps;
10209    NewOps.append(Op->op_begin()+1, Op->op_end());
10210    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10211    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10212    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10213                                DAG.getConstant(X86CC, MVT::i8),
10214                                SDValue(PCMP.getNode(), 1));
10215    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10216  }
10217
10218  case Intrinsic::x86_sse42_pcmpistri128:
10219  case Intrinsic::x86_sse42_pcmpestri128: {
10220    unsigned Opcode;
10221    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10222      Opcode = X86ISD::PCMPISTRI;
10223    else
10224      Opcode = X86ISD::PCMPESTRI;
10225
10226    SmallVector<SDValue, 5> NewOps;
10227    NewOps.append(Op->op_begin()+1, Op->op_end());
10228    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10229    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10230  }
10231  case Intrinsic::x86_fma_vfmadd_ps:
10232  case Intrinsic::x86_fma_vfmadd_pd:
10233  case Intrinsic::x86_fma_vfmsub_ps:
10234  case Intrinsic::x86_fma_vfmsub_pd:
10235  case Intrinsic::x86_fma_vfnmadd_ps:
10236  case Intrinsic::x86_fma_vfnmadd_pd:
10237  case Intrinsic::x86_fma_vfnmsub_ps:
10238  case Intrinsic::x86_fma_vfnmsub_pd:
10239  case Intrinsic::x86_fma_vfmaddsub_ps:
10240  case Intrinsic::x86_fma_vfmaddsub_pd:
10241  case Intrinsic::x86_fma_vfmsubadd_ps:
10242  case Intrinsic::x86_fma_vfmsubadd_pd:
10243  case Intrinsic::x86_fma_vfmadd_ps_256:
10244  case Intrinsic::x86_fma_vfmadd_pd_256:
10245  case Intrinsic::x86_fma_vfmsub_ps_256:
10246  case Intrinsic::x86_fma_vfmsub_pd_256:
10247  case Intrinsic::x86_fma_vfnmadd_ps_256:
10248  case Intrinsic::x86_fma_vfnmadd_pd_256:
10249  case Intrinsic::x86_fma_vfnmsub_ps_256:
10250  case Intrinsic::x86_fma_vfnmsub_pd_256:
10251  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10252  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10253  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10254  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10255    unsigned Opc;
10256    switch (IntNo) {
10257    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10258    case Intrinsic::x86_fma_vfmadd_ps:
10259    case Intrinsic::x86_fma_vfmadd_pd:
10260    case Intrinsic::x86_fma_vfmadd_ps_256:
10261    case Intrinsic::x86_fma_vfmadd_pd_256:
10262      Opc = X86ISD::FMADD;
10263      break;
10264    case Intrinsic::x86_fma_vfmsub_ps:
10265    case Intrinsic::x86_fma_vfmsub_pd:
10266    case Intrinsic::x86_fma_vfmsub_ps_256:
10267    case Intrinsic::x86_fma_vfmsub_pd_256:
10268      Opc = X86ISD::FMSUB;
10269      break;
10270    case Intrinsic::x86_fma_vfnmadd_ps:
10271    case Intrinsic::x86_fma_vfnmadd_pd:
10272    case Intrinsic::x86_fma_vfnmadd_ps_256:
10273    case Intrinsic::x86_fma_vfnmadd_pd_256:
10274      Opc = X86ISD::FNMADD;
10275      break;
10276    case Intrinsic::x86_fma_vfnmsub_ps:
10277    case Intrinsic::x86_fma_vfnmsub_pd:
10278    case Intrinsic::x86_fma_vfnmsub_ps_256:
10279    case Intrinsic::x86_fma_vfnmsub_pd_256:
10280      Opc = X86ISD::FNMSUB;
10281      break;
10282    case Intrinsic::x86_fma_vfmaddsub_ps:
10283    case Intrinsic::x86_fma_vfmaddsub_pd:
10284    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10285    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10286      Opc = X86ISD::FMADDSUB;
10287      break;
10288    case Intrinsic::x86_fma_vfmsubadd_ps:
10289    case Intrinsic::x86_fma_vfmsubadd_pd:
10290    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10291    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10292      Opc = X86ISD::FMSUBADD;
10293      break;
10294    }
10295
10296    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10297                       Op.getOperand(2), Op.getOperand(3));
10298  }
10299  }
10300}
10301
10302static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10303  DebugLoc dl = Op.getDebugLoc();
10304  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10305  switch (IntNo) {
10306  default: return SDValue();    // Don't custom lower most intrinsics.
10307
10308  // RDRAND intrinsics.
10309  case Intrinsic::x86_rdrand_16:
10310  case Intrinsic::x86_rdrand_32:
10311  case Intrinsic::x86_rdrand_64: {
10312    // Emit the node with the right value type.
10313    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10314    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10315
10316    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10317    // return the value from Rand, which is always 0, casted to i32.
10318    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10319                      DAG.getConstant(1, Op->getValueType(1)),
10320                      DAG.getConstant(X86::COND_B, MVT::i32),
10321                      SDValue(Result.getNode(), 1) };
10322    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10323                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10324                                  Ops, 4);
10325
10326    // Return { result, isValid, chain }.
10327    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10328                       SDValue(Result.getNode(), 2));
10329  }
10330  }
10331}
10332
10333SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10334                                           SelectionDAG &DAG) const {
10335  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10336  MFI->setReturnAddressIsTaken(true);
10337
10338  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10339  DebugLoc dl = Op.getDebugLoc();
10340
10341  if (Depth > 0) {
10342    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10343    SDValue Offset =
10344      DAG.getConstant(TD->getPointerSize(),
10345                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
10346    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10347                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
10348                                   FrameAddr, Offset),
10349                       MachinePointerInfo(), false, false, false, 0);
10350  }
10351
10352  // Just load the return address.
10353  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10354  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10355                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10356}
10357
10358SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10359  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10360  MFI->setFrameAddressIsTaken(true);
10361
10362  EVT VT = Op.getValueType();
10363  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10364  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10365  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10366  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10367  while (Depth--)
10368    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10369                            MachinePointerInfo(),
10370                            false, false, false, 0);
10371  return FrameAddr;
10372}
10373
10374SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10375                                                     SelectionDAG &DAG) const {
10376  return DAG.getIntPtrConstant(2*TD->getPointerSize());
10377}
10378
10379SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10380  SDValue Chain     = Op.getOperand(0);
10381  SDValue Offset    = Op.getOperand(1);
10382  SDValue Handler   = Op.getOperand(2);
10383  DebugLoc dl       = Op.getDebugLoc();
10384
10385  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10386                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10387                                     getPointerTy());
10388  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10389
10390  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10391                                  DAG.getIntPtrConstant(TD->getPointerSize()));
10392  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10393  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10394                       false, false, 0);
10395  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10396
10397  return DAG.getNode(X86ISD::EH_RETURN, dl,
10398                     MVT::Other,
10399                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10400}
10401
10402static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10403  return Op.getOperand(0);
10404}
10405
10406SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10407                                                SelectionDAG &DAG) const {
10408  SDValue Root = Op.getOperand(0);
10409  SDValue Trmp = Op.getOperand(1); // trampoline
10410  SDValue FPtr = Op.getOperand(2); // nested function
10411  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10412  DebugLoc dl  = Op.getDebugLoc();
10413
10414  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10415
10416  if (Subtarget->is64Bit()) {
10417    SDValue OutChains[6];
10418
10419    // Large code-model.
10420    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10421    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10422
10423    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
10424    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
10425
10426    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10427
10428    // Load the pointer to the nested function into R11.
10429    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10430    SDValue Addr = Trmp;
10431    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10432                                Addr, MachinePointerInfo(TrmpAddr),
10433                                false, false, 0);
10434
10435    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10436                       DAG.getConstant(2, MVT::i64));
10437    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10438                                MachinePointerInfo(TrmpAddr, 2),
10439                                false, false, 2);
10440
10441    // Load the 'nest' parameter value into R10.
10442    // R10 is specified in X86CallingConv.td
10443    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10444    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10445                       DAG.getConstant(10, MVT::i64));
10446    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10447                                Addr, MachinePointerInfo(TrmpAddr, 10),
10448                                false, false, 0);
10449
10450    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10451                       DAG.getConstant(12, MVT::i64));
10452    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10453                                MachinePointerInfo(TrmpAddr, 12),
10454                                false, false, 2);
10455
10456    // Jump to the nested function.
10457    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10458    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10459                       DAG.getConstant(20, MVT::i64));
10460    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10461                                Addr, MachinePointerInfo(TrmpAddr, 20),
10462                                false, false, 0);
10463
10464    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10465    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10466                       DAG.getConstant(22, MVT::i64));
10467    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10468                                MachinePointerInfo(TrmpAddr, 22),
10469                                false, false, 0);
10470
10471    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10472  } else {
10473    const Function *Func =
10474      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10475    CallingConv::ID CC = Func->getCallingConv();
10476    unsigned NestReg;
10477
10478    switch (CC) {
10479    default:
10480      llvm_unreachable("Unsupported calling convention");
10481    case CallingConv::C:
10482    case CallingConv::X86_StdCall: {
10483      // Pass 'nest' parameter in ECX.
10484      // Must be kept in sync with X86CallingConv.td
10485      NestReg = X86::ECX;
10486
10487      // Check that ECX wasn't needed by an 'inreg' parameter.
10488      FunctionType *FTy = Func->getFunctionType();
10489      const AttrListPtr &Attrs = Func->getAttributes();
10490
10491      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10492        unsigned InRegCount = 0;
10493        unsigned Idx = 1;
10494
10495        for (FunctionType::param_iterator I = FTy->param_begin(),
10496             E = FTy->param_end(); I != E; ++I, ++Idx)
10497          if (Attrs.getParamAttributes(Idx).hasInRegAttr())
10498            // FIXME: should only count parameters that are lowered to integers.
10499            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10500
10501        if (InRegCount > 2) {
10502          report_fatal_error("Nest register in use - reduce number of inreg"
10503                             " parameters!");
10504        }
10505      }
10506      break;
10507    }
10508    case CallingConv::X86_FastCall:
10509    case CallingConv::X86_ThisCall:
10510    case CallingConv::Fast:
10511      // Pass 'nest' parameter in EAX.
10512      // Must be kept in sync with X86CallingConv.td
10513      NestReg = X86::EAX;
10514      break;
10515    }
10516
10517    SDValue OutChains[4];
10518    SDValue Addr, Disp;
10519
10520    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10521                       DAG.getConstant(10, MVT::i32));
10522    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10523
10524    // This is storing the opcode for MOV32ri.
10525    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10526    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10527    OutChains[0] = DAG.getStore(Root, dl,
10528                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10529                                Trmp, MachinePointerInfo(TrmpAddr),
10530                                false, false, 0);
10531
10532    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10533                       DAG.getConstant(1, MVT::i32));
10534    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10535                                MachinePointerInfo(TrmpAddr, 1),
10536                                false, false, 1);
10537
10538    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10539    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10540                       DAG.getConstant(5, MVT::i32));
10541    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10542                                MachinePointerInfo(TrmpAddr, 5),
10543                                false, false, 1);
10544
10545    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10546                       DAG.getConstant(6, MVT::i32));
10547    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10548                                MachinePointerInfo(TrmpAddr, 6),
10549                                false, false, 1);
10550
10551    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10552  }
10553}
10554
10555SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10556                                            SelectionDAG &DAG) const {
10557  /*
10558   The rounding mode is in bits 11:10 of FPSR, and has the following
10559   settings:
10560     00 Round to nearest
10561     01 Round to -inf
10562     10 Round to +inf
10563     11 Round to 0
10564
10565  FLT_ROUNDS, on the other hand, expects the following:
10566    -1 Undefined
10567     0 Round to 0
10568     1 Round to nearest
10569     2 Round to +inf
10570     3 Round to -inf
10571
10572  To perform the conversion, we do:
10573    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10574  */
10575
10576  MachineFunction &MF = DAG.getMachineFunction();
10577  const TargetMachine &TM = MF.getTarget();
10578  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10579  unsigned StackAlignment = TFI.getStackAlignment();
10580  EVT VT = Op.getValueType();
10581  DebugLoc DL = Op.getDebugLoc();
10582
10583  // Save FP Control Word to stack slot
10584  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10585  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10586
10587
10588  MachineMemOperand *MMO =
10589   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10590                           MachineMemOperand::MOStore, 2, 2);
10591
10592  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10593  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10594                                          DAG.getVTList(MVT::Other),
10595                                          Ops, 2, MVT::i16, MMO);
10596
10597  // Load FP Control Word from stack slot
10598  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10599                            MachinePointerInfo(), false, false, false, 0);
10600
10601  // Transform as necessary
10602  SDValue CWD1 =
10603    DAG.getNode(ISD::SRL, DL, MVT::i16,
10604                DAG.getNode(ISD::AND, DL, MVT::i16,
10605                            CWD, DAG.getConstant(0x800, MVT::i16)),
10606                DAG.getConstant(11, MVT::i8));
10607  SDValue CWD2 =
10608    DAG.getNode(ISD::SRL, DL, MVT::i16,
10609                DAG.getNode(ISD::AND, DL, MVT::i16,
10610                            CWD, DAG.getConstant(0x400, MVT::i16)),
10611                DAG.getConstant(9, MVT::i8));
10612
10613  SDValue RetVal =
10614    DAG.getNode(ISD::AND, DL, MVT::i16,
10615                DAG.getNode(ISD::ADD, DL, MVT::i16,
10616                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10617                            DAG.getConstant(1, MVT::i16)),
10618                DAG.getConstant(3, MVT::i16));
10619
10620
10621  return DAG.getNode((VT.getSizeInBits() < 16 ?
10622                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10623}
10624
10625static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
10626  EVT VT = Op.getValueType();
10627  EVT OpVT = VT;
10628  unsigned NumBits = VT.getSizeInBits();
10629  DebugLoc dl = Op.getDebugLoc();
10630
10631  Op = Op.getOperand(0);
10632  if (VT == MVT::i8) {
10633    // Zero extend to i32 since there is not an i8 bsr.
10634    OpVT = MVT::i32;
10635    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10636  }
10637
10638  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10639  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10640  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10641
10642  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10643  SDValue Ops[] = {
10644    Op,
10645    DAG.getConstant(NumBits+NumBits-1, OpVT),
10646    DAG.getConstant(X86::COND_E, MVT::i8),
10647    Op.getValue(1)
10648  };
10649  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10650
10651  // Finally xor with NumBits-1.
10652  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10653
10654  if (VT == MVT::i8)
10655    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10656  return Op;
10657}
10658
10659static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
10660  EVT VT = Op.getValueType();
10661  EVT OpVT = VT;
10662  unsigned NumBits = VT.getSizeInBits();
10663  DebugLoc dl = Op.getDebugLoc();
10664
10665  Op = Op.getOperand(0);
10666  if (VT == MVT::i8) {
10667    // Zero extend to i32 since there is not an i8 bsr.
10668    OpVT = MVT::i32;
10669    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10670  }
10671
10672  // Issue a bsr (scan bits in reverse).
10673  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10674  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10675
10676  // And xor with NumBits-1.
10677  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10678
10679  if (VT == MVT::i8)
10680    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10681  return Op;
10682}
10683
10684static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
10685  EVT VT = Op.getValueType();
10686  unsigned NumBits = VT.getSizeInBits();
10687  DebugLoc dl = Op.getDebugLoc();
10688  Op = Op.getOperand(0);
10689
10690  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10691  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10692  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10693
10694  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10695  SDValue Ops[] = {
10696    Op,
10697    DAG.getConstant(NumBits, VT),
10698    DAG.getConstant(X86::COND_E, MVT::i8),
10699    Op.getValue(1)
10700  };
10701  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10702}
10703
10704// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10705// ones, and then concatenate the result back.
10706static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10707  EVT VT = Op.getValueType();
10708
10709  assert(VT.is256BitVector() && VT.isInteger() &&
10710         "Unsupported value type for operation");
10711
10712  unsigned NumElems = VT.getVectorNumElements();
10713  DebugLoc dl = Op.getDebugLoc();
10714
10715  // Extract the LHS vectors
10716  SDValue LHS = Op.getOperand(0);
10717  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10718  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10719
10720  // Extract the RHS vectors
10721  SDValue RHS = Op.getOperand(1);
10722  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10723  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10724
10725  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10726  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10727
10728  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10729                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10730                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10731}
10732
10733static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
10734  assert(Op.getValueType().is256BitVector() &&
10735         Op.getValueType().isInteger() &&
10736         "Only handle AVX 256-bit vector integer operation");
10737  return Lower256IntArith(Op, DAG);
10738}
10739
10740static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
10741  assert(Op.getValueType().is256BitVector() &&
10742         Op.getValueType().isInteger() &&
10743         "Only handle AVX 256-bit vector integer operation");
10744  return Lower256IntArith(Op, DAG);
10745}
10746
10747static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
10748                        SelectionDAG &DAG) {
10749  EVT VT = Op.getValueType();
10750
10751  // Decompose 256-bit ops into smaller 128-bit ops.
10752  if (VT.is256BitVector() && !Subtarget->hasAVX2())
10753    return Lower256IntArith(Op, DAG);
10754
10755  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10756         "Only know how to lower V2I64/V4I64 multiply");
10757
10758  DebugLoc dl = Op.getDebugLoc();
10759
10760  //  Ahi = psrlqi(a, 32);
10761  //  Bhi = psrlqi(b, 32);
10762  //
10763  //  AloBlo = pmuludq(a, b);
10764  //  AloBhi = pmuludq(a, Bhi);
10765  //  AhiBlo = pmuludq(Ahi, b);
10766
10767  //  AloBhi = psllqi(AloBhi, 32);
10768  //  AhiBlo = psllqi(AhiBlo, 32);
10769  //  return AloBlo + AloBhi + AhiBlo;
10770
10771  SDValue A = Op.getOperand(0);
10772  SDValue B = Op.getOperand(1);
10773
10774  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10775
10776  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10777  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10778
10779  // Bit cast to 32-bit vectors for MULUDQ
10780  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10781  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10782  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10783  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10784  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10785
10786  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10787  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10788  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10789
10790  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10791  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10792
10793  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10794  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10795}
10796
10797SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10798
10799  EVT VT = Op.getValueType();
10800  DebugLoc dl = Op.getDebugLoc();
10801  SDValue R = Op.getOperand(0);
10802  SDValue Amt = Op.getOperand(1);
10803  LLVMContext *Context = DAG.getContext();
10804
10805  if (!Subtarget->hasSSE2())
10806    return SDValue();
10807
10808  // Optimize shl/srl/sra with constant shift amount.
10809  if (isSplatVector(Amt.getNode())) {
10810    SDValue SclrAmt = Amt->getOperand(0);
10811    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10812      uint64_t ShiftAmt = C->getZExtValue();
10813
10814      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10815          (Subtarget->hasAVX2() &&
10816           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10817        if (Op.getOpcode() == ISD::SHL)
10818          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10819                             DAG.getConstant(ShiftAmt, MVT::i32));
10820        if (Op.getOpcode() == ISD::SRL)
10821          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10822                             DAG.getConstant(ShiftAmt, MVT::i32));
10823        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10824          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10825                             DAG.getConstant(ShiftAmt, MVT::i32));
10826      }
10827
10828      if (VT == MVT::v16i8) {
10829        if (Op.getOpcode() == ISD::SHL) {
10830          // Make a large shift.
10831          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10832                                    DAG.getConstant(ShiftAmt, MVT::i32));
10833          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10834          // Zero out the rightmost bits.
10835          SmallVector<SDValue, 16> V(16,
10836                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10837                                                     MVT::i8));
10838          return DAG.getNode(ISD::AND, dl, VT, SHL,
10839                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10840        }
10841        if (Op.getOpcode() == ISD::SRL) {
10842          // Make a large shift.
10843          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10844                                    DAG.getConstant(ShiftAmt, MVT::i32));
10845          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10846          // Zero out the leftmost bits.
10847          SmallVector<SDValue, 16> V(16,
10848                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10849                                                     MVT::i8));
10850          return DAG.getNode(ISD::AND, dl, VT, SRL,
10851                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10852        }
10853        if (Op.getOpcode() == ISD::SRA) {
10854          if (ShiftAmt == 7) {
10855            // R s>> 7  ===  R s< 0
10856            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10857            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10858          }
10859
10860          // R s>> a === ((R u>> a) ^ m) - m
10861          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10862          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10863                                                         MVT::i8));
10864          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10865          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10866          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10867          return Res;
10868        }
10869        llvm_unreachable("Unknown shift opcode.");
10870      }
10871
10872      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10873        if (Op.getOpcode() == ISD::SHL) {
10874          // Make a large shift.
10875          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10876                                    DAG.getConstant(ShiftAmt, MVT::i32));
10877          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10878          // Zero out the rightmost bits.
10879          SmallVector<SDValue, 32> V(32,
10880                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10881                                                     MVT::i8));
10882          return DAG.getNode(ISD::AND, dl, VT, SHL,
10883                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10884        }
10885        if (Op.getOpcode() == ISD::SRL) {
10886          // Make a large shift.
10887          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10888                                    DAG.getConstant(ShiftAmt, MVT::i32));
10889          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10890          // Zero out the leftmost bits.
10891          SmallVector<SDValue, 32> V(32,
10892                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10893                                                     MVT::i8));
10894          return DAG.getNode(ISD::AND, dl, VT, SRL,
10895                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10896        }
10897        if (Op.getOpcode() == ISD::SRA) {
10898          if (ShiftAmt == 7) {
10899            // R s>> 7  ===  R s< 0
10900            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10901            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10902          }
10903
10904          // R s>> a === ((R u>> a) ^ m) - m
10905          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10906          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10907                                                         MVT::i8));
10908          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10909          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10910          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10911          return Res;
10912        }
10913        llvm_unreachable("Unknown shift opcode.");
10914      }
10915    }
10916  }
10917
10918  // Lower SHL with variable shift amount.
10919  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10920    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10921                     DAG.getConstant(23, MVT::i32));
10922
10923    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10924    Constant *C = ConstantDataVector::get(*Context, CV);
10925    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10926    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10927                                 MachinePointerInfo::getConstantPool(),
10928                                 false, false, false, 16);
10929
10930    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10931    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10932    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10933    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10934  }
10935  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10936    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10937
10938    // a = a << 5;
10939    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10940                     DAG.getConstant(5, MVT::i32));
10941    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10942
10943    // Turn 'a' into a mask suitable for VSELECT
10944    SDValue VSelM = DAG.getConstant(0x80, VT);
10945    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10946    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10947
10948    SDValue CM1 = DAG.getConstant(0x0f, VT);
10949    SDValue CM2 = DAG.getConstant(0x3f, VT);
10950
10951    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10952    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10953    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10954                            DAG.getConstant(4, MVT::i32), DAG);
10955    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10956    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10957
10958    // a += a
10959    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10960    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10961    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10962
10963    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10964    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10965    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10966                            DAG.getConstant(2, MVT::i32), DAG);
10967    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10968    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10969
10970    // a += a
10971    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10972    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10973    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10974
10975    // return VSELECT(r, r+r, a);
10976    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10977                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10978    return R;
10979  }
10980
10981  // Decompose 256-bit shifts into smaller 128-bit shifts.
10982  if (VT.is256BitVector()) {
10983    unsigned NumElems = VT.getVectorNumElements();
10984    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10985    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10986
10987    // Extract the two vectors
10988    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10989    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10990
10991    // Recreate the shift amount vectors
10992    SDValue Amt1, Amt2;
10993    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10994      // Constant shift amount
10995      SmallVector<SDValue, 4> Amt1Csts;
10996      SmallVector<SDValue, 4> Amt2Csts;
10997      for (unsigned i = 0; i != NumElems/2; ++i)
10998        Amt1Csts.push_back(Amt->getOperand(i));
10999      for (unsigned i = NumElems/2; i != NumElems; ++i)
11000        Amt2Csts.push_back(Amt->getOperand(i));
11001
11002      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11003                                 &Amt1Csts[0], NumElems/2);
11004      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11005                                 &Amt2Csts[0], NumElems/2);
11006    } else {
11007      // Variable shift amount
11008      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11009      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11010    }
11011
11012    // Issue new vector shifts for the smaller types
11013    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11014    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11015
11016    // Concatenate the result back
11017    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11018  }
11019
11020  return SDValue();
11021}
11022
11023static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11024  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11025  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11026  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11027  // has only one use.
11028  SDNode *N = Op.getNode();
11029  SDValue LHS = N->getOperand(0);
11030  SDValue RHS = N->getOperand(1);
11031  unsigned BaseOp = 0;
11032  unsigned Cond = 0;
11033  DebugLoc DL = Op.getDebugLoc();
11034  switch (Op.getOpcode()) {
11035  default: llvm_unreachable("Unknown ovf instruction!");
11036  case ISD::SADDO:
11037    // A subtract of one will be selected as a INC. Note that INC doesn't
11038    // set CF, so we can't do this for UADDO.
11039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11040      if (C->isOne()) {
11041        BaseOp = X86ISD::INC;
11042        Cond = X86::COND_O;
11043        break;
11044      }
11045    BaseOp = X86ISD::ADD;
11046    Cond = X86::COND_O;
11047    break;
11048  case ISD::UADDO:
11049    BaseOp = X86ISD::ADD;
11050    Cond = X86::COND_B;
11051    break;
11052  case ISD::SSUBO:
11053    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11054    // set CF, so we can't do this for USUBO.
11055    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11056      if (C->isOne()) {
11057        BaseOp = X86ISD::DEC;
11058        Cond = X86::COND_O;
11059        break;
11060      }
11061    BaseOp = X86ISD::SUB;
11062    Cond = X86::COND_O;
11063    break;
11064  case ISD::USUBO:
11065    BaseOp = X86ISD::SUB;
11066    Cond = X86::COND_B;
11067    break;
11068  case ISD::SMULO:
11069    BaseOp = X86ISD::SMUL;
11070    Cond = X86::COND_O;
11071    break;
11072  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11073    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11074                                 MVT::i32);
11075    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11076
11077    SDValue SetCC =
11078      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11079                  DAG.getConstant(X86::COND_O, MVT::i32),
11080                  SDValue(Sum.getNode(), 2));
11081
11082    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11083  }
11084  }
11085
11086  // Also sets EFLAGS.
11087  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11088  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11089
11090  SDValue SetCC =
11091    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11092                DAG.getConstant(Cond, MVT::i32),
11093                SDValue(Sum.getNode(), 1));
11094
11095  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11096}
11097
11098SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11099                                                  SelectionDAG &DAG) const {
11100  DebugLoc dl = Op.getDebugLoc();
11101  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11102  EVT VT = Op.getValueType();
11103
11104  if (!Subtarget->hasSSE2() || !VT.isVector())
11105    return SDValue();
11106
11107  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11108                      ExtraVT.getScalarType().getSizeInBits();
11109  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11110
11111  switch (VT.getSimpleVT().SimpleTy) {
11112    default: return SDValue();
11113    case MVT::v8i32:
11114    case MVT::v16i16:
11115      if (!Subtarget->hasAVX())
11116        return SDValue();
11117      if (!Subtarget->hasAVX2()) {
11118        // needs to be split
11119        unsigned NumElems = VT.getVectorNumElements();
11120
11121        // Extract the LHS vectors
11122        SDValue LHS = Op.getOperand(0);
11123        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11124        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11125
11126        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11127        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11128
11129        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11130        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11131        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11132                                   ExtraNumElems/2);
11133        SDValue Extra = DAG.getValueType(ExtraVT);
11134
11135        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11136        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11137
11138        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11139      }
11140      // fall through
11141    case MVT::v4i32:
11142    case MVT::v8i16: {
11143      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11144                                         Op.getOperand(0), ShAmt, DAG);
11145      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11146    }
11147  }
11148}
11149
11150
11151static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11152                              SelectionDAG &DAG) {
11153  DebugLoc dl = Op.getDebugLoc();
11154
11155  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11156  // There isn't any reason to disable it if the target processor supports it.
11157  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11158    SDValue Chain = Op.getOperand(0);
11159    SDValue Zero = DAG.getConstant(0, MVT::i32);
11160    SDValue Ops[] = {
11161      DAG.getRegister(X86::ESP, MVT::i32), // Base
11162      DAG.getTargetConstant(1, MVT::i8),   // Scale
11163      DAG.getRegister(0, MVT::i32),        // Index
11164      DAG.getTargetConstant(0, MVT::i32),  // Disp
11165      DAG.getRegister(0, MVT::i32),        // Segment.
11166      Zero,
11167      Chain
11168    };
11169    SDNode *Res =
11170      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11171                          array_lengthof(Ops));
11172    return SDValue(Res, 0);
11173  }
11174
11175  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11176  if (!isDev)
11177    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11178
11179  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11180  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11181  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11182  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11183
11184  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11185  if (!Op1 && !Op2 && !Op3 && Op4)
11186    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11187
11188  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11189  if (Op1 && !Op2 && !Op3 && !Op4)
11190    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11191
11192  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11193  //           (MFENCE)>;
11194  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11195}
11196
11197static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11198                                 SelectionDAG &DAG) {
11199  DebugLoc dl = Op.getDebugLoc();
11200  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11201    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11202  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11203    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11204
11205  // The only fence that needs an instruction is a sequentially-consistent
11206  // cross-thread fence.
11207  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11208    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11209    // no-sse2). There isn't any reason to disable it if the target processor
11210    // supports it.
11211    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11212      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11213
11214    SDValue Chain = Op.getOperand(0);
11215    SDValue Zero = DAG.getConstant(0, MVT::i32);
11216    SDValue Ops[] = {
11217      DAG.getRegister(X86::ESP, MVT::i32), // Base
11218      DAG.getTargetConstant(1, MVT::i8),   // Scale
11219      DAG.getRegister(0, MVT::i32),        // Index
11220      DAG.getTargetConstant(0, MVT::i32),  // Disp
11221      DAG.getRegister(0, MVT::i32),        // Segment.
11222      Zero,
11223      Chain
11224    };
11225    SDNode *Res =
11226      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11227                         array_lengthof(Ops));
11228    return SDValue(Res, 0);
11229  }
11230
11231  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11232  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11233}
11234
11235
11236static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11237                             SelectionDAG &DAG) {
11238  EVT T = Op.getValueType();
11239  DebugLoc DL = Op.getDebugLoc();
11240  unsigned Reg = 0;
11241  unsigned size = 0;
11242  switch(T.getSimpleVT().SimpleTy) {
11243  default: llvm_unreachable("Invalid value type!");
11244  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11245  case MVT::i16: Reg = X86::AX;  size = 2; break;
11246  case MVT::i32: Reg = X86::EAX; size = 4; break;
11247  case MVT::i64:
11248    assert(Subtarget->is64Bit() && "Node not type legal!");
11249    Reg = X86::RAX; size = 8;
11250    break;
11251  }
11252  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11253                                    Op.getOperand(2), SDValue());
11254  SDValue Ops[] = { cpIn.getValue(0),
11255                    Op.getOperand(1),
11256                    Op.getOperand(3),
11257                    DAG.getTargetConstant(size, MVT::i8),
11258                    cpIn.getValue(1) };
11259  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11260  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11261  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11262                                           Ops, 5, T, MMO);
11263  SDValue cpOut =
11264    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11265  return cpOut;
11266}
11267
11268static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11269                                     SelectionDAG &DAG) {
11270  assert(Subtarget->is64Bit() && "Result not type legalized?");
11271  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11272  SDValue TheChain = Op.getOperand(0);
11273  DebugLoc dl = Op.getDebugLoc();
11274  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11275  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11276  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11277                                   rax.getValue(2));
11278  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11279                            DAG.getConstant(32, MVT::i8));
11280  SDValue Ops[] = {
11281    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11282    rdx.getValue(1)
11283  };
11284  return DAG.getMergeValues(Ops, 2, dl);
11285}
11286
11287SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11288  EVT SrcVT = Op.getOperand(0).getValueType();
11289  EVT DstVT = Op.getValueType();
11290  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11291         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11292  assert((DstVT == MVT::i64 ||
11293          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11294         "Unexpected custom BITCAST");
11295  // i64 <=> MMX conversions are Legal.
11296  if (SrcVT==MVT::i64 && DstVT.isVector())
11297    return Op;
11298  if (DstVT==MVT::i64 && SrcVT.isVector())
11299    return Op;
11300  // MMX <=> MMX conversions are Legal.
11301  if (SrcVT.isVector() && DstVT.isVector())
11302    return Op;
11303  // All other conversions need to be expanded.
11304  return SDValue();
11305}
11306
11307static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11308  SDNode *Node = Op.getNode();
11309  DebugLoc dl = Node->getDebugLoc();
11310  EVT T = Node->getValueType(0);
11311  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11312                              DAG.getConstant(0, T), Node->getOperand(2));
11313  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11314                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11315                       Node->getOperand(0),
11316                       Node->getOperand(1), negOp,
11317                       cast<AtomicSDNode>(Node)->getSrcValue(),
11318                       cast<AtomicSDNode>(Node)->getAlignment(),
11319                       cast<AtomicSDNode>(Node)->getOrdering(),
11320                       cast<AtomicSDNode>(Node)->getSynchScope());
11321}
11322
11323static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11324  SDNode *Node = Op.getNode();
11325  DebugLoc dl = Node->getDebugLoc();
11326  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11327
11328  // Convert seq_cst store -> xchg
11329  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11330  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11331  //        (The only way to get a 16-byte store is cmpxchg16b)
11332  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11333  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11334      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11335    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11336                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11337                                 Node->getOperand(0),
11338                                 Node->getOperand(1), Node->getOperand(2),
11339                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11340                                 cast<AtomicSDNode>(Node)->getOrdering(),
11341                                 cast<AtomicSDNode>(Node)->getSynchScope());
11342    return Swap.getValue(1);
11343  }
11344  // Other atomic stores have a simple pattern.
11345  return Op;
11346}
11347
11348static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11349  EVT VT = Op.getNode()->getValueType(0);
11350
11351  // Let legalize expand this if it isn't a legal type yet.
11352  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11353    return SDValue();
11354
11355  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11356
11357  unsigned Opc;
11358  bool ExtraOp = false;
11359  switch (Op.getOpcode()) {
11360  default: llvm_unreachable("Invalid code");
11361  case ISD::ADDC: Opc = X86ISD::ADD; break;
11362  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11363  case ISD::SUBC: Opc = X86ISD::SUB; break;
11364  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11365  }
11366
11367  if (!ExtraOp)
11368    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11369                       Op.getOperand(1));
11370  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11371                     Op.getOperand(1), Op.getOperand(2));
11372}
11373
11374/// LowerOperation - Provide custom lowering hooks for some operations.
11375///
11376SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11377  switch (Op.getOpcode()) {
11378  default: llvm_unreachable("Should not custom lower this!");
11379  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11380  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
11381  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
11382  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
11383  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11384  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11385  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11386  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11387  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11388  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11389  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11390  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
11391  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
11392  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11393  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11394  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11395  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11396  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11397  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11398  case ISD::SHL_PARTS:
11399  case ISD::SRA_PARTS:
11400  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11401  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11402  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11403  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11404  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11405  case ISD::FABS:               return LowerFABS(Op, DAG);
11406  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11407  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11408  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11409  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11410  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11411  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11412  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11413  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11414  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11415  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
11416  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11417  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11418  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11419  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11420  case ISD::FRAME_TO_ARGS_OFFSET:
11421                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11422  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11423  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11424  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11425  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11426  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11427  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11428  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11429  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11430  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
11431  case ISD::SRA:
11432  case ISD::SRL:
11433  case ISD::SHL:                return LowerShift(Op, DAG);
11434  case ISD::SADDO:
11435  case ISD::UADDO:
11436  case ISD::SSUBO:
11437  case ISD::USUBO:
11438  case ISD::SMULO:
11439  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11440  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
11441  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11442  case ISD::ADDC:
11443  case ISD::ADDE:
11444  case ISD::SUBC:
11445  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11446  case ISD::ADD:                return LowerADD(Op, DAG);
11447  case ISD::SUB:                return LowerSUB(Op, DAG);
11448  }
11449}
11450
11451static void ReplaceATOMIC_LOAD(SDNode *Node,
11452                                  SmallVectorImpl<SDValue> &Results,
11453                                  SelectionDAG &DAG) {
11454  DebugLoc dl = Node->getDebugLoc();
11455  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11456
11457  // Convert wide load -> cmpxchg8b/cmpxchg16b
11458  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11459  //        (The only way to get a 16-byte load is cmpxchg16b)
11460  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11461  SDValue Zero = DAG.getConstant(0, VT);
11462  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11463                               Node->getOperand(0),
11464                               Node->getOperand(1), Zero, Zero,
11465                               cast<AtomicSDNode>(Node)->getMemOperand(),
11466                               cast<AtomicSDNode>(Node)->getOrdering(),
11467                               cast<AtomicSDNode>(Node)->getSynchScope());
11468  Results.push_back(Swap.getValue(0));
11469  Results.push_back(Swap.getValue(1));
11470}
11471
11472static void
11473ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11474                        SelectionDAG &DAG, unsigned NewOp) {
11475  DebugLoc dl = Node->getDebugLoc();
11476  assert (Node->getValueType(0) == MVT::i64 &&
11477          "Only know how to expand i64 atomics");
11478
11479  SDValue Chain = Node->getOperand(0);
11480  SDValue In1 = Node->getOperand(1);
11481  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11482                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11483  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11484                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11485  SDValue Ops[] = { Chain, In1, In2L, In2H };
11486  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11487  SDValue Result =
11488    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11489                            cast<MemSDNode>(Node)->getMemOperand());
11490  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11491  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11492  Results.push_back(Result.getValue(2));
11493}
11494
11495/// ReplaceNodeResults - Replace a node with an illegal result type
11496/// with a new node built out of custom code.
11497void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11498                                           SmallVectorImpl<SDValue>&Results,
11499                                           SelectionDAG &DAG) const {
11500  DebugLoc dl = N->getDebugLoc();
11501  switch (N->getOpcode()) {
11502  default:
11503    llvm_unreachable("Do not know how to custom type legalize this operation!");
11504  case ISD::SIGN_EXTEND_INREG:
11505  case ISD::ADDC:
11506  case ISD::ADDE:
11507  case ISD::SUBC:
11508  case ISD::SUBE:
11509    // We don't want to expand or promote these.
11510    return;
11511  case ISD::FP_TO_SINT:
11512  case ISD::FP_TO_UINT: {
11513    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11514
11515    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11516      return;
11517
11518    std::pair<SDValue,SDValue> Vals =
11519        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11520    SDValue FIST = Vals.first, StackSlot = Vals.second;
11521    if (FIST.getNode() != 0) {
11522      EVT VT = N->getValueType(0);
11523      // Return a load from the stack slot.
11524      if (StackSlot.getNode() != 0)
11525        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11526                                      MachinePointerInfo(),
11527                                      false, false, false, 0));
11528      else
11529        Results.push_back(FIST);
11530    }
11531    return;
11532  }
11533  case ISD::READCYCLECOUNTER: {
11534    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11535    SDValue TheChain = N->getOperand(0);
11536    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11537    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11538                                     rd.getValue(1));
11539    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11540                                     eax.getValue(2));
11541    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11542    SDValue Ops[] = { eax, edx };
11543    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11544    Results.push_back(edx.getValue(1));
11545    return;
11546  }
11547  case ISD::ATOMIC_CMP_SWAP: {
11548    EVT T = N->getValueType(0);
11549    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11550    bool Regs64bit = T == MVT::i128;
11551    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11552    SDValue cpInL, cpInH;
11553    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11554                        DAG.getConstant(0, HalfT));
11555    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11556                        DAG.getConstant(1, HalfT));
11557    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11558                             Regs64bit ? X86::RAX : X86::EAX,
11559                             cpInL, SDValue());
11560    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11561                             Regs64bit ? X86::RDX : X86::EDX,
11562                             cpInH, cpInL.getValue(1));
11563    SDValue swapInL, swapInH;
11564    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11565                          DAG.getConstant(0, HalfT));
11566    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11567                          DAG.getConstant(1, HalfT));
11568    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11569                               Regs64bit ? X86::RBX : X86::EBX,
11570                               swapInL, cpInH.getValue(1));
11571    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11572                               Regs64bit ? X86::RCX : X86::ECX,
11573                               swapInH, swapInL.getValue(1));
11574    SDValue Ops[] = { swapInH.getValue(0),
11575                      N->getOperand(1),
11576                      swapInH.getValue(1) };
11577    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11578    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11579    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11580                                  X86ISD::LCMPXCHG8_DAG;
11581    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11582                                             Ops, 3, T, MMO);
11583    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11584                                        Regs64bit ? X86::RAX : X86::EAX,
11585                                        HalfT, Result.getValue(1));
11586    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11587                                        Regs64bit ? X86::RDX : X86::EDX,
11588                                        HalfT, cpOutL.getValue(2));
11589    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11590    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11591    Results.push_back(cpOutH.getValue(1));
11592    return;
11593  }
11594  case ISD::ATOMIC_LOAD_ADD:
11595  case ISD::ATOMIC_LOAD_AND:
11596  case ISD::ATOMIC_LOAD_NAND:
11597  case ISD::ATOMIC_LOAD_OR:
11598  case ISD::ATOMIC_LOAD_SUB:
11599  case ISD::ATOMIC_LOAD_XOR:
11600  case ISD::ATOMIC_LOAD_MAX:
11601  case ISD::ATOMIC_LOAD_MIN:
11602  case ISD::ATOMIC_LOAD_UMAX:
11603  case ISD::ATOMIC_LOAD_UMIN:
11604  case ISD::ATOMIC_SWAP: {
11605    unsigned Opc;
11606    switch (N->getOpcode()) {
11607    default: llvm_unreachable("Unexpected opcode");
11608    case ISD::ATOMIC_LOAD_ADD:
11609      Opc = X86ISD::ATOMADD64_DAG;
11610      break;
11611    case ISD::ATOMIC_LOAD_AND:
11612      Opc = X86ISD::ATOMAND64_DAG;
11613      break;
11614    case ISD::ATOMIC_LOAD_NAND:
11615      Opc = X86ISD::ATOMNAND64_DAG;
11616      break;
11617    case ISD::ATOMIC_LOAD_OR:
11618      Opc = X86ISD::ATOMOR64_DAG;
11619      break;
11620    case ISD::ATOMIC_LOAD_SUB:
11621      Opc = X86ISD::ATOMSUB64_DAG;
11622      break;
11623    case ISD::ATOMIC_LOAD_XOR:
11624      Opc = X86ISD::ATOMXOR64_DAG;
11625      break;
11626    case ISD::ATOMIC_LOAD_MAX:
11627      Opc = X86ISD::ATOMMAX64_DAG;
11628      break;
11629    case ISD::ATOMIC_LOAD_MIN:
11630      Opc = X86ISD::ATOMMIN64_DAG;
11631      break;
11632    case ISD::ATOMIC_LOAD_UMAX:
11633      Opc = X86ISD::ATOMUMAX64_DAG;
11634      break;
11635    case ISD::ATOMIC_LOAD_UMIN:
11636      Opc = X86ISD::ATOMUMIN64_DAG;
11637      break;
11638    case ISD::ATOMIC_SWAP:
11639      Opc = X86ISD::ATOMSWAP64_DAG;
11640      break;
11641    }
11642    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11643    return;
11644  }
11645  case ISD::ATOMIC_LOAD:
11646    ReplaceATOMIC_LOAD(N, Results, DAG);
11647  }
11648}
11649
11650const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11651  switch (Opcode) {
11652  default: return NULL;
11653  case X86ISD::BSF:                return "X86ISD::BSF";
11654  case X86ISD::BSR:                return "X86ISD::BSR";
11655  case X86ISD::SHLD:               return "X86ISD::SHLD";
11656  case X86ISD::SHRD:               return "X86ISD::SHRD";
11657  case X86ISD::FAND:               return "X86ISD::FAND";
11658  case X86ISD::FOR:                return "X86ISD::FOR";
11659  case X86ISD::FXOR:               return "X86ISD::FXOR";
11660  case X86ISD::FSRL:               return "X86ISD::FSRL";
11661  case X86ISD::FILD:               return "X86ISD::FILD";
11662  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11663  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11664  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11665  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11666  case X86ISD::FLD:                return "X86ISD::FLD";
11667  case X86ISD::FST:                return "X86ISD::FST";
11668  case X86ISD::CALL:               return "X86ISD::CALL";
11669  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11670  case X86ISD::BT:                 return "X86ISD::BT";
11671  case X86ISD::CMP:                return "X86ISD::CMP";
11672  case X86ISD::COMI:               return "X86ISD::COMI";
11673  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11674  case X86ISD::SETCC:              return "X86ISD::SETCC";
11675  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11676  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11677  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11678  case X86ISD::CMOV:               return "X86ISD::CMOV";
11679  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11680  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11681  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11682  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11683  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11684  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11685  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11686  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11687  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11688  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11689  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11690  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11691  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11692  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11693  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11694  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11695  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11696  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11697  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11698  case X86ISD::HADD:               return "X86ISD::HADD";
11699  case X86ISD::HSUB:               return "X86ISD::HSUB";
11700  case X86ISD::FHADD:              return "X86ISD::FHADD";
11701  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11702  case X86ISD::FMAX:               return "X86ISD::FMAX";
11703  case X86ISD::FMIN:               return "X86ISD::FMIN";
11704  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11705  case X86ISD::FMINC:              return "X86ISD::FMINC";
11706  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11707  case X86ISD::FRCP:               return "X86ISD::FRCP";
11708  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11709  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11710  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11711  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11712  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11713  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11714  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11715  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11716  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11717  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11718  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11719  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11720  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11721  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11722  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11723  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11724  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11725  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11726  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11727  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11728  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11729  case X86ISD::VSHL:               return "X86ISD::VSHL";
11730  case X86ISD::VSRL:               return "X86ISD::VSRL";
11731  case X86ISD::VSRA:               return "X86ISD::VSRA";
11732  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11733  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11734  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11735  case X86ISD::CMPP:               return "X86ISD::CMPP";
11736  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11737  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11738  case X86ISD::ADD:                return "X86ISD::ADD";
11739  case X86ISD::SUB:                return "X86ISD::SUB";
11740  case X86ISD::ADC:                return "X86ISD::ADC";
11741  case X86ISD::SBB:                return "X86ISD::SBB";
11742  case X86ISD::SMUL:               return "X86ISD::SMUL";
11743  case X86ISD::UMUL:               return "X86ISD::UMUL";
11744  case X86ISD::INC:                return "X86ISD::INC";
11745  case X86ISD::DEC:                return "X86ISD::DEC";
11746  case X86ISD::OR:                 return "X86ISD::OR";
11747  case X86ISD::XOR:                return "X86ISD::XOR";
11748  case X86ISD::AND:                return "X86ISD::AND";
11749  case X86ISD::ANDN:               return "X86ISD::ANDN";
11750  case X86ISD::BLSI:               return "X86ISD::BLSI";
11751  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11752  case X86ISD::BLSR:               return "X86ISD::BLSR";
11753  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11754  case X86ISD::PTEST:              return "X86ISD::PTEST";
11755  case X86ISD::TESTP:              return "X86ISD::TESTP";
11756  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11757  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11758  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11759  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11760  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11761  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11762  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11763  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11764  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11765  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11766  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11767  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11768  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11769  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11770  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11771  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11772  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11773  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11774  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11775  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11776  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11777  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11778  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11779  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11780  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11781  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11782  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11783  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11784  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11785  case X86ISD::SAHF:               return "X86ISD::SAHF";
11786  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11787  case X86ISD::FMADD:              return "X86ISD::FMADD";
11788  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
11789  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
11790  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
11791  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
11792  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
11793  }
11794}
11795
11796// isLegalAddressingMode - Return true if the addressing mode represented
11797// by AM is legal for this target, for a load/store of the specified type.
11798bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11799                                              Type *Ty) const {
11800  // X86 supports extremely general addressing modes.
11801  CodeModel::Model M = getTargetMachine().getCodeModel();
11802  Reloc::Model R = getTargetMachine().getRelocationModel();
11803
11804  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11805  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11806    return false;
11807
11808  if (AM.BaseGV) {
11809    unsigned GVFlags =
11810      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11811
11812    // If a reference to this global requires an extra load, we can't fold it.
11813    if (isGlobalStubReference(GVFlags))
11814      return false;
11815
11816    // If BaseGV requires a register for the PIC base, we cannot also have a
11817    // BaseReg specified.
11818    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11819      return false;
11820
11821    // If lower 4G is not available, then we must use rip-relative addressing.
11822    if ((M != CodeModel::Small || R != Reloc::Static) &&
11823        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11824      return false;
11825  }
11826
11827  switch (AM.Scale) {
11828  case 0:
11829  case 1:
11830  case 2:
11831  case 4:
11832  case 8:
11833    // These scales always work.
11834    break;
11835  case 3:
11836  case 5:
11837  case 9:
11838    // These scales are formed with basereg+scalereg.  Only accept if there is
11839    // no basereg yet.
11840    if (AM.HasBaseReg)
11841      return false;
11842    break;
11843  default:  // Other stuff never works.
11844    return false;
11845  }
11846
11847  return true;
11848}
11849
11850
11851bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11852  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11853    return false;
11854  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11855  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11856  if (NumBits1 <= NumBits2)
11857    return false;
11858  return true;
11859}
11860
11861bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11862  return Imm == (int32_t)Imm;
11863}
11864
11865bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
11866  // Can also use sub to handle negated immediates.
11867  return Imm == (int32_t)Imm;
11868}
11869
11870bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11871  if (!VT1.isInteger() || !VT2.isInteger())
11872    return false;
11873  unsigned NumBits1 = VT1.getSizeInBits();
11874  unsigned NumBits2 = VT2.getSizeInBits();
11875  if (NumBits1 <= NumBits2)
11876    return false;
11877  return true;
11878}
11879
11880bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11881  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11882  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11883}
11884
11885bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11886  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11887  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11888}
11889
11890bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11891  // i16 instructions are longer (0x66 prefix) and potentially slower.
11892  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11893}
11894
11895/// isShuffleMaskLegal - Targets can use this to indicate that they only
11896/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11897/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11898/// are assumed to be legal.
11899bool
11900X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11901                                      EVT VT) const {
11902  // Very little shuffling can be done for 64-bit vectors right now.
11903  if (VT.getSizeInBits() == 64)
11904    return false;
11905
11906  // FIXME: pshufb, blends, shifts.
11907  return (VT.getVectorNumElements() == 2 ||
11908          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11909          isMOVLMask(M, VT) ||
11910          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11911          isPSHUFDMask(M, VT) ||
11912          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11913          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11914          isPALIGNRMask(M, VT, Subtarget) ||
11915          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11916          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11917          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11918          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11919}
11920
11921bool
11922X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11923                                          EVT VT) const {
11924  unsigned NumElts = VT.getVectorNumElements();
11925  // FIXME: This collection of masks seems suspect.
11926  if (NumElts == 2)
11927    return true;
11928  if (NumElts == 4 && VT.is128BitVector()) {
11929    return (isMOVLMask(Mask, VT)  ||
11930            isCommutedMOVLMask(Mask, VT, true) ||
11931            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11932            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11933  }
11934  return false;
11935}
11936
11937//===----------------------------------------------------------------------===//
11938//                           X86 Scheduler Hooks
11939//===----------------------------------------------------------------------===//
11940
11941// private utility function
11942
11943// Get CMPXCHG opcode for the specified data type.
11944static unsigned getCmpXChgOpcode(EVT VT) {
11945  switch (VT.getSimpleVT().SimpleTy) {
11946  case MVT::i8:  return X86::LCMPXCHG8;
11947  case MVT::i16: return X86::LCMPXCHG16;
11948  case MVT::i32: return X86::LCMPXCHG32;
11949  case MVT::i64: return X86::LCMPXCHG64;
11950  default:
11951    break;
11952  }
11953  llvm_unreachable("Invalid operand size!");
11954}
11955
11956// Get LOAD opcode for the specified data type.
11957static unsigned getLoadOpcode(EVT VT) {
11958  switch (VT.getSimpleVT().SimpleTy) {
11959  case MVT::i8:  return X86::MOV8rm;
11960  case MVT::i16: return X86::MOV16rm;
11961  case MVT::i32: return X86::MOV32rm;
11962  case MVT::i64: return X86::MOV64rm;
11963  default:
11964    break;
11965  }
11966  llvm_unreachable("Invalid operand size!");
11967}
11968
11969// Get opcode of the non-atomic one from the specified atomic instruction.
11970static unsigned getNonAtomicOpcode(unsigned Opc) {
11971  switch (Opc) {
11972  case X86::ATOMAND8:  return X86::AND8rr;
11973  case X86::ATOMAND16: return X86::AND16rr;
11974  case X86::ATOMAND32: return X86::AND32rr;
11975  case X86::ATOMAND64: return X86::AND64rr;
11976  case X86::ATOMOR8:   return X86::OR8rr;
11977  case X86::ATOMOR16:  return X86::OR16rr;
11978  case X86::ATOMOR32:  return X86::OR32rr;
11979  case X86::ATOMOR64:  return X86::OR64rr;
11980  case X86::ATOMXOR8:  return X86::XOR8rr;
11981  case X86::ATOMXOR16: return X86::XOR16rr;
11982  case X86::ATOMXOR32: return X86::XOR32rr;
11983  case X86::ATOMXOR64: return X86::XOR64rr;
11984  }
11985  llvm_unreachable("Unhandled atomic-load-op opcode!");
11986}
11987
11988// Get opcode of the non-atomic one from the specified atomic instruction with
11989// extra opcode.
11990static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
11991                                               unsigned &ExtraOpc) {
11992  switch (Opc) {
11993  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
11994  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
11995  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
11996  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
11997  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
11998  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
11999  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12000  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12001  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12002  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12003  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12004  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12005  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12006  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12007  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12008  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12009  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12010  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12011  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12012  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12013  }
12014  llvm_unreachable("Unhandled atomic-load-op opcode!");
12015}
12016
12017// Get opcode of the non-atomic one from the specified atomic instruction for
12018// 64-bit data type on 32-bit target.
12019static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12020  switch (Opc) {
12021  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12022  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12023  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12024  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12025  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12026  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12027  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12028  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12029  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12030  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12031  }
12032  llvm_unreachable("Unhandled atomic-load-op opcode!");
12033}
12034
12035// Get opcode of the non-atomic one from the specified atomic instruction for
12036// 64-bit data type on 32-bit target with extra opcode.
12037static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12038                                                   unsigned &HiOpc,
12039                                                   unsigned &ExtraOpc) {
12040  switch (Opc) {
12041  case X86::ATOMNAND6432:
12042    ExtraOpc = X86::NOT32r;
12043    HiOpc = X86::AND32rr;
12044    return X86::AND32rr;
12045  }
12046  llvm_unreachable("Unhandled atomic-load-op opcode!");
12047}
12048
12049// Get pseudo CMOV opcode from the specified data type.
12050static unsigned getPseudoCMOVOpc(EVT VT) {
12051  switch (VT.getSimpleVT().SimpleTy) {
12052  case MVT::i8:  return X86::CMOV_GR8;
12053  case MVT::i16: return X86::CMOV_GR16;
12054  case MVT::i32: return X86::CMOV_GR32;
12055  default:
12056    break;
12057  }
12058  llvm_unreachable("Unknown CMOV opcode!");
12059}
12060
12061// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12062// They will be translated into a spin-loop or compare-exchange loop from
12063//
12064//    ...
12065//    dst = atomic-fetch-op MI.addr, MI.val
12066//    ...
12067//
12068// to
12069//
12070//    ...
12071//    EAX = LOAD MI.addr
12072// loop:
12073//    t1 = OP MI.val, EAX
12074//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12075//    JNE loop
12076// sink:
12077//    dst = EAX
12078//    ...
12079MachineBasicBlock *
12080X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12081                                       MachineBasicBlock *MBB) const {
12082  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12083  DebugLoc DL = MI->getDebugLoc();
12084
12085  MachineFunction *MF = MBB->getParent();
12086  MachineRegisterInfo &MRI = MF->getRegInfo();
12087
12088  const BasicBlock *BB = MBB->getBasicBlock();
12089  MachineFunction::iterator I = MBB;
12090  ++I;
12091
12092  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12093         "Unexpected number of operands");
12094
12095  assert(MI->hasOneMemOperand() &&
12096         "Expected atomic-load-op to have one memoperand");
12097
12098  // Memory Reference
12099  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12100  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12101
12102  unsigned DstReg, SrcReg;
12103  unsigned MemOpndSlot;
12104
12105  unsigned CurOp = 0;
12106
12107  DstReg = MI->getOperand(CurOp++).getReg();
12108  MemOpndSlot = CurOp;
12109  CurOp += X86::AddrNumOperands;
12110  SrcReg = MI->getOperand(CurOp++).getReg();
12111
12112  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12113  MVT::SimpleValueType VT = *RC->vt_begin();
12114  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12115
12116  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12117  unsigned LOADOpc = getLoadOpcode(VT);
12118
12119  // For the atomic load-arith operator, we generate
12120  //
12121  //  thisMBB:
12122  //    EAX = LOAD [MI.addr]
12123  //  mainMBB:
12124  //    t1 = OP MI.val, EAX
12125  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12126  //    JNE mainMBB
12127  //  sinkMBB:
12128
12129  MachineBasicBlock *thisMBB = MBB;
12130  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12131  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12132  MF->insert(I, mainMBB);
12133  MF->insert(I, sinkMBB);
12134
12135  MachineInstrBuilder MIB;
12136
12137  // Transfer the remainder of BB and its successor edges to sinkMBB.
12138  sinkMBB->splice(sinkMBB->begin(), MBB,
12139                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12140  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12141
12142  // thisMBB:
12143  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12144  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12145    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12146  MIB.setMemRefs(MMOBegin, MMOEnd);
12147
12148  thisMBB->addSuccessor(mainMBB);
12149
12150  // mainMBB:
12151  MachineBasicBlock *origMainMBB = mainMBB;
12152  mainMBB->addLiveIn(AccPhyReg);
12153
12154  // Copy AccPhyReg as it is used more than once.
12155  unsigned AccReg = MRI.createVirtualRegister(RC);
12156  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12157    .addReg(AccPhyReg);
12158
12159  unsigned t1 = MRI.createVirtualRegister(RC);
12160  unsigned Opc = MI->getOpcode();
12161  switch (Opc) {
12162  default:
12163    llvm_unreachable("Unhandled atomic-load-op opcode!");
12164  case X86::ATOMAND8:
12165  case X86::ATOMAND16:
12166  case X86::ATOMAND32:
12167  case X86::ATOMAND64:
12168  case X86::ATOMOR8:
12169  case X86::ATOMOR16:
12170  case X86::ATOMOR32:
12171  case X86::ATOMOR64:
12172  case X86::ATOMXOR8:
12173  case X86::ATOMXOR16:
12174  case X86::ATOMXOR32:
12175  case X86::ATOMXOR64: {
12176    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12177    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12178      .addReg(AccReg);
12179    break;
12180  }
12181  case X86::ATOMNAND8:
12182  case X86::ATOMNAND16:
12183  case X86::ATOMNAND32:
12184  case X86::ATOMNAND64: {
12185    unsigned t2 = MRI.createVirtualRegister(RC);
12186    unsigned NOTOpc;
12187    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12188    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12189      .addReg(AccReg);
12190    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12191    break;
12192  }
12193  case X86::ATOMMAX8:
12194  case X86::ATOMMAX16:
12195  case X86::ATOMMAX32:
12196  case X86::ATOMMAX64:
12197  case X86::ATOMMIN8:
12198  case X86::ATOMMIN16:
12199  case X86::ATOMMIN32:
12200  case X86::ATOMMIN64:
12201  case X86::ATOMUMAX8:
12202  case X86::ATOMUMAX16:
12203  case X86::ATOMUMAX32:
12204  case X86::ATOMUMAX64:
12205  case X86::ATOMUMIN8:
12206  case X86::ATOMUMIN16:
12207  case X86::ATOMUMIN32:
12208  case X86::ATOMUMIN64: {
12209    unsigned CMPOpc;
12210    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12211
12212    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12213      .addReg(SrcReg)
12214      .addReg(AccReg);
12215
12216    if (Subtarget->hasCMov()) {
12217      if (VT != MVT::i8) {
12218        // Native support
12219        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12220          .addReg(SrcReg)
12221          .addReg(AccReg);
12222      } else {
12223        // Promote i8 to i32 to use CMOV32
12224        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12225        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12226        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12227        unsigned t2 = MRI.createVirtualRegister(RC32);
12228
12229        unsigned Undef = MRI.createVirtualRegister(RC32);
12230        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12231
12232        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12233          .addReg(Undef)
12234          .addReg(SrcReg)
12235          .addImm(X86::sub_8bit);
12236        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12237          .addReg(Undef)
12238          .addReg(AccReg)
12239          .addImm(X86::sub_8bit);
12240
12241        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12242          .addReg(SrcReg32)
12243          .addReg(AccReg32);
12244
12245        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12246          .addReg(t2, 0, X86::sub_8bit);
12247      }
12248    } else {
12249      // Use pseudo select and lower them.
12250      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12251             "Invalid atomic-load-op transformation!");
12252      unsigned SelOpc = getPseudoCMOVOpc(VT);
12253      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12254      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12255      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12256              .addReg(SrcReg).addReg(AccReg)
12257              .addImm(CC);
12258      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12259    }
12260    break;
12261  }
12262  }
12263
12264  // Copy AccPhyReg back from virtual register.
12265  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
12266    .addReg(AccReg);
12267
12268  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12269  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12270    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12271  MIB.addReg(t1);
12272  MIB.setMemRefs(MMOBegin, MMOEnd);
12273
12274  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12275
12276  mainMBB->addSuccessor(origMainMBB);
12277  mainMBB->addSuccessor(sinkMBB);
12278
12279  // sinkMBB:
12280  sinkMBB->addLiveIn(AccPhyReg);
12281
12282  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12283          TII->get(TargetOpcode::COPY), DstReg)
12284    .addReg(AccPhyReg);
12285
12286  MI->eraseFromParent();
12287  return sinkMBB;
12288}
12289
12290// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
12291// instructions. They will be translated into a spin-loop or compare-exchange
12292// loop from
12293//
12294//    ...
12295//    dst = atomic-fetch-op MI.addr, MI.val
12296//    ...
12297//
12298// to
12299//
12300//    ...
12301//    EAX = LOAD [MI.addr + 0]
12302//    EDX = LOAD [MI.addr + 4]
12303// loop:
12304//    EBX = OP MI.val.lo, EAX
12305//    ECX = OP MI.val.hi, EDX
12306//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12307//    JNE loop
12308// sink:
12309//    dst = EDX:EAX
12310//    ...
12311MachineBasicBlock *
12312X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
12313                                           MachineBasicBlock *MBB) const {
12314  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12315  DebugLoc DL = MI->getDebugLoc();
12316
12317  MachineFunction *MF = MBB->getParent();
12318  MachineRegisterInfo &MRI = MF->getRegInfo();
12319
12320  const BasicBlock *BB = MBB->getBasicBlock();
12321  MachineFunction::iterator I = MBB;
12322  ++I;
12323
12324  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12325         "Unexpected number of operands");
12326
12327  assert(MI->hasOneMemOperand() &&
12328         "Expected atomic-load-op32 to have one memoperand");
12329
12330  // Memory Reference
12331  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12332  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12333
12334  unsigned DstLoReg, DstHiReg;
12335  unsigned SrcLoReg, SrcHiReg;
12336  unsigned MemOpndSlot;
12337
12338  unsigned CurOp = 0;
12339
12340  DstLoReg = MI->getOperand(CurOp++).getReg();
12341  DstHiReg = MI->getOperand(CurOp++).getReg();
12342  MemOpndSlot = CurOp;
12343  CurOp += X86::AddrNumOperands;
12344  SrcLoReg = MI->getOperand(CurOp++).getReg();
12345  SrcHiReg = MI->getOperand(CurOp++).getReg();
12346
12347  const TargetRegisterClass *RC = &X86::GR32RegClass;
12348  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
12349
12350  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
12351  unsigned LOADOpc = X86::MOV32rm;
12352
12353  // For the atomic load-arith operator, we generate
12354  //
12355  //  thisMBB:
12356  //    EAX = LOAD [MI.addr + 0]
12357  //    EDX = LOAD [MI.addr + 4]
12358  //  mainMBB:
12359  //    EBX = OP MI.vallo, EAX
12360  //    ECX = OP MI.valhi, EDX
12361  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12362  //    JNE mainMBB
12363  //  sinkMBB:
12364
12365  MachineBasicBlock *thisMBB = MBB;
12366  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12367  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12368  MF->insert(I, mainMBB);
12369  MF->insert(I, sinkMBB);
12370
12371  MachineInstrBuilder MIB;
12372
12373  // Transfer the remainder of BB and its successor edges to sinkMBB.
12374  sinkMBB->splice(sinkMBB->begin(), MBB,
12375                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12376  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12377
12378  // thisMBB:
12379  // Lo
12380  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
12381  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12382    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12383  MIB.setMemRefs(MMOBegin, MMOEnd);
12384  // Hi
12385  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
12386  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
12387    if (i == X86::AddrDisp)
12388      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
12389    else
12390      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12391  }
12392  MIB.setMemRefs(MMOBegin, MMOEnd);
12393
12394  thisMBB->addSuccessor(mainMBB);
12395
12396  // mainMBB:
12397  MachineBasicBlock *origMainMBB = mainMBB;
12398  mainMBB->addLiveIn(X86::EAX);
12399  mainMBB->addLiveIn(X86::EDX);
12400
12401  // Copy EDX:EAX as they are used more than once.
12402  unsigned LoReg = MRI.createVirtualRegister(RC);
12403  unsigned HiReg = MRI.createVirtualRegister(RC);
12404  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
12405  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
12406
12407  unsigned t1L = MRI.createVirtualRegister(RC);
12408  unsigned t1H = MRI.createVirtualRegister(RC);
12409
12410  unsigned Opc = MI->getOpcode();
12411  switch (Opc) {
12412  default:
12413    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
12414  case X86::ATOMAND6432:
12415  case X86::ATOMOR6432:
12416  case X86::ATOMXOR6432:
12417  case X86::ATOMADD6432:
12418  case X86::ATOMSUB6432: {
12419    unsigned HiOpc;
12420    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12421    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg).addReg(LoReg);
12422    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg).addReg(HiReg);
12423    break;
12424  }
12425  case X86::ATOMNAND6432: {
12426    unsigned HiOpc, NOTOpc;
12427    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
12428    unsigned t2L = MRI.createVirtualRegister(RC);
12429    unsigned t2H = MRI.createVirtualRegister(RC);
12430    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
12431    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
12432    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
12433    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
12434    break;
12435  }
12436  case X86::ATOMMAX6432:
12437  case X86::ATOMMIN6432:
12438  case X86::ATOMUMAX6432:
12439  case X86::ATOMUMIN6432: {
12440    unsigned HiOpc;
12441    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12442    unsigned cL = MRI.createVirtualRegister(RC8);
12443    unsigned cH = MRI.createVirtualRegister(RC8);
12444    unsigned cL32 = MRI.createVirtualRegister(RC);
12445    unsigned cH32 = MRI.createVirtualRegister(RC);
12446    unsigned cc = MRI.createVirtualRegister(RC);
12447    // cl := cmp src_lo, lo
12448    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12449      .addReg(SrcLoReg).addReg(LoReg);
12450    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
12451    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
12452    // ch := cmp src_hi, hi
12453    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12454      .addReg(SrcHiReg).addReg(HiReg);
12455    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
12456    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
12457    // cc := if (src_hi == hi) ? cl : ch;
12458    if (Subtarget->hasCMov()) {
12459      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
12460        .addReg(cH32).addReg(cL32);
12461    } else {
12462      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
12463              .addReg(cH32).addReg(cL32)
12464              .addImm(X86::COND_E);
12465      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12466    }
12467    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
12468    if (Subtarget->hasCMov()) {
12469      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
12470        .addReg(SrcLoReg).addReg(LoReg);
12471      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
12472        .addReg(SrcHiReg).addReg(HiReg);
12473    } else {
12474      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
12475              .addReg(SrcLoReg).addReg(LoReg)
12476              .addImm(X86::COND_NE);
12477      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12478      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
12479              .addReg(SrcHiReg).addReg(HiReg)
12480              .addImm(X86::COND_NE);
12481      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12482    }
12483    break;
12484  }
12485  case X86::ATOMSWAP6432: {
12486    unsigned HiOpc;
12487    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12488    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
12489    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
12490    break;
12491  }
12492  }
12493
12494  // Copy EDX:EAX back from HiReg:LoReg
12495  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
12496  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
12497  // Copy ECX:EBX from t1H:t1L
12498  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
12499  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
12500
12501  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12502  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12503    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12504  MIB.setMemRefs(MMOBegin, MMOEnd);
12505
12506  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12507
12508  mainMBB->addSuccessor(origMainMBB);
12509  mainMBB->addSuccessor(sinkMBB);
12510
12511  // sinkMBB:
12512  sinkMBB->addLiveIn(X86::EAX);
12513  sinkMBB->addLiveIn(X86::EDX);
12514
12515  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12516          TII->get(TargetOpcode::COPY), DstLoReg)
12517    .addReg(X86::EAX);
12518  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12519          TII->get(TargetOpcode::COPY), DstHiReg)
12520    .addReg(X86::EDX);
12521
12522  MI->eraseFromParent();
12523  return sinkMBB;
12524}
12525
12526// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12527// or XMM0_V32I8 in AVX all of this code can be replaced with that
12528// in the .td file.
12529MachineBasicBlock *
12530X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
12531                            unsigned numArgs, bool memArg) const {
12532  assert(Subtarget->hasSSE42() &&
12533         "Target must have SSE4.2 or AVX features enabled");
12534
12535  DebugLoc dl = MI->getDebugLoc();
12536  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12537  unsigned Opc;
12538  if (!Subtarget->hasAVX()) {
12539    if (memArg)
12540      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
12541    else
12542      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
12543  } else {
12544    if (memArg)
12545      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
12546    else
12547      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
12548  }
12549
12550  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12551  for (unsigned i = 0; i < numArgs; ++i) {
12552    MachineOperand &Op = MI->getOperand(i+1);
12553    if (!(Op.isReg() && Op.isImplicit()))
12554      MIB.addOperand(Op);
12555  }
12556  BuildMI(*BB, MI, dl,
12557    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12558    .addReg(X86::XMM0);
12559
12560  MI->eraseFromParent();
12561  return BB;
12562}
12563
12564MachineBasicBlock *
12565X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
12566  DebugLoc dl = MI->getDebugLoc();
12567  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12568
12569  // Address into RAX/EAX, other two args into ECX, EDX.
12570  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12571  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12572  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12573  for (int i = 0; i < X86::AddrNumOperands; ++i)
12574    MIB.addOperand(MI->getOperand(i));
12575
12576  unsigned ValOps = X86::AddrNumOperands;
12577  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12578    .addReg(MI->getOperand(ValOps).getReg());
12579  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12580    .addReg(MI->getOperand(ValOps+1).getReg());
12581
12582  // The instruction doesn't actually take any operands though.
12583  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12584
12585  MI->eraseFromParent(); // The pseudo is gone now.
12586  return BB;
12587}
12588
12589MachineBasicBlock *
12590X86TargetLowering::EmitVAARG64WithCustomInserter(
12591                   MachineInstr *MI,
12592                   MachineBasicBlock *MBB) const {
12593  // Emit va_arg instruction on X86-64.
12594
12595  // Operands to this pseudo-instruction:
12596  // 0  ) Output        : destination address (reg)
12597  // 1-5) Input         : va_list address (addr, i64mem)
12598  // 6  ) ArgSize       : Size (in bytes) of vararg type
12599  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12600  // 8  ) Align         : Alignment of type
12601  // 9  ) EFLAGS (implicit-def)
12602
12603  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12604  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12605
12606  unsigned DestReg = MI->getOperand(0).getReg();
12607  MachineOperand &Base = MI->getOperand(1);
12608  MachineOperand &Scale = MI->getOperand(2);
12609  MachineOperand &Index = MI->getOperand(3);
12610  MachineOperand &Disp = MI->getOperand(4);
12611  MachineOperand &Segment = MI->getOperand(5);
12612  unsigned ArgSize = MI->getOperand(6).getImm();
12613  unsigned ArgMode = MI->getOperand(7).getImm();
12614  unsigned Align = MI->getOperand(8).getImm();
12615
12616  // Memory Reference
12617  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12618  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12619  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12620
12621  // Machine Information
12622  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12623  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12624  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12625  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12626  DebugLoc DL = MI->getDebugLoc();
12627
12628  // struct va_list {
12629  //   i32   gp_offset
12630  //   i32   fp_offset
12631  //   i64   overflow_area (address)
12632  //   i64   reg_save_area (address)
12633  // }
12634  // sizeof(va_list) = 24
12635  // alignment(va_list) = 8
12636
12637  unsigned TotalNumIntRegs = 6;
12638  unsigned TotalNumXMMRegs = 8;
12639  bool UseGPOffset = (ArgMode == 1);
12640  bool UseFPOffset = (ArgMode == 2);
12641  unsigned MaxOffset = TotalNumIntRegs * 8 +
12642                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12643
12644  /* Align ArgSize to a multiple of 8 */
12645  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12646  bool NeedsAlign = (Align > 8);
12647
12648  MachineBasicBlock *thisMBB = MBB;
12649  MachineBasicBlock *overflowMBB;
12650  MachineBasicBlock *offsetMBB;
12651  MachineBasicBlock *endMBB;
12652
12653  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12654  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12655  unsigned OffsetReg = 0;
12656
12657  if (!UseGPOffset && !UseFPOffset) {
12658    // If we only pull from the overflow region, we don't create a branch.
12659    // We don't need to alter control flow.
12660    OffsetDestReg = 0; // unused
12661    OverflowDestReg = DestReg;
12662
12663    offsetMBB = NULL;
12664    overflowMBB = thisMBB;
12665    endMBB = thisMBB;
12666  } else {
12667    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12668    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12669    // If not, pull from overflow_area. (branch to overflowMBB)
12670    //
12671    //       thisMBB
12672    //         |     .
12673    //         |        .
12674    //     offsetMBB   overflowMBB
12675    //         |        .
12676    //         |     .
12677    //        endMBB
12678
12679    // Registers for the PHI in endMBB
12680    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12681    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12682
12683    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12684    MachineFunction *MF = MBB->getParent();
12685    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12686    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12687    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12688
12689    MachineFunction::iterator MBBIter = MBB;
12690    ++MBBIter;
12691
12692    // Insert the new basic blocks
12693    MF->insert(MBBIter, offsetMBB);
12694    MF->insert(MBBIter, overflowMBB);
12695    MF->insert(MBBIter, endMBB);
12696
12697    // Transfer the remainder of MBB and its successor edges to endMBB.
12698    endMBB->splice(endMBB->begin(), thisMBB,
12699                    llvm::next(MachineBasicBlock::iterator(MI)),
12700                    thisMBB->end());
12701    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12702
12703    // Make offsetMBB and overflowMBB successors of thisMBB
12704    thisMBB->addSuccessor(offsetMBB);
12705    thisMBB->addSuccessor(overflowMBB);
12706
12707    // endMBB is a successor of both offsetMBB and overflowMBB
12708    offsetMBB->addSuccessor(endMBB);
12709    overflowMBB->addSuccessor(endMBB);
12710
12711    // Load the offset value into a register
12712    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12713    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12714      .addOperand(Base)
12715      .addOperand(Scale)
12716      .addOperand(Index)
12717      .addDisp(Disp, UseFPOffset ? 4 : 0)
12718      .addOperand(Segment)
12719      .setMemRefs(MMOBegin, MMOEnd);
12720
12721    // Check if there is enough room left to pull this argument.
12722    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12723      .addReg(OffsetReg)
12724      .addImm(MaxOffset + 8 - ArgSizeA8);
12725
12726    // Branch to "overflowMBB" if offset >= max
12727    // Fall through to "offsetMBB" otherwise
12728    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12729      .addMBB(overflowMBB);
12730  }
12731
12732  // In offsetMBB, emit code to use the reg_save_area.
12733  if (offsetMBB) {
12734    assert(OffsetReg != 0);
12735
12736    // Read the reg_save_area address.
12737    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12738    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12739      .addOperand(Base)
12740      .addOperand(Scale)
12741      .addOperand(Index)
12742      .addDisp(Disp, 16)
12743      .addOperand(Segment)
12744      .setMemRefs(MMOBegin, MMOEnd);
12745
12746    // Zero-extend the offset
12747    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12748      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12749        .addImm(0)
12750        .addReg(OffsetReg)
12751        .addImm(X86::sub_32bit);
12752
12753    // Add the offset to the reg_save_area to get the final address.
12754    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12755      .addReg(OffsetReg64)
12756      .addReg(RegSaveReg);
12757
12758    // Compute the offset for the next argument
12759    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12760    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12761      .addReg(OffsetReg)
12762      .addImm(UseFPOffset ? 16 : 8);
12763
12764    // Store it back into the va_list.
12765    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12766      .addOperand(Base)
12767      .addOperand(Scale)
12768      .addOperand(Index)
12769      .addDisp(Disp, UseFPOffset ? 4 : 0)
12770      .addOperand(Segment)
12771      .addReg(NextOffsetReg)
12772      .setMemRefs(MMOBegin, MMOEnd);
12773
12774    // Jump to endMBB
12775    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12776      .addMBB(endMBB);
12777  }
12778
12779  //
12780  // Emit code to use overflow area
12781  //
12782
12783  // Load the overflow_area address into a register.
12784  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12785  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12786    .addOperand(Base)
12787    .addOperand(Scale)
12788    .addOperand(Index)
12789    .addDisp(Disp, 8)
12790    .addOperand(Segment)
12791    .setMemRefs(MMOBegin, MMOEnd);
12792
12793  // If we need to align it, do so. Otherwise, just copy the address
12794  // to OverflowDestReg.
12795  if (NeedsAlign) {
12796    // Align the overflow address
12797    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12798    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12799
12800    // aligned_addr = (addr + (align-1)) & ~(align-1)
12801    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12802      .addReg(OverflowAddrReg)
12803      .addImm(Align-1);
12804
12805    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12806      .addReg(TmpReg)
12807      .addImm(~(uint64_t)(Align-1));
12808  } else {
12809    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12810      .addReg(OverflowAddrReg);
12811  }
12812
12813  // Compute the next overflow address after this argument.
12814  // (the overflow address should be kept 8-byte aligned)
12815  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12816  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12817    .addReg(OverflowDestReg)
12818    .addImm(ArgSizeA8);
12819
12820  // Store the new overflow address.
12821  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12822    .addOperand(Base)
12823    .addOperand(Scale)
12824    .addOperand(Index)
12825    .addDisp(Disp, 8)
12826    .addOperand(Segment)
12827    .addReg(NextAddrReg)
12828    .setMemRefs(MMOBegin, MMOEnd);
12829
12830  // If we branched, emit the PHI to the front of endMBB.
12831  if (offsetMBB) {
12832    BuildMI(*endMBB, endMBB->begin(), DL,
12833            TII->get(X86::PHI), DestReg)
12834      .addReg(OffsetDestReg).addMBB(offsetMBB)
12835      .addReg(OverflowDestReg).addMBB(overflowMBB);
12836  }
12837
12838  // Erase the pseudo instruction
12839  MI->eraseFromParent();
12840
12841  return endMBB;
12842}
12843
12844MachineBasicBlock *
12845X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12846                                                 MachineInstr *MI,
12847                                                 MachineBasicBlock *MBB) const {
12848  // Emit code to save XMM registers to the stack. The ABI says that the
12849  // number of registers to save is given in %al, so it's theoretically
12850  // possible to do an indirect jump trick to avoid saving all of them,
12851  // however this code takes a simpler approach and just executes all
12852  // of the stores if %al is non-zero. It's less code, and it's probably
12853  // easier on the hardware branch predictor, and stores aren't all that
12854  // expensive anyway.
12855
12856  // Create the new basic blocks. One block contains all the XMM stores,
12857  // and one block is the final destination regardless of whether any
12858  // stores were performed.
12859  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12860  MachineFunction *F = MBB->getParent();
12861  MachineFunction::iterator MBBIter = MBB;
12862  ++MBBIter;
12863  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12864  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12865  F->insert(MBBIter, XMMSaveMBB);
12866  F->insert(MBBIter, EndMBB);
12867
12868  // Transfer the remainder of MBB and its successor edges to EndMBB.
12869  EndMBB->splice(EndMBB->begin(), MBB,
12870                 llvm::next(MachineBasicBlock::iterator(MI)),
12871                 MBB->end());
12872  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12873
12874  // The original block will now fall through to the XMM save block.
12875  MBB->addSuccessor(XMMSaveMBB);
12876  // The XMMSaveMBB will fall through to the end block.
12877  XMMSaveMBB->addSuccessor(EndMBB);
12878
12879  // Now add the instructions.
12880  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12881  DebugLoc DL = MI->getDebugLoc();
12882
12883  unsigned CountReg = MI->getOperand(0).getReg();
12884  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12885  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12886
12887  if (!Subtarget->isTargetWin64()) {
12888    // If %al is 0, branch around the XMM save block.
12889    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12890    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12891    MBB->addSuccessor(EndMBB);
12892  }
12893
12894  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12895  // In the XMM save block, save all the XMM argument registers.
12896  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12897    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12898    MachineMemOperand *MMO =
12899      F->getMachineMemOperand(
12900          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12901        MachineMemOperand::MOStore,
12902        /*Size=*/16, /*Align=*/16);
12903    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12904      .addFrameIndex(RegSaveFrameIndex)
12905      .addImm(/*Scale=*/1)
12906      .addReg(/*IndexReg=*/0)
12907      .addImm(/*Disp=*/Offset)
12908      .addReg(/*Segment=*/0)
12909      .addReg(MI->getOperand(i).getReg())
12910      .addMemOperand(MMO);
12911  }
12912
12913  MI->eraseFromParent();   // The pseudo instruction is gone now.
12914
12915  return EndMBB;
12916}
12917
12918// The EFLAGS operand of SelectItr might be missing a kill marker
12919// because there were multiple uses of EFLAGS, and ISel didn't know
12920// which to mark. Figure out whether SelectItr should have had a
12921// kill marker, and set it if it should. Returns the correct kill
12922// marker value.
12923static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12924                                     MachineBasicBlock* BB,
12925                                     const TargetRegisterInfo* TRI) {
12926  // Scan forward through BB for a use/def of EFLAGS.
12927  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12928  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12929    const MachineInstr& mi = *miI;
12930    if (mi.readsRegister(X86::EFLAGS))
12931      return false;
12932    if (mi.definesRegister(X86::EFLAGS))
12933      break; // Should have kill-flag - update below.
12934  }
12935
12936  // If we hit the end of the block, check whether EFLAGS is live into a
12937  // successor.
12938  if (miI == BB->end()) {
12939    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12940                                          sEnd = BB->succ_end();
12941         sItr != sEnd; ++sItr) {
12942      MachineBasicBlock* succ = *sItr;
12943      if (succ->isLiveIn(X86::EFLAGS))
12944        return false;
12945    }
12946  }
12947
12948  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12949  // out. SelectMI should have a kill flag on EFLAGS.
12950  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12951  return true;
12952}
12953
12954MachineBasicBlock *
12955X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12956                                     MachineBasicBlock *BB) const {
12957  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12958  DebugLoc DL = MI->getDebugLoc();
12959
12960  // To "insert" a SELECT_CC instruction, we actually have to insert the
12961  // diamond control-flow pattern.  The incoming instruction knows the
12962  // destination vreg to set, the condition code register to branch on, the
12963  // true/false values to select between, and a branch opcode to use.
12964  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12965  MachineFunction::iterator It = BB;
12966  ++It;
12967
12968  //  thisMBB:
12969  //  ...
12970  //   TrueVal = ...
12971  //   cmpTY ccX, r1, r2
12972  //   bCC copy1MBB
12973  //   fallthrough --> copy0MBB
12974  MachineBasicBlock *thisMBB = BB;
12975  MachineFunction *F = BB->getParent();
12976  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12977  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12978  F->insert(It, copy0MBB);
12979  F->insert(It, sinkMBB);
12980
12981  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12982  // live into the sink and copy blocks.
12983  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12984  if (!MI->killsRegister(X86::EFLAGS) &&
12985      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12986    copy0MBB->addLiveIn(X86::EFLAGS);
12987    sinkMBB->addLiveIn(X86::EFLAGS);
12988  }
12989
12990  // Transfer the remainder of BB and its successor edges to sinkMBB.
12991  sinkMBB->splice(sinkMBB->begin(), BB,
12992                  llvm::next(MachineBasicBlock::iterator(MI)),
12993                  BB->end());
12994  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12995
12996  // Add the true and fallthrough blocks as its successors.
12997  BB->addSuccessor(copy0MBB);
12998  BB->addSuccessor(sinkMBB);
12999
13000  // Create the conditional branch instruction.
13001  unsigned Opc =
13002    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13003  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13004
13005  //  copy0MBB:
13006  //   %FalseValue = ...
13007  //   # fallthrough to sinkMBB
13008  copy0MBB->addSuccessor(sinkMBB);
13009
13010  //  sinkMBB:
13011  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13012  //  ...
13013  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13014          TII->get(X86::PHI), MI->getOperand(0).getReg())
13015    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13016    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13017
13018  MI->eraseFromParent();   // The pseudo instruction is gone now.
13019  return sinkMBB;
13020}
13021
13022MachineBasicBlock *
13023X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13024                                        bool Is64Bit) const {
13025  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13026  DebugLoc DL = MI->getDebugLoc();
13027  MachineFunction *MF = BB->getParent();
13028  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13029
13030  assert(getTargetMachine().Options.EnableSegmentedStacks);
13031
13032  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13033  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13034
13035  // BB:
13036  //  ... [Till the alloca]
13037  // If stacklet is not large enough, jump to mallocMBB
13038  //
13039  // bumpMBB:
13040  //  Allocate by subtracting from RSP
13041  //  Jump to continueMBB
13042  //
13043  // mallocMBB:
13044  //  Allocate by call to runtime
13045  //
13046  // continueMBB:
13047  //  ...
13048  //  [rest of original BB]
13049  //
13050
13051  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13052  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13053  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13054
13055  MachineRegisterInfo &MRI = MF->getRegInfo();
13056  const TargetRegisterClass *AddrRegClass =
13057    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13058
13059  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13060    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13061    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13062    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13063    sizeVReg = MI->getOperand(1).getReg(),
13064    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13065
13066  MachineFunction::iterator MBBIter = BB;
13067  ++MBBIter;
13068
13069  MF->insert(MBBIter, bumpMBB);
13070  MF->insert(MBBIter, mallocMBB);
13071  MF->insert(MBBIter, continueMBB);
13072
13073  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13074                      (MachineBasicBlock::iterator(MI)), BB->end());
13075  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13076
13077  // Add code to the main basic block to check if the stack limit has been hit,
13078  // and if so, jump to mallocMBB otherwise to bumpMBB.
13079  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13080  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13081    .addReg(tmpSPVReg).addReg(sizeVReg);
13082  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13083    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13084    .addReg(SPLimitVReg);
13085  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13086
13087  // bumpMBB simply decreases the stack pointer, since we know the current
13088  // stacklet has enough space.
13089  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13090    .addReg(SPLimitVReg);
13091  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13092    .addReg(SPLimitVReg);
13093  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13094
13095  // Calls into a routine in libgcc to allocate more space from the heap.
13096  const uint32_t *RegMask =
13097    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13098  if (Is64Bit) {
13099    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13100      .addReg(sizeVReg);
13101    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13102      .addExternalSymbol("__morestack_allocate_stack_space")
13103      .addRegMask(RegMask)
13104      .addReg(X86::RDI, RegState::Implicit)
13105      .addReg(X86::RAX, RegState::ImplicitDefine);
13106  } else {
13107    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13108      .addImm(12);
13109    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13110    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13111      .addExternalSymbol("__morestack_allocate_stack_space")
13112      .addRegMask(RegMask)
13113      .addReg(X86::EAX, RegState::ImplicitDefine);
13114  }
13115
13116  if (!Is64Bit)
13117    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13118      .addImm(16);
13119
13120  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13121    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13122  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13123
13124  // Set up the CFG correctly.
13125  BB->addSuccessor(bumpMBB);
13126  BB->addSuccessor(mallocMBB);
13127  mallocMBB->addSuccessor(continueMBB);
13128  bumpMBB->addSuccessor(continueMBB);
13129
13130  // Take care of the PHI nodes.
13131  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13132          MI->getOperand(0).getReg())
13133    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13134    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13135
13136  // Delete the original pseudo instruction.
13137  MI->eraseFromParent();
13138
13139  // And we're done.
13140  return continueMBB;
13141}
13142
13143MachineBasicBlock *
13144X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13145                                          MachineBasicBlock *BB) const {
13146  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13147  DebugLoc DL = MI->getDebugLoc();
13148
13149  assert(!Subtarget->isTargetEnvMacho());
13150
13151  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13152  // non-trivial part is impdef of ESP.
13153
13154  if (Subtarget->isTargetWin64()) {
13155    if (Subtarget->isTargetCygMing()) {
13156      // ___chkstk(Mingw64):
13157      // Clobbers R10, R11, RAX and EFLAGS.
13158      // Updates RSP.
13159      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13160        .addExternalSymbol("___chkstk")
13161        .addReg(X86::RAX, RegState::Implicit)
13162        .addReg(X86::RSP, RegState::Implicit)
13163        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13164        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13165        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13166    } else {
13167      // __chkstk(MSVCRT): does not update stack pointer.
13168      // Clobbers R10, R11 and EFLAGS.
13169      // FIXME: RAX(allocated size) might be reused and not killed.
13170      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13171        .addExternalSymbol("__chkstk")
13172        .addReg(X86::RAX, RegState::Implicit)
13173        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13174      // RAX has the offset to subtracted from RSP.
13175      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13176        .addReg(X86::RSP)
13177        .addReg(X86::RAX);
13178    }
13179  } else {
13180    const char *StackProbeSymbol =
13181      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13182
13183    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13184      .addExternalSymbol(StackProbeSymbol)
13185      .addReg(X86::EAX, RegState::Implicit)
13186      .addReg(X86::ESP, RegState::Implicit)
13187      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13188      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13189      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13190  }
13191
13192  MI->eraseFromParent();   // The pseudo instruction is gone now.
13193  return BB;
13194}
13195
13196MachineBasicBlock *
13197X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13198                                      MachineBasicBlock *BB) const {
13199  // This is pretty easy.  We're taking the value that we received from
13200  // our load from the relocation, sticking it in either RDI (x86-64)
13201  // or EAX and doing an indirect call.  The return value will then
13202  // be in the normal return register.
13203  const X86InstrInfo *TII
13204    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13205  DebugLoc DL = MI->getDebugLoc();
13206  MachineFunction *F = BB->getParent();
13207
13208  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13209  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13210
13211  // Get a register mask for the lowered call.
13212  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13213  // proper register mask.
13214  const uint32_t *RegMask =
13215    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13216  if (Subtarget->is64Bit()) {
13217    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13218                                      TII->get(X86::MOV64rm), X86::RDI)
13219    .addReg(X86::RIP)
13220    .addImm(0).addReg(0)
13221    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13222                      MI->getOperand(3).getTargetFlags())
13223    .addReg(0);
13224    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
13225    addDirectMem(MIB, X86::RDI);
13226    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
13227  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
13228    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13229                                      TII->get(X86::MOV32rm), X86::EAX)
13230    .addReg(0)
13231    .addImm(0).addReg(0)
13232    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13233                      MI->getOperand(3).getTargetFlags())
13234    .addReg(0);
13235    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13236    addDirectMem(MIB, X86::EAX);
13237    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13238  } else {
13239    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13240                                      TII->get(X86::MOV32rm), X86::EAX)
13241    .addReg(TII->getGlobalBaseReg(F))
13242    .addImm(0).addReg(0)
13243    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13244                      MI->getOperand(3).getTargetFlags())
13245    .addReg(0);
13246    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13247    addDirectMem(MIB, X86::EAX);
13248    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13249  }
13250
13251  MI->eraseFromParent(); // The pseudo instruction is gone now.
13252  return BB;
13253}
13254
13255MachineBasicBlock *
13256X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
13257                                               MachineBasicBlock *BB) const {
13258  switch (MI->getOpcode()) {
13259  default: llvm_unreachable("Unexpected instr type to insert");
13260  case X86::TAILJMPd64:
13261  case X86::TAILJMPr64:
13262  case X86::TAILJMPm64:
13263    llvm_unreachable("TAILJMP64 would not be touched here.");
13264  case X86::TCRETURNdi64:
13265  case X86::TCRETURNri64:
13266  case X86::TCRETURNmi64:
13267    return BB;
13268  case X86::WIN_ALLOCA:
13269    return EmitLoweredWinAlloca(MI, BB);
13270  case X86::SEG_ALLOCA_32:
13271    return EmitLoweredSegAlloca(MI, BB, false);
13272  case X86::SEG_ALLOCA_64:
13273    return EmitLoweredSegAlloca(MI, BB, true);
13274  case X86::TLSCall_32:
13275  case X86::TLSCall_64:
13276    return EmitLoweredTLSCall(MI, BB);
13277  case X86::CMOV_GR8:
13278  case X86::CMOV_FR32:
13279  case X86::CMOV_FR64:
13280  case X86::CMOV_V4F32:
13281  case X86::CMOV_V2F64:
13282  case X86::CMOV_V2I64:
13283  case X86::CMOV_V8F32:
13284  case X86::CMOV_V4F64:
13285  case X86::CMOV_V4I64:
13286  case X86::CMOV_GR16:
13287  case X86::CMOV_GR32:
13288  case X86::CMOV_RFP32:
13289  case X86::CMOV_RFP64:
13290  case X86::CMOV_RFP80:
13291    return EmitLoweredSelect(MI, BB);
13292
13293  case X86::FP32_TO_INT16_IN_MEM:
13294  case X86::FP32_TO_INT32_IN_MEM:
13295  case X86::FP32_TO_INT64_IN_MEM:
13296  case X86::FP64_TO_INT16_IN_MEM:
13297  case X86::FP64_TO_INT32_IN_MEM:
13298  case X86::FP64_TO_INT64_IN_MEM:
13299  case X86::FP80_TO_INT16_IN_MEM:
13300  case X86::FP80_TO_INT32_IN_MEM:
13301  case X86::FP80_TO_INT64_IN_MEM: {
13302    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13303    DebugLoc DL = MI->getDebugLoc();
13304
13305    // Change the floating point control register to use "round towards zero"
13306    // mode when truncating to an integer value.
13307    MachineFunction *F = BB->getParent();
13308    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
13309    addFrameReference(BuildMI(*BB, MI, DL,
13310                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
13311
13312    // Load the old value of the high byte of the control word...
13313    unsigned OldCW =
13314      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
13315    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
13316                      CWFrameIdx);
13317
13318    // Set the high part to be round to zero...
13319    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
13320      .addImm(0xC7F);
13321
13322    // Reload the modified control word now...
13323    addFrameReference(BuildMI(*BB, MI, DL,
13324                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13325
13326    // Restore the memory image of control word to original value
13327    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
13328      .addReg(OldCW);
13329
13330    // Get the X86 opcode to use.
13331    unsigned Opc;
13332    switch (MI->getOpcode()) {
13333    default: llvm_unreachable("illegal opcode!");
13334    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
13335    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
13336    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
13337    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
13338    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
13339    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
13340    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
13341    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
13342    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
13343    }
13344
13345    X86AddressMode AM;
13346    MachineOperand &Op = MI->getOperand(0);
13347    if (Op.isReg()) {
13348      AM.BaseType = X86AddressMode::RegBase;
13349      AM.Base.Reg = Op.getReg();
13350    } else {
13351      AM.BaseType = X86AddressMode::FrameIndexBase;
13352      AM.Base.FrameIndex = Op.getIndex();
13353    }
13354    Op = MI->getOperand(1);
13355    if (Op.isImm())
13356      AM.Scale = Op.getImm();
13357    Op = MI->getOperand(2);
13358    if (Op.isImm())
13359      AM.IndexReg = Op.getImm();
13360    Op = MI->getOperand(3);
13361    if (Op.isGlobal()) {
13362      AM.GV = Op.getGlobal();
13363    } else {
13364      AM.Disp = Op.getImm();
13365    }
13366    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
13367                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
13368
13369    // Reload the original control word now.
13370    addFrameReference(BuildMI(*BB, MI, DL,
13371                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13372
13373    MI->eraseFromParent();   // The pseudo instruction is gone now.
13374    return BB;
13375  }
13376    // String/text processing lowering.
13377  case X86::PCMPISTRM128REG:
13378  case X86::VPCMPISTRM128REG:
13379  case X86::PCMPISTRM128MEM:
13380  case X86::VPCMPISTRM128MEM:
13381  case X86::PCMPESTRM128REG:
13382  case X86::VPCMPESTRM128REG:
13383  case X86::PCMPESTRM128MEM:
13384  case X86::VPCMPESTRM128MEM: {
13385    unsigned NumArgs;
13386    bool MemArg;
13387    switch (MI->getOpcode()) {
13388    default: llvm_unreachable("illegal opcode!");
13389    case X86::PCMPISTRM128REG:
13390    case X86::VPCMPISTRM128REG:
13391      NumArgs = 3; MemArg = false; break;
13392    case X86::PCMPISTRM128MEM:
13393    case X86::VPCMPISTRM128MEM:
13394      NumArgs = 3; MemArg = true; break;
13395    case X86::PCMPESTRM128REG:
13396    case X86::VPCMPESTRM128REG:
13397      NumArgs = 5; MemArg = false; break;
13398    case X86::PCMPESTRM128MEM:
13399    case X86::VPCMPESTRM128MEM:
13400      NumArgs = 5; MemArg = true; break;
13401    }
13402    return EmitPCMP(MI, BB, NumArgs, MemArg);
13403  }
13404
13405    // Thread synchronization.
13406  case X86::MONITOR:
13407    return EmitMonitor(MI, BB);
13408
13409    // Atomic Lowering.
13410  case X86::ATOMAND8:
13411  case X86::ATOMAND16:
13412  case X86::ATOMAND32:
13413  case X86::ATOMAND64:
13414    // Fall through
13415  case X86::ATOMOR8:
13416  case X86::ATOMOR16:
13417  case X86::ATOMOR32:
13418  case X86::ATOMOR64:
13419    // Fall through
13420  case X86::ATOMXOR16:
13421  case X86::ATOMXOR8:
13422  case X86::ATOMXOR32:
13423  case X86::ATOMXOR64:
13424    // Fall through
13425  case X86::ATOMNAND8:
13426  case X86::ATOMNAND16:
13427  case X86::ATOMNAND32:
13428  case X86::ATOMNAND64:
13429    // Fall through
13430  case X86::ATOMMAX8:
13431  case X86::ATOMMAX16:
13432  case X86::ATOMMAX32:
13433  case X86::ATOMMAX64:
13434    // Fall through
13435  case X86::ATOMMIN8:
13436  case X86::ATOMMIN16:
13437  case X86::ATOMMIN32:
13438  case X86::ATOMMIN64:
13439    // Fall through
13440  case X86::ATOMUMAX8:
13441  case X86::ATOMUMAX16:
13442  case X86::ATOMUMAX32:
13443  case X86::ATOMUMAX64:
13444    // Fall through
13445  case X86::ATOMUMIN8:
13446  case X86::ATOMUMIN16:
13447  case X86::ATOMUMIN32:
13448  case X86::ATOMUMIN64:
13449    return EmitAtomicLoadArith(MI, BB);
13450
13451  // This group does 64-bit operations on a 32-bit host.
13452  case X86::ATOMAND6432:
13453  case X86::ATOMOR6432:
13454  case X86::ATOMXOR6432:
13455  case X86::ATOMNAND6432:
13456  case X86::ATOMADD6432:
13457  case X86::ATOMSUB6432:
13458  case X86::ATOMMAX6432:
13459  case X86::ATOMMIN6432:
13460  case X86::ATOMUMAX6432:
13461  case X86::ATOMUMIN6432:
13462  case X86::ATOMSWAP6432:
13463    return EmitAtomicLoadArith6432(MI, BB);
13464
13465  case X86::VASTART_SAVE_XMM_REGS:
13466    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
13467
13468  case X86::VAARG_64:
13469    return EmitVAARG64WithCustomInserter(MI, BB);
13470  }
13471}
13472
13473//===----------------------------------------------------------------------===//
13474//                           X86 Optimization Hooks
13475//===----------------------------------------------------------------------===//
13476
13477void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
13478                                                       APInt &KnownZero,
13479                                                       APInt &KnownOne,
13480                                                       const SelectionDAG &DAG,
13481                                                       unsigned Depth) const {
13482  unsigned BitWidth = KnownZero.getBitWidth();
13483  unsigned Opc = Op.getOpcode();
13484  assert((Opc >= ISD::BUILTIN_OP_END ||
13485          Opc == ISD::INTRINSIC_WO_CHAIN ||
13486          Opc == ISD::INTRINSIC_W_CHAIN ||
13487          Opc == ISD::INTRINSIC_VOID) &&
13488         "Should use MaskedValueIsZero if you don't know whether Op"
13489         " is a target node!");
13490
13491  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
13492  switch (Opc) {
13493  default: break;
13494  case X86ISD::ADD:
13495  case X86ISD::SUB:
13496  case X86ISD::ADC:
13497  case X86ISD::SBB:
13498  case X86ISD::SMUL:
13499  case X86ISD::UMUL:
13500  case X86ISD::INC:
13501  case X86ISD::DEC:
13502  case X86ISD::OR:
13503  case X86ISD::XOR:
13504  case X86ISD::AND:
13505    // These nodes' second result is a boolean.
13506    if (Op.getResNo() == 0)
13507      break;
13508    // Fallthrough
13509  case X86ISD::SETCC:
13510    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13511    break;
13512  case ISD::INTRINSIC_WO_CHAIN: {
13513    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13514    unsigned NumLoBits = 0;
13515    switch (IntId) {
13516    default: break;
13517    case Intrinsic::x86_sse_movmsk_ps:
13518    case Intrinsic::x86_avx_movmsk_ps_256:
13519    case Intrinsic::x86_sse2_movmsk_pd:
13520    case Intrinsic::x86_avx_movmsk_pd_256:
13521    case Intrinsic::x86_mmx_pmovmskb:
13522    case Intrinsic::x86_sse2_pmovmskb_128:
13523    case Intrinsic::x86_avx2_pmovmskb: {
13524      // High bits of movmskp{s|d}, pmovmskb are known zero.
13525      switch (IntId) {
13526        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13527        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
13528        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
13529        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
13530        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
13531        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
13532        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
13533        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
13534      }
13535      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
13536      break;
13537    }
13538    }
13539    break;
13540  }
13541  }
13542}
13543
13544unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
13545                                                         unsigned Depth) const {
13546  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
13547  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
13548    return Op.getValueType().getScalarType().getSizeInBits();
13549
13550  // Fallback case.
13551  return 1;
13552}
13553
13554/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
13555/// node is a GlobalAddress + offset.
13556bool X86TargetLowering::isGAPlusOffset(SDNode *N,
13557                                       const GlobalValue* &GA,
13558                                       int64_t &Offset) const {
13559  if (N->getOpcode() == X86ISD::Wrapper) {
13560    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
13561      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
13562      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
13563      return true;
13564    }
13565  }
13566  return TargetLowering::isGAPlusOffset(N, GA, Offset);
13567}
13568
13569/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
13570/// same as extracting the high 128-bit part of 256-bit vector and then
13571/// inserting the result into the low part of a new 256-bit vector
13572static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
13573  EVT VT = SVOp->getValueType(0);
13574  unsigned NumElems = VT.getVectorNumElements();
13575
13576  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13577  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13578    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13579        SVOp->getMaskElt(j) >= 0)
13580      return false;
13581
13582  return true;
13583}
13584
13585/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13586/// same as extracting the low 128-bit part of 256-bit vector and then
13587/// inserting the result into the high part of a new 256-bit vector
13588static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13589  EVT VT = SVOp->getValueType(0);
13590  unsigned NumElems = VT.getVectorNumElements();
13591
13592  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13593  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13594    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13595        SVOp->getMaskElt(j) >= 0)
13596      return false;
13597
13598  return true;
13599}
13600
13601/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13602static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13603                                        TargetLowering::DAGCombinerInfo &DCI,
13604                                        const X86Subtarget* Subtarget) {
13605  DebugLoc dl = N->getDebugLoc();
13606  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13607  SDValue V1 = SVOp->getOperand(0);
13608  SDValue V2 = SVOp->getOperand(1);
13609  EVT VT = SVOp->getValueType(0);
13610  unsigned NumElems = VT.getVectorNumElements();
13611
13612  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13613      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13614    //
13615    //                   0,0,0,...
13616    //                      |
13617    //    V      UNDEF    BUILD_VECTOR    UNDEF
13618    //     \      /           \           /
13619    //  CONCAT_VECTOR         CONCAT_VECTOR
13620    //         \                  /
13621    //          \                /
13622    //          RESULT: V + zero extended
13623    //
13624    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13625        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13626        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13627      return SDValue();
13628
13629    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13630      return SDValue();
13631
13632    // To match the shuffle mask, the first half of the mask should
13633    // be exactly the first vector, and all the rest a splat with the
13634    // first element of the second one.
13635    for (unsigned i = 0; i != NumElems/2; ++i)
13636      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13637          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13638        return SDValue();
13639
13640    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13641    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13642      if (Ld->hasNUsesOfValue(1, 0)) {
13643        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13644        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13645        SDValue ResNode =
13646          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13647                                  Ld->getMemoryVT(),
13648                                  Ld->getPointerInfo(),
13649                                  Ld->getAlignment(),
13650                                  false/*isVolatile*/, true/*ReadMem*/,
13651                                  false/*WriteMem*/);
13652        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13653      }
13654    }
13655
13656    // Emit a zeroed vector and insert the desired subvector on its
13657    // first half.
13658    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13659    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13660    return DCI.CombineTo(N, InsV);
13661  }
13662
13663  //===--------------------------------------------------------------------===//
13664  // Combine some shuffles into subvector extracts and inserts:
13665  //
13666
13667  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13668  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13669    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13670    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13671    return DCI.CombineTo(N, InsV);
13672  }
13673
13674  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13675  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13676    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13677    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13678    return DCI.CombineTo(N, InsV);
13679  }
13680
13681  return SDValue();
13682}
13683
13684/// PerformShuffleCombine - Performs several different shuffle combines.
13685static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13686                                     TargetLowering::DAGCombinerInfo &DCI,
13687                                     const X86Subtarget *Subtarget) {
13688  DebugLoc dl = N->getDebugLoc();
13689  EVT VT = N->getValueType(0);
13690
13691  // Don't create instructions with illegal types after legalize types has run.
13692  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13693  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13694    return SDValue();
13695
13696  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13697  if (Subtarget->hasAVX() && VT.is256BitVector() &&
13698      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13699    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13700
13701  // Only handle 128 wide vector from here on.
13702  if (!VT.is128BitVector())
13703    return SDValue();
13704
13705  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13706  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13707  // consecutive, non-overlapping, and in the right order.
13708  SmallVector<SDValue, 16> Elts;
13709  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13710    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13711
13712  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13713}
13714
13715
13716/// PerformTruncateCombine - Converts truncate operation to
13717/// a sequence of vector shuffle operations.
13718/// It is possible when we truncate 256-bit vector to 128-bit vector
13719static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13720                                      TargetLowering::DAGCombinerInfo &DCI,
13721                                      const X86Subtarget *Subtarget)  {
13722  if (!DCI.isBeforeLegalizeOps())
13723    return SDValue();
13724
13725  if (!Subtarget->hasAVX())
13726    return SDValue();
13727
13728  EVT VT = N->getValueType(0);
13729  SDValue Op = N->getOperand(0);
13730  EVT OpVT = Op.getValueType();
13731  DebugLoc dl = N->getDebugLoc();
13732
13733  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13734
13735    if (Subtarget->hasAVX2()) {
13736      // AVX2: v4i64 -> v4i32
13737
13738      // VPERMD
13739      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13740
13741      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13742      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13743                                ShufMask);
13744
13745      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13746                         DAG.getIntPtrConstant(0));
13747    }
13748
13749    // AVX: v4i64 -> v4i32
13750    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13751                               DAG.getIntPtrConstant(0));
13752
13753    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13754                               DAG.getIntPtrConstant(2));
13755
13756    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13757    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13758
13759    // PSHUFD
13760    static const int ShufMask1[] = {0, 2, 0, 0};
13761
13762    SDValue Undef = DAG.getUNDEF(VT);
13763    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
13764    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
13765
13766    // MOVLHPS
13767    static const int ShufMask2[] = {0, 1, 4, 5};
13768
13769    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13770  }
13771
13772  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13773
13774    if (Subtarget->hasAVX2()) {
13775      // AVX2: v8i32 -> v8i16
13776
13777      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13778
13779      // PSHUFB
13780      SmallVector<SDValue,32> pshufbMask;
13781      for (unsigned i = 0; i < 2; ++i) {
13782        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13783        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13784        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13785        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13786        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13787        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13788        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13789        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13790        for (unsigned j = 0; j < 8; ++j)
13791          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13792      }
13793      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13794                               &pshufbMask[0], 32);
13795      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13796
13797      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13798
13799      static const int ShufMask[] = {0,  2,  -1,  -1};
13800      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13801                                &ShufMask[0]);
13802
13803      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13804                       DAG.getIntPtrConstant(0));
13805
13806      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13807    }
13808
13809    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13810                               DAG.getIntPtrConstant(0));
13811
13812    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13813                               DAG.getIntPtrConstant(4));
13814
13815    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13816    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13817
13818    // PSHUFB
13819    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13820                                   -1, -1, -1, -1, -1, -1, -1, -1};
13821
13822    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
13823    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
13824    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
13825
13826    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13827    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13828
13829    // MOVLHPS
13830    static const int ShufMask2[] = {0, 1, 4, 5};
13831
13832    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13833    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13834  }
13835
13836  return SDValue();
13837}
13838
13839/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13840/// specific shuffle of a load can be folded into a single element load.
13841/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13842/// shuffles have been customed lowered so we need to handle those here.
13843static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13844                                         TargetLowering::DAGCombinerInfo &DCI) {
13845  if (DCI.isBeforeLegalizeOps())
13846    return SDValue();
13847
13848  SDValue InVec = N->getOperand(0);
13849  SDValue EltNo = N->getOperand(1);
13850
13851  if (!isa<ConstantSDNode>(EltNo))
13852    return SDValue();
13853
13854  EVT VT = InVec.getValueType();
13855
13856  bool HasShuffleIntoBitcast = false;
13857  if (InVec.getOpcode() == ISD::BITCAST) {
13858    // Don't duplicate a load with other uses.
13859    if (!InVec.hasOneUse())
13860      return SDValue();
13861    EVT BCVT = InVec.getOperand(0).getValueType();
13862    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13863      return SDValue();
13864    InVec = InVec.getOperand(0);
13865    HasShuffleIntoBitcast = true;
13866  }
13867
13868  if (!isTargetShuffle(InVec.getOpcode()))
13869    return SDValue();
13870
13871  // Don't duplicate a load with other uses.
13872  if (!InVec.hasOneUse())
13873    return SDValue();
13874
13875  SmallVector<int, 16> ShuffleMask;
13876  bool UnaryShuffle;
13877  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13878                            UnaryShuffle))
13879    return SDValue();
13880
13881  // Select the input vector, guarding against out of range extract vector.
13882  unsigned NumElems = VT.getVectorNumElements();
13883  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13884  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13885  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13886                                         : InVec.getOperand(1);
13887
13888  // If inputs to shuffle are the same for both ops, then allow 2 uses
13889  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13890
13891  if (LdNode.getOpcode() == ISD::BITCAST) {
13892    // Don't duplicate a load with other uses.
13893    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13894      return SDValue();
13895
13896    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13897    LdNode = LdNode.getOperand(0);
13898  }
13899
13900  if (!ISD::isNormalLoad(LdNode.getNode()))
13901    return SDValue();
13902
13903  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13904
13905  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13906    return SDValue();
13907
13908  if (HasShuffleIntoBitcast) {
13909    // If there's a bitcast before the shuffle, check if the load type and
13910    // alignment is valid.
13911    unsigned Align = LN0->getAlignment();
13912    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13913    unsigned NewAlign = TLI.getTargetData()->
13914      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13915
13916    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13917      return SDValue();
13918  }
13919
13920  // All checks match so transform back to vector_shuffle so that DAG combiner
13921  // can finish the job
13922  DebugLoc dl = N->getDebugLoc();
13923
13924  // Create shuffle node taking into account the case that its a unary shuffle
13925  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13926  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13927                                 InVec.getOperand(0), Shuffle,
13928                                 &ShuffleMask[0]);
13929  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13930  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13931                     EltNo);
13932}
13933
13934/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13935/// generation and convert it from being a bunch of shuffles and extracts
13936/// to a simple store and scalar loads to extract the elements.
13937static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13938                                         TargetLowering::DAGCombinerInfo &DCI) {
13939  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13940  if (NewOp.getNode())
13941    return NewOp;
13942
13943  SDValue InputVector = N->getOperand(0);
13944
13945  // Only operate on vectors of 4 elements, where the alternative shuffling
13946  // gets to be more expensive.
13947  if (InputVector.getValueType() != MVT::v4i32)
13948    return SDValue();
13949
13950  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13951  // single use which is a sign-extend or zero-extend, and all elements are
13952  // used.
13953  SmallVector<SDNode *, 4> Uses;
13954  unsigned ExtractedElements = 0;
13955  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13956       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13957    if (UI.getUse().getResNo() != InputVector.getResNo())
13958      return SDValue();
13959
13960    SDNode *Extract = *UI;
13961    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13962      return SDValue();
13963
13964    if (Extract->getValueType(0) != MVT::i32)
13965      return SDValue();
13966    if (!Extract->hasOneUse())
13967      return SDValue();
13968    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13969        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13970      return SDValue();
13971    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13972      return SDValue();
13973
13974    // Record which element was extracted.
13975    ExtractedElements |=
13976      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13977
13978    Uses.push_back(Extract);
13979  }
13980
13981  // If not all the elements were used, this may not be worthwhile.
13982  if (ExtractedElements != 15)
13983    return SDValue();
13984
13985  // Ok, we've now decided to do the transformation.
13986  DebugLoc dl = InputVector.getDebugLoc();
13987
13988  // Store the value to a temporary stack slot.
13989  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13990  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13991                            MachinePointerInfo(), false, false, 0);
13992
13993  // Replace each use (extract) with a load of the appropriate element.
13994  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13995       UE = Uses.end(); UI != UE; ++UI) {
13996    SDNode *Extract = *UI;
13997
13998    // cOMpute the element's address.
13999    SDValue Idx = Extract->getOperand(1);
14000    unsigned EltSize =
14001        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
14002    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
14003    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14004    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
14005
14006    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
14007                                     StackPtr, OffsetVal);
14008
14009    // Load the scalar.
14010    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
14011                                     ScalarAddr, MachinePointerInfo(),
14012                                     false, false, false, 0);
14013
14014    // Replace the exact with the load.
14015    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
14016  }
14017
14018  // The replacement was made in place; don't return anything.
14019  return SDValue();
14020}
14021
14022/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
14023/// nodes.
14024static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
14025                                    TargetLowering::DAGCombinerInfo &DCI,
14026                                    const X86Subtarget *Subtarget) {
14027  DebugLoc DL = N->getDebugLoc();
14028  SDValue Cond = N->getOperand(0);
14029  // Get the LHS/RHS of the select.
14030  SDValue LHS = N->getOperand(1);
14031  SDValue RHS = N->getOperand(2);
14032  EVT VT = LHS.getValueType();
14033
14034  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
14035  // instructions match the semantics of the common C idiom x<y?x:y but not
14036  // x<=y?x:y, because of how they handle negative zero (which can be
14037  // ignored in unsafe-math mode).
14038  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
14039      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
14040      (Subtarget->hasSSE2() ||
14041       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
14042    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14043
14044    unsigned Opcode = 0;
14045    // Check for x CC y ? x : y.
14046    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14047        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14048      switch (CC) {
14049      default: break;
14050      case ISD::SETULT:
14051        // Converting this to a min would handle NaNs incorrectly, and swapping
14052        // the operands would cause it to handle comparisons between positive
14053        // and negative zero incorrectly.
14054        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14055          if (!DAG.getTarget().Options.UnsafeFPMath &&
14056              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14057            break;
14058          std::swap(LHS, RHS);
14059        }
14060        Opcode = X86ISD::FMIN;
14061        break;
14062      case ISD::SETOLE:
14063        // Converting this to a min would handle comparisons between positive
14064        // and negative zero incorrectly.
14065        if (!DAG.getTarget().Options.UnsafeFPMath &&
14066            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14067          break;
14068        Opcode = X86ISD::FMIN;
14069        break;
14070      case ISD::SETULE:
14071        // Converting this to a min would handle both negative zeros and NaNs
14072        // incorrectly, but we can swap the operands to fix both.
14073        std::swap(LHS, RHS);
14074      case ISD::SETOLT:
14075      case ISD::SETLT:
14076      case ISD::SETLE:
14077        Opcode = X86ISD::FMIN;
14078        break;
14079
14080      case ISD::SETOGE:
14081        // Converting this to a max would handle comparisons between positive
14082        // and negative zero incorrectly.
14083        if (!DAG.getTarget().Options.UnsafeFPMath &&
14084            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14085          break;
14086        Opcode = X86ISD::FMAX;
14087        break;
14088      case ISD::SETUGT:
14089        // Converting this to a max would handle NaNs incorrectly, and swapping
14090        // the operands would cause it to handle comparisons between positive
14091        // and negative zero incorrectly.
14092        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14093          if (!DAG.getTarget().Options.UnsafeFPMath &&
14094              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14095            break;
14096          std::swap(LHS, RHS);
14097        }
14098        Opcode = X86ISD::FMAX;
14099        break;
14100      case ISD::SETUGE:
14101        // Converting this to a max would handle both negative zeros and NaNs
14102        // incorrectly, but we can swap the operands to fix both.
14103        std::swap(LHS, RHS);
14104      case ISD::SETOGT:
14105      case ISD::SETGT:
14106      case ISD::SETGE:
14107        Opcode = X86ISD::FMAX;
14108        break;
14109      }
14110    // Check for x CC y ? y : x -- a min/max with reversed arms.
14111    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14112               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14113      switch (CC) {
14114      default: break;
14115      case ISD::SETOGE:
14116        // Converting this to a min would handle comparisons between positive
14117        // and negative zero incorrectly, and swapping the operands would
14118        // cause it to handle NaNs incorrectly.
14119        if (!DAG.getTarget().Options.UnsafeFPMath &&
14120            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
14121          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14122            break;
14123          std::swap(LHS, RHS);
14124        }
14125        Opcode = X86ISD::FMIN;
14126        break;
14127      case ISD::SETUGT:
14128        // Converting this to a min would handle NaNs incorrectly.
14129        if (!DAG.getTarget().Options.UnsafeFPMath &&
14130            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
14131          break;
14132        Opcode = X86ISD::FMIN;
14133        break;
14134      case ISD::SETUGE:
14135        // Converting this to a min would handle both negative zeros and NaNs
14136        // incorrectly, but we can swap the operands to fix both.
14137        std::swap(LHS, RHS);
14138      case ISD::SETOGT:
14139      case ISD::SETGT:
14140      case ISD::SETGE:
14141        Opcode = X86ISD::FMIN;
14142        break;
14143
14144      case ISD::SETULT:
14145        // Converting this to a max would handle NaNs incorrectly.
14146        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14147          break;
14148        Opcode = X86ISD::FMAX;
14149        break;
14150      case ISD::SETOLE:
14151        // Converting this to a max would handle comparisons between positive
14152        // and negative zero incorrectly, and swapping the operands would
14153        // cause it to handle NaNs incorrectly.
14154        if (!DAG.getTarget().Options.UnsafeFPMath &&
14155            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
14156          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14157            break;
14158          std::swap(LHS, RHS);
14159        }
14160        Opcode = X86ISD::FMAX;
14161        break;
14162      case ISD::SETULE:
14163        // Converting this to a max would handle both negative zeros and NaNs
14164        // incorrectly, but we can swap the operands to fix both.
14165        std::swap(LHS, RHS);
14166      case ISD::SETOLT:
14167      case ISD::SETLT:
14168      case ISD::SETLE:
14169        Opcode = X86ISD::FMAX;
14170        break;
14171      }
14172    }
14173
14174    if (Opcode)
14175      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
14176  }
14177
14178  // If this is a select between two integer constants, try to do some
14179  // optimizations.
14180  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
14181    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
14182      // Don't do this for crazy integer types.
14183      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
14184        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
14185        // so that TrueC (the true value) is larger than FalseC.
14186        bool NeedsCondInvert = false;
14187
14188        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
14189            // Efficiently invertible.
14190            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
14191             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
14192              isa<ConstantSDNode>(Cond.getOperand(1))))) {
14193          NeedsCondInvert = true;
14194          std::swap(TrueC, FalseC);
14195        }
14196
14197        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
14198        if (FalseC->getAPIntValue() == 0 &&
14199            TrueC->getAPIntValue().isPowerOf2()) {
14200          if (NeedsCondInvert) // Invert the condition if needed.
14201            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14202                               DAG.getConstant(1, Cond.getValueType()));
14203
14204          // Zero extend the condition if needed.
14205          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
14206
14207          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14208          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
14209                             DAG.getConstant(ShAmt, MVT::i8));
14210        }
14211
14212        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
14213        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14214          if (NeedsCondInvert) // Invert the condition if needed.
14215            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14216                               DAG.getConstant(1, Cond.getValueType()));
14217
14218          // Zero extend the condition if needed.
14219          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14220                             FalseC->getValueType(0), Cond);
14221          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14222                             SDValue(FalseC, 0));
14223        }
14224
14225        // Optimize cases that will turn into an LEA instruction.  This requires
14226        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14227        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14228          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14229          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14230
14231          bool isFastMultiplier = false;
14232          if (Diff < 10) {
14233            switch ((unsigned char)Diff) {
14234              default: break;
14235              case 1:  // result = add base, cond
14236              case 2:  // result = lea base(    , cond*2)
14237              case 3:  // result = lea base(cond, cond*2)
14238              case 4:  // result = lea base(    , cond*4)
14239              case 5:  // result = lea base(cond, cond*4)
14240              case 8:  // result = lea base(    , cond*8)
14241              case 9:  // result = lea base(cond, cond*8)
14242                isFastMultiplier = true;
14243                break;
14244            }
14245          }
14246
14247          if (isFastMultiplier) {
14248            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14249            if (NeedsCondInvert) // Invert the condition if needed.
14250              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14251                                 DAG.getConstant(1, Cond.getValueType()));
14252
14253            // Zero extend the condition if needed.
14254            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14255                               Cond);
14256            // Scale the condition by the difference.
14257            if (Diff != 1)
14258              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14259                                 DAG.getConstant(Diff, Cond.getValueType()));
14260
14261            // Add the base if non-zero.
14262            if (FalseC->getAPIntValue() != 0)
14263              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14264                                 SDValue(FalseC, 0));
14265            return Cond;
14266          }
14267        }
14268      }
14269  }
14270
14271  // Canonicalize max and min:
14272  // (x > y) ? x : y -> (x >= y) ? x : y
14273  // (x < y) ? x : y -> (x <= y) ? x : y
14274  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
14275  // the need for an extra compare
14276  // against zero. e.g.
14277  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
14278  // subl   %esi, %edi
14279  // testl  %edi, %edi
14280  // movl   $0, %eax
14281  // cmovgl %edi, %eax
14282  // =>
14283  // xorl   %eax, %eax
14284  // subl   %esi, $edi
14285  // cmovsl %eax, %edi
14286  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
14287      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14288      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14289    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14290    switch (CC) {
14291    default: break;
14292    case ISD::SETLT:
14293    case ISD::SETGT: {
14294      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
14295      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
14296                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
14297      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
14298    }
14299    }
14300  }
14301
14302  // If we know that this node is legal then we know that it is going to be
14303  // matched by one of the SSE/AVX BLEND instructions. These instructions only
14304  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
14305  // to simplify previous instructions.
14306  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14307  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
14308      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14309    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14310
14311    // Don't optimize vector selects that map to mask-registers.
14312    if (BitWidth == 1)
14313      return SDValue();
14314
14315    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14316    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14317
14318    APInt KnownZero, KnownOne;
14319    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14320                                          DCI.isBeforeLegalizeOps());
14321    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14322        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14323      DCI.CommitTargetLoweringOpt(TLO);
14324  }
14325
14326  return SDValue();
14327}
14328
14329// Check whether a boolean test is testing a boolean value generated by
14330// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14331// code.
14332//
14333// Simplify the following patterns:
14334// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14335// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14336// to (Op EFLAGS Cond)
14337//
14338// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14339// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14340// to (Op EFLAGS !Cond)
14341//
14342// where Op could be BRCOND or CMOV.
14343//
14344static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14345  // Quit if not CMP and SUB with its value result used.
14346  if (Cmp.getOpcode() != X86ISD::CMP &&
14347      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14348      return SDValue();
14349
14350  // Quit if not used as a boolean value.
14351  if (CC != X86::COND_E && CC != X86::COND_NE)
14352    return SDValue();
14353
14354  // Check CMP operands. One of them should be 0 or 1 and the other should be
14355  // an SetCC or extended from it.
14356  SDValue Op1 = Cmp.getOperand(0);
14357  SDValue Op2 = Cmp.getOperand(1);
14358
14359  SDValue SetCC;
14360  const ConstantSDNode* C = 0;
14361  bool needOppositeCond = (CC == X86::COND_E);
14362
14363  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14364    SetCC = Op2;
14365  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14366    SetCC = Op1;
14367  else // Quit if all operands are not constants.
14368    return SDValue();
14369
14370  if (C->getZExtValue() == 1)
14371    needOppositeCond = !needOppositeCond;
14372  else if (C->getZExtValue() != 0)
14373    // Quit if the constant is neither 0 or 1.
14374    return SDValue();
14375
14376  // Skip 'zext' node.
14377  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14378    SetCC = SetCC.getOperand(0);
14379
14380  switch (SetCC.getOpcode()) {
14381  case X86ISD::SETCC:
14382    // Set the condition code or opposite one if necessary.
14383    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14384    if (needOppositeCond)
14385      CC = X86::GetOppositeBranchCondition(CC);
14386    return SetCC.getOperand(1);
14387  case X86ISD::CMOV: {
14388    // Check whether false/true value has canonical one, i.e. 0 or 1.
14389    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
14390    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
14391    // Quit if true value is not a constant.
14392    if (!TVal)
14393      return SDValue();
14394    // Quit if false value is not a constant.
14395    if (!FVal) {
14396      // A special case for rdrand, where 0 is set if false cond is found.
14397      SDValue Op = SetCC.getOperand(0);
14398      if (Op.getOpcode() != X86ISD::RDRAND)
14399        return SDValue();
14400    }
14401    // Quit if false value is not the constant 0 or 1.
14402    bool FValIsFalse = true;
14403    if (FVal && FVal->getZExtValue() != 0) {
14404      if (FVal->getZExtValue() != 1)
14405        return SDValue();
14406      // If FVal is 1, opposite cond is needed.
14407      needOppositeCond = !needOppositeCond;
14408      FValIsFalse = false;
14409    }
14410    // Quit if TVal is not the constant opposite of FVal.
14411    if (FValIsFalse && TVal->getZExtValue() != 1)
14412      return SDValue();
14413    if (!FValIsFalse && TVal->getZExtValue() != 0)
14414      return SDValue();
14415    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
14416    if (needOppositeCond)
14417      CC = X86::GetOppositeBranchCondition(CC);
14418    return SetCC.getOperand(3);
14419  }
14420  }
14421
14422  return SDValue();
14423}
14424
14425/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
14426static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
14427                                  TargetLowering::DAGCombinerInfo &DCI,
14428                                  const X86Subtarget *Subtarget) {
14429  DebugLoc DL = N->getDebugLoc();
14430
14431  // If the flag operand isn't dead, don't touch this CMOV.
14432  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
14433    return SDValue();
14434
14435  SDValue FalseOp = N->getOperand(0);
14436  SDValue TrueOp = N->getOperand(1);
14437  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
14438  SDValue Cond = N->getOperand(3);
14439
14440  if (CC == X86::COND_E || CC == X86::COND_NE) {
14441    switch (Cond.getOpcode()) {
14442    default: break;
14443    case X86ISD::BSR:
14444    case X86ISD::BSF:
14445      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
14446      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
14447        return (CC == X86::COND_E) ? FalseOp : TrueOp;
14448    }
14449  }
14450
14451  SDValue Flags;
14452
14453  Flags = checkBoolTestSetCCCombine(Cond, CC);
14454  if (Flags.getNode() &&
14455      // Extra check as FCMOV only supports a subset of X86 cond.
14456      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
14457    SDValue Ops[] = { FalseOp, TrueOp,
14458                      DAG.getConstant(CC, MVT::i8), Flags };
14459    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14460                       Ops, array_lengthof(Ops));
14461  }
14462
14463  // If this is a select between two integer constants, try to do some
14464  // optimizations.  Note that the operands are ordered the opposite of SELECT
14465  // operands.
14466  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
14467    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
14468      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
14469      // larger than FalseC (the false value).
14470      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
14471        CC = X86::GetOppositeBranchCondition(CC);
14472        std::swap(TrueC, FalseC);
14473      }
14474
14475      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
14476      // This is efficient for any integer data type (including i8/i16) and
14477      // shift amount.
14478      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
14479        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14480                           DAG.getConstant(CC, MVT::i8), Cond);
14481
14482        // Zero extend the condition if needed.
14483        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
14484
14485        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14486        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
14487                           DAG.getConstant(ShAmt, MVT::i8));
14488        if (N->getNumValues() == 2)  // Dead flag value?
14489          return DCI.CombineTo(N, Cond, SDValue());
14490        return Cond;
14491      }
14492
14493      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
14494      // for any integer data type, including i8/i16.
14495      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14496        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14497                           DAG.getConstant(CC, MVT::i8), Cond);
14498
14499        // Zero extend the condition if needed.
14500        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14501                           FalseC->getValueType(0), Cond);
14502        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14503                           SDValue(FalseC, 0));
14504
14505        if (N->getNumValues() == 2)  // Dead flag value?
14506          return DCI.CombineTo(N, Cond, SDValue());
14507        return Cond;
14508      }
14509
14510      // Optimize cases that will turn into an LEA instruction.  This requires
14511      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14512      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14513        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14514        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14515
14516        bool isFastMultiplier = false;
14517        if (Diff < 10) {
14518          switch ((unsigned char)Diff) {
14519          default: break;
14520          case 1:  // result = add base, cond
14521          case 2:  // result = lea base(    , cond*2)
14522          case 3:  // result = lea base(cond, cond*2)
14523          case 4:  // result = lea base(    , cond*4)
14524          case 5:  // result = lea base(cond, cond*4)
14525          case 8:  // result = lea base(    , cond*8)
14526          case 9:  // result = lea base(cond, cond*8)
14527            isFastMultiplier = true;
14528            break;
14529          }
14530        }
14531
14532        if (isFastMultiplier) {
14533          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14534          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14535                             DAG.getConstant(CC, MVT::i8), Cond);
14536          // Zero extend the condition if needed.
14537          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14538                             Cond);
14539          // Scale the condition by the difference.
14540          if (Diff != 1)
14541            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14542                               DAG.getConstant(Diff, Cond.getValueType()));
14543
14544          // Add the base if non-zero.
14545          if (FalseC->getAPIntValue() != 0)
14546            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14547                               SDValue(FalseC, 0));
14548          if (N->getNumValues() == 2)  // Dead flag value?
14549            return DCI.CombineTo(N, Cond, SDValue());
14550          return Cond;
14551        }
14552      }
14553    }
14554  }
14555  return SDValue();
14556}
14557
14558
14559/// PerformMulCombine - Optimize a single multiply with constant into two
14560/// in order to implement it with two cheaper instructions, e.g.
14561/// LEA + SHL, LEA + LEA.
14562static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
14563                                 TargetLowering::DAGCombinerInfo &DCI) {
14564  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14565    return SDValue();
14566
14567  EVT VT = N->getValueType(0);
14568  if (VT != MVT::i64)
14569    return SDValue();
14570
14571  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14572  if (!C)
14573    return SDValue();
14574  uint64_t MulAmt = C->getZExtValue();
14575  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
14576    return SDValue();
14577
14578  uint64_t MulAmt1 = 0;
14579  uint64_t MulAmt2 = 0;
14580  if ((MulAmt % 9) == 0) {
14581    MulAmt1 = 9;
14582    MulAmt2 = MulAmt / 9;
14583  } else if ((MulAmt % 5) == 0) {
14584    MulAmt1 = 5;
14585    MulAmt2 = MulAmt / 5;
14586  } else if ((MulAmt % 3) == 0) {
14587    MulAmt1 = 3;
14588    MulAmt2 = MulAmt / 3;
14589  }
14590  if (MulAmt2 &&
14591      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
14592    DebugLoc DL = N->getDebugLoc();
14593
14594    if (isPowerOf2_64(MulAmt2) &&
14595        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
14596      // If second multiplifer is pow2, issue it first. We want the multiply by
14597      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
14598      // is an add.
14599      std::swap(MulAmt1, MulAmt2);
14600
14601    SDValue NewMul;
14602    if (isPowerOf2_64(MulAmt1))
14603      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14604                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
14605    else
14606      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
14607                           DAG.getConstant(MulAmt1, VT));
14608
14609    if (isPowerOf2_64(MulAmt2))
14610      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
14611                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
14612    else
14613      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
14614                           DAG.getConstant(MulAmt2, VT));
14615
14616    // Do not add new nodes to DAG combiner worklist.
14617    DCI.CombineTo(N, NewMul, false);
14618  }
14619  return SDValue();
14620}
14621
14622static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
14623  SDValue N0 = N->getOperand(0);
14624  SDValue N1 = N->getOperand(1);
14625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14626  EVT VT = N0.getValueType();
14627
14628  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
14629  // since the result of setcc_c is all zero's or all ones.
14630  if (VT.isInteger() && !VT.isVector() &&
14631      N1C && N0.getOpcode() == ISD::AND &&
14632      N0.getOperand(1).getOpcode() == ISD::Constant) {
14633    SDValue N00 = N0.getOperand(0);
14634    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
14635        ((N00.getOpcode() == ISD::ANY_EXTEND ||
14636          N00.getOpcode() == ISD::ZERO_EXTEND) &&
14637         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
14638      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
14639      APInt ShAmt = N1C->getAPIntValue();
14640      Mask = Mask.shl(ShAmt);
14641      if (Mask != 0)
14642        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
14643                           N00, DAG.getConstant(Mask, VT));
14644    }
14645  }
14646
14647
14648  // Hardware support for vector shifts is sparse which makes us scalarize the
14649  // vector operations in many cases. Also, on sandybridge ADD is faster than
14650  // shl.
14651  // (shl V, 1) -> add V,V
14652  if (isSplatVector(N1.getNode())) {
14653    assert(N0.getValueType().isVector() && "Invalid vector shift type");
14654    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
14655    // We shift all of the values by one. In many cases we do not have
14656    // hardware support for this operation. This is better expressed as an ADD
14657    // of two values.
14658    if (N1C && (1 == N1C->getZExtValue())) {
14659      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
14660    }
14661  }
14662
14663  return SDValue();
14664}
14665
14666/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
14667///                       when possible.
14668static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
14669                                   TargetLowering::DAGCombinerInfo &DCI,
14670                                   const X86Subtarget *Subtarget) {
14671  EVT VT = N->getValueType(0);
14672  if (N->getOpcode() == ISD::SHL) {
14673    SDValue V = PerformSHLCombine(N, DAG);
14674    if (V.getNode()) return V;
14675  }
14676
14677  // On X86 with SSE2 support, we can transform this to a vector shift if
14678  // all elements are shifted by the same amount.  We can't do this in legalize
14679  // because the a constant vector is typically transformed to a constant pool
14680  // so we have no knowledge of the shift amount.
14681  if (!Subtarget->hasSSE2())
14682    return SDValue();
14683
14684  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
14685      (!Subtarget->hasAVX2() ||
14686       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14687    return SDValue();
14688
14689  SDValue ShAmtOp = N->getOperand(1);
14690  EVT EltVT = VT.getVectorElementType();
14691  DebugLoc DL = N->getDebugLoc();
14692  SDValue BaseShAmt = SDValue();
14693  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14694    unsigned NumElts = VT.getVectorNumElements();
14695    unsigned i = 0;
14696    for (; i != NumElts; ++i) {
14697      SDValue Arg = ShAmtOp.getOperand(i);
14698      if (Arg.getOpcode() == ISD::UNDEF) continue;
14699      BaseShAmt = Arg;
14700      break;
14701    }
14702    // Handle the case where the build_vector is all undef
14703    // FIXME: Should DAG allow this?
14704    if (i == NumElts)
14705      return SDValue();
14706
14707    for (; i != NumElts; ++i) {
14708      SDValue Arg = ShAmtOp.getOperand(i);
14709      if (Arg.getOpcode() == ISD::UNDEF) continue;
14710      if (Arg != BaseShAmt) {
14711        return SDValue();
14712      }
14713    }
14714  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14715             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14716    SDValue InVec = ShAmtOp.getOperand(0);
14717    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14718      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14719      unsigned i = 0;
14720      for (; i != NumElts; ++i) {
14721        SDValue Arg = InVec.getOperand(i);
14722        if (Arg.getOpcode() == ISD::UNDEF) continue;
14723        BaseShAmt = Arg;
14724        break;
14725      }
14726    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14727       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14728         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14729         if (C->getZExtValue() == SplatIdx)
14730           BaseShAmt = InVec.getOperand(1);
14731       }
14732    }
14733    if (BaseShAmt.getNode() == 0) {
14734      // Don't create instructions with illegal types after legalize
14735      // types has run.
14736      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14737          !DCI.isBeforeLegalize())
14738        return SDValue();
14739
14740      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14741                              DAG.getIntPtrConstant(0));
14742    }
14743  } else
14744    return SDValue();
14745
14746  // The shift amount is an i32.
14747  if (EltVT.bitsGT(MVT::i32))
14748    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14749  else if (EltVT.bitsLT(MVT::i32))
14750    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14751
14752  // The shift amount is identical so we can do a vector shift.
14753  SDValue  ValOp = N->getOperand(0);
14754  switch (N->getOpcode()) {
14755  default:
14756    llvm_unreachable("Unknown shift opcode!");
14757  case ISD::SHL:
14758    switch (VT.getSimpleVT().SimpleTy) {
14759    default: return SDValue();
14760    case MVT::v2i64:
14761    case MVT::v4i32:
14762    case MVT::v8i16:
14763    case MVT::v4i64:
14764    case MVT::v8i32:
14765    case MVT::v16i16:
14766      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14767    }
14768  case ISD::SRA:
14769    switch (VT.getSimpleVT().SimpleTy) {
14770    default: return SDValue();
14771    case MVT::v4i32:
14772    case MVT::v8i16:
14773    case MVT::v8i32:
14774    case MVT::v16i16:
14775      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14776    }
14777  case ISD::SRL:
14778    switch (VT.getSimpleVT().SimpleTy) {
14779    default: return SDValue();
14780    case MVT::v2i64:
14781    case MVT::v4i32:
14782    case MVT::v8i16:
14783    case MVT::v4i64:
14784    case MVT::v8i32:
14785    case MVT::v16i16:
14786      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14787    }
14788  }
14789}
14790
14791
14792// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14793// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14794// and friends.  Likewise for OR -> CMPNEQSS.
14795static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14796                            TargetLowering::DAGCombinerInfo &DCI,
14797                            const X86Subtarget *Subtarget) {
14798  unsigned opcode;
14799
14800  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14801  // we're requiring SSE2 for both.
14802  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14803    SDValue N0 = N->getOperand(0);
14804    SDValue N1 = N->getOperand(1);
14805    SDValue CMP0 = N0->getOperand(1);
14806    SDValue CMP1 = N1->getOperand(1);
14807    DebugLoc DL = N->getDebugLoc();
14808
14809    // The SETCCs should both refer to the same CMP.
14810    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14811      return SDValue();
14812
14813    SDValue CMP00 = CMP0->getOperand(0);
14814    SDValue CMP01 = CMP0->getOperand(1);
14815    EVT     VT    = CMP00.getValueType();
14816
14817    if (VT == MVT::f32 || VT == MVT::f64) {
14818      bool ExpectingFlags = false;
14819      // Check for any users that want flags:
14820      for (SDNode::use_iterator UI = N->use_begin(),
14821             UE = N->use_end();
14822           !ExpectingFlags && UI != UE; ++UI)
14823        switch (UI->getOpcode()) {
14824        default:
14825        case ISD::BR_CC:
14826        case ISD::BRCOND:
14827        case ISD::SELECT:
14828          ExpectingFlags = true;
14829          break;
14830        case ISD::CopyToReg:
14831        case ISD::SIGN_EXTEND:
14832        case ISD::ZERO_EXTEND:
14833        case ISD::ANY_EXTEND:
14834          break;
14835        }
14836
14837      if (!ExpectingFlags) {
14838        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14839        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14840
14841        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14842          X86::CondCode tmp = cc0;
14843          cc0 = cc1;
14844          cc1 = tmp;
14845        }
14846
14847        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14848            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14849          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14850          X86ISD::NodeType NTOperator = is64BitFP ?
14851            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14852          // FIXME: need symbolic constants for these magic numbers.
14853          // See X86ATTInstPrinter.cpp:printSSECC().
14854          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14855          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14856                                              DAG.getConstant(x86cc, MVT::i8));
14857          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14858                                              OnesOrZeroesF);
14859          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14860                                      DAG.getConstant(1, MVT::i32));
14861          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14862          return OneBitOfTruth;
14863        }
14864      }
14865    }
14866  }
14867  return SDValue();
14868}
14869
14870/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14871/// so it can be folded inside ANDNP.
14872static bool CanFoldXORWithAllOnes(const SDNode *N) {
14873  EVT VT = N->getValueType(0);
14874
14875  // Match direct AllOnes for 128 and 256-bit vectors
14876  if (ISD::isBuildVectorAllOnes(N))
14877    return true;
14878
14879  // Look through a bit convert.
14880  if (N->getOpcode() == ISD::BITCAST)
14881    N = N->getOperand(0).getNode();
14882
14883  // Sometimes the operand may come from a insert_subvector building a 256-bit
14884  // allones vector
14885  if (VT.is256BitVector() &&
14886      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14887    SDValue V1 = N->getOperand(0);
14888    SDValue V2 = N->getOperand(1);
14889
14890    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14891        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14892        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14893        ISD::isBuildVectorAllOnes(V2.getNode()))
14894      return true;
14895  }
14896
14897  return false;
14898}
14899
14900static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14901                                 TargetLowering::DAGCombinerInfo &DCI,
14902                                 const X86Subtarget *Subtarget) {
14903  if (DCI.isBeforeLegalizeOps())
14904    return SDValue();
14905
14906  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14907  if (R.getNode())
14908    return R;
14909
14910  EVT VT = N->getValueType(0);
14911
14912  // Create ANDN, BLSI, and BLSR instructions
14913  // BLSI is X & (-X)
14914  // BLSR is X & (X-1)
14915  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14916    SDValue N0 = N->getOperand(0);
14917    SDValue N1 = N->getOperand(1);
14918    DebugLoc DL = N->getDebugLoc();
14919
14920    // Check LHS for not
14921    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14922      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14923    // Check RHS for not
14924    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14925      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14926
14927    // Check LHS for neg
14928    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14929        isZero(N0.getOperand(0)))
14930      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14931
14932    // Check RHS for neg
14933    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14934        isZero(N1.getOperand(0)))
14935      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14936
14937    // Check LHS for X-1
14938    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14939        isAllOnes(N0.getOperand(1)))
14940      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14941
14942    // Check RHS for X-1
14943    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14944        isAllOnes(N1.getOperand(1)))
14945      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14946
14947    return SDValue();
14948  }
14949
14950  // Want to form ANDNP nodes:
14951  // 1) In the hopes of then easily combining them with OR and AND nodes
14952  //    to form PBLEND/PSIGN.
14953  // 2) To match ANDN packed intrinsics
14954  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14955    return SDValue();
14956
14957  SDValue N0 = N->getOperand(0);
14958  SDValue N1 = N->getOperand(1);
14959  DebugLoc DL = N->getDebugLoc();
14960
14961  // Check LHS for vnot
14962  if (N0.getOpcode() == ISD::XOR &&
14963      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14964      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14965    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14966
14967  // Check RHS for vnot
14968  if (N1.getOpcode() == ISD::XOR &&
14969      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14970      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14971    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14972
14973  return SDValue();
14974}
14975
14976static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14977                                TargetLowering::DAGCombinerInfo &DCI,
14978                                const X86Subtarget *Subtarget) {
14979  if (DCI.isBeforeLegalizeOps())
14980    return SDValue();
14981
14982  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14983  if (R.getNode())
14984    return R;
14985
14986  EVT VT = N->getValueType(0);
14987
14988  SDValue N0 = N->getOperand(0);
14989  SDValue N1 = N->getOperand(1);
14990
14991  // look for psign/blend
14992  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14993    if (!Subtarget->hasSSSE3() ||
14994        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14995      return SDValue();
14996
14997    // Canonicalize pandn to RHS
14998    if (N0.getOpcode() == X86ISD::ANDNP)
14999      std::swap(N0, N1);
15000    // or (and (m, y), (pandn m, x))
15001    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
15002      SDValue Mask = N1.getOperand(0);
15003      SDValue X    = N1.getOperand(1);
15004      SDValue Y;
15005      if (N0.getOperand(0) == Mask)
15006        Y = N0.getOperand(1);
15007      if (N0.getOperand(1) == Mask)
15008        Y = N0.getOperand(0);
15009
15010      // Check to see if the mask appeared in both the AND and ANDNP and
15011      if (!Y.getNode())
15012        return SDValue();
15013
15014      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
15015      // Look through mask bitcast.
15016      if (Mask.getOpcode() == ISD::BITCAST)
15017        Mask = Mask.getOperand(0);
15018      if (X.getOpcode() == ISD::BITCAST)
15019        X = X.getOperand(0);
15020      if (Y.getOpcode() == ISD::BITCAST)
15021        Y = Y.getOperand(0);
15022
15023      EVT MaskVT = Mask.getValueType();
15024
15025      // Validate that the Mask operand is a vector sra node.
15026      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
15027      // there is no psrai.b
15028      if (Mask.getOpcode() != X86ISD::VSRAI)
15029        return SDValue();
15030
15031      // Check that the SRA is all signbits.
15032      SDValue SraC = Mask.getOperand(1);
15033      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
15034      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
15035      if ((SraAmt + 1) != EltBits)
15036        return SDValue();
15037
15038      DebugLoc DL = N->getDebugLoc();
15039
15040      // Now we know we at least have a plendvb with the mask val.  See if
15041      // we can form a psignb/w/d.
15042      // psign = x.type == y.type == mask.type && y = sub(0, x);
15043      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
15044          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
15045          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
15046        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
15047               "Unsupported VT for PSIGN");
15048        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
15049        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15050      }
15051      // PBLENDVB only available on SSE 4.1
15052      if (!Subtarget->hasSSE41())
15053        return SDValue();
15054
15055      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
15056
15057      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
15058      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
15059      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
15060      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
15061      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15062    }
15063  }
15064
15065  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
15066    return SDValue();
15067
15068  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
15069  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
15070    std::swap(N0, N1);
15071  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
15072    return SDValue();
15073  if (!N0.hasOneUse() || !N1.hasOneUse())
15074    return SDValue();
15075
15076  SDValue ShAmt0 = N0.getOperand(1);
15077  if (ShAmt0.getValueType() != MVT::i8)
15078    return SDValue();
15079  SDValue ShAmt1 = N1.getOperand(1);
15080  if (ShAmt1.getValueType() != MVT::i8)
15081    return SDValue();
15082  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
15083    ShAmt0 = ShAmt0.getOperand(0);
15084  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
15085    ShAmt1 = ShAmt1.getOperand(0);
15086
15087  DebugLoc DL = N->getDebugLoc();
15088  unsigned Opc = X86ISD::SHLD;
15089  SDValue Op0 = N0.getOperand(0);
15090  SDValue Op1 = N1.getOperand(0);
15091  if (ShAmt0.getOpcode() == ISD::SUB) {
15092    Opc = X86ISD::SHRD;
15093    std::swap(Op0, Op1);
15094    std::swap(ShAmt0, ShAmt1);
15095  }
15096
15097  unsigned Bits = VT.getSizeInBits();
15098  if (ShAmt1.getOpcode() == ISD::SUB) {
15099    SDValue Sum = ShAmt1.getOperand(0);
15100    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
15101      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
15102      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
15103        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
15104      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
15105        return DAG.getNode(Opc, DL, VT,
15106                           Op0, Op1,
15107                           DAG.getNode(ISD::TRUNCATE, DL,
15108                                       MVT::i8, ShAmt0));
15109    }
15110  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
15111    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
15112    if (ShAmt0C &&
15113        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
15114      return DAG.getNode(Opc, DL, VT,
15115                         N0.getOperand(0), N1.getOperand(0),
15116                         DAG.getNode(ISD::TRUNCATE, DL,
15117                                       MVT::i8, ShAmt0));
15118  }
15119
15120  return SDValue();
15121}
15122
15123// Generate NEG and CMOV for integer abs.
15124static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
15125  EVT VT = N->getValueType(0);
15126
15127  // Since X86 does not have CMOV for 8-bit integer, we don't convert
15128  // 8-bit integer abs to NEG and CMOV.
15129  if (VT.isInteger() && VT.getSizeInBits() == 8)
15130    return SDValue();
15131
15132  SDValue N0 = N->getOperand(0);
15133  SDValue N1 = N->getOperand(1);
15134  DebugLoc DL = N->getDebugLoc();
15135
15136  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
15137  // and change it to SUB and CMOV.
15138  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
15139      N0.getOpcode() == ISD::ADD &&
15140      N0.getOperand(1) == N1 &&
15141      N1.getOpcode() == ISD::SRA &&
15142      N1.getOperand(0) == N0.getOperand(0))
15143    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
15144      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
15145        // Generate SUB & CMOV.
15146        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
15147                                  DAG.getConstant(0, VT), N0.getOperand(0));
15148
15149        SDValue Ops[] = { N0.getOperand(0), Neg,
15150                          DAG.getConstant(X86::COND_GE, MVT::i8),
15151                          SDValue(Neg.getNode(), 1) };
15152        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
15153                           Ops, array_lengthof(Ops));
15154      }
15155  return SDValue();
15156}
15157
15158// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
15159static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
15160                                 TargetLowering::DAGCombinerInfo &DCI,
15161                                 const X86Subtarget *Subtarget) {
15162  if (DCI.isBeforeLegalizeOps())
15163    return SDValue();
15164
15165  if (Subtarget->hasCMov()) {
15166    SDValue RV = performIntegerAbsCombine(N, DAG);
15167    if (RV.getNode())
15168      return RV;
15169  }
15170
15171  // Try forming BMI if it is available.
15172  if (!Subtarget->hasBMI())
15173    return SDValue();
15174
15175  EVT VT = N->getValueType(0);
15176
15177  if (VT != MVT::i32 && VT != MVT::i64)
15178    return SDValue();
15179
15180  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
15181
15182  // Create BLSMSK instructions by finding X ^ (X-1)
15183  SDValue N0 = N->getOperand(0);
15184  SDValue N1 = N->getOperand(1);
15185  DebugLoc DL = N->getDebugLoc();
15186
15187  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15188      isAllOnes(N0.getOperand(1)))
15189    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
15190
15191  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15192      isAllOnes(N1.getOperand(1)))
15193    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
15194
15195  return SDValue();
15196}
15197
15198/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
15199static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
15200                                  TargetLowering::DAGCombinerInfo &DCI,
15201                                  const X86Subtarget *Subtarget) {
15202  LoadSDNode *Ld = cast<LoadSDNode>(N);
15203  EVT RegVT = Ld->getValueType(0);
15204  EVT MemVT = Ld->getMemoryVT();
15205  DebugLoc dl = Ld->getDebugLoc();
15206  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15207
15208  ISD::LoadExtType Ext = Ld->getExtensionType();
15209
15210  // If this is a vector EXT Load then attempt to optimize it using a
15211  // shuffle. We need SSE4 for the shuffles.
15212  // TODO: It is possible to support ZExt by zeroing the undef values
15213  // during the shuffle phase or after the shuffle.
15214  if (RegVT.isVector() && RegVT.isInteger() &&
15215      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
15216    assert(MemVT != RegVT && "Cannot extend to the same type");
15217    assert(MemVT.isVector() && "Must load a vector from memory");
15218
15219    unsigned NumElems = RegVT.getVectorNumElements();
15220    unsigned RegSz = RegVT.getSizeInBits();
15221    unsigned MemSz = MemVT.getSizeInBits();
15222    assert(RegSz > MemSz && "Register size must be greater than the mem size");
15223
15224    // All sizes must be a power of two.
15225    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
15226      return SDValue();
15227
15228    // Attempt to load the original value using scalar loads.
15229    // Find the largest scalar type that divides the total loaded size.
15230    MVT SclrLoadTy = MVT::i8;
15231    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15232         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15233      MVT Tp = (MVT::SimpleValueType)tp;
15234      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15235        SclrLoadTy = Tp;
15236      }
15237    }
15238
15239    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15240    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15241        (64 <= MemSz))
15242      SclrLoadTy = MVT::f64;
15243
15244    // Calculate the number of scalar loads that we need to perform
15245    // in order to load our vector from memory.
15246    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15247
15248    // Represent our vector as a sequence of elements which are the
15249    // largest scalar that we can load.
15250    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15251      RegSz/SclrLoadTy.getSizeInBits());
15252
15253    // Represent the data using the same element type that is stored in
15254    // memory. In practice, we ''widen'' MemVT.
15255    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15256                                  RegSz/MemVT.getScalarType().getSizeInBits());
15257
15258    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15259      "Invalid vector type");
15260
15261    // We can't shuffle using an illegal type.
15262    if (!TLI.isTypeLegal(WideVecVT))
15263      return SDValue();
15264
15265    SmallVector<SDValue, 8> Chains;
15266    SDValue Ptr = Ld->getBasePtr();
15267    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15268                                        TLI.getPointerTy());
15269    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15270
15271    for (unsigned i = 0; i < NumLoads; ++i) {
15272      // Perform a single load.
15273      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15274                                       Ptr, Ld->getPointerInfo(),
15275                                       Ld->isVolatile(), Ld->isNonTemporal(),
15276                                       Ld->isInvariant(), Ld->getAlignment());
15277      Chains.push_back(ScalarLoad.getValue(1));
15278      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15279      // another round of DAGCombining.
15280      if (i == 0)
15281        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15282      else
15283        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15284                          ScalarLoad, DAG.getIntPtrConstant(i));
15285
15286      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15287    }
15288
15289    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15290                               Chains.size());
15291
15292    // Bitcast the loaded value to a vector of the original element type, in
15293    // the size of the target vector type.
15294    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15295    unsigned SizeRatio = RegSz/MemSz;
15296
15297    // Redistribute the loaded elements into the different locations.
15298    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15299    for (unsigned i = 0; i != NumElems; ++i)
15300      ShuffleVec[i*SizeRatio] = i;
15301
15302    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15303                                         DAG.getUNDEF(WideVecVT),
15304                                         &ShuffleVec[0]);
15305
15306    // Bitcast to the requested type.
15307    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15308    // Replace the original load with the new sequence
15309    // and return the new chain.
15310    return DCI.CombineTo(N, Shuff, TF, true);
15311  }
15312
15313  return SDValue();
15314}
15315
15316/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15317static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15318                                   const X86Subtarget *Subtarget) {
15319  StoreSDNode *St = cast<StoreSDNode>(N);
15320  EVT VT = St->getValue().getValueType();
15321  EVT StVT = St->getMemoryVT();
15322  DebugLoc dl = St->getDebugLoc();
15323  SDValue StoredVal = St->getOperand(1);
15324  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15325
15326  // If we are saving a concatenation of two XMM registers, perform two stores.
15327  // On Sandy Bridge, 256-bit memory operations are executed by two
15328  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15329  // memory  operation.
15330  if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
15331      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15332      StoredVal.getNumOperands() == 2) {
15333    SDValue Value0 = StoredVal.getOperand(0);
15334    SDValue Value1 = StoredVal.getOperand(1);
15335
15336    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15337    SDValue Ptr0 = St->getBasePtr();
15338    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15339
15340    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15341                                St->getPointerInfo(), St->isVolatile(),
15342                                St->isNonTemporal(), St->getAlignment());
15343    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15344                                St->getPointerInfo(), St->isVolatile(),
15345                                St->isNonTemporal(), St->getAlignment());
15346    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15347  }
15348
15349  // Optimize trunc store (of multiple scalars) to shuffle and store.
15350  // First, pack all of the elements in one place. Next, store to memory
15351  // in fewer chunks.
15352  if (St->isTruncatingStore() && VT.isVector()) {
15353    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15354    unsigned NumElems = VT.getVectorNumElements();
15355    assert(StVT != VT && "Cannot truncate to the same type");
15356    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
15357    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
15358
15359    // From, To sizes and ElemCount must be pow of two
15360    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
15361    // We are going to use the original vector elt for storing.
15362    // Accumulated smaller vector elements must be a multiple of the store size.
15363    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
15364
15365    unsigned SizeRatio  = FromSz / ToSz;
15366
15367    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
15368
15369    // Create a type on which we perform the shuffle
15370    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
15371            StVT.getScalarType(), NumElems*SizeRatio);
15372
15373    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15374
15375    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
15376    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15377    for (unsigned i = 0; i != NumElems; ++i)
15378      ShuffleVec[i] = i * SizeRatio;
15379
15380    // Can't shuffle using an illegal type.
15381    if (!TLI.isTypeLegal(WideVecVT))
15382      return SDValue();
15383
15384    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
15385                                         DAG.getUNDEF(WideVecVT),
15386                                         &ShuffleVec[0]);
15387    // At this point all of the data is stored at the bottom of the
15388    // register. We now need to save it to mem.
15389
15390    // Find the largest store unit
15391    MVT StoreType = MVT::i8;
15392    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15393         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15394      MVT Tp = (MVT::SimpleValueType)tp;
15395      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
15396        StoreType = Tp;
15397    }
15398
15399    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15400    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
15401        (64 <= NumElems * ToSz))
15402      StoreType = MVT::f64;
15403
15404    // Bitcast the original vector into a vector of store-size units
15405    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
15406            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
15407    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15408    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
15409    SmallVector<SDValue, 8> Chains;
15410    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
15411                                        TLI.getPointerTy());
15412    SDValue Ptr = St->getBasePtr();
15413
15414    // Perform one or more big stores into memory.
15415    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
15416      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
15417                                   StoreType, ShuffWide,
15418                                   DAG.getIntPtrConstant(i));
15419      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
15420                                St->getPointerInfo(), St->isVolatile(),
15421                                St->isNonTemporal(), St->getAlignment());
15422      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15423      Chains.push_back(Ch);
15424    }
15425
15426    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15427                               Chains.size());
15428  }
15429
15430
15431  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
15432  // the FP state in cases where an emms may be missing.
15433  // A preferable solution to the general problem is to figure out the right
15434  // places to insert EMMS.  This qualifies as a quick hack.
15435
15436  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
15437  if (VT.getSizeInBits() != 64)
15438    return SDValue();
15439
15440  const Function *F = DAG.getMachineFunction().getFunction();
15441  bool NoImplicitFloatOps = F->getFnAttributes().hasNoImplicitFloatAttr();
15442  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
15443                     && Subtarget->hasSSE2();
15444  if ((VT.isVector() ||
15445       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
15446      isa<LoadSDNode>(St->getValue()) &&
15447      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
15448      St->getChain().hasOneUse() && !St->isVolatile()) {
15449    SDNode* LdVal = St->getValue().getNode();
15450    LoadSDNode *Ld = 0;
15451    int TokenFactorIndex = -1;
15452    SmallVector<SDValue, 8> Ops;
15453    SDNode* ChainVal = St->getChain().getNode();
15454    // Must be a store of a load.  We currently handle two cases:  the load
15455    // is a direct child, and it's under an intervening TokenFactor.  It is
15456    // possible to dig deeper under nested TokenFactors.
15457    if (ChainVal == LdVal)
15458      Ld = cast<LoadSDNode>(St->getChain());
15459    else if (St->getValue().hasOneUse() &&
15460             ChainVal->getOpcode() == ISD::TokenFactor) {
15461      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
15462        if (ChainVal->getOperand(i).getNode() == LdVal) {
15463          TokenFactorIndex = i;
15464          Ld = cast<LoadSDNode>(St->getValue());
15465        } else
15466          Ops.push_back(ChainVal->getOperand(i));
15467      }
15468    }
15469
15470    if (!Ld || !ISD::isNormalLoad(Ld))
15471      return SDValue();
15472
15473    // If this is not the MMX case, i.e. we are just turning i64 load/store
15474    // into f64 load/store, avoid the transformation if there are multiple
15475    // uses of the loaded value.
15476    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
15477      return SDValue();
15478
15479    DebugLoc LdDL = Ld->getDebugLoc();
15480    DebugLoc StDL = N->getDebugLoc();
15481    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
15482    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
15483    // pair instead.
15484    if (Subtarget->is64Bit() || F64IsLegal) {
15485      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
15486      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
15487                                  Ld->getPointerInfo(), Ld->isVolatile(),
15488                                  Ld->isNonTemporal(), Ld->isInvariant(),
15489                                  Ld->getAlignment());
15490      SDValue NewChain = NewLd.getValue(1);
15491      if (TokenFactorIndex != -1) {
15492        Ops.push_back(NewChain);
15493        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15494                               Ops.size());
15495      }
15496      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
15497                          St->getPointerInfo(),
15498                          St->isVolatile(), St->isNonTemporal(),
15499                          St->getAlignment());
15500    }
15501
15502    // Otherwise, lower to two pairs of 32-bit loads / stores.
15503    SDValue LoAddr = Ld->getBasePtr();
15504    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
15505                                 DAG.getConstant(4, MVT::i32));
15506
15507    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
15508                               Ld->getPointerInfo(),
15509                               Ld->isVolatile(), Ld->isNonTemporal(),
15510                               Ld->isInvariant(), Ld->getAlignment());
15511    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
15512                               Ld->getPointerInfo().getWithOffset(4),
15513                               Ld->isVolatile(), Ld->isNonTemporal(),
15514                               Ld->isInvariant(),
15515                               MinAlign(Ld->getAlignment(), 4));
15516
15517    SDValue NewChain = LoLd.getValue(1);
15518    if (TokenFactorIndex != -1) {
15519      Ops.push_back(LoLd);
15520      Ops.push_back(HiLd);
15521      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15522                             Ops.size());
15523    }
15524
15525    LoAddr = St->getBasePtr();
15526    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
15527                         DAG.getConstant(4, MVT::i32));
15528
15529    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
15530                                St->getPointerInfo(),
15531                                St->isVolatile(), St->isNonTemporal(),
15532                                St->getAlignment());
15533    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
15534                                St->getPointerInfo().getWithOffset(4),
15535                                St->isVolatile(),
15536                                St->isNonTemporal(),
15537                                MinAlign(St->getAlignment(), 4));
15538    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
15539  }
15540  return SDValue();
15541}
15542
15543/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
15544/// and return the operands for the horizontal operation in LHS and RHS.  A
15545/// horizontal operation performs the binary operation on successive elements
15546/// of its first operand, then on successive elements of its second operand,
15547/// returning the resulting values in a vector.  For example, if
15548///   A = < float a0, float a1, float a2, float a3 >
15549/// and
15550///   B = < float b0, float b1, float b2, float b3 >
15551/// then the result of doing a horizontal operation on A and B is
15552///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
15553/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
15554/// A horizontal-op B, for some already available A and B, and if so then LHS is
15555/// set to A, RHS to B, and the routine returns 'true'.
15556/// Note that the binary operation should have the property that if one of the
15557/// operands is UNDEF then the result is UNDEF.
15558static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
15559  // Look for the following pattern: if
15560  //   A = < float a0, float a1, float a2, float a3 >
15561  //   B = < float b0, float b1, float b2, float b3 >
15562  // and
15563  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
15564  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
15565  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
15566  // which is A horizontal-op B.
15567
15568  // At least one of the operands should be a vector shuffle.
15569  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15570      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
15571    return false;
15572
15573  EVT VT = LHS.getValueType();
15574
15575  assert((VT.is128BitVector() || VT.is256BitVector()) &&
15576         "Unsupported vector type for horizontal add/sub");
15577
15578  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
15579  // operate independently on 128-bit lanes.
15580  unsigned NumElts = VT.getVectorNumElements();
15581  unsigned NumLanes = VT.getSizeInBits()/128;
15582  unsigned NumLaneElts = NumElts / NumLanes;
15583  assert((NumLaneElts % 2 == 0) &&
15584         "Vector type should have an even number of elements in each lane");
15585  unsigned HalfLaneElts = NumLaneElts/2;
15586
15587  // View LHS in the form
15588  //   LHS = VECTOR_SHUFFLE A, B, LMask
15589  // If LHS is not a shuffle then pretend it is the shuffle
15590  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
15591  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
15592  // type VT.
15593  SDValue A, B;
15594  SmallVector<int, 16> LMask(NumElts);
15595  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15596    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
15597      A = LHS.getOperand(0);
15598    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
15599      B = LHS.getOperand(1);
15600    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
15601    std::copy(Mask.begin(), Mask.end(), LMask.begin());
15602  } else {
15603    if (LHS.getOpcode() != ISD::UNDEF)
15604      A = LHS;
15605    for (unsigned i = 0; i != NumElts; ++i)
15606      LMask[i] = i;
15607  }
15608
15609  // Likewise, view RHS in the form
15610  //   RHS = VECTOR_SHUFFLE C, D, RMask
15611  SDValue C, D;
15612  SmallVector<int, 16> RMask(NumElts);
15613  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15614    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
15615      C = RHS.getOperand(0);
15616    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
15617      D = RHS.getOperand(1);
15618    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
15619    std::copy(Mask.begin(), Mask.end(), RMask.begin());
15620  } else {
15621    if (RHS.getOpcode() != ISD::UNDEF)
15622      C = RHS;
15623    for (unsigned i = 0; i != NumElts; ++i)
15624      RMask[i] = i;
15625  }
15626
15627  // Check that the shuffles are both shuffling the same vectors.
15628  if (!(A == C && B == D) && !(A == D && B == C))
15629    return false;
15630
15631  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
15632  if (!A.getNode() && !B.getNode())
15633    return false;
15634
15635  // If A and B occur in reverse order in RHS, then "swap" them (which means
15636  // rewriting the mask).
15637  if (A != C)
15638    CommuteVectorShuffleMask(RMask, NumElts);
15639
15640  // At this point LHS and RHS are equivalent to
15641  //   LHS = VECTOR_SHUFFLE A, B, LMask
15642  //   RHS = VECTOR_SHUFFLE A, B, RMask
15643  // Check that the masks correspond to performing a horizontal operation.
15644  for (unsigned i = 0; i != NumElts; ++i) {
15645    int LIdx = LMask[i], RIdx = RMask[i];
15646
15647    // Ignore any UNDEF components.
15648    if (LIdx < 0 || RIdx < 0 ||
15649        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
15650        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
15651      continue;
15652
15653    // Check that successive elements are being operated on.  If not, this is
15654    // not a horizontal operation.
15655    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
15656    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
15657    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
15658    if (!(LIdx == Index && RIdx == Index + 1) &&
15659        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
15660      return false;
15661  }
15662
15663  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
15664  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
15665  return true;
15666}
15667
15668/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
15669static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
15670                                  const X86Subtarget *Subtarget) {
15671  EVT VT = N->getValueType(0);
15672  SDValue LHS = N->getOperand(0);
15673  SDValue RHS = N->getOperand(1);
15674
15675  // Try to synthesize horizontal adds from adds of shuffles.
15676  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15677       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15678      isHorizontalBinOp(LHS, RHS, true))
15679    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
15680  return SDValue();
15681}
15682
15683/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
15684static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
15685                                  const X86Subtarget *Subtarget) {
15686  EVT VT = N->getValueType(0);
15687  SDValue LHS = N->getOperand(0);
15688  SDValue RHS = N->getOperand(1);
15689
15690  // Try to synthesize horizontal subs from subs of shuffles.
15691  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15692       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15693      isHorizontalBinOp(LHS, RHS, false))
15694    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15695  return SDValue();
15696}
15697
15698/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15699/// X86ISD::FXOR nodes.
15700static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15701  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15702  // F[X]OR(0.0, x) -> x
15703  // F[X]OR(x, 0.0) -> x
15704  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15705    if (C->getValueAPF().isPosZero())
15706      return N->getOperand(1);
15707  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15708    if (C->getValueAPF().isPosZero())
15709      return N->getOperand(0);
15710  return SDValue();
15711}
15712
15713/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
15714/// X86ISD::FMAX nodes.
15715static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
15716  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
15717
15718  // Only perform optimizations if UnsafeMath is used.
15719  if (!DAG.getTarget().Options.UnsafeFPMath)
15720    return SDValue();
15721
15722  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
15723  // into FMINC and FMAXC, which are Commutative operations.
15724  unsigned NewOp = 0;
15725  switch (N->getOpcode()) {
15726    default: llvm_unreachable("unknown opcode");
15727    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
15728    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
15729  }
15730
15731  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
15732                     N->getOperand(0), N->getOperand(1));
15733}
15734
15735
15736/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15737static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15738  // FAND(0.0, x) -> 0.0
15739  // FAND(x, 0.0) -> 0.0
15740  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15741    if (C->getValueAPF().isPosZero())
15742      return N->getOperand(0);
15743  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15744    if (C->getValueAPF().isPosZero())
15745      return N->getOperand(1);
15746  return SDValue();
15747}
15748
15749static SDValue PerformBTCombine(SDNode *N,
15750                                SelectionDAG &DAG,
15751                                TargetLowering::DAGCombinerInfo &DCI) {
15752  // BT ignores high bits in the bit index operand.
15753  SDValue Op1 = N->getOperand(1);
15754  if (Op1.hasOneUse()) {
15755    unsigned BitWidth = Op1.getValueSizeInBits();
15756    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15757    APInt KnownZero, KnownOne;
15758    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15759                                          !DCI.isBeforeLegalizeOps());
15760    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15761    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
15762        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
15763      DCI.CommitTargetLoweringOpt(TLO);
15764  }
15765  return SDValue();
15766}
15767
15768static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
15769  SDValue Op = N->getOperand(0);
15770  if (Op.getOpcode() == ISD::BITCAST)
15771    Op = Op.getOperand(0);
15772  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
15773  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
15774      VT.getVectorElementType().getSizeInBits() ==
15775      OpVT.getVectorElementType().getSizeInBits()) {
15776    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
15777  }
15778  return SDValue();
15779}
15780
15781static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
15782                                  TargetLowering::DAGCombinerInfo &DCI,
15783                                  const X86Subtarget *Subtarget) {
15784  if (!DCI.isBeforeLegalizeOps())
15785    return SDValue();
15786
15787  if (!Subtarget->hasAVX())
15788    return SDValue();
15789
15790  EVT VT = N->getValueType(0);
15791  SDValue Op = N->getOperand(0);
15792  EVT OpVT = Op.getValueType();
15793  DebugLoc dl = N->getDebugLoc();
15794
15795  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
15796      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
15797
15798    if (Subtarget->hasAVX2())
15799      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15800
15801    // Optimize vectors in AVX mode
15802    // Sign extend  v8i16 to v8i32 and
15803    //              v4i32 to v4i64
15804    //
15805    // Divide input vector into two parts
15806    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15807    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15808    // concat the vectors to original VT
15809
15810    unsigned NumElems = OpVT.getVectorNumElements();
15811    SDValue Undef = DAG.getUNDEF(OpVT);
15812
15813    SmallVector<int,8> ShufMask1(NumElems, -1);
15814    for (unsigned i = 0; i != NumElems/2; ++i)
15815      ShufMask1[i] = i;
15816
15817    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
15818
15819    SmallVector<int,8> ShufMask2(NumElems, -1);
15820    for (unsigned i = 0; i != NumElems/2; ++i)
15821      ShufMask2[i] = i + NumElems/2;
15822
15823    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
15824
15825    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15826                                  VT.getVectorNumElements()/2);
15827
15828    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15829    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15830
15831    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15832  }
15833  return SDValue();
15834}
15835
15836static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
15837                                 const X86Subtarget* Subtarget) {
15838  DebugLoc dl = N->getDebugLoc();
15839  EVT VT = N->getValueType(0);
15840
15841  // Let legalize expand this if it isn't a legal type yet.
15842  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
15843    return SDValue();
15844
15845  EVT ScalarVT = VT.getScalarType();
15846  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
15847      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
15848    return SDValue();
15849
15850  SDValue A = N->getOperand(0);
15851  SDValue B = N->getOperand(1);
15852  SDValue C = N->getOperand(2);
15853
15854  bool NegA = (A.getOpcode() == ISD::FNEG);
15855  bool NegB = (B.getOpcode() == ISD::FNEG);
15856  bool NegC = (C.getOpcode() == ISD::FNEG);
15857
15858  // Negative multiplication when NegA xor NegB
15859  bool NegMul = (NegA != NegB);
15860  if (NegA)
15861    A = A.getOperand(0);
15862  if (NegB)
15863    B = B.getOperand(0);
15864  if (NegC)
15865    C = C.getOperand(0);
15866
15867  unsigned Opcode;
15868  if (!NegMul)
15869    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
15870  else
15871    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
15872
15873  return DAG.getNode(Opcode, dl, VT, A, B, C);
15874}
15875
15876static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15877                                  TargetLowering::DAGCombinerInfo &DCI,
15878                                  const X86Subtarget *Subtarget) {
15879  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15880  //           (and (i32 x86isd::setcc_carry), 1)
15881  // This eliminates the zext. This transformation is necessary because
15882  // ISD::SETCC is always legalized to i8.
15883  DebugLoc dl = N->getDebugLoc();
15884  SDValue N0 = N->getOperand(0);
15885  EVT VT = N->getValueType(0);
15886  EVT OpVT = N0.getValueType();
15887
15888  if (N0.getOpcode() == ISD::AND &&
15889      N0.hasOneUse() &&
15890      N0.getOperand(0).hasOneUse()) {
15891    SDValue N00 = N0.getOperand(0);
15892    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15893      return SDValue();
15894    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15895    if (!C || C->getZExtValue() != 1)
15896      return SDValue();
15897    return DAG.getNode(ISD::AND, dl, VT,
15898                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15899                                   N00.getOperand(0), N00.getOperand(1)),
15900                       DAG.getConstant(1, VT));
15901  }
15902
15903  // Optimize vectors in AVX mode:
15904  //
15905  //   v8i16 -> v8i32
15906  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15907  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15908  //   Concat upper and lower parts.
15909  //
15910  //   v4i32 -> v4i64
15911  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15912  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15913  //   Concat upper and lower parts.
15914  //
15915  if (!DCI.isBeforeLegalizeOps())
15916    return SDValue();
15917
15918  if (!Subtarget->hasAVX())
15919    return SDValue();
15920
15921  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15922      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15923
15924    if (Subtarget->hasAVX2())
15925      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15926
15927    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15928    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15929    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15930
15931    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15932                               VT.getVectorNumElements()/2);
15933
15934    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15935    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15936
15937    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15938  }
15939
15940  return SDValue();
15941}
15942
15943// Optimize x == -y --> x+y == 0
15944//          x != -y --> x+y != 0
15945static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15946  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15947  SDValue LHS = N->getOperand(0);
15948  SDValue RHS = N->getOperand(1);
15949
15950  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15951    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15952      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15953        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15954                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15955        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15956                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15957      }
15958  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15959    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15960      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15961        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15962                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15963        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15964                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15965      }
15966  return SDValue();
15967}
15968
15969// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15970static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
15971                                   TargetLowering::DAGCombinerInfo &DCI,
15972                                   const X86Subtarget *Subtarget) {
15973  DebugLoc DL = N->getDebugLoc();
15974  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
15975  SDValue EFLAGS = N->getOperand(1);
15976
15977  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15978  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15979  // cases.
15980  if (CC == X86::COND_B)
15981    return DAG.getNode(ISD::AND, DL, MVT::i8,
15982                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15983                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
15984                       DAG.getConstant(1, MVT::i8));
15985
15986  SDValue Flags;
15987
15988  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15989  if (Flags.getNode()) {
15990    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15991    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
15992  }
15993
15994  return SDValue();
15995}
15996
15997// Optimize branch condition evaluation.
15998//
15999static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
16000                                    TargetLowering::DAGCombinerInfo &DCI,
16001                                    const X86Subtarget *Subtarget) {
16002  DebugLoc DL = N->getDebugLoc();
16003  SDValue Chain = N->getOperand(0);
16004  SDValue Dest = N->getOperand(1);
16005  SDValue EFLAGS = N->getOperand(3);
16006  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
16007
16008  SDValue Flags;
16009
16010  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16011  if (Flags.getNode()) {
16012    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16013    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
16014                       Flags);
16015  }
16016
16017  return SDValue();
16018}
16019
16020static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
16021  SDValue Op0 = N->getOperand(0);
16022  EVT InVT = Op0->getValueType(0);
16023
16024  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
16025  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16026    DebugLoc dl = N->getDebugLoc();
16027    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16028    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
16029    // Notice that we use SINT_TO_FP because we know that the high bits
16030    // are zero and SINT_TO_FP is better supported by the hardware.
16031    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16032  }
16033
16034  return SDValue();
16035}
16036
16037static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
16038                                        const X86TargetLowering *XTLI) {
16039  SDValue Op0 = N->getOperand(0);
16040  EVT InVT = Op0->getValueType(0);
16041
16042  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
16043  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16044    DebugLoc dl = N->getDebugLoc();
16045    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16046    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
16047    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16048  }
16049
16050  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
16051  // a 32-bit target where SSE doesn't support i64->FP operations.
16052  if (Op0.getOpcode() == ISD::LOAD) {
16053    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
16054    EVT VT = Ld->getValueType(0);
16055    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
16056        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
16057        !XTLI->getSubtarget()->is64Bit() &&
16058        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
16059      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
16060                                          Ld->getChain(), Op0, DAG);
16061      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
16062      return FILDChain;
16063    }
16064  }
16065  return SDValue();
16066}
16067
16068static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
16069  EVT VT = N->getValueType(0);
16070
16071  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
16072  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
16073    DebugLoc dl = N->getDebugLoc();
16074    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16075    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
16076    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
16077  }
16078
16079  return SDValue();
16080}
16081
16082// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
16083static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
16084                                 X86TargetLowering::DAGCombinerInfo &DCI) {
16085  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
16086  // the result is either zero or one (depending on the input carry bit).
16087  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
16088  if (X86::isZeroNode(N->getOperand(0)) &&
16089      X86::isZeroNode(N->getOperand(1)) &&
16090      // We don't have a good way to replace an EFLAGS use, so only do this when
16091      // dead right now.
16092      SDValue(N, 1).use_empty()) {
16093    DebugLoc DL = N->getDebugLoc();
16094    EVT VT = N->getValueType(0);
16095    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
16096    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
16097                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
16098                                           DAG.getConstant(X86::COND_B,MVT::i8),
16099                                           N->getOperand(2)),
16100                               DAG.getConstant(1, VT));
16101    return DCI.CombineTo(N, Res1, CarryOut);
16102  }
16103
16104  return SDValue();
16105}
16106
16107// fold (add Y, (sete  X, 0)) -> adc  0, Y
16108//      (add Y, (setne X, 0)) -> sbb -1, Y
16109//      (sub (sete  X, 0), Y) -> sbb  0, Y
16110//      (sub (setne X, 0), Y) -> adc -1, Y
16111static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
16112  DebugLoc DL = N->getDebugLoc();
16113
16114  // Look through ZExts.
16115  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
16116  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
16117    return SDValue();
16118
16119  SDValue SetCC = Ext.getOperand(0);
16120  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
16121    return SDValue();
16122
16123  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
16124  if (CC != X86::COND_E && CC != X86::COND_NE)
16125    return SDValue();
16126
16127  SDValue Cmp = SetCC.getOperand(1);
16128  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
16129      !X86::isZeroNode(Cmp.getOperand(1)) ||
16130      !Cmp.getOperand(0).getValueType().isInteger())
16131    return SDValue();
16132
16133  SDValue CmpOp0 = Cmp.getOperand(0);
16134  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
16135                               DAG.getConstant(1, CmpOp0.getValueType()));
16136
16137  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
16138  if (CC == X86::COND_NE)
16139    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
16140                       DL, OtherVal.getValueType(), OtherVal,
16141                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
16142  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
16143                     DL, OtherVal.getValueType(), OtherVal,
16144                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
16145}
16146
16147/// PerformADDCombine - Do target-specific dag combines on integer adds.
16148static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
16149                                 const X86Subtarget *Subtarget) {
16150  EVT VT = N->getValueType(0);
16151  SDValue Op0 = N->getOperand(0);
16152  SDValue Op1 = N->getOperand(1);
16153
16154  // Try to synthesize horizontal adds from adds of shuffles.
16155  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16156       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16157      isHorizontalBinOp(Op0, Op1, true))
16158    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
16159
16160  return OptimizeConditionalInDecrement(N, DAG);
16161}
16162
16163static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
16164                                 const X86Subtarget *Subtarget) {
16165  SDValue Op0 = N->getOperand(0);
16166  SDValue Op1 = N->getOperand(1);
16167
16168  // X86 can't encode an immediate LHS of a sub. See if we can push the
16169  // negation into a preceding instruction.
16170  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
16171    // If the RHS of the sub is a XOR with one use and a constant, invert the
16172    // immediate. Then add one to the LHS of the sub so we can turn
16173    // X-Y -> X+~Y+1, saving one register.
16174    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
16175        isa<ConstantSDNode>(Op1.getOperand(1))) {
16176      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
16177      EVT VT = Op0.getValueType();
16178      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
16179                                   Op1.getOperand(0),
16180                                   DAG.getConstant(~XorC, VT));
16181      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
16182                         DAG.getConstant(C->getAPIntValue()+1, VT));
16183    }
16184  }
16185
16186  // Try to synthesize horizontal adds from adds of shuffles.
16187  EVT VT = N->getValueType(0);
16188  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16189       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16190      isHorizontalBinOp(Op0, Op1, true))
16191    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
16192
16193  return OptimizeConditionalInDecrement(N, DAG);
16194}
16195
16196SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
16197                                             DAGCombinerInfo &DCI) const {
16198  SelectionDAG &DAG = DCI.DAG;
16199  switch (N->getOpcode()) {
16200  default: break;
16201  case ISD::EXTRACT_VECTOR_ELT:
16202    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
16203  case ISD::VSELECT:
16204  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
16205  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
16206  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
16207  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
16208  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
16209  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
16210  case ISD::SHL:
16211  case ISD::SRA:
16212  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
16213  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
16214  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
16215  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
16216  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
16217  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
16218  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
16219  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
16220  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
16221  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
16222  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
16223  case X86ISD::FXOR:
16224  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
16225  case X86ISD::FMIN:
16226  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
16227  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
16228  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
16229  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16230  case ISD::ANY_EXTEND:
16231  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16232  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16233  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
16234  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16235  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16236  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16237  case X86ISD::SHUFP:       // Handle all target specific shuffles
16238  case X86ISD::PALIGN:
16239  case X86ISD::UNPCKH:
16240  case X86ISD::UNPCKL:
16241  case X86ISD::MOVHLPS:
16242  case X86ISD::MOVLHPS:
16243  case X86ISD::PSHUFD:
16244  case X86ISD::PSHUFHW:
16245  case X86ISD::PSHUFLW:
16246  case X86ISD::MOVSS:
16247  case X86ISD::MOVSD:
16248  case X86ISD::VPERMILP:
16249  case X86ISD::VPERM2X128:
16250  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16251  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16252  }
16253
16254  return SDValue();
16255}
16256
16257/// isTypeDesirableForOp - Return true if the target has native support for
16258/// the specified value type and it is 'desirable' to use the type for the
16259/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16260/// instruction encodings are longer and some i16 instructions are slow.
16261bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16262  if (!isTypeLegal(VT))
16263    return false;
16264  if (VT != MVT::i16)
16265    return true;
16266
16267  switch (Opc) {
16268  default:
16269    return true;
16270  case ISD::LOAD:
16271  case ISD::SIGN_EXTEND:
16272  case ISD::ZERO_EXTEND:
16273  case ISD::ANY_EXTEND:
16274  case ISD::SHL:
16275  case ISD::SRL:
16276  case ISD::SUB:
16277  case ISD::ADD:
16278  case ISD::MUL:
16279  case ISD::AND:
16280  case ISD::OR:
16281  case ISD::XOR:
16282    return false;
16283  }
16284}
16285
16286/// IsDesirableToPromoteOp - This method query the target whether it is
16287/// beneficial for dag combiner to promote the specified node. If true, it
16288/// should return the desired promotion type by reference.
16289bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16290  EVT VT = Op.getValueType();
16291  if (VT != MVT::i16)
16292    return false;
16293
16294  bool Promote = false;
16295  bool Commute = false;
16296  switch (Op.getOpcode()) {
16297  default: break;
16298  case ISD::LOAD: {
16299    LoadSDNode *LD = cast<LoadSDNode>(Op);
16300    // If the non-extending load has a single use and it's not live out, then it
16301    // might be folded.
16302    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16303                                                     Op.hasOneUse()*/) {
16304      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16305             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16306        // The only case where we'd want to promote LOAD (rather then it being
16307        // promoted as an operand is when it's only use is liveout.
16308        if (UI->getOpcode() != ISD::CopyToReg)
16309          return false;
16310      }
16311    }
16312    Promote = true;
16313    break;
16314  }
16315  case ISD::SIGN_EXTEND:
16316  case ISD::ZERO_EXTEND:
16317  case ISD::ANY_EXTEND:
16318    Promote = true;
16319    break;
16320  case ISD::SHL:
16321  case ISD::SRL: {
16322    SDValue N0 = Op.getOperand(0);
16323    // Look out for (store (shl (load), x)).
16324    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16325      return false;
16326    Promote = true;
16327    break;
16328  }
16329  case ISD::ADD:
16330  case ISD::MUL:
16331  case ISD::AND:
16332  case ISD::OR:
16333  case ISD::XOR:
16334    Commute = true;
16335    // fallthrough
16336  case ISD::SUB: {
16337    SDValue N0 = Op.getOperand(0);
16338    SDValue N1 = Op.getOperand(1);
16339    if (!Commute && MayFoldLoad(N1))
16340      return false;
16341    // Avoid disabling potential load folding opportunities.
16342    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16343      return false;
16344    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16345      return false;
16346    Promote = true;
16347  }
16348  }
16349
16350  PVT = MVT::i32;
16351  return Promote;
16352}
16353
16354//===----------------------------------------------------------------------===//
16355//                           X86 Inline Assembly Support
16356//===----------------------------------------------------------------------===//
16357
16358namespace {
16359  // Helper to match a string separated by whitespace.
16360  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
16361    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
16362
16363    for (unsigned i = 0, e = args.size(); i != e; ++i) {
16364      StringRef piece(*args[i]);
16365      if (!s.startswith(piece)) // Check if the piece matches.
16366        return false;
16367
16368      s = s.substr(piece.size());
16369      StringRef::size_type pos = s.find_first_not_of(" \t");
16370      if (pos == 0) // We matched a prefix.
16371        return false;
16372
16373      s = s.substr(pos);
16374    }
16375
16376    return s.empty();
16377  }
16378  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
16379}
16380
16381bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
16382  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
16383
16384  std::string AsmStr = IA->getAsmString();
16385
16386  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
16387  if (!Ty || Ty->getBitWidth() % 16 != 0)
16388    return false;
16389
16390  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
16391  SmallVector<StringRef, 4> AsmPieces;
16392  SplitString(AsmStr, AsmPieces, ";\n");
16393
16394  switch (AsmPieces.size()) {
16395  default: return false;
16396  case 1:
16397    // FIXME: this should verify that we are targeting a 486 or better.  If not,
16398    // we will turn this bswap into something that will be lowered to logical
16399    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
16400    // lower so don't worry about this.
16401    // bswap $0
16402    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
16403        matchAsm(AsmPieces[0], "bswapl", "$0") ||
16404        matchAsm(AsmPieces[0], "bswapq", "$0") ||
16405        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
16406        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
16407        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
16408      // No need to check constraints, nothing other than the equivalent of
16409      // "=r,0" would be valid here.
16410      return IntrinsicLowering::LowerToByteSwap(CI);
16411    }
16412
16413    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
16414    if (CI->getType()->isIntegerTy(16) &&
16415        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16416        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
16417         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
16418      AsmPieces.clear();
16419      const std::string &ConstraintsStr = IA->getConstraintString();
16420      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16421      std::sort(AsmPieces.begin(), AsmPieces.end());
16422      if (AsmPieces.size() == 4 &&
16423          AsmPieces[0] == "~{cc}" &&
16424          AsmPieces[1] == "~{dirflag}" &&
16425          AsmPieces[2] == "~{flags}" &&
16426          AsmPieces[3] == "~{fpsr}")
16427      return IntrinsicLowering::LowerToByteSwap(CI);
16428    }
16429    break;
16430  case 3:
16431    if (CI->getType()->isIntegerTy(32) &&
16432        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16433        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
16434        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
16435        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
16436      AsmPieces.clear();
16437      const std::string &ConstraintsStr = IA->getConstraintString();
16438      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16439      std::sort(AsmPieces.begin(), AsmPieces.end());
16440      if (AsmPieces.size() == 4 &&
16441          AsmPieces[0] == "~{cc}" &&
16442          AsmPieces[1] == "~{dirflag}" &&
16443          AsmPieces[2] == "~{flags}" &&
16444          AsmPieces[3] == "~{fpsr}")
16445        return IntrinsicLowering::LowerToByteSwap(CI);
16446    }
16447
16448    if (CI->getType()->isIntegerTy(64)) {
16449      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
16450      if (Constraints.size() >= 2 &&
16451          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
16452          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
16453        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
16454        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
16455            matchAsm(AsmPieces[1], "bswap", "%edx") &&
16456            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
16457          return IntrinsicLowering::LowerToByteSwap(CI);
16458      }
16459    }
16460    break;
16461  }
16462  return false;
16463}
16464
16465
16466
16467/// getConstraintType - Given a constraint letter, return the type of
16468/// constraint it is for this target.
16469X86TargetLowering::ConstraintType
16470X86TargetLowering::getConstraintType(const std::string &Constraint) const {
16471  if (Constraint.size() == 1) {
16472    switch (Constraint[0]) {
16473    case 'R':
16474    case 'q':
16475    case 'Q':
16476    case 'f':
16477    case 't':
16478    case 'u':
16479    case 'y':
16480    case 'x':
16481    case 'Y':
16482    case 'l':
16483      return C_RegisterClass;
16484    case 'a':
16485    case 'b':
16486    case 'c':
16487    case 'd':
16488    case 'S':
16489    case 'D':
16490    case 'A':
16491      return C_Register;
16492    case 'I':
16493    case 'J':
16494    case 'K':
16495    case 'L':
16496    case 'M':
16497    case 'N':
16498    case 'G':
16499    case 'C':
16500    case 'e':
16501    case 'Z':
16502      return C_Other;
16503    default:
16504      break;
16505    }
16506  }
16507  return TargetLowering::getConstraintType(Constraint);
16508}
16509
16510/// Examine constraint type and operand type and determine a weight value.
16511/// This object must already have been set up with the operand type
16512/// and the current alternative constraint selected.
16513TargetLowering::ConstraintWeight
16514  X86TargetLowering::getSingleConstraintMatchWeight(
16515    AsmOperandInfo &info, const char *constraint) const {
16516  ConstraintWeight weight = CW_Invalid;
16517  Value *CallOperandVal = info.CallOperandVal;
16518    // If we don't have a value, we can't do a match,
16519    // but allow it at the lowest weight.
16520  if (CallOperandVal == NULL)
16521    return CW_Default;
16522  Type *type = CallOperandVal->getType();
16523  // Look at the constraint type.
16524  switch (*constraint) {
16525  default:
16526    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16527  case 'R':
16528  case 'q':
16529  case 'Q':
16530  case 'a':
16531  case 'b':
16532  case 'c':
16533  case 'd':
16534  case 'S':
16535  case 'D':
16536  case 'A':
16537    if (CallOperandVal->getType()->isIntegerTy())
16538      weight = CW_SpecificReg;
16539    break;
16540  case 'f':
16541  case 't':
16542  case 'u':
16543      if (type->isFloatingPointTy())
16544        weight = CW_SpecificReg;
16545      break;
16546  case 'y':
16547      if (type->isX86_MMXTy() && Subtarget->hasMMX())
16548        weight = CW_SpecificReg;
16549      break;
16550  case 'x':
16551  case 'Y':
16552    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
16553        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
16554      weight = CW_Register;
16555    break;
16556  case 'I':
16557    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
16558      if (C->getZExtValue() <= 31)
16559        weight = CW_Constant;
16560    }
16561    break;
16562  case 'J':
16563    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16564      if (C->getZExtValue() <= 63)
16565        weight = CW_Constant;
16566    }
16567    break;
16568  case 'K':
16569    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16570      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
16571        weight = CW_Constant;
16572    }
16573    break;
16574  case 'L':
16575    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16576      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
16577        weight = CW_Constant;
16578    }
16579    break;
16580  case 'M':
16581    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16582      if (C->getZExtValue() <= 3)
16583        weight = CW_Constant;
16584    }
16585    break;
16586  case 'N':
16587    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16588      if (C->getZExtValue() <= 0xff)
16589        weight = CW_Constant;
16590    }
16591    break;
16592  case 'G':
16593  case 'C':
16594    if (dyn_cast<ConstantFP>(CallOperandVal)) {
16595      weight = CW_Constant;
16596    }
16597    break;
16598  case 'e':
16599    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16600      if ((C->getSExtValue() >= -0x80000000LL) &&
16601          (C->getSExtValue() <= 0x7fffffffLL))
16602        weight = CW_Constant;
16603    }
16604    break;
16605  case 'Z':
16606    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16607      if (C->getZExtValue() <= 0xffffffff)
16608        weight = CW_Constant;
16609    }
16610    break;
16611  }
16612  return weight;
16613}
16614
16615/// LowerXConstraint - try to replace an X constraint, which matches anything,
16616/// with another that has more specific requirements based on the type of the
16617/// corresponding operand.
16618const char *X86TargetLowering::
16619LowerXConstraint(EVT ConstraintVT) const {
16620  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
16621  // 'f' like normal targets.
16622  if (ConstraintVT.isFloatingPoint()) {
16623    if (Subtarget->hasSSE2())
16624      return "Y";
16625    if (Subtarget->hasSSE1())
16626      return "x";
16627  }
16628
16629  return TargetLowering::LowerXConstraint(ConstraintVT);
16630}
16631
16632/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16633/// vector.  If it is invalid, don't add anything to Ops.
16634void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16635                                                     std::string &Constraint,
16636                                                     std::vector<SDValue>&Ops,
16637                                                     SelectionDAG &DAG) const {
16638  SDValue Result(0, 0);
16639
16640  // Only support length 1 constraints for now.
16641  if (Constraint.length() > 1) return;
16642
16643  char ConstraintLetter = Constraint[0];
16644  switch (ConstraintLetter) {
16645  default: break;
16646  case 'I':
16647    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16648      if (C->getZExtValue() <= 31) {
16649        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16650        break;
16651      }
16652    }
16653    return;
16654  case 'J':
16655    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16656      if (C->getZExtValue() <= 63) {
16657        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16658        break;
16659      }
16660    }
16661    return;
16662  case 'K':
16663    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16664      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
16665        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16666        break;
16667      }
16668    }
16669    return;
16670  case 'N':
16671    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16672      if (C->getZExtValue() <= 255) {
16673        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16674        break;
16675      }
16676    }
16677    return;
16678  case 'e': {
16679    // 32-bit signed value
16680    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16681      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16682                                           C->getSExtValue())) {
16683        // Widen to 64 bits here to get it sign extended.
16684        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
16685        break;
16686      }
16687    // FIXME gcc accepts some relocatable values here too, but only in certain
16688    // memory models; it's complicated.
16689    }
16690    return;
16691  }
16692  case 'Z': {
16693    // 32-bit unsigned value
16694    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16695      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16696                                           C->getZExtValue())) {
16697        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16698        break;
16699      }
16700    }
16701    // FIXME gcc accepts some relocatable values here too, but only in certain
16702    // memory models; it's complicated.
16703    return;
16704  }
16705  case 'i': {
16706    // Literal immediates are always ok.
16707    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
16708      // Widen to 64 bits here to get it sign extended.
16709      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
16710      break;
16711    }
16712
16713    // In any sort of PIC mode addresses need to be computed at runtime by
16714    // adding in a register or some sort of table lookup.  These can't
16715    // be used as immediates.
16716    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
16717      return;
16718
16719    // If we are in non-pic codegen mode, we allow the address of a global (with
16720    // an optional displacement) to be used with 'i'.
16721    GlobalAddressSDNode *GA = 0;
16722    int64_t Offset = 0;
16723
16724    // Match either (GA), (GA+C), (GA+C1+C2), etc.
16725    while (1) {
16726      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
16727        Offset += GA->getOffset();
16728        break;
16729      } else if (Op.getOpcode() == ISD::ADD) {
16730        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16731          Offset += C->getZExtValue();
16732          Op = Op.getOperand(0);
16733          continue;
16734        }
16735      } else if (Op.getOpcode() == ISD::SUB) {
16736        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16737          Offset += -C->getZExtValue();
16738          Op = Op.getOperand(0);
16739          continue;
16740        }
16741      }
16742
16743      // Otherwise, this isn't something we can handle, reject it.
16744      return;
16745    }
16746
16747    const GlobalValue *GV = GA->getGlobal();
16748    // If we require an extra load to get this address, as in PIC mode, we
16749    // can't accept it.
16750    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
16751                                                        getTargetMachine())))
16752      return;
16753
16754    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
16755                                        GA->getValueType(0), Offset);
16756    break;
16757  }
16758  }
16759
16760  if (Result.getNode()) {
16761    Ops.push_back(Result);
16762    return;
16763  }
16764  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16765}
16766
16767std::pair<unsigned, const TargetRegisterClass*>
16768X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
16769                                                EVT VT) const {
16770  // First, see if this is a constraint that directly corresponds to an LLVM
16771  // register class.
16772  if (Constraint.size() == 1) {
16773    // GCC Constraint Letters
16774    switch (Constraint[0]) {
16775    default: break;
16776      // TODO: Slight differences here in allocation order and leaving
16777      // RIP in the class. Do they matter any more here than they do
16778      // in the normal allocation?
16779    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
16780      if (Subtarget->is64Bit()) {
16781        if (VT == MVT::i32 || VT == MVT::f32)
16782          return std::make_pair(0U, &X86::GR32RegClass);
16783        if (VT == MVT::i16)
16784          return std::make_pair(0U, &X86::GR16RegClass);
16785        if (VT == MVT::i8 || VT == MVT::i1)
16786          return std::make_pair(0U, &X86::GR8RegClass);
16787        if (VT == MVT::i64 || VT == MVT::f64)
16788          return std::make_pair(0U, &X86::GR64RegClass);
16789        break;
16790      }
16791      // 32-bit fallthrough
16792    case 'Q':   // Q_REGS
16793      if (VT == MVT::i32 || VT == MVT::f32)
16794        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
16795      if (VT == MVT::i16)
16796        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
16797      if (VT == MVT::i8 || VT == MVT::i1)
16798        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
16799      if (VT == MVT::i64)
16800        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
16801      break;
16802    case 'r':   // GENERAL_REGS
16803    case 'l':   // INDEX_REGS
16804      if (VT == MVT::i8 || VT == MVT::i1)
16805        return std::make_pair(0U, &X86::GR8RegClass);
16806      if (VT == MVT::i16)
16807        return std::make_pair(0U, &X86::GR16RegClass);
16808      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
16809        return std::make_pair(0U, &X86::GR32RegClass);
16810      return std::make_pair(0U, &X86::GR64RegClass);
16811    case 'R':   // LEGACY_REGS
16812      if (VT == MVT::i8 || VT == MVT::i1)
16813        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
16814      if (VT == MVT::i16)
16815        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
16816      if (VT == MVT::i32 || !Subtarget->is64Bit())
16817        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
16818      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
16819    case 'f':  // FP Stack registers.
16820      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
16821      // value to the correct fpstack register class.
16822      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
16823        return std::make_pair(0U, &X86::RFP32RegClass);
16824      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
16825        return std::make_pair(0U, &X86::RFP64RegClass);
16826      return std::make_pair(0U, &X86::RFP80RegClass);
16827    case 'y':   // MMX_REGS if MMX allowed.
16828      if (!Subtarget->hasMMX()) break;
16829      return std::make_pair(0U, &X86::VR64RegClass);
16830    case 'Y':   // SSE_REGS if SSE2 allowed
16831      if (!Subtarget->hasSSE2()) break;
16832      // FALL THROUGH.
16833    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
16834      if (!Subtarget->hasSSE1()) break;
16835
16836      switch (VT.getSimpleVT().SimpleTy) {
16837      default: break;
16838      // Scalar SSE types.
16839      case MVT::f32:
16840      case MVT::i32:
16841        return std::make_pair(0U, &X86::FR32RegClass);
16842      case MVT::f64:
16843      case MVT::i64:
16844        return std::make_pair(0U, &X86::FR64RegClass);
16845      // Vector types.
16846      case MVT::v16i8:
16847      case MVT::v8i16:
16848      case MVT::v4i32:
16849      case MVT::v2i64:
16850      case MVT::v4f32:
16851      case MVT::v2f64:
16852        return std::make_pair(0U, &X86::VR128RegClass);
16853      // AVX types.
16854      case MVT::v32i8:
16855      case MVT::v16i16:
16856      case MVT::v8i32:
16857      case MVT::v4i64:
16858      case MVT::v8f32:
16859      case MVT::v4f64:
16860        return std::make_pair(0U, &X86::VR256RegClass);
16861      }
16862      break;
16863    }
16864  }
16865
16866  // Use the default implementation in TargetLowering to convert the register
16867  // constraint into a member of a register class.
16868  std::pair<unsigned, const TargetRegisterClass*> Res;
16869  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
16870
16871  // Not found as a standard register?
16872  if (Res.second == 0) {
16873    // Map st(0) -> st(7) -> ST0
16874    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16875        tolower(Constraint[1]) == 's' &&
16876        tolower(Constraint[2]) == 't' &&
16877        Constraint[3] == '(' &&
16878        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16879        Constraint[5] == ')' &&
16880        Constraint[6] == '}') {
16881
16882      Res.first = X86::ST0+Constraint[4]-'0';
16883      Res.second = &X86::RFP80RegClass;
16884      return Res;
16885    }
16886
16887    // GCC allows "st(0)" to be called just plain "st".
16888    if (StringRef("{st}").equals_lower(Constraint)) {
16889      Res.first = X86::ST0;
16890      Res.second = &X86::RFP80RegClass;
16891      return Res;
16892    }
16893
16894    // flags -> EFLAGS
16895    if (StringRef("{flags}").equals_lower(Constraint)) {
16896      Res.first = X86::EFLAGS;
16897      Res.second = &X86::CCRRegClass;
16898      return Res;
16899    }
16900
16901    // 'A' means EAX + EDX.
16902    if (Constraint == "A") {
16903      Res.first = X86::EAX;
16904      Res.second = &X86::GR32_ADRegClass;
16905      return Res;
16906    }
16907    return Res;
16908  }
16909
16910  // Otherwise, check to see if this is a register class of the wrong value
16911  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16912  // turn into {ax},{dx}.
16913  if (Res.second->hasType(VT))
16914    return Res;   // Correct type already, nothing to do.
16915
16916  // All of the single-register GCC register classes map their values onto
16917  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16918  // really want an 8-bit or 32-bit register, map to the appropriate register
16919  // class and return the appropriate register.
16920  if (Res.second == &X86::GR16RegClass) {
16921    if (VT == MVT::i8) {
16922      unsigned DestReg = 0;
16923      switch (Res.first) {
16924      default: break;
16925      case X86::AX: DestReg = X86::AL; break;
16926      case X86::DX: DestReg = X86::DL; break;
16927      case X86::CX: DestReg = X86::CL; break;
16928      case X86::BX: DestReg = X86::BL; break;
16929      }
16930      if (DestReg) {
16931        Res.first = DestReg;
16932        Res.second = &X86::GR8RegClass;
16933      }
16934    } else if (VT == MVT::i32) {
16935      unsigned DestReg = 0;
16936      switch (Res.first) {
16937      default: break;
16938      case X86::AX: DestReg = X86::EAX; break;
16939      case X86::DX: DestReg = X86::EDX; break;
16940      case X86::CX: DestReg = X86::ECX; break;
16941      case X86::BX: DestReg = X86::EBX; break;
16942      case X86::SI: DestReg = X86::ESI; break;
16943      case X86::DI: DestReg = X86::EDI; break;
16944      case X86::BP: DestReg = X86::EBP; break;
16945      case X86::SP: DestReg = X86::ESP; break;
16946      }
16947      if (DestReg) {
16948        Res.first = DestReg;
16949        Res.second = &X86::GR32RegClass;
16950      }
16951    } else if (VT == MVT::i64) {
16952      unsigned DestReg = 0;
16953      switch (Res.first) {
16954      default: break;
16955      case X86::AX: DestReg = X86::RAX; break;
16956      case X86::DX: DestReg = X86::RDX; break;
16957      case X86::CX: DestReg = X86::RCX; break;
16958      case X86::BX: DestReg = X86::RBX; break;
16959      case X86::SI: DestReg = X86::RSI; break;
16960      case X86::DI: DestReg = X86::RDI; break;
16961      case X86::BP: DestReg = X86::RBP; break;
16962      case X86::SP: DestReg = X86::RSP; break;
16963      }
16964      if (DestReg) {
16965        Res.first = DestReg;
16966        Res.second = &X86::GR64RegClass;
16967      }
16968    }
16969  } else if (Res.second == &X86::FR32RegClass ||
16970             Res.second == &X86::FR64RegClass ||
16971             Res.second == &X86::VR128RegClass) {
16972    // Handle references to XMM physical registers that got mapped into the
16973    // wrong class.  This can happen with constraints like {xmm0} where the
16974    // target independent register mapper will just pick the first match it can
16975    // find, ignoring the required type.
16976
16977    if (VT == MVT::f32 || VT == MVT::i32)
16978      Res.second = &X86::FR32RegClass;
16979    else if (VT == MVT::f64 || VT == MVT::i64)
16980      Res.second = &X86::FR64RegClass;
16981    else if (X86::VR128RegClass.hasType(VT))
16982      Res.second = &X86::VR128RegClass;
16983    else if (X86::VR256RegClass.hasType(VT))
16984      Res.second = &X86::VR256RegClass;
16985  }
16986
16987  return Res;
16988}
16989