X86ISelLowering.cpp revision 9142ed58eb9e613ca72e5ac67b827a5e421a5e93
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec,
66                                   SDValue Idx,
67                                   SelectionDAG &DAG,
68                                   DebugLoc dl) {
69  EVT VT = Vec.getValueType();
70  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71  EVT ElVT = VT.getVectorElementType();
72  int Factor = VT.getSizeInBits()/128;
73  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74                                  VT.getVectorNumElements()/Factor);
75
76  // Extract from UNDEF is UNDEF.
77  if (Vec.getOpcode() == ISD::UNDEF)
78    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
79
80  if (isa<ConstantSDNode>(Idx)) {
81    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
82
83    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
84    // we can match to VEXTRACTF128.
85    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
86
87    // This is the index of the first element of the 128-bit chunk
88    // we want.
89    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
90                                 * ElemsPerChunk);
91
92    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94                                 VecIdx);
95
96    return Result;
97  }
98
99  return SDValue();
100}
101
102/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
103/// sets things up to match to an AVX VINSERTF128 instruction or a
104/// simple superregister reference.  Idx is an index in the 128 bits
105/// we want.  It need not be aligned to a 128-bit bounday.  That makes
106/// lowering INSERT_VECTOR_ELT operations easier.
107static SDValue Insert128BitVector(SDValue Result,
108                                  SDValue Vec,
109                                  SDValue Idx,
110                                  SelectionDAG &DAG,
111                                  DebugLoc dl) {
112  if (isa<ConstantSDNode>(Idx)) {
113    EVT VT = Vec.getValueType();
114    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
115
116    EVT ElVT = VT.getVectorElementType();
117    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118    EVT ResultVT = Result.getValueType();
119
120    // Insert the relevant 128 bits.
121    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
122
123    // This is the index of the first element of the 128-bit chunk
124    // we want.
125    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
126                                 * ElemsPerChunk);
127
128    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
130                         VecIdx);
131    return Result;
132  }
133
134  return SDValue();
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X8664_MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetELF())
148    return new TargetLoweringObjectFileELF();
149  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150    return new TargetLoweringObjectFileCOFF();
151  llvm_unreachable("unknown subtarget type");
152}
153
154X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155  : TargetLowering(TM, createTLOF(TM)) {
156  Subtarget = &TM.getSubtarget<X86Subtarget>();
157  X86ScalarSSEf64 = Subtarget->hasSSE2();
158  X86ScalarSSEf32 = Subtarget->hasSSE1();
159  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
160
161  RegInfo = TM.getRegisterInfo();
162  TD = getTargetData();
163
164  // Set up the TargetLowering object.
165  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
166
167  // X86 is weird, it always uses i8 for shift amounts and setcc results.
168  setBooleanContents(ZeroOrOneBooleanContent);
169  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
171
172  // For 64-bit since we have so many registers use the ILP scheduler, for
173  // 32-bit code use the register pressure specific scheduling.
174  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175  if (Subtarget->is64Bit())
176    setSchedulingPreference(Sched::ILP);
177  else if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::Hybrid);
179  else
180    setSchedulingPreference(Sched::RegPressure);
181  setStackPointerRegisterToSaveRestore(X86StackPtr);
182
183  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184    // Setup Windows compiler runtime calls.
185    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187    setLibcallName(RTLIB::SREM_I64, "_allrem");
188    setLibcallName(RTLIB::UREM_I64, "_aullrem");
189    setLibcallName(RTLIB::MUL_I64, "_allmul");
190    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
195
196    // The _ftol2 runtime function has an unusual calling conv, which
197    // is modeled by a special pseudo-instruction.
198    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
202  }
203
204  if (Subtarget->isTargetDarwin()) {
205    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206    setUseUnderscoreSetJmp(false);
207    setUseUnderscoreLongJmp(false);
208  } else if (Subtarget->isTargetMingw()) {
209    // MS runtime is weird: it exports _setjmp, but longjmp!
210    setUseUnderscoreSetJmp(true);
211    setUseUnderscoreLongJmp(false);
212  } else {
213    setUseUnderscoreSetJmp(true);
214    setUseUnderscoreLongJmp(true);
215  }
216
217  // Set up the register classes.
218  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221  if (Subtarget->is64Bit())
222    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
223
224  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225
226  // We don't accept any truncstore of integer registers.
227  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233
234  // SETOEQ and SETUNE require checking two conditions.
235  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241
242  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243  // operation.
244  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247
248  if (Subtarget->is64Bit()) {
249    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251  } else if (!TM.Options.UseSoftFloat) {
252    // We have an algorithm for SSE2->double, and we turn this into a
253    // 64-bit FILD followed by conditional FADD for other targets.
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255    // We have an algorithm for SSE2, and we turn this into a 64-bit
256    // FILD for other targets.
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258  }
259
260  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261  // this operation.
262  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264
265  if (!TM.Options.UseSoftFloat) {
266    // SSE has no i16 to fp conversion, only i32
267    if (X86ScalarSSEf32) {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269      // f32 and f64 cases are Legal, f80 case is not
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271    } else {
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274    }
275  } else {
276    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278  }
279
280  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281  // are Legal, f80 is custom lowered.
282  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284
285  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286  // this operation.
287  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289
290  if (X86ScalarSSEf32) {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292    // f32 and f64 cases are Legal, f80 case is not
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294  } else {
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297  }
298
299  // Handle FP_TO_UINT by promoting the destination to a larger signed
300  // conversion.
301  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304
305  if (Subtarget->is64Bit()) {
306    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308  } else if (!TM.Options.UseSoftFloat) {
309    // Since AVX is a superset of SSE3, only check for SSE here.
310    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311      // Expand FP_TO_UINT into a select.
312      // FIXME: We would like to use a Custom expander here eventually to do
313      // the optimal thing for SSE vs. the default expansion in the legalizer.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315    else
316      // With SSE3 we can use fisttpll to convert to a signed i64; without
317      // SSE, we're stuck with a fistpll.
318      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319  }
320
321  if (isTargetFTOL()) {
322    // Use the _ftol2 runtime function, which has a pseudo-instruction
323    // to handle its weird calling convention.
324    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
325  }
326
327  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328  if (!X86ScalarSSEf64) {
329    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331    if (Subtarget->is64Bit()) {
332      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333      // Without SSE, i64->f64 goes through memory.
334      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335    }
336  }
337
338  // Scalar integer divide and remainder are lowered to use operations that
339  // produce two results, to match the available instructions. This exposes
340  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341  // into a single instruction.
342  //
343  // Scalar integer multiply-high is also lowered to use two-result
344  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  // Promote the i8 variants and force them on up to i32 which has a shorter
380  // encoding.
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
382  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
390  } else {
391    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
392    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
395  }
396
397  if (Subtarget->hasLZCNT()) {
398    // When promoting the i8 variants, force them to i32 for a shorter
399    // encoding.
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
402    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
408  } else {
409    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
415    if (Subtarget->is64Bit()) {
416      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418    }
419  }
420
421  if (Subtarget->hasPOPCNT()) {
422    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
423  } else {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
427    if (Subtarget->is64Bit())
428      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
429  }
430
431  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
432  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
433
434  // These should be promoted to a larger select which is supported.
435  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
436  // X86 wants to expand cmov itself.
437  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
449  if (Subtarget->is64Bit()) {
450    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
451    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
452  }
453  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
454
455  // Darwin ABI issue.
456  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
457  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
460  if (Subtarget->is64Bit())
461    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
463  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
466    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
467    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
468    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
469    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
470  }
471  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
475  if (Subtarget->is64Bit()) {
476    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
479  }
480
481  if (Subtarget->hasSSE1())
482    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
483
484  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
485  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
486
487  // On X86 and X86-64, atomic operations are lowered to locked instructions.
488  // Locked instructions, in turn, have implicit fence semantics (all memory
489  // operations are flushed before issuing the locked instruction, and they
490  // are not buffered), so we can fold away the common pattern of
491  // fence-atomic-fence.
492  setShouldFoldAtomicFences(true);
493
494  // Expand certain atomics
495  for (unsigned i = 0, e = 4; i != e; ++i) {
496    MVT VT = IntVTs[i];
497    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
500  }
501
502  if (!Subtarget->is64Bit()) {
503    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
511  }
512
513  if (Subtarget->hasCmpxchg16b()) {
514    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
515  }
516
517  // FIXME - use subtarget debug flags
518  if (!Subtarget->isTargetDarwin() &&
519      !Subtarget->isTargetELF() &&
520      !Subtarget->isTargetCygMing()) {
521    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
522  }
523
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
528  if (Subtarget->is64Bit()) {
529    setExceptionPointerRegister(X86::RAX);
530    setExceptionSelectorRegister(X86::RDX);
531  } else {
532    setExceptionPointerRegister(X86::EAX);
533    setExceptionSelectorRegister(X86::EDX);
534  }
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
537
538  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
545  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
549  } else {
550    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
552  }
553
554  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
555  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
556
557  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Custom);
560  else if (TM.Options.EnableSegmentedStacks)
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Expand);
566
567  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568    // f32 and f64 use SSE.
569    // Set up the FP register classes.
570    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
571    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
572
573    // Use ANDPD to simulate FABS.
574    setOperationAction(ISD::FABS , MVT::f64, Custom);
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f64, Custom);
579    setOperationAction(ISD::FNEG , MVT::f32, Custom);
580
581    // Use ANDPD and ORPD to simulate FCOPYSIGN.
582    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
584
585    // Lower this to FGETSIGNx86 plus an AND.
586    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f64, Expand);
591    setOperationAction(ISD::FCOS , MVT::f64, Expand);
592    setOperationAction(ISD::FSIN , MVT::f32, Expand);
593    setOperationAction(ISD::FCOS , MVT::f32, Expand);
594
595    // Expand FP immediates into loads from the stack, except for the special
596    // cases we handle.
597    addLegalFPImmediate(APFloat(+0.0)); // xorpd
598    addLegalFPImmediate(APFloat(+0.0f)); // xorps
599  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600    // Use SSE for f32, x87 for f64.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
603    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
604
605    // Use ANDPS to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f32, Custom);
607
608    // Use XORP to simulate FNEG.
609    setOperationAction(ISD::FNEG , MVT::f32, Custom);
610
611    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
612
613    // Use ANDPS and ORPS to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // We don't support sin/cos/fmod
618    setOperationAction(ISD::FSIN , MVT::f32, Expand);
619    setOperationAction(ISD::FCOS , MVT::f32, Expand);
620
621    // Special cases we handle for FP constants.
622    addLegalFPImmediate(APFloat(+0.0f)); // xorps
623    addLegalFPImmediate(APFloat(+0.0)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
627
628    if (!TM.Options.UnsafeFPMath) {
629      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
630      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
631    }
632  } else if (!TM.Options.UseSoftFloat) {
633    // f32 and f64 in x87.
634    // Set up the FP register classes.
635    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
636    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
637
638    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
639    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
642
643    if (!TM.Options.UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
646    }
647    addLegalFPImmediate(APFloat(+0.0)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
655  }
656
657  // We don't support FMA.
658  setOperationAction(ISD::FMA, MVT::f64, Expand);
659  setOperationAction(ISD::FMA, MVT::f32, Expand);
660
661  // Long double always uses X87.
662  if (!TM.Options.UseSoftFloat) {
663    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
664    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
665    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
666    {
667      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668      addLegalFPImmediate(TmpFlt);  // FLD0
669      TmpFlt.changeSign();
670      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
671
672      bool ignored;
673      APFloat TmpFlt2(+1.0);
674      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
675                      &ignored);
676      addLegalFPImmediate(TmpFlt2);  // FLD1
677      TmpFlt2.changeSign();
678      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
679    }
680
681    if (!TM.Options.UnsafeFPMath) {
682      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
683      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
684    }
685
686    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
688    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
690    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691    setOperationAction(ISD::FMA, MVT::f80, Expand);
692  }
693
694  // Always use a library call for pow.
695  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
698
699  setOperationAction(ISD::FLOG, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
704
705  // First set operation action for all vector types to either promote
706  // (for widening) or expand (for scalarization). Then we will selectively
707  // turn on ones that can be effectively codegen'd.
708  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
767    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769      setTruncStoreAction((MVT::SimpleValueType)VT,
770                          (MVT::SimpleValueType)InnerVT, Expand);
771    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
774  }
775
776  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777  // with -msoft-float, disable use of MMX as well.
778  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
780    // No operations on x86mmx supported, everything uses intrinsics.
781  }
782
783  // MMX-sized vectors (other than x86mmx) are expected to be expanded
784  // into smaller operations.
785  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
786  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
789  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
790  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
791  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
792  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
793  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
794  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
795  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
796  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
797  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
799  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
800  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
805  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
806  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
807  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
814
815  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
817
818    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
823    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
824    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
826    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
827    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
829    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
830  }
831
832  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
834
835    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836    // registers cannot be used even for integer operations.
837    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
838    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
839    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
841
842    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
843    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
844    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
845    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
847    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
848    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
849    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
850    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
851    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
852    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
857    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
858
859    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
863
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
869
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878      EVT VT = (MVT::SimpleValueType)i;
879      // Do not attempt to custom lower non-power-of-2 vectors
880      if (!isPowerOf2_32(VT.getVectorNumElements()))
881        continue;
882      // Do not attempt to custom lower non-128-bit vectors
883      if (!VT.is128BitVector())
884        continue;
885      setOperationAction(ISD::BUILD_VECTOR,
886                         VT.getSimpleVT().SimpleTy, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890                         VT.getSimpleVT().SimpleTy, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
908      EVT VT = SVT;
909
910      // Do not attempt to promote non-128-bit vectors
911      if (!VT.is128BitVector())
912        continue;
913
914      setOperationAction(ISD::AND,    SVT, Promote);
915      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
916      setOperationAction(ISD::OR,     SVT, Promote);
917      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
918      setOperationAction(ISD::XOR,    SVT, Promote);
919      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
920      setOperationAction(ISD::LOAD,   SVT, Promote);
921      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
922      setOperationAction(ISD::SELECT, SVT, Promote);
923      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936  }
937
938  if (Subtarget->hasSSE41()) {
939    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
944    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
945    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
946    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
947    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
948    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
949
950    // FIXME: Do we need to handle scalar-to-vector here?
951    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
952
953    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
958
959    // i8 and i16 vectors are custom , because the source register and source
960    // source memory operand types are not the same width.  f32 vectors are
961    // custom since the immediate controlling the insert encodes additional
962    // information.
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
972
973    // FIXME: these should be Legal but thats only for the case where
974    // the index is constant.  For now custom expand to deal with that.
975    if (Subtarget->is64Bit()) {
976      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
977      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
978    }
979  }
980
981  if (Subtarget->hasSSE2()) {
982    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
984
985    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
990
991    if (Subtarget->hasAVX2()) {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
999    } else {
1000      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1001      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1002
1003      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE42())
1011    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1012
1013  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1016    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1020
1021    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1024
1025    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1030    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1031
1032    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1037    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1038
1039    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1042
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasAVX2()) {
1074      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1085      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1087      // Don't lower v32i8 because there is no 128-bit byte mul
1088
1089      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1090
1091      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1092      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1093
1094      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1098    } else {
1099      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1112      // Don't lower v32i8 because there is no 128-bit byte mul
1113
1114      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1116
1117      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1121    }
1122
1123    // Custom lower several nodes for 256-bit types.
1124    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1127      EVT VT = SVT;
1128
1129      // Extract subvector is special because the value type
1130      // (result) is 128-bit but the source is 256-bit wide.
1131      if (VT.is128BitVector())
1132        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1133
1134      // Do not attempt to custom lower other non-256-bit vectors
1135      if (!VT.is256BitVector())
1136        continue;
1137
1138      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1139      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1140      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1141      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1143      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1144    }
1145
1146    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1149      EVT VT = SVT;
1150
1151      // Do not attempt to promote non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::AND,    SVT, Promote);
1156      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::OR,     SVT, Promote);
1158      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1159      setOperationAction(ISD::XOR,    SVT, Promote);
1160      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1161      setOperationAction(ISD::LOAD,   SVT, Promote);
1162      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1163      setOperationAction(ISD::SELECT, SVT, Promote);
1164      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1165    }
1166  }
1167
1168  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169  // of this type with custom code.
1170  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1173                       Custom);
1174  }
1175
1176  // We want to custom lower some of our intrinsics.
1177  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1178
1179
1180  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181  // handle type legalization for these operations here.
1182  //
1183  // FIXME: We really should do custom legalization for addition and
1184  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1185  // than generic legalization for 64-bit multiplication-with-overflow, though.
1186  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187    // Add/Sub/Mul with overflow operations are custom lowered.
1188    MVT VT = IntVTs[i];
1189    setOperationAction(ISD::SADDO, VT, Custom);
1190    setOperationAction(ISD::UADDO, VT, Custom);
1191    setOperationAction(ISD::SSUBO, VT, Custom);
1192    setOperationAction(ISD::USUBO, VT, Custom);
1193    setOperationAction(ISD::SMULO, VT, Custom);
1194    setOperationAction(ISD::UMULO, VT, Custom);
1195  }
1196
1197  // There are no 8-bit 3-address imul/mul instructions
1198  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1200
1201  if (!Subtarget->is64Bit()) {
1202    // These libcalls are not available in 32-bit.
1203    setLibcallName(RTLIB::SHL_I128, 0);
1204    setLibcallName(RTLIB::SRL_I128, 0);
1205    setLibcallName(RTLIB::SRA_I128, 0);
1206  }
1207
1208  // We have target-specific dag combine patterns for the following nodes:
1209  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211  setTargetDAGCombine(ISD::VSELECT);
1212  setTargetDAGCombine(ISD::SELECT);
1213  setTargetDAGCombine(ISD::SHL);
1214  setTargetDAGCombine(ISD::SRA);
1215  setTargetDAGCombine(ISD::SRL);
1216  setTargetDAGCombine(ISD::OR);
1217  setTargetDAGCombine(ISD::AND);
1218  setTargetDAGCombine(ISD::ADD);
1219  setTargetDAGCombine(ISD::FADD);
1220  setTargetDAGCombine(ISD::FSUB);
1221  setTargetDAGCombine(ISD::SUB);
1222  setTargetDAGCombine(ISD::LOAD);
1223  setTargetDAGCombine(ISD::STORE);
1224  setTargetDAGCombine(ISD::ZERO_EXTEND);
1225  setTargetDAGCombine(ISD::SIGN_EXTEND);
1226  setTargetDAGCombine(ISD::TRUNCATE);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = (Subtarget->is64Bit()
1415           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416    break;
1417  case MVT::x86mmx:
1418    RRC = X86::VR64RegisterClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = X86::VR128RegisterClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460				  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDValue TCChain = Chain;
1588  SDNode *Copy = *N->use_begin();
1589  if (Copy->getOpcode() == ISD::CopyToReg) {
1590    // If the copy has a glue operand, we conservatively assume it isn't safe to
1591    // perform a tail call.
1592    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1593      return false;
1594    TCChain = Copy->getOperand(0);
1595  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1596    return false;
1597
1598  bool HasRet = false;
1599  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1600       UI != UE; ++UI) {
1601    if (UI->getOpcode() != X86ISD::RET_FLAG)
1602      return false;
1603    HasRet = true;
1604  }
1605
1606  if (!HasRet)
1607    return false;
1608
1609  Chain = TCChain;
1610  return true;
1611}
1612
1613EVT
1614X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1615                                            ISD::NodeType ExtendKind) const {
1616  MVT ReturnMVT;
1617  // TODO: Is this also valid on 32-bit?
1618  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1619    ReturnMVT = MVT::i8;
1620  else
1621    ReturnMVT = MVT::i32;
1622
1623  EVT MinVT = getRegisterType(Context, ReturnMVT);
1624  return VT.bitsLT(MinVT) ? MinVT : VT;
1625}
1626
1627/// LowerCallResult - Lower the result values of a call into the
1628/// appropriate copies out of appropriate physical registers.
1629///
1630SDValue
1631X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1632                                   CallingConv::ID CallConv, bool isVarArg,
1633                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1634                                   DebugLoc dl, SelectionDAG &DAG,
1635                                   SmallVectorImpl<SDValue> &InVals) const {
1636
1637  // Assign locations to each value returned by this call.
1638  SmallVector<CCValAssign, 16> RVLocs;
1639  bool Is64Bit = Subtarget->is64Bit();
1640  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1641		 getTargetMachine(), RVLocs, *DAG.getContext());
1642  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1643
1644  // Copy all of the result registers out of their specified physreg.
1645  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1646    CCValAssign &VA = RVLocs[i];
1647    EVT CopyVT = VA.getValVT();
1648
1649    // If this is x86-64, and we disabled SSE, we can't return FP values
1650    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1651        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1652      report_fatal_error("SSE register return with SSE disabled");
1653    }
1654
1655    SDValue Val;
1656
1657    // If this is a call to a function that returns an fp value on the floating
1658    // point stack, we must guarantee the the value is popped from the stack, so
1659    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1660    // if the return value is not used. We use the FpPOP_RETVAL instruction
1661    // instead.
1662    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1663      // If we prefer to use the value in xmm registers, copy it out as f80 and
1664      // use a truncate to move it from fp stack reg to xmm reg.
1665      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1666      SDValue Ops[] = { Chain, InFlag };
1667      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1668                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1669      Val = Chain.getValue(0);
1670
1671      // Round the f80 to the right size, which also moves it to the appropriate
1672      // xmm register.
1673      if (CopyVT != VA.getValVT())
1674        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1675                          // This truncation won't change the value.
1676                          DAG.getIntPtrConstant(1));
1677    } else {
1678      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1679                                 CopyVT, InFlag).getValue(1);
1680      Val = Chain.getValue(0);
1681    }
1682    InFlag = Chain.getValue(2);
1683    InVals.push_back(Val);
1684  }
1685
1686  return Chain;
1687}
1688
1689
1690//===----------------------------------------------------------------------===//
1691//                C & StdCall & Fast Calling Convention implementation
1692//===----------------------------------------------------------------------===//
1693//  StdCall calling convention seems to be standard for many Windows' API
1694//  routines and around. It differs from C calling convention just a little:
1695//  callee should clean up the stack, not caller. Symbols should be also
1696//  decorated in some fancy way :) It doesn't support any vector arguments.
1697//  For info on fast calling convention see Fast Calling Convention (tail call)
1698//  implementation LowerX86_32FastCCCallTo.
1699
1700/// CallIsStructReturn - Determines whether a call uses struct return
1701/// semantics.
1702static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1703  if (Outs.empty())
1704    return false;
1705
1706  return Outs[0].Flags.isSRet();
1707}
1708
1709/// ArgsAreStructReturn - Determines whether a function uses struct
1710/// return semantics.
1711static bool
1712ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1713  if (Ins.empty())
1714    return false;
1715
1716  return Ins[0].Flags.isSRet();
1717}
1718
1719/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1720/// by "Src" to address "Dst" with size and alignment information specified by
1721/// the specific parameter attribute. The copy will be passed as a byval
1722/// function parameter.
1723static SDValue
1724CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1725                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1726                          DebugLoc dl) {
1727  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1728
1729  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1730                       /*isVolatile*/false, /*AlwaysInline=*/true,
1731                       MachinePointerInfo(), MachinePointerInfo());
1732}
1733
1734/// IsTailCallConvention - Return true if the calling convention is one that
1735/// supports tail call optimization.
1736static bool IsTailCallConvention(CallingConv::ID CC) {
1737  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1738}
1739
1740bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1741  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1742    return false;
1743
1744  CallSite CS(CI);
1745  CallingConv::ID CalleeCC = CS.getCallingConv();
1746  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1747    return false;
1748
1749  return true;
1750}
1751
1752/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1753/// a tailcall target by changing its ABI.
1754static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1755                                   bool GuaranteedTailCallOpt) {
1756  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1757}
1758
1759SDValue
1760X86TargetLowering::LowerMemArgument(SDValue Chain,
1761                                    CallingConv::ID CallConv,
1762                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1763                                    DebugLoc dl, SelectionDAG &DAG,
1764                                    const CCValAssign &VA,
1765                                    MachineFrameInfo *MFI,
1766                                    unsigned i) const {
1767  // Create the nodes corresponding to a load from this parameter slot.
1768  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1769  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1770                              getTargetMachine().Options.GuaranteedTailCallOpt);
1771  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1772  EVT ValVT;
1773
1774  // If value is passed by pointer we have address passed instead of the value
1775  // itself.
1776  if (VA.getLocInfo() == CCValAssign::Indirect)
1777    ValVT = VA.getLocVT();
1778  else
1779    ValVT = VA.getValVT();
1780
1781  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1782  // changed with more analysis.
1783  // In case of tail call optimization mark all arguments mutable. Since they
1784  // could be overwritten by lowering of arguments in case of a tail call.
1785  if (Flags.isByVal()) {
1786    unsigned Bytes = Flags.getByValSize();
1787    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1788    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1789    return DAG.getFrameIndex(FI, getPointerTy());
1790  } else {
1791    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1792                                    VA.getLocMemOffset(), isImmutable);
1793    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1794    return DAG.getLoad(ValVT, dl, Chain, FIN,
1795                       MachinePointerInfo::getFixedStack(FI),
1796                       false, false, false, 0);
1797  }
1798}
1799
1800SDValue
1801X86TargetLowering::LowerFormalArguments(SDValue Chain,
1802                                        CallingConv::ID CallConv,
1803                                        bool isVarArg,
1804                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1805                                        DebugLoc dl,
1806                                        SelectionDAG &DAG,
1807                                        SmallVectorImpl<SDValue> &InVals)
1808                                          const {
1809  MachineFunction &MF = DAG.getMachineFunction();
1810  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1811
1812  const Function* Fn = MF.getFunction();
1813  if (Fn->hasExternalLinkage() &&
1814      Subtarget->isTargetCygMing() &&
1815      Fn->getName() == "main")
1816    FuncInfo->setForceFramePointer(true);
1817
1818  MachineFrameInfo *MFI = MF.getFrameInfo();
1819  bool Is64Bit = Subtarget->is64Bit();
1820  bool IsWindows = Subtarget->isTargetWindows();
1821  bool IsWin64 = Subtarget->isTargetWin64();
1822
1823  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1824         "Var args not supported with calling convention fastcc or ghc");
1825
1826  // Assign locations to all of the incoming arguments.
1827  SmallVector<CCValAssign, 16> ArgLocs;
1828  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1829                 ArgLocs, *DAG.getContext());
1830
1831  // Allocate shadow area for Win64
1832  if (IsWin64) {
1833    CCInfo.AllocateStack(32, 8);
1834  }
1835
1836  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1837
1838  unsigned LastVal = ~0U;
1839  SDValue ArgValue;
1840  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1841    CCValAssign &VA = ArgLocs[i];
1842    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1843    // places.
1844    assert(VA.getValNo() != LastVal &&
1845           "Don't support value assigned to multiple locs yet");
1846    (void)LastVal;
1847    LastVal = VA.getValNo();
1848
1849    if (VA.isRegLoc()) {
1850      EVT RegVT = VA.getLocVT();
1851      const TargetRegisterClass *RC;
1852      if (RegVT == MVT::i32)
1853        RC = X86::GR32RegisterClass;
1854      else if (Is64Bit && RegVT == MVT::i64)
1855        RC = X86::GR64RegisterClass;
1856      else if (RegVT == MVT::f32)
1857        RC = X86::FR32RegisterClass;
1858      else if (RegVT == MVT::f64)
1859        RC = X86::FR64RegisterClass;
1860      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1861        RC = X86::VR256RegisterClass;
1862      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1863        RC = X86::VR128RegisterClass;
1864      else if (RegVT == MVT::x86mmx)
1865        RC = X86::VR64RegisterClass;
1866      else
1867        llvm_unreachable("Unknown argument type!");
1868
1869      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1870      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1871
1872      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1873      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1874      // right size.
1875      if (VA.getLocInfo() == CCValAssign::SExt)
1876        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1877                               DAG.getValueType(VA.getValVT()));
1878      else if (VA.getLocInfo() == CCValAssign::ZExt)
1879        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1880                               DAG.getValueType(VA.getValVT()));
1881      else if (VA.getLocInfo() == CCValAssign::BCvt)
1882        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1883
1884      if (VA.isExtInLoc()) {
1885        // Handle MMX values passed in XMM regs.
1886        if (RegVT.isVector()) {
1887          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1888                                 ArgValue);
1889        } else
1890          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1891      }
1892    } else {
1893      assert(VA.isMemLoc());
1894      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1895    }
1896
1897    // If value is passed via pointer - do a load.
1898    if (VA.getLocInfo() == CCValAssign::Indirect)
1899      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1900                             MachinePointerInfo(), false, false, false, 0);
1901
1902    InVals.push_back(ArgValue);
1903  }
1904
1905  // The x86-64 ABI for returning structs by value requires that we copy
1906  // the sret argument into %rax for the return. Save the argument into
1907  // a virtual register so that we can access it from the return points.
1908  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1909    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1910    unsigned Reg = FuncInfo->getSRetReturnReg();
1911    if (!Reg) {
1912      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1913      FuncInfo->setSRetReturnReg(Reg);
1914    }
1915    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1916    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1917  }
1918
1919  unsigned StackSize = CCInfo.getNextStackOffset();
1920  // Align stack specially for tail calls.
1921  if (FuncIsMadeTailCallSafe(CallConv,
1922                             MF.getTarget().Options.GuaranteedTailCallOpt))
1923    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1924
1925  // If the function takes variable number of arguments, make a frame index for
1926  // the start of the first vararg value... for expansion of llvm.va_start.
1927  if (isVarArg) {
1928    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1929                    CallConv != CallingConv::X86_ThisCall)) {
1930      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1931    }
1932    if (Is64Bit) {
1933      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1934
1935      // FIXME: We should really autogenerate these arrays
1936      static const uint16_t GPR64ArgRegsWin64[] = {
1937        X86::RCX, X86::RDX, X86::R8,  X86::R9
1938      };
1939      static const uint16_t GPR64ArgRegs64Bit[] = {
1940        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1941      };
1942      static const uint16_t XMMArgRegs64Bit[] = {
1943        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1944        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1945      };
1946      const uint16_t *GPR64ArgRegs;
1947      unsigned NumXMMRegs = 0;
1948
1949      if (IsWin64) {
1950        // The XMM registers which might contain var arg parameters are shadowed
1951        // in their paired GPR.  So we only need to save the GPR to their home
1952        // slots.
1953        TotalNumIntRegs = 4;
1954        GPR64ArgRegs = GPR64ArgRegsWin64;
1955      } else {
1956        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1957        GPR64ArgRegs = GPR64ArgRegs64Bit;
1958
1959        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1960                                                TotalNumXMMRegs);
1961      }
1962      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1963                                                       TotalNumIntRegs);
1964
1965      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1966      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1967             "SSE register cannot be used when SSE is disabled!");
1968      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1969               NoImplicitFloatOps) &&
1970             "SSE register cannot be used when SSE is disabled!");
1971      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1972          !Subtarget->hasSSE1())
1973        // Kernel mode asks for SSE to be disabled, so don't push them
1974        // on the stack.
1975        TotalNumXMMRegs = 0;
1976
1977      if (IsWin64) {
1978        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1979        // Get to the caller-allocated home save location.  Add 8 to account
1980        // for the return address.
1981        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1982        FuncInfo->setRegSaveFrameIndex(
1983          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1984        // Fixup to set vararg frame on shadow area (4 x i64).
1985        if (NumIntRegs < 4)
1986          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1987      } else {
1988        // For X86-64, if there are vararg parameters that are passed via
1989        // registers, then we must store them to their spots on the stack so
1990        // they may be loaded by deferencing the result of va_next.
1991        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1992        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1993        FuncInfo->setRegSaveFrameIndex(
1994          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1995                               false));
1996      }
1997
1998      // Store the integer parameter registers.
1999      SmallVector<SDValue, 8> MemOps;
2000      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2001                                        getPointerTy());
2002      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2003      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2004        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2005                                  DAG.getIntPtrConstant(Offset));
2006        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2007                                     X86::GR64RegisterClass);
2008        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2009        SDValue Store =
2010          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2011                       MachinePointerInfo::getFixedStack(
2012                         FuncInfo->getRegSaveFrameIndex(), Offset),
2013                       false, false, 0);
2014        MemOps.push_back(Store);
2015        Offset += 8;
2016      }
2017
2018      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2019        // Now store the XMM (fp + vector) parameter registers.
2020        SmallVector<SDValue, 11> SaveXMMOps;
2021        SaveXMMOps.push_back(Chain);
2022
2023        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2024        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2025        SaveXMMOps.push_back(ALVal);
2026
2027        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2028                               FuncInfo->getRegSaveFrameIndex()));
2029        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2030                               FuncInfo->getVarArgsFPOffset()));
2031
2032        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2033          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2034                                       X86::VR128RegisterClass);
2035          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2036          SaveXMMOps.push_back(Val);
2037        }
2038        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2039                                     MVT::Other,
2040                                     &SaveXMMOps[0], SaveXMMOps.size()));
2041      }
2042
2043      if (!MemOps.empty())
2044        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2045                            &MemOps[0], MemOps.size());
2046    }
2047  }
2048
2049  // Some CCs need callee pop.
2050  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2051                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2052    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2053  } else {
2054    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2055    // If this is an sret function, the return should pop the hidden pointer.
2056    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2057        ArgsAreStructReturn(Ins))
2058      FuncInfo->setBytesToPopOnReturn(4);
2059  }
2060
2061  if (!Is64Bit) {
2062    // RegSaveFrameIndex is X86-64 only.
2063    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2064    if (CallConv == CallingConv::X86_FastCall ||
2065        CallConv == CallingConv::X86_ThisCall)
2066      // fastcc functions can't have varargs.
2067      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2068  }
2069
2070  FuncInfo->setArgumentStackSize(StackSize);
2071
2072  return Chain;
2073}
2074
2075SDValue
2076X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2077                                    SDValue StackPtr, SDValue Arg,
2078                                    DebugLoc dl, SelectionDAG &DAG,
2079                                    const CCValAssign &VA,
2080                                    ISD::ArgFlagsTy Flags) const {
2081  unsigned LocMemOffset = VA.getLocMemOffset();
2082  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2083  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2084  if (Flags.isByVal())
2085    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2086
2087  return DAG.getStore(Chain, dl, Arg, PtrOff,
2088                      MachinePointerInfo::getStack(LocMemOffset),
2089                      false, false, 0);
2090}
2091
2092/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2093/// optimization is performed and it is required.
2094SDValue
2095X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2096                                           SDValue &OutRetAddr, SDValue Chain,
2097                                           bool IsTailCall, bool Is64Bit,
2098                                           int FPDiff, DebugLoc dl) const {
2099  // Adjust the Return address stack slot.
2100  EVT VT = getPointerTy();
2101  OutRetAddr = getReturnAddressFrameIndex(DAG);
2102
2103  // Load the "old" Return address.
2104  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2105                           false, false, false, 0);
2106  return SDValue(OutRetAddr.getNode(), 1);
2107}
2108
2109/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2110/// optimization is performed and it is required (FPDiff!=0).
2111static SDValue
2112EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2113                         SDValue Chain, SDValue RetAddrFrIdx,
2114                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2115  // Store the return address to the appropriate stack slot.
2116  if (!FPDiff) return Chain;
2117  // Calculate the new stack slot for the return address.
2118  int SlotSize = Is64Bit ? 8 : 4;
2119  int NewReturnAddrFI =
2120    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2121  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2122  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2123  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2124                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2125                       false, false, 0);
2126  return Chain;
2127}
2128
2129SDValue
2130X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2131                             CallingConv::ID CallConv, bool isVarArg,
2132                             bool doesNotRet, bool &isTailCall,
2133                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2134                             const SmallVectorImpl<SDValue> &OutVals,
2135                             const SmallVectorImpl<ISD::InputArg> &Ins,
2136                             DebugLoc dl, SelectionDAG &DAG,
2137                             SmallVectorImpl<SDValue> &InVals) const {
2138  MachineFunction &MF = DAG.getMachineFunction();
2139  bool Is64Bit        = Subtarget->is64Bit();
2140  bool IsWin64        = Subtarget->isTargetWin64();
2141  bool IsWindows      = Subtarget->isTargetWindows();
2142  bool IsStructRet    = CallIsStructReturn(Outs);
2143  bool IsSibcall      = false;
2144
2145  if (MF.getTarget().Options.DisableTailCalls)
2146    isTailCall = false;
2147
2148  if (isTailCall) {
2149    // Check if it's really possible to do a tail call.
2150    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2151                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2152                                                   Outs, OutVals, Ins, DAG);
2153
2154    // Sibcalls are automatically detected tailcalls which do not require
2155    // ABI changes.
2156    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157      IsSibcall = true;
2158
2159    if (isTailCall)
2160      ++NumTailCalls;
2161  }
2162
2163  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2164         "Var args not supported with calling convention fastcc or ghc");
2165
2166  // Analyze operands of the call, assigning locations to each operand.
2167  SmallVector<CCValAssign, 16> ArgLocs;
2168  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2169                 ArgLocs, *DAG.getContext());
2170
2171  // Allocate shadow area for Win64
2172  if (IsWin64) {
2173    CCInfo.AllocateStack(32, 8);
2174  }
2175
2176  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2177
2178  // Get a count of how many bytes are to be pushed on the stack.
2179  unsigned NumBytes = CCInfo.getNextStackOffset();
2180  if (IsSibcall)
2181    // This is a sibcall. The memory operands are available in caller's
2182    // own caller's stack.
2183    NumBytes = 0;
2184  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2185           IsTailCallConvention(CallConv))
2186    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2187
2188  int FPDiff = 0;
2189  if (isTailCall && !IsSibcall) {
2190    // Lower arguments at fp - stackoffset + fpdiff.
2191    unsigned NumBytesCallerPushed =
2192      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2193    FPDiff = NumBytesCallerPushed - NumBytes;
2194
2195    // Set the delta of movement of the returnaddr stackslot.
2196    // But only set if delta is greater than previous delta.
2197    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2198      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2199  }
2200
2201  if (!IsSibcall)
2202    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2203
2204  SDValue RetAddrFrIdx;
2205  // Load return address for tail calls.
2206  if (isTailCall && FPDiff)
2207    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2208                                    Is64Bit, FPDiff, dl);
2209
2210  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2211  SmallVector<SDValue, 8> MemOpChains;
2212  SDValue StackPtr;
2213
2214  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2215  // of tail call optimization arguments are handle later.
2216  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2217    CCValAssign &VA = ArgLocs[i];
2218    EVT RegVT = VA.getLocVT();
2219    SDValue Arg = OutVals[i];
2220    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2221    bool isByVal = Flags.isByVal();
2222
2223    // Promote the value if needed.
2224    switch (VA.getLocInfo()) {
2225    default: llvm_unreachable("Unknown loc info!");
2226    case CCValAssign::Full: break;
2227    case CCValAssign::SExt:
2228      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2229      break;
2230    case CCValAssign::ZExt:
2231      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2232      break;
2233    case CCValAssign::AExt:
2234      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2235        // Special case: passing MMX values in XMM registers.
2236        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2237        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2238        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2239      } else
2240        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2241      break;
2242    case CCValAssign::BCvt:
2243      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2244      break;
2245    case CCValAssign::Indirect: {
2246      // Store the argument.
2247      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2248      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2249      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2250                           MachinePointerInfo::getFixedStack(FI),
2251                           false, false, 0);
2252      Arg = SpillSlot;
2253      break;
2254    }
2255    }
2256
2257    if (VA.isRegLoc()) {
2258      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2259      if (isVarArg && IsWin64) {
2260        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2261        // shadow reg if callee is a varargs function.
2262        unsigned ShadowReg = 0;
2263        switch (VA.getLocReg()) {
2264        case X86::XMM0: ShadowReg = X86::RCX; break;
2265        case X86::XMM1: ShadowReg = X86::RDX; break;
2266        case X86::XMM2: ShadowReg = X86::R8; break;
2267        case X86::XMM3: ShadowReg = X86::R9; break;
2268        }
2269        if (ShadowReg)
2270          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2271      }
2272    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2273      assert(VA.isMemLoc());
2274      if (StackPtr.getNode() == 0)
2275        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2276      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2277                                             dl, DAG, VA, Flags));
2278    }
2279  }
2280
2281  if (!MemOpChains.empty())
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2283                        &MemOpChains[0], MemOpChains.size());
2284
2285  // Build a sequence of copy-to-reg nodes chained together with token chain
2286  // and flag operands which copy the outgoing args into registers.
2287  SDValue InFlag;
2288  // Tail call byval lowering might overwrite argument registers so in case of
2289  // tail call optimization the copies to registers are lowered later.
2290  if (!isTailCall)
2291    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2292      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2293                               RegsToPass[i].second, InFlag);
2294      InFlag = Chain.getValue(1);
2295    }
2296
2297  if (Subtarget->isPICStyleGOT()) {
2298    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2299    // GOT pointer.
2300    if (!isTailCall) {
2301      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2302                               DAG.getNode(X86ISD::GlobalBaseReg,
2303                                           DebugLoc(), getPointerTy()),
2304                               InFlag);
2305      InFlag = Chain.getValue(1);
2306    } else {
2307      // If we are tail calling and generating PIC/GOT style code load the
2308      // address of the callee into ECX. The value in ecx is used as target of
2309      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2310      // for tail calls on PIC/GOT architectures. Normally we would just put the
2311      // address of GOT into ebx and then call target@PLT. But for tail calls
2312      // ebx would be restored (since ebx is callee saved) before jumping to the
2313      // target@PLT.
2314
2315      // Note: The actual moving to ECX is done further down.
2316      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2317      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2318          !G->getGlobal()->hasProtectedVisibility())
2319        Callee = LowerGlobalAddress(Callee, DAG);
2320      else if (isa<ExternalSymbolSDNode>(Callee))
2321        Callee = LowerExternalSymbol(Callee, DAG);
2322    }
2323  }
2324
2325  if (Is64Bit && isVarArg && !IsWin64) {
2326    // From AMD64 ABI document:
2327    // For calls that may call functions that use varargs or stdargs
2328    // (prototype-less calls or calls to functions containing ellipsis (...) in
2329    // the declaration) %al is used as hidden argument to specify the number
2330    // of SSE registers used. The contents of %al do not need to match exactly
2331    // the number of registers, but must be an ubound on the number of SSE
2332    // registers used and is in the range 0 - 8 inclusive.
2333
2334    // Count the number of XMM registers allocated.
2335    static const uint16_t XMMArgRegs[] = {
2336      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2337      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2338    };
2339    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2340    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2341           && "SSE registers cannot be used when SSE is disabled");
2342
2343    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2344                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2345    InFlag = Chain.getValue(1);
2346  }
2347
2348
2349  // For tail calls lower the arguments to the 'real' stack slot.
2350  if (isTailCall) {
2351    // Force all the incoming stack arguments to be loaded from the stack
2352    // before any new outgoing arguments are stored to the stack, because the
2353    // outgoing stack slots may alias the incoming argument stack slots, and
2354    // the alias isn't otherwise explicit. This is slightly more conservative
2355    // than necessary, because it means that each store effectively depends
2356    // on every argument instead of just those arguments it would clobber.
2357    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2358
2359    SmallVector<SDValue, 8> MemOpChains2;
2360    SDValue FIN;
2361    int FI = 0;
2362    // Do not flag preceding copytoreg stuff together with the following stuff.
2363    InFlag = SDValue();
2364    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2365      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2366        CCValAssign &VA = ArgLocs[i];
2367        if (VA.isRegLoc())
2368          continue;
2369        assert(VA.isMemLoc());
2370        SDValue Arg = OutVals[i];
2371        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2372        // Create frame index.
2373        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2374        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2375        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2376        FIN = DAG.getFrameIndex(FI, getPointerTy());
2377
2378        if (Flags.isByVal()) {
2379          // Copy relative to framepointer.
2380          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2381          if (StackPtr.getNode() == 0)
2382            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2383                                          getPointerTy());
2384          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2385
2386          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2387                                                           ArgChain,
2388                                                           Flags, DAG, dl));
2389        } else {
2390          // Store relative to framepointer.
2391          MemOpChains2.push_back(
2392            DAG.getStore(ArgChain, dl, Arg, FIN,
2393                         MachinePointerInfo::getFixedStack(FI),
2394                         false, false, 0));
2395        }
2396      }
2397    }
2398
2399    if (!MemOpChains2.empty())
2400      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2401                          &MemOpChains2[0], MemOpChains2.size());
2402
2403    // Copy arguments to their registers.
2404    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2405      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2406                               RegsToPass[i].second, InFlag);
2407      InFlag = Chain.getValue(1);
2408    }
2409    InFlag =SDValue();
2410
2411    // Store the return address to the appropriate stack slot.
2412    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2413                                     FPDiff, dl);
2414  }
2415
2416  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2417    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2418    // In the 64-bit large code model, we have to make all calls
2419    // through a register, since the call instruction's 32-bit
2420    // pc-relative offset may not be large enough to hold the whole
2421    // address.
2422  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2423    // If the callee is a GlobalAddress node (quite common, every direct call
2424    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2425    // it.
2426
2427    // We should use extra load for direct calls to dllimported functions in
2428    // non-JIT mode.
2429    const GlobalValue *GV = G->getGlobal();
2430    if (!GV->hasDLLImportLinkage()) {
2431      unsigned char OpFlags = 0;
2432      bool ExtraLoad = false;
2433      unsigned WrapperKind = ISD::DELETED_NODE;
2434
2435      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2436      // external symbols most go through the PLT in PIC mode.  If the symbol
2437      // has hidden or protected visibility, or if it is static or local, then
2438      // we don't need to use the PLT - we can directly call it.
2439      if (Subtarget->isTargetELF() &&
2440          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2441          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2442        OpFlags = X86II::MO_PLT;
2443      } else if (Subtarget->isPICStyleStubAny() &&
2444                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2445                 (!Subtarget->getTargetTriple().isMacOSX() ||
2446                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2447        // PC-relative references to external symbols should go through $stub,
2448        // unless we're building with the leopard linker or later, which
2449        // automatically synthesizes these stubs.
2450        OpFlags = X86II::MO_DARWIN_STUB;
2451      } else if (Subtarget->isPICStyleRIPRel() &&
2452                 isa<Function>(GV) &&
2453                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2454        // If the function is marked as non-lazy, generate an indirect call
2455        // which loads from the GOT directly. This avoids runtime overhead
2456        // at the cost of eager binding (and one extra byte of encoding).
2457        OpFlags = X86II::MO_GOTPCREL;
2458        WrapperKind = X86ISD::WrapperRIP;
2459        ExtraLoad = true;
2460      }
2461
2462      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2463                                          G->getOffset(), OpFlags);
2464
2465      // Add a wrapper if needed.
2466      if (WrapperKind != ISD::DELETED_NODE)
2467        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2468      // Add extra indirection if needed.
2469      if (ExtraLoad)
2470        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2471                             MachinePointerInfo::getGOT(),
2472                             false, false, false, 0);
2473    }
2474  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2475    unsigned char OpFlags = 0;
2476
2477    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2478    // external symbols should go through the PLT.
2479    if (Subtarget->isTargetELF() &&
2480        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2481      OpFlags = X86II::MO_PLT;
2482    } else if (Subtarget->isPICStyleStubAny() &&
2483               (!Subtarget->getTargetTriple().isMacOSX() ||
2484                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2485      // PC-relative references to external symbols should go through $stub,
2486      // unless we're building with the leopard linker or later, which
2487      // automatically synthesizes these stubs.
2488      OpFlags = X86II::MO_DARWIN_STUB;
2489    }
2490
2491    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2492                                         OpFlags);
2493  }
2494
2495  // Returns a chain & a flag for retval copy to use.
2496  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2497  SmallVector<SDValue, 8> Ops;
2498
2499  if (!IsSibcall && isTailCall) {
2500    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2501                           DAG.getIntPtrConstant(0, true), InFlag);
2502    InFlag = Chain.getValue(1);
2503  }
2504
2505  Ops.push_back(Chain);
2506  Ops.push_back(Callee);
2507
2508  if (isTailCall)
2509    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2510
2511  // Add argument registers to the end of the list so that they are known live
2512  // into the call.
2513  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2514    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2515                                  RegsToPass[i].second.getValueType()));
2516
2517  // Add an implicit use GOT pointer in EBX.
2518  if (!isTailCall && Subtarget->isPICStyleGOT())
2519    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2520
2521  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2522  if (Is64Bit && isVarArg && !IsWin64)
2523    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2524
2525  // Add a register mask operand representing the call-preserved registers.
2526  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2527  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2528  assert(Mask && "Missing call preserved mask for calling convention");
2529  Ops.push_back(DAG.getRegisterMask(Mask));
2530
2531  if (InFlag.getNode())
2532    Ops.push_back(InFlag);
2533
2534  if (isTailCall) {
2535    // We used to do:
2536    //// If this is the first return lowered for this function, add the regs
2537    //// to the liveout set for the function.
2538    // This isn't right, although it's probably harmless on x86; liveouts
2539    // should be computed from returns not tail calls.  Consider a void
2540    // function making a tail call to a function returning int.
2541    return DAG.getNode(X86ISD::TC_RETURN, dl,
2542                       NodeTys, &Ops[0], Ops.size());
2543  }
2544
2545  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2546  InFlag = Chain.getValue(1);
2547
2548  // Create the CALLSEQ_END node.
2549  unsigned NumBytesForCalleeToPush;
2550  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2551                       getTargetMachine().Options.GuaranteedTailCallOpt))
2552    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2553  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2554           IsStructRet)
2555    // If this is a call to a struct-return function, the callee
2556    // pops the hidden struct pointer, so we have to push it back.
2557    // This is common for Darwin/X86, Linux & Mingw32 targets.
2558    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2559    NumBytesForCalleeToPush = 4;
2560  else
2561    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2562
2563  // Returns a flag for retval copy to use.
2564  if (!IsSibcall) {
2565    Chain = DAG.getCALLSEQ_END(Chain,
2566                               DAG.getIntPtrConstant(NumBytes, true),
2567                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2568                                                     true),
2569                               InFlag);
2570    InFlag = Chain.getValue(1);
2571  }
2572
2573  // Handle result values, copying them out of physregs into vregs that we
2574  // return.
2575  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2576                         Ins, dl, DAG, InVals);
2577}
2578
2579
2580//===----------------------------------------------------------------------===//
2581//                Fast Calling Convention (tail call) implementation
2582//===----------------------------------------------------------------------===//
2583
2584//  Like std call, callee cleans arguments, convention except that ECX is
2585//  reserved for storing the tail called function address. Only 2 registers are
2586//  free for argument passing (inreg). Tail call optimization is performed
2587//  provided:
2588//                * tailcallopt is enabled
2589//                * caller/callee are fastcc
2590//  On X86_64 architecture with GOT-style position independent code only local
2591//  (within module) calls are supported at the moment.
2592//  To keep the stack aligned according to platform abi the function
2593//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2594//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2595//  If a tail called function callee has more arguments than the caller the
2596//  caller needs to make sure that there is room to move the RETADDR to. This is
2597//  achieved by reserving an area the size of the argument delta right after the
2598//  original REtADDR, but before the saved framepointer or the spilled registers
2599//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2600//  stack layout:
2601//    arg1
2602//    arg2
2603//    RETADDR
2604//    [ new RETADDR
2605//      move area ]
2606//    (possible EBP)
2607//    ESI
2608//    EDI
2609//    local1 ..
2610
2611/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2612/// for a 16 byte align requirement.
2613unsigned
2614X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2615                                               SelectionDAG& DAG) const {
2616  MachineFunction &MF = DAG.getMachineFunction();
2617  const TargetMachine &TM = MF.getTarget();
2618  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2619  unsigned StackAlignment = TFI.getStackAlignment();
2620  uint64_t AlignMask = StackAlignment - 1;
2621  int64_t Offset = StackSize;
2622  uint64_t SlotSize = TD->getPointerSize();
2623  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2624    // Number smaller than 12 so just add the difference.
2625    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2626  } else {
2627    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2628    Offset = ((~AlignMask) & Offset) + StackAlignment +
2629      (StackAlignment-SlotSize);
2630  }
2631  return Offset;
2632}
2633
2634/// MatchingStackOffset - Return true if the given stack call argument is
2635/// already available in the same position (relatively) of the caller's
2636/// incoming argument stack.
2637static
2638bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2639                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2640                         const X86InstrInfo *TII) {
2641  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2642  int FI = INT_MAX;
2643  if (Arg.getOpcode() == ISD::CopyFromReg) {
2644    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2645    if (!TargetRegisterInfo::isVirtualRegister(VR))
2646      return false;
2647    MachineInstr *Def = MRI->getVRegDef(VR);
2648    if (!Def)
2649      return false;
2650    if (!Flags.isByVal()) {
2651      if (!TII->isLoadFromStackSlot(Def, FI))
2652        return false;
2653    } else {
2654      unsigned Opcode = Def->getOpcode();
2655      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2656          Def->getOperand(1).isFI()) {
2657        FI = Def->getOperand(1).getIndex();
2658        Bytes = Flags.getByValSize();
2659      } else
2660        return false;
2661    }
2662  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2663    if (Flags.isByVal())
2664      // ByVal argument is passed in as a pointer but it's now being
2665      // dereferenced. e.g.
2666      // define @foo(%struct.X* %A) {
2667      //   tail call @bar(%struct.X* byval %A)
2668      // }
2669      return false;
2670    SDValue Ptr = Ld->getBasePtr();
2671    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2672    if (!FINode)
2673      return false;
2674    FI = FINode->getIndex();
2675  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2676    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2677    FI = FINode->getIndex();
2678    Bytes = Flags.getByValSize();
2679  } else
2680    return false;
2681
2682  assert(FI != INT_MAX);
2683  if (!MFI->isFixedObjectIndex(FI))
2684    return false;
2685  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2686}
2687
2688/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2689/// for tail call optimization. Targets which want to do tail call
2690/// optimization should implement this function.
2691bool
2692X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2693                                                     CallingConv::ID CalleeCC,
2694                                                     bool isVarArg,
2695                                                     bool isCalleeStructRet,
2696                                                     bool isCallerStructRet,
2697                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2698                                    const SmallVectorImpl<SDValue> &OutVals,
2699                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2700                                                     SelectionDAG& DAG) const {
2701  if (!IsTailCallConvention(CalleeCC) &&
2702      CalleeCC != CallingConv::C)
2703    return false;
2704
2705  // If -tailcallopt is specified, make fastcc functions tail-callable.
2706  const MachineFunction &MF = DAG.getMachineFunction();
2707  const Function *CallerF = DAG.getMachineFunction().getFunction();
2708  CallingConv::ID CallerCC = CallerF->getCallingConv();
2709  bool CCMatch = CallerCC == CalleeCC;
2710
2711  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2712    if (IsTailCallConvention(CalleeCC) && CCMatch)
2713      return true;
2714    return false;
2715  }
2716
2717  // Look for obvious safe cases to perform tail call optimization that do not
2718  // require ABI changes. This is what gcc calls sibcall.
2719
2720  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2721  // emit a special epilogue.
2722  if (RegInfo->needsStackRealignment(MF))
2723    return false;
2724
2725  // Also avoid sibcall optimization if either caller or callee uses struct
2726  // return semantics.
2727  if (isCalleeStructRet || isCallerStructRet)
2728    return false;
2729
2730  // An stdcall caller is expected to clean up its arguments; the callee
2731  // isn't going to do that.
2732  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2733    return false;
2734
2735  // Do not sibcall optimize vararg calls unless all arguments are passed via
2736  // registers.
2737  if (isVarArg && !Outs.empty()) {
2738
2739    // Optimizing for varargs on Win64 is unlikely to be safe without
2740    // additional testing.
2741    if (Subtarget->isTargetWin64())
2742      return false;
2743
2744    SmallVector<CCValAssign, 16> ArgLocs;
2745    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2746		   getTargetMachine(), ArgLocs, *DAG.getContext());
2747
2748    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2749    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2750      if (!ArgLocs[i].isRegLoc())
2751        return false;
2752  }
2753
2754  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2755  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2756  // this into a sibcall.
2757  bool Unused = false;
2758  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2759    if (!Ins[i].Used) {
2760      Unused = true;
2761      break;
2762    }
2763  }
2764  if (Unused) {
2765    SmallVector<CCValAssign, 16> RVLocs;
2766    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2767		   getTargetMachine(), RVLocs, *DAG.getContext());
2768    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2769    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2770      CCValAssign &VA = RVLocs[i];
2771      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2772        return false;
2773    }
2774  }
2775
2776  // If the calling conventions do not match, then we'd better make sure the
2777  // results are returned in the same way as what the caller expects.
2778  if (!CCMatch) {
2779    SmallVector<CCValAssign, 16> RVLocs1;
2780    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2781		    getTargetMachine(), RVLocs1, *DAG.getContext());
2782    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2783
2784    SmallVector<CCValAssign, 16> RVLocs2;
2785    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2786		    getTargetMachine(), RVLocs2, *DAG.getContext());
2787    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2788
2789    if (RVLocs1.size() != RVLocs2.size())
2790      return false;
2791    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2792      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2793        return false;
2794      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2795        return false;
2796      if (RVLocs1[i].isRegLoc()) {
2797        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2798          return false;
2799      } else {
2800        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2801          return false;
2802      }
2803    }
2804  }
2805
2806  // If the callee takes no arguments then go on to check the results of the
2807  // call.
2808  if (!Outs.empty()) {
2809    // Check if stack adjustment is needed. For now, do not do this if any
2810    // argument is passed on the stack.
2811    SmallVector<CCValAssign, 16> ArgLocs;
2812    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2813		   getTargetMachine(), ArgLocs, *DAG.getContext());
2814
2815    // Allocate shadow area for Win64
2816    if (Subtarget->isTargetWin64()) {
2817      CCInfo.AllocateStack(32, 8);
2818    }
2819
2820    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2821    if (CCInfo.getNextStackOffset()) {
2822      MachineFunction &MF = DAG.getMachineFunction();
2823      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2824        return false;
2825
2826      // Check if the arguments are already laid out in the right way as
2827      // the caller's fixed stack objects.
2828      MachineFrameInfo *MFI = MF.getFrameInfo();
2829      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2830      const X86InstrInfo *TII =
2831        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2832      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2833        CCValAssign &VA = ArgLocs[i];
2834        SDValue Arg = OutVals[i];
2835        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2836        if (VA.getLocInfo() == CCValAssign::Indirect)
2837          return false;
2838        if (!VA.isRegLoc()) {
2839          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2840                                   MFI, MRI, TII))
2841            return false;
2842        }
2843      }
2844    }
2845
2846    // If the tailcall address may be in a register, then make sure it's
2847    // possible to register allocate for it. In 32-bit, the call address can
2848    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2849    // callee-saved registers are restored. These happen to be the same
2850    // registers used to pass 'inreg' arguments so watch out for those.
2851    if (!Subtarget->is64Bit() &&
2852        !isa<GlobalAddressSDNode>(Callee) &&
2853        !isa<ExternalSymbolSDNode>(Callee)) {
2854      unsigned NumInRegs = 0;
2855      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2856        CCValAssign &VA = ArgLocs[i];
2857        if (!VA.isRegLoc())
2858          continue;
2859        unsigned Reg = VA.getLocReg();
2860        switch (Reg) {
2861        default: break;
2862        case X86::EAX: case X86::EDX: case X86::ECX:
2863          if (++NumInRegs == 3)
2864            return false;
2865          break;
2866        }
2867      }
2868    }
2869  }
2870
2871  return true;
2872}
2873
2874FastISel *
2875X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2876  return X86::createFastISel(funcInfo);
2877}
2878
2879
2880//===----------------------------------------------------------------------===//
2881//                           Other Lowering Hooks
2882//===----------------------------------------------------------------------===//
2883
2884static bool MayFoldLoad(SDValue Op) {
2885  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2886}
2887
2888static bool MayFoldIntoStore(SDValue Op) {
2889  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2890}
2891
2892static bool isTargetShuffle(unsigned Opcode) {
2893  switch(Opcode) {
2894  default: return false;
2895  case X86ISD::PSHUFD:
2896  case X86ISD::PSHUFHW:
2897  case X86ISD::PSHUFLW:
2898  case X86ISD::SHUFP:
2899  case X86ISD::PALIGN:
2900  case X86ISD::MOVLHPS:
2901  case X86ISD::MOVLHPD:
2902  case X86ISD::MOVHLPS:
2903  case X86ISD::MOVLPS:
2904  case X86ISD::MOVLPD:
2905  case X86ISD::MOVSHDUP:
2906  case X86ISD::MOVSLDUP:
2907  case X86ISD::MOVDDUP:
2908  case X86ISD::MOVSS:
2909  case X86ISD::MOVSD:
2910  case X86ISD::UNPCKL:
2911  case X86ISD::UNPCKH:
2912  case X86ISD::VPERMILP:
2913  case X86ISD::VPERM2X128:
2914    return true;
2915  }
2916}
2917
2918static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2919                                    SDValue V1, SelectionDAG &DAG) {
2920  switch(Opc) {
2921  default: llvm_unreachable("Unknown x86 shuffle node");
2922  case X86ISD::MOVSHDUP:
2923  case X86ISD::MOVSLDUP:
2924  case X86ISD::MOVDDUP:
2925    return DAG.getNode(Opc, dl, VT, V1);
2926  }
2927}
2928
2929static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2930                                    SDValue V1, unsigned TargetMask,
2931                                    SelectionDAG &DAG) {
2932  switch(Opc) {
2933  default: llvm_unreachable("Unknown x86 shuffle node");
2934  case X86ISD::PSHUFD:
2935  case X86ISD::PSHUFHW:
2936  case X86ISD::PSHUFLW:
2937  case X86ISD::VPERMILP:
2938    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2939  }
2940}
2941
2942static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2943                                    SDValue V1, SDValue V2, unsigned TargetMask,
2944                                    SelectionDAG &DAG) {
2945  switch(Opc) {
2946  default: llvm_unreachable("Unknown x86 shuffle node");
2947  case X86ISD::PALIGN:
2948  case X86ISD::SHUFP:
2949  case X86ISD::VPERM2X128:
2950    return DAG.getNode(Opc, dl, VT, V1, V2,
2951                       DAG.getConstant(TargetMask, MVT::i8));
2952  }
2953}
2954
2955static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2956                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2957  switch(Opc) {
2958  default: llvm_unreachable("Unknown x86 shuffle node");
2959  case X86ISD::MOVLHPS:
2960  case X86ISD::MOVLHPD:
2961  case X86ISD::MOVHLPS:
2962  case X86ISD::MOVLPS:
2963  case X86ISD::MOVLPD:
2964  case X86ISD::MOVSS:
2965  case X86ISD::MOVSD:
2966  case X86ISD::UNPCKL:
2967  case X86ISD::UNPCKH:
2968    return DAG.getNode(Opc, dl, VT, V1, V2);
2969  }
2970}
2971
2972SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2973  MachineFunction &MF = DAG.getMachineFunction();
2974  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2975  int ReturnAddrIndex = FuncInfo->getRAIndex();
2976
2977  if (ReturnAddrIndex == 0) {
2978    // Set up a frame object for the return address.
2979    uint64_t SlotSize = TD->getPointerSize();
2980    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2981                                                           false);
2982    FuncInfo->setRAIndex(ReturnAddrIndex);
2983  }
2984
2985  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2986}
2987
2988
2989bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2990                                       bool hasSymbolicDisplacement) {
2991  // Offset should fit into 32 bit immediate field.
2992  if (!isInt<32>(Offset))
2993    return false;
2994
2995  // If we don't have a symbolic displacement - we don't have any extra
2996  // restrictions.
2997  if (!hasSymbolicDisplacement)
2998    return true;
2999
3000  // FIXME: Some tweaks might be needed for medium code model.
3001  if (M != CodeModel::Small && M != CodeModel::Kernel)
3002    return false;
3003
3004  // For small code model we assume that latest object is 16MB before end of 31
3005  // bits boundary. We may also accept pretty large negative constants knowing
3006  // that all objects are in the positive half of address space.
3007  if (M == CodeModel::Small && Offset < 16*1024*1024)
3008    return true;
3009
3010  // For kernel code model we know that all object resist in the negative half
3011  // of 32bits address space. We may not accept negative offsets, since they may
3012  // be just off and we may accept pretty large positive ones.
3013  if (M == CodeModel::Kernel && Offset > 0)
3014    return true;
3015
3016  return false;
3017}
3018
3019/// isCalleePop - Determines whether the callee is required to pop its
3020/// own arguments. Callee pop is necessary to support tail calls.
3021bool X86::isCalleePop(CallingConv::ID CallingConv,
3022                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3023  if (IsVarArg)
3024    return false;
3025
3026  switch (CallingConv) {
3027  default:
3028    return false;
3029  case CallingConv::X86_StdCall:
3030    return !is64Bit;
3031  case CallingConv::X86_FastCall:
3032    return !is64Bit;
3033  case CallingConv::X86_ThisCall:
3034    return !is64Bit;
3035  case CallingConv::Fast:
3036    return TailCallOpt;
3037  case CallingConv::GHC:
3038    return TailCallOpt;
3039  }
3040}
3041
3042/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3043/// specific condition code, returning the condition code and the LHS/RHS of the
3044/// comparison to make.
3045static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3046                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3047  if (!isFP) {
3048    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3049      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3050        // X > -1   -> X == 0, jump !sign.
3051        RHS = DAG.getConstant(0, RHS.getValueType());
3052        return X86::COND_NS;
3053      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3054        // X < 0   -> X == 0, jump on sign.
3055        return X86::COND_S;
3056      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3057        // X < 1   -> X <= 0
3058        RHS = DAG.getConstant(0, RHS.getValueType());
3059        return X86::COND_LE;
3060      }
3061    }
3062
3063    switch (SetCCOpcode) {
3064    default: llvm_unreachable("Invalid integer condition!");
3065    case ISD::SETEQ:  return X86::COND_E;
3066    case ISD::SETGT:  return X86::COND_G;
3067    case ISD::SETGE:  return X86::COND_GE;
3068    case ISD::SETLT:  return X86::COND_L;
3069    case ISD::SETLE:  return X86::COND_LE;
3070    case ISD::SETNE:  return X86::COND_NE;
3071    case ISD::SETULT: return X86::COND_B;
3072    case ISD::SETUGT: return X86::COND_A;
3073    case ISD::SETULE: return X86::COND_BE;
3074    case ISD::SETUGE: return X86::COND_AE;
3075    }
3076  }
3077
3078  // First determine if it is required or is profitable to flip the operands.
3079
3080  // If LHS is a foldable load, but RHS is not, flip the condition.
3081  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3082      !ISD::isNON_EXTLoad(RHS.getNode())) {
3083    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3084    std::swap(LHS, RHS);
3085  }
3086
3087  switch (SetCCOpcode) {
3088  default: break;
3089  case ISD::SETOLT:
3090  case ISD::SETOLE:
3091  case ISD::SETUGT:
3092  case ISD::SETUGE:
3093    std::swap(LHS, RHS);
3094    break;
3095  }
3096
3097  // On a floating point condition, the flags are set as follows:
3098  // ZF  PF  CF   op
3099  //  0 | 0 | 0 | X > Y
3100  //  0 | 0 | 1 | X < Y
3101  //  1 | 0 | 0 | X == Y
3102  //  1 | 1 | 1 | unordered
3103  switch (SetCCOpcode) {
3104  default: llvm_unreachable("Condcode should be pre-legalized away");
3105  case ISD::SETUEQ:
3106  case ISD::SETEQ:   return X86::COND_E;
3107  case ISD::SETOLT:              // flipped
3108  case ISD::SETOGT:
3109  case ISD::SETGT:   return X86::COND_A;
3110  case ISD::SETOLE:              // flipped
3111  case ISD::SETOGE:
3112  case ISD::SETGE:   return X86::COND_AE;
3113  case ISD::SETUGT:              // flipped
3114  case ISD::SETULT:
3115  case ISD::SETLT:   return X86::COND_B;
3116  case ISD::SETUGE:              // flipped
3117  case ISD::SETULE:
3118  case ISD::SETLE:   return X86::COND_BE;
3119  case ISD::SETONE:
3120  case ISD::SETNE:   return X86::COND_NE;
3121  case ISD::SETUO:   return X86::COND_P;
3122  case ISD::SETO:    return X86::COND_NP;
3123  case ISD::SETOEQ:
3124  case ISD::SETUNE:  return X86::COND_INVALID;
3125  }
3126}
3127
3128/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3129/// code. Current x86 isa includes the following FP cmov instructions:
3130/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3131static bool hasFPCMov(unsigned X86CC) {
3132  switch (X86CC) {
3133  default:
3134    return false;
3135  case X86::COND_B:
3136  case X86::COND_BE:
3137  case X86::COND_E:
3138  case X86::COND_P:
3139  case X86::COND_A:
3140  case X86::COND_AE:
3141  case X86::COND_NE:
3142  case X86::COND_NP:
3143    return true;
3144  }
3145}
3146
3147/// isFPImmLegal - Returns true if the target can instruction select the
3148/// specified FP immediate natively. If false, the legalizer will
3149/// materialize the FP immediate as a load from a constant pool.
3150bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3151  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3152    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3153      return true;
3154  }
3155  return false;
3156}
3157
3158/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3159/// the specified range (L, H].
3160static bool isUndefOrInRange(int Val, int Low, int Hi) {
3161  return (Val < 0) || (Val >= Low && Val < Hi);
3162}
3163
3164/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3165/// specified value.
3166static bool isUndefOrEqual(int Val, int CmpVal) {
3167  if (Val < 0 || Val == CmpVal)
3168    return true;
3169  return false;
3170}
3171
3172/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3173/// from position Pos and ending in Pos+Size, falls within the specified
3174/// sequential range (L, L+Pos]. or is undef.
3175static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3176                                       int Pos, int Size, int Low) {
3177  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3178    if (!isUndefOrEqual(Mask[i], Low))
3179      return false;
3180  return true;
3181}
3182
3183/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3184/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3185/// the second operand.
3186static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3187  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3188    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3189  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3190    return (Mask[0] < 2 && Mask[1] < 2);
3191  return false;
3192}
3193
3194/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3195/// is suitable for input to PSHUFHW.
3196static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3197  if (VT != MVT::v8i16)
3198    return false;
3199
3200  // Lower quadword copied in order or undef.
3201  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3202    return false;
3203
3204  // Upper quadword shuffled.
3205  for (unsigned i = 4; i != 8; ++i)
3206    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3207      return false;
3208
3209  return true;
3210}
3211
3212/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3213/// is suitable for input to PSHUFLW.
3214static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3215  if (VT != MVT::v8i16)
3216    return false;
3217
3218  // Upper quadword copied in order.
3219  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3220    return false;
3221
3222  // Lower quadword shuffled.
3223  for (unsigned i = 0; i != 4; ++i)
3224    if (Mask[i] >= 4)
3225      return false;
3226
3227  return true;
3228}
3229
3230/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3231/// is suitable for input to PALIGNR.
3232static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3233                          const X86Subtarget *Subtarget) {
3234  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3235      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3236    return false;
3237
3238  unsigned NumElts = VT.getVectorNumElements();
3239  unsigned NumLanes = VT.getSizeInBits()/128;
3240  unsigned NumLaneElts = NumElts/NumLanes;
3241
3242  // Do not handle 64-bit element shuffles with palignr.
3243  if (NumLaneElts == 2)
3244    return false;
3245
3246  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3247    unsigned i;
3248    for (i = 0; i != NumLaneElts; ++i) {
3249      if (Mask[i+l] >= 0)
3250        break;
3251    }
3252
3253    // Lane is all undef, go to next lane
3254    if (i == NumLaneElts)
3255      continue;
3256
3257    int Start = Mask[i+l];
3258
3259    // Make sure its in this lane in one of the sources
3260    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3261        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3262      return false;
3263
3264    // If not lane 0, then we must match lane 0
3265    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3266      return false;
3267
3268    // Correct second source to be contiguous with first source
3269    if (Start >= (int)NumElts)
3270      Start -= NumElts - NumLaneElts;
3271
3272    // Make sure we're shifting in the right direction.
3273    if (Start <= (int)(i+l))
3274      return false;
3275
3276    Start -= i;
3277
3278    // Check the rest of the elements to see if they are consecutive.
3279    for (++i; i != NumLaneElts; ++i) {
3280      int Idx = Mask[i+l];
3281
3282      // Make sure its in this lane
3283      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3284          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3285        return false;
3286
3287      // If not lane 0, then we must match lane 0
3288      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3289        return false;
3290
3291      if (Idx >= (int)NumElts)
3292        Idx -= NumElts - NumLaneElts;
3293
3294      if (!isUndefOrEqual(Idx, Start+i))
3295        return false;
3296
3297    }
3298  }
3299
3300  return true;
3301}
3302
3303/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3304/// the two vector operands have swapped position.
3305static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3306                                     unsigned NumElems) {
3307  for (unsigned i = 0; i != NumElems; ++i) {
3308    int idx = Mask[i];
3309    if (idx < 0)
3310      continue;
3311    else if (idx < (int)NumElems)
3312      Mask[i] = idx + NumElems;
3313    else
3314      Mask[i] = idx - NumElems;
3315  }
3316}
3317
3318/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3319/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3320/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3321/// reverse of what x86 shuffles want.
3322static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3323                        bool Commuted = false) {
3324  if (!HasAVX && VT.getSizeInBits() == 256)
3325    return false;
3326
3327  unsigned NumElems = VT.getVectorNumElements();
3328  unsigned NumLanes = VT.getSizeInBits()/128;
3329  unsigned NumLaneElems = NumElems/NumLanes;
3330
3331  if (NumLaneElems != 2 && NumLaneElems != 4)
3332    return false;
3333
3334  // VSHUFPSY divides the resulting vector into 4 chunks.
3335  // The sources are also splitted into 4 chunks, and each destination
3336  // chunk must come from a different source chunk.
3337  //
3338  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3339  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3340  //
3341  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3342  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3343  //
3344  // VSHUFPDY divides the resulting vector into 4 chunks.
3345  // The sources are also splitted into 4 chunks, and each destination
3346  // chunk must come from a different source chunk.
3347  //
3348  //  SRC1 =>      X3       X2       X1       X0
3349  //  SRC2 =>      Y3       Y2       Y1       Y0
3350  //
3351  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3352  //
3353  unsigned HalfLaneElems = NumLaneElems/2;
3354  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3355    for (unsigned i = 0; i != NumLaneElems; ++i) {
3356      int Idx = Mask[i+l];
3357      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3358      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3359        return false;
3360      // For VSHUFPSY, the mask of the second half must be the same as the
3361      // first but with the appropriate offsets. This works in the same way as
3362      // VPERMILPS works with masks.
3363      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3364        continue;
3365      if (!isUndefOrEqual(Idx, Mask[i]+l))
3366        return false;
3367    }
3368  }
3369
3370  return true;
3371}
3372
3373/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3374/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3375static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3376  unsigned NumElems = VT.getVectorNumElements();
3377
3378  if (VT.getSizeInBits() != 128)
3379    return false;
3380
3381  if (NumElems != 4)
3382    return false;
3383
3384  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3385  return isUndefOrEqual(Mask[0], 6) &&
3386         isUndefOrEqual(Mask[1], 7) &&
3387         isUndefOrEqual(Mask[2], 2) &&
3388         isUndefOrEqual(Mask[3], 3);
3389}
3390
3391/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3392/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3393/// <2, 3, 2, 3>
3394static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3395  unsigned NumElems = VT.getVectorNumElements();
3396
3397  if (VT.getSizeInBits() != 128)
3398    return false;
3399
3400  if (NumElems != 4)
3401    return false;
3402
3403  return isUndefOrEqual(Mask[0], 2) &&
3404         isUndefOrEqual(Mask[1], 3) &&
3405         isUndefOrEqual(Mask[2], 2) &&
3406         isUndefOrEqual(Mask[3], 3);
3407}
3408
3409/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3410/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3411static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3412  if (VT.getSizeInBits() != 128)
3413    return false;
3414
3415  unsigned NumElems = VT.getVectorNumElements();
3416
3417  if (NumElems != 2 && NumElems != 4)
3418    return false;
3419
3420  for (unsigned i = 0; i != NumElems/2; ++i)
3421    if (!isUndefOrEqual(Mask[i], i + NumElems))
3422      return false;
3423
3424  for (unsigned i = NumElems/2; i != NumElems; ++i)
3425    if (!isUndefOrEqual(Mask[i], i))
3426      return false;
3427
3428  return true;
3429}
3430
3431/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3432/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3433static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3434  unsigned NumElems = VT.getVectorNumElements();
3435
3436  if ((NumElems != 2 && NumElems != 4)
3437      || VT.getSizeInBits() > 128)
3438    return false;
3439
3440  for (unsigned i = 0; i != NumElems/2; ++i)
3441    if (!isUndefOrEqual(Mask[i], i))
3442      return false;
3443
3444  for (unsigned i = 0; i != NumElems/2; ++i)
3445    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3446      return false;
3447
3448  return true;
3449}
3450
3451/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3452/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3453static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3454                         bool HasAVX2, bool V2IsSplat = false) {
3455  unsigned NumElts = VT.getVectorNumElements();
3456
3457  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3458         "Unsupported vector type for unpckh");
3459
3460  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3461      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3462    return false;
3463
3464  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3465  // independently on 128-bit lanes.
3466  unsigned NumLanes = VT.getSizeInBits()/128;
3467  unsigned NumLaneElts = NumElts/NumLanes;
3468
3469  for (unsigned l = 0; l != NumLanes; ++l) {
3470    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3471         i != (l+1)*NumLaneElts;
3472         i += 2, ++j) {
3473      int BitI  = Mask[i];
3474      int BitI1 = Mask[i+1];
3475      if (!isUndefOrEqual(BitI, j))
3476        return false;
3477      if (V2IsSplat) {
3478        if (!isUndefOrEqual(BitI1, NumElts))
3479          return false;
3480      } else {
3481        if (!isUndefOrEqual(BitI1, j + NumElts))
3482          return false;
3483      }
3484    }
3485  }
3486
3487  return true;
3488}
3489
3490/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3491/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3492static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3493                         bool HasAVX2, bool V2IsSplat = false) {
3494  unsigned NumElts = VT.getVectorNumElements();
3495
3496  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3497         "Unsupported vector type for unpckh");
3498
3499  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3500      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3501    return false;
3502
3503  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3504  // independently on 128-bit lanes.
3505  unsigned NumLanes = VT.getSizeInBits()/128;
3506  unsigned NumLaneElts = NumElts/NumLanes;
3507
3508  for (unsigned l = 0; l != NumLanes; ++l) {
3509    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3510         i != (l+1)*NumLaneElts; i += 2, ++j) {
3511      int BitI  = Mask[i];
3512      int BitI1 = Mask[i+1];
3513      if (!isUndefOrEqual(BitI, j))
3514        return false;
3515      if (V2IsSplat) {
3516        if (isUndefOrEqual(BitI1, NumElts))
3517          return false;
3518      } else {
3519        if (!isUndefOrEqual(BitI1, j+NumElts))
3520          return false;
3521      }
3522    }
3523  }
3524  return true;
3525}
3526
3527/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3528/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3529/// <0, 0, 1, 1>
3530static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3531                                  bool HasAVX2) {
3532  unsigned NumElts = VT.getVectorNumElements();
3533
3534  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3535         "Unsupported vector type for unpckh");
3536
3537  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3538      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3539    return false;
3540
3541  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3542  // FIXME: Need a better way to get rid of this, there's no latency difference
3543  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3544  // the former later. We should also remove the "_undef" special mask.
3545  if (NumElts == 4 && VT.getSizeInBits() == 256)
3546    return false;
3547
3548  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3549  // independently on 128-bit lanes.
3550  unsigned NumLanes = VT.getSizeInBits()/128;
3551  unsigned NumLaneElts = NumElts/NumLanes;
3552
3553  for (unsigned l = 0; l != NumLanes; ++l) {
3554    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3555         i != (l+1)*NumLaneElts;
3556         i += 2, ++j) {
3557      int BitI  = Mask[i];
3558      int BitI1 = Mask[i+1];
3559
3560      if (!isUndefOrEqual(BitI, j))
3561        return false;
3562      if (!isUndefOrEqual(BitI1, j))
3563        return false;
3564    }
3565  }
3566
3567  return true;
3568}
3569
3570/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3571/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3572/// <2, 2, 3, 3>
3573static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3574  unsigned NumElts = VT.getVectorNumElements();
3575
3576  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3577         "Unsupported vector type for unpckh");
3578
3579  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3580      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3581    return false;
3582
3583  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3584  // independently on 128-bit lanes.
3585  unsigned NumLanes = VT.getSizeInBits()/128;
3586  unsigned NumLaneElts = NumElts/NumLanes;
3587
3588  for (unsigned l = 0; l != NumLanes; ++l) {
3589    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3590         i != (l+1)*NumLaneElts; i += 2, ++j) {
3591      int BitI  = Mask[i];
3592      int BitI1 = Mask[i+1];
3593      if (!isUndefOrEqual(BitI, j))
3594        return false;
3595      if (!isUndefOrEqual(BitI1, j))
3596        return false;
3597    }
3598  }
3599  return true;
3600}
3601
3602/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3603/// specifies a shuffle of elements that is suitable for input to MOVSS,
3604/// MOVSD, and MOVD, i.e. setting the lowest element.
3605static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3606  if (VT.getVectorElementType().getSizeInBits() < 32)
3607    return false;
3608  if (VT.getSizeInBits() == 256)
3609    return false;
3610
3611  unsigned NumElts = VT.getVectorNumElements();
3612
3613  if (!isUndefOrEqual(Mask[0], NumElts))
3614    return false;
3615
3616  for (unsigned i = 1; i != NumElts; ++i)
3617    if (!isUndefOrEqual(Mask[i], i))
3618      return false;
3619
3620  return true;
3621}
3622
3623/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3624/// as permutations between 128-bit chunks or halves. As an example: this
3625/// shuffle bellow:
3626///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3627/// The first half comes from the second half of V1 and the second half from the
3628/// the second half of V2.
3629static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3630  if (!HasAVX || VT.getSizeInBits() != 256)
3631    return false;
3632
3633  // The shuffle result is divided into half A and half B. In total the two
3634  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3635  // B must come from C, D, E or F.
3636  unsigned HalfSize = VT.getVectorNumElements()/2;
3637  bool MatchA = false, MatchB = false;
3638
3639  // Check if A comes from one of C, D, E, F.
3640  for (unsigned Half = 0; Half != 4; ++Half) {
3641    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3642      MatchA = true;
3643      break;
3644    }
3645  }
3646
3647  // Check if B comes from one of C, D, E, F.
3648  for (unsigned Half = 0; Half != 4; ++Half) {
3649    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3650      MatchB = true;
3651      break;
3652    }
3653  }
3654
3655  return MatchA && MatchB;
3656}
3657
3658/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3659/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3660static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3661  EVT VT = SVOp->getValueType(0);
3662
3663  unsigned HalfSize = VT.getVectorNumElements()/2;
3664
3665  unsigned FstHalf = 0, SndHalf = 0;
3666  for (unsigned i = 0; i < HalfSize; ++i) {
3667    if (SVOp->getMaskElt(i) > 0) {
3668      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3669      break;
3670    }
3671  }
3672  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3673    if (SVOp->getMaskElt(i) > 0) {
3674      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3675      break;
3676    }
3677  }
3678
3679  return (FstHalf | (SndHalf << 4));
3680}
3681
3682/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3683/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3684/// Note that VPERMIL mask matching is different depending whether theunderlying
3685/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3686/// to the same elements of the low, but to the higher half of the source.
3687/// In VPERMILPD the two lanes could be shuffled independently of each other
3688/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3689static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3690  if (!HasAVX)
3691    return false;
3692
3693  unsigned NumElts = VT.getVectorNumElements();
3694  // Only match 256-bit with 32/64-bit types
3695  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3696    return false;
3697
3698  unsigned NumLanes = VT.getSizeInBits()/128;
3699  unsigned LaneSize = NumElts/NumLanes;
3700  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3701    for (unsigned i = 0; i != LaneSize; ++i) {
3702      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3703        return false;
3704      if (NumElts != 8 || l == 0)
3705        continue;
3706      // VPERMILPS handling
3707      if (Mask[i] < 0)
3708        continue;
3709      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3710        return false;
3711    }
3712  }
3713
3714  return true;
3715}
3716
3717/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3718/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3719/// element of vector 2 and the other elements to come from vector 1 in order.
3720static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3721                               bool V2IsSplat = false, bool V2IsUndef = false) {
3722  unsigned NumOps = VT.getVectorNumElements();
3723  if (VT.getSizeInBits() == 256)
3724    return false;
3725  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3726    return false;
3727
3728  if (!isUndefOrEqual(Mask[0], 0))
3729    return false;
3730
3731  for (unsigned i = 1; i != NumOps; ++i)
3732    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3733          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3734          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3735      return false;
3736
3737  return true;
3738}
3739
3740/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3741/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3742/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3743static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3744                           const X86Subtarget *Subtarget) {
3745  if (!Subtarget->hasSSE3())
3746    return false;
3747
3748  unsigned NumElems = VT.getVectorNumElements();
3749
3750  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3751      (VT.getSizeInBits() == 256 && NumElems != 8))
3752    return false;
3753
3754  // "i+1" is the value the indexed mask element must have
3755  for (unsigned i = 0; i != NumElems; i += 2)
3756    if (!isUndefOrEqual(Mask[i], i+1) ||
3757        !isUndefOrEqual(Mask[i+1], i+1))
3758      return false;
3759
3760  return true;
3761}
3762
3763/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3764/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3765/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3766static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3767                           const X86Subtarget *Subtarget) {
3768  if (!Subtarget->hasSSE3())
3769    return false;
3770
3771  unsigned NumElems = VT.getVectorNumElements();
3772
3773  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3774      (VT.getSizeInBits() == 256 && NumElems != 8))
3775    return false;
3776
3777  // "i" is the value the indexed mask element must have
3778  for (unsigned i = 0; i != NumElems; i += 2)
3779    if (!isUndefOrEqual(Mask[i], i) ||
3780        !isUndefOrEqual(Mask[i+1], i))
3781      return false;
3782
3783  return true;
3784}
3785
3786/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3787/// specifies a shuffle of elements that is suitable for input to 256-bit
3788/// version of MOVDDUP.
3789static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3790  unsigned NumElts = VT.getVectorNumElements();
3791
3792  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3793    return false;
3794
3795  for (unsigned i = 0; i != NumElts/2; ++i)
3796    if (!isUndefOrEqual(Mask[i], 0))
3797      return false;
3798  for (unsigned i = NumElts/2; i != NumElts; ++i)
3799    if (!isUndefOrEqual(Mask[i], NumElts/2))
3800      return false;
3801  return true;
3802}
3803
3804/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3805/// specifies a shuffle of elements that is suitable for input to 128-bit
3806/// version of MOVDDUP.
3807static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3808  if (VT.getSizeInBits() != 128)
3809    return false;
3810
3811  unsigned e = VT.getVectorNumElements() / 2;
3812  for (unsigned i = 0; i != e; ++i)
3813    if (!isUndefOrEqual(Mask[i], i))
3814      return false;
3815  for (unsigned i = 0; i != e; ++i)
3816    if (!isUndefOrEqual(Mask[e+i], i))
3817      return false;
3818  return true;
3819}
3820
3821/// isVEXTRACTF128Index - Return true if the specified
3822/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3823/// suitable for input to VEXTRACTF128.
3824bool X86::isVEXTRACTF128Index(SDNode *N) {
3825  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3826    return false;
3827
3828  // The index should be aligned on a 128-bit boundary.
3829  uint64_t Index =
3830    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3831
3832  unsigned VL = N->getValueType(0).getVectorNumElements();
3833  unsigned VBits = N->getValueType(0).getSizeInBits();
3834  unsigned ElSize = VBits / VL;
3835  bool Result = (Index * ElSize) % 128 == 0;
3836
3837  return Result;
3838}
3839
3840/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3841/// operand specifies a subvector insert that is suitable for input to
3842/// VINSERTF128.
3843bool X86::isVINSERTF128Index(SDNode *N) {
3844  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3845    return false;
3846
3847  // The index should be aligned on a 128-bit boundary.
3848  uint64_t Index =
3849    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3850
3851  unsigned VL = N->getValueType(0).getVectorNumElements();
3852  unsigned VBits = N->getValueType(0).getSizeInBits();
3853  unsigned ElSize = VBits / VL;
3854  bool Result = (Index * ElSize) % 128 == 0;
3855
3856  return Result;
3857}
3858
3859/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3860/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3861/// Handles 128-bit and 256-bit.
3862static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3863  EVT VT = N->getValueType(0);
3864
3865  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3866         "Unsupported vector type for PSHUF/SHUFP");
3867
3868  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3869  // independently on 128-bit lanes.
3870  unsigned NumElts = VT.getVectorNumElements();
3871  unsigned NumLanes = VT.getSizeInBits()/128;
3872  unsigned NumLaneElts = NumElts/NumLanes;
3873
3874  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3875         "Only supports 2 or 4 elements per lane");
3876
3877  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3878  unsigned Mask = 0;
3879  for (unsigned i = 0; i != NumElts; ++i) {
3880    int Elt = N->getMaskElt(i);
3881    if (Elt < 0) continue;
3882    Elt %= NumLaneElts;
3883    unsigned ShAmt = i << Shift;
3884    if (ShAmt >= 8) ShAmt -= 8;
3885    Mask |= Elt << ShAmt;
3886  }
3887
3888  return Mask;
3889}
3890
3891/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3892/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3893static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3894  unsigned Mask = 0;
3895  // 8 nodes, but we only care about the last 4.
3896  for (unsigned i = 7; i >= 4; --i) {
3897    int Val = N->getMaskElt(i);
3898    if (Val >= 0)
3899      Mask |= (Val - 4);
3900    if (i != 4)
3901      Mask <<= 2;
3902  }
3903  return Mask;
3904}
3905
3906/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3907/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3908static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3909  unsigned Mask = 0;
3910  // 8 nodes, but we only care about the first 4.
3911  for (int i = 3; i >= 0; --i) {
3912    int Val = N->getMaskElt(i);
3913    if (Val >= 0)
3914      Mask |= Val;
3915    if (i != 0)
3916      Mask <<= 2;
3917  }
3918  return Mask;
3919}
3920
3921/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3922/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3923static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3924  EVT VT = SVOp->getValueType(0);
3925  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3926
3927  unsigned NumElts = VT.getVectorNumElements();
3928  unsigned NumLanes = VT.getSizeInBits()/128;
3929  unsigned NumLaneElts = NumElts/NumLanes;
3930
3931  int Val = 0;
3932  unsigned i;
3933  for (i = 0; i != NumElts; ++i) {
3934    Val = SVOp->getMaskElt(i);
3935    if (Val >= 0)
3936      break;
3937  }
3938  if (Val >= (int)NumElts)
3939    Val -= NumElts - NumLaneElts;
3940
3941  assert(Val - i > 0 && "PALIGNR imm should be positive");
3942  return (Val - i) * EltSize;
3943}
3944
3945/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3946/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3947/// instructions.
3948unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3949  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3950    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3951
3952  uint64_t Index =
3953    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3954
3955  EVT VecVT = N->getOperand(0).getValueType();
3956  EVT ElVT = VecVT.getVectorElementType();
3957
3958  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3959  return Index / NumElemsPerChunk;
3960}
3961
3962/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3963/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3964/// instructions.
3965unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3966  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3967    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3968
3969  uint64_t Index =
3970    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3971
3972  EVT VecVT = N->getValueType(0);
3973  EVT ElVT = VecVT.getVectorElementType();
3974
3975  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3976  return Index / NumElemsPerChunk;
3977}
3978
3979/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3980/// constant +0.0.
3981bool X86::isZeroNode(SDValue Elt) {
3982  return ((isa<ConstantSDNode>(Elt) &&
3983           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3984          (isa<ConstantFPSDNode>(Elt) &&
3985           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3986}
3987
3988/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3989/// their permute mask.
3990static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3991                                    SelectionDAG &DAG) {
3992  EVT VT = SVOp->getValueType(0);
3993  unsigned NumElems = VT.getVectorNumElements();
3994  SmallVector<int, 8> MaskVec;
3995
3996  for (unsigned i = 0; i != NumElems; ++i) {
3997    int idx = SVOp->getMaskElt(i);
3998    if (idx < 0)
3999      MaskVec.push_back(idx);
4000    else if (idx < (int)NumElems)
4001      MaskVec.push_back(idx + NumElems);
4002    else
4003      MaskVec.push_back(idx - NumElems);
4004  }
4005  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4006                              SVOp->getOperand(0), &MaskVec[0]);
4007}
4008
4009/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4010/// match movhlps. The lower half elements should come from upper half of
4011/// V1 (and in order), and the upper half elements should come from the upper
4012/// half of V2 (and in order).
4013static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4014  if (VT.getSizeInBits() != 128)
4015    return false;
4016  if (VT.getVectorNumElements() != 4)
4017    return false;
4018  for (unsigned i = 0, e = 2; i != e; ++i)
4019    if (!isUndefOrEqual(Mask[i], i+2))
4020      return false;
4021  for (unsigned i = 2; i != 4; ++i)
4022    if (!isUndefOrEqual(Mask[i], i+4))
4023      return false;
4024  return true;
4025}
4026
4027/// isScalarLoadToVector - Returns true if the node is a scalar load that
4028/// is promoted to a vector. It also returns the LoadSDNode by reference if
4029/// required.
4030static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4031  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4032    return false;
4033  N = N->getOperand(0).getNode();
4034  if (!ISD::isNON_EXTLoad(N))
4035    return false;
4036  if (LD)
4037    *LD = cast<LoadSDNode>(N);
4038  return true;
4039}
4040
4041// Test whether the given value is a vector value which will be legalized
4042// into a load.
4043static bool WillBeConstantPoolLoad(SDNode *N) {
4044  if (N->getOpcode() != ISD::BUILD_VECTOR)
4045    return false;
4046
4047  // Check for any non-constant elements.
4048  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4049    switch (N->getOperand(i).getNode()->getOpcode()) {
4050    case ISD::UNDEF:
4051    case ISD::ConstantFP:
4052    case ISD::Constant:
4053      break;
4054    default:
4055      return false;
4056    }
4057
4058  // Vectors of all-zeros and all-ones are materialized with special
4059  // instructions rather than being loaded.
4060  return !ISD::isBuildVectorAllZeros(N) &&
4061         !ISD::isBuildVectorAllOnes(N);
4062}
4063
4064/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4065/// match movlp{s|d}. The lower half elements should come from lower half of
4066/// V1 (and in order), and the upper half elements should come from the upper
4067/// half of V2 (and in order). And since V1 will become the source of the
4068/// MOVLP, it must be either a vector load or a scalar load to vector.
4069static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4070                               ArrayRef<int> Mask, EVT VT) {
4071  if (VT.getSizeInBits() != 128)
4072    return false;
4073
4074  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4075    return false;
4076  // Is V2 is a vector load, don't do this transformation. We will try to use
4077  // load folding shufps op.
4078  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4079    return false;
4080
4081  unsigned NumElems = VT.getVectorNumElements();
4082
4083  if (NumElems != 2 && NumElems != 4)
4084    return false;
4085  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4086    if (!isUndefOrEqual(Mask[i], i))
4087      return false;
4088  for (unsigned i = NumElems/2; i != NumElems; ++i)
4089    if (!isUndefOrEqual(Mask[i], i+NumElems))
4090      return false;
4091  return true;
4092}
4093
4094/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4095/// all the same.
4096static bool isSplatVector(SDNode *N) {
4097  if (N->getOpcode() != ISD::BUILD_VECTOR)
4098    return false;
4099
4100  SDValue SplatValue = N->getOperand(0);
4101  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4102    if (N->getOperand(i) != SplatValue)
4103      return false;
4104  return true;
4105}
4106
4107/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4108/// to an zero vector.
4109/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4110static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4111  SDValue V1 = N->getOperand(0);
4112  SDValue V2 = N->getOperand(1);
4113  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4114  for (unsigned i = 0; i != NumElems; ++i) {
4115    int Idx = N->getMaskElt(i);
4116    if (Idx >= (int)NumElems) {
4117      unsigned Opc = V2.getOpcode();
4118      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4119        continue;
4120      if (Opc != ISD::BUILD_VECTOR ||
4121          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4122        return false;
4123    } else if (Idx >= 0) {
4124      unsigned Opc = V1.getOpcode();
4125      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4126        continue;
4127      if (Opc != ISD::BUILD_VECTOR ||
4128          !X86::isZeroNode(V1.getOperand(Idx)))
4129        return false;
4130    }
4131  }
4132  return true;
4133}
4134
4135/// getZeroVector - Returns a vector of specified type with all zero elements.
4136///
4137static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4138                             SelectionDAG &DAG, DebugLoc dl) {
4139  assert(VT.isVector() && "Expected a vector type");
4140
4141  // Always build SSE zero vectors as <4 x i32> bitcasted
4142  // to their dest type. This ensures they get CSE'd.
4143  SDValue Vec;
4144  if (VT.getSizeInBits() == 128) {  // SSE
4145    if (Subtarget->hasSSE2()) {  // SSE2
4146      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4147      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4148    } else { // SSE1
4149      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4150      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4151    }
4152  } else if (VT.getSizeInBits() == 256) { // AVX
4153    if (Subtarget->hasAVX2()) { // AVX2
4154      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4155      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4156      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4157    } else {
4158      // 256-bit logic and arithmetic instructions in AVX are all
4159      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4160      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4161      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4162      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4163    }
4164  }
4165  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4166}
4167
4168/// getOnesVector - Returns a vector of specified type with all bits set.
4169/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4170/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4171/// Then bitcast to their original type, ensuring they get CSE'd.
4172static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4173                             DebugLoc dl) {
4174  assert(VT.isVector() && "Expected a vector type");
4175  assert((VT.is128BitVector() || VT.is256BitVector())
4176         && "Expected a 128-bit or 256-bit vector type");
4177
4178  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4179  SDValue Vec;
4180  if (VT.getSizeInBits() == 256) {
4181    if (HasAVX2) { // AVX2
4182      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4183      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4184    } else { // AVX
4185      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4186      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4187                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4188      Vec = Insert128BitVector(InsV, Vec,
4189                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4190    }
4191  } else {
4192    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4193  }
4194
4195  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4196}
4197
4198/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4199/// that point to V2 points to its first element.
4200static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4201  for (unsigned i = 0; i != NumElems; ++i) {
4202    if (Mask[i] > (int)NumElems) {
4203      Mask[i] = NumElems;
4204    }
4205  }
4206}
4207
4208/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4209/// operation of specified width.
4210static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4211                       SDValue V2) {
4212  unsigned NumElems = VT.getVectorNumElements();
4213  SmallVector<int, 8> Mask;
4214  Mask.push_back(NumElems);
4215  for (unsigned i = 1; i != NumElems; ++i)
4216    Mask.push_back(i);
4217  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4218}
4219
4220/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4221static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4222                          SDValue V2) {
4223  unsigned NumElems = VT.getVectorNumElements();
4224  SmallVector<int, 8> Mask;
4225  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4226    Mask.push_back(i);
4227    Mask.push_back(i + NumElems);
4228  }
4229  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4230}
4231
4232/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4233static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4234                          SDValue V2) {
4235  unsigned NumElems = VT.getVectorNumElements();
4236  unsigned Half = NumElems/2;
4237  SmallVector<int, 8> Mask;
4238  for (unsigned i = 0; i != Half; ++i) {
4239    Mask.push_back(i + Half);
4240    Mask.push_back(i + NumElems + Half);
4241  }
4242  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4243}
4244
4245// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4246// a generic shuffle instruction because the target has no such instructions.
4247// Generate shuffles which repeat i16 and i8 several times until they can be
4248// represented by v4f32 and then be manipulated by target suported shuffles.
4249static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4250  EVT VT = V.getValueType();
4251  int NumElems = VT.getVectorNumElements();
4252  DebugLoc dl = V.getDebugLoc();
4253
4254  while (NumElems > 4) {
4255    if (EltNo < NumElems/2) {
4256      V = getUnpackl(DAG, dl, VT, V, V);
4257    } else {
4258      V = getUnpackh(DAG, dl, VT, V, V);
4259      EltNo -= NumElems/2;
4260    }
4261    NumElems >>= 1;
4262  }
4263  return V;
4264}
4265
4266/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4267static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4268  EVT VT = V.getValueType();
4269  DebugLoc dl = V.getDebugLoc();
4270  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4271         && "Vector size not supported");
4272
4273  if (VT.getSizeInBits() == 128) {
4274    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4275    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4276    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4277                             &SplatMask[0]);
4278  } else {
4279    // To use VPERMILPS to splat scalars, the second half of indicies must
4280    // refer to the higher part, which is a duplication of the lower one,
4281    // because VPERMILPS can only handle in-lane permutations.
4282    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4283                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4284
4285    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4286    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4287                             &SplatMask[0]);
4288  }
4289
4290  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4291}
4292
4293/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4294static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4295  EVT SrcVT = SV->getValueType(0);
4296  SDValue V1 = SV->getOperand(0);
4297  DebugLoc dl = SV->getDebugLoc();
4298
4299  int EltNo = SV->getSplatIndex();
4300  int NumElems = SrcVT.getVectorNumElements();
4301  unsigned Size = SrcVT.getSizeInBits();
4302
4303  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4304          "Unknown how to promote splat for type");
4305
4306  // Extract the 128-bit part containing the splat element and update
4307  // the splat element index when it refers to the higher register.
4308  if (Size == 256) {
4309    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4310    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4311    if (Idx > 0)
4312      EltNo -= NumElems/2;
4313  }
4314
4315  // All i16 and i8 vector types can't be used directly by a generic shuffle
4316  // instruction because the target has no such instruction. Generate shuffles
4317  // which repeat i16 and i8 several times until they fit in i32, and then can
4318  // be manipulated by target suported shuffles.
4319  EVT EltVT = SrcVT.getVectorElementType();
4320  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4321    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4322
4323  // Recreate the 256-bit vector and place the same 128-bit vector
4324  // into the low and high part. This is necessary because we want
4325  // to use VPERM* to shuffle the vectors
4326  if (Size == 256) {
4327    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4328                         DAG.getConstant(0, MVT::i32), DAG, dl);
4329    V1 = Insert128BitVector(InsV, V1,
4330               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4331  }
4332
4333  return getLegalSplat(DAG, V1, EltNo);
4334}
4335
4336/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4337/// vector of zero or undef vector.  This produces a shuffle where the low
4338/// element of V2 is swizzled into the zero/undef vector, landing at element
4339/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4340static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4341                                           bool IsZero,
4342                                           const X86Subtarget *Subtarget,
4343                                           SelectionDAG &DAG) {
4344  EVT VT = V2.getValueType();
4345  SDValue V1 = IsZero
4346    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4347  unsigned NumElems = VT.getVectorNumElements();
4348  SmallVector<int, 16> MaskVec;
4349  for (unsigned i = 0; i != NumElems; ++i)
4350    // If this is the insertion idx, put the low elt of V2 here.
4351    MaskVec.push_back(i == Idx ? NumElems : i);
4352  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4353}
4354
4355/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4356/// target specific opcode. Returns true if the Mask could be calculated.
4357/// Sets IsUnary to true if only uses one source.
4358static bool getTargetShuffleMask(SDNode *N, EVT VT,
4359                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4360  unsigned NumElems = VT.getVectorNumElements();
4361  SDValue ImmN;
4362
4363  IsUnary = false;
4364  switch(N->getOpcode()) {
4365  case X86ISD::SHUFP:
4366    ImmN = N->getOperand(N->getNumOperands()-1);
4367    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4368    break;
4369  case X86ISD::UNPCKH:
4370    DecodeUNPCKHMask(VT, Mask);
4371    break;
4372  case X86ISD::UNPCKL:
4373    DecodeUNPCKLMask(VT, Mask);
4374    break;
4375  case X86ISD::MOVHLPS:
4376    DecodeMOVHLPSMask(NumElems, Mask);
4377    break;
4378  case X86ISD::MOVLHPS:
4379    DecodeMOVLHPSMask(NumElems, Mask);
4380    break;
4381  case X86ISD::PSHUFD:
4382  case X86ISD::VPERMILP:
4383    ImmN = N->getOperand(N->getNumOperands()-1);
4384    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4385    IsUnary = true;
4386    break;
4387  case X86ISD::PSHUFHW:
4388    ImmN = N->getOperand(N->getNumOperands()-1);
4389    DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4390    IsUnary = true;
4391    break;
4392  case X86ISD::PSHUFLW:
4393    ImmN = N->getOperand(N->getNumOperands()-1);
4394    DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4395    IsUnary = true;
4396    break;
4397  case X86ISD::MOVSS:
4398  case X86ISD::MOVSD: {
4399    // The index 0 always comes from the first element of the second source,
4400    // this is why MOVSS and MOVSD are used in the first place. The other
4401    // elements come from the other positions of the first source vector
4402    Mask.push_back(NumElems);
4403    for (unsigned i = 1; i != NumElems; ++i) {
4404      Mask.push_back(i);
4405    }
4406    break;
4407  }
4408  case X86ISD::VPERM2X128:
4409    ImmN = N->getOperand(N->getNumOperands()-1);
4410    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4411    break;
4412  case X86ISD::MOVDDUP:
4413  case X86ISD::MOVLHPD:
4414  case X86ISD::MOVLPD:
4415  case X86ISD::MOVLPS:
4416  case X86ISD::MOVSHDUP:
4417  case X86ISD::MOVSLDUP:
4418  case X86ISD::PALIGN:
4419    // Not yet implemented
4420    return false;
4421  default: llvm_unreachable("unknown target shuffle node");
4422  }
4423
4424  return true;
4425}
4426
4427/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4428/// element of the result of the vector shuffle.
4429static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4430                                   unsigned Depth) {
4431  if (Depth == 6)
4432    return SDValue();  // Limit search depth.
4433
4434  SDValue V = SDValue(N, 0);
4435  EVT VT = V.getValueType();
4436  unsigned Opcode = V.getOpcode();
4437
4438  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4439  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4440    int Elt = SV->getMaskElt(Index);
4441
4442    if (Elt < 0)
4443      return DAG.getUNDEF(VT.getVectorElementType());
4444
4445    unsigned NumElems = VT.getVectorNumElements();
4446    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4447                                         : SV->getOperand(1);
4448    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4449  }
4450
4451  // Recurse into target specific vector shuffles to find scalars.
4452  if (isTargetShuffle(Opcode)) {
4453    unsigned NumElems = VT.getVectorNumElements();
4454    SmallVector<int, 16> ShuffleMask;
4455    SDValue ImmN;
4456    bool IsUnary;
4457
4458    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4459      return SDValue();
4460
4461    int Elt = ShuffleMask[Index];
4462    if (Elt < 0)
4463      return DAG.getUNDEF(VT.getVectorElementType());
4464
4465    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4466                                           : N->getOperand(1);
4467    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4468                               Depth+1);
4469  }
4470
4471  // Actual nodes that may contain scalar elements
4472  if (Opcode == ISD::BITCAST) {
4473    V = V.getOperand(0);
4474    EVT SrcVT = V.getValueType();
4475    unsigned NumElems = VT.getVectorNumElements();
4476
4477    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4478      return SDValue();
4479  }
4480
4481  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4482    return (Index == 0) ? V.getOperand(0)
4483                        : DAG.getUNDEF(VT.getVectorElementType());
4484
4485  if (V.getOpcode() == ISD::BUILD_VECTOR)
4486    return V.getOperand(Index);
4487
4488  return SDValue();
4489}
4490
4491/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4492/// shuffle operation which come from a consecutively from a zero. The
4493/// search can start in two different directions, from left or right.
4494static
4495unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4496                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4497  unsigned i;
4498  for (i = 0; i != NumElems; ++i) {
4499    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4500    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4501    if (!(Elt.getNode() &&
4502         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4503      break;
4504  }
4505
4506  return i;
4507}
4508
4509/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4510/// correspond consecutively to elements from one of the vector operands,
4511/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4512static
4513bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4514                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4515                              unsigned NumElems, unsigned &OpNum) {
4516  bool SeenV1 = false;
4517  bool SeenV2 = false;
4518
4519  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4520    int Idx = SVOp->getMaskElt(i);
4521    // Ignore undef indicies
4522    if (Idx < 0)
4523      continue;
4524
4525    if (Idx < (int)NumElems)
4526      SeenV1 = true;
4527    else
4528      SeenV2 = true;
4529
4530    // Only accept consecutive elements from the same vector
4531    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4532      return false;
4533  }
4534
4535  OpNum = SeenV1 ? 0 : 1;
4536  return true;
4537}
4538
4539/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4540/// logical left shift of a vector.
4541static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4542                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4543  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4544  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4545              false /* check zeros from right */, DAG);
4546  unsigned OpSrc;
4547
4548  if (!NumZeros)
4549    return false;
4550
4551  // Considering the elements in the mask that are not consecutive zeros,
4552  // check if they consecutively come from only one of the source vectors.
4553  //
4554  //               V1 = {X, A, B, C}     0
4555  //                         \  \  \    /
4556  //   vector_shuffle V1, V2 <1, 2, 3, X>
4557  //
4558  if (!isShuffleMaskConsecutive(SVOp,
4559            0,                   // Mask Start Index
4560            NumElems-NumZeros,   // Mask End Index(exclusive)
4561            NumZeros,            // Where to start looking in the src vector
4562            NumElems,            // Number of elements in vector
4563            OpSrc))              // Which source operand ?
4564    return false;
4565
4566  isLeft = false;
4567  ShAmt = NumZeros;
4568  ShVal = SVOp->getOperand(OpSrc);
4569  return true;
4570}
4571
4572/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4573/// logical left shift of a vector.
4574static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4575                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4576  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4577  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4578              true /* check zeros from left */, DAG);
4579  unsigned OpSrc;
4580
4581  if (!NumZeros)
4582    return false;
4583
4584  // Considering the elements in the mask that are not consecutive zeros,
4585  // check if they consecutively come from only one of the source vectors.
4586  //
4587  //                           0    { A, B, X, X } = V2
4588  //                          / \    /  /
4589  //   vector_shuffle V1, V2 <X, X, 4, 5>
4590  //
4591  if (!isShuffleMaskConsecutive(SVOp,
4592            NumZeros,     // Mask Start Index
4593            NumElems,     // Mask End Index(exclusive)
4594            0,            // Where to start looking in the src vector
4595            NumElems,     // Number of elements in vector
4596            OpSrc))       // Which source operand ?
4597    return false;
4598
4599  isLeft = true;
4600  ShAmt = NumZeros;
4601  ShVal = SVOp->getOperand(OpSrc);
4602  return true;
4603}
4604
4605/// isVectorShift - Returns true if the shuffle can be implemented as a
4606/// logical left or right shift of a vector.
4607static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4608                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4609  // Although the logic below support any bitwidth size, there are no
4610  // shift instructions which handle more than 128-bit vectors.
4611  if (SVOp->getValueType(0).getSizeInBits() > 128)
4612    return false;
4613
4614  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4615      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4616    return true;
4617
4618  return false;
4619}
4620
4621/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4622///
4623static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4624                                       unsigned NumNonZero, unsigned NumZero,
4625                                       SelectionDAG &DAG,
4626                                       const X86Subtarget* Subtarget,
4627                                       const TargetLowering &TLI) {
4628  if (NumNonZero > 8)
4629    return SDValue();
4630
4631  DebugLoc dl = Op.getDebugLoc();
4632  SDValue V(0, 0);
4633  bool First = true;
4634  for (unsigned i = 0; i < 16; ++i) {
4635    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4636    if (ThisIsNonZero && First) {
4637      if (NumZero)
4638        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4639      else
4640        V = DAG.getUNDEF(MVT::v8i16);
4641      First = false;
4642    }
4643
4644    if ((i & 1) != 0) {
4645      SDValue ThisElt(0, 0), LastElt(0, 0);
4646      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4647      if (LastIsNonZero) {
4648        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4649                              MVT::i16, Op.getOperand(i-1));
4650      }
4651      if (ThisIsNonZero) {
4652        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4653        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4654                              ThisElt, DAG.getConstant(8, MVT::i8));
4655        if (LastIsNonZero)
4656          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4657      } else
4658        ThisElt = LastElt;
4659
4660      if (ThisElt.getNode())
4661        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4662                        DAG.getIntPtrConstant(i/2));
4663    }
4664  }
4665
4666  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4667}
4668
4669/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4670///
4671static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4672                                     unsigned NumNonZero, unsigned NumZero,
4673                                     SelectionDAG &DAG,
4674                                     const X86Subtarget* Subtarget,
4675                                     const TargetLowering &TLI) {
4676  if (NumNonZero > 4)
4677    return SDValue();
4678
4679  DebugLoc dl = Op.getDebugLoc();
4680  SDValue V(0, 0);
4681  bool First = true;
4682  for (unsigned i = 0; i < 8; ++i) {
4683    bool isNonZero = (NonZeros & (1 << i)) != 0;
4684    if (isNonZero) {
4685      if (First) {
4686        if (NumZero)
4687          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4688        else
4689          V = DAG.getUNDEF(MVT::v8i16);
4690        First = false;
4691      }
4692      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4693                      MVT::v8i16, V, Op.getOperand(i),
4694                      DAG.getIntPtrConstant(i));
4695    }
4696  }
4697
4698  return V;
4699}
4700
4701/// getVShift - Return a vector logical shift node.
4702///
4703static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4704                         unsigned NumBits, SelectionDAG &DAG,
4705                         const TargetLowering &TLI, DebugLoc dl) {
4706  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4707  EVT ShVT = MVT::v2i64;
4708  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4709  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4710  return DAG.getNode(ISD::BITCAST, dl, VT,
4711                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4712                             DAG.getConstant(NumBits,
4713                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4714}
4715
4716SDValue
4717X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4718                                          SelectionDAG &DAG) const {
4719
4720  // Check if the scalar load can be widened into a vector load. And if
4721  // the address is "base + cst" see if the cst can be "absorbed" into
4722  // the shuffle mask.
4723  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4724    SDValue Ptr = LD->getBasePtr();
4725    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4726      return SDValue();
4727    EVT PVT = LD->getValueType(0);
4728    if (PVT != MVT::i32 && PVT != MVT::f32)
4729      return SDValue();
4730
4731    int FI = -1;
4732    int64_t Offset = 0;
4733    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4734      FI = FINode->getIndex();
4735      Offset = 0;
4736    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4737               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4738      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4739      Offset = Ptr.getConstantOperandVal(1);
4740      Ptr = Ptr.getOperand(0);
4741    } else {
4742      return SDValue();
4743    }
4744
4745    // FIXME: 256-bit vector instructions don't require a strict alignment,
4746    // improve this code to support it better.
4747    unsigned RequiredAlign = VT.getSizeInBits()/8;
4748    SDValue Chain = LD->getChain();
4749    // Make sure the stack object alignment is at least 16 or 32.
4750    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4751    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4752      if (MFI->isFixedObjectIndex(FI)) {
4753        // Can't change the alignment. FIXME: It's possible to compute
4754        // the exact stack offset and reference FI + adjust offset instead.
4755        // If someone *really* cares about this. That's the way to implement it.
4756        return SDValue();
4757      } else {
4758        MFI->setObjectAlignment(FI, RequiredAlign);
4759      }
4760    }
4761
4762    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4763    // Ptr + (Offset & ~15).
4764    if (Offset < 0)
4765      return SDValue();
4766    if ((Offset % RequiredAlign) & 3)
4767      return SDValue();
4768    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4769    if (StartOffset)
4770      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4771                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4772
4773    int EltNo = (Offset - StartOffset) >> 2;
4774    int NumElems = VT.getVectorNumElements();
4775
4776    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4777    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4778                             LD->getPointerInfo().getWithOffset(StartOffset),
4779                             false, false, false, 0);
4780
4781    SmallVector<int, 8> Mask;
4782    for (int i = 0; i < NumElems; ++i)
4783      Mask.push_back(EltNo);
4784
4785    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4786  }
4787
4788  return SDValue();
4789}
4790
4791/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4792/// vector of type 'VT', see if the elements can be replaced by a single large
4793/// load which has the same value as a build_vector whose operands are 'elts'.
4794///
4795/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4796///
4797/// FIXME: we'd also like to handle the case where the last elements are zero
4798/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4799/// There's even a handy isZeroNode for that purpose.
4800static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4801                                        DebugLoc &DL, SelectionDAG &DAG) {
4802  EVT EltVT = VT.getVectorElementType();
4803  unsigned NumElems = Elts.size();
4804
4805  LoadSDNode *LDBase = NULL;
4806  unsigned LastLoadedElt = -1U;
4807
4808  // For each element in the initializer, see if we've found a load or an undef.
4809  // If we don't find an initial load element, or later load elements are
4810  // non-consecutive, bail out.
4811  for (unsigned i = 0; i < NumElems; ++i) {
4812    SDValue Elt = Elts[i];
4813
4814    if (!Elt.getNode() ||
4815        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4816      return SDValue();
4817    if (!LDBase) {
4818      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4819        return SDValue();
4820      LDBase = cast<LoadSDNode>(Elt.getNode());
4821      LastLoadedElt = i;
4822      continue;
4823    }
4824    if (Elt.getOpcode() == ISD::UNDEF)
4825      continue;
4826
4827    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4828    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4829      return SDValue();
4830    LastLoadedElt = i;
4831  }
4832
4833  // If we have found an entire vector of loads and undefs, then return a large
4834  // load of the entire vector width starting at the base pointer.  If we found
4835  // consecutive loads for the low half, generate a vzext_load node.
4836  if (LastLoadedElt == NumElems - 1) {
4837    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4838      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4839                         LDBase->getPointerInfo(),
4840                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4841                         LDBase->isInvariant(), 0);
4842    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4843                       LDBase->getPointerInfo(),
4844                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4845                       LDBase->isInvariant(), LDBase->getAlignment());
4846  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4847             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4848    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4849    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4850    SDValue ResNode =
4851        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4852                                LDBase->getPointerInfo(),
4853                                LDBase->getAlignment(),
4854                                false/*isVolatile*/, true/*ReadMem*/,
4855                                false/*WriteMem*/);
4856    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4857  }
4858  return SDValue();
4859}
4860
4861/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4862/// to generate a splat value for the following cases:
4863/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4864/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4865/// a scalar load, or a constant.
4866/// The VBROADCAST node is returned when a pattern is found,
4867/// or SDValue() otherwise.
4868SDValue
4869X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4870  if (!Subtarget->hasAVX())
4871    return SDValue();
4872
4873  EVT VT = Op.getValueType();
4874  DebugLoc dl = Op.getDebugLoc();
4875
4876  SDValue Ld;
4877  bool ConstSplatVal;
4878
4879  switch (Op.getOpcode()) {
4880    default:
4881      // Unknown pattern found.
4882      return SDValue();
4883
4884    case ISD::BUILD_VECTOR: {
4885      // The BUILD_VECTOR node must be a splat.
4886      if (!isSplatVector(Op.getNode()))
4887        return SDValue();
4888
4889      Ld = Op.getOperand(0);
4890      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4891                     Ld.getOpcode() == ISD::ConstantFP);
4892
4893      // The suspected load node has several users. Make sure that all
4894      // of its users are from the BUILD_VECTOR node.
4895      // Constants may have multiple users.
4896      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4897        return SDValue();
4898      break;
4899    }
4900
4901    case ISD::VECTOR_SHUFFLE: {
4902      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4903
4904      // Shuffles must have a splat mask where the first element is
4905      // broadcasted.
4906      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4907        return SDValue();
4908
4909      SDValue Sc = Op.getOperand(0);
4910      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4911        return SDValue();
4912
4913      Ld = Sc.getOperand(0);
4914      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4915                       Ld.getOpcode() == ISD::ConstantFP);
4916
4917      // The scalar_to_vector node and the suspected
4918      // load node must have exactly one user.
4919      // Constants may have multiple users.
4920      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4921        return SDValue();
4922      break;
4923    }
4924  }
4925
4926  bool Is256 = VT.getSizeInBits() == 256;
4927  bool Is128 = VT.getSizeInBits() == 128;
4928
4929  // Handle the broadcasting a single constant scalar from the constant pool
4930  // into a vector. On Sandybridge it is still better to load a constant vector
4931  // from the constant pool and not to broadcast it from a scalar.
4932  if (ConstSplatVal && Subtarget->hasAVX2()) {
4933    EVT CVT = Ld.getValueType();
4934    assert(!CVT.isVector() && "Must not broadcast a vector type");
4935    unsigned ScalarSize = CVT.getSizeInBits();
4936
4937    if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
4938        (Is128 && (ScalarSize == 32))) {
4939
4940      const Constant *C = 0;
4941      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4942        C = CI->getConstantIntValue();
4943      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4944        C = CF->getConstantFPValue();
4945
4946      assert(C && "Invalid constant type");
4947
4948      SDValue CP = DAG.getConstantPool(C, getPointerTy());
4949      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4950      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4951                         MachinePointerInfo::getConstantPool(),
4952                         false, false, false, Alignment);
4953
4954      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4955    }
4956  }
4957
4958  // The scalar source must be a normal load.
4959  if (!ISD::isNormalLoad(Ld.getNode()))
4960    return SDValue();
4961
4962  // Reject loads that have uses of the chain result
4963  if (Ld->hasAnyUseOfValue(1))
4964    return SDValue();
4965
4966  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4967
4968  // VBroadcast to YMM
4969  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4970    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4971
4972  // VBroadcast to XMM
4973  if (Is128 && (ScalarSize == 32))
4974    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4975
4976  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4977  // double since there is vbroadcastsd xmm
4978  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4979    // VBroadcast to YMM
4980    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4981      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4982
4983    // VBroadcast to XMM
4984    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
4985      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4986  }
4987
4988  // Unsupported broadcast.
4989  return SDValue();
4990}
4991
4992SDValue
4993X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4994  DebugLoc dl = Op.getDebugLoc();
4995
4996  EVT VT = Op.getValueType();
4997  EVT ExtVT = VT.getVectorElementType();
4998  unsigned NumElems = Op.getNumOperands();
4999
5000  // Vectors containing all zeros can be matched by pxor and xorps later
5001  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5002    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5003    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5004    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5005      return Op;
5006
5007    return getZeroVector(VT, Subtarget, DAG, dl);
5008  }
5009
5010  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5011  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5012  // vpcmpeqd on 256-bit vectors.
5013  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5014    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5015      return Op;
5016
5017    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5018  }
5019
5020  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5021  if (Broadcast.getNode())
5022    return Broadcast;
5023
5024  unsigned EVTBits = ExtVT.getSizeInBits();
5025
5026  unsigned NumZero  = 0;
5027  unsigned NumNonZero = 0;
5028  unsigned NonZeros = 0;
5029  bool IsAllConstants = true;
5030  SmallSet<SDValue, 8> Values;
5031  for (unsigned i = 0; i < NumElems; ++i) {
5032    SDValue Elt = Op.getOperand(i);
5033    if (Elt.getOpcode() == ISD::UNDEF)
5034      continue;
5035    Values.insert(Elt);
5036    if (Elt.getOpcode() != ISD::Constant &&
5037        Elt.getOpcode() != ISD::ConstantFP)
5038      IsAllConstants = false;
5039    if (X86::isZeroNode(Elt))
5040      NumZero++;
5041    else {
5042      NonZeros |= (1 << i);
5043      NumNonZero++;
5044    }
5045  }
5046
5047  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5048  if (NumNonZero == 0)
5049    return DAG.getUNDEF(VT);
5050
5051  // Special case for single non-zero, non-undef, element.
5052  if (NumNonZero == 1) {
5053    unsigned Idx = CountTrailingZeros_32(NonZeros);
5054    SDValue Item = Op.getOperand(Idx);
5055
5056    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5057    // the value are obviously zero, truncate the value to i32 and do the
5058    // insertion that way.  Only do this if the value is non-constant or if the
5059    // value is a constant being inserted into element 0.  It is cheaper to do
5060    // a constant pool load than it is to do a movd + shuffle.
5061    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5062        (!IsAllConstants || Idx == 0)) {
5063      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5064        // Handle SSE only.
5065        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5066        EVT VecVT = MVT::v4i32;
5067        unsigned VecElts = 4;
5068
5069        // Truncate the value (which may itself be a constant) to i32, and
5070        // convert it to a vector with movd (S2V+shuffle to zero extend).
5071        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5072        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5073        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5074
5075        // Now we have our 32-bit value zero extended in the low element of
5076        // a vector.  If Idx != 0, swizzle it into place.
5077        if (Idx != 0) {
5078          SmallVector<int, 4> Mask;
5079          Mask.push_back(Idx);
5080          for (unsigned i = 1; i != VecElts; ++i)
5081            Mask.push_back(i);
5082          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5083                                      DAG.getUNDEF(Item.getValueType()),
5084                                      &Mask[0]);
5085        }
5086        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5087      }
5088    }
5089
5090    // If we have a constant or non-constant insertion into the low element of
5091    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5092    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5093    // depending on what the source datatype is.
5094    if (Idx == 0) {
5095      if (NumZero == 0)
5096        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5097
5098      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5099          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5100        if (VT.getSizeInBits() == 256) {
5101          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5102          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5103                             Item, DAG.getIntPtrConstant(0));
5104        }
5105        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5106        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5107        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5108        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5109      }
5110
5111      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5112        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5113        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5114        if (VT.getSizeInBits() == 256) {
5115          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5116          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5117                                    DAG, dl);
5118        } else {
5119          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5120          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5121        }
5122        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5123      }
5124    }
5125
5126    // Is it a vector logical left shift?
5127    if (NumElems == 2 && Idx == 1 &&
5128        X86::isZeroNode(Op.getOperand(0)) &&
5129        !X86::isZeroNode(Op.getOperand(1))) {
5130      unsigned NumBits = VT.getSizeInBits();
5131      return getVShift(true, VT,
5132                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5133                                   VT, Op.getOperand(1)),
5134                       NumBits/2, DAG, *this, dl);
5135    }
5136
5137    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5138      return SDValue();
5139
5140    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5141    // is a non-constant being inserted into an element other than the low one,
5142    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5143    // movd/movss) to move this into the low element, then shuffle it into
5144    // place.
5145    if (EVTBits == 32) {
5146      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5147
5148      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5149      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5150      SmallVector<int, 8> MaskVec;
5151      for (unsigned i = 0; i < NumElems; i++)
5152        MaskVec.push_back(i == Idx ? 0 : 1);
5153      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5154    }
5155  }
5156
5157  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5158  if (Values.size() == 1) {
5159    if (EVTBits == 32) {
5160      // Instead of a shuffle like this:
5161      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5162      // Check if it's possible to issue this instead.
5163      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5164      unsigned Idx = CountTrailingZeros_32(NonZeros);
5165      SDValue Item = Op.getOperand(Idx);
5166      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5167        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5168    }
5169    return SDValue();
5170  }
5171
5172  // A vector full of immediates; various special cases are already
5173  // handled, so this is best done with a single constant-pool load.
5174  if (IsAllConstants)
5175    return SDValue();
5176
5177  // For AVX-length vectors, build the individual 128-bit pieces and use
5178  // shuffles to put them in place.
5179  if (VT.getSizeInBits() == 256) {
5180    SmallVector<SDValue, 32> V;
5181    for (unsigned i = 0; i != NumElems; ++i)
5182      V.push_back(Op.getOperand(i));
5183
5184    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5185
5186    // Build both the lower and upper subvector.
5187    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5188    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5189                                NumElems/2);
5190
5191    // Recreate the wider vector with the lower and upper part.
5192    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5193                                DAG.getConstant(0, MVT::i32), DAG, dl);
5194    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5195                              DAG, dl);
5196  }
5197
5198  // Let legalizer expand 2-wide build_vectors.
5199  if (EVTBits == 64) {
5200    if (NumNonZero == 1) {
5201      // One half is zero or undef.
5202      unsigned Idx = CountTrailingZeros_32(NonZeros);
5203      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5204                                 Op.getOperand(Idx));
5205      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5206    }
5207    return SDValue();
5208  }
5209
5210  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5211  if (EVTBits == 8 && NumElems == 16) {
5212    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5213                                        Subtarget, *this);
5214    if (V.getNode()) return V;
5215  }
5216
5217  if (EVTBits == 16 && NumElems == 8) {
5218    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5219                                      Subtarget, *this);
5220    if (V.getNode()) return V;
5221  }
5222
5223  // If element VT is == 32 bits, turn it into a number of shuffles.
5224  SmallVector<SDValue, 8> V(NumElems);
5225  if (NumElems == 4 && NumZero > 0) {
5226    for (unsigned i = 0; i < 4; ++i) {
5227      bool isZero = !(NonZeros & (1 << i));
5228      if (isZero)
5229        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5230      else
5231        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5232    }
5233
5234    for (unsigned i = 0; i < 2; ++i) {
5235      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5236        default: break;
5237        case 0:
5238          V[i] = V[i*2];  // Must be a zero vector.
5239          break;
5240        case 1:
5241          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5242          break;
5243        case 2:
5244          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5245          break;
5246        case 3:
5247          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5248          break;
5249      }
5250    }
5251
5252    bool Reverse1 = (NonZeros & 0x3) == 2;
5253    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5254    int MaskVec[] = {
5255      Reverse1 ? 1 : 0,
5256      Reverse1 ? 0 : 1,
5257      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5258      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5259    };
5260    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5261  }
5262
5263  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5264    // Check for a build vector of consecutive loads.
5265    for (unsigned i = 0; i < NumElems; ++i)
5266      V[i] = Op.getOperand(i);
5267
5268    // Check for elements which are consecutive loads.
5269    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5270    if (LD.getNode())
5271      return LD;
5272
5273    // For SSE 4.1, use insertps to put the high elements into the low element.
5274    if (getSubtarget()->hasSSE41()) {
5275      SDValue Result;
5276      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5277        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5278      else
5279        Result = DAG.getUNDEF(VT);
5280
5281      for (unsigned i = 1; i < NumElems; ++i) {
5282        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5283        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5284                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5285      }
5286      return Result;
5287    }
5288
5289    // Otherwise, expand into a number of unpckl*, start by extending each of
5290    // our (non-undef) elements to the full vector width with the element in the
5291    // bottom slot of the vector (which generates no code for SSE).
5292    for (unsigned i = 0; i < NumElems; ++i) {
5293      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5294        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5295      else
5296        V[i] = DAG.getUNDEF(VT);
5297    }
5298
5299    // Next, we iteratively mix elements, e.g. for v4f32:
5300    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5301    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5302    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5303    unsigned EltStride = NumElems >> 1;
5304    while (EltStride != 0) {
5305      for (unsigned i = 0; i < EltStride; ++i) {
5306        // If V[i+EltStride] is undef and this is the first round of mixing,
5307        // then it is safe to just drop this shuffle: V[i] is already in the
5308        // right place, the one element (since it's the first round) being
5309        // inserted as undef can be dropped.  This isn't safe for successive
5310        // rounds because they will permute elements within both vectors.
5311        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5312            EltStride == NumElems/2)
5313          continue;
5314
5315        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5316      }
5317      EltStride >>= 1;
5318    }
5319    return V[0];
5320  }
5321  return SDValue();
5322}
5323
5324// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5325// them in a MMX register.  This is better than doing a stack convert.
5326static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5327  DebugLoc dl = Op.getDebugLoc();
5328  EVT ResVT = Op.getValueType();
5329
5330  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5331         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5332  int Mask[2];
5333  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5334  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5335  InVec = Op.getOperand(1);
5336  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5337    unsigned NumElts = ResVT.getVectorNumElements();
5338    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5339    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5340                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5341  } else {
5342    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5343    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5344    Mask[0] = 0; Mask[1] = 2;
5345    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5346  }
5347  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5348}
5349
5350// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5351// to create 256-bit vectors from two other 128-bit ones.
5352static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5353  DebugLoc dl = Op.getDebugLoc();
5354  EVT ResVT = Op.getValueType();
5355
5356  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5357
5358  SDValue V1 = Op.getOperand(0);
5359  SDValue V2 = Op.getOperand(1);
5360  unsigned NumElems = ResVT.getVectorNumElements();
5361
5362  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5363                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5364  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5365                            DAG, dl);
5366}
5367
5368SDValue
5369X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5370  EVT ResVT = Op.getValueType();
5371
5372  assert(Op.getNumOperands() == 2);
5373  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5374         "Unsupported CONCAT_VECTORS for value type");
5375
5376  // We support concatenate two MMX registers and place them in a MMX register.
5377  // This is better than doing a stack convert.
5378  if (ResVT.is128BitVector())
5379    return LowerMMXCONCAT_VECTORS(Op, DAG);
5380
5381  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5382  // from two other 128-bit ones.
5383  return LowerAVXCONCAT_VECTORS(Op, DAG);
5384}
5385
5386// Try to lower a shuffle node into a simple blend instruction.
5387static SDValue LowerVECTOR_SHUFFLEtoBlend(SDValue Op,
5388                                          const X86Subtarget *Subtarget,
5389                                          SelectionDAG &DAG, EVT PtrTy) {
5390  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5391  SDValue V1 = SVOp->getOperand(0);
5392  SDValue V2 = SVOp->getOperand(1);
5393  DebugLoc dl = SVOp->getDebugLoc();
5394  LLVMContext *Context = DAG.getContext();
5395  EVT VT = Op.getValueType();
5396  EVT InVT = V1.getValueType();
5397  EVT EltVT = VT.getVectorElementType();
5398  unsigned EltSize = EltVT.getSizeInBits();
5399
5400  int MaskSize = VT.getVectorNumElements();
5401  int InSize = InVT.getVectorNumElements();
5402
5403  // TODO: At the moment we only use AVX blends. We could also use SSE4 blends.
5404  if (!Subtarget->hasAVX())
5405    return SDValue();
5406
5407  if (MaskSize != InSize)
5408    return SDValue();
5409
5410  SmallVector<Constant*,2> MaskVals;
5411  ConstantInt *Zero = ConstantInt::get(*Context, APInt(EltSize, 0));
5412  ConstantInt *NegOne = ConstantInt::get(*Context, APInt(EltSize, -1));
5413
5414  for (int i = 0; i < MaskSize; ++i) {
5415    int EltIdx = SVOp->getMaskElt(i);
5416    if (EltIdx == i || EltIdx == -1)
5417      MaskVals.push_back(NegOne);
5418    else if (EltIdx == (i + MaskSize))
5419      MaskVals.push_back(Zero);
5420    else return SDValue();
5421  }
5422
5423  Constant *MaskC = ConstantVector::get(MaskVals);
5424  EVT MaskTy = EVT::getEVT(MaskC->getType());
5425  assert(MaskTy.getSizeInBits() == VT.getSizeInBits() && "Invalid mask size");
5426  SDValue MaskIdx = DAG.getConstantPool(MaskC, PtrTy);
5427  unsigned Alignment = cast<ConstantPoolSDNode>(MaskIdx)->getAlignment();
5428  SDValue Mask = DAG.getLoad(MaskTy, dl, DAG.getEntryNode(), MaskIdx,
5429                             MachinePointerInfo::getConstantPool(),
5430                             false, false, false, Alignment);
5431
5432  if (Subtarget->hasAVX2() && MaskTy == MVT::v32i8)
5433    return DAG.getNode(ISD::VSELECT, dl, VT, Mask, V1, V2);
5434
5435  if (Subtarget->hasAVX()) {
5436    switch (MaskTy.getSimpleVT().SimpleTy) {
5437    default: return SDValue();
5438    case MVT::v16i8:
5439    case MVT::v4i32:
5440    case MVT::v2i64:
5441    case MVT::v8i32:
5442    case MVT::v4i64:
5443             return DAG.getNode(ISD::VSELECT, dl, VT, Mask, V1, V2);
5444    }
5445  }
5446
5447  return SDValue();
5448}
5449
5450// v8i16 shuffles - Prefer shuffles in the following order:
5451// 1. [all]   pshuflw, pshufhw, optional move
5452// 2. [ssse3] 1 x pshufb
5453// 3. [ssse3] 2 x pshufb + 1 x por
5454// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5455SDValue
5456X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5457                                            SelectionDAG &DAG) const {
5458  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5459  SDValue V1 = SVOp->getOperand(0);
5460  SDValue V2 = SVOp->getOperand(1);
5461  DebugLoc dl = SVOp->getDebugLoc();
5462  SmallVector<int, 8> MaskVals;
5463
5464  // Determine if more than 1 of the words in each of the low and high quadwords
5465  // of the result come from the same quadword of one of the two inputs.  Undef
5466  // mask values count as coming from any quadword, for better codegen.
5467  unsigned LoQuad[] = { 0, 0, 0, 0 };
5468  unsigned HiQuad[] = { 0, 0, 0, 0 };
5469  std::bitset<4> InputQuads;
5470  for (unsigned i = 0; i < 8; ++i) {
5471    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5472    int EltIdx = SVOp->getMaskElt(i);
5473    MaskVals.push_back(EltIdx);
5474    if (EltIdx < 0) {
5475      ++Quad[0];
5476      ++Quad[1];
5477      ++Quad[2];
5478      ++Quad[3];
5479      continue;
5480    }
5481    ++Quad[EltIdx / 4];
5482    InputQuads.set(EltIdx / 4);
5483  }
5484
5485  int BestLoQuad = -1;
5486  unsigned MaxQuad = 1;
5487  for (unsigned i = 0; i < 4; ++i) {
5488    if (LoQuad[i] > MaxQuad) {
5489      BestLoQuad = i;
5490      MaxQuad = LoQuad[i];
5491    }
5492  }
5493
5494  int BestHiQuad = -1;
5495  MaxQuad = 1;
5496  for (unsigned i = 0; i < 4; ++i) {
5497    if (HiQuad[i] > MaxQuad) {
5498      BestHiQuad = i;
5499      MaxQuad = HiQuad[i];
5500    }
5501  }
5502
5503  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5504  // of the two input vectors, shuffle them into one input vector so only a
5505  // single pshufb instruction is necessary. If There are more than 2 input
5506  // quads, disable the next transformation since it does not help SSSE3.
5507  bool V1Used = InputQuads[0] || InputQuads[1];
5508  bool V2Used = InputQuads[2] || InputQuads[3];
5509  if (Subtarget->hasSSSE3()) {
5510    if (InputQuads.count() == 2 && V1Used && V2Used) {
5511      BestLoQuad = InputQuads[0] ? 0 : 1;
5512      BestHiQuad = InputQuads[2] ? 2 : 3;
5513    }
5514    if (InputQuads.count() > 2) {
5515      BestLoQuad = -1;
5516      BestHiQuad = -1;
5517    }
5518  }
5519
5520  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5521  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5522  // words from all 4 input quadwords.
5523  SDValue NewV;
5524  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5525    int MaskV[] = {
5526      BestLoQuad < 0 ? 0 : BestLoQuad,
5527      BestHiQuad < 0 ? 1 : BestHiQuad
5528    };
5529    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5530                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5531                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5532    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5533
5534    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5535    // source words for the shuffle, to aid later transformations.
5536    bool AllWordsInNewV = true;
5537    bool InOrder[2] = { true, true };
5538    for (unsigned i = 0; i != 8; ++i) {
5539      int idx = MaskVals[i];
5540      if (idx != (int)i)
5541        InOrder[i/4] = false;
5542      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5543        continue;
5544      AllWordsInNewV = false;
5545      break;
5546    }
5547
5548    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5549    if (AllWordsInNewV) {
5550      for (int i = 0; i != 8; ++i) {
5551        int idx = MaskVals[i];
5552        if (idx < 0)
5553          continue;
5554        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5555        if ((idx != i) && idx < 4)
5556          pshufhw = false;
5557        if ((idx != i) && idx > 3)
5558          pshuflw = false;
5559      }
5560      V1 = NewV;
5561      V2Used = false;
5562      BestLoQuad = 0;
5563      BestHiQuad = 1;
5564    }
5565
5566    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5567    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5568    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5569      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5570      unsigned TargetMask = 0;
5571      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5572                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5573      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5574      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5575                             getShufflePSHUFLWImmediate(SVOp);
5576      V1 = NewV.getOperand(0);
5577      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5578    }
5579  }
5580
5581  // If we have SSSE3, and all words of the result are from 1 input vector,
5582  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5583  // is present, fall back to case 4.
5584  if (Subtarget->hasSSSE3()) {
5585    SmallVector<SDValue,16> pshufbMask;
5586
5587    // If we have elements from both input vectors, set the high bit of the
5588    // shuffle mask element to zero out elements that come from V2 in the V1
5589    // mask, and elements that come from V1 in the V2 mask, so that the two
5590    // results can be OR'd together.
5591    bool TwoInputs = V1Used && V2Used;
5592    for (unsigned i = 0; i != 8; ++i) {
5593      int EltIdx = MaskVals[i] * 2;
5594      if (TwoInputs && (EltIdx >= 16)) {
5595        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5596        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5597        continue;
5598      }
5599      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5600      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5601    }
5602    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5603    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5604                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5605                                 MVT::v16i8, &pshufbMask[0], 16));
5606    if (!TwoInputs)
5607      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5608
5609    // Calculate the shuffle mask for the second input, shuffle it, and
5610    // OR it with the first shuffled input.
5611    pshufbMask.clear();
5612    for (unsigned i = 0; i != 8; ++i) {
5613      int EltIdx = MaskVals[i] * 2;
5614      if (EltIdx < 16) {
5615        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5616        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5617        continue;
5618      }
5619      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5620      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5621    }
5622    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5623    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5624                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5625                                 MVT::v16i8, &pshufbMask[0], 16));
5626    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5627    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5628  }
5629
5630  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5631  // and update MaskVals with new element order.
5632  std::bitset<8> InOrder;
5633  if (BestLoQuad >= 0) {
5634    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5635    for (int i = 0; i != 4; ++i) {
5636      int idx = MaskVals[i];
5637      if (idx < 0) {
5638        InOrder.set(i);
5639      } else if ((idx / 4) == BestLoQuad) {
5640        MaskV[i] = idx & 3;
5641        InOrder.set(i);
5642      }
5643    }
5644    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5645                                &MaskV[0]);
5646
5647    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5648      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5649      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5650                                  NewV.getOperand(0),
5651                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5652    }
5653  }
5654
5655  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5656  // and update MaskVals with the new element order.
5657  if (BestHiQuad >= 0) {
5658    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5659    for (unsigned i = 4; i != 8; ++i) {
5660      int idx = MaskVals[i];
5661      if (idx < 0) {
5662        InOrder.set(i);
5663      } else if ((idx / 4) == BestHiQuad) {
5664        MaskV[i] = (idx & 3) + 4;
5665        InOrder.set(i);
5666      }
5667    }
5668    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5669                                &MaskV[0]);
5670
5671    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5672      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5673      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5674                                  NewV.getOperand(0),
5675                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5676    }
5677  }
5678
5679  // In case BestHi & BestLo were both -1, which means each quadword has a word
5680  // from each of the four input quadwords, calculate the InOrder bitvector now
5681  // before falling through to the insert/extract cleanup.
5682  if (BestLoQuad == -1 && BestHiQuad == -1) {
5683    NewV = V1;
5684    for (int i = 0; i != 8; ++i)
5685      if (MaskVals[i] < 0 || MaskVals[i] == i)
5686        InOrder.set(i);
5687  }
5688
5689  // The other elements are put in the right place using pextrw and pinsrw.
5690  for (unsigned i = 0; i != 8; ++i) {
5691    if (InOrder[i])
5692      continue;
5693    int EltIdx = MaskVals[i];
5694    if (EltIdx < 0)
5695      continue;
5696    SDValue ExtOp = (EltIdx < 8)
5697    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5698                  DAG.getIntPtrConstant(EltIdx))
5699    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5700                  DAG.getIntPtrConstant(EltIdx - 8));
5701    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5702                       DAG.getIntPtrConstant(i));
5703  }
5704  return NewV;
5705}
5706
5707// v16i8 shuffles - Prefer shuffles in the following order:
5708// 1. [ssse3] 1 x pshufb
5709// 2. [ssse3] 2 x pshufb + 1 x por
5710// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5711static
5712SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5713                                 SelectionDAG &DAG,
5714                                 const X86TargetLowering &TLI) {
5715  SDValue V1 = SVOp->getOperand(0);
5716  SDValue V2 = SVOp->getOperand(1);
5717  DebugLoc dl = SVOp->getDebugLoc();
5718  ArrayRef<int> MaskVals = SVOp->getMask();
5719
5720  // If we have SSSE3, case 1 is generated when all result bytes come from
5721  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5722  // present, fall back to case 3.
5723  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5724  bool V1Only = true;
5725  bool V2Only = true;
5726  for (unsigned i = 0; i < 16; ++i) {
5727    int EltIdx = MaskVals[i];
5728    if (EltIdx < 0)
5729      continue;
5730    if (EltIdx < 16)
5731      V2Only = false;
5732    else
5733      V1Only = false;
5734  }
5735
5736  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5737  if (TLI.getSubtarget()->hasSSSE3()) {
5738    SmallVector<SDValue,16> pshufbMask;
5739
5740    // If all result elements are from one input vector, then only translate
5741    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5742    //
5743    // Otherwise, we have elements from both input vectors, and must zero out
5744    // elements that come from V2 in the first mask, and V1 in the second mask
5745    // so that we can OR them together.
5746    bool TwoInputs = !(V1Only || V2Only);
5747    for (unsigned i = 0; i != 16; ++i) {
5748      int EltIdx = MaskVals[i];
5749      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5750        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5751        continue;
5752      }
5753      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5754    }
5755    // If all the elements are from V2, assign it to V1 and return after
5756    // building the first pshufb.
5757    if (V2Only)
5758      V1 = V2;
5759    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5760                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5761                                 MVT::v16i8, &pshufbMask[0], 16));
5762    if (!TwoInputs)
5763      return V1;
5764
5765    // Calculate the shuffle mask for the second input, shuffle it, and
5766    // OR it with the first shuffled input.
5767    pshufbMask.clear();
5768    for (unsigned i = 0; i != 16; ++i) {
5769      int EltIdx = MaskVals[i];
5770      if (EltIdx < 16) {
5771        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5772        continue;
5773      }
5774      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5775    }
5776    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5777                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5778                                 MVT::v16i8, &pshufbMask[0], 16));
5779    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5780  }
5781
5782  // No SSSE3 - Calculate in place words and then fix all out of place words
5783  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5784  // the 16 different words that comprise the two doublequadword input vectors.
5785  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5786  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5787  SDValue NewV = V2Only ? V2 : V1;
5788  for (int i = 0; i != 8; ++i) {
5789    int Elt0 = MaskVals[i*2];
5790    int Elt1 = MaskVals[i*2+1];
5791
5792    // This word of the result is all undef, skip it.
5793    if (Elt0 < 0 && Elt1 < 0)
5794      continue;
5795
5796    // This word of the result is already in the correct place, skip it.
5797    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5798      continue;
5799    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5800      continue;
5801
5802    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5803    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5804    SDValue InsElt;
5805
5806    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5807    // using a single extract together, load it and store it.
5808    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5809      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5810                           DAG.getIntPtrConstant(Elt1 / 2));
5811      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5812                        DAG.getIntPtrConstant(i));
5813      continue;
5814    }
5815
5816    // If Elt1 is defined, extract it from the appropriate source.  If the
5817    // source byte is not also odd, shift the extracted word left 8 bits
5818    // otherwise clear the bottom 8 bits if we need to do an or.
5819    if (Elt1 >= 0) {
5820      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5821                           DAG.getIntPtrConstant(Elt1 / 2));
5822      if ((Elt1 & 1) == 0)
5823        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5824                             DAG.getConstant(8,
5825                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5826      else if (Elt0 >= 0)
5827        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5828                             DAG.getConstant(0xFF00, MVT::i16));
5829    }
5830    // If Elt0 is defined, extract it from the appropriate source.  If the
5831    // source byte is not also even, shift the extracted word right 8 bits. If
5832    // Elt1 was also defined, OR the extracted values together before
5833    // inserting them in the result.
5834    if (Elt0 >= 0) {
5835      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5836                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5837      if ((Elt0 & 1) != 0)
5838        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5839                              DAG.getConstant(8,
5840                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5841      else if (Elt1 >= 0)
5842        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5843                             DAG.getConstant(0x00FF, MVT::i16));
5844      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5845                         : InsElt0;
5846    }
5847    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5848                       DAG.getIntPtrConstant(i));
5849  }
5850  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5851}
5852
5853/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5854/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5855/// done when every pair / quad of shuffle mask elements point to elements in
5856/// the right sequence. e.g.
5857/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5858static
5859SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5860                                 SelectionDAG &DAG, DebugLoc dl) {
5861  EVT VT = SVOp->getValueType(0);
5862  SDValue V1 = SVOp->getOperand(0);
5863  SDValue V2 = SVOp->getOperand(1);
5864  unsigned NumElems = VT.getVectorNumElements();
5865  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5866  EVT NewVT;
5867  switch (VT.getSimpleVT().SimpleTy) {
5868  default: llvm_unreachable("Unexpected!");
5869  case MVT::v4f32: NewVT = MVT::v2f64; break;
5870  case MVT::v4i32: NewVT = MVT::v2i64; break;
5871  case MVT::v8i16: NewVT = MVT::v4i32; break;
5872  case MVT::v16i8: NewVT = MVT::v4i32; break;
5873  }
5874
5875  int Scale = NumElems / NewWidth;
5876  SmallVector<int, 8> MaskVec;
5877  for (unsigned i = 0; i < NumElems; i += Scale) {
5878    int StartIdx = -1;
5879    for (int j = 0; j < Scale; ++j) {
5880      int EltIdx = SVOp->getMaskElt(i+j);
5881      if (EltIdx < 0)
5882        continue;
5883      if (StartIdx == -1)
5884        StartIdx = EltIdx - (EltIdx % Scale);
5885      if (EltIdx != StartIdx + j)
5886        return SDValue();
5887    }
5888    if (StartIdx == -1)
5889      MaskVec.push_back(-1);
5890    else
5891      MaskVec.push_back(StartIdx / Scale);
5892  }
5893
5894  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5895  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5896  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5897}
5898
5899/// getVZextMovL - Return a zero-extending vector move low node.
5900///
5901static SDValue getVZextMovL(EVT VT, EVT OpVT,
5902                            SDValue SrcOp, SelectionDAG &DAG,
5903                            const X86Subtarget *Subtarget, DebugLoc dl) {
5904  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5905    LoadSDNode *LD = NULL;
5906    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5907      LD = dyn_cast<LoadSDNode>(SrcOp);
5908    if (!LD) {
5909      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5910      // instead.
5911      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5912      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5913          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5914          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5915          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5916        // PR2108
5917        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5918        return DAG.getNode(ISD::BITCAST, dl, VT,
5919                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5920                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5921                                                   OpVT,
5922                                                   SrcOp.getOperand(0)
5923                                                          .getOperand(0))));
5924      }
5925    }
5926  }
5927
5928  return DAG.getNode(ISD::BITCAST, dl, VT,
5929                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5930                                 DAG.getNode(ISD::BITCAST, dl,
5931                                             OpVT, SrcOp)));
5932}
5933
5934/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5935/// which could not be matched by any known target speficic shuffle
5936static SDValue
5937LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5938  EVT VT = SVOp->getValueType(0);
5939
5940  unsigned NumElems = VT.getVectorNumElements();
5941  unsigned NumLaneElems = NumElems / 2;
5942
5943  DebugLoc dl = SVOp->getDebugLoc();
5944  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5945  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5946  SDValue Shufs[2];
5947
5948  SmallVector<int, 16> Mask;
5949  for (unsigned l = 0; l < 2; ++l) {
5950    // Build a shuffle mask for the output, discovering on the fly which
5951    // input vectors to use as shuffle operands (recorded in InputUsed).
5952    // If building a suitable shuffle vector proves too hard, then bail
5953    // out with useBuildVector set.
5954    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
5955    unsigned LaneStart = l * NumLaneElems;
5956    for (unsigned i = 0; i != NumLaneElems; ++i) {
5957      // The mask element.  This indexes into the input.
5958      int Idx = SVOp->getMaskElt(i+LaneStart);
5959      if (Idx < 0) {
5960        // the mask element does not index into any input vector.
5961        Mask.push_back(-1);
5962        continue;
5963      }
5964
5965      // The input vector this mask element indexes into.
5966      int Input = Idx / NumLaneElems;
5967
5968      // Turn the index into an offset from the start of the input vector.
5969      Idx -= Input * NumLaneElems;
5970
5971      // Find or create a shuffle vector operand to hold this input.
5972      unsigned OpNo;
5973      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
5974        if (InputUsed[OpNo] == Input)
5975          // This input vector is already an operand.
5976          break;
5977        if (InputUsed[OpNo] < 0) {
5978          // Create a new operand for this input vector.
5979          InputUsed[OpNo] = Input;
5980          break;
5981        }
5982      }
5983
5984      if (OpNo >= array_lengthof(InputUsed)) {
5985        // More than two input vectors used! Give up.
5986        return SDValue();
5987      }
5988
5989      // Add the mask index for the new shuffle vector.
5990      Mask.push_back(Idx + OpNo * NumLaneElems);
5991    }
5992
5993    if (InputUsed[0] < 0) {
5994      // No input vectors were used! The result is undefined.
5995      Shufs[l] = DAG.getUNDEF(NVT);
5996    } else {
5997      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
5998                   DAG.getConstant((InputUsed[0] % 2) * NumLaneElems, MVT::i32),
5999                                   DAG, dl);
6000      // If only one input was used, use an undefined vector for the other.
6001      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6002        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6003                   DAG.getConstant((InputUsed[1] % 2) * NumLaneElems, MVT::i32),
6004                                   DAG, dl);
6005      // At least one input vector was used. Create a new shuffle vector.
6006      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6007    }
6008
6009    Mask.clear();
6010  }
6011
6012  // Concatenate the result back
6013  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shufs[0],
6014                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6015  return Insert128BitVector(V, Shufs[1],DAG.getConstant(NumLaneElems, MVT::i32),
6016                            DAG, dl);
6017}
6018
6019/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6020/// 4 elements, and match them with several different shuffle types.
6021static SDValue
6022LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6023  SDValue V1 = SVOp->getOperand(0);
6024  SDValue V2 = SVOp->getOperand(1);
6025  DebugLoc dl = SVOp->getDebugLoc();
6026  EVT VT = SVOp->getValueType(0);
6027
6028  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6029
6030  std::pair<int, int> Locs[4];
6031  int Mask1[] = { -1, -1, -1, -1 };
6032  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6033
6034  unsigned NumHi = 0;
6035  unsigned NumLo = 0;
6036  for (unsigned i = 0; i != 4; ++i) {
6037    int Idx = PermMask[i];
6038    if (Idx < 0) {
6039      Locs[i] = std::make_pair(-1, -1);
6040    } else {
6041      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6042      if (Idx < 4) {
6043        Locs[i] = std::make_pair(0, NumLo);
6044        Mask1[NumLo] = Idx;
6045        NumLo++;
6046      } else {
6047        Locs[i] = std::make_pair(1, NumHi);
6048        if (2+NumHi < 4)
6049          Mask1[2+NumHi] = Idx;
6050        NumHi++;
6051      }
6052    }
6053  }
6054
6055  if (NumLo <= 2 && NumHi <= 2) {
6056    // If no more than two elements come from either vector. This can be
6057    // implemented with two shuffles. First shuffle gather the elements.
6058    // The second shuffle, which takes the first shuffle as both of its
6059    // vector operands, put the elements into the right order.
6060    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6061
6062    int Mask2[] = { -1, -1, -1, -1 };
6063
6064    for (unsigned i = 0; i != 4; ++i)
6065      if (Locs[i].first != -1) {
6066        unsigned Idx = (i < 2) ? 0 : 4;
6067        Idx += Locs[i].first * 2 + Locs[i].second;
6068        Mask2[i] = Idx;
6069      }
6070
6071    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6072  } else if (NumLo == 3 || NumHi == 3) {
6073    // Otherwise, we must have three elements from one vector, call it X, and
6074    // one element from the other, call it Y.  First, use a shufps to build an
6075    // intermediate vector with the one element from Y and the element from X
6076    // that will be in the same half in the final destination (the indexes don't
6077    // matter). Then, use a shufps to build the final vector, taking the half
6078    // containing the element from Y from the intermediate, and the other half
6079    // from X.
6080    if (NumHi == 3) {
6081      // Normalize it so the 3 elements come from V1.
6082      CommuteVectorShuffleMask(PermMask, 4);
6083      std::swap(V1, V2);
6084    }
6085
6086    // Find the element from V2.
6087    unsigned HiIndex;
6088    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6089      int Val = PermMask[HiIndex];
6090      if (Val < 0)
6091        continue;
6092      if (Val >= 4)
6093        break;
6094    }
6095
6096    Mask1[0] = PermMask[HiIndex];
6097    Mask1[1] = -1;
6098    Mask1[2] = PermMask[HiIndex^1];
6099    Mask1[3] = -1;
6100    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6101
6102    if (HiIndex >= 2) {
6103      Mask1[0] = PermMask[0];
6104      Mask1[1] = PermMask[1];
6105      Mask1[2] = HiIndex & 1 ? 6 : 4;
6106      Mask1[3] = HiIndex & 1 ? 4 : 6;
6107      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6108    } else {
6109      Mask1[0] = HiIndex & 1 ? 2 : 0;
6110      Mask1[1] = HiIndex & 1 ? 0 : 2;
6111      Mask1[2] = PermMask[2];
6112      Mask1[3] = PermMask[3];
6113      if (Mask1[2] >= 0)
6114        Mask1[2] += 4;
6115      if (Mask1[3] >= 0)
6116        Mask1[3] += 4;
6117      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6118    }
6119  }
6120
6121  // Break it into (shuffle shuffle_hi, shuffle_lo).
6122  int LoMask[] = { -1, -1, -1, -1 };
6123  int HiMask[] = { -1, -1, -1, -1 };
6124
6125  int *MaskPtr = LoMask;
6126  unsigned MaskIdx = 0;
6127  unsigned LoIdx = 0;
6128  unsigned HiIdx = 2;
6129  for (unsigned i = 0; i != 4; ++i) {
6130    if (i == 2) {
6131      MaskPtr = HiMask;
6132      MaskIdx = 1;
6133      LoIdx = 0;
6134      HiIdx = 2;
6135    }
6136    int Idx = PermMask[i];
6137    if (Idx < 0) {
6138      Locs[i] = std::make_pair(-1, -1);
6139    } else if (Idx < 4) {
6140      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6141      MaskPtr[LoIdx] = Idx;
6142      LoIdx++;
6143    } else {
6144      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6145      MaskPtr[HiIdx] = Idx;
6146      HiIdx++;
6147    }
6148  }
6149
6150  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6151  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6152  int MaskOps[] = { -1, -1, -1, -1 };
6153  for (unsigned i = 0; i != 4; ++i)
6154    if (Locs[i].first != -1)
6155      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6156  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6157}
6158
6159static bool MayFoldVectorLoad(SDValue V) {
6160  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6161    V = V.getOperand(0);
6162  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6163    V = V.getOperand(0);
6164  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6165      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6166    // BUILD_VECTOR (load), undef
6167    V = V.getOperand(0);
6168  if (MayFoldLoad(V))
6169    return true;
6170  return false;
6171}
6172
6173// FIXME: the version above should always be used. Since there's
6174// a bug where several vector shuffles can't be folded because the
6175// DAG is not updated during lowering and a node claims to have two
6176// uses while it only has one, use this version, and let isel match
6177// another instruction if the load really happens to have more than
6178// one use. Remove this version after this bug get fixed.
6179// rdar://8434668, PR8156
6180static bool RelaxedMayFoldVectorLoad(SDValue V) {
6181  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6182    V = V.getOperand(0);
6183  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6184    V = V.getOperand(0);
6185  if (ISD::isNormalLoad(V.getNode()))
6186    return true;
6187  return false;
6188}
6189
6190static
6191SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6192  EVT VT = Op.getValueType();
6193
6194  // Canonizalize to v2f64.
6195  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6196  return DAG.getNode(ISD::BITCAST, dl, VT,
6197                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6198                                          V1, DAG));
6199}
6200
6201static
6202SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6203                        bool HasSSE2) {
6204  SDValue V1 = Op.getOperand(0);
6205  SDValue V2 = Op.getOperand(1);
6206  EVT VT = Op.getValueType();
6207
6208  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6209
6210  if (HasSSE2 && VT == MVT::v2f64)
6211    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6212
6213  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6214  return DAG.getNode(ISD::BITCAST, dl, VT,
6215                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6216                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6217                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6218}
6219
6220static
6221SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6222  SDValue V1 = Op.getOperand(0);
6223  SDValue V2 = Op.getOperand(1);
6224  EVT VT = Op.getValueType();
6225
6226  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6227         "unsupported shuffle type");
6228
6229  if (V2.getOpcode() == ISD::UNDEF)
6230    V2 = V1;
6231
6232  // v4i32 or v4f32
6233  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6234}
6235
6236static
6237SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6238  SDValue V1 = Op.getOperand(0);
6239  SDValue V2 = Op.getOperand(1);
6240  EVT VT = Op.getValueType();
6241  unsigned NumElems = VT.getVectorNumElements();
6242
6243  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6244  // operand of these instructions is only memory, so check if there's a
6245  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6246  // same masks.
6247  bool CanFoldLoad = false;
6248
6249  // Trivial case, when V2 comes from a load.
6250  if (MayFoldVectorLoad(V2))
6251    CanFoldLoad = true;
6252
6253  // When V1 is a load, it can be folded later into a store in isel, example:
6254  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6255  //    turns into:
6256  //  (MOVLPSmr addr:$src1, VR128:$src2)
6257  // So, recognize this potential and also use MOVLPS or MOVLPD
6258  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6259    CanFoldLoad = true;
6260
6261  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6262  if (CanFoldLoad) {
6263    if (HasSSE2 && NumElems == 2)
6264      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6265
6266    if (NumElems == 4)
6267      // If we don't care about the second element, procede to use movss.
6268      if (SVOp->getMaskElt(1) != -1)
6269        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6270  }
6271
6272  // movl and movlp will both match v2i64, but v2i64 is never matched by
6273  // movl earlier because we make it strict to avoid messing with the movlp load
6274  // folding logic (see the code above getMOVLP call). Match it here then,
6275  // this is horrible, but will stay like this until we move all shuffle
6276  // matching to x86 specific nodes. Note that for the 1st condition all
6277  // types are matched with movsd.
6278  if (HasSSE2) {
6279    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6280    // as to remove this logic from here, as much as possible
6281    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6282      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6283    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6284  }
6285
6286  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6287
6288  // Invert the operand order and use SHUFPS to match it.
6289  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6290                              getShuffleSHUFImmediate(SVOp), DAG);
6291}
6292
6293SDValue
6294X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6295  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6296  EVT VT = Op.getValueType();
6297  DebugLoc dl = Op.getDebugLoc();
6298  SDValue V1 = Op.getOperand(0);
6299  SDValue V2 = Op.getOperand(1);
6300
6301  if (isZeroShuffle(SVOp))
6302    return getZeroVector(VT, Subtarget, DAG, dl);
6303
6304  // Handle splat operations
6305  if (SVOp->isSplat()) {
6306    unsigned NumElem = VT.getVectorNumElements();
6307    int Size = VT.getSizeInBits();
6308
6309    // Use vbroadcast whenever the splat comes from a foldable load
6310    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6311    if (Broadcast.getNode())
6312      return Broadcast;
6313
6314    // Handle splats by matching through known shuffle masks
6315    if ((Size == 128 && NumElem <= 4) ||
6316        (Size == 256 && NumElem < 8))
6317      return SDValue();
6318
6319    // All remaning splats are promoted to target supported vector shuffles.
6320    return PromoteSplat(SVOp, DAG);
6321  }
6322
6323  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6324  // do it!
6325  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6326    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6327    if (NewOp.getNode())
6328      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6329  } else if ((VT == MVT::v4i32 ||
6330             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6331    // FIXME: Figure out a cleaner way to do this.
6332    // Try to make use of movq to zero out the top part.
6333    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6334      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6335      if (NewOp.getNode()) {
6336        EVT NewVT = NewOp.getValueType();
6337        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6338                               NewVT, true, false))
6339          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6340                              DAG, Subtarget, dl);
6341      }
6342    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6343      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6344      if (NewOp.getNode()) {
6345        EVT NewVT = NewOp.getValueType();
6346        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6347          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6348                              DAG, Subtarget, dl);
6349      }
6350    }
6351  }
6352  return SDValue();
6353}
6354
6355SDValue
6356X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6357  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6358  SDValue V1 = Op.getOperand(0);
6359  SDValue V2 = Op.getOperand(1);
6360  EVT VT = Op.getValueType();
6361  DebugLoc dl = Op.getDebugLoc();
6362  unsigned NumElems = VT.getVectorNumElements();
6363  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6364  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6365  bool V1IsSplat = false;
6366  bool V2IsSplat = false;
6367  bool HasSSE2 = Subtarget->hasSSE2();
6368  bool HasAVX    = Subtarget->hasAVX();
6369  bool HasAVX2   = Subtarget->hasAVX2();
6370  MachineFunction &MF = DAG.getMachineFunction();
6371  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6372
6373  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6374
6375  if (V1IsUndef && V2IsUndef)
6376    return DAG.getUNDEF(VT);
6377
6378  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6379
6380  // Vector shuffle lowering takes 3 steps:
6381  //
6382  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6383  //    narrowing and commutation of operands should be handled.
6384  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6385  //    shuffle nodes.
6386  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6387  //    so the shuffle can be broken into other shuffles and the legalizer can
6388  //    try the lowering again.
6389  //
6390  // The general idea is that no vector_shuffle operation should be left to
6391  // be matched during isel, all of them must be converted to a target specific
6392  // node here.
6393
6394  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6395  // narrowing and commutation of operands should be handled. The actual code
6396  // doesn't include all of those, work in progress...
6397  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6398  if (NewOp.getNode())
6399    return NewOp;
6400
6401  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6402
6403  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6404  // unpckh_undef). Only use pshufd if speed is more important than size.
6405  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6406    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6407  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6408    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6409
6410  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6411      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6412    return getMOVDDup(Op, dl, V1, DAG);
6413
6414  if (isMOVHLPS_v_undef_Mask(M, VT))
6415    return getMOVHighToLow(Op, dl, DAG);
6416
6417  // Use to match splats
6418  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6419      (VT == MVT::v2f64 || VT == MVT::v2i64))
6420    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6421
6422  if (isPSHUFDMask(M, VT)) {
6423    // The actual implementation will match the mask in the if above and then
6424    // during isel it can match several different instructions, not only pshufd
6425    // as its name says, sad but true, emulate the behavior for now...
6426    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6427      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6428
6429    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6430
6431    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6432      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6433
6434    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6435      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6436
6437    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6438                                TargetMask, DAG);
6439  }
6440
6441  // Check if this can be converted into a logical shift.
6442  bool isLeft = false;
6443  unsigned ShAmt = 0;
6444  SDValue ShVal;
6445  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6446  if (isShift && ShVal.hasOneUse()) {
6447    // If the shifted value has multiple uses, it may be cheaper to use
6448    // v_set0 + movlhps or movhlps, etc.
6449    EVT EltVT = VT.getVectorElementType();
6450    ShAmt *= EltVT.getSizeInBits();
6451    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6452  }
6453
6454  if (isMOVLMask(M, VT)) {
6455    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6456      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6457    if (!isMOVLPMask(M, VT)) {
6458      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6459        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6460
6461      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6462        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6463    }
6464  }
6465
6466  // FIXME: fold these into legal mask.
6467  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6468    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6469
6470  if (isMOVHLPSMask(M, VT))
6471    return getMOVHighToLow(Op, dl, DAG);
6472
6473  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6474    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6475
6476  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6477    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6478
6479  if (isMOVLPMask(M, VT))
6480    return getMOVLP(Op, dl, DAG, HasSSE2);
6481
6482  if (ShouldXformToMOVHLPS(M, VT) ||
6483      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6484    return CommuteVectorShuffle(SVOp, DAG);
6485
6486  if (isShift) {
6487    // No better options. Use a vshldq / vsrldq.
6488    EVT EltVT = VT.getVectorElementType();
6489    ShAmt *= EltVT.getSizeInBits();
6490    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6491  }
6492
6493  bool Commuted = false;
6494  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6495  // 1,1,1,1 -> v8i16 though.
6496  V1IsSplat = isSplatVector(V1.getNode());
6497  V2IsSplat = isSplatVector(V2.getNode());
6498
6499  // Canonicalize the splat or undef, if present, to be on the RHS.
6500  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6501    CommuteVectorShuffleMask(M, NumElems);
6502    std::swap(V1, V2);
6503    std::swap(V1IsSplat, V2IsSplat);
6504    Commuted = true;
6505  }
6506
6507  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6508    // Shuffling low element of v1 into undef, just return v1.
6509    if (V2IsUndef)
6510      return V1;
6511    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6512    // the instruction selector will not match, so get a canonical MOVL with
6513    // swapped operands to undo the commute.
6514    return getMOVL(DAG, dl, VT, V2, V1);
6515  }
6516
6517  if (isUNPCKLMask(M, VT, HasAVX2))
6518    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6519
6520  if (isUNPCKHMask(M, VT, HasAVX2))
6521    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6522
6523  if (V2IsSplat) {
6524    // Normalize mask so all entries that point to V2 points to its first
6525    // element then try to match unpck{h|l} again. If match, return a
6526    // new vector_shuffle with the corrected mask.p
6527    SmallVector<int, 8> NewMask(M.begin(), M.end());
6528    NormalizeMask(NewMask, NumElems);
6529    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6530      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6531    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6532      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6533    }
6534  }
6535
6536  if (Commuted) {
6537    // Commute is back and try unpck* again.
6538    // FIXME: this seems wrong.
6539    CommuteVectorShuffleMask(M, NumElems);
6540    std::swap(V1, V2);
6541    std::swap(V1IsSplat, V2IsSplat);
6542    Commuted = false;
6543
6544    if (isUNPCKLMask(M, VT, HasAVX2))
6545      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6546
6547    if (isUNPCKHMask(M, VT, HasAVX2))
6548      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6549  }
6550
6551  // Normalize the node to match x86 shuffle ops if needed
6552  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6553    return CommuteVectorShuffle(SVOp, DAG);
6554
6555  // The checks below are all present in isShuffleMaskLegal, but they are
6556  // inlined here right now to enable us to directly emit target specific
6557  // nodes, and remove one by one until they don't return Op anymore.
6558
6559  if (isPALIGNRMask(M, VT, Subtarget))
6560    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6561                                getShufflePALIGNRImmediate(SVOp),
6562                                DAG);
6563
6564  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6565      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6566    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6567      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6568  }
6569
6570  if (isPSHUFHWMask(M, VT))
6571    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6572                                getShufflePSHUFHWImmediate(SVOp),
6573                                DAG);
6574
6575  if (isPSHUFLWMask(M, VT))
6576    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6577                                getShufflePSHUFLWImmediate(SVOp),
6578                                DAG);
6579
6580  if (isSHUFPMask(M, VT, HasAVX))
6581    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6582                                getShuffleSHUFImmediate(SVOp), DAG);
6583
6584  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6585    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6586  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6587    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6588
6589  //===--------------------------------------------------------------------===//
6590  // Generate target specific nodes for 128 or 256-bit shuffles only
6591  // supported in the AVX instruction set.
6592  //
6593
6594  // Handle VMOVDDUPY permutations
6595  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6596    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6597
6598  // Handle VPERMILPS/D* permutations
6599  if (isVPERMILPMask(M, VT, HasAVX)) {
6600    if (HasAVX2 && VT == MVT::v8i32)
6601      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6602                                  getShuffleSHUFImmediate(SVOp), DAG);
6603    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6604                                getShuffleSHUFImmediate(SVOp), DAG);
6605  }
6606
6607  // Handle VPERM2F128/VPERM2I128 permutations
6608  if (isVPERM2X128Mask(M, VT, HasAVX))
6609    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6610                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6611
6612  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(Op, Subtarget, DAG, getPointerTy());
6613  if (BlendOp.getNode())
6614    return BlendOp;
6615
6616  //===--------------------------------------------------------------------===//
6617  // Since no target specific shuffle was selected for this generic one,
6618  // lower it into other known shuffles. FIXME: this isn't true yet, but
6619  // this is the plan.
6620  //
6621
6622  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6623  if (VT == MVT::v8i16) {
6624    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6625    if (NewOp.getNode())
6626      return NewOp;
6627  }
6628
6629  if (VT == MVT::v16i8) {
6630    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6631    if (NewOp.getNode())
6632      return NewOp;
6633  }
6634
6635  // Handle all 128-bit wide vectors with 4 elements, and match them with
6636  // several different shuffle types.
6637  if (NumElems == 4 && VT.getSizeInBits() == 128)
6638    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6639
6640  // Handle general 256-bit shuffles
6641  if (VT.is256BitVector())
6642    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6643
6644  return SDValue();
6645}
6646
6647SDValue
6648X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6649                                                SelectionDAG &DAG) const {
6650  EVT VT = Op.getValueType();
6651  DebugLoc dl = Op.getDebugLoc();
6652
6653  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6654    return SDValue();
6655
6656  if (VT.getSizeInBits() == 8) {
6657    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6658                                    Op.getOperand(0), Op.getOperand(1));
6659    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6660                                    DAG.getValueType(VT));
6661    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6662  } else if (VT.getSizeInBits() == 16) {
6663    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6664    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6665    if (Idx == 0)
6666      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6667                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6668                                     DAG.getNode(ISD::BITCAST, dl,
6669                                                 MVT::v4i32,
6670                                                 Op.getOperand(0)),
6671                                     Op.getOperand(1)));
6672    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6673                                    Op.getOperand(0), Op.getOperand(1));
6674    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6675                                    DAG.getValueType(VT));
6676    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6677  } else if (VT == MVT::f32) {
6678    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6679    // the result back to FR32 register. It's only worth matching if the
6680    // result has a single use which is a store or a bitcast to i32.  And in
6681    // the case of a store, it's not worth it if the index is a constant 0,
6682    // because a MOVSSmr can be used instead, which is smaller and faster.
6683    if (!Op.hasOneUse())
6684      return SDValue();
6685    SDNode *User = *Op.getNode()->use_begin();
6686    if ((User->getOpcode() != ISD::STORE ||
6687         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6688          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6689        (User->getOpcode() != ISD::BITCAST ||
6690         User->getValueType(0) != MVT::i32))
6691      return SDValue();
6692    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6693                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6694                                              Op.getOperand(0)),
6695                                              Op.getOperand(1));
6696    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6697  } else if (VT == MVT::i32 || VT == MVT::i64) {
6698    // ExtractPS/pextrq works with constant index.
6699    if (isa<ConstantSDNode>(Op.getOperand(1)))
6700      return Op;
6701  }
6702  return SDValue();
6703}
6704
6705
6706SDValue
6707X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6708                                           SelectionDAG &DAG) const {
6709  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6710    return SDValue();
6711
6712  SDValue Vec = Op.getOperand(0);
6713  EVT VecVT = Vec.getValueType();
6714
6715  // If this is a 256-bit vector result, first extract the 128-bit vector and
6716  // then extract the element from the 128-bit vector.
6717  if (VecVT.getSizeInBits() == 256) {
6718    DebugLoc dl = Op.getNode()->getDebugLoc();
6719    unsigned NumElems = VecVT.getVectorNumElements();
6720    SDValue Idx = Op.getOperand(1);
6721    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6722
6723    // Get the 128-bit vector.
6724    bool Upper = IdxVal >= NumElems/2;
6725    Vec = Extract128BitVector(Vec,
6726                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6727
6728    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6729                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6730  }
6731
6732  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6733
6734  if (Subtarget->hasSSE41()) {
6735    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6736    if (Res.getNode())
6737      return Res;
6738  }
6739
6740  EVT VT = Op.getValueType();
6741  DebugLoc dl = Op.getDebugLoc();
6742  // TODO: handle v16i8.
6743  if (VT.getSizeInBits() == 16) {
6744    SDValue Vec = Op.getOperand(0);
6745    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6746    if (Idx == 0)
6747      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6748                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6749                                     DAG.getNode(ISD::BITCAST, dl,
6750                                                 MVT::v4i32, Vec),
6751                                     Op.getOperand(1)));
6752    // Transform it so it match pextrw which produces a 32-bit result.
6753    EVT EltVT = MVT::i32;
6754    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6755                                    Op.getOperand(0), Op.getOperand(1));
6756    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6757                                    DAG.getValueType(VT));
6758    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6759  } else if (VT.getSizeInBits() == 32) {
6760    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6761    if (Idx == 0)
6762      return Op;
6763
6764    // SHUFPS the element to the lowest double word, then movss.
6765    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6766    EVT VVT = Op.getOperand(0).getValueType();
6767    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6768                                       DAG.getUNDEF(VVT), Mask);
6769    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6770                       DAG.getIntPtrConstant(0));
6771  } else if (VT.getSizeInBits() == 64) {
6772    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6773    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6774    //        to match extract_elt for f64.
6775    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6776    if (Idx == 0)
6777      return Op;
6778
6779    // UNPCKHPD the element to the lowest double word, then movsd.
6780    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6781    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6782    int Mask[2] = { 1, -1 };
6783    EVT VVT = Op.getOperand(0).getValueType();
6784    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6785                                       DAG.getUNDEF(VVT), Mask);
6786    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6787                       DAG.getIntPtrConstant(0));
6788  }
6789
6790  return SDValue();
6791}
6792
6793SDValue
6794X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6795                                               SelectionDAG &DAG) const {
6796  EVT VT = Op.getValueType();
6797  EVT EltVT = VT.getVectorElementType();
6798  DebugLoc dl = Op.getDebugLoc();
6799
6800  SDValue N0 = Op.getOperand(0);
6801  SDValue N1 = Op.getOperand(1);
6802  SDValue N2 = Op.getOperand(2);
6803
6804  if (VT.getSizeInBits() == 256)
6805    return SDValue();
6806
6807  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6808      isa<ConstantSDNode>(N2)) {
6809    unsigned Opc;
6810    if (VT == MVT::v8i16)
6811      Opc = X86ISD::PINSRW;
6812    else if (VT == MVT::v16i8)
6813      Opc = X86ISD::PINSRB;
6814    else
6815      Opc = X86ISD::PINSRB;
6816
6817    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6818    // argument.
6819    if (N1.getValueType() != MVT::i32)
6820      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6821    if (N2.getValueType() != MVT::i32)
6822      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6823    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6824  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6825    // Bits [7:6] of the constant are the source select.  This will always be
6826    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6827    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6828    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6829    // Bits [5:4] of the constant are the destination select.  This is the
6830    //  value of the incoming immediate.
6831    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6832    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6833    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6834    // Create this as a scalar to vector..
6835    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6836    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6837  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6838             isa<ConstantSDNode>(N2)) {
6839    // PINSR* works with constant index.
6840    return Op;
6841  }
6842  return SDValue();
6843}
6844
6845SDValue
6846X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6847  EVT VT = Op.getValueType();
6848  EVT EltVT = VT.getVectorElementType();
6849
6850  DebugLoc dl = Op.getDebugLoc();
6851  SDValue N0 = Op.getOperand(0);
6852  SDValue N1 = Op.getOperand(1);
6853  SDValue N2 = Op.getOperand(2);
6854
6855  // If this is a 256-bit vector result, first extract the 128-bit vector,
6856  // insert the element into the extracted half and then place it back.
6857  if (VT.getSizeInBits() == 256) {
6858    if (!isa<ConstantSDNode>(N2))
6859      return SDValue();
6860
6861    // Get the desired 128-bit vector half.
6862    unsigned NumElems = VT.getVectorNumElements();
6863    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6864    bool Upper = IdxVal >= NumElems/2;
6865    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6866    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6867
6868    // Insert the element into the desired half.
6869    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6870                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6871
6872    // Insert the changed part back to the 256-bit vector
6873    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6874  }
6875
6876  if (Subtarget->hasSSE41())
6877    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6878
6879  if (EltVT == MVT::i8)
6880    return SDValue();
6881
6882  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6883    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6884    // as its second argument.
6885    if (N1.getValueType() != MVT::i32)
6886      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6887    if (N2.getValueType() != MVT::i32)
6888      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6889    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6890  }
6891  return SDValue();
6892}
6893
6894SDValue
6895X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6896  LLVMContext *Context = DAG.getContext();
6897  DebugLoc dl = Op.getDebugLoc();
6898  EVT OpVT = Op.getValueType();
6899
6900  // If this is a 256-bit vector result, first insert into a 128-bit
6901  // vector and then insert into the 256-bit vector.
6902  if (OpVT.getSizeInBits() > 128) {
6903    // Insert into a 128-bit vector.
6904    EVT VT128 = EVT::getVectorVT(*Context,
6905                                 OpVT.getVectorElementType(),
6906                                 OpVT.getVectorNumElements() / 2);
6907
6908    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6909
6910    // Insert the 128-bit vector.
6911    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6912                              DAG.getConstant(0, MVT::i32),
6913                              DAG, dl);
6914  }
6915
6916  if (Op.getValueType() == MVT::v1i64 &&
6917      Op.getOperand(0).getValueType() == MVT::i64)
6918    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6919
6920  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6921  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6922         "Expected an SSE type!");
6923  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6924                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6925}
6926
6927// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6928// a simple subregister reference or explicit instructions to grab
6929// upper bits of a vector.
6930SDValue
6931X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6932  if (Subtarget->hasAVX()) {
6933    DebugLoc dl = Op.getNode()->getDebugLoc();
6934    SDValue Vec = Op.getNode()->getOperand(0);
6935    SDValue Idx = Op.getNode()->getOperand(1);
6936
6937    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6938        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6939        return Extract128BitVector(Vec, Idx, DAG, dl);
6940    }
6941  }
6942  return SDValue();
6943}
6944
6945// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6946// simple superregister reference or explicit instructions to insert
6947// the upper bits of a vector.
6948SDValue
6949X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6950  if (Subtarget->hasAVX()) {
6951    DebugLoc dl = Op.getNode()->getDebugLoc();
6952    SDValue Vec = Op.getNode()->getOperand(0);
6953    SDValue SubVec = Op.getNode()->getOperand(1);
6954    SDValue Idx = Op.getNode()->getOperand(2);
6955
6956    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6957        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6958      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6959    }
6960  }
6961  return SDValue();
6962}
6963
6964// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6965// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6966// one of the above mentioned nodes. It has to be wrapped because otherwise
6967// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6968// be used to form addressing mode. These wrapped nodes will be selected
6969// into MOV32ri.
6970SDValue
6971X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6972  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6973
6974  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6975  // global base reg.
6976  unsigned char OpFlag = 0;
6977  unsigned WrapperKind = X86ISD::Wrapper;
6978  CodeModel::Model M = getTargetMachine().getCodeModel();
6979
6980  if (Subtarget->isPICStyleRIPRel() &&
6981      (M == CodeModel::Small || M == CodeModel::Kernel))
6982    WrapperKind = X86ISD::WrapperRIP;
6983  else if (Subtarget->isPICStyleGOT())
6984    OpFlag = X86II::MO_GOTOFF;
6985  else if (Subtarget->isPICStyleStubPIC())
6986    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6987
6988  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6989                                             CP->getAlignment(),
6990                                             CP->getOffset(), OpFlag);
6991  DebugLoc DL = CP->getDebugLoc();
6992  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6993  // With PIC, the address is actually $g + Offset.
6994  if (OpFlag) {
6995    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6996                         DAG.getNode(X86ISD::GlobalBaseReg,
6997                                     DebugLoc(), getPointerTy()),
6998                         Result);
6999  }
7000
7001  return Result;
7002}
7003
7004SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7005  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7006
7007  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7008  // global base reg.
7009  unsigned char OpFlag = 0;
7010  unsigned WrapperKind = X86ISD::Wrapper;
7011  CodeModel::Model M = getTargetMachine().getCodeModel();
7012
7013  if (Subtarget->isPICStyleRIPRel() &&
7014      (M == CodeModel::Small || M == CodeModel::Kernel))
7015    WrapperKind = X86ISD::WrapperRIP;
7016  else if (Subtarget->isPICStyleGOT())
7017    OpFlag = X86II::MO_GOTOFF;
7018  else if (Subtarget->isPICStyleStubPIC())
7019    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7020
7021  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7022                                          OpFlag);
7023  DebugLoc DL = JT->getDebugLoc();
7024  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7025
7026  // With PIC, the address is actually $g + Offset.
7027  if (OpFlag)
7028    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7029                         DAG.getNode(X86ISD::GlobalBaseReg,
7030                                     DebugLoc(), getPointerTy()),
7031                         Result);
7032
7033  return Result;
7034}
7035
7036SDValue
7037X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7038  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7039
7040  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7041  // global base reg.
7042  unsigned char OpFlag = 0;
7043  unsigned WrapperKind = X86ISD::Wrapper;
7044  CodeModel::Model M = getTargetMachine().getCodeModel();
7045
7046  if (Subtarget->isPICStyleRIPRel() &&
7047      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7048    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7049      OpFlag = X86II::MO_GOTPCREL;
7050    WrapperKind = X86ISD::WrapperRIP;
7051  } else if (Subtarget->isPICStyleGOT()) {
7052    OpFlag = X86II::MO_GOT;
7053  } else if (Subtarget->isPICStyleStubPIC()) {
7054    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7055  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7056    OpFlag = X86II::MO_DARWIN_NONLAZY;
7057  }
7058
7059  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7060
7061  DebugLoc DL = Op.getDebugLoc();
7062  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7063
7064
7065  // With PIC, the address is actually $g + Offset.
7066  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7067      !Subtarget->is64Bit()) {
7068    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7069                         DAG.getNode(X86ISD::GlobalBaseReg,
7070                                     DebugLoc(), getPointerTy()),
7071                         Result);
7072  }
7073
7074  // For symbols that require a load from a stub to get the address, emit the
7075  // load.
7076  if (isGlobalStubReference(OpFlag))
7077    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7078                         MachinePointerInfo::getGOT(), false, false, false, 0);
7079
7080  return Result;
7081}
7082
7083SDValue
7084X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7085  // Create the TargetBlockAddressAddress node.
7086  unsigned char OpFlags =
7087    Subtarget->ClassifyBlockAddressReference();
7088  CodeModel::Model M = getTargetMachine().getCodeModel();
7089  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7090  DebugLoc dl = Op.getDebugLoc();
7091  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7092                                       /*isTarget=*/true, OpFlags);
7093
7094  if (Subtarget->isPICStyleRIPRel() &&
7095      (M == CodeModel::Small || M == CodeModel::Kernel))
7096    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7097  else
7098    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7099
7100  // With PIC, the address is actually $g + Offset.
7101  if (isGlobalRelativeToPICBase(OpFlags)) {
7102    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7103                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7104                         Result);
7105  }
7106
7107  return Result;
7108}
7109
7110SDValue
7111X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7112                                      int64_t Offset,
7113                                      SelectionDAG &DAG) const {
7114  // Create the TargetGlobalAddress node, folding in the constant
7115  // offset if it is legal.
7116  unsigned char OpFlags =
7117    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7118  CodeModel::Model M = getTargetMachine().getCodeModel();
7119  SDValue Result;
7120  if (OpFlags == X86II::MO_NO_FLAG &&
7121      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7122    // A direct static reference to a global.
7123    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7124    Offset = 0;
7125  } else {
7126    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7127  }
7128
7129  if (Subtarget->isPICStyleRIPRel() &&
7130      (M == CodeModel::Small || M == CodeModel::Kernel))
7131    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7132  else
7133    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7134
7135  // With PIC, the address is actually $g + Offset.
7136  if (isGlobalRelativeToPICBase(OpFlags)) {
7137    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7138                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7139                         Result);
7140  }
7141
7142  // For globals that require a load from a stub to get the address, emit the
7143  // load.
7144  if (isGlobalStubReference(OpFlags))
7145    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7146                         MachinePointerInfo::getGOT(), false, false, false, 0);
7147
7148  // If there was a non-zero offset that we didn't fold, create an explicit
7149  // addition for it.
7150  if (Offset != 0)
7151    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7152                         DAG.getConstant(Offset, getPointerTy()));
7153
7154  return Result;
7155}
7156
7157SDValue
7158X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7159  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7160  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7161  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7162}
7163
7164static SDValue
7165GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7166           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7167           unsigned char OperandFlags) {
7168  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7169  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7170  DebugLoc dl = GA->getDebugLoc();
7171  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7172                                           GA->getValueType(0),
7173                                           GA->getOffset(),
7174                                           OperandFlags);
7175  if (InFlag) {
7176    SDValue Ops[] = { Chain,  TGA, *InFlag };
7177    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7178  } else {
7179    SDValue Ops[]  = { Chain, TGA };
7180    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7181  }
7182
7183  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7184  MFI->setAdjustsStack(true);
7185
7186  SDValue Flag = Chain.getValue(1);
7187  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7188}
7189
7190// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7191static SDValue
7192LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7193                                const EVT PtrVT) {
7194  SDValue InFlag;
7195  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7196  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7197                                     DAG.getNode(X86ISD::GlobalBaseReg,
7198                                                 DebugLoc(), PtrVT), InFlag);
7199  InFlag = Chain.getValue(1);
7200
7201  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7202}
7203
7204// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7205static SDValue
7206LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7207                                const EVT PtrVT) {
7208  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7209                    X86::RAX, X86II::MO_TLSGD);
7210}
7211
7212// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7213// "local exec" model.
7214static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7215                                   const EVT PtrVT, TLSModel::Model model,
7216                                   bool is64Bit) {
7217  DebugLoc dl = GA->getDebugLoc();
7218
7219  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7220  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7221                                                         is64Bit ? 257 : 256));
7222
7223  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7224                                      DAG.getIntPtrConstant(0),
7225                                      MachinePointerInfo(Ptr),
7226                                      false, false, false, 0);
7227
7228  unsigned char OperandFlags = 0;
7229  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7230  // initialexec.
7231  unsigned WrapperKind = X86ISD::Wrapper;
7232  if (model == TLSModel::LocalExec) {
7233    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7234  } else if (is64Bit) {
7235    assert(model == TLSModel::InitialExec);
7236    OperandFlags = X86II::MO_GOTTPOFF;
7237    WrapperKind = X86ISD::WrapperRIP;
7238  } else {
7239    assert(model == TLSModel::InitialExec);
7240    OperandFlags = X86II::MO_INDNTPOFF;
7241  }
7242
7243  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7244  // exec)
7245  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7246                                           GA->getValueType(0),
7247                                           GA->getOffset(), OperandFlags);
7248  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7249
7250  if (model == TLSModel::InitialExec)
7251    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7252                         MachinePointerInfo::getGOT(), false, false, false, 0);
7253
7254  // The address of the thread local variable is the add of the thread
7255  // pointer with the offset of the variable.
7256  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7257}
7258
7259SDValue
7260X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7261
7262  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7263  const GlobalValue *GV = GA->getGlobal();
7264
7265  if (Subtarget->isTargetELF()) {
7266    // TODO: implement the "local dynamic" model
7267    // TODO: implement the "initial exec"model for pic executables
7268
7269    // If GV is an alias then use the aliasee for determining
7270    // thread-localness.
7271    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7272      GV = GA->resolveAliasedGlobal(false);
7273
7274    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7275
7276    switch (model) {
7277      case TLSModel::GeneralDynamic:
7278      case TLSModel::LocalDynamic: // not implemented
7279        if (Subtarget->is64Bit())
7280          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7281        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7282
7283      case TLSModel::InitialExec:
7284      case TLSModel::LocalExec:
7285        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7286                                   Subtarget->is64Bit());
7287    }
7288  } else if (Subtarget->isTargetDarwin()) {
7289    // Darwin only has one model of TLS.  Lower to that.
7290    unsigned char OpFlag = 0;
7291    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7292                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7293
7294    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7295    // global base reg.
7296    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7297                  !Subtarget->is64Bit();
7298    if (PIC32)
7299      OpFlag = X86II::MO_TLVP_PIC_BASE;
7300    else
7301      OpFlag = X86II::MO_TLVP;
7302    DebugLoc DL = Op.getDebugLoc();
7303    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7304                                                GA->getValueType(0),
7305                                                GA->getOffset(), OpFlag);
7306    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7307
7308    // With PIC32, the address is actually $g + Offset.
7309    if (PIC32)
7310      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7311                           DAG.getNode(X86ISD::GlobalBaseReg,
7312                                       DebugLoc(), getPointerTy()),
7313                           Offset);
7314
7315    // Lowering the machine isd will make sure everything is in the right
7316    // location.
7317    SDValue Chain = DAG.getEntryNode();
7318    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7319    SDValue Args[] = { Chain, Offset };
7320    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7321
7322    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7323    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7324    MFI->setAdjustsStack(true);
7325
7326    // And our return value (tls address) is in the standard call return value
7327    // location.
7328    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7329    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7330                              Chain.getValue(1));
7331  } else if (Subtarget->isTargetWindows()) {
7332    // Just use the implicit TLS architecture
7333    // Need to generate someting similar to:
7334    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7335    //                                  ; from TEB
7336    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7337    //   mov     rcx, qword [rdx+rcx*8]
7338    //   mov     eax, .tls$:tlsvar
7339    //   [rax+rcx] contains the address
7340    // Windows 64bit: gs:0x58
7341    // Windows 32bit: fs:__tls_array
7342
7343    // If GV is an alias then use the aliasee for determining
7344    // thread-localness.
7345    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7346      GV = GA->resolveAliasedGlobal(false);
7347    DebugLoc dl = GA->getDebugLoc();
7348    SDValue Chain = DAG.getEntryNode();
7349
7350    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7351    // %gs:0x58 (64-bit).
7352    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7353                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7354                                                             256)
7355                                        : Type::getInt32PtrTy(*DAG.getContext(),
7356                                                              257));
7357
7358    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7359                                        Subtarget->is64Bit()
7360                                        ? DAG.getIntPtrConstant(0x58)
7361                                        : DAG.getExternalSymbol("_tls_array",
7362                                                                getPointerTy()),
7363                                        MachinePointerInfo(Ptr),
7364                                        false, false, false, 0);
7365
7366    // Load the _tls_index variable
7367    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7368    if (Subtarget->is64Bit())
7369      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7370                           IDX, MachinePointerInfo(), MVT::i32,
7371                           false, false, 0);
7372    else
7373      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7374                        false, false, false, 0);
7375
7376    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7377		                            getPointerTy());
7378    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7379
7380    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7381    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7382                      false, false, false, 0);
7383
7384    // Get the offset of start of .tls section
7385    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7386                                             GA->getValueType(0),
7387                                             GA->getOffset(), X86II::MO_SECREL);
7388    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7389
7390    // The address of the thread local variable is the add of the thread
7391    // pointer with the offset of the variable.
7392    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7393  }
7394
7395  llvm_unreachable("TLS not implemented for this target.");
7396}
7397
7398
7399/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7400/// and take a 2 x i32 value to shift plus a shift amount.
7401SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7402  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7403  EVT VT = Op.getValueType();
7404  unsigned VTBits = VT.getSizeInBits();
7405  DebugLoc dl = Op.getDebugLoc();
7406  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7407  SDValue ShOpLo = Op.getOperand(0);
7408  SDValue ShOpHi = Op.getOperand(1);
7409  SDValue ShAmt  = Op.getOperand(2);
7410  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7411                                     DAG.getConstant(VTBits - 1, MVT::i8))
7412                       : DAG.getConstant(0, VT);
7413
7414  SDValue Tmp2, Tmp3;
7415  if (Op.getOpcode() == ISD::SHL_PARTS) {
7416    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7417    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7418  } else {
7419    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7420    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7421  }
7422
7423  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7424                                DAG.getConstant(VTBits, MVT::i8));
7425  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7426                             AndNode, DAG.getConstant(0, MVT::i8));
7427
7428  SDValue Hi, Lo;
7429  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7430  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7431  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7432
7433  if (Op.getOpcode() == ISD::SHL_PARTS) {
7434    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7435    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7436  } else {
7437    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7438    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7439  }
7440
7441  SDValue Ops[2] = { Lo, Hi };
7442  return DAG.getMergeValues(Ops, 2, dl);
7443}
7444
7445SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7446                                           SelectionDAG &DAG) const {
7447  EVT SrcVT = Op.getOperand(0).getValueType();
7448
7449  if (SrcVT.isVector())
7450    return SDValue();
7451
7452  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7453         "Unknown SINT_TO_FP to lower!");
7454
7455  // These are really Legal; return the operand so the caller accepts it as
7456  // Legal.
7457  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7458    return Op;
7459  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7460      Subtarget->is64Bit()) {
7461    return Op;
7462  }
7463
7464  DebugLoc dl = Op.getDebugLoc();
7465  unsigned Size = SrcVT.getSizeInBits()/8;
7466  MachineFunction &MF = DAG.getMachineFunction();
7467  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7468  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7469  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7470                               StackSlot,
7471                               MachinePointerInfo::getFixedStack(SSFI),
7472                               false, false, 0);
7473  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7474}
7475
7476SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7477                                     SDValue StackSlot,
7478                                     SelectionDAG &DAG) const {
7479  // Build the FILD
7480  DebugLoc DL = Op.getDebugLoc();
7481  SDVTList Tys;
7482  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7483  if (useSSE)
7484    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7485  else
7486    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7487
7488  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7489
7490  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7491  MachineMemOperand *MMO;
7492  if (FI) {
7493    int SSFI = FI->getIndex();
7494    MMO =
7495      DAG.getMachineFunction()
7496      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7497                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7498  } else {
7499    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7500    StackSlot = StackSlot.getOperand(1);
7501  }
7502  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7503  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7504                                           X86ISD::FILD, DL,
7505                                           Tys, Ops, array_lengthof(Ops),
7506                                           SrcVT, MMO);
7507
7508  if (useSSE) {
7509    Chain = Result.getValue(1);
7510    SDValue InFlag = Result.getValue(2);
7511
7512    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7513    // shouldn't be necessary except that RFP cannot be live across
7514    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7515    MachineFunction &MF = DAG.getMachineFunction();
7516    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7517    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7518    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7519    Tys = DAG.getVTList(MVT::Other);
7520    SDValue Ops[] = {
7521      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7522    };
7523    MachineMemOperand *MMO =
7524      DAG.getMachineFunction()
7525      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7526                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7527
7528    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7529                                    Ops, array_lengthof(Ops),
7530                                    Op.getValueType(), MMO);
7531    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7532                         MachinePointerInfo::getFixedStack(SSFI),
7533                         false, false, false, 0);
7534  }
7535
7536  return Result;
7537}
7538
7539// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7540SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7541                                               SelectionDAG &DAG) const {
7542  // This algorithm is not obvious. Here it is what we're trying to output:
7543  /*
7544     movq       %rax,  %xmm0
7545     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7546     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7547     #ifdef __SSE3__
7548       haddpd   %xmm0, %xmm0
7549     #else
7550       pshufd   $0x4e, %xmm0, %xmm1
7551       addpd    %xmm1, %xmm0
7552     #endif
7553  */
7554
7555  DebugLoc dl = Op.getDebugLoc();
7556  LLVMContext *Context = DAG.getContext();
7557
7558  // Build some magic constants.
7559  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7560  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7561  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7562
7563  SmallVector<Constant*,2> CV1;
7564  CV1.push_back(
7565        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7566  CV1.push_back(
7567        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7568  Constant *C1 = ConstantVector::get(CV1);
7569  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7570
7571  // Load the 64-bit value into an XMM register.
7572  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7573                            Op.getOperand(0));
7574  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7575                              MachinePointerInfo::getConstantPool(),
7576                              false, false, false, 16);
7577  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7578                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7579                              CLod0);
7580
7581  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7582                              MachinePointerInfo::getConstantPool(),
7583                              false, false, false, 16);
7584  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7585  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7586  SDValue Result;
7587
7588  if (Subtarget->hasSSE3()) {
7589    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7590    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7591  } else {
7592    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7593    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7594                                           S2F, 0x4E, DAG);
7595    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7596                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7597                         Sub);
7598  }
7599
7600  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7601                     DAG.getIntPtrConstant(0));
7602}
7603
7604// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7605SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7606                                               SelectionDAG &DAG) const {
7607  DebugLoc dl = Op.getDebugLoc();
7608  // FP constant to bias correct the final result.
7609  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7610                                   MVT::f64);
7611
7612  // Load the 32-bit value into an XMM register.
7613  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7614                             Op.getOperand(0));
7615
7616  // Zero out the upper parts of the register.
7617  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7618
7619  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7620                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7621                     DAG.getIntPtrConstant(0));
7622
7623  // Or the load with the bias.
7624  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7625                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7626                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7627                                                   MVT::v2f64, Load)),
7628                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7629                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7630                                                   MVT::v2f64, Bias)));
7631  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7632                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7633                   DAG.getIntPtrConstant(0));
7634
7635  // Subtract the bias.
7636  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7637
7638  // Handle final rounding.
7639  EVT DestVT = Op.getValueType();
7640
7641  if (DestVT.bitsLT(MVT::f64)) {
7642    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7643                       DAG.getIntPtrConstant(0));
7644  } else if (DestVT.bitsGT(MVT::f64)) {
7645    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7646  }
7647
7648  // Handle final rounding.
7649  return Sub;
7650}
7651
7652SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7653                                           SelectionDAG &DAG) const {
7654  SDValue N0 = Op.getOperand(0);
7655  DebugLoc dl = Op.getDebugLoc();
7656
7657  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7658  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7659  // the optimization here.
7660  if (DAG.SignBitIsZero(N0))
7661    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7662
7663  EVT SrcVT = N0.getValueType();
7664  EVT DstVT = Op.getValueType();
7665  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7666    return LowerUINT_TO_FP_i64(Op, DAG);
7667  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7668    return LowerUINT_TO_FP_i32(Op, DAG);
7669  else if (Subtarget->is64Bit() &&
7670           SrcVT == MVT::i64 && DstVT == MVT::f32)
7671    return SDValue();
7672
7673  // Make a 64-bit buffer, and use it to build an FILD.
7674  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7675  if (SrcVT == MVT::i32) {
7676    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7677    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7678                                     getPointerTy(), StackSlot, WordOff);
7679    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7680                                  StackSlot, MachinePointerInfo(),
7681                                  false, false, 0);
7682    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7683                                  OffsetSlot, MachinePointerInfo(),
7684                                  false, false, 0);
7685    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7686    return Fild;
7687  }
7688
7689  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7690  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7691                               StackSlot, MachinePointerInfo(),
7692                               false, false, 0);
7693  // For i64 source, we need to add the appropriate power of 2 if the input
7694  // was negative.  This is the same as the optimization in
7695  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7696  // we must be careful to do the computation in x87 extended precision, not
7697  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7698  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7699  MachineMemOperand *MMO =
7700    DAG.getMachineFunction()
7701    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7702                          MachineMemOperand::MOLoad, 8, 8);
7703
7704  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7705  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7706  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7707                                         MVT::i64, MMO);
7708
7709  APInt FF(32, 0x5F800000ULL);
7710
7711  // Check whether the sign bit is set.
7712  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7713                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7714                                 ISD::SETLT);
7715
7716  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7717  SDValue FudgePtr = DAG.getConstantPool(
7718                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7719                                         getPointerTy());
7720
7721  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7722  SDValue Zero = DAG.getIntPtrConstant(0);
7723  SDValue Four = DAG.getIntPtrConstant(4);
7724  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7725                               Zero, Four);
7726  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7727
7728  // Load the value out, extending it from f32 to f80.
7729  // FIXME: Avoid the extend by constructing the right constant pool?
7730  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7731                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7732                                 MVT::f32, false, false, 4);
7733  // Extend everything to 80 bits to force it to be done on x87.
7734  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7735  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7736}
7737
7738std::pair<SDValue,SDValue> X86TargetLowering::
7739FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7740  DebugLoc DL = Op.getDebugLoc();
7741
7742  EVT DstTy = Op.getValueType();
7743
7744  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7745    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7746    DstTy = MVT::i64;
7747  }
7748
7749  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7750         DstTy.getSimpleVT() >= MVT::i16 &&
7751         "Unknown FP_TO_INT to lower!");
7752
7753  // These are really Legal.
7754  if (DstTy == MVT::i32 &&
7755      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7756    return std::make_pair(SDValue(), SDValue());
7757  if (Subtarget->is64Bit() &&
7758      DstTy == MVT::i64 &&
7759      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7760    return std::make_pair(SDValue(), SDValue());
7761
7762  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7763  // stack slot, or into the FTOL runtime function.
7764  MachineFunction &MF = DAG.getMachineFunction();
7765  unsigned MemSize = DstTy.getSizeInBits()/8;
7766  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7767  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7768
7769  unsigned Opc;
7770  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7771    Opc = X86ISD::WIN_FTOL;
7772  else
7773    switch (DstTy.getSimpleVT().SimpleTy) {
7774    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7775    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7776    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7777    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7778    }
7779
7780  SDValue Chain = DAG.getEntryNode();
7781  SDValue Value = Op.getOperand(0);
7782  EVT TheVT = Op.getOperand(0).getValueType();
7783  // FIXME This causes a redundant load/store if the SSE-class value is already
7784  // in memory, such as if it is on the callstack.
7785  if (isScalarFPTypeInSSEReg(TheVT)) {
7786    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7787    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7788                         MachinePointerInfo::getFixedStack(SSFI),
7789                         false, false, 0);
7790    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7791    SDValue Ops[] = {
7792      Chain, StackSlot, DAG.getValueType(TheVT)
7793    };
7794
7795    MachineMemOperand *MMO =
7796      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7797                              MachineMemOperand::MOLoad, MemSize, MemSize);
7798    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7799                                    DstTy, MMO);
7800    Chain = Value.getValue(1);
7801    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7802    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7803  }
7804
7805  MachineMemOperand *MMO =
7806    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7807                            MachineMemOperand::MOStore, MemSize, MemSize);
7808
7809  if (Opc != X86ISD::WIN_FTOL) {
7810    // Build the FP_TO_INT*_IN_MEM
7811    SDValue Ops[] = { Chain, Value, StackSlot };
7812    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7813                                           Ops, 3, DstTy, MMO);
7814    return std::make_pair(FIST, StackSlot);
7815  } else {
7816    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7817      DAG.getVTList(MVT::Other, MVT::Glue),
7818      Chain, Value);
7819    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7820      MVT::i32, ftol.getValue(1));
7821    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7822      MVT::i32, eax.getValue(2));
7823    SDValue Ops[] = { eax, edx };
7824    SDValue pair = IsReplace
7825      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7826      : DAG.getMergeValues(Ops, 2, DL);
7827    return std::make_pair(pair, SDValue());
7828  }
7829}
7830
7831SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7832                                           SelectionDAG &DAG) const {
7833  if (Op.getValueType().isVector())
7834    return SDValue();
7835
7836  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7837    /*IsSigned=*/ true, /*IsReplace=*/ false);
7838  SDValue FIST = Vals.first, StackSlot = Vals.second;
7839  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7840  if (FIST.getNode() == 0) return Op;
7841
7842  if (StackSlot.getNode())
7843    // Load the result.
7844    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7845                       FIST, StackSlot, MachinePointerInfo(),
7846                       false, false, false, 0);
7847  else
7848    // The node is the result.
7849    return FIST;
7850}
7851
7852SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7853                                           SelectionDAG &DAG) const {
7854  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7855    /*IsSigned=*/ false, /*IsReplace=*/ false);
7856  SDValue FIST = Vals.first, StackSlot = Vals.second;
7857  assert(FIST.getNode() && "Unexpected failure");
7858
7859  if (StackSlot.getNode())
7860    // Load the result.
7861    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7862                       FIST, StackSlot, MachinePointerInfo(),
7863                       false, false, false, 0);
7864  else
7865    // The node is the result.
7866    return FIST;
7867}
7868
7869SDValue X86TargetLowering::LowerFABS(SDValue Op,
7870                                     SelectionDAG &DAG) const {
7871  LLVMContext *Context = DAG.getContext();
7872  DebugLoc dl = Op.getDebugLoc();
7873  EVT VT = Op.getValueType();
7874  EVT EltVT = VT;
7875  if (VT.isVector())
7876    EltVT = VT.getVectorElementType();
7877  Constant *C;
7878  if (EltVT == MVT::f64) {
7879    C = ConstantVector::getSplat(2,
7880                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7881  } else {
7882    C = ConstantVector::getSplat(4,
7883               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7884  }
7885  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7886  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7887                             MachinePointerInfo::getConstantPool(),
7888                             false, false, false, 16);
7889  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7890}
7891
7892SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7893  LLVMContext *Context = DAG.getContext();
7894  DebugLoc dl = Op.getDebugLoc();
7895  EVT VT = Op.getValueType();
7896  EVT EltVT = VT;
7897  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7898  if (VT.isVector()) {
7899    EltVT = VT.getVectorElementType();
7900    NumElts = VT.getVectorNumElements();
7901  }
7902  Constant *C;
7903  if (EltVT == MVT::f64)
7904    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7905  else
7906    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7907  C = ConstantVector::getSplat(NumElts, C);
7908  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7909  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7910                             MachinePointerInfo::getConstantPool(),
7911                             false, false, false, 16);
7912  if (VT.isVector()) {
7913    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7914    return DAG.getNode(ISD::BITCAST, dl, VT,
7915                       DAG.getNode(ISD::XOR, dl, XORVT,
7916                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7917                                Op.getOperand(0)),
7918                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7919  } else {
7920    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7921  }
7922}
7923
7924SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7925  LLVMContext *Context = DAG.getContext();
7926  SDValue Op0 = Op.getOperand(0);
7927  SDValue Op1 = Op.getOperand(1);
7928  DebugLoc dl = Op.getDebugLoc();
7929  EVT VT = Op.getValueType();
7930  EVT SrcVT = Op1.getValueType();
7931
7932  // If second operand is smaller, extend it first.
7933  if (SrcVT.bitsLT(VT)) {
7934    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7935    SrcVT = VT;
7936  }
7937  // And if it is bigger, shrink it first.
7938  if (SrcVT.bitsGT(VT)) {
7939    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7940    SrcVT = VT;
7941  }
7942
7943  // At this point the operands and the result should have the same
7944  // type, and that won't be f80 since that is not custom lowered.
7945
7946  // First get the sign bit of second operand.
7947  SmallVector<Constant*,4> CV;
7948  if (SrcVT == MVT::f64) {
7949    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7950    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7951  } else {
7952    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7953    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7954    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7955    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7956  }
7957  Constant *C = ConstantVector::get(CV);
7958  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7959  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7960                              MachinePointerInfo::getConstantPool(),
7961                              false, false, false, 16);
7962  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7963
7964  // Shift sign bit right or left if the two operands have different types.
7965  if (SrcVT.bitsGT(VT)) {
7966    // Op0 is MVT::f32, Op1 is MVT::f64.
7967    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7968    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7969                          DAG.getConstant(32, MVT::i32));
7970    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7971    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7972                          DAG.getIntPtrConstant(0));
7973  }
7974
7975  // Clear first operand sign bit.
7976  CV.clear();
7977  if (VT == MVT::f64) {
7978    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7979    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7980  } else {
7981    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7982    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7983    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7984    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7985  }
7986  C = ConstantVector::get(CV);
7987  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7988  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7989                              MachinePointerInfo::getConstantPool(),
7990                              false, false, false, 16);
7991  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7992
7993  // Or the value with the sign bit.
7994  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7995}
7996
7997SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7998  SDValue N0 = Op.getOperand(0);
7999  DebugLoc dl = Op.getDebugLoc();
8000  EVT VT = Op.getValueType();
8001
8002  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8003  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8004                                  DAG.getConstant(1, VT));
8005  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8006}
8007
8008/// Emit nodes that will be selected as "test Op0,Op0", or something
8009/// equivalent.
8010SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8011                                    SelectionDAG &DAG) const {
8012  DebugLoc dl = Op.getDebugLoc();
8013
8014  // CF and OF aren't always set the way we want. Determine which
8015  // of these we need.
8016  bool NeedCF = false;
8017  bool NeedOF = false;
8018  switch (X86CC) {
8019  default: break;
8020  case X86::COND_A: case X86::COND_AE:
8021  case X86::COND_B: case X86::COND_BE:
8022    NeedCF = true;
8023    break;
8024  case X86::COND_G: case X86::COND_GE:
8025  case X86::COND_L: case X86::COND_LE:
8026  case X86::COND_O: case X86::COND_NO:
8027    NeedOF = true;
8028    break;
8029  }
8030
8031  // See if we can use the EFLAGS value from the operand instead of
8032  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8033  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8034  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8035    // Emit a CMP with 0, which is the TEST pattern.
8036    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8037                       DAG.getConstant(0, Op.getValueType()));
8038
8039  unsigned Opcode = 0;
8040  unsigned NumOperands = 0;
8041  switch (Op.getNode()->getOpcode()) {
8042  case ISD::ADD:
8043    // Due to an isel shortcoming, be conservative if this add is likely to be
8044    // selected as part of a load-modify-store instruction. When the root node
8045    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8046    // uses of other nodes in the match, such as the ADD in this case. This
8047    // leads to the ADD being left around and reselected, with the result being
8048    // two adds in the output.  Alas, even if none our users are stores, that
8049    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8050    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8051    // climbing the DAG back to the root, and it doesn't seem to be worth the
8052    // effort.
8053    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8054         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8055      if (UI->getOpcode() != ISD::CopyToReg &&
8056          UI->getOpcode() != ISD::SETCC &&
8057          UI->getOpcode() != ISD::STORE)
8058        goto default_case;
8059
8060    if (ConstantSDNode *C =
8061        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8062      // An add of one will be selected as an INC.
8063      if (C->getAPIntValue() == 1) {
8064        Opcode = X86ISD::INC;
8065        NumOperands = 1;
8066        break;
8067      }
8068
8069      // An add of negative one (subtract of one) will be selected as a DEC.
8070      if (C->getAPIntValue().isAllOnesValue()) {
8071        Opcode = X86ISD::DEC;
8072        NumOperands = 1;
8073        break;
8074      }
8075    }
8076
8077    // Otherwise use a regular EFLAGS-setting add.
8078    Opcode = X86ISD::ADD;
8079    NumOperands = 2;
8080    break;
8081  case ISD::AND: {
8082    // If the primary and result isn't used, don't bother using X86ISD::AND,
8083    // because a TEST instruction will be better.
8084    bool NonFlagUse = false;
8085    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8086           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8087      SDNode *User = *UI;
8088      unsigned UOpNo = UI.getOperandNo();
8089      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8090        // Look pass truncate.
8091        UOpNo = User->use_begin().getOperandNo();
8092        User = *User->use_begin();
8093      }
8094
8095      if (User->getOpcode() != ISD::BRCOND &&
8096          User->getOpcode() != ISD::SETCC &&
8097          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8098        NonFlagUse = true;
8099        break;
8100      }
8101    }
8102
8103    if (!NonFlagUse)
8104      break;
8105  }
8106    // FALL THROUGH
8107  case ISD::SUB:
8108  case ISD::OR:
8109  case ISD::XOR:
8110    // Due to the ISEL shortcoming noted above, be conservative if this op is
8111    // likely to be selected as part of a load-modify-store instruction.
8112    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8113           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8114      if (UI->getOpcode() == ISD::STORE)
8115        goto default_case;
8116
8117    // Otherwise use a regular EFLAGS-setting instruction.
8118    switch (Op.getNode()->getOpcode()) {
8119    default: llvm_unreachable("unexpected operator!");
8120    case ISD::SUB: Opcode = X86ISD::SUB; break;
8121    case ISD::OR:  Opcode = X86ISD::OR;  break;
8122    case ISD::XOR: Opcode = X86ISD::XOR; break;
8123    case ISD::AND: Opcode = X86ISD::AND; break;
8124    }
8125
8126    NumOperands = 2;
8127    break;
8128  case X86ISD::ADD:
8129  case X86ISD::SUB:
8130  case X86ISD::INC:
8131  case X86ISD::DEC:
8132  case X86ISD::OR:
8133  case X86ISD::XOR:
8134  case X86ISD::AND:
8135    return SDValue(Op.getNode(), 1);
8136  default:
8137  default_case:
8138    break;
8139  }
8140
8141  if (Opcode == 0)
8142    // Emit a CMP with 0, which is the TEST pattern.
8143    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8144                       DAG.getConstant(0, Op.getValueType()));
8145
8146  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8147  SmallVector<SDValue, 4> Ops;
8148  for (unsigned i = 0; i != NumOperands; ++i)
8149    Ops.push_back(Op.getOperand(i));
8150
8151  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8152  DAG.ReplaceAllUsesWith(Op, New);
8153  return SDValue(New.getNode(), 1);
8154}
8155
8156/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8157/// equivalent.
8158SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8159                                   SelectionDAG &DAG) const {
8160  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8161    if (C->getAPIntValue() == 0)
8162      return EmitTest(Op0, X86CC, DAG);
8163
8164  DebugLoc dl = Op0.getDebugLoc();
8165  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8166}
8167
8168/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8169/// if it's possible.
8170SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8171                                     DebugLoc dl, SelectionDAG &DAG) const {
8172  SDValue Op0 = And.getOperand(0);
8173  SDValue Op1 = And.getOperand(1);
8174  if (Op0.getOpcode() == ISD::TRUNCATE)
8175    Op0 = Op0.getOperand(0);
8176  if (Op1.getOpcode() == ISD::TRUNCATE)
8177    Op1 = Op1.getOperand(0);
8178
8179  SDValue LHS, RHS;
8180  if (Op1.getOpcode() == ISD::SHL)
8181    std::swap(Op0, Op1);
8182  if (Op0.getOpcode() == ISD::SHL) {
8183    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8184      if (And00C->getZExtValue() == 1) {
8185        // If we looked past a truncate, check that it's only truncating away
8186        // known zeros.
8187        unsigned BitWidth = Op0.getValueSizeInBits();
8188        unsigned AndBitWidth = And.getValueSizeInBits();
8189        if (BitWidth > AndBitWidth) {
8190          APInt Zeros, Ones;
8191          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8192          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8193            return SDValue();
8194        }
8195        LHS = Op1;
8196        RHS = Op0.getOperand(1);
8197      }
8198  } else if (Op1.getOpcode() == ISD::Constant) {
8199    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8200    uint64_t AndRHSVal = AndRHS->getZExtValue();
8201    SDValue AndLHS = Op0;
8202
8203    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8204      LHS = AndLHS.getOperand(0);
8205      RHS = AndLHS.getOperand(1);
8206    }
8207
8208    // Use BT if the immediate can't be encoded in a TEST instruction.
8209    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8210      LHS = AndLHS;
8211      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8212    }
8213  }
8214
8215  if (LHS.getNode()) {
8216    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8217    // instruction.  Since the shift amount is in-range-or-undefined, we know
8218    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8219    // the encoding for the i16 version is larger than the i32 version.
8220    // Also promote i16 to i32 for performance / code size reason.
8221    if (LHS.getValueType() == MVT::i8 ||
8222        LHS.getValueType() == MVT::i16)
8223      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8224
8225    // If the operand types disagree, extend the shift amount to match.  Since
8226    // BT ignores high bits (like shifts) we can use anyextend.
8227    if (LHS.getValueType() != RHS.getValueType())
8228      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8229
8230    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8231    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8232    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8233                       DAG.getConstant(Cond, MVT::i8), BT);
8234  }
8235
8236  return SDValue();
8237}
8238
8239SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8240
8241  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8242
8243  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8244  SDValue Op0 = Op.getOperand(0);
8245  SDValue Op1 = Op.getOperand(1);
8246  DebugLoc dl = Op.getDebugLoc();
8247  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8248
8249  // Optimize to BT if possible.
8250  // Lower (X & (1 << N)) == 0 to BT(X, N).
8251  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8252  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8253  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8254      Op1.getOpcode() == ISD::Constant &&
8255      cast<ConstantSDNode>(Op1)->isNullValue() &&
8256      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8257    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8258    if (NewSetCC.getNode())
8259      return NewSetCC;
8260  }
8261
8262  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8263  // these.
8264  if (Op1.getOpcode() == ISD::Constant &&
8265      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8266       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8267      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8268
8269    // If the input is a setcc, then reuse the input setcc or use a new one with
8270    // the inverted condition.
8271    if (Op0.getOpcode() == X86ISD::SETCC) {
8272      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8273      bool Invert = (CC == ISD::SETNE) ^
8274        cast<ConstantSDNode>(Op1)->isNullValue();
8275      if (!Invert) return Op0;
8276
8277      CCode = X86::GetOppositeBranchCondition(CCode);
8278      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8279                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8280    }
8281  }
8282
8283  bool isFP = Op1.getValueType().isFloatingPoint();
8284  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8285  if (X86CC == X86::COND_INVALID)
8286    return SDValue();
8287
8288  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8289  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8290                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8291}
8292
8293// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8294// ones, and then concatenate the result back.
8295static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8296  EVT VT = Op.getValueType();
8297
8298  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8299         "Unsupported value type for operation");
8300
8301  int NumElems = VT.getVectorNumElements();
8302  DebugLoc dl = Op.getDebugLoc();
8303  SDValue CC = Op.getOperand(2);
8304  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8305  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8306
8307  // Extract the LHS vectors
8308  SDValue LHS = Op.getOperand(0);
8309  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8310  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8311
8312  // Extract the RHS vectors
8313  SDValue RHS = Op.getOperand(1);
8314  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8315  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8316
8317  // Issue the operation on the smaller types and concatenate the result back
8318  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8319  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8320  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8321                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8322                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8323}
8324
8325
8326SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8327  SDValue Cond;
8328  SDValue Op0 = Op.getOperand(0);
8329  SDValue Op1 = Op.getOperand(1);
8330  SDValue CC = Op.getOperand(2);
8331  EVT VT = Op.getValueType();
8332  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8333  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8334  DebugLoc dl = Op.getDebugLoc();
8335
8336  if (isFP) {
8337    unsigned SSECC = 8;
8338    EVT EltVT = Op0.getValueType().getVectorElementType();
8339    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8340
8341    bool Swap = false;
8342
8343    // SSE Condition code mapping:
8344    //  0 - EQ
8345    //  1 - LT
8346    //  2 - LE
8347    //  3 - UNORD
8348    //  4 - NEQ
8349    //  5 - NLT
8350    //  6 - NLE
8351    //  7 - ORD
8352    switch (SetCCOpcode) {
8353    default: break;
8354    case ISD::SETOEQ:
8355    case ISD::SETEQ:  SSECC = 0; break;
8356    case ISD::SETOGT:
8357    case ISD::SETGT: Swap = true; // Fallthrough
8358    case ISD::SETLT:
8359    case ISD::SETOLT: SSECC = 1; break;
8360    case ISD::SETOGE:
8361    case ISD::SETGE: Swap = true; // Fallthrough
8362    case ISD::SETLE:
8363    case ISD::SETOLE: SSECC = 2; break;
8364    case ISD::SETUO:  SSECC = 3; break;
8365    case ISD::SETUNE:
8366    case ISD::SETNE:  SSECC = 4; break;
8367    case ISD::SETULE: Swap = true;
8368    case ISD::SETUGE: SSECC = 5; break;
8369    case ISD::SETULT: Swap = true;
8370    case ISD::SETUGT: SSECC = 6; break;
8371    case ISD::SETO:   SSECC = 7; break;
8372    }
8373    if (Swap)
8374      std::swap(Op0, Op1);
8375
8376    // In the two special cases we can't handle, emit two comparisons.
8377    if (SSECC == 8) {
8378      if (SetCCOpcode == ISD::SETUEQ) {
8379        SDValue UNORD, EQ;
8380        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8381                            DAG.getConstant(3, MVT::i8));
8382        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8383                         DAG.getConstant(0, MVT::i8));
8384        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8385      } else if (SetCCOpcode == ISD::SETONE) {
8386        SDValue ORD, NEQ;
8387        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8388                          DAG.getConstant(7, MVT::i8));
8389        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8390                          DAG.getConstant(4, MVT::i8));
8391        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8392      }
8393      llvm_unreachable("Illegal FP comparison");
8394    }
8395    // Handle all other FP comparisons here.
8396    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8397                       DAG.getConstant(SSECC, MVT::i8));
8398  }
8399
8400  // Break 256-bit integer vector compare into smaller ones.
8401  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8402    return Lower256IntVSETCC(Op, DAG);
8403
8404  // We are handling one of the integer comparisons here.  Since SSE only has
8405  // GT and EQ comparisons for integer, swapping operands and multiple
8406  // operations may be required for some comparisons.
8407  unsigned Opc = 0;
8408  bool Swap = false, Invert = false, FlipSigns = false;
8409
8410  switch (SetCCOpcode) {
8411  default: break;
8412  case ISD::SETNE:  Invert = true;
8413  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8414  case ISD::SETLT:  Swap = true;
8415  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8416  case ISD::SETGE:  Swap = true;
8417  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8418  case ISD::SETULT: Swap = true;
8419  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8420  case ISD::SETUGE: Swap = true;
8421  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8422  }
8423  if (Swap)
8424    std::swap(Op0, Op1);
8425
8426  // Check that the operation in question is available (most are plain SSE2,
8427  // but PCMPGTQ and PCMPEQQ have different requirements).
8428  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8429    return SDValue();
8430  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8431    return SDValue();
8432
8433  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8434  // bits of the inputs before performing those operations.
8435  if (FlipSigns) {
8436    EVT EltVT = VT.getVectorElementType();
8437    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8438                                      EltVT);
8439    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8440    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8441                                    SignBits.size());
8442    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8443    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8444  }
8445
8446  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8447
8448  // If the logical-not of the result is required, perform that now.
8449  if (Invert)
8450    Result = DAG.getNOT(dl, Result, VT);
8451
8452  return Result;
8453}
8454
8455// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8456static bool isX86LogicalCmp(SDValue Op) {
8457  unsigned Opc = Op.getNode()->getOpcode();
8458  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8459    return true;
8460  if (Op.getResNo() == 1 &&
8461      (Opc == X86ISD::ADD ||
8462       Opc == X86ISD::SUB ||
8463       Opc == X86ISD::ADC ||
8464       Opc == X86ISD::SBB ||
8465       Opc == X86ISD::SMUL ||
8466       Opc == X86ISD::UMUL ||
8467       Opc == X86ISD::INC ||
8468       Opc == X86ISD::DEC ||
8469       Opc == X86ISD::OR ||
8470       Opc == X86ISD::XOR ||
8471       Opc == X86ISD::AND))
8472    return true;
8473
8474  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8475    return true;
8476
8477  return false;
8478}
8479
8480static bool isZero(SDValue V) {
8481  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8482  return C && C->isNullValue();
8483}
8484
8485static bool isAllOnes(SDValue V) {
8486  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8487  return C && C->isAllOnesValue();
8488}
8489
8490SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8491  bool addTest = true;
8492  SDValue Cond  = Op.getOperand(0);
8493  SDValue Op1 = Op.getOperand(1);
8494  SDValue Op2 = Op.getOperand(2);
8495  DebugLoc DL = Op.getDebugLoc();
8496  SDValue CC;
8497
8498  if (Cond.getOpcode() == ISD::SETCC) {
8499    SDValue NewCond = LowerSETCC(Cond, DAG);
8500    if (NewCond.getNode())
8501      Cond = NewCond;
8502  }
8503
8504  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8505  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8506  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8507  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8508  if (Cond.getOpcode() == X86ISD::SETCC &&
8509      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8510      isZero(Cond.getOperand(1).getOperand(1))) {
8511    SDValue Cmp = Cond.getOperand(1);
8512
8513    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8514
8515    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8516        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8517      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8518
8519      SDValue CmpOp0 = Cmp.getOperand(0);
8520      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8521                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8522
8523      SDValue Res =   // Res = 0 or -1.
8524        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8525                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8526
8527      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8528        Res = DAG.getNOT(DL, Res, Res.getValueType());
8529
8530      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8531      if (N2C == 0 || !N2C->isNullValue())
8532        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8533      return Res;
8534    }
8535  }
8536
8537  // Look past (and (setcc_carry (cmp ...)), 1).
8538  if (Cond.getOpcode() == ISD::AND &&
8539      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8540    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8541    if (C && C->getAPIntValue() == 1)
8542      Cond = Cond.getOperand(0);
8543  }
8544
8545  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8546  // setting operand in place of the X86ISD::SETCC.
8547  unsigned CondOpcode = Cond.getOpcode();
8548  if (CondOpcode == X86ISD::SETCC ||
8549      CondOpcode == X86ISD::SETCC_CARRY) {
8550    CC = Cond.getOperand(0);
8551
8552    SDValue Cmp = Cond.getOperand(1);
8553    unsigned Opc = Cmp.getOpcode();
8554    EVT VT = Op.getValueType();
8555
8556    bool IllegalFPCMov = false;
8557    if (VT.isFloatingPoint() && !VT.isVector() &&
8558        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8559      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8560
8561    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8562        Opc == X86ISD::BT) { // FIXME
8563      Cond = Cmp;
8564      addTest = false;
8565    }
8566  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8567             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8568             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8569              Cond.getOperand(0).getValueType() != MVT::i8)) {
8570    SDValue LHS = Cond.getOperand(0);
8571    SDValue RHS = Cond.getOperand(1);
8572    unsigned X86Opcode;
8573    unsigned X86Cond;
8574    SDVTList VTs;
8575    switch (CondOpcode) {
8576    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8577    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8578    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8579    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8580    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8581    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8582    default: llvm_unreachable("unexpected overflowing operator");
8583    }
8584    if (CondOpcode == ISD::UMULO)
8585      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8586                          MVT::i32);
8587    else
8588      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8589
8590    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8591
8592    if (CondOpcode == ISD::UMULO)
8593      Cond = X86Op.getValue(2);
8594    else
8595      Cond = X86Op.getValue(1);
8596
8597    CC = DAG.getConstant(X86Cond, MVT::i8);
8598    addTest = false;
8599  }
8600
8601  if (addTest) {
8602    // Look pass the truncate.
8603    if (Cond.getOpcode() == ISD::TRUNCATE)
8604      Cond = Cond.getOperand(0);
8605
8606    // We know the result of AND is compared against zero. Try to match
8607    // it to BT.
8608    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8609      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8610      if (NewSetCC.getNode()) {
8611        CC = NewSetCC.getOperand(0);
8612        Cond = NewSetCC.getOperand(1);
8613        addTest = false;
8614      }
8615    }
8616  }
8617
8618  if (addTest) {
8619    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8620    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8621  }
8622
8623  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8624  // a <  b ?  0 : -1 -> RES = setcc_carry
8625  // a >= b ? -1 :  0 -> RES = setcc_carry
8626  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8627  if (Cond.getOpcode() == X86ISD::CMP) {
8628    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8629
8630    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8631        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8632      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8633                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8634      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8635        return DAG.getNOT(DL, Res, Res.getValueType());
8636      return Res;
8637    }
8638  }
8639
8640  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8641  // condition is true.
8642  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8643  SDValue Ops[] = { Op2, Op1, CC, Cond };
8644  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8645}
8646
8647// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8648// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8649// from the AND / OR.
8650static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8651  Opc = Op.getOpcode();
8652  if (Opc != ISD::OR && Opc != ISD::AND)
8653    return false;
8654  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8655          Op.getOperand(0).hasOneUse() &&
8656          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8657          Op.getOperand(1).hasOneUse());
8658}
8659
8660// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8661// 1 and that the SETCC node has a single use.
8662static bool isXor1OfSetCC(SDValue Op) {
8663  if (Op.getOpcode() != ISD::XOR)
8664    return false;
8665  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8666  if (N1C && N1C->getAPIntValue() == 1) {
8667    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8668      Op.getOperand(0).hasOneUse();
8669  }
8670  return false;
8671}
8672
8673SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8674  bool addTest = true;
8675  SDValue Chain = Op.getOperand(0);
8676  SDValue Cond  = Op.getOperand(1);
8677  SDValue Dest  = Op.getOperand(2);
8678  DebugLoc dl = Op.getDebugLoc();
8679  SDValue CC;
8680  bool Inverted = false;
8681
8682  if (Cond.getOpcode() == ISD::SETCC) {
8683    // Check for setcc([su]{add,sub,mul}o == 0).
8684    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8685        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8686        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8687        Cond.getOperand(0).getResNo() == 1 &&
8688        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8689         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8690         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8691         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8692         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8693         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8694      Inverted = true;
8695      Cond = Cond.getOperand(0);
8696    } else {
8697      SDValue NewCond = LowerSETCC(Cond, DAG);
8698      if (NewCond.getNode())
8699        Cond = NewCond;
8700    }
8701  }
8702#if 0
8703  // FIXME: LowerXALUO doesn't handle these!!
8704  else if (Cond.getOpcode() == X86ISD::ADD  ||
8705           Cond.getOpcode() == X86ISD::SUB  ||
8706           Cond.getOpcode() == X86ISD::SMUL ||
8707           Cond.getOpcode() == X86ISD::UMUL)
8708    Cond = LowerXALUO(Cond, DAG);
8709#endif
8710
8711  // Look pass (and (setcc_carry (cmp ...)), 1).
8712  if (Cond.getOpcode() == ISD::AND &&
8713      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8714    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8715    if (C && C->getAPIntValue() == 1)
8716      Cond = Cond.getOperand(0);
8717  }
8718
8719  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8720  // setting operand in place of the X86ISD::SETCC.
8721  unsigned CondOpcode = Cond.getOpcode();
8722  if (CondOpcode == X86ISD::SETCC ||
8723      CondOpcode == X86ISD::SETCC_CARRY) {
8724    CC = Cond.getOperand(0);
8725
8726    SDValue Cmp = Cond.getOperand(1);
8727    unsigned Opc = Cmp.getOpcode();
8728    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8729    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8730      Cond = Cmp;
8731      addTest = false;
8732    } else {
8733      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8734      default: break;
8735      case X86::COND_O:
8736      case X86::COND_B:
8737        // These can only come from an arithmetic instruction with overflow,
8738        // e.g. SADDO, UADDO.
8739        Cond = Cond.getNode()->getOperand(1);
8740        addTest = false;
8741        break;
8742      }
8743    }
8744  }
8745  CondOpcode = Cond.getOpcode();
8746  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8747      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8748      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8749       Cond.getOperand(0).getValueType() != MVT::i8)) {
8750    SDValue LHS = Cond.getOperand(0);
8751    SDValue RHS = Cond.getOperand(1);
8752    unsigned X86Opcode;
8753    unsigned X86Cond;
8754    SDVTList VTs;
8755    switch (CondOpcode) {
8756    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8757    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8758    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8759    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8760    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8761    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8762    default: llvm_unreachable("unexpected overflowing operator");
8763    }
8764    if (Inverted)
8765      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8766    if (CondOpcode == ISD::UMULO)
8767      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8768                          MVT::i32);
8769    else
8770      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8771
8772    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8773
8774    if (CondOpcode == ISD::UMULO)
8775      Cond = X86Op.getValue(2);
8776    else
8777      Cond = X86Op.getValue(1);
8778
8779    CC = DAG.getConstant(X86Cond, MVT::i8);
8780    addTest = false;
8781  } else {
8782    unsigned CondOpc;
8783    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8784      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8785      if (CondOpc == ISD::OR) {
8786        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8787        // two branches instead of an explicit OR instruction with a
8788        // separate test.
8789        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8790            isX86LogicalCmp(Cmp)) {
8791          CC = Cond.getOperand(0).getOperand(0);
8792          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8793                              Chain, Dest, CC, Cmp);
8794          CC = Cond.getOperand(1).getOperand(0);
8795          Cond = Cmp;
8796          addTest = false;
8797        }
8798      } else { // ISD::AND
8799        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8800        // two branches instead of an explicit AND instruction with a
8801        // separate test. However, we only do this if this block doesn't
8802        // have a fall-through edge, because this requires an explicit
8803        // jmp when the condition is false.
8804        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8805            isX86LogicalCmp(Cmp) &&
8806            Op.getNode()->hasOneUse()) {
8807          X86::CondCode CCode =
8808            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8809          CCode = X86::GetOppositeBranchCondition(CCode);
8810          CC = DAG.getConstant(CCode, MVT::i8);
8811          SDNode *User = *Op.getNode()->use_begin();
8812          // Look for an unconditional branch following this conditional branch.
8813          // We need this because we need to reverse the successors in order
8814          // to implement FCMP_OEQ.
8815          if (User->getOpcode() == ISD::BR) {
8816            SDValue FalseBB = User->getOperand(1);
8817            SDNode *NewBR =
8818              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8819            assert(NewBR == User);
8820            (void)NewBR;
8821            Dest = FalseBB;
8822
8823            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8824                                Chain, Dest, CC, Cmp);
8825            X86::CondCode CCode =
8826              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8827            CCode = X86::GetOppositeBranchCondition(CCode);
8828            CC = DAG.getConstant(CCode, MVT::i8);
8829            Cond = Cmp;
8830            addTest = false;
8831          }
8832        }
8833      }
8834    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8835      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8836      // It should be transformed during dag combiner except when the condition
8837      // is set by a arithmetics with overflow node.
8838      X86::CondCode CCode =
8839        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8840      CCode = X86::GetOppositeBranchCondition(CCode);
8841      CC = DAG.getConstant(CCode, MVT::i8);
8842      Cond = Cond.getOperand(0).getOperand(1);
8843      addTest = false;
8844    } else if (Cond.getOpcode() == ISD::SETCC &&
8845               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8846      // For FCMP_OEQ, we can emit
8847      // two branches instead of an explicit AND instruction with a
8848      // separate test. However, we only do this if this block doesn't
8849      // have a fall-through edge, because this requires an explicit
8850      // jmp when the condition is false.
8851      if (Op.getNode()->hasOneUse()) {
8852        SDNode *User = *Op.getNode()->use_begin();
8853        // Look for an unconditional branch following this conditional branch.
8854        // We need this because we need to reverse the successors in order
8855        // to implement FCMP_OEQ.
8856        if (User->getOpcode() == ISD::BR) {
8857          SDValue FalseBB = User->getOperand(1);
8858          SDNode *NewBR =
8859            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8860          assert(NewBR == User);
8861          (void)NewBR;
8862          Dest = FalseBB;
8863
8864          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8865                                    Cond.getOperand(0), Cond.getOperand(1));
8866          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8867          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8868                              Chain, Dest, CC, Cmp);
8869          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8870          Cond = Cmp;
8871          addTest = false;
8872        }
8873      }
8874    } else if (Cond.getOpcode() == ISD::SETCC &&
8875               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8876      // For FCMP_UNE, we can emit
8877      // two branches instead of an explicit AND instruction with a
8878      // separate test. However, we only do this if this block doesn't
8879      // have a fall-through edge, because this requires an explicit
8880      // jmp when the condition is false.
8881      if (Op.getNode()->hasOneUse()) {
8882        SDNode *User = *Op.getNode()->use_begin();
8883        // Look for an unconditional branch following this conditional branch.
8884        // We need this because we need to reverse the successors in order
8885        // to implement FCMP_UNE.
8886        if (User->getOpcode() == ISD::BR) {
8887          SDValue FalseBB = User->getOperand(1);
8888          SDNode *NewBR =
8889            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8890          assert(NewBR == User);
8891          (void)NewBR;
8892
8893          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8894                                    Cond.getOperand(0), Cond.getOperand(1));
8895          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8896          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8897                              Chain, Dest, CC, Cmp);
8898          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8899          Cond = Cmp;
8900          addTest = false;
8901          Dest = FalseBB;
8902        }
8903      }
8904    }
8905  }
8906
8907  if (addTest) {
8908    // Look pass the truncate.
8909    if (Cond.getOpcode() == ISD::TRUNCATE)
8910      Cond = Cond.getOperand(0);
8911
8912    // We know the result of AND is compared against zero. Try to match
8913    // it to BT.
8914    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8915      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8916      if (NewSetCC.getNode()) {
8917        CC = NewSetCC.getOperand(0);
8918        Cond = NewSetCC.getOperand(1);
8919        addTest = false;
8920      }
8921    }
8922  }
8923
8924  if (addTest) {
8925    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8926    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8927  }
8928  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8929                     Chain, Dest, CC, Cond);
8930}
8931
8932
8933// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8934// Calls to _alloca is needed to probe the stack when allocating more than 4k
8935// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8936// that the guard pages used by the OS virtual memory manager are allocated in
8937// correct sequence.
8938SDValue
8939X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8940                                           SelectionDAG &DAG) const {
8941  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8942          getTargetMachine().Options.EnableSegmentedStacks) &&
8943         "This should be used only on Windows targets or when segmented stacks "
8944         "are being used");
8945  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8946  DebugLoc dl = Op.getDebugLoc();
8947
8948  // Get the inputs.
8949  SDValue Chain = Op.getOperand(0);
8950  SDValue Size  = Op.getOperand(1);
8951  // FIXME: Ensure alignment here
8952
8953  bool Is64Bit = Subtarget->is64Bit();
8954  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8955
8956  if (getTargetMachine().Options.EnableSegmentedStacks) {
8957    MachineFunction &MF = DAG.getMachineFunction();
8958    MachineRegisterInfo &MRI = MF.getRegInfo();
8959
8960    if (Is64Bit) {
8961      // The 64 bit implementation of segmented stacks needs to clobber both r10
8962      // r11. This makes it impossible to use it along with nested parameters.
8963      const Function *F = MF.getFunction();
8964
8965      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8966           I != E; I++)
8967        if (I->hasNestAttr())
8968          report_fatal_error("Cannot use segmented stacks with functions that "
8969                             "have nested arguments.");
8970    }
8971
8972    const TargetRegisterClass *AddrRegClass =
8973      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8974    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8975    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8976    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8977                                DAG.getRegister(Vreg, SPTy));
8978    SDValue Ops1[2] = { Value, Chain };
8979    return DAG.getMergeValues(Ops1, 2, dl);
8980  } else {
8981    SDValue Flag;
8982    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8983
8984    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8985    Flag = Chain.getValue(1);
8986    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8987
8988    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8989    Flag = Chain.getValue(1);
8990
8991    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8992
8993    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8994    return DAG.getMergeValues(Ops1, 2, dl);
8995  }
8996}
8997
8998SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8999  MachineFunction &MF = DAG.getMachineFunction();
9000  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9001
9002  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9003  DebugLoc DL = Op.getDebugLoc();
9004
9005  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9006    // vastart just stores the address of the VarArgsFrameIndex slot into the
9007    // memory location argument.
9008    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9009                                   getPointerTy());
9010    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9011                        MachinePointerInfo(SV), false, false, 0);
9012  }
9013
9014  // __va_list_tag:
9015  //   gp_offset         (0 - 6 * 8)
9016  //   fp_offset         (48 - 48 + 8 * 16)
9017  //   overflow_arg_area (point to parameters coming in memory).
9018  //   reg_save_area
9019  SmallVector<SDValue, 8> MemOps;
9020  SDValue FIN = Op.getOperand(1);
9021  // Store gp_offset
9022  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9023                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9024                                               MVT::i32),
9025                               FIN, MachinePointerInfo(SV), false, false, 0);
9026  MemOps.push_back(Store);
9027
9028  // Store fp_offset
9029  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9030                    FIN, DAG.getIntPtrConstant(4));
9031  Store = DAG.getStore(Op.getOperand(0), DL,
9032                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9033                                       MVT::i32),
9034                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9035  MemOps.push_back(Store);
9036
9037  // Store ptr to overflow_arg_area
9038  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9039                    FIN, DAG.getIntPtrConstant(4));
9040  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9041                                    getPointerTy());
9042  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9043                       MachinePointerInfo(SV, 8),
9044                       false, false, 0);
9045  MemOps.push_back(Store);
9046
9047  // Store ptr to reg_save_area.
9048  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9049                    FIN, DAG.getIntPtrConstant(8));
9050  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9051                                    getPointerTy());
9052  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9053                       MachinePointerInfo(SV, 16), false, false, 0);
9054  MemOps.push_back(Store);
9055  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9056                     &MemOps[0], MemOps.size());
9057}
9058
9059SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9060  assert(Subtarget->is64Bit() &&
9061         "LowerVAARG only handles 64-bit va_arg!");
9062  assert((Subtarget->isTargetLinux() ||
9063          Subtarget->isTargetDarwin()) &&
9064          "Unhandled target in LowerVAARG");
9065  assert(Op.getNode()->getNumOperands() == 4);
9066  SDValue Chain = Op.getOperand(0);
9067  SDValue SrcPtr = Op.getOperand(1);
9068  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9069  unsigned Align = Op.getConstantOperandVal(3);
9070  DebugLoc dl = Op.getDebugLoc();
9071
9072  EVT ArgVT = Op.getNode()->getValueType(0);
9073  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9074  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9075  uint8_t ArgMode;
9076
9077  // Decide which area this value should be read from.
9078  // TODO: Implement the AMD64 ABI in its entirety. This simple
9079  // selection mechanism works only for the basic types.
9080  if (ArgVT == MVT::f80) {
9081    llvm_unreachable("va_arg for f80 not yet implemented");
9082  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9083    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9084  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9085    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9086  } else {
9087    llvm_unreachable("Unhandled argument type in LowerVAARG");
9088  }
9089
9090  if (ArgMode == 2) {
9091    // Sanity Check: Make sure using fp_offset makes sense.
9092    assert(!getTargetMachine().Options.UseSoftFloat &&
9093           !(DAG.getMachineFunction()
9094                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9095           Subtarget->hasSSE1());
9096  }
9097
9098  // Insert VAARG_64 node into the DAG
9099  // VAARG_64 returns two values: Variable Argument Address, Chain
9100  SmallVector<SDValue, 11> InstOps;
9101  InstOps.push_back(Chain);
9102  InstOps.push_back(SrcPtr);
9103  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9104  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9105  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9106  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9107  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9108                                          VTs, &InstOps[0], InstOps.size(),
9109                                          MVT::i64,
9110                                          MachinePointerInfo(SV),
9111                                          /*Align=*/0,
9112                                          /*Volatile=*/false,
9113                                          /*ReadMem=*/true,
9114                                          /*WriteMem=*/true);
9115  Chain = VAARG.getValue(1);
9116
9117  // Load the next argument and return it
9118  return DAG.getLoad(ArgVT, dl,
9119                     Chain,
9120                     VAARG,
9121                     MachinePointerInfo(),
9122                     false, false, false, 0);
9123}
9124
9125SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9126  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9127  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9128  SDValue Chain = Op.getOperand(0);
9129  SDValue DstPtr = Op.getOperand(1);
9130  SDValue SrcPtr = Op.getOperand(2);
9131  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9132  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9133  DebugLoc DL = Op.getDebugLoc();
9134
9135  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9136                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9137                       false,
9138                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9139}
9140
9141// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9142// may or may not be a constant. Takes immediate version of shift as input.
9143static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9144                                   SDValue SrcOp, SDValue ShAmt,
9145                                   SelectionDAG &DAG) {
9146  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9147
9148  if (isa<ConstantSDNode>(ShAmt)) {
9149    switch (Opc) {
9150      default: llvm_unreachable("Unknown target vector shift node");
9151      case X86ISD::VSHLI:
9152      case X86ISD::VSRLI:
9153      case X86ISD::VSRAI:
9154        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9155    }
9156  }
9157
9158  // Change opcode to non-immediate version
9159  switch (Opc) {
9160    default: llvm_unreachable("Unknown target vector shift node");
9161    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9162    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9163    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9164  }
9165
9166  // Need to build a vector containing shift amount
9167  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9168  SDValue ShOps[4];
9169  ShOps[0] = ShAmt;
9170  ShOps[1] = DAG.getConstant(0, MVT::i32);
9171  ShOps[2] = DAG.getUNDEF(MVT::i32);
9172  ShOps[3] = DAG.getUNDEF(MVT::i32);
9173  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9174  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9175  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9176}
9177
9178SDValue
9179X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9180  DebugLoc dl = Op.getDebugLoc();
9181  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9182  switch (IntNo) {
9183  default: return SDValue();    // Don't custom lower most intrinsics.
9184  // Comparison intrinsics.
9185  case Intrinsic::x86_sse_comieq_ss:
9186  case Intrinsic::x86_sse_comilt_ss:
9187  case Intrinsic::x86_sse_comile_ss:
9188  case Intrinsic::x86_sse_comigt_ss:
9189  case Intrinsic::x86_sse_comige_ss:
9190  case Intrinsic::x86_sse_comineq_ss:
9191  case Intrinsic::x86_sse_ucomieq_ss:
9192  case Intrinsic::x86_sse_ucomilt_ss:
9193  case Intrinsic::x86_sse_ucomile_ss:
9194  case Intrinsic::x86_sse_ucomigt_ss:
9195  case Intrinsic::x86_sse_ucomige_ss:
9196  case Intrinsic::x86_sse_ucomineq_ss:
9197  case Intrinsic::x86_sse2_comieq_sd:
9198  case Intrinsic::x86_sse2_comilt_sd:
9199  case Intrinsic::x86_sse2_comile_sd:
9200  case Intrinsic::x86_sse2_comigt_sd:
9201  case Intrinsic::x86_sse2_comige_sd:
9202  case Intrinsic::x86_sse2_comineq_sd:
9203  case Intrinsic::x86_sse2_ucomieq_sd:
9204  case Intrinsic::x86_sse2_ucomilt_sd:
9205  case Intrinsic::x86_sse2_ucomile_sd:
9206  case Intrinsic::x86_sse2_ucomigt_sd:
9207  case Intrinsic::x86_sse2_ucomige_sd:
9208  case Intrinsic::x86_sse2_ucomineq_sd: {
9209    unsigned Opc = 0;
9210    ISD::CondCode CC = ISD::SETCC_INVALID;
9211    switch (IntNo) {
9212    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9213    case Intrinsic::x86_sse_comieq_ss:
9214    case Intrinsic::x86_sse2_comieq_sd:
9215      Opc = X86ISD::COMI;
9216      CC = ISD::SETEQ;
9217      break;
9218    case Intrinsic::x86_sse_comilt_ss:
9219    case Intrinsic::x86_sse2_comilt_sd:
9220      Opc = X86ISD::COMI;
9221      CC = ISD::SETLT;
9222      break;
9223    case Intrinsic::x86_sse_comile_ss:
9224    case Intrinsic::x86_sse2_comile_sd:
9225      Opc = X86ISD::COMI;
9226      CC = ISD::SETLE;
9227      break;
9228    case Intrinsic::x86_sse_comigt_ss:
9229    case Intrinsic::x86_sse2_comigt_sd:
9230      Opc = X86ISD::COMI;
9231      CC = ISD::SETGT;
9232      break;
9233    case Intrinsic::x86_sse_comige_ss:
9234    case Intrinsic::x86_sse2_comige_sd:
9235      Opc = X86ISD::COMI;
9236      CC = ISD::SETGE;
9237      break;
9238    case Intrinsic::x86_sse_comineq_ss:
9239    case Intrinsic::x86_sse2_comineq_sd:
9240      Opc = X86ISD::COMI;
9241      CC = ISD::SETNE;
9242      break;
9243    case Intrinsic::x86_sse_ucomieq_ss:
9244    case Intrinsic::x86_sse2_ucomieq_sd:
9245      Opc = X86ISD::UCOMI;
9246      CC = ISD::SETEQ;
9247      break;
9248    case Intrinsic::x86_sse_ucomilt_ss:
9249    case Intrinsic::x86_sse2_ucomilt_sd:
9250      Opc = X86ISD::UCOMI;
9251      CC = ISD::SETLT;
9252      break;
9253    case Intrinsic::x86_sse_ucomile_ss:
9254    case Intrinsic::x86_sse2_ucomile_sd:
9255      Opc = X86ISD::UCOMI;
9256      CC = ISD::SETLE;
9257      break;
9258    case Intrinsic::x86_sse_ucomigt_ss:
9259    case Intrinsic::x86_sse2_ucomigt_sd:
9260      Opc = X86ISD::UCOMI;
9261      CC = ISD::SETGT;
9262      break;
9263    case Intrinsic::x86_sse_ucomige_ss:
9264    case Intrinsic::x86_sse2_ucomige_sd:
9265      Opc = X86ISD::UCOMI;
9266      CC = ISD::SETGE;
9267      break;
9268    case Intrinsic::x86_sse_ucomineq_ss:
9269    case Intrinsic::x86_sse2_ucomineq_sd:
9270      Opc = X86ISD::UCOMI;
9271      CC = ISD::SETNE;
9272      break;
9273    }
9274
9275    SDValue LHS = Op.getOperand(1);
9276    SDValue RHS = Op.getOperand(2);
9277    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9278    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9279    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9280    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9281                                DAG.getConstant(X86CC, MVT::i8), Cond);
9282    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9283  }
9284  // XOP comparison intrinsics
9285  case Intrinsic::x86_xop_vpcomltb:
9286  case Intrinsic::x86_xop_vpcomltw:
9287  case Intrinsic::x86_xop_vpcomltd:
9288  case Intrinsic::x86_xop_vpcomltq:
9289  case Intrinsic::x86_xop_vpcomltub:
9290  case Intrinsic::x86_xop_vpcomltuw:
9291  case Intrinsic::x86_xop_vpcomltud:
9292  case Intrinsic::x86_xop_vpcomltuq:
9293  case Intrinsic::x86_xop_vpcomleb:
9294  case Intrinsic::x86_xop_vpcomlew:
9295  case Intrinsic::x86_xop_vpcomled:
9296  case Intrinsic::x86_xop_vpcomleq:
9297  case Intrinsic::x86_xop_vpcomleub:
9298  case Intrinsic::x86_xop_vpcomleuw:
9299  case Intrinsic::x86_xop_vpcomleud:
9300  case Intrinsic::x86_xop_vpcomleuq:
9301  case Intrinsic::x86_xop_vpcomgtb:
9302  case Intrinsic::x86_xop_vpcomgtw:
9303  case Intrinsic::x86_xop_vpcomgtd:
9304  case Intrinsic::x86_xop_vpcomgtq:
9305  case Intrinsic::x86_xop_vpcomgtub:
9306  case Intrinsic::x86_xop_vpcomgtuw:
9307  case Intrinsic::x86_xop_vpcomgtud:
9308  case Intrinsic::x86_xop_vpcomgtuq:
9309  case Intrinsic::x86_xop_vpcomgeb:
9310  case Intrinsic::x86_xop_vpcomgew:
9311  case Intrinsic::x86_xop_vpcomged:
9312  case Intrinsic::x86_xop_vpcomgeq:
9313  case Intrinsic::x86_xop_vpcomgeub:
9314  case Intrinsic::x86_xop_vpcomgeuw:
9315  case Intrinsic::x86_xop_vpcomgeud:
9316  case Intrinsic::x86_xop_vpcomgeuq:
9317  case Intrinsic::x86_xop_vpcomeqb:
9318  case Intrinsic::x86_xop_vpcomeqw:
9319  case Intrinsic::x86_xop_vpcomeqd:
9320  case Intrinsic::x86_xop_vpcomeqq:
9321  case Intrinsic::x86_xop_vpcomequb:
9322  case Intrinsic::x86_xop_vpcomequw:
9323  case Intrinsic::x86_xop_vpcomequd:
9324  case Intrinsic::x86_xop_vpcomequq:
9325  case Intrinsic::x86_xop_vpcomneb:
9326  case Intrinsic::x86_xop_vpcomnew:
9327  case Intrinsic::x86_xop_vpcomned:
9328  case Intrinsic::x86_xop_vpcomneq:
9329  case Intrinsic::x86_xop_vpcomneub:
9330  case Intrinsic::x86_xop_vpcomneuw:
9331  case Intrinsic::x86_xop_vpcomneud:
9332  case Intrinsic::x86_xop_vpcomneuq:
9333  case Intrinsic::x86_xop_vpcomfalseb:
9334  case Intrinsic::x86_xop_vpcomfalsew:
9335  case Intrinsic::x86_xop_vpcomfalsed:
9336  case Intrinsic::x86_xop_vpcomfalseq:
9337  case Intrinsic::x86_xop_vpcomfalseub:
9338  case Intrinsic::x86_xop_vpcomfalseuw:
9339  case Intrinsic::x86_xop_vpcomfalseud:
9340  case Intrinsic::x86_xop_vpcomfalseuq:
9341  case Intrinsic::x86_xop_vpcomtrueb:
9342  case Intrinsic::x86_xop_vpcomtruew:
9343  case Intrinsic::x86_xop_vpcomtrued:
9344  case Intrinsic::x86_xop_vpcomtrueq:
9345  case Intrinsic::x86_xop_vpcomtrueub:
9346  case Intrinsic::x86_xop_vpcomtrueuw:
9347  case Intrinsic::x86_xop_vpcomtrueud:
9348  case Intrinsic::x86_xop_vpcomtrueuq: {
9349    unsigned CC = 0;
9350    unsigned Opc = 0;
9351
9352    switch (IntNo) {
9353    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9354    case Intrinsic::x86_xop_vpcomltb:
9355    case Intrinsic::x86_xop_vpcomltw:
9356    case Intrinsic::x86_xop_vpcomltd:
9357    case Intrinsic::x86_xop_vpcomltq:
9358      CC = 0;
9359      Opc = X86ISD::VPCOM;
9360      break;
9361    case Intrinsic::x86_xop_vpcomltub:
9362    case Intrinsic::x86_xop_vpcomltuw:
9363    case Intrinsic::x86_xop_vpcomltud:
9364    case Intrinsic::x86_xop_vpcomltuq:
9365      CC = 0;
9366      Opc = X86ISD::VPCOMU;
9367      break;
9368    case Intrinsic::x86_xop_vpcomleb:
9369    case Intrinsic::x86_xop_vpcomlew:
9370    case Intrinsic::x86_xop_vpcomled:
9371    case Intrinsic::x86_xop_vpcomleq:
9372      CC = 1;
9373      Opc = X86ISD::VPCOM;
9374      break;
9375    case Intrinsic::x86_xop_vpcomleub:
9376    case Intrinsic::x86_xop_vpcomleuw:
9377    case Intrinsic::x86_xop_vpcomleud:
9378    case Intrinsic::x86_xop_vpcomleuq:
9379      CC = 1;
9380      Opc = X86ISD::VPCOMU;
9381      break;
9382    case Intrinsic::x86_xop_vpcomgtb:
9383    case Intrinsic::x86_xop_vpcomgtw:
9384    case Intrinsic::x86_xop_vpcomgtd:
9385    case Intrinsic::x86_xop_vpcomgtq:
9386      CC = 2;
9387      Opc = X86ISD::VPCOM;
9388      break;
9389    case Intrinsic::x86_xop_vpcomgtub:
9390    case Intrinsic::x86_xop_vpcomgtuw:
9391    case Intrinsic::x86_xop_vpcomgtud:
9392    case Intrinsic::x86_xop_vpcomgtuq:
9393      CC = 2;
9394      Opc = X86ISD::VPCOMU;
9395      break;
9396    case Intrinsic::x86_xop_vpcomgeb:
9397    case Intrinsic::x86_xop_vpcomgew:
9398    case Intrinsic::x86_xop_vpcomged:
9399    case Intrinsic::x86_xop_vpcomgeq:
9400      CC = 3;
9401      Opc = X86ISD::VPCOM;
9402      break;
9403    case Intrinsic::x86_xop_vpcomgeub:
9404    case Intrinsic::x86_xop_vpcomgeuw:
9405    case Intrinsic::x86_xop_vpcomgeud:
9406    case Intrinsic::x86_xop_vpcomgeuq:
9407      CC = 3;
9408      Opc = X86ISD::VPCOMU;
9409      break;
9410    case Intrinsic::x86_xop_vpcomeqb:
9411    case Intrinsic::x86_xop_vpcomeqw:
9412    case Intrinsic::x86_xop_vpcomeqd:
9413    case Intrinsic::x86_xop_vpcomeqq:
9414      CC = 4;
9415      Opc = X86ISD::VPCOM;
9416      break;
9417    case Intrinsic::x86_xop_vpcomequb:
9418    case Intrinsic::x86_xop_vpcomequw:
9419    case Intrinsic::x86_xop_vpcomequd:
9420    case Intrinsic::x86_xop_vpcomequq:
9421      CC = 4;
9422      Opc = X86ISD::VPCOMU;
9423      break;
9424    case Intrinsic::x86_xop_vpcomneb:
9425    case Intrinsic::x86_xop_vpcomnew:
9426    case Intrinsic::x86_xop_vpcomned:
9427    case Intrinsic::x86_xop_vpcomneq:
9428      CC = 5;
9429      Opc = X86ISD::VPCOM;
9430      break;
9431    case Intrinsic::x86_xop_vpcomneub:
9432    case Intrinsic::x86_xop_vpcomneuw:
9433    case Intrinsic::x86_xop_vpcomneud:
9434    case Intrinsic::x86_xop_vpcomneuq:
9435      CC = 5;
9436      Opc = X86ISD::VPCOMU;
9437      break;
9438    case Intrinsic::x86_xop_vpcomfalseb:
9439    case Intrinsic::x86_xop_vpcomfalsew:
9440    case Intrinsic::x86_xop_vpcomfalsed:
9441    case Intrinsic::x86_xop_vpcomfalseq:
9442      CC = 6;
9443      Opc = X86ISD::VPCOM;
9444      break;
9445    case Intrinsic::x86_xop_vpcomfalseub:
9446    case Intrinsic::x86_xop_vpcomfalseuw:
9447    case Intrinsic::x86_xop_vpcomfalseud:
9448    case Intrinsic::x86_xop_vpcomfalseuq:
9449      CC = 6;
9450      Opc = X86ISD::VPCOMU;
9451      break;
9452    case Intrinsic::x86_xop_vpcomtrueb:
9453    case Intrinsic::x86_xop_vpcomtruew:
9454    case Intrinsic::x86_xop_vpcomtrued:
9455    case Intrinsic::x86_xop_vpcomtrueq:
9456      CC = 7;
9457      Opc = X86ISD::VPCOM;
9458      break;
9459    case Intrinsic::x86_xop_vpcomtrueub:
9460    case Intrinsic::x86_xop_vpcomtrueuw:
9461    case Intrinsic::x86_xop_vpcomtrueud:
9462    case Intrinsic::x86_xop_vpcomtrueuq:
9463      CC = 7;
9464      Opc = X86ISD::VPCOMU;
9465      break;
9466    }
9467
9468    SDValue LHS = Op.getOperand(1);
9469    SDValue RHS = Op.getOperand(2);
9470    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9471                       DAG.getConstant(CC, MVT::i8));
9472  }
9473
9474  // Arithmetic intrinsics.
9475  case Intrinsic::x86_sse2_pmulu_dq:
9476  case Intrinsic::x86_avx2_pmulu_dq:
9477    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9478                       Op.getOperand(1), Op.getOperand(2));
9479  case Intrinsic::x86_sse3_hadd_ps:
9480  case Intrinsic::x86_sse3_hadd_pd:
9481  case Intrinsic::x86_avx_hadd_ps_256:
9482  case Intrinsic::x86_avx_hadd_pd_256:
9483    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9484                       Op.getOperand(1), Op.getOperand(2));
9485  case Intrinsic::x86_sse3_hsub_ps:
9486  case Intrinsic::x86_sse3_hsub_pd:
9487  case Intrinsic::x86_avx_hsub_ps_256:
9488  case Intrinsic::x86_avx_hsub_pd_256:
9489    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9490                       Op.getOperand(1), Op.getOperand(2));
9491  case Intrinsic::x86_ssse3_phadd_w_128:
9492  case Intrinsic::x86_ssse3_phadd_d_128:
9493  case Intrinsic::x86_avx2_phadd_w:
9494  case Intrinsic::x86_avx2_phadd_d:
9495    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9496                       Op.getOperand(1), Op.getOperand(2));
9497  case Intrinsic::x86_ssse3_phsub_w_128:
9498  case Intrinsic::x86_ssse3_phsub_d_128:
9499  case Intrinsic::x86_avx2_phsub_w:
9500  case Intrinsic::x86_avx2_phsub_d:
9501    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9502                       Op.getOperand(1), Op.getOperand(2));
9503  case Intrinsic::x86_avx2_psllv_d:
9504  case Intrinsic::x86_avx2_psllv_q:
9505  case Intrinsic::x86_avx2_psllv_d_256:
9506  case Intrinsic::x86_avx2_psllv_q_256:
9507    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9508                      Op.getOperand(1), Op.getOperand(2));
9509  case Intrinsic::x86_avx2_psrlv_d:
9510  case Intrinsic::x86_avx2_psrlv_q:
9511  case Intrinsic::x86_avx2_psrlv_d_256:
9512  case Intrinsic::x86_avx2_psrlv_q_256:
9513    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9514                      Op.getOperand(1), Op.getOperand(2));
9515  case Intrinsic::x86_avx2_psrav_d:
9516  case Intrinsic::x86_avx2_psrav_d_256:
9517    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9518                      Op.getOperand(1), Op.getOperand(2));
9519  case Intrinsic::x86_ssse3_pshuf_b_128:
9520  case Intrinsic::x86_avx2_pshuf_b:
9521    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9522                       Op.getOperand(1), Op.getOperand(2));
9523  case Intrinsic::x86_ssse3_psign_b_128:
9524  case Intrinsic::x86_ssse3_psign_w_128:
9525  case Intrinsic::x86_ssse3_psign_d_128:
9526  case Intrinsic::x86_avx2_psign_b:
9527  case Intrinsic::x86_avx2_psign_w:
9528  case Intrinsic::x86_avx2_psign_d:
9529    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9530                       Op.getOperand(1), Op.getOperand(2));
9531  case Intrinsic::x86_sse41_insertps:
9532    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9533                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9534  case Intrinsic::x86_avx_vperm2f128_ps_256:
9535  case Intrinsic::x86_avx_vperm2f128_pd_256:
9536  case Intrinsic::x86_avx_vperm2f128_si_256:
9537  case Intrinsic::x86_avx2_vperm2i128:
9538    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9539                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9540  case Intrinsic::x86_avx_vpermil_ps:
9541  case Intrinsic::x86_avx_vpermil_pd:
9542  case Intrinsic::x86_avx_vpermil_ps_256:
9543  case Intrinsic::x86_avx_vpermil_pd_256:
9544    return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9545                       Op.getOperand(1), Op.getOperand(2));
9546
9547  // ptest and testp intrinsics. The intrinsic these come from are designed to
9548  // return an integer value, not just an instruction so lower it to the ptest
9549  // or testp pattern and a setcc for the result.
9550  case Intrinsic::x86_sse41_ptestz:
9551  case Intrinsic::x86_sse41_ptestc:
9552  case Intrinsic::x86_sse41_ptestnzc:
9553  case Intrinsic::x86_avx_ptestz_256:
9554  case Intrinsic::x86_avx_ptestc_256:
9555  case Intrinsic::x86_avx_ptestnzc_256:
9556  case Intrinsic::x86_avx_vtestz_ps:
9557  case Intrinsic::x86_avx_vtestc_ps:
9558  case Intrinsic::x86_avx_vtestnzc_ps:
9559  case Intrinsic::x86_avx_vtestz_pd:
9560  case Intrinsic::x86_avx_vtestc_pd:
9561  case Intrinsic::x86_avx_vtestnzc_pd:
9562  case Intrinsic::x86_avx_vtestz_ps_256:
9563  case Intrinsic::x86_avx_vtestc_ps_256:
9564  case Intrinsic::x86_avx_vtestnzc_ps_256:
9565  case Intrinsic::x86_avx_vtestz_pd_256:
9566  case Intrinsic::x86_avx_vtestc_pd_256:
9567  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9568    bool IsTestPacked = false;
9569    unsigned X86CC = 0;
9570    switch (IntNo) {
9571    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9572    case Intrinsic::x86_avx_vtestz_ps:
9573    case Intrinsic::x86_avx_vtestz_pd:
9574    case Intrinsic::x86_avx_vtestz_ps_256:
9575    case Intrinsic::x86_avx_vtestz_pd_256:
9576      IsTestPacked = true; // Fallthrough
9577    case Intrinsic::x86_sse41_ptestz:
9578    case Intrinsic::x86_avx_ptestz_256:
9579      // ZF = 1
9580      X86CC = X86::COND_E;
9581      break;
9582    case Intrinsic::x86_avx_vtestc_ps:
9583    case Intrinsic::x86_avx_vtestc_pd:
9584    case Intrinsic::x86_avx_vtestc_ps_256:
9585    case Intrinsic::x86_avx_vtestc_pd_256:
9586      IsTestPacked = true; // Fallthrough
9587    case Intrinsic::x86_sse41_ptestc:
9588    case Intrinsic::x86_avx_ptestc_256:
9589      // CF = 1
9590      X86CC = X86::COND_B;
9591      break;
9592    case Intrinsic::x86_avx_vtestnzc_ps:
9593    case Intrinsic::x86_avx_vtestnzc_pd:
9594    case Intrinsic::x86_avx_vtestnzc_ps_256:
9595    case Intrinsic::x86_avx_vtestnzc_pd_256:
9596      IsTestPacked = true; // Fallthrough
9597    case Intrinsic::x86_sse41_ptestnzc:
9598    case Intrinsic::x86_avx_ptestnzc_256:
9599      // ZF and CF = 0
9600      X86CC = X86::COND_A;
9601      break;
9602    }
9603
9604    SDValue LHS = Op.getOperand(1);
9605    SDValue RHS = Op.getOperand(2);
9606    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9607    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9608    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9609    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9610    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9611  }
9612
9613  // SSE/AVX shift intrinsics
9614  case Intrinsic::x86_sse2_psll_w:
9615  case Intrinsic::x86_sse2_psll_d:
9616  case Intrinsic::x86_sse2_psll_q:
9617  case Intrinsic::x86_avx2_psll_w:
9618  case Intrinsic::x86_avx2_psll_d:
9619  case Intrinsic::x86_avx2_psll_q:
9620    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9621                       Op.getOperand(1), Op.getOperand(2));
9622  case Intrinsic::x86_sse2_psrl_w:
9623  case Intrinsic::x86_sse2_psrl_d:
9624  case Intrinsic::x86_sse2_psrl_q:
9625  case Intrinsic::x86_avx2_psrl_w:
9626  case Intrinsic::x86_avx2_psrl_d:
9627  case Intrinsic::x86_avx2_psrl_q:
9628    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9629                       Op.getOperand(1), Op.getOperand(2));
9630  case Intrinsic::x86_sse2_psra_w:
9631  case Intrinsic::x86_sse2_psra_d:
9632  case Intrinsic::x86_avx2_psra_w:
9633  case Intrinsic::x86_avx2_psra_d:
9634    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9635                       Op.getOperand(1), Op.getOperand(2));
9636  case Intrinsic::x86_sse2_pslli_w:
9637  case Intrinsic::x86_sse2_pslli_d:
9638  case Intrinsic::x86_sse2_pslli_q:
9639  case Intrinsic::x86_avx2_pslli_w:
9640  case Intrinsic::x86_avx2_pslli_d:
9641  case Intrinsic::x86_avx2_pslli_q:
9642    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9643                               Op.getOperand(1), Op.getOperand(2), DAG);
9644  case Intrinsic::x86_sse2_psrli_w:
9645  case Intrinsic::x86_sse2_psrli_d:
9646  case Intrinsic::x86_sse2_psrli_q:
9647  case Intrinsic::x86_avx2_psrli_w:
9648  case Intrinsic::x86_avx2_psrli_d:
9649  case Intrinsic::x86_avx2_psrli_q:
9650    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9651                               Op.getOperand(1), Op.getOperand(2), DAG);
9652  case Intrinsic::x86_sse2_psrai_w:
9653  case Intrinsic::x86_sse2_psrai_d:
9654  case Intrinsic::x86_avx2_psrai_w:
9655  case Intrinsic::x86_avx2_psrai_d:
9656    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9657                               Op.getOperand(1), Op.getOperand(2), DAG);
9658  // Fix vector shift instructions where the last operand is a non-immediate
9659  // i32 value.
9660  case Intrinsic::x86_mmx_pslli_w:
9661  case Intrinsic::x86_mmx_pslli_d:
9662  case Intrinsic::x86_mmx_pslli_q:
9663  case Intrinsic::x86_mmx_psrli_w:
9664  case Intrinsic::x86_mmx_psrli_d:
9665  case Intrinsic::x86_mmx_psrli_q:
9666  case Intrinsic::x86_mmx_psrai_w:
9667  case Intrinsic::x86_mmx_psrai_d: {
9668    SDValue ShAmt = Op.getOperand(2);
9669    if (isa<ConstantSDNode>(ShAmt))
9670      return SDValue();
9671
9672    unsigned NewIntNo = 0;
9673    switch (IntNo) {
9674    case Intrinsic::x86_mmx_pslli_w:
9675      NewIntNo = Intrinsic::x86_mmx_psll_w;
9676      break;
9677    case Intrinsic::x86_mmx_pslli_d:
9678      NewIntNo = Intrinsic::x86_mmx_psll_d;
9679      break;
9680    case Intrinsic::x86_mmx_pslli_q:
9681      NewIntNo = Intrinsic::x86_mmx_psll_q;
9682      break;
9683    case Intrinsic::x86_mmx_psrli_w:
9684      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9685      break;
9686    case Intrinsic::x86_mmx_psrli_d:
9687      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9688      break;
9689    case Intrinsic::x86_mmx_psrli_q:
9690      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9691      break;
9692    case Intrinsic::x86_mmx_psrai_w:
9693      NewIntNo = Intrinsic::x86_mmx_psra_w;
9694      break;
9695    case Intrinsic::x86_mmx_psrai_d:
9696      NewIntNo = Intrinsic::x86_mmx_psra_d;
9697      break;
9698    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9699    }
9700
9701    // The vector shift intrinsics with scalars uses 32b shift amounts but
9702    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9703    // to be zero.
9704    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9705                         DAG.getConstant(0, MVT::i32));
9706// FIXME this must be lowered to get rid of the invalid type.
9707
9708    EVT VT = Op.getValueType();
9709    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9710    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9711                       DAG.getConstant(NewIntNo, MVT::i32),
9712                       Op.getOperand(1), ShAmt);
9713  }
9714  }
9715}
9716
9717SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9718                                           SelectionDAG &DAG) const {
9719  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9720  MFI->setReturnAddressIsTaken(true);
9721
9722  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9723  DebugLoc dl = Op.getDebugLoc();
9724
9725  if (Depth > 0) {
9726    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9727    SDValue Offset =
9728      DAG.getConstant(TD->getPointerSize(),
9729                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9730    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9731                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9732                                   FrameAddr, Offset),
9733                       MachinePointerInfo(), false, false, false, 0);
9734  }
9735
9736  // Just load the return address.
9737  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9738  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9739                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9740}
9741
9742SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9743  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9744  MFI->setFrameAddressIsTaken(true);
9745
9746  EVT VT = Op.getValueType();
9747  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9748  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9749  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9750  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9751  while (Depth--)
9752    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9753                            MachinePointerInfo(),
9754                            false, false, false, 0);
9755  return FrameAddr;
9756}
9757
9758SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9759                                                     SelectionDAG &DAG) const {
9760  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9761}
9762
9763SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9764  MachineFunction &MF = DAG.getMachineFunction();
9765  SDValue Chain     = Op.getOperand(0);
9766  SDValue Offset    = Op.getOperand(1);
9767  SDValue Handler   = Op.getOperand(2);
9768  DebugLoc dl       = Op.getDebugLoc();
9769
9770  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9771                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9772                                     getPointerTy());
9773  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9774
9775  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9776                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9777  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9778  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9779                       false, false, 0);
9780  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9781  MF.getRegInfo().addLiveOut(StoreAddrReg);
9782
9783  return DAG.getNode(X86ISD::EH_RETURN, dl,
9784                     MVT::Other,
9785                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9786}
9787
9788SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9789                                                  SelectionDAG &DAG) const {
9790  return Op.getOperand(0);
9791}
9792
9793SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9794                                                SelectionDAG &DAG) const {
9795  SDValue Root = Op.getOperand(0);
9796  SDValue Trmp = Op.getOperand(1); // trampoline
9797  SDValue FPtr = Op.getOperand(2); // nested function
9798  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9799  DebugLoc dl  = Op.getDebugLoc();
9800
9801  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9802
9803  if (Subtarget->is64Bit()) {
9804    SDValue OutChains[6];
9805
9806    // Large code-model.
9807    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9808    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9809
9810    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9811    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9812
9813    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9814
9815    // Load the pointer to the nested function into R11.
9816    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9817    SDValue Addr = Trmp;
9818    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9819                                Addr, MachinePointerInfo(TrmpAddr),
9820                                false, false, 0);
9821
9822    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9823                       DAG.getConstant(2, MVT::i64));
9824    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9825                                MachinePointerInfo(TrmpAddr, 2),
9826                                false, false, 2);
9827
9828    // Load the 'nest' parameter value into R10.
9829    // R10 is specified in X86CallingConv.td
9830    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9831    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9832                       DAG.getConstant(10, MVT::i64));
9833    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9834                                Addr, MachinePointerInfo(TrmpAddr, 10),
9835                                false, false, 0);
9836
9837    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9838                       DAG.getConstant(12, MVT::i64));
9839    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9840                                MachinePointerInfo(TrmpAddr, 12),
9841                                false, false, 2);
9842
9843    // Jump to the nested function.
9844    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9845    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9846                       DAG.getConstant(20, MVT::i64));
9847    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9848                                Addr, MachinePointerInfo(TrmpAddr, 20),
9849                                false, false, 0);
9850
9851    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9852    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9853                       DAG.getConstant(22, MVT::i64));
9854    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9855                                MachinePointerInfo(TrmpAddr, 22),
9856                                false, false, 0);
9857
9858    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9859  } else {
9860    const Function *Func =
9861      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9862    CallingConv::ID CC = Func->getCallingConv();
9863    unsigned NestReg;
9864
9865    switch (CC) {
9866    default:
9867      llvm_unreachable("Unsupported calling convention");
9868    case CallingConv::C:
9869    case CallingConv::X86_StdCall: {
9870      // Pass 'nest' parameter in ECX.
9871      // Must be kept in sync with X86CallingConv.td
9872      NestReg = X86::ECX;
9873
9874      // Check that ECX wasn't needed by an 'inreg' parameter.
9875      FunctionType *FTy = Func->getFunctionType();
9876      const AttrListPtr &Attrs = Func->getAttributes();
9877
9878      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9879        unsigned InRegCount = 0;
9880        unsigned Idx = 1;
9881
9882        for (FunctionType::param_iterator I = FTy->param_begin(),
9883             E = FTy->param_end(); I != E; ++I, ++Idx)
9884          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9885            // FIXME: should only count parameters that are lowered to integers.
9886            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9887
9888        if (InRegCount > 2) {
9889          report_fatal_error("Nest register in use - reduce number of inreg"
9890                             " parameters!");
9891        }
9892      }
9893      break;
9894    }
9895    case CallingConv::X86_FastCall:
9896    case CallingConv::X86_ThisCall:
9897    case CallingConv::Fast:
9898      // Pass 'nest' parameter in EAX.
9899      // Must be kept in sync with X86CallingConv.td
9900      NestReg = X86::EAX;
9901      break;
9902    }
9903
9904    SDValue OutChains[4];
9905    SDValue Addr, Disp;
9906
9907    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9908                       DAG.getConstant(10, MVT::i32));
9909    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9910
9911    // This is storing the opcode for MOV32ri.
9912    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9913    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9914    OutChains[0] = DAG.getStore(Root, dl,
9915                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9916                                Trmp, MachinePointerInfo(TrmpAddr),
9917                                false, false, 0);
9918
9919    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9920                       DAG.getConstant(1, MVT::i32));
9921    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9922                                MachinePointerInfo(TrmpAddr, 1),
9923                                false, false, 1);
9924
9925    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9926    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9927                       DAG.getConstant(5, MVT::i32));
9928    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9929                                MachinePointerInfo(TrmpAddr, 5),
9930                                false, false, 1);
9931
9932    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9933                       DAG.getConstant(6, MVT::i32));
9934    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9935                                MachinePointerInfo(TrmpAddr, 6),
9936                                false, false, 1);
9937
9938    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9939  }
9940}
9941
9942SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9943                                            SelectionDAG &DAG) const {
9944  /*
9945   The rounding mode is in bits 11:10 of FPSR, and has the following
9946   settings:
9947     00 Round to nearest
9948     01 Round to -inf
9949     10 Round to +inf
9950     11 Round to 0
9951
9952  FLT_ROUNDS, on the other hand, expects the following:
9953    -1 Undefined
9954     0 Round to 0
9955     1 Round to nearest
9956     2 Round to +inf
9957     3 Round to -inf
9958
9959  To perform the conversion, we do:
9960    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9961  */
9962
9963  MachineFunction &MF = DAG.getMachineFunction();
9964  const TargetMachine &TM = MF.getTarget();
9965  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9966  unsigned StackAlignment = TFI.getStackAlignment();
9967  EVT VT = Op.getValueType();
9968  DebugLoc DL = Op.getDebugLoc();
9969
9970  // Save FP Control Word to stack slot
9971  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9972  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9973
9974
9975  MachineMemOperand *MMO =
9976   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9977                           MachineMemOperand::MOStore, 2, 2);
9978
9979  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9980  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9981                                          DAG.getVTList(MVT::Other),
9982                                          Ops, 2, MVT::i16, MMO);
9983
9984  // Load FP Control Word from stack slot
9985  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9986                            MachinePointerInfo(), false, false, false, 0);
9987
9988  // Transform as necessary
9989  SDValue CWD1 =
9990    DAG.getNode(ISD::SRL, DL, MVT::i16,
9991                DAG.getNode(ISD::AND, DL, MVT::i16,
9992                            CWD, DAG.getConstant(0x800, MVT::i16)),
9993                DAG.getConstant(11, MVT::i8));
9994  SDValue CWD2 =
9995    DAG.getNode(ISD::SRL, DL, MVT::i16,
9996                DAG.getNode(ISD::AND, DL, MVT::i16,
9997                            CWD, DAG.getConstant(0x400, MVT::i16)),
9998                DAG.getConstant(9, MVT::i8));
9999
10000  SDValue RetVal =
10001    DAG.getNode(ISD::AND, DL, MVT::i16,
10002                DAG.getNode(ISD::ADD, DL, MVT::i16,
10003                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10004                            DAG.getConstant(1, MVT::i16)),
10005                DAG.getConstant(3, MVT::i16));
10006
10007
10008  return DAG.getNode((VT.getSizeInBits() < 16 ?
10009                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10010}
10011
10012SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10013  EVT VT = Op.getValueType();
10014  EVT OpVT = VT;
10015  unsigned NumBits = VT.getSizeInBits();
10016  DebugLoc dl = Op.getDebugLoc();
10017
10018  Op = Op.getOperand(0);
10019  if (VT == MVT::i8) {
10020    // Zero extend to i32 since there is not an i8 bsr.
10021    OpVT = MVT::i32;
10022    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10023  }
10024
10025  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10026  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10027  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10028
10029  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10030  SDValue Ops[] = {
10031    Op,
10032    DAG.getConstant(NumBits+NumBits-1, OpVT),
10033    DAG.getConstant(X86::COND_E, MVT::i8),
10034    Op.getValue(1)
10035  };
10036  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10037
10038  // Finally xor with NumBits-1.
10039  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10040
10041  if (VT == MVT::i8)
10042    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10043  return Op;
10044}
10045
10046SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10047                                                SelectionDAG &DAG) const {
10048  EVT VT = Op.getValueType();
10049  EVT OpVT = VT;
10050  unsigned NumBits = VT.getSizeInBits();
10051  DebugLoc dl = Op.getDebugLoc();
10052
10053  Op = Op.getOperand(0);
10054  if (VT == MVT::i8) {
10055    // Zero extend to i32 since there is not an i8 bsr.
10056    OpVT = MVT::i32;
10057    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10058  }
10059
10060  // Issue a bsr (scan bits in reverse).
10061  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10062  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10063
10064  // And xor with NumBits-1.
10065  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10066
10067  if (VT == MVT::i8)
10068    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10069  return Op;
10070}
10071
10072SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10073  EVT VT = Op.getValueType();
10074  unsigned NumBits = VT.getSizeInBits();
10075  DebugLoc dl = Op.getDebugLoc();
10076  Op = Op.getOperand(0);
10077
10078  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10079  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10080  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10081
10082  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10083  SDValue Ops[] = {
10084    Op,
10085    DAG.getConstant(NumBits, VT),
10086    DAG.getConstant(X86::COND_E, MVT::i8),
10087    Op.getValue(1)
10088  };
10089  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10090}
10091
10092// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10093// ones, and then concatenate the result back.
10094static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10095  EVT VT = Op.getValueType();
10096
10097  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10098         "Unsupported value type for operation");
10099
10100  int NumElems = VT.getVectorNumElements();
10101  DebugLoc dl = Op.getDebugLoc();
10102  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10103  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10104
10105  // Extract the LHS vectors
10106  SDValue LHS = Op.getOperand(0);
10107  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10108  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10109
10110  // Extract the RHS vectors
10111  SDValue RHS = Op.getOperand(1);
10112  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10113  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10114
10115  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10116  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10117
10118  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10119                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10120                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10121}
10122
10123SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10124  assert(Op.getValueType().getSizeInBits() == 256 &&
10125         Op.getValueType().isInteger() &&
10126         "Only handle AVX 256-bit vector integer operation");
10127  return Lower256IntArith(Op, DAG);
10128}
10129
10130SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10131  assert(Op.getValueType().getSizeInBits() == 256 &&
10132         Op.getValueType().isInteger() &&
10133         "Only handle AVX 256-bit vector integer operation");
10134  return Lower256IntArith(Op, DAG);
10135}
10136
10137SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10138  EVT VT = Op.getValueType();
10139
10140  // Decompose 256-bit ops into smaller 128-bit ops.
10141  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10142    return Lower256IntArith(Op, DAG);
10143
10144  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10145         "Only know how to lower V2I64/V4I64 multiply");
10146
10147  DebugLoc dl = Op.getDebugLoc();
10148
10149  //  Ahi = psrlqi(a, 32);
10150  //  Bhi = psrlqi(b, 32);
10151  //
10152  //  AloBlo = pmuludq(a, b);
10153  //  AloBhi = pmuludq(a, Bhi);
10154  //  AhiBlo = pmuludq(Ahi, b);
10155
10156  //  AloBhi = psllqi(AloBhi, 32);
10157  //  AhiBlo = psllqi(AhiBlo, 32);
10158  //  return AloBlo + AloBhi + AhiBlo;
10159
10160  SDValue A = Op.getOperand(0);
10161  SDValue B = Op.getOperand(1);
10162
10163  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10164
10165  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10166  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10167
10168  // Bit cast to 32-bit vectors for MULUDQ
10169  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10170  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10171  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10172  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10173  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10174
10175  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10176  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10177  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10178
10179  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10180  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10181
10182  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10183  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10184}
10185
10186SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10187
10188  EVT VT = Op.getValueType();
10189  DebugLoc dl = Op.getDebugLoc();
10190  SDValue R = Op.getOperand(0);
10191  SDValue Amt = Op.getOperand(1);
10192  LLVMContext *Context = DAG.getContext();
10193
10194  if (!Subtarget->hasSSE2())
10195    return SDValue();
10196
10197  // Optimize shl/srl/sra with constant shift amount.
10198  if (isSplatVector(Amt.getNode())) {
10199    SDValue SclrAmt = Amt->getOperand(0);
10200    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10201      uint64_t ShiftAmt = C->getZExtValue();
10202
10203      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10204          (Subtarget->hasAVX2() &&
10205           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10206        if (Op.getOpcode() == ISD::SHL)
10207          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10208                             DAG.getConstant(ShiftAmt, MVT::i32));
10209        if (Op.getOpcode() == ISD::SRL)
10210          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10211                             DAG.getConstant(ShiftAmt, MVT::i32));
10212        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10213          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10214                             DAG.getConstant(ShiftAmt, MVT::i32));
10215      }
10216
10217      if (VT == MVT::v16i8) {
10218        if (Op.getOpcode() == ISD::SHL) {
10219          // Make a large shift.
10220          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10221                                    DAG.getConstant(ShiftAmt, MVT::i32));
10222          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10223          // Zero out the rightmost bits.
10224          SmallVector<SDValue, 16> V(16,
10225                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10226                                                     MVT::i8));
10227          return DAG.getNode(ISD::AND, dl, VT, SHL,
10228                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10229        }
10230        if (Op.getOpcode() == ISD::SRL) {
10231          // Make a large shift.
10232          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10233                                    DAG.getConstant(ShiftAmt, MVT::i32));
10234          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10235          // Zero out the leftmost bits.
10236          SmallVector<SDValue, 16> V(16,
10237                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10238                                                     MVT::i8));
10239          return DAG.getNode(ISD::AND, dl, VT, SRL,
10240                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10241        }
10242        if (Op.getOpcode() == ISD::SRA) {
10243          if (ShiftAmt == 7) {
10244            // R s>> 7  ===  R s< 0
10245            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10246            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10247          }
10248
10249          // R s>> a === ((R u>> a) ^ m) - m
10250          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10251          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10252                                                         MVT::i8));
10253          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10254          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10255          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10256          return Res;
10257        }
10258      }
10259
10260      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10261        if (Op.getOpcode() == ISD::SHL) {
10262          // Make a large shift.
10263          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10264                                    DAG.getConstant(ShiftAmt, MVT::i32));
10265          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10266          // Zero out the rightmost bits.
10267          SmallVector<SDValue, 32> V(32,
10268                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10269                                                     MVT::i8));
10270          return DAG.getNode(ISD::AND, dl, VT, SHL,
10271                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10272        }
10273        if (Op.getOpcode() == ISD::SRL) {
10274          // Make a large shift.
10275          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10276                                    DAG.getConstant(ShiftAmt, MVT::i32));
10277          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10278          // Zero out the leftmost bits.
10279          SmallVector<SDValue, 32> V(32,
10280                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10281                                                     MVT::i8));
10282          return DAG.getNode(ISD::AND, dl, VT, SRL,
10283                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10284        }
10285        if (Op.getOpcode() == ISD::SRA) {
10286          if (ShiftAmt == 7) {
10287            // R s>> 7  ===  R s< 0
10288            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10289            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10290          }
10291
10292          // R s>> a === ((R u>> a) ^ m) - m
10293          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10294          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10295                                                         MVT::i8));
10296          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10297          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10298          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10299          return Res;
10300        }
10301      }
10302    }
10303  }
10304
10305  // Lower SHL with variable shift amount.
10306  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10307    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10308                     DAG.getConstant(23, MVT::i32));
10309
10310    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10311    Constant *C = ConstantDataVector::get(*Context, CV);
10312    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10313    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10314                                 MachinePointerInfo::getConstantPool(),
10315                                 false, false, false, 16);
10316
10317    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10318    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10319    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10320    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10321  }
10322  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10323    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10324
10325    // a = a << 5;
10326    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10327                     DAG.getConstant(5, MVT::i32));
10328    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10329
10330    // Turn 'a' into a mask suitable for VSELECT
10331    SDValue VSelM = DAG.getConstant(0x80, VT);
10332    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10333    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10334
10335    SDValue CM1 = DAG.getConstant(0x0f, VT);
10336    SDValue CM2 = DAG.getConstant(0x3f, VT);
10337
10338    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10339    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10340    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10341                            DAG.getConstant(4, MVT::i32), DAG);
10342    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10343    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10344
10345    // a += a
10346    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10347    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10348    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10349
10350    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10351    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10352    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10353                            DAG.getConstant(2, MVT::i32), DAG);
10354    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10355    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10356
10357    // a += a
10358    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10359    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10360    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10361
10362    // return VSELECT(r, r+r, a);
10363    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10364                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10365    return R;
10366  }
10367
10368  // Decompose 256-bit shifts into smaller 128-bit shifts.
10369  if (VT.getSizeInBits() == 256) {
10370    unsigned NumElems = VT.getVectorNumElements();
10371    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10372    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10373
10374    // Extract the two vectors
10375    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10376    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10377                                     DAG, dl);
10378
10379    // Recreate the shift amount vectors
10380    SDValue Amt1, Amt2;
10381    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10382      // Constant shift amount
10383      SmallVector<SDValue, 4> Amt1Csts;
10384      SmallVector<SDValue, 4> Amt2Csts;
10385      for (unsigned i = 0; i != NumElems/2; ++i)
10386        Amt1Csts.push_back(Amt->getOperand(i));
10387      for (unsigned i = NumElems/2; i != NumElems; ++i)
10388        Amt2Csts.push_back(Amt->getOperand(i));
10389
10390      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10391                                 &Amt1Csts[0], NumElems/2);
10392      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10393                                 &Amt2Csts[0], NumElems/2);
10394    } else {
10395      // Variable shift amount
10396      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10397      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10398                                 DAG, dl);
10399    }
10400
10401    // Issue new vector shifts for the smaller types
10402    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10403    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10404
10405    // Concatenate the result back
10406    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10407  }
10408
10409  return SDValue();
10410}
10411
10412SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10413  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10414  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10415  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10416  // has only one use.
10417  SDNode *N = Op.getNode();
10418  SDValue LHS = N->getOperand(0);
10419  SDValue RHS = N->getOperand(1);
10420  unsigned BaseOp = 0;
10421  unsigned Cond = 0;
10422  DebugLoc DL = Op.getDebugLoc();
10423  switch (Op.getOpcode()) {
10424  default: llvm_unreachable("Unknown ovf instruction!");
10425  case ISD::SADDO:
10426    // A subtract of one will be selected as a INC. Note that INC doesn't
10427    // set CF, so we can't do this for UADDO.
10428    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10429      if (C->isOne()) {
10430        BaseOp = X86ISD::INC;
10431        Cond = X86::COND_O;
10432        break;
10433      }
10434    BaseOp = X86ISD::ADD;
10435    Cond = X86::COND_O;
10436    break;
10437  case ISD::UADDO:
10438    BaseOp = X86ISD::ADD;
10439    Cond = X86::COND_B;
10440    break;
10441  case ISD::SSUBO:
10442    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10443    // set CF, so we can't do this for USUBO.
10444    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10445      if (C->isOne()) {
10446        BaseOp = X86ISD::DEC;
10447        Cond = X86::COND_O;
10448        break;
10449      }
10450    BaseOp = X86ISD::SUB;
10451    Cond = X86::COND_O;
10452    break;
10453  case ISD::USUBO:
10454    BaseOp = X86ISD::SUB;
10455    Cond = X86::COND_B;
10456    break;
10457  case ISD::SMULO:
10458    BaseOp = X86ISD::SMUL;
10459    Cond = X86::COND_O;
10460    break;
10461  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10462    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10463                                 MVT::i32);
10464    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10465
10466    SDValue SetCC =
10467      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10468                  DAG.getConstant(X86::COND_O, MVT::i32),
10469                  SDValue(Sum.getNode(), 2));
10470
10471    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10472  }
10473  }
10474
10475  // Also sets EFLAGS.
10476  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10477  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10478
10479  SDValue SetCC =
10480    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10481                DAG.getConstant(Cond, MVT::i32),
10482                SDValue(Sum.getNode(), 1));
10483
10484  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10485}
10486
10487SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10488                                                  SelectionDAG &DAG) const {
10489  DebugLoc dl = Op.getDebugLoc();
10490  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10491  EVT VT = Op.getValueType();
10492
10493  if (!Subtarget->hasSSE2() || !VT.isVector())
10494    return SDValue();
10495
10496  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10497                      ExtraVT.getScalarType().getSizeInBits();
10498  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10499
10500  switch (VT.getSimpleVT().SimpleTy) {
10501    default: return SDValue();
10502    case MVT::v8i32:
10503    case MVT::v16i16:
10504      if (!Subtarget->hasAVX())
10505        return SDValue();
10506      if (!Subtarget->hasAVX2()) {
10507        // needs to be split
10508        int NumElems = VT.getVectorNumElements();
10509        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10510        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10511
10512        // Extract the LHS vectors
10513        SDValue LHS = Op.getOperand(0);
10514        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10515        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10516
10517        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10518        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10519
10520        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10521        int ExtraNumElems = ExtraVT.getVectorNumElements();
10522        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10523                                   ExtraNumElems/2);
10524        SDValue Extra = DAG.getValueType(ExtraVT);
10525
10526        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10527        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10528
10529        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10530      }
10531      // fall through
10532    case MVT::v4i32:
10533    case MVT::v8i16: {
10534      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10535                                         Op.getOperand(0), ShAmt, DAG);
10536      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10537    }
10538  }
10539}
10540
10541
10542SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10543  DebugLoc dl = Op.getDebugLoc();
10544
10545  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10546  // There isn't any reason to disable it if the target processor supports it.
10547  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10548    SDValue Chain = Op.getOperand(0);
10549    SDValue Zero = DAG.getConstant(0, MVT::i32);
10550    SDValue Ops[] = {
10551      DAG.getRegister(X86::ESP, MVT::i32), // Base
10552      DAG.getTargetConstant(1, MVT::i8),   // Scale
10553      DAG.getRegister(0, MVT::i32),        // Index
10554      DAG.getTargetConstant(0, MVT::i32),  // Disp
10555      DAG.getRegister(0, MVT::i32),        // Segment.
10556      Zero,
10557      Chain
10558    };
10559    SDNode *Res =
10560      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10561                          array_lengthof(Ops));
10562    return SDValue(Res, 0);
10563  }
10564
10565  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10566  if (!isDev)
10567    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10568
10569  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10570  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10571  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10572  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10573
10574  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10575  if (!Op1 && !Op2 && !Op3 && Op4)
10576    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10577
10578  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10579  if (Op1 && !Op2 && !Op3 && !Op4)
10580    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10581
10582  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10583  //           (MFENCE)>;
10584  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10585}
10586
10587SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10588                                             SelectionDAG &DAG) const {
10589  DebugLoc dl = Op.getDebugLoc();
10590  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10591    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10592  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10593    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10594
10595  // The only fence that needs an instruction is a sequentially-consistent
10596  // cross-thread fence.
10597  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10598    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10599    // no-sse2). There isn't any reason to disable it if the target processor
10600    // supports it.
10601    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10602      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10603
10604    SDValue Chain = Op.getOperand(0);
10605    SDValue Zero = DAG.getConstant(0, MVT::i32);
10606    SDValue Ops[] = {
10607      DAG.getRegister(X86::ESP, MVT::i32), // Base
10608      DAG.getTargetConstant(1, MVT::i8),   // Scale
10609      DAG.getRegister(0, MVT::i32),        // Index
10610      DAG.getTargetConstant(0, MVT::i32),  // Disp
10611      DAG.getRegister(0, MVT::i32),        // Segment.
10612      Zero,
10613      Chain
10614    };
10615    SDNode *Res =
10616      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10617                         array_lengthof(Ops));
10618    return SDValue(Res, 0);
10619  }
10620
10621  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10622  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10623}
10624
10625
10626SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10627  EVT T = Op.getValueType();
10628  DebugLoc DL = Op.getDebugLoc();
10629  unsigned Reg = 0;
10630  unsigned size = 0;
10631  switch(T.getSimpleVT().SimpleTy) {
10632  default: llvm_unreachable("Invalid value type!");
10633  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10634  case MVT::i16: Reg = X86::AX;  size = 2; break;
10635  case MVT::i32: Reg = X86::EAX; size = 4; break;
10636  case MVT::i64:
10637    assert(Subtarget->is64Bit() && "Node not type legal!");
10638    Reg = X86::RAX; size = 8;
10639    break;
10640  }
10641  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10642                                    Op.getOperand(2), SDValue());
10643  SDValue Ops[] = { cpIn.getValue(0),
10644                    Op.getOperand(1),
10645                    Op.getOperand(3),
10646                    DAG.getTargetConstant(size, MVT::i8),
10647                    cpIn.getValue(1) };
10648  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10649  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10650  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10651                                           Ops, 5, T, MMO);
10652  SDValue cpOut =
10653    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10654  return cpOut;
10655}
10656
10657SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10658                                                 SelectionDAG &DAG) const {
10659  assert(Subtarget->is64Bit() && "Result not type legalized?");
10660  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10661  SDValue TheChain = Op.getOperand(0);
10662  DebugLoc dl = Op.getDebugLoc();
10663  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10664  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10665  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10666                                   rax.getValue(2));
10667  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10668                            DAG.getConstant(32, MVT::i8));
10669  SDValue Ops[] = {
10670    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10671    rdx.getValue(1)
10672  };
10673  return DAG.getMergeValues(Ops, 2, dl);
10674}
10675
10676SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10677                                            SelectionDAG &DAG) const {
10678  EVT SrcVT = Op.getOperand(0).getValueType();
10679  EVT DstVT = Op.getValueType();
10680  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10681         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10682  assert((DstVT == MVT::i64 ||
10683          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10684         "Unexpected custom BITCAST");
10685  // i64 <=> MMX conversions are Legal.
10686  if (SrcVT==MVT::i64 && DstVT.isVector())
10687    return Op;
10688  if (DstVT==MVT::i64 && SrcVT.isVector())
10689    return Op;
10690  // MMX <=> MMX conversions are Legal.
10691  if (SrcVT.isVector() && DstVT.isVector())
10692    return Op;
10693  // All other conversions need to be expanded.
10694  return SDValue();
10695}
10696
10697SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10698  SDNode *Node = Op.getNode();
10699  DebugLoc dl = Node->getDebugLoc();
10700  EVT T = Node->getValueType(0);
10701  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10702                              DAG.getConstant(0, T), Node->getOperand(2));
10703  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10704                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10705                       Node->getOperand(0),
10706                       Node->getOperand(1), negOp,
10707                       cast<AtomicSDNode>(Node)->getSrcValue(),
10708                       cast<AtomicSDNode>(Node)->getAlignment(),
10709                       cast<AtomicSDNode>(Node)->getOrdering(),
10710                       cast<AtomicSDNode>(Node)->getSynchScope());
10711}
10712
10713static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10714  SDNode *Node = Op.getNode();
10715  DebugLoc dl = Node->getDebugLoc();
10716  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10717
10718  // Convert seq_cst store -> xchg
10719  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10720  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10721  //        (The only way to get a 16-byte store is cmpxchg16b)
10722  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10723  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10724      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10725    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10726                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10727                                 Node->getOperand(0),
10728                                 Node->getOperand(1), Node->getOperand(2),
10729                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10730                                 cast<AtomicSDNode>(Node)->getOrdering(),
10731                                 cast<AtomicSDNode>(Node)->getSynchScope());
10732    return Swap.getValue(1);
10733  }
10734  // Other atomic stores have a simple pattern.
10735  return Op;
10736}
10737
10738static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10739  EVT VT = Op.getNode()->getValueType(0);
10740
10741  // Let legalize expand this if it isn't a legal type yet.
10742  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10743    return SDValue();
10744
10745  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10746
10747  unsigned Opc;
10748  bool ExtraOp = false;
10749  switch (Op.getOpcode()) {
10750  default: llvm_unreachable("Invalid code");
10751  case ISD::ADDC: Opc = X86ISD::ADD; break;
10752  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10753  case ISD::SUBC: Opc = X86ISD::SUB; break;
10754  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10755  }
10756
10757  if (!ExtraOp)
10758    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10759                       Op.getOperand(1));
10760  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10761                     Op.getOperand(1), Op.getOperand(2));
10762}
10763
10764/// LowerOperation - Provide custom lowering hooks for some operations.
10765///
10766SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10767  switch (Op.getOpcode()) {
10768  default: llvm_unreachable("Should not custom lower this!");
10769  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10770  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10771  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10772  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10773  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10774  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10775  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10776  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10777  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10778  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10779  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10780  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10781  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10782  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10783  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10784  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10785  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10786  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10787  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10788  case ISD::SHL_PARTS:
10789  case ISD::SRA_PARTS:
10790  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10791  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10792  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10793  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10794  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10795  case ISD::FABS:               return LowerFABS(Op, DAG);
10796  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10797  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10798  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10799  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10800  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10801  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10802  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10803  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10804  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10805  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10806  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10807  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10808  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10809  case ISD::FRAME_TO_ARGS_OFFSET:
10810                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10811  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10812  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10813  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10814  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10815  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10816  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10817  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10818  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10819  case ISD::MUL:                return LowerMUL(Op, DAG);
10820  case ISD::SRA:
10821  case ISD::SRL:
10822  case ISD::SHL:                return LowerShift(Op, DAG);
10823  case ISD::SADDO:
10824  case ISD::UADDO:
10825  case ISD::SSUBO:
10826  case ISD::USUBO:
10827  case ISD::SMULO:
10828  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10829  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10830  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10831  case ISD::ADDC:
10832  case ISD::ADDE:
10833  case ISD::SUBC:
10834  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10835  case ISD::ADD:                return LowerADD(Op, DAG);
10836  case ISD::SUB:                return LowerSUB(Op, DAG);
10837  }
10838}
10839
10840static void ReplaceATOMIC_LOAD(SDNode *Node,
10841                                  SmallVectorImpl<SDValue> &Results,
10842                                  SelectionDAG &DAG) {
10843  DebugLoc dl = Node->getDebugLoc();
10844  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10845
10846  // Convert wide load -> cmpxchg8b/cmpxchg16b
10847  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10848  //        (The only way to get a 16-byte load is cmpxchg16b)
10849  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10850  SDValue Zero = DAG.getConstant(0, VT);
10851  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10852                               Node->getOperand(0),
10853                               Node->getOperand(1), Zero, Zero,
10854                               cast<AtomicSDNode>(Node)->getMemOperand(),
10855                               cast<AtomicSDNode>(Node)->getOrdering(),
10856                               cast<AtomicSDNode>(Node)->getSynchScope());
10857  Results.push_back(Swap.getValue(0));
10858  Results.push_back(Swap.getValue(1));
10859}
10860
10861void X86TargetLowering::
10862ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10863                        SelectionDAG &DAG, unsigned NewOp) const {
10864  DebugLoc dl = Node->getDebugLoc();
10865  assert (Node->getValueType(0) == MVT::i64 &&
10866          "Only know how to expand i64 atomics");
10867
10868  SDValue Chain = Node->getOperand(0);
10869  SDValue In1 = Node->getOperand(1);
10870  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10871                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10872  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10873                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10874  SDValue Ops[] = { Chain, In1, In2L, In2H };
10875  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10876  SDValue Result =
10877    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10878                            cast<MemSDNode>(Node)->getMemOperand());
10879  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10880  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10881  Results.push_back(Result.getValue(2));
10882}
10883
10884/// ReplaceNodeResults - Replace a node with an illegal result type
10885/// with a new node built out of custom code.
10886void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10887                                           SmallVectorImpl<SDValue>&Results,
10888                                           SelectionDAG &DAG) const {
10889  DebugLoc dl = N->getDebugLoc();
10890  switch (N->getOpcode()) {
10891  default:
10892    llvm_unreachable("Do not know how to custom type legalize this operation!");
10893  case ISD::SIGN_EXTEND_INREG:
10894  case ISD::ADDC:
10895  case ISD::ADDE:
10896  case ISD::SUBC:
10897  case ISD::SUBE:
10898    // We don't want to expand or promote these.
10899    return;
10900  case ISD::FP_TO_SINT:
10901  case ISD::FP_TO_UINT: {
10902    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10903
10904    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10905      return;
10906
10907    std::pair<SDValue,SDValue> Vals =
10908        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10909    SDValue FIST = Vals.first, StackSlot = Vals.second;
10910    if (FIST.getNode() != 0) {
10911      EVT VT = N->getValueType(0);
10912      // Return a load from the stack slot.
10913      if (StackSlot.getNode() != 0)
10914        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10915                                      MachinePointerInfo(),
10916                                      false, false, false, 0));
10917      else
10918        Results.push_back(FIST);
10919    }
10920    return;
10921  }
10922  case ISD::READCYCLECOUNTER: {
10923    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10924    SDValue TheChain = N->getOperand(0);
10925    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10926    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10927                                     rd.getValue(1));
10928    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10929                                     eax.getValue(2));
10930    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10931    SDValue Ops[] = { eax, edx };
10932    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10933    Results.push_back(edx.getValue(1));
10934    return;
10935  }
10936  case ISD::ATOMIC_CMP_SWAP: {
10937    EVT T = N->getValueType(0);
10938    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10939    bool Regs64bit = T == MVT::i128;
10940    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10941    SDValue cpInL, cpInH;
10942    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10943                        DAG.getConstant(0, HalfT));
10944    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10945                        DAG.getConstant(1, HalfT));
10946    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10947                             Regs64bit ? X86::RAX : X86::EAX,
10948                             cpInL, SDValue());
10949    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10950                             Regs64bit ? X86::RDX : X86::EDX,
10951                             cpInH, cpInL.getValue(1));
10952    SDValue swapInL, swapInH;
10953    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10954                          DAG.getConstant(0, HalfT));
10955    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10956                          DAG.getConstant(1, HalfT));
10957    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10958                               Regs64bit ? X86::RBX : X86::EBX,
10959                               swapInL, cpInH.getValue(1));
10960    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10961                               Regs64bit ? X86::RCX : X86::ECX,
10962                               swapInH, swapInL.getValue(1));
10963    SDValue Ops[] = { swapInH.getValue(0),
10964                      N->getOperand(1),
10965                      swapInH.getValue(1) };
10966    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10967    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10968    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10969                                  X86ISD::LCMPXCHG8_DAG;
10970    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10971                                             Ops, 3, T, MMO);
10972    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10973                                        Regs64bit ? X86::RAX : X86::EAX,
10974                                        HalfT, Result.getValue(1));
10975    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10976                                        Regs64bit ? X86::RDX : X86::EDX,
10977                                        HalfT, cpOutL.getValue(2));
10978    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10979    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10980    Results.push_back(cpOutH.getValue(1));
10981    return;
10982  }
10983  case ISD::ATOMIC_LOAD_ADD:
10984    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10985    return;
10986  case ISD::ATOMIC_LOAD_AND:
10987    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10988    return;
10989  case ISD::ATOMIC_LOAD_NAND:
10990    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10991    return;
10992  case ISD::ATOMIC_LOAD_OR:
10993    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10994    return;
10995  case ISD::ATOMIC_LOAD_SUB:
10996    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10997    return;
10998  case ISD::ATOMIC_LOAD_XOR:
10999    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11000    return;
11001  case ISD::ATOMIC_SWAP:
11002    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11003    return;
11004  case ISD::ATOMIC_LOAD:
11005    ReplaceATOMIC_LOAD(N, Results, DAG);
11006  }
11007}
11008
11009const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11010  switch (Opcode) {
11011  default: return NULL;
11012  case X86ISD::BSF:                return "X86ISD::BSF";
11013  case X86ISD::BSR:                return "X86ISD::BSR";
11014  case X86ISD::SHLD:               return "X86ISD::SHLD";
11015  case X86ISD::SHRD:               return "X86ISD::SHRD";
11016  case X86ISD::FAND:               return "X86ISD::FAND";
11017  case X86ISD::FOR:                return "X86ISD::FOR";
11018  case X86ISD::FXOR:               return "X86ISD::FXOR";
11019  case X86ISD::FSRL:               return "X86ISD::FSRL";
11020  case X86ISD::FILD:               return "X86ISD::FILD";
11021  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11022  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11023  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11024  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11025  case X86ISD::FLD:                return "X86ISD::FLD";
11026  case X86ISD::FST:                return "X86ISD::FST";
11027  case X86ISD::CALL:               return "X86ISD::CALL";
11028  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11029  case X86ISD::BT:                 return "X86ISD::BT";
11030  case X86ISD::CMP:                return "X86ISD::CMP";
11031  case X86ISD::COMI:               return "X86ISD::COMI";
11032  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11033  case X86ISD::SETCC:              return "X86ISD::SETCC";
11034  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11035  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11036  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11037  case X86ISD::CMOV:               return "X86ISD::CMOV";
11038  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11039  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11040  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11041  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11042  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11043  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11044  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11045  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11046  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11047  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11048  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11049  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11050  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11051  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11052  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11053  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11054  case X86ISD::HADD:               return "X86ISD::HADD";
11055  case X86ISD::HSUB:               return "X86ISD::HSUB";
11056  case X86ISD::FHADD:              return "X86ISD::FHADD";
11057  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11058  case X86ISD::FMAX:               return "X86ISD::FMAX";
11059  case X86ISD::FMIN:               return "X86ISD::FMIN";
11060  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11061  case X86ISD::FRCP:               return "X86ISD::FRCP";
11062  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11063  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11064  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11065  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11066  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11067  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11068  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11069  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11070  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11071  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11072  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11073  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11074  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11075  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11076  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11077  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11078  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11079  case X86ISD::VSHL:               return "X86ISD::VSHL";
11080  case X86ISD::VSRL:               return "X86ISD::VSRL";
11081  case X86ISD::VSRA:               return "X86ISD::VSRA";
11082  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11083  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11084  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11085  case X86ISD::CMPP:               return "X86ISD::CMPP";
11086  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11087  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11088  case X86ISD::ADD:                return "X86ISD::ADD";
11089  case X86ISD::SUB:                return "X86ISD::SUB";
11090  case X86ISD::ADC:                return "X86ISD::ADC";
11091  case X86ISD::SBB:                return "X86ISD::SBB";
11092  case X86ISD::SMUL:               return "X86ISD::SMUL";
11093  case X86ISD::UMUL:               return "X86ISD::UMUL";
11094  case X86ISD::INC:                return "X86ISD::INC";
11095  case X86ISD::DEC:                return "X86ISD::DEC";
11096  case X86ISD::OR:                 return "X86ISD::OR";
11097  case X86ISD::XOR:                return "X86ISD::XOR";
11098  case X86ISD::AND:                return "X86ISD::AND";
11099  case X86ISD::ANDN:               return "X86ISD::ANDN";
11100  case X86ISD::BLSI:               return "X86ISD::BLSI";
11101  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11102  case X86ISD::BLSR:               return "X86ISD::BLSR";
11103  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11104  case X86ISD::PTEST:              return "X86ISD::PTEST";
11105  case X86ISD::TESTP:              return "X86ISD::TESTP";
11106  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11107  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11108  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11109  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11110  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11111  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11112  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11113  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11114  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11115  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11116  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11117  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11118  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11119  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11120  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11121  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11122  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11123  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11124  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11125  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11126  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11127  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11128  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11129  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11130  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11131  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11132  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11133  }
11134}
11135
11136// isLegalAddressingMode - Return true if the addressing mode represented
11137// by AM is legal for this target, for a load/store of the specified type.
11138bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11139                                              Type *Ty) const {
11140  // X86 supports extremely general addressing modes.
11141  CodeModel::Model M = getTargetMachine().getCodeModel();
11142  Reloc::Model R = getTargetMachine().getRelocationModel();
11143
11144  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11145  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11146    return false;
11147
11148  if (AM.BaseGV) {
11149    unsigned GVFlags =
11150      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11151
11152    // If a reference to this global requires an extra load, we can't fold it.
11153    if (isGlobalStubReference(GVFlags))
11154      return false;
11155
11156    // If BaseGV requires a register for the PIC base, we cannot also have a
11157    // BaseReg specified.
11158    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11159      return false;
11160
11161    // If lower 4G is not available, then we must use rip-relative addressing.
11162    if ((M != CodeModel::Small || R != Reloc::Static) &&
11163        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11164      return false;
11165  }
11166
11167  switch (AM.Scale) {
11168  case 0:
11169  case 1:
11170  case 2:
11171  case 4:
11172  case 8:
11173    // These scales always work.
11174    break;
11175  case 3:
11176  case 5:
11177  case 9:
11178    // These scales are formed with basereg+scalereg.  Only accept if there is
11179    // no basereg yet.
11180    if (AM.HasBaseReg)
11181      return false;
11182    break;
11183  default:  // Other stuff never works.
11184    return false;
11185  }
11186
11187  return true;
11188}
11189
11190
11191bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11192  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11193    return false;
11194  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11195  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11196  if (NumBits1 <= NumBits2)
11197    return false;
11198  return true;
11199}
11200
11201bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11202  if (!VT1.isInteger() || !VT2.isInteger())
11203    return false;
11204  unsigned NumBits1 = VT1.getSizeInBits();
11205  unsigned NumBits2 = VT2.getSizeInBits();
11206  if (NumBits1 <= NumBits2)
11207    return false;
11208  return true;
11209}
11210
11211bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11212  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11213  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11214}
11215
11216bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11217  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11218  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11219}
11220
11221bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11222  // i16 instructions are longer (0x66 prefix) and potentially slower.
11223  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11224}
11225
11226/// isShuffleMaskLegal - Targets can use this to indicate that they only
11227/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11228/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11229/// are assumed to be legal.
11230bool
11231X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11232                                      EVT VT) const {
11233  // Very little shuffling can be done for 64-bit vectors right now.
11234  if (VT.getSizeInBits() == 64)
11235    return false;
11236
11237  // FIXME: pshufb, blends, shifts.
11238  return (VT.getVectorNumElements() == 2 ||
11239          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11240          isMOVLMask(M, VT) ||
11241          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11242          isPSHUFDMask(M, VT) ||
11243          isPSHUFHWMask(M, VT) ||
11244          isPSHUFLWMask(M, VT) ||
11245          isPALIGNRMask(M, VT, Subtarget) ||
11246          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11247          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11248          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11249          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11250}
11251
11252bool
11253X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11254                                          EVT VT) const {
11255  unsigned NumElts = VT.getVectorNumElements();
11256  // FIXME: This collection of masks seems suspect.
11257  if (NumElts == 2)
11258    return true;
11259  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11260    return (isMOVLMask(Mask, VT)  ||
11261            isCommutedMOVLMask(Mask, VT, true) ||
11262            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11263            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11264  }
11265  return false;
11266}
11267
11268//===----------------------------------------------------------------------===//
11269//                           X86 Scheduler Hooks
11270//===----------------------------------------------------------------------===//
11271
11272// private utility function
11273MachineBasicBlock *
11274X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11275                                                       MachineBasicBlock *MBB,
11276                                                       unsigned regOpc,
11277                                                       unsigned immOpc,
11278                                                       unsigned LoadOpc,
11279                                                       unsigned CXchgOpc,
11280                                                       unsigned notOpc,
11281                                                       unsigned EAXreg,
11282                                                 const TargetRegisterClass *RC,
11283                                                       bool invSrc) const {
11284  // For the atomic bitwise operator, we generate
11285  //   thisMBB:
11286  //   newMBB:
11287  //     ld  t1 = [bitinstr.addr]
11288  //     op  t2 = t1, [bitinstr.val]
11289  //     mov EAX = t1
11290  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11291  //     bz  newMBB
11292  //     fallthrough -->nextMBB
11293  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11294  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11295  MachineFunction::iterator MBBIter = MBB;
11296  ++MBBIter;
11297
11298  /// First build the CFG
11299  MachineFunction *F = MBB->getParent();
11300  MachineBasicBlock *thisMBB = MBB;
11301  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11302  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11303  F->insert(MBBIter, newMBB);
11304  F->insert(MBBIter, nextMBB);
11305
11306  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11307  nextMBB->splice(nextMBB->begin(), thisMBB,
11308                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11309                  thisMBB->end());
11310  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11311
11312  // Update thisMBB to fall through to newMBB
11313  thisMBB->addSuccessor(newMBB);
11314
11315  // newMBB jumps to itself and fall through to nextMBB
11316  newMBB->addSuccessor(nextMBB);
11317  newMBB->addSuccessor(newMBB);
11318
11319  // Insert instructions into newMBB based on incoming instruction
11320  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11321         "unexpected number of operands");
11322  DebugLoc dl = bInstr->getDebugLoc();
11323  MachineOperand& destOper = bInstr->getOperand(0);
11324  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11325  int numArgs = bInstr->getNumOperands() - 1;
11326  for (int i=0; i < numArgs; ++i)
11327    argOpers[i] = &bInstr->getOperand(i+1);
11328
11329  // x86 address has 4 operands: base, index, scale, and displacement
11330  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11331  int valArgIndx = lastAddrIndx + 1;
11332
11333  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11334  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11335  for (int i=0; i <= lastAddrIndx; ++i)
11336    (*MIB).addOperand(*argOpers[i]);
11337
11338  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11339  if (invSrc) {
11340    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11341  }
11342  else
11343    tt = t1;
11344
11345  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11346  assert((argOpers[valArgIndx]->isReg() ||
11347          argOpers[valArgIndx]->isImm()) &&
11348         "invalid operand");
11349  if (argOpers[valArgIndx]->isReg())
11350    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11351  else
11352    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11353  MIB.addReg(tt);
11354  (*MIB).addOperand(*argOpers[valArgIndx]);
11355
11356  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11357  MIB.addReg(t1);
11358
11359  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11360  for (int i=0; i <= lastAddrIndx; ++i)
11361    (*MIB).addOperand(*argOpers[i]);
11362  MIB.addReg(t2);
11363  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11364  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11365                    bInstr->memoperands_end());
11366
11367  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11368  MIB.addReg(EAXreg);
11369
11370  // insert branch
11371  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11372
11373  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11374  return nextMBB;
11375}
11376
11377// private utility function:  64 bit atomics on 32 bit host.
11378MachineBasicBlock *
11379X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11380                                                       MachineBasicBlock *MBB,
11381                                                       unsigned regOpcL,
11382                                                       unsigned regOpcH,
11383                                                       unsigned immOpcL,
11384                                                       unsigned immOpcH,
11385                                                       bool invSrc) const {
11386  // For the atomic bitwise operator, we generate
11387  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11388  //     ld t1,t2 = [bitinstr.addr]
11389  //   newMBB:
11390  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11391  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11392  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11393  //     mov ECX, EBX <- t5, t6
11394  //     mov EAX, EDX <- t1, t2
11395  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11396  //     mov t3, t4 <- EAX, EDX
11397  //     bz  newMBB
11398  //     result in out1, out2
11399  //     fallthrough -->nextMBB
11400
11401  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11402  const unsigned LoadOpc = X86::MOV32rm;
11403  const unsigned NotOpc = X86::NOT32r;
11404  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11405  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11406  MachineFunction::iterator MBBIter = MBB;
11407  ++MBBIter;
11408
11409  /// First build the CFG
11410  MachineFunction *F = MBB->getParent();
11411  MachineBasicBlock *thisMBB = MBB;
11412  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11413  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11414  F->insert(MBBIter, newMBB);
11415  F->insert(MBBIter, nextMBB);
11416
11417  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11418  nextMBB->splice(nextMBB->begin(), thisMBB,
11419                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11420                  thisMBB->end());
11421  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11422
11423  // Update thisMBB to fall through to newMBB
11424  thisMBB->addSuccessor(newMBB);
11425
11426  // newMBB jumps to itself and fall through to nextMBB
11427  newMBB->addSuccessor(nextMBB);
11428  newMBB->addSuccessor(newMBB);
11429
11430  DebugLoc dl = bInstr->getDebugLoc();
11431  // Insert instructions into newMBB based on incoming instruction
11432  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11433  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11434         "unexpected number of operands");
11435  MachineOperand& dest1Oper = bInstr->getOperand(0);
11436  MachineOperand& dest2Oper = bInstr->getOperand(1);
11437  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11438  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11439    argOpers[i] = &bInstr->getOperand(i+2);
11440
11441    // We use some of the operands multiple times, so conservatively just
11442    // clear any kill flags that might be present.
11443    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11444      argOpers[i]->setIsKill(false);
11445  }
11446
11447  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11448  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11449
11450  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11451  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11452  for (int i=0; i <= lastAddrIndx; ++i)
11453    (*MIB).addOperand(*argOpers[i]);
11454  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11455  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11456  // add 4 to displacement.
11457  for (int i=0; i <= lastAddrIndx-2; ++i)
11458    (*MIB).addOperand(*argOpers[i]);
11459  MachineOperand newOp3 = *(argOpers[3]);
11460  if (newOp3.isImm())
11461    newOp3.setImm(newOp3.getImm()+4);
11462  else
11463    newOp3.setOffset(newOp3.getOffset()+4);
11464  (*MIB).addOperand(newOp3);
11465  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11466
11467  // t3/4 are defined later, at the bottom of the loop
11468  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11469  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11470  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11471    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11472  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11473    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11474
11475  // The subsequent operations should be using the destination registers of
11476  //the PHI instructions.
11477  if (invSrc) {
11478    t1 = F->getRegInfo().createVirtualRegister(RC);
11479    t2 = F->getRegInfo().createVirtualRegister(RC);
11480    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11481    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11482  } else {
11483    t1 = dest1Oper.getReg();
11484    t2 = dest2Oper.getReg();
11485  }
11486
11487  int valArgIndx = lastAddrIndx + 1;
11488  assert((argOpers[valArgIndx]->isReg() ||
11489          argOpers[valArgIndx]->isImm()) &&
11490         "invalid operand");
11491  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11492  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11493  if (argOpers[valArgIndx]->isReg())
11494    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11495  else
11496    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11497  if (regOpcL != X86::MOV32rr)
11498    MIB.addReg(t1);
11499  (*MIB).addOperand(*argOpers[valArgIndx]);
11500  assert(argOpers[valArgIndx + 1]->isReg() ==
11501         argOpers[valArgIndx]->isReg());
11502  assert(argOpers[valArgIndx + 1]->isImm() ==
11503         argOpers[valArgIndx]->isImm());
11504  if (argOpers[valArgIndx + 1]->isReg())
11505    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11506  else
11507    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11508  if (regOpcH != X86::MOV32rr)
11509    MIB.addReg(t2);
11510  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11511
11512  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11513  MIB.addReg(t1);
11514  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11515  MIB.addReg(t2);
11516
11517  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11518  MIB.addReg(t5);
11519  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11520  MIB.addReg(t6);
11521
11522  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11523  for (int i=0; i <= lastAddrIndx; ++i)
11524    (*MIB).addOperand(*argOpers[i]);
11525
11526  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11527  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11528                    bInstr->memoperands_end());
11529
11530  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11531  MIB.addReg(X86::EAX);
11532  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11533  MIB.addReg(X86::EDX);
11534
11535  // insert branch
11536  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11537
11538  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11539  return nextMBB;
11540}
11541
11542// private utility function
11543MachineBasicBlock *
11544X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11545                                                      MachineBasicBlock *MBB,
11546                                                      unsigned cmovOpc) const {
11547  // For the atomic min/max operator, we generate
11548  //   thisMBB:
11549  //   newMBB:
11550  //     ld t1 = [min/max.addr]
11551  //     mov t2 = [min/max.val]
11552  //     cmp  t1, t2
11553  //     cmov[cond] t2 = t1
11554  //     mov EAX = t1
11555  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11556  //     bz   newMBB
11557  //     fallthrough -->nextMBB
11558  //
11559  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11560  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11561  MachineFunction::iterator MBBIter = MBB;
11562  ++MBBIter;
11563
11564  /// First build the CFG
11565  MachineFunction *F = MBB->getParent();
11566  MachineBasicBlock *thisMBB = MBB;
11567  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11568  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11569  F->insert(MBBIter, newMBB);
11570  F->insert(MBBIter, nextMBB);
11571
11572  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11573  nextMBB->splice(nextMBB->begin(), thisMBB,
11574                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11575                  thisMBB->end());
11576  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11577
11578  // Update thisMBB to fall through to newMBB
11579  thisMBB->addSuccessor(newMBB);
11580
11581  // newMBB jumps to newMBB and fall through to nextMBB
11582  newMBB->addSuccessor(nextMBB);
11583  newMBB->addSuccessor(newMBB);
11584
11585  DebugLoc dl = mInstr->getDebugLoc();
11586  // Insert instructions into newMBB based on incoming instruction
11587  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11588         "unexpected number of operands");
11589  MachineOperand& destOper = mInstr->getOperand(0);
11590  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11591  int numArgs = mInstr->getNumOperands() - 1;
11592  for (int i=0; i < numArgs; ++i)
11593    argOpers[i] = &mInstr->getOperand(i+1);
11594
11595  // x86 address has 4 operands: base, index, scale, and displacement
11596  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11597  int valArgIndx = lastAddrIndx + 1;
11598
11599  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11600  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11601  for (int i=0; i <= lastAddrIndx; ++i)
11602    (*MIB).addOperand(*argOpers[i]);
11603
11604  // We only support register and immediate values
11605  assert((argOpers[valArgIndx]->isReg() ||
11606          argOpers[valArgIndx]->isImm()) &&
11607         "invalid operand");
11608
11609  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11610  if (argOpers[valArgIndx]->isReg())
11611    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11612  else
11613    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11614  (*MIB).addOperand(*argOpers[valArgIndx]);
11615
11616  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11617  MIB.addReg(t1);
11618
11619  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11620  MIB.addReg(t1);
11621  MIB.addReg(t2);
11622
11623  // Generate movc
11624  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11625  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11626  MIB.addReg(t2);
11627  MIB.addReg(t1);
11628
11629  // Cmp and exchange if none has modified the memory location
11630  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11631  for (int i=0; i <= lastAddrIndx; ++i)
11632    (*MIB).addOperand(*argOpers[i]);
11633  MIB.addReg(t3);
11634  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11635  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11636                    mInstr->memoperands_end());
11637
11638  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11639  MIB.addReg(X86::EAX);
11640
11641  // insert branch
11642  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11643
11644  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11645  return nextMBB;
11646}
11647
11648// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11649// or XMM0_V32I8 in AVX all of this code can be replaced with that
11650// in the .td file.
11651MachineBasicBlock *
11652X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11653                            unsigned numArgs, bool memArg) const {
11654  assert(Subtarget->hasSSE42() &&
11655         "Target must have SSE4.2 or AVX features enabled");
11656
11657  DebugLoc dl = MI->getDebugLoc();
11658  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11659  unsigned Opc;
11660  if (!Subtarget->hasAVX()) {
11661    if (memArg)
11662      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11663    else
11664      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11665  } else {
11666    if (memArg)
11667      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11668    else
11669      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11670  }
11671
11672  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11673  for (unsigned i = 0; i < numArgs; ++i) {
11674    MachineOperand &Op = MI->getOperand(i+1);
11675    if (!(Op.isReg() && Op.isImplicit()))
11676      MIB.addOperand(Op);
11677  }
11678  BuildMI(*BB, MI, dl,
11679    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11680             MI->getOperand(0).getReg())
11681    .addReg(X86::XMM0);
11682
11683  MI->eraseFromParent();
11684  return BB;
11685}
11686
11687MachineBasicBlock *
11688X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11689  DebugLoc dl = MI->getDebugLoc();
11690  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11691
11692  // Address into RAX/EAX, other two args into ECX, EDX.
11693  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11694  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11695  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11696  for (int i = 0; i < X86::AddrNumOperands; ++i)
11697    MIB.addOperand(MI->getOperand(i));
11698
11699  unsigned ValOps = X86::AddrNumOperands;
11700  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11701    .addReg(MI->getOperand(ValOps).getReg());
11702  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11703    .addReg(MI->getOperand(ValOps+1).getReg());
11704
11705  // The instruction doesn't actually take any operands though.
11706  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11707
11708  MI->eraseFromParent(); // The pseudo is gone now.
11709  return BB;
11710}
11711
11712MachineBasicBlock *
11713X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11714  DebugLoc dl = MI->getDebugLoc();
11715  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11716
11717  // First arg in ECX, the second in EAX.
11718  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11719    .addReg(MI->getOperand(0).getReg());
11720  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11721    .addReg(MI->getOperand(1).getReg());
11722
11723  // The instruction doesn't actually take any operands though.
11724  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11725
11726  MI->eraseFromParent(); // The pseudo is gone now.
11727  return BB;
11728}
11729
11730MachineBasicBlock *
11731X86TargetLowering::EmitVAARG64WithCustomInserter(
11732                   MachineInstr *MI,
11733                   MachineBasicBlock *MBB) const {
11734  // Emit va_arg instruction on X86-64.
11735
11736  // Operands to this pseudo-instruction:
11737  // 0  ) Output        : destination address (reg)
11738  // 1-5) Input         : va_list address (addr, i64mem)
11739  // 6  ) ArgSize       : Size (in bytes) of vararg type
11740  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11741  // 8  ) Align         : Alignment of type
11742  // 9  ) EFLAGS (implicit-def)
11743
11744  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11745  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11746
11747  unsigned DestReg = MI->getOperand(0).getReg();
11748  MachineOperand &Base = MI->getOperand(1);
11749  MachineOperand &Scale = MI->getOperand(2);
11750  MachineOperand &Index = MI->getOperand(3);
11751  MachineOperand &Disp = MI->getOperand(4);
11752  MachineOperand &Segment = MI->getOperand(5);
11753  unsigned ArgSize = MI->getOperand(6).getImm();
11754  unsigned ArgMode = MI->getOperand(7).getImm();
11755  unsigned Align = MI->getOperand(8).getImm();
11756
11757  // Memory Reference
11758  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11759  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11760  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11761
11762  // Machine Information
11763  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11764  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11765  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11766  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11767  DebugLoc DL = MI->getDebugLoc();
11768
11769  // struct va_list {
11770  //   i32   gp_offset
11771  //   i32   fp_offset
11772  //   i64   overflow_area (address)
11773  //   i64   reg_save_area (address)
11774  // }
11775  // sizeof(va_list) = 24
11776  // alignment(va_list) = 8
11777
11778  unsigned TotalNumIntRegs = 6;
11779  unsigned TotalNumXMMRegs = 8;
11780  bool UseGPOffset = (ArgMode == 1);
11781  bool UseFPOffset = (ArgMode == 2);
11782  unsigned MaxOffset = TotalNumIntRegs * 8 +
11783                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11784
11785  /* Align ArgSize to a multiple of 8 */
11786  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11787  bool NeedsAlign = (Align > 8);
11788
11789  MachineBasicBlock *thisMBB = MBB;
11790  MachineBasicBlock *overflowMBB;
11791  MachineBasicBlock *offsetMBB;
11792  MachineBasicBlock *endMBB;
11793
11794  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11795  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11796  unsigned OffsetReg = 0;
11797
11798  if (!UseGPOffset && !UseFPOffset) {
11799    // If we only pull from the overflow region, we don't create a branch.
11800    // We don't need to alter control flow.
11801    OffsetDestReg = 0; // unused
11802    OverflowDestReg = DestReg;
11803
11804    offsetMBB = NULL;
11805    overflowMBB = thisMBB;
11806    endMBB = thisMBB;
11807  } else {
11808    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11809    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11810    // If not, pull from overflow_area. (branch to overflowMBB)
11811    //
11812    //       thisMBB
11813    //         |     .
11814    //         |        .
11815    //     offsetMBB   overflowMBB
11816    //         |        .
11817    //         |     .
11818    //        endMBB
11819
11820    // Registers for the PHI in endMBB
11821    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11822    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11823
11824    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11825    MachineFunction *MF = MBB->getParent();
11826    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11827    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11828    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11829
11830    MachineFunction::iterator MBBIter = MBB;
11831    ++MBBIter;
11832
11833    // Insert the new basic blocks
11834    MF->insert(MBBIter, offsetMBB);
11835    MF->insert(MBBIter, overflowMBB);
11836    MF->insert(MBBIter, endMBB);
11837
11838    // Transfer the remainder of MBB and its successor edges to endMBB.
11839    endMBB->splice(endMBB->begin(), thisMBB,
11840                    llvm::next(MachineBasicBlock::iterator(MI)),
11841                    thisMBB->end());
11842    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11843
11844    // Make offsetMBB and overflowMBB successors of thisMBB
11845    thisMBB->addSuccessor(offsetMBB);
11846    thisMBB->addSuccessor(overflowMBB);
11847
11848    // endMBB is a successor of both offsetMBB and overflowMBB
11849    offsetMBB->addSuccessor(endMBB);
11850    overflowMBB->addSuccessor(endMBB);
11851
11852    // Load the offset value into a register
11853    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11854    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11855      .addOperand(Base)
11856      .addOperand(Scale)
11857      .addOperand(Index)
11858      .addDisp(Disp, UseFPOffset ? 4 : 0)
11859      .addOperand(Segment)
11860      .setMemRefs(MMOBegin, MMOEnd);
11861
11862    // Check if there is enough room left to pull this argument.
11863    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11864      .addReg(OffsetReg)
11865      .addImm(MaxOffset + 8 - ArgSizeA8);
11866
11867    // Branch to "overflowMBB" if offset >= max
11868    // Fall through to "offsetMBB" otherwise
11869    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11870      .addMBB(overflowMBB);
11871  }
11872
11873  // In offsetMBB, emit code to use the reg_save_area.
11874  if (offsetMBB) {
11875    assert(OffsetReg != 0);
11876
11877    // Read the reg_save_area address.
11878    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11879    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11880      .addOperand(Base)
11881      .addOperand(Scale)
11882      .addOperand(Index)
11883      .addDisp(Disp, 16)
11884      .addOperand(Segment)
11885      .setMemRefs(MMOBegin, MMOEnd);
11886
11887    // Zero-extend the offset
11888    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11889      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11890        .addImm(0)
11891        .addReg(OffsetReg)
11892        .addImm(X86::sub_32bit);
11893
11894    // Add the offset to the reg_save_area to get the final address.
11895    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11896      .addReg(OffsetReg64)
11897      .addReg(RegSaveReg);
11898
11899    // Compute the offset for the next argument
11900    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11901    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11902      .addReg(OffsetReg)
11903      .addImm(UseFPOffset ? 16 : 8);
11904
11905    // Store it back into the va_list.
11906    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11907      .addOperand(Base)
11908      .addOperand(Scale)
11909      .addOperand(Index)
11910      .addDisp(Disp, UseFPOffset ? 4 : 0)
11911      .addOperand(Segment)
11912      .addReg(NextOffsetReg)
11913      .setMemRefs(MMOBegin, MMOEnd);
11914
11915    // Jump to endMBB
11916    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11917      .addMBB(endMBB);
11918  }
11919
11920  //
11921  // Emit code to use overflow area
11922  //
11923
11924  // Load the overflow_area address into a register.
11925  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11926  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11927    .addOperand(Base)
11928    .addOperand(Scale)
11929    .addOperand(Index)
11930    .addDisp(Disp, 8)
11931    .addOperand(Segment)
11932    .setMemRefs(MMOBegin, MMOEnd);
11933
11934  // If we need to align it, do so. Otherwise, just copy the address
11935  // to OverflowDestReg.
11936  if (NeedsAlign) {
11937    // Align the overflow address
11938    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11939    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11940
11941    // aligned_addr = (addr + (align-1)) & ~(align-1)
11942    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11943      .addReg(OverflowAddrReg)
11944      .addImm(Align-1);
11945
11946    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11947      .addReg(TmpReg)
11948      .addImm(~(uint64_t)(Align-1));
11949  } else {
11950    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11951      .addReg(OverflowAddrReg);
11952  }
11953
11954  // Compute the next overflow address after this argument.
11955  // (the overflow address should be kept 8-byte aligned)
11956  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11957  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11958    .addReg(OverflowDestReg)
11959    .addImm(ArgSizeA8);
11960
11961  // Store the new overflow address.
11962  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11963    .addOperand(Base)
11964    .addOperand(Scale)
11965    .addOperand(Index)
11966    .addDisp(Disp, 8)
11967    .addOperand(Segment)
11968    .addReg(NextAddrReg)
11969    .setMemRefs(MMOBegin, MMOEnd);
11970
11971  // If we branched, emit the PHI to the front of endMBB.
11972  if (offsetMBB) {
11973    BuildMI(*endMBB, endMBB->begin(), DL,
11974            TII->get(X86::PHI), DestReg)
11975      .addReg(OffsetDestReg).addMBB(offsetMBB)
11976      .addReg(OverflowDestReg).addMBB(overflowMBB);
11977  }
11978
11979  // Erase the pseudo instruction
11980  MI->eraseFromParent();
11981
11982  return endMBB;
11983}
11984
11985MachineBasicBlock *
11986X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11987                                                 MachineInstr *MI,
11988                                                 MachineBasicBlock *MBB) const {
11989  // Emit code to save XMM registers to the stack. The ABI says that the
11990  // number of registers to save is given in %al, so it's theoretically
11991  // possible to do an indirect jump trick to avoid saving all of them,
11992  // however this code takes a simpler approach and just executes all
11993  // of the stores if %al is non-zero. It's less code, and it's probably
11994  // easier on the hardware branch predictor, and stores aren't all that
11995  // expensive anyway.
11996
11997  // Create the new basic blocks. One block contains all the XMM stores,
11998  // and one block is the final destination regardless of whether any
11999  // stores were performed.
12000  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12001  MachineFunction *F = MBB->getParent();
12002  MachineFunction::iterator MBBIter = MBB;
12003  ++MBBIter;
12004  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12005  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12006  F->insert(MBBIter, XMMSaveMBB);
12007  F->insert(MBBIter, EndMBB);
12008
12009  // Transfer the remainder of MBB and its successor edges to EndMBB.
12010  EndMBB->splice(EndMBB->begin(), MBB,
12011                 llvm::next(MachineBasicBlock::iterator(MI)),
12012                 MBB->end());
12013  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12014
12015  // The original block will now fall through to the XMM save block.
12016  MBB->addSuccessor(XMMSaveMBB);
12017  // The XMMSaveMBB will fall through to the end block.
12018  XMMSaveMBB->addSuccessor(EndMBB);
12019
12020  // Now add the instructions.
12021  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12022  DebugLoc DL = MI->getDebugLoc();
12023
12024  unsigned CountReg = MI->getOperand(0).getReg();
12025  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12026  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12027
12028  if (!Subtarget->isTargetWin64()) {
12029    // If %al is 0, branch around the XMM save block.
12030    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12031    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12032    MBB->addSuccessor(EndMBB);
12033  }
12034
12035  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12036  // In the XMM save block, save all the XMM argument registers.
12037  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12038    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12039    MachineMemOperand *MMO =
12040      F->getMachineMemOperand(
12041          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12042        MachineMemOperand::MOStore,
12043        /*Size=*/16, /*Align=*/16);
12044    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12045      .addFrameIndex(RegSaveFrameIndex)
12046      .addImm(/*Scale=*/1)
12047      .addReg(/*IndexReg=*/0)
12048      .addImm(/*Disp=*/Offset)
12049      .addReg(/*Segment=*/0)
12050      .addReg(MI->getOperand(i).getReg())
12051      .addMemOperand(MMO);
12052  }
12053
12054  MI->eraseFromParent();   // The pseudo instruction is gone now.
12055
12056  return EndMBB;
12057}
12058
12059// The EFLAGS operand of SelectItr might be missing a kill marker
12060// because there were multiple uses of EFLAGS, and ISel didn't know
12061// which to mark. Figure out whether SelectItr should have had a
12062// kill marker, and set it if it should. Returns the correct kill
12063// marker value.
12064static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12065                                     MachineBasicBlock* BB,
12066                                     const TargetRegisterInfo* TRI) {
12067  // Scan forward through BB for a use/def of EFLAGS.
12068  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12069  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12070    const MachineInstr& mi = *miI;
12071    if (mi.readsRegister(X86::EFLAGS))
12072      return false;
12073    if (mi.definesRegister(X86::EFLAGS))
12074      break; // Should have kill-flag - update below.
12075  }
12076
12077  // If we hit the end of the block, check whether EFLAGS is live into a
12078  // successor.
12079  if (miI == BB->end()) {
12080    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12081                                          sEnd = BB->succ_end();
12082         sItr != sEnd; ++sItr) {
12083      MachineBasicBlock* succ = *sItr;
12084      if (succ->isLiveIn(X86::EFLAGS))
12085        return false;
12086    }
12087  }
12088
12089  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12090  // out. SelectMI should have a kill flag on EFLAGS.
12091  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12092  return true;
12093}
12094
12095MachineBasicBlock *
12096X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12097                                     MachineBasicBlock *BB) const {
12098  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12099  DebugLoc DL = MI->getDebugLoc();
12100
12101  // To "insert" a SELECT_CC instruction, we actually have to insert the
12102  // diamond control-flow pattern.  The incoming instruction knows the
12103  // destination vreg to set, the condition code register to branch on, the
12104  // true/false values to select between, and a branch opcode to use.
12105  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12106  MachineFunction::iterator It = BB;
12107  ++It;
12108
12109  //  thisMBB:
12110  //  ...
12111  //   TrueVal = ...
12112  //   cmpTY ccX, r1, r2
12113  //   bCC copy1MBB
12114  //   fallthrough --> copy0MBB
12115  MachineBasicBlock *thisMBB = BB;
12116  MachineFunction *F = BB->getParent();
12117  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12118  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12119  F->insert(It, copy0MBB);
12120  F->insert(It, sinkMBB);
12121
12122  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12123  // live into the sink and copy blocks.
12124  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12125  if (!MI->killsRegister(X86::EFLAGS) &&
12126      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12127    copy0MBB->addLiveIn(X86::EFLAGS);
12128    sinkMBB->addLiveIn(X86::EFLAGS);
12129  }
12130
12131  // Transfer the remainder of BB and its successor edges to sinkMBB.
12132  sinkMBB->splice(sinkMBB->begin(), BB,
12133                  llvm::next(MachineBasicBlock::iterator(MI)),
12134                  BB->end());
12135  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12136
12137  // Add the true and fallthrough blocks as its successors.
12138  BB->addSuccessor(copy0MBB);
12139  BB->addSuccessor(sinkMBB);
12140
12141  // Create the conditional branch instruction.
12142  unsigned Opc =
12143    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12144  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12145
12146  //  copy0MBB:
12147  //   %FalseValue = ...
12148  //   # fallthrough to sinkMBB
12149  copy0MBB->addSuccessor(sinkMBB);
12150
12151  //  sinkMBB:
12152  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12153  //  ...
12154  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12155          TII->get(X86::PHI), MI->getOperand(0).getReg())
12156    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12157    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12158
12159  MI->eraseFromParent();   // The pseudo instruction is gone now.
12160  return sinkMBB;
12161}
12162
12163MachineBasicBlock *
12164X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12165                                        bool Is64Bit) const {
12166  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12167  DebugLoc DL = MI->getDebugLoc();
12168  MachineFunction *MF = BB->getParent();
12169  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12170
12171  assert(getTargetMachine().Options.EnableSegmentedStacks);
12172
12173  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12174  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12175
12176  // BB:
12177  //  ... [Till the alloca]
12178  // If stacklet is not large enough, jump to mallocMBB
12179  //
12180  // bumpMBB:
12181  //  Allocate by subtracting from RSP
12182  //  Jump to continueMBB
12183  //
12184  // mallocMBB:
12185  //  Allocate by call to runtime
12186  //
12187  // continueMBB:
12188  //  ...
12189  //  [rest of original BB]
12190  //
12191
12192  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12193  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12194  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12195
12196  MachineRegisterInfo &MRI = MF->getRegInfo();
12197  const TargetRegisterClass *AddrRegClass =
12198    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12199
12200  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12201    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12202    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12203    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12204    sizeVReg = MI->getOperand(1).getReg(),
12205    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12206
12207  MachineFunction::iterator MBBIter = BB;
12208  ++MBBIter;
12209
12210  MF->insert(MBBIter, bumpMBB);
12211  MF->insert(MBBIter, mallocMBB);
12212  MF->insert(MBBIter, continueMBB);
12213
12214  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12215                      (MachineBasicBlock::iterator(MI)), BB->end());
12216  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12217
12218  // Add code to the main basic block to check if the stack limit has been hit,
12219  // and if so, jump to mallocMBB otherwise to bumpMBB.
12220  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12221  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12222    .addReg(tmpSPVReg).addReg(sizeVReg);
12223  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12224    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12225    .addReg(SPLimitVReg);
12226  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12227
12228  // bumpMBB simply decreases the stack pointer, since we know the current
12229  // stacklet has enough space.
12230  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12231    .addReg(SPLimitVReg);
12232  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12233    .addReg(SPLimitVReg);
12234  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12235
12236  // Calls into a routine in libgcc to allocate more space from the heap.
12237  const uint32_t *RegMask =
12238    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12239  if (Is64Bit) {
12240    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12241      .addReg(sizeVReg);
12242    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12243      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12244      .addRegMask(RegMask)
12245      .addReg(X86::RAX, RegState::ImplicitDefine);
12246  } else {
12247    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12248      .addImm(12);
12249    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12250    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12251      .addExternalSymbol("__morestack_allocate_stack_space")
12252      .addRegMask(RegMask)
12253      .addReg(X86::EAX, RegState::ImplicitDefine);
12254  }
12255
12256  if (!Is64Bit)
12257    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12258      .addImm(16);
12259
12260  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12261    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12262  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12263
12264  // Set up the CFG correctly.
12265  BB->addSuccessor(bumpMBB);
12266  BB->addSuccessor(mallocMBB);
12267  mallocMBB->addSuccessor(continueMBB);
12268  bumpMBB->addSuccessor(continueMBB);
12269
12270  // Take care of the PHI nodes.
12271  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12272          MI->getOperand(0).getReg())
12273    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12274    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12275
12276  // Delete the original pseudo instruction.
12277  MI->eraseFromParent();
12278
12279  // And we're done.
12280  return continueMBB;
12281}
12282
12283MachineBasicBlock *
12284X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12285                                          MachineBasicBlock *BB) const {
12286  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12287  DebugLoc DL = MI->getDebugLoc();
12288
12289  assert(!Subtarget->isTargetEnvMacho());
12290
12291  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12292  // non-trivial part is impdef of ESP.
12293
12294  if (Subtarget->isTargetWin64()) {
12295    if (Subtarget->isTargetCygMing()) {
12296      // ___chkstk(Mingw64):
12297      // Clobbers R10, R11, RAX and EFLAGS.
12298      // Updates RSP.
12299      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12300        .addExternalSymbol("___chkstk")
12301        .addReg(X86::RAX, RegState::Implicit)
12302        .addReg(X86::RSP, RegState::Implicit)
12303        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12304        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12305        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12306    } else {
12307      // __chkstk(MSVCRT): does not update stack pointer.
12308      // Clobbers R10, R11 and EFLAGS.
12309      // FIXME: RAX(allocated size) might be reused and not killed.
12310      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12311        .addExternalSymbol("__chkstk")
12312        .addReg(X86::RAX, RegState::Implicit)
12313        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12314      // RAX has the offset to subtracted from RSP.
12315      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12316        .addReg(X86::RSP)
12317        .addReg(X86::RAX);
12318    }
12319  } else {
12320    const char *StackProbeSymbol =
12321      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12322
12323    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12324      .addExternalSymbol(StackProbeSymbol)
12325      .addReg(X86::EAX, RegState::Implicit)
12326      .addReg(X86::ESP, RegState::Implicit)
12327      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12328      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12329      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12330  }
12331
12332  MI->eraseFromParent();   // The pseudo instruction is gone now.
12333  return BB;
12334}
12335
12336MachineBasicBlock *
12337X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12338                                      MachineBasicBlock *BB) const {
12339  // This is pretty easy.  We're taking the value that we received from
12340  // our load from the relocation, sticking it in either RDI (x86-64)
12341  // or EAX and doing an indirect call.  The return value will then
12342  // be in the normal return register.
12343  const X86InstrInfo *TII
12344    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12345  DebugLoc DL = MI->getDebugLoc();
12346  MachineFunction *F = BB->getParent();
12347
12348  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12349  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12350
12351  // Get a register mask for the lowered call.
12352  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12353  // proper register mask.
12354  const uint32_t *RegMask =
12355    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12356  if (Subtarget->is64Bit()) {
12357    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12358                                      TII->get(X86::MOV64rm), X86::RDI)
12359    .addReg(X86::RIP)
12360    .addImm(0).addReg(0)
12361    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12362                      MI->getOperand(3).getTargetFlags())
12363    .addReg(0);
12364    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12365    addDirectMem(MIB, X86::RDI);
12366    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12367  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12368    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12369                                      TII->get(X86::MOV32rm), X86::EAX)
12370    .addReg(0)
12371    .addImm(0).addReg(0)
12372    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12373                      MI->getOperand(3).getTargetFlags())
12374    .addReg(0);
12375    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12376    addDirectMem(MIB, X86::EAX);
12377    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12378  } else {
12379    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12380                                      TII->get(X86::MOV32rm), X86::EAX)
12381    .addReg(TII->getGlobalBaseReg(F))
12382    .addImm(0).addReg(0)
12383    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12384                      MI->getOperand(3).getTargetFlags())
12385    .addReg(0);
12386    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12387    addDirectMem(MIB, X86::EAX);
12388    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12389  }
12390
12391  MI->eraseFromParent(); // The pseudo instruction is gone now.
12392  return BB;
12393}
12394
12395MachineBasicBlock *
12396X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12397                                               MachineBasicBlock *BB) const {
12398  switch (MI->getOpcode()) {
12399  default: llvm_unreachable("Unexpected instr type to insert");
12400  case X86::TAILJMPd64:
12401  case X86::TAILJMPr64:
12402  case X86::TAILJMPm64:
12403    llvm_unreachable("TAILJMP64 would not be touched here.");
12404  case X86::TCRETURNdi64:
12405  case X86::TCRETURNri64:
12406  case X86::TCRETURNmi64:
12407    return BB;
12408  case X86::WIN_ALLOCA:
12409    return EmitLoweredWinAlloca(MI, BB);
12410  case X86::SEG_ALLOCA_32:
12411    return EmitLoweredSegAlloca(MI, BB, false);
12412  case X86::SEG_ALLOCA_64:
12413    return EmitLoweredSegAlloca(MI, BB, true);
12414  case X86::TLSCall_32:
12415  case X86::TLSCall_64:
12416    return EmitLoweredTLSCall(MI, BB);
12417  case X86::CMOV_GR8:
12418  case X86::CMOV_FR32:
12419  case X86::CMOV_FR64:
12420  case X86::CMOV_V4F32:
12421  case X86::CMOV_V2F64:
12422  case X86::CMOV_V2I64:
12423  case X86::CMOV_V8F32:
12424  case X86::CMOV_V4F64:
12425  case X86::CMOV_V4I64:
12426  case X86::CMOV_GR16:
12427  case X86::CMOV_GR32:
12428  case X86::CMOV_RFP32:
12429  case X86::CMOV_RFP64:
12430  case X86::CMOV_RFP80:
12431    return EmitLoweredSelect(MI, BB);
12432
12433  case X86::FP32_TO_INT16_IN_MEM:
12434  case X86::FP32_TO_INT32_IN_MEM:
12435  case X86::FP32_TO_INT64_IN_MEM:
12436  case X86::FP64_TO_INT16_IN_MEM:
12437  case X86::FP64_TO_INT32_IN_MEM:
12438  case X86::FP64_TO_INT64_IN_MEM:
12439  case X86::FP80_TO_INT16_IN_MEM:
12440  case X86::FP80_TO_INT32_IN_MEM:
12441  case X86::FP80_TO_INT64_IN_MEM: {
12442    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12443    DebugLoc DL = MI->getDebugLoc();
12444
12445    // Change the floating point control register to use "round towards zero"
12446    // mode when truncating to an integer value.
12447    MachineFunction *F = BB->getParent();
12448    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12449    addFrameReference(BuildMI(*BB, MI, DL,
12450                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12451
12452    // Load the old value of the high byte of the control word...
12453    unsigned OldCW =
12454      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12455    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12456                      CWFrameIdx);
12457
12458    // Set the high part to be round to zero...
12459    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12460      .addImm(0xC7F);
12461
12462    // Reload the modified control word now...
12463    addFrameReference(BuildMI(*BB, MI, DL,
12464                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12465
12466    // Restore the memory image of control word to original value
12467    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12468      .addReg(OldCW);
12469
12470    // Get the X86 opcode to use.
12471    unsigned Opc;
12472    switch (MI->getOpcode()) {
12473    default: llvm_unreachable("illegal opcode!");
12474    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12475    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12476    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12477    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12478    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12479    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12480    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12481    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12482    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12483    }
12484
12485    X86AddressMode AM;
12486    MachineOperand &Op = MI->getOperand(0);
12487    if (Op.isReg()) {
12488      AM.BaseType = X86AddressMode::RegBase;
12489      AM.Base.Reg = Op.getReg();
12490    } else {
12491      AM.BaseType = X86AddressMode::FrameIndexBase;
12492      AM.Base.FrameIndex = Op.getIndex();
12493    }
12494    Op = MI->getOperand(1);
12495    if (Op.isImm())
12496      AM.Scale = Op.getImm();
12497    Op = MI->getOperand(2);
12498    if (Op.isImm())
12499      AM.IndexReg = Op.getImm();
12500    Op = MI->getOperand(3);
12501    if (Op.isGlobal()) {
12502      AM.GV = Op.getGlobal();
12503    } else {
12504      AM.Disp = Op.getImm();
12505    }
12506    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12507                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12508
12509    // Reload the original control word now.
12510    addFrameReference(BuildMI(*BB, MI, DL,
12511                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12512
12513    MI->eraseFromParent();   // The pseudo instruction is gone now.
12514    return BB;
12515  }
12516    // String/text processing lowering.
12517  case X86::PCMPISTRM128REG:
12518  case X86::VPCMPISTRM128REG:
12519    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12520  case X86::PCMPISTRM128MEM:
12521  case X86::VPCMPISTRM128MEM:
12522    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12523  case X86::PCMPESTRM128REG:
12524  case X86::VPCMPESTRM128REG:
12525    return EmitPCMP(MI, BB, 5, false /* in mem */);
12526  case X86::PCMPESTRM128MEM:
12527  case X86::VPCMPESTRM128MEM:
12528    return EmitPCMP(MI, BB, 5, true /* in mem */);
12529
12530    // Thread synchronization.
12531  case X86::MONITOR:
12532    return EmitMonitor(MI, BB);
12533  case X86::MWAIT:
12534    return EmitMwait(MI, BB);
12535
12536    // Atomic Lowering.
12537  case X86::ATOMAND32:
12538    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12539                                               X86::AND32ri, X86::MOV32rm,
12540                                               X86::LCMPXCHG32,
12541                                               X86::NOT32r, X86::EAX,
12542                                               X86::GR32RegisterClass);
12543  case X86::ATOMOR32:
12544    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12545                                               X86::OR32ri, X86::MOV32rm,
12546                                               X86::LCMPXCHG32,
12547                                               X86::NOT32r, X86::EAX,
12548                                               X86::GR32RegisterClass);
12549  case X86::ATOMXOR32:
12550    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12551                                               X86::XOR32ri, X86::MOV32rm,
12552                                               X86::LCMPXCHG32,
12553                                               X86::NOT32r, X86::EAX,
12554                                               X86::GR32RegisterClass);
12555  case X86::ATOMNAND32:
12556    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12557                                               X86::AND32ri, X86::MOV32rm,
12558                                               X86::LCMPXCHG32,
12559                                               X86::NOT32r, X86::EAX,
12560                                               X86::GR32RegisterClass, true);
12561  case X86::ATOMMIN32:
12562    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12563  case X86::ATOMMAX32:
12564    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12565  case X86::ATOMUMIN32:
12566    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12567  case X86::ATOMUMAX32:
12568    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12569
12570  case X86::ATOMAND16:
12571    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12572                                               X86::AND16ri, X86::MOV16rm,
12573                                               X86::LCMPXCHG16,
12574                                               X86::NOT16r, X86::AX,
12575                                               X86::GR16RegisterClass);
12576  case X86::ATOMOR16:
12577    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12578                                               X86::OR16ri, X86::MOV16rm,
12579                                               X86::LCMPXCHG16,
12580                                               X86::NOT16r, X86::AX,
12581                                               X86::GR16RegisterClass);
12582  case X86::ATOMXOR16:
12583    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12584                                               X86::XOR16ri, X86::MOV16rm,
12585                                               X86::LCMPXCHG16,
12586                                               X86::NOT16r, X86::AX,
12587                                               X86::GR16RegisterClass);
12588  case X86::ATOMNAND16:
12589    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12590                                               X86::AND16ri, X86::MOV16rm,
12591                                               X86::LCMPXCHG16,
12592                                               X86::NOT16r, X86::AX,
12593                                               X86::GR16RegisterClass, true);
12594  case X86::ATOMMIN16:
12595    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12596  case X86::ATOMMAX16:
12597    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12598  case X86::ATOMUMIN16:
12599    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12600  case X86::ATOMUMAX16:
12601    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12602
12603  case X86::ATOMAND8:
12604    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12605                                               X86::AND8ri, X86::MOV8rm,
12606                                               X86::LCMPXCHG8,
12607                                               X86::NOT8r, X86::AL,
12608                                               X86::GR8RegisterClass);
12609  case X86::ATOMOR8:
12610    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12611                                               X86::OR8ri, X86::MOV8rm,
12612                                               X86::LCMPXCHG8,
12613                                               X86::NOT8r, X86::AL,
12614                                               X86::GR8RegisterClass);
12615  case X86::ATOMXOR8:
12616    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12617                                               X86::XOR8ri, X86::MOV8rm,
12618                                               X86::LCMPXCHG8,
12619                                               X86::NOT8r, X86::AL,
12620                                               X86::GR8RegisterClass);
12621  case X86::ATOMNAND8:
12622    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12623                                               X86::AND8ri, X86::MOV8rm,
12624                                               X86::LCMPXCHG8,
12625                                               X86::NOT8r, X86::AL,
12626                                               X86::GR8RegisterClass, true);
12627  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12628  // This group is for 64-bit host.
12629  case X86::ATOMAND64:
12630    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12631                                               X86::AND64ri32, X86::MOV64rm,
12632                                               X86::LCMPXCHG64,
12633                                               X86::NOT64r, X86::RAX,
12634                                               X86::GR64RegisterClass);
12635  case X86::ATOMOR64:
12636    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12637                                               X86::OR64ri32, X86::MOV64rm,
12638                                               X86::LCMPXCHG64,
12639                                               X86::NOT64r, X86::RAX,
12640                                               X86::GR64RegisterClass);
12641  case X86::ATOMXOR64:
12642    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12643                                               X86::XOR64ri32, X86::MOV64rm,
12644                                               X86::LCMPXCHG64,
12645                                               X86::NOT64r, X86::RAX,
12646                                               X86::GR64RegisterClass);
12647  case X86::ATOMNAND64:
12648    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12649                                               X86::AND64ri32, X86::MOV64rm,
12650                                               X86::LCMPXCHG64,
12651                                               X86::NOT64r, X86::RAX,
12652                                               X86::GR64RegisterClass, true);
12653  case X86::ATOMMIN64:
12654    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12655  case X86::ATOMMAX64:
12656    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12657  case X86::ATOMUMIN64:
12658    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12659  case X86::ATOMUMAX64:
12660    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12661
12662  // This group does 64-bit operations on a 32-bit host.
12663  case X86::ATOMAND6432:
12664    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12665                                               X86::AND32rr, X86::AND32rr,
12666                                               X86::AND32ri, X86::AND32ri,
12667                                               false);
12668  case X86::ATOMOR6432:
12669    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12670                                               X86::OR32rr, X86::OR32rr,
12671                                               X86::OR32ri, X86::OR32ri,
12672                                               false);
12673  case X86::ATOMXOR6432:
12674    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12675                                               X86::XOR32rr, X86::XOR32rr,
12676                                               X86::XOR32ri, X86::XOR32ri,
12677                                               false);
12678  case X86::ATOMNAND6432:
12679    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12680                                               X86::AND32rr, X86::AND32rr,
12681                                               X86::AND32ri, X86::AND32ri,
12682                                               true);
12683  case X86::ATOMADD6432:
12684    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12685                                               X86::ADD32rr, X86::ADC32rr,
12686                                               X86::ADD32ri, X86::ADC32ri,
12687                                               false);
12688  case X86::ATOMSUB6432:
12689    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12690                                               X86::SUB32rr, X86::SBB32rr,
12691                                               X86::SUB32ri, X86::SBB32ri,
12692                                               false);
12693  case X86::ATOMSWAP6432:
12694    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12695                                               X86::MOV32rr, X86::MOV32rr,
12696                                               X86::MOV32ri, X86::MOV32ri,
12697                                               false);
12698  case X86::VASTART_SAVE_XMM_REGS:
12699    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12700
12701  case X86::VAARG_64:
12702    return EmitVAARG64WithCustomInserter(MI, BB);
12703  }
12704}
12705
12706//===----------------------------------------------------------------------===//
12707//                           X86 Optimization Hooks
12708//===----------------------------------------------------------------------===//
12709
12710void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12711                                                       APInt &KnownZero,
12712                                                       APInt &KnownOne,
12713                                                       const SelectionDAG &DAG,
12714                                                       unsigned Depth) const {
12715  unsigned BitWidth = KnownZero.getBitWidth();
12716  unsigned Opc = Op.getOpcode();
12717  assert((Opc >= ISD::BUILTIN_OP_END ||
12718          Opc == ISD::INTRINSIC_WO_CHAIN ||
12719          Opc == ISD::INTRINSIC_W_CHAIN ||
12720          Opc == ISD::INTRINSIC_VOID) &&
12721         "Should use MaskedValueIsZero if you don't know whether Op"
12722         " is a target node!");
12723
12724  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12725  switch (Opc) {
12726  default: break;
12727  case X86ISD::ADD:
12728  case X86ISD::SUB:
12729  case X86ISD::ADC:
12730  case X86ISD::SBB:
12731  case X86ISD::SMUL:
12732  case X86ISD::UMUL:
12733  case X86ISD::INC:
12734  case X86ISD::DEC:
12735  case X86ISD::OR:
12736  case X86ISD::XOR:
12737  case X86ISD::AND:
12738    // These nodes' second result is a boolean.
12739    if (Op.getResNo() == 0)
12740      break;
12741    // Fallthrough
12742  case X86ISD::SETCC:
12743    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12744    break;
12745  case ISD::INTRINSIC_WO_CHAIN: {
12746    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12747    unsigned NumLoBits = 0;
12748    switch (IntId) {
12749    default: break;
12750    case Intrinsic::x86_sse_movmsk_ps:
12751    case Intrinsic::x86_avx_movmsk_ps_256:
12752    case Intrinsic::x86_sse2_movmsk_pd:
12753    case Intrinsic::x86_avx_movmsk_pd_256:
12754    case Intrinsic::x86_mmx_pmovmskb:
12755    case Intrinsic::x86_sse2_pmovmskb_128:
12756    case Intrinsic::x86_avx2_pmovmskb: {
12757      // High bits of movmskp{s|d}, pmovmskb are known zero.
12758      switch (IntId) {
12759        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12760        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12761        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12762        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12763        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12764        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12765        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12766        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12767      }
12768      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12769      break;
12770    }
12771    }
12772    break;
12773  }
12774  }
12775}
12776
12777unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12778                                                         unsigned Depth) const {
12779  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12780  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12781    return Op.getValueType().getScalarType().getSizeInBits();
12782
12783  // Fallback case.
12784  return 1;
12785}
12786
12787/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12788/// node is a GlobalAddress + offset.
12789bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12790                                       const GlobalValue* &GA,
12791                                       int64_t &Offset) const {
12792  if (N->getOpcode() == X86ISD::Wrapper) {
12793    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12794      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12795      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12796      return true;
12797    }
12798  }
12799  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12800}
12801
12802/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12803/// same as extracting the high 128-bit part of 256-bit vector and then
12804/// inserting the result into the low part of a new 256-bit vector
12805static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12806  EVT VT = SVOp->getValueType(0);
12807  int NumElems = VT.getVectorNumElements();
12808
12809  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12810  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12811    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12812        SVOp->getMaskElt(j) >= 0)
12813      return false;
12814
12815  return true;
12816}
12817
12818/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12819/// same as extracting the low 128-bit part of 256-bit vector and then
12820/// inserting the result into the high part of a new 256-bit vector
12821static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12822  EVT VT = SVOp->getValueType(0);
12823  int NumElems = VT.getVectorNumElements();
12824
12825  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12826  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12827    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12828        SVOp->getMaskElt(j) >= 0)
12829      return false;
12830
12831  return true;
12832}
12833
12834/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12835static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12836                                        TargetLowering::DAGCombinerInfo &DCI,
12837                                        const X86Subtarget* Subtarget) {
12838  DebugLoc dl = N->getDebugLoc();
12839  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12840  SDValue V1 = SVOp->getOperand(0);
12841  SDValue V2 = SVOp->getOperand(1);
12842  EVT VT = SVOp->getValueType(0);
12843  int NumElems = VT.getVectorNumElements();
12844
12845  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12846      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12847    //
12848    //                   0,0,0,...
12849    //                      |
12850    //    V      UNDEF    BUILD_VECTOR    UNDEF
12851    //     \      /           \           /
12852    //  CONCAT_VECTOR         CONCAT_VECTOR
12853    //         \                  /
12854    //          \                /
12855    //          RESULT: V + zero extended
12856    //
12857    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12858        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12859        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12860      return SDValue();
12861
12862    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12863      return SDValue();
12864
12865    // To match the shuffle mask, the first half of the mask should
12866    // be exactly the first vector, and all the rest a splat with the
12867    // first element of the second one.
12868    for (int i = 0; i < NumElems/2; ++i)
12869      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12870          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12871        return SDValue();
12872
12873    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12874    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12875      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12876      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12877      SDValue ResNode =
12878        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12879                                Ld->getMemoryVT(),
12880                                Ld->getPointerInfo(),
12881                                Ld->getAlignment(),
12882                                false/*isVolatile*/, true/*ReadMem*/,
12883                                false/*WriteMem*/);
12884      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12885    }
12886
12887    // Emit a zeroed vector and insert the desired subvector on its
12888    // first half.
12889    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12890    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12891                         DAG.getConstant(0, MVT::i32), DAG, dl);
12892    return DCI.CombineTo(N, InsV);
12893  }
12894
12895  //===--------------------------------------------------------------------===//
12896  // Combine some shuffles into subvector extracts and inserts:
12897  //
12898
12899  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12900  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12901    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12902                                    DAG, dl);
12903    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12904                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12905    return DCI.CombineTo(N, InsV);
12906  }
12907
12908  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12909  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12910    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12911    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12912                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12913    return DCI.CombineTo(N, InsV);
12914  }
12915
12916  return SDValue();
12917}
12918
12919/// PerformShuffleCombine - Performs several different shuffle combines.
12920static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12921                                     TargetLowering::DAGCombinerInfo &DCI,
12922                                     const X86Subtarget *Subtarget) {
12923  DebugLoc dl = N->getDebugLoc();
12924  EVT VT = N->getValueType(0);
12925
12926  // Don't create instructions with illegal types after legalize types has run.
12927  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12928  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12929    return SDValue();
12930
12931  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12932  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12933      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12934    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12935
12936  // Only handle 128 wide vector from here on.
12937  if (VT.getSizeInBits() != 128)
12938    return SDValue();
12939
12940  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12941  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12942  // consecutive, non-overlapping, and in the right order.
12943  SmallVector<SDValue, 16> Elts;
12944  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12945    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12946
12947  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12948}
12949
12950
12951/// PerformTruncateCombine - Converts truncate operation to
12952/// a sequence of vector shuffle operations.
12953/// It is possible when we truncate 256-bit vector to 128-bit vector
12954
12955SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12956                                                  DAGCombinerInfo &DCI) const {
12957  if (!DCI.isBeforeLegalizeOps())
12958    return SDValue();
12959
12960  if (!Subtarget->hasAVX()) return SDValue();
12961
12962  EVT VT = N->getValueType(0);
12963  SDValue Op = N->getOperand(0);
12964  EVT OpVT = Op.getValueType();
12965  DebugLoc dl = N->getDebugLoc();
12966
12967  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12968
12969    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12970                          DAG.getIntPtrConstant(0));
12971
12972    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12973                          DAG.getIntPtrConstant(2));
12974
12975    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12976    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12977
12978    // PSHUFD
12979    int ShufMask1[] = {0, 2, 0, 0};
12980
12981    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12982                                ShufMask1);
12983    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12984                                ShufMask1);
12985
12986    // MOVLHPS
12987    int ShufMask2[] = {0, 1, 4, 5};
12988
12989    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12990  }
12991  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12992
12993    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12994                          DAG.getIntPtrConstant(0));
12995
12996    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12997                          DAG.getIntPtrConstant(4));
12998
12999    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13000    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13001
13002    // PSHUFB
13003    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13004                      -1, -1, -1, -1, -1, -1, -1, -1};
13005
13006    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
13007                                DAG.getUNDEF(MVT::v16i8),
13008                                ShufMask1);
13009    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
13010                                DAG.getUNDEF(MVT::v16i8),
13011                                ShufMask1);
13012
13013    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13014    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13015
13016    // MOVLHPS
13017    int ShufMask2[] = {0, 1, 4, 5};
13018
13019    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13020    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13021  }
13022
13023  return SDValue();
13024}
13025
13026/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13027/// specific shuffle of a load can be folded into a single element load.
13028/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13029/// shuffles have been customed lowered so we need to handle those here.
13030static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13031                                         TargetLowering::DAGCombinerInfo &DCI) {
13032  if (DCI.isBeforeLegalizeOps())
13033    return SDValue();
13034
13035  SDValue InVec = N->getOperand(0);
13036  SDValue EltNo = N->getOperand(1);
13037
13038  if (!isa<ConstantSDNode>(EltNo))
13039    return SDValue();
13040
13041  EVT VT = InVec.getValueType();
13042
13043  bool HasShuffleIntoBitcast = false;
13044  if (InVec.getOpcode() == ISD::BITCAST) {
13045    // Don't duplicate a load with other uses.
13046    if (!InVec.hasOneUse())
13047      return SDValue();
13048    EVT BCVT = InVec.getOperand(0).getValueType();
13049    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13050      return SDValue();
13051    InVec = InVec.getOperand(0);
13052    HasShuffleIntoBitcast = true;
13053  }
13054
13055  if (!isTargetShuffle(InVec.getOpcode()))
13056    return SDValue();
13057
13058  // Don't duplicate a load with other uses.
13059  if (!InVec.hasOneUse())
13060    return SDValue();
13061
13062  SmallVector<int, 16> ShuffleMask;
13063  bool UnaryShuffle;
13064  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
13065    return SDValue();
13066
13067  // Select the input vector, guarding against out of range extract vector.
13068  unsigned NumElems = VT.getVectorNumElements();
13069  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13070  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13071  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13072                                         : InVec.getOperand(1);
13073
13074  // If inputs to shuffle are the same for both ops, then allow 2 uses
13075  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13076
13077  if (LdNode.getOpcode() == ISD::BITCAST) {
13078    // Don't duplicate a load with other uses.
13079    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13080      return SDValue();
13081
13082    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13083    LdNode = LdNode.getOperand(0);
13084  }
13085
13086  if (!ISD::isNormalLoad(LdNode.getNode()))
13087    return SDValue();
13088
13089  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13090
13091  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13092    return SDValue();
13093
13094  if (HasShuffleIntoBitcast) {
13095    // If there's a bitcast before the shuffle, check if the load type and
13096    // alignment is valid.
13097    unsigned Align = LN0->getAlignment();
13098    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13099    unsigned NewAlign = TLI.getTargetData()->
13100      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13101
13102    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13103      return SDValue();
13104  }
13105
13106  // All checks match so transform back to vector_shuffle so that DAG combiner
13107  // can finish the job
13108  DebugLoc dl = N->getDebugLoc();
13109
13110  // Create shuffle node taking into account the case that its a unary shuffle
13111  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13112  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13113                                 InVec.getOperand(0), Shuffle,
13114                                 &ShuffleMask[0]);
13115  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13116  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13117                     EltNo);
13118}
13119
13120/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13121/// generation and convert it from being a bunch of shuffles and extracts
13122/// to a simple store and scalar loads to extract the elements.
13123static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13124                                         TargetLowering::DAGCombinerInfo &DCI) {
13125  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13126  if (NewOp.getNode())
13127    return NewOp;
13128
13129  SDValue InputVector = N->getOperand(0);
13130
13131  // Only operate on vectors of 4 elements, where the alternative shuffling
13132  // gets to be more expensive.
13133  if (InputVector.getValueType() != MVT::v4i32)
13134    return SDValue();
13135
13136  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13137  // single use which is a sign-extend or zero-extend, and all elements are
13138  // used.
13139  SmallVector<SDNode *, 4> Uses;
13140  unsigned ExtractedElements = 0;
13141  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13142       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13143    if (UI.getUse().getResNo() != InputVector.getResNo())
13144      return SDValue();
13145
13146    SDNode *Extract = *UI;
13147    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13148      return SDValue();
13149
13150    if (Extract->getValueType(0) != MVT::i32)
13151      return SDValue();
13152    if (!Extract->hasOneUse())
13153      return SDValue();
13154    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13155        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13156      return SDValue();
13157    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13158      return SDValue();
13159
13160    // Record which element was extracted.
13161    ExtractedElements |=
13162      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13163
13164    Uses.push_back(Extract);
13165  }
13166
13167  // If not all the elements were used, this may not be worthwhile.
13168  if (ExtractedElements != 15)
13169    return SDValue();
13170
13171  // Ok, we've now decided to do the transformation.
13172  DebugLoc dl = InputVector.getDebugLoc();
13173
13174  // Store the value to a temporary stack slot.
13175  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13176  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13177                            MachinePointerInfo(), false, false, 0);
13178
13179  // Replace each use (extract) with a load of the appropriate element.
13180  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13181       UE = Uses.end(); UI != UE; ++UI) {
13182    SDNode *Extract = *UI;
13183
13184    // cOMpute the element's address.
13185    SDValue Idx = Extract->getOperand(1);
13186    unsigned EltSize =
13187        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13188    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13189    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13190    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13191
13192    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13193                                     StackPtr, OffsetVal);
13194
13195    // Load the scalar.
13196    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13197                                     ScalarAddr, MachinePointerInfo(),
13198                                     false, false, false, 0);
13199
13200    // Replace the exact with the load.
13201    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13202  }
13203
13204  // The replacement was made in place; don't return anything.
13205  return SDValue();
13206}
13207
13208/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13209/// nodes.
13210static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13211                                    TargetLowering::DAGCombinerInfo &DCI,
13212                                    const X86Subtarget *Subtarget) {
13213
13214
13215  DebugLoc DL = N->getDebugLoc();
13216  SDValue Cond = N->getOperand(0);
13217  // Get the LHS/RHS of the select.
13218  SDValue LHS = N->getOperand(1);
13219  SDValue RHS = N->getOperand(2);
13220  EVT VT = LHS.getValueType();
13221
13222  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13223  // instructions match the semantics of the common C idiom x<y?x:y but not
13224  // x<=y?x:y, because of how they handle negative zero (which can be
13225  // ignored in unsafe-math mode).
13226  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13227      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13228      (Subtarget->hasSSE2() ||
13229       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13230    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13231
13232    unsigned Opcode = 0;
13233    // Check for x CC y ? x : y.
13234    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13235        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13236      switch (CC) {
13237      default: break;
13238      case ISD::SETULT:
13239        // Converting this to a min would handle NaNs incorrectly, and swapping
13240        // the operands would cause it to handle comparisons between positive
13241        // and negative zero incorrectly.
13242        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13243          if (!DAG.getTarget().Options.UnsafeFPMath &&
13244              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13245            break;
13246          std::swap(LHS, RHS);
13247        }
13248        Opcode = X86ISD::FMIN;
13249        break;
13250      case ISD::SETOLE:
13251        // Converting this to a min would handle comparisons between positive
13252        // and negative zero incorrectly.
13253        if (!DAG.getTarget().Options.UnsafeFPMath &&
13254            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13255          break;
13256        Opcode = X86ISD::FMIN;
13257        break;
13258      case ISD::SETULE:
13259        // Converting this to a min would handle both negative zeros and NaNs
13260        // incorrectly, but we can swap the operands to fix both.
13261        std::swap(LHS, RHS);
13262      case ISD::SETOLT:
13263      case ISD::SETLT:
13264      case ISD::SETLE:
13265        Opcode = X86ISD::FMIN;
13266        break;
13267
13268      case ISD::SETOGE:
13269        // Converting this to a max would handle comparisons between positive
13270        // and negative zero incorrectly.
13271        if (!DAG.getTarget().Options.UnsafeFPMath &&
13272            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13273          break;
13274        Opcode = X86ISD::FMAX;
13275        break;
13276      case ISD::SETUGT:
13277        // Converting this to a max would handle NaNs incorrectly, and swapping
13278        // the operands would cause it to handle comparisons between positive
13279        // and negative zero incorrectly.
13280        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13281          if (!DAG.getTarget().Options.UnsafeFPMath &&
13282              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13283            break;
13284          std::swap(LHS, RHS);
13285        }
13286        Opcode = X86ISD::FMAX;
13287        break;
13288      case ISD::SETUGE:
13289        // Converting this to a max would handle both negative zeros and NaNs
13290        // incorrectly, but we can swap the operands to fix both.
13291        std::swap(LHS, RHS);
13292      case ISD::SETOGT:
13293      case ISD::SETGT:
13294      case ISD::SETGE:
13295        Opcode = X86ISD::FMAX;
13296        break;
13297      }
13298    // Check for x CC y ? y : x -- a min/max with reversed arms.
13299    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13300               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13301      switch (CC) {
13302      default: break;
13303      case ISD::SETOGE:
13304        // Converting this to a min would handle comparisons between positive
13305        // and negative zero incorrectly, and swapping the operands would
13306        // cause it to handle NaNs incorrectly.
13307        if (!DAG.getTarget().Options.UnsafeFPMath &&
13308            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13309          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13310            break;
13311          std::swap(LHS, RHS);
13312        }
13313        Opcode = X86ISD::FMIN;
13314        break;
13315      case ISD::SETUGT:
13316        // Converting this to a min would handle NaNs incorrectly.
13317        if (!DAG.getTarget().Options.UnsafeFPMath &&
13318            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13319          break;
13320        Opcode = X86ISD::FMIN;
13321        break;
13322      case ISD::SETUGE:
13323        // Converting this to a min would handle both negative zeros and NaNs
13324        // incorrectly, but we can swap the operands to fix both.
13325        std::swap(LHS, RHS);
13326      case ISD::SETOGT:
13327      case ISD::SETGT:
13328      case ISD::SETGE:
13329        Opcode = X86ISD::FMIN;
13330        break;
13331
13332      case ISD::SETULT:
13333        // Converting this to a max would handle NaNs incorrectly.
13334        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13335          break;
13336        Opcode = X86ISD::FMAX;
13337        break;
13338      case ISD::SETOLE:
13339        // Converting this to a max would handle comparisons between positive
13340        // and negative zero incorrectly, and swapping the operands would
13341        // cause it to handle NaNs incorrectly.
13342        if (!DAG.getTarget().Options.UnsafeFPMath &&
13343            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13344          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13345            break;
13346          std::swap(LHS, RHS);
13347        }
13348        Opcode = X86ISD::FMAX;
13349        break;
13350      case ISD::SETULE:
13351        // Converting this to a max would handle both negative zeros and NaNs
13352        // incorrectly, but we can swap the operands to fix both.
13353        std::swap(LHS, RHS);
13354      case ISD::SETOLT:
13355      case ISD::SETLT:
13356      case ISD::SETLE:
13357        Opcode = X86ISD::FMAX;
13358        break;
13359      }
13360    }
13361
13362    if (Opcode)
13363      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13364  }
13365
13366  // If this is a select between two integer constants, try to do some
13367  // optimizations.
13368  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13369    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13370      // Don't do this for crazy integer types.
13371      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13372        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13373        // so that TrueC (the true value) is larger than FalseC.
13374        bool NeedsCondInvert = false;
13375
13376        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13377            // Efficiently invertible.
13378            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13379             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13380              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13381          NeedsCondInvert = true;
13382          std::swap(TrueC, FalseC);
13383        }
13384
13385        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13386        if (FalseC->getAPIntValue() == 0 &&
13387            TrueC->getAPIntValue().isPowerOf2()) {
13388          if (NeedsCondInvert) // Invert the condition if needed.
13389            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13390                               DAG.getConstant(1, Cond.getValueType()));
13391
13392          // Zero extend the condition if needed.
13393          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13394
13395          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13396          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13397                             DAG.getConstant(ShAmt, MVT::i8));
13398        }
13399
13400        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13401        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13402          if (NeedsCondInvert) // Invert the condition if needed.
13403            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13404                               DAG.getConstant(1, Cond.getValueType()));
13405
13406          // Zero extend the condition if needed.
13407          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13408                             FalseC->getValueType(0), Cond);
13409          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13410                             SDValue(FalseC, 0));
13411        }
13412
13413        // Optimize cases that will turn into an LEA instruction.  This requires
13414        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13415        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13416          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13417          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13418
13419          bool isFastMultiplier = false;
13420          if (Diff < 10) {
13421            switch ((unsigned char)Diff) {
13422              default: break;
13423              case 1:  // result = add base, cond
13424              case 2:  // result = lea base(    , cond*2)
13425              case 3:  // result = lea base(cond, cond*2)
13426              case 4:  // result = lea base(    , cond*4)
13427              case 5:  // result = lea base(cond, cond*4)
13428              case 8:  // result = lea base(    , cond*8)
13429              case 9:  // result = lea base(cond, cond*8)
13430                isFastMultiplier = true;
13431                break;
13432            }
13433          }
13434
13435          if (isFastMultiplier) {
13436            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13437            if (NeedsCondInvert) // Invert the condition if needed.
13438              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13439                                 DAG.getConstant(1, Cond.getValueType()));
13440
13441            // Zero extend the condition if needed.
13442            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13443                               Cond);
13444            // Scale the condition by the difference.
13445            if (Diff != 1)
13446              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13447                                 DAG.getConstant(Diff, Cond.getValueType()));
13448
13449            // Add the base if non-zero.
13450            if (FalseC->getAPIntValue() != 0)
13451              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13452                                 SDValue(FalseC, 0));
13453            return Cond;
13454          }
13455        }
13456      }
13457  }
13458
13459  // Canonicalize max and min:
13460  // (x > y) ? x : y -> (x >= y) ? x : y
13461  // (x < y) ? x : y -> (x <= y) ? x : y
13462  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13463  // the need for an extra compare
13464  // against zero. e.g.
13465  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13466  // subl   %esi, %edi
13467  // testl  %edi, %edi
13468  // movl   $0, %eax
13469  // cmovgl %edi, %eax
13470  // =>
13471  // xorl   %eax, %eax
13472  // subl   %esi, $edi
13473  // cmovsl %eax, %edi
13474  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13475      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13476      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13477    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13478    switch (CC) {
13479    default: break;
13480    case ISD::SETLT:
13481    case ISD::SETGT: {
13482      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13483      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13484                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13485      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13486    }
13487    }
13488  }
13489
13490  // If we know that this node is legal then we know that it is going to be
13491  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13492  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13493  // to simplify previous instructions.
13494  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13495  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13496      !DCI.isBeforeLegalize() &&
13497      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13498    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13499    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13500    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13501
13502    APInt KnownZero, KnownOne;
13503    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13504                                          DCI.isBeforeLegalizeOps());
13505    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13506        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13507      DCI.CommitTargetLoweringOpt(TLO);
13508  }
13509
13510  return SDValue();
13511}
13512
13513/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13514static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13515                                  TargetLowering::DAGCombinerInfo &DCI) {
13516  DebugLoc DL = N->getDebugLoc();
13517
13518  // If the flag operand isn't dead, don't touch this CMOV.
13519  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13520    return SDValue();
13521
13522  SDValue FalseOp = N->getOperand(0);
13523  SDValue TrueOp = N->getOperand(1);
13524  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13525  SDValue Cond = N->getOperand(3);
13526  if (CC == X86::COND_E || CC == X86::COND_NE) {
13527    switch (Cond.getOpcode()) {
13528    default: break;
13529    case X86ISD::BSR:
13530    case X86ISD::BSF:
13531      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13532      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13533        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13534    }
13535  }
13536
13537  // If this is a select between two integer constants, try to do some
13538  // optimizations.  Note that the operands are ordered the opposite of SELECT
13539  // operands.
13540  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13541    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13542      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13543      // larger than FalseC (the false value).
13544      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13545        CC = X86::GetOppositeBranchCondition(CC);
13546        std::swap(TrueC, FalseC);
13547      }
13548
13549      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13550      // This is efficient for any integer data type (including i8/i16) and
13551      // shift amount.
13552      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13553        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13554                           DAG.getConstant(CC, MVT::i8), Cond);
13555
13556        // Zero extend the condition if needed.
13557        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13558
13559        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13560        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13561                           DAG.getConstant(ShAmt, MVT::i8));
13562        if (N->getNumValues() == 2)  // Dead flag value?
13563          return DCI.CombineTo(N, Cond, SDValue());
13564        return Cond;
13565      }
13566
13567      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13568      // for any integer data type, including i8/i16.
13569      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13570        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13571                           DAG.getConstant(CC, MVT::i8), Cond);
13572
13573        // Zero extend the condition if needed.
13574        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13575                           FalseC->getValueType(0), Cond);
13576        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13577                           SDValue(FalseC, 0));
13578
13579        if (N->getNumValues() == 2)  // Dead flag value?
13580          return DCI.CombineTo(N, Cond, SDValue());
13581        return Cond;
13582      }
13583
13584      // Optimize cases that will turn into an LEA instruction.  This requires
13585      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13586      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13587        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13588        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13589
13590        bool isFastMultiplier = false;
13591        if (Diff < 10) {
13592          switch ((unsigned char)Diff) {
13593          default: break;
13594          case 1:  // result = add base, cond
13595          case 2:  // result = lea base(    , cond*2)
13596          case 3:  // result = lea base(cond, cond*2)
13597          case 4:  // result = lea base(    , cond*4)
13598          case 5:  // result = lea base(cond, cond*4)
13599          case 8:  // result = lea base(    , cond*8)
13600          case 9:  // result = lea base(cond, cond*8)
13601            isFastMultiplier = true;
13602            break;
13603          }
13604        }
13605
13606        if (isFastMultiplier) {
13607          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13608          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13609                             DAG.getConstant(CC, MVT::i8), Cond);
13610          // Zero extend the condition if needed.
13611          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13612                             Cond);
13613          // Scale the condition by the difference.
13614          if (Diff != 1)
13615            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13616                               DAG.getConstant(Diff, Cond.getValueType()));
13617
13618          // Add the base if non-zero.
13619          if (FalseC->getAPIntValue() != 0)
13620            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13621                               SDValue(FalseC, 0));
13622          if (N->getNumValues() == 2)  // Dead flag value?
13623            return DCI.CombineTo(N, Cond, SDValue());
13624          return Cond;
13625        }
13626      }
13627    }
13628  }
13629  return SDValue();
13630}
13631
13632
13633/// PerformMulCombine - Optimize a single multiply with constant into two
13634/// in order to implement it with two cheaper instructions, e.g.
13635/// LEA + SHL, LEA + LEA.
13636static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13637                                 TargetLowering::DAGCombinerInfo &DCI) {
13638  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13639    return SDValue();
13640
13641  EVT VT = N->getValueType(0);
13642  if (VT != MVT::i64)
13643    return SDValue();
13644
13645  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13646  if (!C)
13647    return SDValue();
13648  uint64_t MulAmt = C->getZExtValue();
13649  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13650    return SDValue();
13651
13652  uint64_t MulAmt1 = 0;
13653  uint64_t MulAmt2 = 0;
13654  if ((MulAmt % 9) == 0) {
13655    MulAmt1 = 9;
13656    MulAmt2 = MulAmt / 9;
13657  } else if ((MulAmt % 5) == 0) {
13658    MulAmt1 = 5;
13659    MulAmt2 = MulAmt / 5;
13660  } else if ((MulAmt % 3) == 0) {
13661    MulAmt1 = 3;
13662    MulAmt2 = MulAmt / 3;
13663  }
13664  if (MulAmt2 &&
13665      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13666    DebugLoc DL = N->getDebugLoc();
13667
13668    if (isPowerOf2_64(MulAmt2) &&
13669        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13670      // If second multiplifer is pow2, issue it first. We want the multiply by
13671      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13672      // is an add.
13673      std::swap(MulAmt1, MulAmt2);
13674
13675    SDValue NewMul;
13676    if (isPowerOf2_64(MulAmt1))
13677      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13678                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13679    else
13680      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13681                           DAG.getConstant(MulAmt1, VT));
13682
13683    if (isPowerOf2_64(MulAmt2))
13684      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13685                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13686    else
13687      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13688                           DAG.getConstant(MulAmt2, VT));
13689
13690    // Do not add new nodes to DAG combiner worklist.
13691    DCI.CombineTo(N, NewMul, false);
13692  }
13693  return SDValue();
13694}
13695
13696static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13697  SDValue N0 = N->getOperand(0);
13698  SDValue N1 = N->getOperand(1);
13699  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13700  EVT VT = N0.getValueType();
13701
13702  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13703  // since the result of setcc_c is all zero's or all ones.
13704  if (VT.isInteger() && !VT.isVector() &&
13705      N1C && N0.getOpcode() == ISD::AND &&
13706      N0.getOperand(1).getOpcode() == ISD::Constant) {
13707    SDValue N00 = N0.getOperand(0);
13708    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13709        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13710          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13711         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13712      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13713      APInt ShAmt = N1C->getAPIntValue();
13714      Mask = Mask.shl(ShAmt);
13715      if (Mask != 0)
13716        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13717                           N00, DAG.getConstant(Mask, VT));
13718    }
13719  }
13720
13721
13722  // Hardware support for vector shifts is sparse which makes us scalarize the
13723  // vector operations in many cases. Also, on sandybridge ADD is faster than
13724  // shl.
13725  // (shl V, 1) -> add V,V
13726  if (isSplatVector(N1.getNode())) {
13727    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13728    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13729    // We shift all of the values by one. In many cases we do not have
13730    // hardware support for this operation. This is better expressed as an ADD
13731    // of two values.
13732    if (N1C && (1 == N1C->getZExtValue())) {
13733      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13734    }
13735  }
13736
13737  return SDValue();
13738}
13739
13740/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13741///                       when possible.
13742static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13743                                   TargetLowering::DAGCombinerInfo &DCI,
13744                                   const X86Subtarget *Subtarget) {
13745  EVT VT = N->getValueType(0);
13746  if (N->getOpcode() == ISD::SHL) {
13747    SDValue V = PerformSHLCombine(N, DAG);
13748    if (V.getNode()) return V;
13749  }
13750
13751  // On X86 with SSE2 support, we can transform this to a vector shift if
13752  // all elements are shifted by the same amount.  We can't do this in legalize
13753  // because the a constant vector is typically transformed to a constant pool
13754  // so we have no knowledge of the shift amount.
13755  if (!Subtarget->hasSSE2())
13756    return SDValue();
13757
13758  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13759      (!Subtarget->hasAVX2() ||
13760       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13761    return SDValue();
13762
13763  SDValue ShAmtOp = N->getOperand(1);
13764  EVT EltVT = VT.getVectorElementType();
13765  DebugLoc DL = N->getDebugLoc();
13766  SDValue BaseShAmt = SDValue();
13767  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13768    unsigned NumElts = VT.getVectorNumElements();
13769    unsigned i = 0;
13770    for (; i != NumElts; ++i) {
13771      SDValue Arg = ShAmtOp.getOperand(i);
13772      if (Arg.getOpcode() == ISD::UNDEF) continue;
13773      BaseShAmt = Arg;
13774      break;
13775    }
13776    // Handle the case where the build_vector is all undef
13777    // FIXME: Should DAG allow this?
13778    if (i == NumElts)
13779      return SDValue();
13780
13781    for (; i != NumElts; ++i) {
13782      SDValue Arg = ShAmtOp.getOperand(i);
13783      if (Arg.getOpcode() == ISD::UNDEF) continue;
13784      if (Arg != BaseShAmt) {
13785        return SDValue();
13786      }
13787    }
13788  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13789             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13790    SDValue InVec = ShAmtOp.getOperand(0);
13791    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13792      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13793      unsigned i = 0;
13794      for (; i != NumElts; ++i) {
13795        SDValue Arg = InVec.getOperand(i);
13796        if (Arg.getOpcode() == ISD::UNDEF) continue;
13797        BaseShAmt = Arg;
13798        break;
13799      }
13800    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13801       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13802         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13803         if (C->getZExtValue() == SplatIdx)
13804           BaseShAmt = InVec.getOperand(1);
13805       }
13806    }
13807    if (BaseShAmt.getNode() == 0) {
13808      // Don't create instructions with illegal types after legalize
13809      // types has run.
13810      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13811          !DCI.isBeforeLegalize())
13812        return SDValue();
13813
13814      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13815                              DAG.getIntPtrConstant(0));
13816    }
13817  } else
13818    return SDValue();
13819
13820  // The shift amount is an i32.
13821  if (EltVT.bitsGT(MVT::i32))
13822    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13823  else if (EltVT.bitsLT(MVT::i32))
13824    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13825
13826  // The shift amount is identical so we can do a vector shift.
13827  SDValue  ValOp = N->getOperand(0);
13828  switch (N->getOpcode()) {
13829  default:
13830    llvm_unreachable("Unknown shift opcode!");
13831  case ISD::SHL:
13832    switch (VT.getSimpleVT().SimpleTy) {
13833    default: return SDValue();
13834    case MVT::v2i64:
13835    case MVT::v4i32:
13836    case MVT::v8i16:
13837    case MVT::v4i64:
13838    case MVT::v8i32:
13839    case MVT::v16i16:
13840      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13841    }
13842  case ISD::SRA:
13843    switch (VT.getSimpleVT().SimpleTy) {
13844    default: return SDValue();
13845    case MVT::v4i32:
13846    case MVT::v8i16:
13847    case MVT::v8i32:
13848    case MVT::v16i16:
13849      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13850    }
13851  case ISD::SRL:
13852    switch (VT.getSimpleVT().SimpleTy) {
13853    default: return SDValue();
13854    case MVT::v2i64:
13855    case MVT::v4i32:
13856    case MVT::v8i16:
13857    case MVT::v4i64:
13858    case MVT::v8i32:
13859    case MVT::v16i16:
13860      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13861    }
13862  }
13863}
13864
13865
13866// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13867// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13868// and friends.  Likewise for OR -> CMPNEQSS.
13869static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13870                            TargetLowering::DAGCombinerInfo &DCI,
13871                            const X86Subtarget *Subtarget) {
13872  unsigned opcode;
13873
13874  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13875  // we're requiring SSE2 for both.
13876  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13877    SDValue N0 = N->getOperand(0);
13878    SDValue N1 = N->getOperand(1);
13879    SDValue CMP0 = N0->getOperand(1);
13880    SDValue CMP1 = N1->getOperand(1);
13881    DebugLoc DL = N->getDebugLoc();
13882
13883    // The SETCCs should both refer to the same CMP.
13884    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13885      return SDValue();
13886
13887    SDValue CMP00 = CMP0->getOperand(0);
13888    SDValue CMP01 = CMP0->getOperand(1);
13889    EVT     VT    = CMP00.getValueType();
13890
13891    if (VT == MVT::f32 || VT == MVT::f64) {
13892      bool ExpectingFlags = false;
13893      // Check for any users that want flags:
13894      for (SDNode::use_iterator UI = N->use_begin(),
13895             UE = N->use_end();
13896           !ExpectingFlags && UI != UE; ++UI)
13897        switch (UI->getOpcode()) {
13898        default:
13899        case ISD::BR_CC:
13900        case ISD::BRCOND:
13901        case ISD::SELECT:
13902          ExpectingFlags = true;
13903          break;
13904        case ISD::CopyToReg:
13905        case ISD::SIGN_EXTEND:
13906        case ISD::ZERO_EXTEND:
13907        case ISD::ANY_EXTEND:
13908          break;
13909        }
13910
13911      if (!ExpectingFlags) {
13912        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13913        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13914
13915        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13916          X86::CondCode tmp = cc0;
13917          cc0 = cc1;
13918          cc1 = tmp;
13919        }
13920
13921        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13922            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13923          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13924          X86ISD::NodeType NTOperator = is64BitFP ?
13925            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13926          // FIXME: need symbolic constants for these magic numbers.
13927          // See X86ATTInstPrinter.cpp:printSSECC().
13928          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13929          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13930                                              DAG.getConstant(x86cc, MVT::i8));
13931          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13932                                              OnesOrZeroesF);
13933          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13934                                      DAG.getConstant(1, MVT::i32));
13935          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13936          return OneBitOfTruth;
13937        }
13938      }
13939    }
13940  }
13941  return SDValue();
13942}
13943
13944/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13945/// so it can be folded inside ANDNP.
13946static bool CanFoldXORWithAllOnes(const SDNode *N) {
13947  EVT VT = N->getValueType(0);
13948
13949  // Match direct AllOnes for 128 and 256-bit vectors
13950  if (ISD::isBuildVectorAllOnes(N))
13951    return true;
13952
13953  // Look through a bit convert.
13954  if (N->getOpcode() == ISD::BITCAST)
13955    N = N->getOperand(0).getNode();
13956
13957  // Sometimes the operand may come from a insert_subvector building a 256-bit
13958  // allones vector
13959  if (VT.getSizeInBits() == 256 &&
13960      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13961    SDValue V1 = N->getOperand(0);
13962    SDValue V2 = N->getOperand(1);
13963
13964    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13965        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13966        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13967        ISD::isBuildVectorAllOnes(V2.getNode()))
13968      return true;
13969  }
13970
13971  return false;
13972}
13973
13974static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13975                                 TargetLowering::DAGCombinerInfo &DCI,
13976                                 const X86Subtarget *Subtarget) {
13977  if (DCI.isBeforeLegalizeOps())
13978    return SDValue();
13979
13980  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13981  if (R.getNode())
13982    return R;
13983
13984  EVT VT = N->getValueType(0);
13985
13986  // Create ANDN, BLSI, and BLSR instructions
13987  // BLSI is X & (-X)
13988  // BLSR is X & (X-1)
13989  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13990    SDValue N0 = N->getOperand(0);
13991    SDValue N1 = N->getOperand(1);
13992    DebugLoc DL = N->getDebugLoc();
13993
13994    // Check LHS for not
13995    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13996      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13997    // Check RHS for not
13998    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13999      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14000
14001    // Check LHS for neg
14002    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14003        isZero(N0.getOperand(0)))
14004      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14005
14006    // Check RHS for neg
14007    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14008        isZero(N1.getOperand(0)))
14009      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14010
14011    // Check LHS for X-1
14012    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14013        isAllOnes(N0.getOperand(1)))
14014      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14015
14016    // Check RHS for X-1
14017    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14018        isAllOnes(N1.getOperand(1)))
14019      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14020
14021    return SDValue();
14022  }
14023
14024  // Want to form ANDNP nodes:
14025  // 1) In the hopes of then easily combining them with OR and AND nodes
14026  //    to form PBLEND/PSIGN.
14027  // 2) To match ANDN packed intrinsics
14028  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14029    return SDValue();
14030
14031  SDValue N0 = N->getOperand(0);
14032  SDValue N1 = N->getOperand(1);
14033  DebugLoc DL = N->getDebugLoc();
14034
14035  // Check LHS for vnot
14036  if (N0.getOpcode() == ISD::XOR &&
14037      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14038      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14039    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14040
14041  // Check RHS for vnot
14042  if (N1.getOpcode() == ISD::XOR &&
14043      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14044      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14045    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14046
14047  return SDValue();
14048}
14049
14050static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14051                                TargetLowering::DAGCombinerInfo &DCI,
14052                                const X86Subtarget *Subtarget) {
14053  if (DCI.isBeforeLegalizeOps())
14054    return SDValue();
14055
14056  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14057  if (R.getNode())
14058    return R;
14059
14060  EVT VT = N->getValueType(0);
14061
14062  SDValue N0 = N->getOperand(0);
14063  SDValue N1 = N->getOperand(1);
14064
14065  // look for psign/blend
14066  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14067    if (!Subtarget->hasSSSE3() ||
14068        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14069      return SDValue();
14070
14071    // Canonicalize pandn to RHS
14072    if (N0.getOpcode() == X86ISD::ANDNP)
14073      std::swap(N0, N1);
14074    // or (and (m, y), (pandn m, x))
14075    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14076      SDValue Mask = N1.getOperand(0);
14077      SDValue X    = N1.getOperand(1);
14078      SDValue Y;
14079      if (N0.getOperand(0) == Mask)
14080        Y = N0.getOperand(1);
14081      if (N0.getOperand(1) == Mask)
14082        Y = N0.getOperand(0);
14083
14084      // Check to see if the mask appeared in both the AND and ANDNP and
14085      if (!Y.getNode())
14086        return SDValue();
14087
14088      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14089      // Look through mask bitcast.
14090      if (Mask.getOpcode() == ISD::BITCAST)
14091        Mask = Mask.getOperand(0);
14092      if (X.getOpcode() == ISD::BITCAST)
14093        X = X.getOperand(0);
14094      if (Y.getOpcode() == ISD::BITCAST)
14095        Y = Y.getOperand(0);
14096
14097      EVT MaskVT = Mask.getValueType();
14098
14099      // Validate that the Mask operand is a vector sra node.
14100      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14101      // there is no psrai.b
14102      if (Mask.getOpcode() != X86ISD::VSRAI)
14103        return SDValue();
14104
14105      // Check that the SRA is all signbits.
14106      SDValue SraC = Mask.getOperand(1);
14107      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14108      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14109      if ((SraAmt + 1) != EltBits)
14110        return SDValue();
14111
14112      DebugLoc DL = N->getDebugLoc();
14113
14114      // Now we know we at least have a plendvb with the mask val.  See if
14115      // we can form a psignb/w/d.
14116      // psign = x.type == y.type == mask.type && y = sub(0, x);
14117      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14118          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14119          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14120        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14121               "Unsupported VT for PSIGN");
14122        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14123        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14124      }
14125      // PBLENDVB only available on SSE 4.1
14126      if (!Subtarget->hasSSE41())
14127        return SDValue();
14128
14129      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14130
14131      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14132      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14133      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14134      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14135      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14136    }
14137  }
14138
14139  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14140    return SDValue();
14141
14142  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14143  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14144    std::swap(N0, N1);
14145  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14146    return SDValue();
14147  if (!N0.hasOneUse() || !N1.hasOneUse())
14148    return SDValue();
14149
14150  SDValue ShAmt0 = N0.getOperand(1);
14151  if (ShAmt0.getValueType() != MVT::i8)
14152    return SDValue();
14153  SDValue ShAmt1 = N1.getOperand(1);
14154  if (ShAmt1.getValueType() != MVT::i8)
14155    return SDValue();
14156  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14157    ShAmt0 = ShAmt0.getOperand(0);
14158  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14159    ShAmt1 = ShAmt1.getOperand(0);
14160
14161  DebugLoc DL = N->getDebugLoc();
14162  unsigned Opc = X86ISD::SHLD;
14163  SDValue Op0 = N0.getOperand(0);
14164  SDValue Op1 = N1.getOperand(0);
14165  if (ShAmt0.getOpcode() == ISD::SUB) {
14166    Opc = X86ISD::SHRD;
14167    std::swap(Op0, Op1);
14168    std::swap(ShAmt0, ShAmt1);
14169  }
14170
14171  unsigned Bits = VT.getSizeInBits();
14172  if (ShAmt1.getOpcode() == ISD::SUB) {
14173    SDValue Sum = ShAmt1.getOperand(0);
14174    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14175      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14176      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14177        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14178      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14179        return DAG.getNode(Opc, DL, VT,
14180                           Op0, Op1,
14181                           DAG.getNode(ISD::TRUNCATE, DL,
14182                                       MVT::i8, ShAmt0));
14183    }
14184  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14185    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14186    if (ShAmt0C &&
14187        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14188      return DAG.getNode(Opc, DL, VT,
14189                         N0.getOperand(0), N1.getOperand(0),
14190                         DAG.getNode(ISD::TRUNCATE, DL,
14191                                       MVT::i8, ShAmt0));
14192  }
14193
14194  return SDValue();
14195}
14196
14197// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14198static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14199                                 TargetLowering::DAGCombinerInfo &DCI,
14200                                 const X86Subtarget *Subtarget) {
14201  if (DCI.isBeforeLegalizeOps())
14202    return SDValue();
14203
14204  EVT VT = N->getValueType(0);
14205
14206  if (VT != MVT::i32 && VT != MVT::i64)
14207    return SDValue();
14208
14209  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14210
14211  // Create BLSMSK instructions by finding X ^ (X-1)
14212  SDValue N0 = N->getOperand(0);
14213  SDValue N1 = N->getOperand(1);
14214  DebugLoc DL = N->getDebugLoc();
14215
14216  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14217      isAllOnes(N0.getOperand(1)))
14218    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14219
14220  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14221      isAllOnes(N1.getOperand(1)))
14222    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14223
14224  return SDValue();
14225}
14226
14227/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14228static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14229                                   const X86Subtarget *Subtarget) {
14230  LoadSDNode *Ld = cast<LoadSDNode>(N);
14231  EVT RegVT = Ld->getValueType(0);
14232  EVT MemVT = Ld->getMemoryVT();
14233  DebugLoc dl = Ld->getDebugLoc();
14234  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14235
14236  ISD::LoadExtType Ext = Ld->getExtensionType();
14237
14238  // If this is a vector EXT Load then attempt to optimize it using a
14239  // shuffle. We need SSE4 for the shuffles.
14240  // TODO: It is possible to support ZExt by zeroing the undef values
14241  // during the shuffle phase or after the shuffle.
14242  if (RegVT.isVector() && RegVT.isInteger() &&
14243      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14244    assert(MemVT != RegVT && "Cannot extend to the same type");
14245    assert(MemVT.isVector() && "Must load a vector from memory");
14246
14247    unsigned NumElems = RegVT.getVectorNumElements();
14248    unsigned RegSz = RegVT.getSizeInBits();
14249    unsigned MemSz = MemVT.getSizeInBits();
14250    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14251    // All sizes must be a power of two
14252    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14253
14254    // Attempt to load the original value using a single load op.
14255    // Find a scalar type which is equal to the loaded word size.
14256    MVT SclrLoadTy = MVT::i8;
14257    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14258         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14259      MVT Tp = (MVT::SimpleValueType)tp;
14260      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14261        SclrLoadTy = Tp;
14262        break;
14263      }
14264    }
14265
14266    // Proceed if a load word is found.
14267    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14268
14269    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14270      RegSz/SclrLoadTy.getSizeInBits());
14271
14272    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14273                                  RegSz/MemVT.getScalarType().getSizeInBits());
14274    // Can't shuffle using an illegal type.
14275    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14276
14277    // Perform a single load.
14278    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14279                                  Ld->getBasePtr(),
14280                                  Ld->getPointerInfo(), Ld->isVolatile(),
14281                                  Ld->isNonTemporal(), Ld->isInvariant(),
14282                                  Ld->getAlignment());
14283
14284    // Insert the word loaded into a vector.
14285    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14286      LoadUnitVecVT, ScalarLoad);
14287
14288    // Bitcast the loaded value to a vector of the original element type, in
14289    // the size of the target vector type.
14290    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14291                                    ScalarInVector);
14292    unsigned SizeRatio = RegSz/MemSz;
14293
14294    // Redistribute the loaded elements into the different locations.
14295    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14296    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14297
14298    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14299                                DAG.getUNDEF(SlicedVec.getValueType()),
14300                                ShuffleVec.data());
14301
14302    // Bitcast to the requested type.
14303    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14304    // Replace the original load with the new sequence
14305    // and return the new chain.
14306    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14307    return SDValue(ScalarLoad.getNode(), 1);
14308  }
14309
14310  return SDValue();
14311}
14312
14313/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14314static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14315                                   const X86Subtarget *Subtarget) {
14316  StoreSDNode *St = cast<StoreSDNode>(N);
14317  EVT VT = St->getValue().getValueType();
14318  EVT StVT = St->getMemoryVT();
14319  DebugLoc dl = St->getDebugLoc();
14320  SDValue StoredVal = St->getOperand(1);
14321  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14322
14323  // If we are saving a concatenation of two XMM registers, perform two stores.
14324  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14325  // 128-bit ones. If in the future the cost becomes only one memory access the
14326  // first version would be better.
14327  if (VT.getSizeInBits() == 256 &&
14328    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14329    StoredVal.getNumOperands() == 2) {
14330
14331    SDValue Value0 = StoredVal.getOperand(0);
14332    SDValue Value1 = StoredVal.getOperand(1);
14333
14334    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14335    SDValue Ptr0 = St->getBasePtr();
14336    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14337
14338    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14339                                St->getPointerInfo(), St->isVolatile(),
14340                                St->isNonTemporal(), St->getAlignment());
14341    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14342                                St->getPointerInfo(), St->isVolatile(),
14343                                St->isNonTemporal(), St->getAlignment());
14344    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14345  }
14346
14347  // Optimize trunc store (of multiple scalars) to shuffle and store.
14348  // First, pack all of the elements in one place. Next, store to memory
14349  // in fewer chunks.
14350  if (St->isTruncatingStore() && VT.isVector()) {
14351    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14352    unsigned NumElems = VT.getVectorNumElements();
14353    assert(StVT != VT && "Cannot truncate to the same type");
14354    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14355    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14356
14357    // From, To sizes and ElemCount must be pow of two
14358    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14359    // We are going to use the original vector elt for storing.
14360    // Accumulated smaller vector elements must be a multiple of the store size.
14361    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14362
14363    unsigned SizeRatio  = FromSz / ToSz;
14364
14365    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14366
14367    // Create a type on which we perform the shuffle
14368    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14369            StVT.getScalarType(), NumElems*SizeRatio);
14370
14371    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14372
14373    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14374    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14375    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14376
14377    // Can't shuffle using an illegal type
14378    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14379
14380    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14381                                DAG.getUNDEF(WideVec.getValueType()),
14382                                ShuffleVec.data());
14383    // At this point all of the data is stored at the bottom of the
14384    // register. We now need to save it to mem.
14385
14386    // Find the largest store unit
14387    MVT StoreType = MVT::i8;
14388    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14389         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14390      MVT Tp = (MVT::SimpleValueType)tp;
14391      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14392        StoreType = Tp;
14393    }
14394
14395    // Bitcast the original vector into a vector of store-size units
14396    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14397            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14398    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14399    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14400    SmallVector<SDValue, 8> Chains;
14401    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14402                                        TLI.getPointerTy());
14403    SDValue Ptr = St->getBasePtr();
14404
14405    // Perform one or more big stores into memory.
14406    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14407      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14408                                   StoreType, ShuffWide,
14409                                   DAG.getIntPtrConstant(i));
14410      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14411                                St->getPointerInfo(), St->isVolatile(),
14412                                St->isNonTemporal(), St->getAlignment());
14413      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14414      Chains.push_back(Ch);
14415    }
14416
14417    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14418                               Chains.size());
14419  }
14420
14421
14422  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14423  // the FP state in cases where an emms may be missing.
14424  // A preferable solution to the general problem is to figure out the right
14425  // places to insert EMMS.  This qualifies as a quick hack.
14426
14427  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14428  if (VT.getSizeInBits() != 64)
14429    return SDValue();
14430
14431  const Function *F = DAG.getMachineFunction().getFunction();
14432  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14433  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14434                     && Subtarget->hasSSE2();
14435  if ((VT.isVector() ||
14436       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14437      isa<LoadSDNode>(St->getValue()) &&
14438      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14439      St->getChain().hasOneUse() && !St->isVolatile()) {
14440    SDNode* LdVal = St->getValue().getNode();
14441    LoadSDNode *Ld = 0;
14442    int TokenFactorIndex = -1;
14443    SmallVector<SDValue, 8> Ops;
14444    SDNode* ChainVal = St->getChain().getNode();
14445    // Must be a store of a load.  We currently handle two cases:  the load
14446    // is a direct child, and it's under an intervening TokenFactor.  It is
14447    // possible to dig deeper under nested TokenFactors.
14448    if (ChainVal == LdVal)
14449      Ld = cast<LoadSDNode>(St->getChain());
14450    else if (St->getValue().hasOneUse() &&
14451             ChainVal->getOpcode() == ISD::TokenFactor) {
14452      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14453        if (ChainVal->getOperand(i).getNode() == LdVal) {
14454          TokenFactorIndex = i;
14455          Ld = cast<LoadSDNode>(St->getValue());
14456        } else
14457          Ops.push_back(ChainVal->getOperand(i));
14458      }
14459    }
14460
14461    if (!Ld || !ISD::isNormalLoad(Ld))
14462      return SDValue();
14463
14464    // If this is not the MMX case, i.e. we are just turning i64 load/store
14465    // into f64 load/store, avoid the transformation if there are multiple
14466    // uses of the loaded value.
14467    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14468      return SDValue();
14469
14470    DebugLoc LdDL = Ld->getDebugLoc();
14471    DebugLoc StDL = N->getDebugLoc();
14472    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14473    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14474    // pair instead.
14475    if (Subtarget->is64Bit() || F64IsLegal) {
14476      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14477      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14478                                  Ld->getPointerInfo(), Ld->isVolatile(),
14479                                  Ld->isNonTemporal(), Ld->isInvariant(),
14480                                  Ld->getAlignment());
14481      SDValue NewChain = NewLd.getValue(1);
14482      if (TokenFactorIndex != -1) {
14483        Ops.push_back(NewChain);
14484        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14485                               Ops.size());
14486      }
14487      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14488                          St->getPointerInfo(),
14489                          St->isVolatile(), St->isNonTemporal(),
14490                          St->getAlignment());
14491    }
14492
14493    // Otherwise, lower to two pairs of 32-bit loads / stores.
14494    SDValue LoAddr = Ld->getBasePtr();
14495    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14496                                 DAG.getConstant(4, MVT::i32));
14497
14498    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14499                               Ld->getPointerInfo(),
14500                               Ld->isVolatile(), Ld->isNonTemporal(),
14501                               Ld->isInvariant(), Ld->getAlignment());
14502    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14503                               Ld->getPointerInfo().getWithOffset(4),
14504                               Ld->isVolatile(), Ld->isNonTemporal(),
14505                               Ld->isInvariant(),
14506                               MinAlign(Ld->getAlignment(), 4));
14507
14508    SDValue NewChain = LoLd.getValue(1);
14509    if (TokenFactorIndex != -1) {
14510      Ops.push_back(LoLd);
14511      Ops.push_back(HiLd);
14512      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14513                             Ops.size());
14514    }
14515
14516    LoAddr = St->getBasePtr();
14517    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14518                         DAG.getConstant(4, MVT::i32));
14519
14520    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14521                                St->getPointerInfo(),
14522                                St->isVolatile(), St->isNonTemporal(),
14523                                St->getAlignment());
14524    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14525                                St->getPointerInfo().getWithOffset(4),
14526                                St->isVolatile(),
14527                                St->isNonTemporal(),
14528                                MinAlign(St->getAlignment(), 4));
14529    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14530  }
14531  return SDValue();
14532}
14533
14534/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14535/// and return the operands for the horizontal operation in LHS and RHS.  A
14536/// horizontal operation performs the binary operation on successive elements
14537/// of its first operand, then on successive elements of its second operand,
14538/// returning the resulting values in a vector.  For example, if
14539///   A = < float a0, float a1, float a2, float a3 >
14540/// and
14541///   B = < float b0, float b1, float b2, float b3 >
14542/// then the result of doing a horizontal operation on A and B is
14543///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14544/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14545/// A horizontal-op B, for some already available A and B, and if so then LHS is
14546/// set to A, RHS to B, and the routine returns 'true'.
14547/// Note that the binary operation should have the property that if one of the
14548/// operands is UNDEF then the result is UNDEF.
14549static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14550  // Look for the following pattern: if
14551  //   A = < float a0, float a1, float a2, float a3 >
14552  //   B = < float b0, float b1, float b2, float b3 >
14553  // and
14554  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14555  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14556  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14557  // which is A horizontal-op B.
14558
14559  // At least one of the operands should be a vector shuffle.
14560  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14561      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14562    return false;
14563
14564  EVT VT = LHS.getValueType();
14565
14566  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14567         "Unsupported vector type for horizontal add/sub");
14568
14569  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14570  // operate independently on 128-bit lanes.
14571  unsigned NumElts = VT.getVectorNumElements();
14572  unsigned NumLanes = VT.getSizeInBits()/128;
14573  unsigned NumLaneElts = NumElts / NumLanes;
14574  assert((NumLaneElts % 2 == 0) &&
14575         "Vector type should have an even number of elements in each lane");
14576  unsigned HalfLaneElts = NumLaneElts/2;
14577
14578  // View LHS in the form
14579  //   LHS = VECTOR_SHUFFLE A, B, LMask
14580  // If LHS is not a shuffle then pretend it is the shuffle
14581  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14582  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14583  // type VT.
14584  SDValue A, B;
14585  SmallVector<int, 16> LMask(NumElts);
14586  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14587    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14588      A = LHS.getOperand(0);
14589    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14590      B = LHS.getOperand(1);
14591    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14592    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14593  } else {
14594    if (LHS.getOpcode() != ISD::UNDEF)
14595      A = LHS;
14596    for (unsigned i = 0; i != NumElts; ++i)
14597      LMask[i] = i;
14598  }
14599
14600  // Likewise, view RHS in the form
14601  //   RHS = VECTOR_SHUFFLE C, D, RMask
14602  SDValue C, D;
14603  SmallVector<int, 16> RMask(NumElts);
14604  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14605    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14606      C = RHS.getOperand(0);
14607    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14608      D = RHS.getOperand(1);
14609    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14610    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14611  } else {
14612    if (RHS.getOpcode() != ISD::UNDEF)
14613      C = RHS;
14614    for (unsigned i = 0; i != NumElts; ++i)
14615      RMask[i] = i;
14616  }
14617
14618  // Check that the shuffles are both shuffling the same vectors.
14619  if (!(A == C && B == D) && !(A == D && B == C))
14620    return false;
14621
14622  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14623  if (!A.getNode() && !B.getNode())
14624    return false;
14625
14626  // If A and B occur in reverse order in RHS, then "swap" them (which means
14627  // rewriting the mask).
14628  if (A != C)
14629    CommuteVectorShuffleMask(RMask, NumElts);
14630
14631  // At this point LHS and RHS are equivalent to
14632  //   LHS = VECTOR_SHUFFLE A, B, LMask
14633  //   RHS = VECTOR_SHUFFLE A, B, RMask
14634  // Check that the masks correspond to performing a horizontal operation.
14635  for (unsigned i = 0; i != NumElts; ++i) {
14636    int LIdx = LMask[i], RIdx = RMask[i];
14637
14638    // Ignore any UNDEF components.
14639    if (LIdx < 0 || RIdx < 0 ||
14640        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14641        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14642      continue;
14643
14644    // Check that successive elements are being operated on.  If not, this is
14645    // not a horizontal operation.
14646    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14647    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14648    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14649    if (!(LIdx == Index && RIdx == Index + 1) &&
14650        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14651      return false;
14652  }
14653
14654  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14655  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14656  return true;
14657}
14658
14659/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14660static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14661                                  const X86Subtarget *Subtarget) {
14662  EVT VT = N->getValueType(0);
14663  SDValue LHS = N->getOperand(0);
14664  SDValue RHS = N->getOperand(1);
14665
14666  // Try to synthesize horizontal adds from adds of shuffles.
14667  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14668       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14669      isHorizontalBinOp(LHS, RHS, true))
14670    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14671  return SDValue();
14672}
14673
14674/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14675static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14676                                  const X86Subtarget *Subtarget) {
14677  EVT VT = N->getValueType(0);
14678  SDValue LHS = N->getOperand(0);
14679  SDValue RHS = N->getOperand(1);
14680
14681  // Try to synthesize horizontal subs from subs of shuffles.
14682  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14683       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14684      isHorizontalBinOp(LHS, RHS, false))
14685    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14686  return SDValue();
14687}
14688
14689/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14690/// X86ISD::FXOR nodes.
14691static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14692  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14693  // F[X]OR(0.0, x) -> x
14694  // F[X]OR(x, 0.0) -> x
14695  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14696    if (C->getValueAPF().isPosZero())
14697      return N->getOperand(1);
14698  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14699    if (C->getValueAPF().isPosZero())
14700      return N->getOperand(0);
14701  return SDValue();
14702}
14703
14704/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14705static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14706  // FAND(0.0, x) -> 0.0
14707  // FAND(x, 0.0) -> 0.0
14708  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14709    if (C->getValueAPF().isPosZero())
14710      return N->getOperand(0);
14711  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14712    if (C->getValueAPF().isPosZero())
14713      return N->getOperand(1);
14714  return SDValue();
14715}
14716
14717static SDValue PerformBTCombine(SDNode *N,
14718                                SelectionDAG &DAG,
14719                                TargetLowering::DAGCombinerInfo &DCI) {
14720  // BT ignores high bits in the bit index operand.
14721  SDValue Op1 = N->getOperand(1);
14722  if (Op1.hasOneUse()) {
14723    unsigned BitWidth = Op1.getValueSizeInBits();
14724    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14725    APInt KnownZero, KnownOne;
14726    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14727                                          !DCI.isBeforeLegalizeOps());
14728    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14729    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14730        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14731      DCI.CommitTargetLoweringOpt(TLO);
14732  }
14733  return SDValue();
14734}
14735
14736static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14737  SDValue Op = N->getOperand(0);
14738  if (Op.getOpcode() == ISD::BITCAST)
14739    Op = Op.getOperand(0);
14740  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14741  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14742      VT.getVectorElementType().getSizeInBits() ==
14743      OpVT.getVectorElementType().getSizeInBits()) {
14744    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14745  }
14746  return SDValue();
14747}
14748
14749static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14750                                  TargetLowering::DAGCombinerInfo &DCI,
14751                                  const X86Subtarget *Subtarget) {
14752  if (!DCI.isBeforeLegalizeOps())
14753    return SDValue();
14754
14755  if (!Subtarget->hasAVX())
14756    return SDValue();
14757
14758  // Optimize vectors in AVX mode
14759  // Sign extend  v8i16 to v8i32 and
14760  //              v4i32 to v4i64
14761  //
14762  // Divide input vector into two parts
14763  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14764  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14765  // concat the vectors to original VT
14766
14767  EVT VT = N->getValueType(0);
14768  SDValue Op = N->getOperand(0);
14769  EVT OpVT = Op.getValueType();
14770  DebugLoc dl = N->getDebugLoc();
14771
14772  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14773      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14774
14775    unsigned NumElems = OpVT.getVectorNumElements();
14776    SmallVector<int,8> ShufMask1(NumElems, -1);
14777    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14778
14779    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14780                                        ShufMask1.data());
14781
14782    SmallVector<int,8> ShufMask2(NumElems, -1);
14783    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14784
14785    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14786                                        ShufMask2.data());
14787
14788    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14789                                  VT.getVectorNumElements()/2);
14790
14791    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14792    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14793
14794    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14795  }
14796  return SDValue();
14797}
14798
14799static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14800                                  const X86Subtarget *Subtarget) {
14801  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14802  //           (and (i32 x86isd::setcc_carry), 1)
14803  // This eliminates the zext. This transformation is necessary because
14804  // ISD::SETCC is always legalized to i8.
14805  DebugLoc dl = N->getDebugLoc();
14806  SDValue N0 = N->getOperand(0);
14807  EVT VT = N->getValueType(0);
14808  EVT OpVT = N0.getValueType();
14809
14810  if (N0.getOpcode() == ISD::AND &&
14811      N0.hasOneUse() &&
14812      N0.getOperand(0).hasOneUse()) {
14813    SDValue N00 = N0.getOperand(0);
14814    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14815      return SDValue();
14816    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14817    if (!C || C->getZExtValue() != 1)
14818      return SDValue();
14819    return DAG.getNode(ISD::AND, dl, VT,
14820                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14821                                   N00.getOperand(0), N00.getOperand(1)),
14822                       DAG.getConstant(1, VT));
14823  }
14824  // Optimize vectors in AVX mode:
14825  //
14826  //   v8i16 -> v8i32
14827  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14828  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14829  //   Concat upper and lower parts.
14830  //
14831  //   v4i32 -> v4i64
14832  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14833  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14834  //   Concat upper and lower parts.
14835  //
14836  if (Subtarget->hasAVX()) {
14837
14838    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14839      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14840
14841      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14842      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14843      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14844
14845      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14846        VT.getVectorNumElements()/2);
14847
14848      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14849      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14850
14851      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14852    }
14853  }
14854
14855
14856  return SDValue();
14857}
14858
14859// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14860static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14861  unsigned X86CC = N->getConstantOperandVal(0);
14862  SDValue EFLAG = N->getOperand(1);
14863  DebugLoc DL = N->getDebugLoc();
14864
14865  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14866  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14867  // cases.
14868  if (X86CC == X86::COND_B)
14869    return DAG.getNode(ISD::AND, DL, MVT::i8,
14870                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14871                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14872                       DAG.getConstant(1, MVT::i8));
14873
14874  return SDValue();
14875}
14876
14877static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14878                                        const X86TargetLowering *XTLI) {
14879  SDValue Op0 = N->getOperand(0);
14880  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14881  // a 32-bit target where SSE doesn't support i64->FP operations.
14882  if (Op0.getOpcode() == ISD::LOAD) {
14883    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14884    EVT VT = Ld->getValueType(0);
14885    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14886        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14887        !XTLI->getSubtarget()->is64Bit() &&
14888        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14889      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14890                                          Ld->getChain(), Op0, DAG);
14891      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14892      return FILDChain;
14893    }
14894  }
14895  return SDValue();
14896}
14897
14898// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14899static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14900                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14901  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14902  // the result is either zero or one (depending on the input carry bit).
14903  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14904  if (X86::isZeroNode(N->getOperand(0)) &&
14905      X86::isZeroNode(N->getOperand(1)) &&
14906      // We don't have a good way to replace an EFLAGS use, so only do this when
14907      // dead right now.
14908      SDValue(N, 1).use_empty()) {
14909    DebugLoc DL = N->getDebugLoc();
14910    EVT VT = N->getValueType(0);
14911    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14912    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14913                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14914                                           DAG.getConstant(X86::COND_B,MVT::i8),
14915                                           N->getOperand(2)),
14916                               DAG.getConstant(1, VT));
14917    return DCI.CombineTo(N, Res1, CarryOut);
14918  }
14919
14920  return SDValue();
14921}
14922
14923// fold (add Y, (sete  X, 0)) -> adc  0, Y
14924//      (add Y, (setne X, 0)) -> sbb -1, Y
14925//      (sub (sete  X, 0), Y) -> sbb  0, Y
14926//      (sub (setne X, 0), Y) -> adc -1, Y
14927static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14928  DebugLoc DL = N->getDebugLoc();
14929
14930  // Look through ZExts.
14931  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14932  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14933    return SDValue();
14934
14935  SDValue SetCC = Ext.getOperand(0);
14936  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14937    return SDValue();
14938
14939  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14940  if (CC != X86::COND_E && CC != X86::COND_NE)
14941    return SDValue();
14942
14943  SDValue Cmp = SetCC.getOperand(1);
14944  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14945      !X86::isZeroNode(Cmp.getOperand(1)) ||
14946      !Cmp.getOperand(0).getValueType().isInteger())
14947    return SDValue();
14948
14949  SDValue CmpOp0 = Cmp.getOperand(0);
14950  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14951                               DAG.getConstant(1, CmpOp0.getValueType()));
14952
14953  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14954  if (CC == X86::COND_NE)
14955    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14956                       DL, OtherVal.getValueType(), OtherVal,
14957                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14958  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14959                     DL, OtherVal.getValueType(), OtherVal,
14960                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14961}
14962
14963/// PerformADDCombine - Do target-specific dag combines on integer adds.
14964static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14965                                 const X86Subtarget *Subtarget) {
14966  EVT VT = N->getValueType(0);
14967  SDValue Op0 = N->getOperand(0);
14968  SDValue Op1 = N->getOperand(1);
14969
14970  // Try to synthesize horizontal adds from adds of shuffles.
14971  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14972       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14973      isHorizontalBinOp(Op0, Op1, true))
14974    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14975
14976  return OptimizeConditionalInDecrement(N, DAG);
14977}
14978
14979static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14980                                 const X86Subtarget *Subtarget) {
14981  SDValue Op0 = N->getOperand(0);
14982  SDValue Op1 = N->getOperand(1);
14983
14984  // X86 can't encode an immediate LHS of a sub. See if we can push the
14985  // negation into a preceding instruction.
14986  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14987    // If the RHS of the sub is a XOR with one use and a constant, invert the
14988    // immediate. Then add one to the LHS of the sub so we can turn
14989    // X-Y -> X+~Y+1, saving one register.
14990    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14991        isa<ConstantSDNode>(Op1.getOperand(1))) {
14992      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14993      EVT VT = Op0.getValueType();
14994      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14995                                   Op1.getOperand(0),
14996                                   DAG.getConstant(~XorC, VT));
14997      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14998                         DAG.getConstant(C->getAPIntValue()+1, VT));
14999    }
15000  }
15001
15002  // Try to synthesize horizontal adds from adds of shuffles.
15003  EVT VT = N->getValueType(0);
15004  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15005       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15006      isHorizontalBinOp(Op0, Op1, true))
15007    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15008
15009  return OptimizeConditionalInDecrement(N, DAG);
15010}
15011
15012SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15013                                             DAGCombinerInfo &DCI) const {
15014  SelectionDAG &DAG = DCI.DAG;
15015  switch (N->getOpcode()) {
15016  default: break;
15017  case ISD::EXTRACT_VECTOR_ELT:
15018    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15019  case ISD::VSELECT:
15020  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15021  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15022  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15023  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15024  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15025  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15026  case ISD::SHL:
15027  case ISD::SRA:
15028  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15029  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15030  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15031  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15032  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15033  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15034  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15035  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15036  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15037  case X86ISD::FXOR:
15038  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15039  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15040  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15041  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15042  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
15043  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15044  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15045  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15046  case X86ISD::SHUFP:       // Handle all target specific shuffles
15047  case X86ISD::PALIGN:
15048  case X86ISD::UNPCKH:
15049  case X86ISD::UNPCKL:
15050  case X86ISD::MOVHLPS:
15051  case X86ISD::MOVLHPS:
15052  case X86ISD::PSHUFD:
15053  case X86ISD::PSHUFHW:
15054  case X86ISD::PSHUFLW:
15055  case X86ISD::MOVSS:
15056  case X86ISD::MOVSD:
15057  case X86ISD::VPERMILP:
15058  case X86ISD::VPERM2X128:
15059  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15060  }
15061
15062  return SDValue();
15063}
15064
15065/// isTypeDesirableForOp - Return true if the target has native support for
15066/// the specified value type and it is 'desirable' to use the type for the
15067/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15068/// instruction encodings are longer and some i16 instructions are slow.
15069bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15070  if (!isTypeLegal(VT))
15071    return false;
15072  if (VT != MVT::i16)
15073    return true;
15074
15075  switch (Opc) {
15076  default:
15077    return true;
15078  case ISD::LOAD:
15079  case ISD::SIGN_EXTEND:
15080  case ISD::ZERO_EXTEND:
15081  case ISD::ANY_EXTEND:
15082  case ISD::SHL:
15083  case ISD::SRL:
15084  case ISD::SUB:
15085  case ISD::ADD:
15086  case ISD::MUL:
15087  case ISD::AND:
15088  case ISD::OR:
15089  case ISD::XOR:
15090    return false;
15091  }
15092}
15093
15094/// IsDesirableToPromoteOp - This method query the target whether it is
15095/// beneficial for dag combiner to promote the specified node. If true, it
15096/// should return the desired promotion type by reference.
15097bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15098  EVT VT = Op.getValueType();
15099  if (VT != MVT::i16)
15100    return false;
15101
15102  bool Promote = false;
15103  bool Commute = false;
15104  switch (Op.getOpcode()) {
15105  default: break;
15106  case ISD::LOAD: {
15107    LoadSDNode *LD = cast<LoadSDNode>(Op);
15108    // If the non-extending load has a single use and it's not live out, then it
15109    // might be folded.
15110    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15111                                                     Op.hasOneUse()*/) {
15112      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15113             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15114        // The only case where we'd want to promote LOAD (rather then it being
15115        // promoted as an operand is when it's only use is liveout.
15116        if (UI->getOpcode() != ISD::CopyToReg)
15117          return false;
15118      }
15119    }
15120    Promote = true;
15121    break;
15122  }
15123  case ISD::SIGN_EXTEND:
15124  case ISD::ZERO_EXTEND:
15125  case ISD::ANY_EXTEND:
15126    Promote = true;
15127    break;
15128  case ISD::SHL:
15129  case ISD::SRL: {
15130    SDValue N0 = Op.getOperand(0);
15131    // Look out for (store (shl (load), x)).
15132    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15133      return false;
15134    Promote = true;
15135    break;
15136  }
15137  case ISD::ADD:
15138  case ISD::MUL:
15139  case ISD::AND:
15140  case ISD::OR:
15141  case ISD::XOR:
15142    Commute = true;
15143    // fallthrough
15144  case ISD::SUB: {
15145    SDValue N0 = Op.getOperand(0);
15146    SDValue N1 = Op.getOperand(1);
15147    if (!Commute && MayFoldLoad(N1))
15148      return false;
15149    // Avoid disabling potential load folding opportunities.
15150    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15151      return false;
15152    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15153      return false;
15154    Promote = true;
15155  }
15156  }
15157
15158  PVT = MVT::i32;
15159  return Promote;
15160}
15161
15162//===----------------------------------------------------------------------===//
15163//                           X86 Inline Assembly Support
15164//===----------------------------------------------------------------------===//
15165
15166namespace {
15167  // Helper to match a string separated by whitespace.
15168  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15169    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15170
15171    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15172      StringRef piece(*args[i]);
15173      if (!s.startswith(piece)) // Check if the piece matches.
15174        return false;
15175
15176      s = s.substr(piece.size());
15177      StringRef::size_type pos = s.find_first_not_of(" \t");
15178      if (pos == 0) // We matched a prefix.
15179        return false;
15180
15181      s = s.substr(pos);
15182    }
15183
15184    return s.empty();
15185  }
15186  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15187}
15188
15189bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15190  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15191
15192  std::string AsmStr = IA->getAsmString();
15193
15194  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15195  if (!Ty || Ty->getBitWidth() % 16 != 0)
15196    return false;
15197
15198  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15199  SmallVector<StringRef, 4> AsmPieces;
15200  SplitString(AsmStr, AsmPieces, ";\n");
15201
15202  switch (AsmPieces.size()) {
15203  default: return false;
15204  case 1:
15205    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15206    // we will turn this bswap into something that will be lowered to logical
15207    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15208    // lower so don't worry about this.
15209    // bswap $0
15210    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15211        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15212        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15213        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15214        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15215        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15216      // No need to check constraints, nothing other than the equivalent of
15217      // "=r,0" would be valid here.
15218      return IntrinsicLowering::LowerToByteSwap(CI);
15219    }
15220
15221    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15222    if (CI->getType()->isIntegerTy(16) &&
15223        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15224        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15225         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15226      AsmPieces.clear();
15227      const std::string &ConstraintsStr = IA->getConstraintString();
15228      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15229      std::sort(AsmPieces.begin(), AsmPieces.end());
15230      if (AsmPieces.size() == 4 &&
15231          AsmPieces[0] == "~{cc}" &&
15232          AsmPieces[1] == "~{dirflag}" &&
15233          AsmPieces[2] == "~{flags}" &&
15234          AsmPieces[3] == "~{fpsr}")
15235      return IntrinsicLowering::LowerToByteSwap(CI);
15236    }
15237    break;
15238  case 3:
15239    if (CI->getType()->isIntegerTy(32) &&
15240        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15241        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15242        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15243        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15244      AsmPieces.clear();
15245      const std::string &ConstraintsStr = IA->getConstraintString();
15246      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15247      std::sort(AsmPieces.begin(), AsmPieces.end());
15248      if (AsmPieces.size() == 4 &&
15249          AsmPieces[0] == "~{cc}" &&
15250          AsmPieces[1] == "~{dirflag}" &&
15251          AsmPieces[2] == "~{flags}" &&
15252          AsmPieces[3] == "~{fpsr}")
15253        return IntrinsicLowering::LowerToByteSwap(CI);
15254    }
15255
15256    if (CI->getType()->isIntegerTy(64)) {
15257      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15258      if (Constraints.size() >= 2 &&
15259          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15260          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15261        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15262        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15263            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15264            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15265          return IntrinsicLowering::LowerToByteSwap(CI);
15266      }
15267    }
15268    break;
15269  }
15270  return false;
15271}
15272
15273
15274
15275/// getConstraintType - Given a constraint letter, return the type of
15276/// constraint it is for this target.
15277X86TargetLowering::ConstraintType
15278X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15279  if (Constraint.size() == 1) {
15280    switch (Constraint[0]) {
15281    case 'R':
15282    case 'q':
15283    case 'Q':
15284    case 'f':
15285    case 't':
15286    case 'u':
15287    case 'y':
15288    case 'x':
15289    case 'Y':
15290    case 'l':
15291      return C_RegisterClass;
15292    case 'a':
15293    case 'b':
15294    case 'c':
15295    case 'd':
15296    case 'S':
15297    case 'D':
15298    case 'A':
15299      return C_Register;
15300    case 'I':
15301    case 'J':
15302    case 'K':
15303    case 'L':
15304    case 'M':
15305    case 'N':
15306    case 'G':
15307    case 'C':
15308    case 'e':
15309    case 'Z':
15310      return C_Other;
15311    default:
15312      break;
15313    }
15314  }
15315  return TargetLowering::getConstraintType(Constraint);
15316}
15317
15318/// Examine constraint type and operand type and determine a weight value.
15319/// This object must already have been set up with the operand type
15320/// and the current alternative constraint selected.
15321TargetLowering::ConstraintWeight
15322  X86TargetLowering::getSingleConstraintMatchWeight(
15323    AsmOperandInfo &info, const char *constraint) const {
15324  ConstraintWeight weight = CW_Invalid;
15325  Value *CallOperandVal = info.CallOperandVal;
15326    // If we don't have a value, we can't do a match,
15327    // but allow it at the lowest weight.
15328  if (CallOperandVal == NULL)
15329    return CW_Default;
15330  Type *type = CallOperandVal->getType();
15331  // Look at the constraint type.
15332  switch (*constraint) {
15333  default:
15334    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15335  case 'R':
15336  case 'q':
15337  case 'Q':
15338  case 'a':
15339  case 'b':
15340  case 'c':
15341  case 'd':
15342  case 'S':
15343  case 'D':
15344  case 'A':
15345    if (CallOperandVal->getType()->isIntegerTy())
15346      weight = CW_SpecificReg;
15347    break;
15348  case 'f':
15349  case 't':
15350  case 'u':
15351      if (type->isFloatingPointTy())
15352        weight = CW_SpecificReg;
15353      break;
15354  case 'y':
15355      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15356        weight = CW_SpecificReg;
15357      break;
15358  case 'x':
15359  case 'Y':
15360    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15361        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15362      weight = CW_Register;
15363    break;
15364  case 'I':
15365    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15366      if (C->getZExtValue() <= 31)
15367        weight = CW_Constant;
15368    }
15369    break;
15370  case 'J':
15371    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15372      if (C->getZExtValue() <= 63)
15373        weight = CW_Constant;
15374    }
15375    break;
15376  case 'K':
15377    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15378      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15379        weight = CW_Constant;
15380    }
15381    break;
15382  case 'L':
15383    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15384      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15385        weight = CW_Constant;
15386    }
15387    break;
15388  case 'M':
15389    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15390      if (C->getZExtValue() <= 3)
15391        weight = CW_Constant;
15392    }
15393    break;
15394  case 'N':
15395    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15396      if (C->getZExtValue() <= 0xff)
15397        weight = CW_Constant;
15398    }
15399    break;
15400  case 'G':
15401  case 'C':
15402    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15403      weight = CW_Constant;
15404    }
15405    break;
15406  case 'e':
15407    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15408      if ((C->getSExtValue() >= -0x80000000LL) &&
15409          (C->getSExtValue() <= 0x7fffffffLL))
15410        weight = CW_Constant;
15411    }
15412    break;
15413  case 'Z':
15414    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15415      if (C->getZExtValue() <= 0xffffffff)
15416        weight = CW_Constant;
15417    }
15418    break;
15419  }
15420  return weight;
15421}
15422
15423/// LowerXConstraint - try to replace an X constraint, which matches anything,
15424/// with another that has more specific requirements based on the type of the
15425/// corresponding operand.
15426const char *X86TargetLowering::
15427LowerXConstraint(EVT ConstraintVT) const {
15428  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15429  // 'f' like normal targets.
15430  if (ConstraintVT.isFloatingPoint()) {
15431    if (Subtarget->hasSSE2())
15432      return "Y";
15433    if (Subtarget->hasSSE1())
15434      return "x";
15435  }
15436
15437  return TargetLowering::LowerXConstraint(ConstraintVT);
15438}
15439
15440/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15441/// vector.  If it is invalid, don't add anything to Ops.
15442void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15443                                                     std::string &Constraint,
15444                                                     std::vector<SDValue>&Ops,
15445                                                     SelectionDAG &DAG) const {
15446  SDValue Result(0, 0);
15447
15448  // Only support length 1 constraints for now.
15449  if (Constraint.length() > 1) return;
15450
15451  char ConstraintLetter = Constraint[0];
15452  switch (ConstraintLetter) {
15453  default: break;
15454  case 'I':
15455    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15456      if (C->getZExtValue() <= 31) {
15457        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15458        break;
15459      }
15460    }
15461    return;
15462  case 'J':
15463    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15464      if (C->getZExtValue() <= 63) {
15465        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15466        break;
15467      }
15468    }
15469    return;
15470  case 'K':
15471    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15472      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15473        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15474        break;
15475      }
15476    }
15477    return;
15478  case 'N':
15479    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15480      if (C->getZExtValue() <= 255) {
15481        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15482        break;
15483      }
15484    }
15485    return;
15486  case 'e': {
15487    // 32-bit signed value
15488    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15489      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15490                                           C->getSExtValue())) {
15491        // Widen to 64 bits here to get it sign extended.
15492        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15493        break;
15494      }
15495    // FIXME gcc accepts some relocatable values here too, but only in certain
15496    // memory models; it's complicated.
15497    }
15498    return;
15499  }
15500  case 'Z': {
15501    // 32-bit unsigned value
15502    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15503      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15504                                           C->getZExtValue())) {
15505        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15506        break;
15507      }
15508    }
15509    // FIXME gcc accepts some relocatable values here too, but only in certain
15510    // memory models; it's complicated.
15511    return;
15512  }
15513  case 'i': {
15514    // Literal immediates are always ok.
15515    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15516      // Widen to 64 bits here to get it sign extended.
15517      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15518      break;
15519    }
15520
15521    // In any sort of PIC mode addresses need to be computed at runtime by
15522    // adding in a register or some sort of table lookup.  These can't
15523    // be used as immediates.
15524    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15525      return;
15526
15527    // If we are in non-pic codegen mode, we allow the address of a global (with
15528    // an optional displacement) to be used with 'i'.
15529    GlobalAddressSDNode *GA = 0;
15530    int64_t Offset = 0;
15531
15532    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15533    while (1) {
15534      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15535        Offset += GA->getOffset();
15536        break;
15537      } else if (Op.getOpcode() == ISD::ADD) {
15538        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15539          Offset += C->getZExtValue();
15540          Op = Op.getOperand(0);
15541          continue;
15542        }
15543      } else if (Op.getOpcode() == ISD::SUB) {
15544        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15545          Offset += -C->getZExtValue();
15546          Op = Op.getOperand(0);
15547          continue;
15548        }
15549      }
15550
15551      // Otherwise, this isn't something we can handle, reject it.
15552      return;
15553    }
15554
15555    const GlobalValue *GV = GA->getGlobal();
15556    // If we require an extra load to get this address, as in PIC mode, we
15557    // can't accept it.
15558    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15559                                                        getTargetMachine())))
15560      return;
15561
15562    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15563                                        GA->getValueType(0), Offset);
15564    break;
15565  }
15566  }
15567
15568  if (Result.getNode()) {
15569    Ops.push_back(Result);
15570    return;
15571  }
15572  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15573}
15574
15575std::pair<unsigned, const TargetRegisterClass*>
15576X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15577                                                EVT VT) const {
15578  // First, see if this is a constraint that directly corresponds to an LLVM
15579  // register class.
15580  if (Constraint.size() == 1) {
15581    // GCC Constraint Letters
15582    switch (Constraint[0]) {
15583    default: break;
15584      // TODO: Slight differences here in allocation order and leaving
15585      // RIP in the class. Do they matter any more here than they do
15586      // in the normal allocation?
15587    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15588      if (Subtarget->is64Bit()) {
15589	if (VT == MVT::i32 || VT == MVT::f32)
15590	  return std::make_pair(0U, X86::GR32RegisterClass);
15591	else if (VT == MVT::i16)
15592	  return std::make_pair(0U, X86::GR16RegisterClass);
15593	else if (VT == MVT::i8 || VT == MVT::i1)
15594	  return std::make_pair(0U, X86::GR8RegisterClass);
15595	else if (VT == MVT::i64 || VT == MVT::f64)
15596	  return std::make_pair(0U, X86::GR64RegisterClass);
15597	break;
15598      }
15599      // 32-bit fallthrough
15600    case 'Q':   // Q_REGS
15601      if (VT == MVT::i32 || VT == MVT::f32)
15602	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15603      else if (VT == MVT::i16)
15604	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15605      else if (VT == MVT::i8 || VT == MVT::i1)
15606	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15607      else if (VT == MVT::i64)
15608	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15609      break;
15610    case 'r':   // GENERAL_REGS
15611    case 'l':   // INDEX_REGS
15612      if (VT == MVT::i8 || VT == MVT::i1)
15613        return std::make_pair(0U, X86::GR8RegisterClass);
15614      if (VT == MVT::i16)
15615        return std::make_pair(0U, X86::GR16RegisterClass);
15616      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15617        return std::make_pair(0U, X86::GR32RegisterClass);
15618      return std::make_pair(0U, X86::GR64RegisterClass);
15619    case 'R':   // LEGACY_REGS
15620      if (VT == MVT::i8 || VT == MVT::i1)
15621        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15622      if (VT == MVT::i16)
15623        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15624      if (VT == MVT::i32 || !Subtarget->is64Bit())
15625        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15626      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15627    case 'f':  // FP Stack registers.
15628      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15629      // value to the correct fpstack register class.
15630      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15631        return std::make_pair(0U, X86::RFP32RegisterClass);
15632      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15633        return std::make_pair(0U, X86::RFP64RegisterClass);
15634      return std::make_pair(0U, X86::RFP80RegisterClass);
15635    case 'y':   // MMX_REGS if MMX allowed.
15636      if (!Subtarget->hasMMX()) break;
15637      return std::make_pair(0U, X86::VR64RegisterClass);
15638    case 'Y':   // SSE_REGS if SSE2 allowed
15639      if (!Subtarget->hasSSE2()) break;
15640      // FALL THROUGH.
15641    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15642      if (!Subtarget->hasSSE1()) break;
15643
15644      switch (VT.getSimpleVT().SimpleTy) {
15645      default: break;
15646      // Scalar SSE types.
15647      case MVT::f32:
15648      case MVT::i32:
15649        return std::make_pair(0U, X86::FR32RegisterClass);
15650      case MVT::f64:
15651      case MVT::i64:
15652        return std::make_pair(0U, X86::FR64RegisterClass);
15653      // Vector types.
15654      case MVT::v16i8:
15655      case MVT::v8i16:
15656      case MVT::v4i32:
15657      case MVT::v2i64:
15658      case MVT::v4f32:
15659      case MVT::v2f64:
15660        return std::make_pair(0U, X86::VR128RegisterClass);
15661      // AVX types.
15662      case MVT::v32i8:
15663      case MVT::v16i16:
15664      case MVT::v8i32:
15665      case MVT::v4i64:
15666      case MVT::v8f32:
15667      case MVT::v4f64:
15668        return std::make_pair(0U, X86::VR256RegisterClass);
15669
15670      }
15671      break;
15672    }
15673  }
15674
15675  // Use the default implementation in TargetLowering to convert the register
15676  // constraint into a member of a register class.
15677  std::pair<unsigned, const TargetRegisterClass*> Res;
15678  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15679
15680  // Not found as a standard register?
15681  if (Res.second == 0) {
15682    // Map st(0) -> st(7) -> ST0
15683    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15684        tolower(Constraint[1]) == 's' &&
15685        tolower(Constraint[2]) == 't' &&
15686        Constraint[3] == '(' &&
15687        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15688        Constraint[5] == ')' &&
15689        Constraint[6] == '}') {
15690
15691      Res.first = X86::ST0+Constraint[4]-'0';
15692      Res.second = X86::RFP80RegisterClass;
15693      return Res;
15694    }
15695
15696    // GCC allows "st(0)" to be called just plain "st".
15697    if (StringRef("{st}").equals_lower(Constraint)) {
15698      Res.first = X86::ST0;
15699      Res.second = X86::RFP80RegisterClass;
15700      return Res;
15701    }
15702
15703    // flags -> EFLAGS
15704    if (StringRef("{flags}").equals_lower(Constraint)) {
15705      Res.first = X86::EFLAGS;
15706      Res.second = X86::CCRRegisterClass;
15707      return Res;
15708    }
15709
15710    // 'A' means EAX + EDX.
15711    if (Constraint == "A") {
15712      Res.first = X86::EAX;
15713      Res.second = X86::GR32_ADRegisterClass;
15714      return Res;
15715    }
15716    return Res;
15717  }
15718
15719  // Otherwise, check to see if this is a register class of the wrong value
15720  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15721  // turn into {ax},{dx}.
15722  if (Res.second->hasType(VT))
15723    return Res;   // Correct type already, nothing to do.
15724
15725  // All of the single-register GCC register classes map their values onto
15726  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15727  // really want an 8-bit or 32-bit register, map to the appropriate register
15728  // class and return the appropriate register.
15729  if (Res.second == X86::GR16RegisterClass) {
15730    if (VT == MVT::i8) {
15731      unsigned DestReg = 0;
15732      switch (Res.first) {
15733      default: break;
15734      case X86::AX: DestReg = X86::AL; break;
15735      case X86::DX: DestReg = X86::DL; break;
15736      case X86::CX: DestReg = X86::CL; break;
15737      case X86::BX: DestReg = X86::BL; break;
15738      }
15739      if (DestReg) {
15740        Res.first = DestReg;
15741        Res.second = X86::GR8RegisterClass;
15742      }
15743    } else if (VT == MVT::i32) {
15744      unsigned DestReg = 0;
15745      switch (Res.first) {
15746      default: break;
15747      case X86::AX: DestReg = X86::EAX; break;
15748      case X86::DX: DestReg = X86::EDX; break;
15749      case X86::CX: DestReg = X86::ECX; break;
15750      case X86::BX: DestReg = X86::EBX; break;
15751      case X86::SI: DestReg = X86::ESI; break;
15752      case X86::DI: DestReg = X86::EDI; break;
15753      case X86::BP: DestReg = X86::EBP; break;
15754      case X86::SP: DestReg = X86::ESP; break;
15755      }
15756      if (DestReg) {
15757        Res.first = DestReg;
15758        Res.second = X86::GR32RegisterClass;
15759      }
15760    } else if (VT == MVT::i64) {
15761      unsigned DestReg = 0;
15762      switch (Res.first) {
15763      default: break;
15764      case X86::AX: DestReg = X86::RAX; break;
15765      case X86::DX: DestReg = X86::RDX; break;
15766      case X86::CX: DestReg = X86::RCX; break;
15767      case X86::BX: DestReg = X86::RBX; break;
15768      case X86::SI: DestReg = X86::RSI; break;
15769      case X86::DI: DestReg = X86::RDI; break;
15770      case X86::BP: DestReg = X86::RBP; break;
15771      case X86::SP: DestReg = X86::RSP; break;
15772      }
15773      if (DestReg) {
15774        Res.first = DestReg;
15775        Res.second = X86::GR64RegisterClass;
15776      }
15777    }
15778  } else if (Res.second == X86::FR32RegisterClass ||
15779             Res.second == X86::FR64RegisterClass ||
15780             Res.second == X86::VR128RegisterClass) {
15781    // Handle references to XMM physical registers that got mapped into the
15782    // wrong class.  This can happen with constraints like {xmm0} where the
15783    // target independent register mapper will just pick the first match it can
15784    // find, ignoring the required type.
15785    if (VT == MVT::f32)
15786      Res.second = X86::FR32RegisterClass;
15787    else if (VT == MVT::f64)
15788      Res.second = X86::FR64RegisterClass;
15789    else if (X86::VR128RegisterClass->hasType(VT))
15790      Res.second = X86::VR128RegisterClass;
15791  }
15792
15793  return Res;
15794}
15795