X86ISelLowering.cpp revision 9184b25fa543a900463215c11635c2c014ddb623
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MCTargetExpr.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54
55static cl::opt<bool>
56DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
57
58// Disable16Bit - 16-bit operations typically have a larger encoding than
59// corresponding 32-bit instructions, and 16-bit code is slow on some
60// processors. This is an experimental flag to disable 16-bit operations
61// (which forces them to be Legalized to 32-bit operations).
62static cl::opt<bool>
63Disable16Bit("disable-16bit", cl::Hidden,
64             cl::desc("Disable use of 16-bit instructions"));
65
66// Forward declarations.
67static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
68                       SDValue V2);
69
70static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
71  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
72  default: llvm_unreachable("unknown subtarget type");
73  case X86Subtarget::isDarwin:
74    if (TM.getSubtarget<X86Subtarget>().is64Bit())
75      return new X8664_MachoTargetObjectFile();
76    return new X8632_MachoTargetObjectFile();
77  case X86Subtarget::isELF:
78   if (TM.getSubtarget<X86Subtarget>().is64Bit())
79     return new X8664_ELFTargetObjectFile(TM);
80    return new X8632_ELFTargetObjectFile(TM);
81  case X86Subtarget::isMingw:
82  case X86Subtarget::isCygwin:
83  case X86Subtarget::isWindows:
84    return new TargetLoweringObjectFileCOFF();
85  }
86}
87
88X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
89  : TargetLowering(TM, createTLOF(TM)) {
90  Subtarget = &TM.getSubtarget<X86Subtarget>();
91  X86ScalarSSEf64 = Subtarget->hasSSE2();
92  X86ScalarSSEf32 = Subtarget->hasSSE1();
93  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
94
95  RegInfo = TM.getRegisterInfo();
96  TD = getTargetData();
97
98  // Set up the TargetLowering object.
99
100  // X86 is weird, it always uses i8 for shift amounts and setcc results.
101  setShiftAmountType(MVT::i8);
102  setBooleanContents(ZeroOrOneBooleanContent);
103  setSchedulingPreference(SchedulingForRegPressure);
104  setStackPointerRegisterToSaveRestore(X86StackPtr);
105
106  if (Subtarget->isTargetDarwin()) {
107    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
108    setUseUnderscoreSetJmp(false);
109    setUseUnderscoreLongJmp(false);
110  } else if (Subtarget->isTargetMingw()) {
111    // MS runtime is weird: it exports _setjmp, but longjmp!
112    setUseUnderscoreSetJmp(true);
113    setUseUnderscoreLongJmp(false);
114  } else {
115    setUseUnderscoreSetJmp(true);
116    setUseUnderscoreLongJmp(true);
117  }
118
119  // Set up the register classes.
120  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
121  if (!Disable16Bit)
122    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
123  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
124  if (Subtarget->is64Bit())
125    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
126
127  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
128
129  // We don't accept any truncstore of integer registers.
130  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
131  if (!Disable16Bit)
132    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
133  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
134  if (!Disable16Bit)
135    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
136  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
137  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
138
139  // SETOEQ and SETUNE require checking two conditions.
140  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
141  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
142  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
143  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
144  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
146
147  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
148  // operation.
149  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
150  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
152
153  if (Subtarget->is64Bit()) {
154    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
155    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
156  } else if (!UseSoftFloat) {
157    if (X86ScalarSSEf64) {
158      // We have an impenetrably clever algorithm for ui64->double only.
159      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
160    }
161    // We have an algorithm for SSE2, and we turn this into a 64-bit
162    // FILD for other targets.
163    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
164  }
165
166  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
167  // this operation.
168  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
169  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
170
171  if (!UseSoftFloat) {
172    // SSE has no i16 to fp conversion, only i32
173    if (X86ScalarSSEf32) {
174      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
175      // f32 and f64 cases are Legal, f80 case is not
176      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
177    } else {
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
180    }
181  } else {
182    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
183    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
184  }
185
186  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
187  // are Legal, f80 is custom lowered.
188  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
189  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
190
191  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
192  // this operation.
193  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
194  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
195
196  if (X86ScalarSSEf32) {
197    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
198    // f32 and f64 cases are Legal, f80 case is not
199    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
200  } else {
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
203  }
204
205  // Handle FP_TO_UINT by promoting the destination to a larger signed
206  // conversion.
207  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
210
211  if (Subtarget->is64Bit()) {
212    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
213    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
214  } else if (!UseSoftFloat) {
215    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
216      // Expand FP_TO_UINT into a select.
217      // FIXME: We would like to use a Custom expander here eventually to do
218      // the optimal thing for SSE vs. the default expansion in the legalizer.
219      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
220    else
221      // With SSE3 we can use fisttpll to convert to a signed i64; without
222      // SSE, we're stuck with a fistpll.
223      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
224  }
225
226  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
227  if (!X86ScalarSSEf64) {
228    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
229    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
230  }
231
232  // Scalar integer divide and remainder are lowered to use operations that
233  // produce two results, to match the available instructions. This exposes
234  // the two-result form to trivial CSE, which is able to combine x/y and x%y
235  // into a single instruction.
236  //
237  // Scalar integer multiply-high is also lowered to use two-result
238  // operations, to match the available instructions. However, plain multiply
239  // (low) operations are left as Legal, as there are single-result
240  // instructions for this in x86. Using the two-result multiply instructions
241  // when both high and low results are needed must be arranged by dagcombine.
242  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
243  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
244  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
245  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
246  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
247  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
248  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
249  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
250  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
251  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
252  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
253  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
254  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
255  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
256  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
257  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
258  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
259  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
260  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
261  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
262  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
263  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
264  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
265  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
266
267  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
268  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
269  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
270  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
271  if (Subtarget->is64Bit())
272    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
273  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
274  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
275  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
276  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
277  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
278  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
279  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
280  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
281
282  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
283  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
284  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
285  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
286  if (Disable16Bit) {
287    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
288    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
289  } else {
290    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
291    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
292  }
293  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
294  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
295  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
296  if (Subtarget->is64Bit()) {
297    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
298    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
299    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
300  }
301
302  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
303  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
304
305  // These should be promoted to a larger select which is supported.
306  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
307  // X86 wants to expand cmov itself.
308  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
309  if (Disable16Bit)
310    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
311  else
312    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
316  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
317  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
318  if (Disable16Bit)
319    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
320  else
321    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
322  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
323  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
328    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
329  }
330  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
331
332  // Darwin ABI issue.
333  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
334  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
335  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
336  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
337  if (Subtarget->is64Bit())
338    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
339  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
340  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
341  if (Subtarget->is64Bit()) {
342    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
343    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
344    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
345    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
346    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
347  }
348  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
349  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
350  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
351  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
352  if (Subtarget->is64Bit()) {
353    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
354    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
355    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
356  }
357
358  if (Subtarget->hasSSE1())
359    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
360
361  if (!Subtarget->hasSSE2())
362    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
363
364  // Expand certain atomics
365  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
366  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
369
370  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
371  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
374
375  if (!Subtarget->is64Bit()) {
376    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
377    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
378    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
383  }
384
385  // FIXME - use subtarget debug flags
386  if (!Subtarget->isTargetDarwin() &&
387      !Subtarget->isTargetELF() &&
388      !Subtarget->isTargetCygMing()) {
389    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
390  }
391
392  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
393  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
396  if (Subtarget->is64Bit()) {
397    setExceptionPointerRegister(X86::RAX);
398    setExceptionSelectorRegister(X86::RDX);
399  } else {
400    setExceptionPointerRegister(X86::EAX);
401    setExceptionSelectorRegister(X86::EDX);
402  }
403  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
404  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
405
406  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
407
408  setOperationAction(ISD::TRAP, MVT::Other, Legal);
409
410  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
411  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
412  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
413  if (Subtarget->is64Bit()) {
414    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
415    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
416  } else {
417    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
418    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
419  }
420
421  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
422  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
423  if (Subtarget->is64Bit())
424    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
425  if (Subtarget->isTargetCygMing())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
427  else
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
429
430  if (!UseSoftFloat && X86ScalarSSEf64) {
431    // f32 and f64 use SSE.
432    // Set up the FP register classes.
433    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
434    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
435
436    // Use ANDPD to simulate FABS.
437    setOperationAction(ISD::FABS , MVT::f64, Custom);
438    setOperationAction(ISD::FABS , MVT::f32, Custom);
439
440    // Use XORP to simulate FNEG.
441    setOperationAction(ISD::FNEG , MVT::f64, Custom);
442    setOperationAction(ISD::FNEG , MVT::f32, Custom);
443
444    // Use ANDPD and ORPD to simulate FCOPYSIGN.
445    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
446    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
447
448    // We don't support sin/cos/fmod
449    setOperationAction(ISD::FSIN , MVT::f64, Expand);
450    setOperationAction(ISD::FCOS , MVT::f64, Expand);
451    setOperationAction(ISD::FSIN , MVT::f32, Expand);
452    setOperationAction(ISD::FCOS , MVT::f32, Expand);
453
454    // Expand FP immediates into loads from the stack, except for the special
455    // cases we handle.
456    addLegalFPImmediate(APFloat(+0.0)); // xorpd
457    addLegalFPImmediate(APFloat(+0.0f)); // xorps
458  } else if (!UseSoftFloat && X86ScalarSSEf32) {
459    // Use SSE for f32, x87 for f64.
460    // Set up the FP register classes.
461    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
462    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
463
464    // Use ANDPS to simulate FABS.
465    setOperationAction(ISD::FABS , MVT::f32, Custom);
466
467    // Use XORP to simulate FNEG.
468    setOperationAction(ISD::FNEG , MVT::f32, Custom);
469
470    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
471
472    // Use ANDPS and ORPS to simulate FCOPYSIGN.
473    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
474    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
475
476    // We don't support sin/cos/fmod
477    setOperationAction(ISD::FSIN , MVT::f32, Expand);
478    setOperationAction(ISD::FCOS , MVT::f32, Expand);
479
480    // Special cases we handle for FP constants.
481    addLegalFPImmediate(APFloat(+0.0f)); // xorps
482    addLegalFPImmediate(APFloat(+0.0)); // FLD0
483    addLegalFPImmediate(APFloat(+1.0)); // FLD1
484    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
485    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
486
487    if (!UnsafeFPMath) {
488      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
489      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
490    }
491  } else if (!UseSoftFloat) {
492    // f32 and f64 in x87.
493    // Set up the FP register classes.
494    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
495    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
496
497    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
498    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
499    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
500    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
501
502    if (!UnsafeFPMath) {
503      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
504      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
505    }
506    addLegalFPImmediate(APFloat(+0.0)); // FLD0
507    addLegalFPImmediate(APFloat(+1.0)); // FLD1
508    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
509    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
510    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
511    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
512    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
513    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
514  }
515
516  // Long double always uses X87.
517  if (!UseSoftFloat) {
518    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
519    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
520    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
521    {
522      bool ignored;
523      APFloat TmpFlt(+0.0);
524      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
525                     &ignored);
526      addLegalFPImmediate(TmpFlt);  // FLD0
527      TmpFlt.changeSign();
528      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
529      APFloat TmpFlt2(+1.0);
530      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
531                      &ignored);
532      addLegalFPImmediate(TmpFlt2);  // FLD1
533      TmpFlt2.changeSign();
534      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
535    }
536
537    if (!UnsafeFPMath) {
538      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
539      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
540    }
541  }
542
543  // Always use a library call for pow.
544  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
545  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
546  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
547
548  setOperationAction(ISD::FLOG, MVT::f80, Expand);
549  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
550  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
551  setOperationAction(ISD::FEXP, MVT::f80, Expand);
552  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
553
554  // First set operation action for all vector types to either promote
555  // (for widening) or expand (for scalarization). Then we will selectively
556  // turn on ones that can be effectively codegen'd.
557  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
558       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
559    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
574    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
575    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
608    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
610    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
613         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
614      setTruncStoreAction((MVT::SimpleValueType)VT,
615                          (MVT::SimpleValueType)InnerVT, Expand);
616    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
617    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
618    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
619  }
620
621  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
622  // with -msoft-float, disable use of MMX as well.
623  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
624    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
625    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
626    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
627    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
628    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
629
630    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
631    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
632    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
633    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
634
635    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
636    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
637    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
638    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
639
640    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
641    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
642
643    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
646    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
648    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
650
651    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
654    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
656    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
658
659    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
662    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
664    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
666
667    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
668    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
669    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
670    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
671    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
672    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
673    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
674    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
675    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
676
677    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
678    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
681    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
682
683    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
684    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
686    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
687
688    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
689    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
691    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
692
693    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
694
695    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
696    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
697    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
698    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
699    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
700    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
702  }
703
704  if (!UseSoftFloat && Subtarget->hasSSE1()) {
705    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
706
707    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
708    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
709    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
711    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
712    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
713    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
714    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
715    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
716    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
717    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
718    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
719  }
720
721  if (!UseSoftFloat && Subtarget->hasSSE2()) {
722    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
723
724    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
725    // registers cannot be used even for integer operations.
726    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
727    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
728    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
729    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
730
731    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
732    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
733    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
734    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
736    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
737    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
738    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
739    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
740    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
741    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
742    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
743    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
745    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
746    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
747
748    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
749    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
750    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
751    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
752
753    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
754    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
755    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
756    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
757    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
758
759    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
760    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
763    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
764
765    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
766    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
767      EVT VT = (MVT::SimpleValueType)i;
768      // Do not attempt to custom lower non-power-of-2 vectors
769      if (!isPowerOf2_32(VT.getVectorNumElements()))
770        continue;
771      // Do not attempt to custom lower non-128-bit vectors
772      if (!VT.is128BitVector())
773        continue;
774      setOperationAction(ISD::BUILD_VECTOR,
775                         VT.getSimpleVT().SimpleTy, Custom);
776      setOperationAction(ISD::VECTOR_SHUFFLE,
777                         VT.getSimpleVT().SimpleTy, Custom);
778      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
779                         VT.getSimpleVT().SimpleTy, Custom);
780    }
781
782    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
783    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
784    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
785    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
786    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
787    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
788
789    if (Subtarget->is64Bit()) {
790      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
791      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
792    }
793
794    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
795    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
796      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
797      EVT VT = SVT;
798
799      // Do not attempt to promote non-128-bit vectors
800      if (!VT.is128BitVector()) {
801        continue;
802      }
803      setOperationAction(ISD::AND,    SVT, Promote);
804      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
805      setOperationAction(ISD::OR,     SVT, Promote);
806      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
807      setOperationAction(ISD::XOR,    SVT, Promote);
808      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
809      setOperationAction(ISD::LOAD,   SVT, Promote);
810      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
811      setOperationAction(ISD::SELECT, SVT, Promote);
812      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
813    }
814
815    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
816
817    // Custom lower v2i64 and v2f64 selects.
818    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
819    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
820    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
821    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
822
823    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
824    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
825    if (!DisableMMX && Subtarget->hasMMX()) {
826      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
827      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
828    }
829  }
830
831  if (Subtarget->hasSSE41()) {
832    // FIXME: Do we need to handle scalar-to-vector here?
833    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
834
835    // i8 and i16 vectors are custom , because the source register and source
836    // source memory operand types are not the same width.  f32 vectors are
837    // custom since the immediate controlling the insert encodes additional
838    // information.
839    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843
844    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
845    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
847    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
848
849    if (Subtarget->is64Bit()) {
850      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
851      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
852    }
853  }
854
855  if (Subtarget->hasSSE42()) {
856    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
857  }
858
859  if (!UseSoftFloat && Subtarget->hasAVX()) {
860    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
861    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
862    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
863    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
864
865    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
866    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
867    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
868    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
869    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
870    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
871    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
872    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
873    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
874    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
875    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
876    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
877    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
878    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
879    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
880
881    // Operations to consider commented out -v16i16 v32i8
882    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
883    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
884    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
885    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
886    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
887    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
888    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
889    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
890    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
891    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
892    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
893    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
894    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
895    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
896
897    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
898    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
899    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
900    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
901
902    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
903    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
904    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
905    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
906    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
907
908    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
909    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
910    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
911    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
913    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
914
915#if 0
916    // Not sure we want to do this since there are no 256-bit integer
917    // operations in AVX
918
919    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
920    // This includes 256-bit vectors
921    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
922      EVT VT = (MVT::SimpleValueType)i;
923
924      // Do not attempt to custom lower non-power-of-2 vectors
925      if (!isPowerOf2_32(VT.getVectorNumElements()))
926        continue;
927
928      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
929      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
930      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
931    }
932
933    if (Subtarget->is64Bit()) {
934      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
935      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
936    }
937#endif
938
939#if 0
940    // Not sure we want to do this since there are no 256-bit integer
941    // operations in AVX
942
943    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
944    // Including 256-bit vectors
945    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
946      EVT VT = (MVT::SimpleValueType)i;
947
948      if (!VT.is256BitVector()) {
949        continue;
950      }
951      setOperationAction(ISD::AND,    VT, Promote);
952      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
953      setOperationAction(ISD::OR,     VT, Promote);
954      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
955      setOperationAction(ISD::XOR,    VT, Promote);
956      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
957      setOperationAction(ISD::LOAD,   VT, Promote);
958      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
959      setOperationAction(ISD::SELECT, VT, Promote);
960      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
961    }
962
963    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
964#endif
965  }
966
967  // We want to custom lower some of our intrinsics.
968  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
969
970  // Add/Sub/Mul with overflow operations are custom lowered.
971  setOperationAction(ISD::SADDO, MVT::i32, Custom);
972  setOperationAction(ISD::SADDO, MVT::i64, Custom);
973  setOperationAction(ISD::UADDO, MVT::i32, Custom);
974  setOperationAction(ISD::UADDO, MVT::i64, Custom);
975  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
976  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
977  setOperationAction(ISD::USUBO, MVT::i32, Custom);
978  setOperationAction(ISD::USUBO, MVT::i64, Custom);
979  setOperationAction(ISD::SMULO, MVT::i32, Custom);
980  setOperationAction(ISD::SMULO, MVT::i64, Custom);
981
982  if (!Subtarget->is64Bit()) {
983    // These libcalls are not available in 32-bit.
984    setLibcallName(RTLIB::SHL_I128, 0);
985    setLibcallName(RTLIB::SRL_I128, 0);
986    setLibcallName(RTLIB::SRA_I128, 0);
987  }
988
989  // We have target-specific dag combine patterns for the following nodes:
990  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
991  setTargetDAGCombine(ISD::BUILD_VECTOR);
992  setTargetDAGCombine(ISD::SELECT);
993  setTargetDAGCombine(ISD::SHL);
994  setTargetDAGCombine(ISD::SRA);
995  setTargetDAGCombine(ISD::SRL);
996  setTargetDAGCombine(ISD::OR);
997  setTargetDAGCombine(ISD::STORE);
998  setTargetDAGCombine(ISD::MEMBARRIER);
999  setTargetDAGCombine(ISD::ZERO_EXTEND);
1000  if (Subtarget->is64Bit())
1001    setTargetDAGCombine(ISD::MUL);
1002
1003  computeRegisterProperties();
1004
1005  // FIXME: These should be based on subtarget info. Plus, the values should
1006  // be smaller when we are in optimizing for size mode.
1007  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1008  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
1009  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1010  setPrefLoopAlignment(16);
1011  benefitFromCodePlacementOpt = true;
1012}
1013
1014
1015MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1016  return MVT::i8;
1017}
1018
1019
1020/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1021/// the desired ByVal argument alignment.
1022static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1023  if (MaxAlign == 16)
1024    return;
1025  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1026    if (VTy->getBitWidth() == 128)
1027      MaxAlign = 16;
1028  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1029    unsigned EltAlign = 0;
1030    getMaxByValAlign(ATy->getElementType(), EltAlign);
1031    if (EltAlign > MaxAlign)
1032      MaxAlign = EltAlign;
1033  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1034    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1035      unsigned EltAlign = 0;
1036      getMaxByValAlign(STy->getElementType(i), EltAlign);
1037      if (EltAlign > MaxAlign)
1038        MaxAlign = EltAlign;
1039      if (MaxAlign == 16)
1040        break;
1041    }
1042  }
1043  return;
1044}
1045
1046/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1047/// function arguments in the caller parameter area. For X86, aggregates
1048/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1049/// are at 4-byte boundaries.
1050unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1051  if (Subtarget->is64Bit()) {
1052    // Max of 8 and alignment of type.
1053    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1054    if (TyAlign > 8)
1055      return TyAlign;
1056    return 8;
1057  }
1058
1059  unsigned Align = 4;
1060  if (Subtarget->hasSSE1())
1061    getMaxByValAlign(Ty, Align);
1062  return Align;
1063}
1064
1065/// getOptimalMemOpType - Returns the target specific optimal type for load
1066/// and store operations as a result of memset, memcpy, and memmove
1067/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1068/// determining it.
1069EVT
1070X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1071                                       bool isSrcConst, bool isSrcStr,
1072                                       SelectionDAG &DAG) const {
1073  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1074  // linux.  This is because the stack realignment code can't handle certain
1075  // cases like PR2962.  This should be removed when PR2962 is fixed.
1076  const Function *F = DAG.getMachineFunction().getFunction();
1077  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1078  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1079    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1080      return MVT::v4i32;
1081    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1082      return MVT::v4f32;
1083  }
1084  if (Subtarget->is64Bit() && Size >= 8)
1085    return MVT::i64;
1086  return MVT::i32;
1087}
1088
1089/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1090/// current function.  The returned value is a member of the
1091/// MachineJumpTableInfo::JTEntryKind enum.
1092unsigned X86TargetLowering::getJumpTableEncoding() const {
1093  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1094  // symbol.
1095  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1096      Subtarget->isPICStyleGOT())
1097    return MachineJumpTableInfo::EK_Custom32;
1098
1099  // Otherwise, use the normal jump table encoding heuristics.
1100  return TargetLowering::getJumpTableEncoding();
1101}
1102
1103/// getPICBaseSymbol - Return the X86-32 PIC base.
1104MCSymbol *
1105X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1106                                    MCContext &Ctx) const {
1107  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1108  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1109                               Twine(MF->getFunctionNumber())+"$pb");
1110}
1111
1112
1113const MCExpr *
1114X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1115                                             const MachineBasicBlock *MBB,
1116                                             unsigned uid,MCContext &Ctx) const{
1117  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1118         Subtarget->isPICStyleGOT());
1119  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1120  // entries.
1121  return X86MCTargetExpr::Create(MBB->getSymbol(Ctx),
1122                                 X86MCTargetExpr::GOTOFF, Ctx);
1123}
1124
1125/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1126/// jumptable.
1127SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1128                                                    SelectionDAG &DAG) const {
1129  if (!Subtarget->is64Bit())
1130    // This doesn't have DebugLoc associated with it, but is not really the
1131    // same as a Register.
1132    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1133                       getPointerTy());
1134  return Table;
1135}
1136
1137/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1138/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1139/// MCExpr.
1140const MCExpr *X86TargetLowering::
1141getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1142                             MCContext &Ctx) const {
1143  // X86-64 uses RIP relative addressing based on the jump table label.
1144  if (Subtarget->isPICStyleRIPRel())
1145    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1146
1147  // Otherwise, the reference is relative to the PIC base.
1148  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1149}
1150
1151/// getFunctionAlignment - Return the Log2 alignment of this function.
1152unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1153  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1154}
1155
1156//===----------------------------------------------------------------------===//
1157//               Return Value Calling Convention Implementation
1158//===----------------------------------------------------------------------===//
1159
1160#include "X86GenCallingConv.inc"
1161
1162bool
1163X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1164                        const SmallVectorImpl<EVT> &OutTys,
1165                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1166                        SelectionDAG &DAG) {
1167  SmallVector<CCValAssign, 16> RVLocs;
1168  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1169                 RVLocs, *DAG.getContext());
1170  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1171}
1172
1173SDValue
1174X86TargetLowering::LowerReturn(SDValue Chain,
1175                               CallingConv::ID CallConv, bool isVarArg,
1176                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1177                               DebugLoc dl, SelectionDAG &DAG) {
1178
1179  SmallVector<CCValAssign, 16> RVLocs;
1180  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1181                 RVLocs, *DAG.getContext());
1182  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1183
1184  // Add the regs to the liveout set for the function.
1185  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1186  for (unsigned i = 0; i != RVLocs.size(); ++i)
1187    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1188      MRI.addLiveOut(RVLocs[i].getLocReg());
1189
1190  SDValue Flag;
1191
1192  SmallVector<SDValue, 6> RetOps;
1193  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1194  // Operand #1 = Bytes To Pop
1195  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1196
1197  // Copy the result values into the output registers.
1198  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1199    CCValAssign &VA = RVLocs[i];
1200    assert(VA.isRegLoc() && "Can only return in registers!");
1201    SDValue ValToCopy = Outs[i].Val;
1202
1203    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1204    // the RET instruction and handled by the FP Stackifier.
1205    if (VA.getLocReg() == X86::ST0 ||
1206        VA.getLocReg() == X86::ST1) {
1207      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1208      // change the value to the FP stack register class.
1209      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1210        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1211      RetOps.push_back(ValToCopy);
1212      // Don't emit a copytoreg.
1213      continue;
1214    }
1215
1216    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1217    // which is returned in RAX / RDX.
1218    if (Subtarget->is64Bit()) {
1219      EVT ValVT = ValToCopy.getValueType();
1220      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1221        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1222        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1223          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1224      }
1225    }
1226
1227    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1228    Flag = Chain.getValue(1);
1229  }
1230
1231  // The x86-64 ABI for returning structs by value requires that we copy
1232  // the sret argument into %rax for the return. We saved the argument into
1233  // a virtual register in the entry block, so now we copy the value out
1234  // and into %rax.
1235  if (Subtarget->is64Bit() &&
1236      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1237    MachineFunction &MF = DAG.getMachineFunction();
1238    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1239    unsigned Reg = FuncInfo->getSRetReturnReg();
1240    if (!Reg) {
1241      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1242      FuncInfo->setSRetReturnReg(Reg);
1243    }
1244    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1245
1246    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1247    Flag = Chain.getValue(1);
1248
1249    // RAX now acts like a return value.
1250    MRI.addLiveOut(X86::RAX);
1251  }
1252
1253  RetOps[0] = Chain;  // Update chain.
1254
1255  // Add the flag if we have it.
1256  if (Flag.getNode())
1257    RetOps.push_back(Flag);
1258
1259  return DAG.getNode(X86ISD::RET_FLAG, dl,
1260                     MVT::Other, &RetOps[0], RetOps.size());
1261}
1262
1263/// LowerCallResult - Lower the result values of a call into the
1264/// appropriate copies out of appropriate physical registers.
1265///
1266SDValue
1267X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1268                                   CallingConv::ID CallConv, bool isVarArg,
1269                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1270                                   DebugLoc dl, SelectionDAG &DAG,
1271                                   SmallVectorImpl<SDValue> &InVals) {
1272
1273  // Assign locations to each value returned by this call.
1274  SmallVector<CCValAssign, 16> RVLocs;
1275  bool Is64Bit = Subtarget->is64Bit();
1276  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1277                 RVLocs, *DAG.getContext());
1278  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1279
1280  // Copy all of the result registers out of their specified physreg.
1281  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1282    CCValAssign &VA = RVLocs[i];
1283    EVT CopyVT = VA.getValVT();
1284
1285    // If this is x86-64, and we disabled SSE, we can't return FP values
1286    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1287        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1288      llvm_report_error("SSE register return with SSE disabled");
1289    }
1290
1291    // If this is a call to a function that returns an fp value on the floating
1292    // point stack, but where we prefer to use the value in xmm registers, copy
1293    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1294    if ((VA.getLocReg() == X86::ST0 ||
1295         VA.getLocReg() == X86::ST1) &&
1296        isScalarFPTypeInSSEReg(VA.getValVT())) {
1297      CopyVT = MVT::f80;
1298    }
1299
1300    SDValue Val;
1301    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1302      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1303      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1304        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1305                                   MVT::v2i64, InFlag).getValue(1);
1306        Val = Chain.getValue(0);
1307        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1308                          Val, DAG.getConstant(0, MVT::i64));
1309      } else {
1310        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1311                                   MVT::i64, InFlag).getValue(1);
1312        Val = Chain.getValue(0);
1313      }
1314      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1315    } else {
1316      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1317                                 CopyVT, InFlag).getValue(1);
1318      Val = Chain.getValue(0);
1319    }
1320    InFlag = Chain.getValue(2);
1321
1322    if (CopyVT != VA.getValVT()) {
1323      // Round the F80 the right size, which also moves to the appropriate xmm
1324      // register.
1325      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1326                        // This truncation won't change the value.
1327                        DAG.getIntPtrConstant(1));
1328    }
1329
1330    InVals.push_back(Val);
1331  }
1332
1333  return Chain;
1334}
1335
1336
1337//===----------------------------------------------------------------------===//
1338//                C & StdCall & Fast Calling Convention implementation
1339//===----------------------------------------------------------------------===//
1340//  StdCall calling convention seems to be standard for many Windows' API
1341//  routines and around. It differs from C calling convention just a little:
1342//  callee should clean up the stack, not caller. Symbols should be also
1343//  decorated in some fancy way :) It doesn't support any vector arguments.
1344//  For info on fast calling convention see Fast Calling Convention (tail call)
1345//  implementation LowerX86_32FastCCCallTo.
1346
1347/// CallIsStructReturn - Determines whether a call uses struct return
1348/// semantics.
1349static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1350  if (Outs.empty())
1351    return false;
1352
1353  return Outs[0].Flags.isSRet();
1354}
1355
1356/// ArgsAreStructReturn - Determines whether a function uses struct
1357/// return semantics.
1358static bool
1359ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1360  if (Ins.empty())
1361    return false;
1362
1363  return Ins[0].Flags.isSRet();
1364}
1365
1366/// IsCalleePop - Determines whether the callee is required to pop its
1367/// own arguments. Callee pop is necessary to support tail calls.
1368bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1369  if (IsVarArg)
1370    return false;
1371
1372  switch (CallingConv) {
1373  default:
1374    return false;
1375  case CallingConv::X86_StdCall:
1376    return !Subtarget->is64Bit();
1377  case CallingConv::X86_FastCall:
1378    return !Subtarget->is64Bit();
1379  case CallingConv::Fast:
1380    return GuaranteedTailCallOpt;
1381  }
1382}
1383
1384/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1385/// given CallingConvention value.
1386CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1387  if (Subtarget->is64Bit()) {
1388    if (Subtarget->isTargetWin64())
1389      return CC_X86_Win64_C;
1390    else
1391      return CC_X86_64_C;
1392  }
1393
1394  if (CC == CallingConv::X86_FastCall)
1395    return CC_X86_32_FastCall;
1396  else if (CC == CallingConv::Fast)
1397    return CC_X86_32_FastCC;
1398  else
1399    return CC_X86_32_C;
1400}
1401
1402/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1403/// by "Src" to address "Dst" with size and alignment information specified by
1404/// the specific parameter attribute. The copy will be passed as a byval
1405/// function parameter.
1406static SDValue
1407CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1408                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1409                          DebugLoc dl) {
1410  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1411  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1412                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1413}
1414
1415/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1416/// a tailcall target by changing its ABI.
1417static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1418  return GuaranteedTailCallOpt && CC == CallingConv::Fast;
1419}
1420
1421SDValue
1422X86TargetLowering::LowerMemArgument(SDValue Chain,
1423                                    CallingConv::ID CallConv,
1424                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1425                                    DebugLoc dl, SelectionDAG &DAG,
1426                                    const CCValAssign &VA,
1427                                    MachineFrameInfo *MFI,
1428                                    unsigned i) {
1429  // Create the nodes corresponding to a load from this parameter slot.
1430  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1431  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1432  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1433  EVT ValVT;
1434
1435  // If value is passed by pointer we have address passed instead of the value
1436  // itself.
1437  if (VA.getLocInfo() == CCValAssign::Indirect)
1438    ValVT = VA.getLocVT();
1439  else
1440    ValVT = VA.getValVT();
1441
1442  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1443  // changed with more analysis.
1444  // In case of tail call optimization mark all arguments mutable. Since they
1445  // could be overwritten by lowering of arguments in case of a tail call.
1446  if (Flags.isByVal()) {
1447    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1448                                    VA.getLocMemOffset(), isImmutable, false);
1449    return DAG.getFrameIndex(FI, getPointerTy());
1450  } else {
1451    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1452                                    VA.getLocMemOffset(), isImmutable, false);
1453    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1454    return DAG.getLoad(ValVT, dl, Chain, FIN,
1455                       PseudoSourceValue::getFixedStack(FI), 0,
1456                       false, false, 0);
1457  }
1458}
1459
1460SDValue
1461X86TargetLowering::LowerFormalArguments(SDValue Chain,
1462                                        CallingConv::ID CallConv,
1463                                        bool isVarArg,
1464                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1465                                        DebugLoc dl,
1466                                        SelectionDAG &DAG,
1467                                        SmallVectorImpl<SDValue> &InVals) {
1468
1469  MachineFunction &MF = DAG.getMachineFunction();
1470  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1471
1472  const Function* Fn = MF.getFunction();
1473  if (Fn->hasExternalLinkage() &&
1474      Subtarget->isTargetCygMing() &&
1475      Fn->getName() == "main")
1476    FuncInfo->setForceFramePointer(true);
1477
1478  MachineFrameInfo *MFI = MF.getFrameInfo();
1479  bool Is64Bit = Subtarget->is64Bit();
1480  bool IsWin64 = Subtarget->isTargetWin64();
1481
1482  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1483         "Var args not supported with calling convention fastcc");
1484
1485  // Assign locations to all of the incoming arguments.
1486  SmallVector<CCValAssign, 16> ArgLocs;
1487  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1488                 ArgLocs, *DAG.getContext());
1489  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1490
1491  unsigned LastVal = ~0U;
1492  SDValue ArgValue;
1493  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1494    CCValAssign &VA = ArgLocs[i];
1495    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1496    // places.
1497    assert(VA.getValNo() != LastVal &&
1498           "Don't support value assigned to multiple locs yet");
1499    LastVal = VA.getValNo();
1500
1501    if (VA.isRegLoc()) {
1502      EVT RegVT = VA.getLocVT();
1503      TargetRegisterClass *RC = NULL;
1504      if (RegVT == MVT::i32)
1505        RC = X86::GR32RegisterClass;
1506      else if (Is64Bit && RegVT == MVT::i64)
1507        RC = X86::GR64RegisterClass;
1508      else if (RegVT == MVT::f32)
1509        RC = X86::FR32RegisterClass;
1510      else if (RegVT == MVT::f64)
1511        RC = X86::FR64RegisterClass;
1512      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1513        RC = X86::VR128RegisterClass;
1514      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1515        RC = X86::VR64RegisterClass;
1516      else
1517        llvm_unreachable("Unknown argument type!");
1518
1519      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1520      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1521
1522      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1523      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1524      // right size.
1525      if (VA.getLocInfo() == CCValAssign::SExt)
1526        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1527                               DAG.getValueType(VA.getValVT()));
1528      else if (VA.getLocInfo() == CCValAssign::ZExt)
1529        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1530                               DAG.getValueType(VA.getValVT()));
1531      else if (VA.getLocInfo() == CCValAssign::BCvt)
1532        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1533
1534      if (VA.isExtInLoc()) {
1535        // Handle MMX values passed in XMM regs.
1536        if (RegVT.isVector()) {
1537          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1538                                 ArgValue, DAG.getConstant(0, MVT::i64));
1539          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1540        } else
1541          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1542      }
1543    } else {
1544      assert(VA.isMemLoc());
1545      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1546    }
1547
1548    // If value is passed via pointer - do a load.
1549    if (VA.getLocInfo() == CCValAssign::Indirect)
1550      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1551                             false, false, 0);
1552
1553    InVals.push_back(ArgValue);
1554  }
1555
1556  // The x86-64 ABI for returning structs by value requires that we copy
1557  // the sret argument into %rax for the return. Save the argument into
1558  // a virtual register so that we can access it from the return points.
1559  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1560    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1561    unsigned Reg = FuncInfo->getSRetReturnReg();
1562    if (!Reg) {
1563      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1564      FuncInfo->setSRetReturnReg(Reg);
1565    }
1566    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1567    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1568  }
1569
1570  unsigned StackSize = CCInfo.getNextStackOffset();
1571  // Align stack specially for tail calls.
1572  if (FuncIsMadeTailCallSafe(CallConv))
1573    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1574
1575  // If the function takes variable number of arguments, make a frame index for
1576  // the start of the first vararg value... for expansion of llvm.va_start.
1577  if (isVarArg) {
1578    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1579      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1580    }
1581    if (Is64Bit) {
1582      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1583
1584      // FIXME: We should really autogenerate these arrays
1585      static const unsigned GPR64ArgRegsWin64[] = {
1586        X86::RCX, X86::RDX, X86::R8,  X86::R9
1587      };
1588      static const unsigned XMMArgRegsWin64[] = {
1589        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1590      };
1591      static const unsigned GPR64ArgRegs64Bit[] = {
1592        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1593      };
1594      static const unsigned XMMArgRegs64Bit[] = {
1595        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1596        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1597      };
1598      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1599
1600      if (IsWin64) {
1601        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1602        GPR64ArgRegs = GPR64ArgRegsWin64;
1603        XMMArgRegs = XMMArgRegsWin64;
1604      } else {
1605        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1606        GPR64ArgRegs = GPR64ArgRegs64Bit;
1607        XMMArgRegs = XMMArgRegs64Bit;
1608      }
1609      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1610                                                       TotalNumIntRegs);
1611      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1612                                                       TotalNumXMMRegs);
1613
1614      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1615      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1616             "SSE register cannot be used when SSE is disabled!");
1617      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1618             "SSE register cannot be used when SSE is disabled!");
1619      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1620        // Kernel mode asks for SSE to be disabled, so don't push them
1621        // on the stack.
1622        TotalNumXMMRegs = 0;
1623
1624      // For X86-64, if there are vararg parameters that are passed via
1625      // registers, then we must store them to their spots on the stack so they
1626      // may be loaded by deferencing the result of va_next.
1627      VarArgsGPOffset = NumIntRegs * 8;
1628      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1629      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1630                                                 TotalNumXMMRegs * 16, 16,
1631                                                 false);
1632
1633      // Store the integer parameter registers.
1634      SmallVector<SDValue, 8> MemOps;
1635      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1636      unsigned Offset = VarArgsGPOffset;
1637      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1638        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1639                                  DAG.getIntPtrConstant(Offset));
1640        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1641                                     X86::GR64RegisterClass);
1642        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1643        SDValue Store =
1644          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1645                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1646                       Offset, false, false, 0);
1647        MemOps.push_back(Store);
1648        Offset += 8;
1649      }
1650
1651      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1652        // Now store the XMM (fp + vector) parameter registers.
1653        SmallVector<SDValue, 11> SaveXMMOps;
1654        SaveXMMOps.push_back(Chain);
1655
1656        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1657        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1658        SaveXMMOps.push_back(ALVal);
1659
1660        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1661        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1662
1663        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1664          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1665                                       X86::VR128RegisterClass);
1666          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1667          SaveXMMOps.push_back(Val);
1668        }
1669        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1670                                     MVT::Other,
1671                                     &SaveXMMOps[0], SaveXMMOps.size()));
1672      }
1673
1674      if (!MemOps.empty())
1675        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1676                            &MemOps[0], MemOps.size());
1677    }
1678  }
1679
1680  // Some CCs need callee pop.
1681  if (IsCalleePop(isVarArg, CallConv)) {
1682    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1683  } else {
1684    BytesToPopOnReturn  = 0; // Callee pops nothing.
1685    // If this is an sret function, the return should pop the hidden pointer.
1686    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1687      BytesToPopOnReturn = 4;
1688  }
1689
1690  if (!Is64Bit) {
1691    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1692    if (CallConv == CallingConv::X86_FastCall)
1693      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1694  }
1695
1696  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1697
1698  return Chain;
1699}
1700
1701SDValue
1702X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1703                                    SDValue StackPtr, SDValue Arg,
1704                                    DebugLoc dl, SelectionDAG &DAG,
1705                                    const CCValAssign &VA,
1706                                    ISD::ArgFlagsTy Flags) {
1707  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1708  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1709  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1710  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1711  if (Flags.isByVal()) {
1712    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1713  }
1714  return DAG.getStore(Chain, dl, Arg, PtrOff,
1715                      PseudoSourceValue::getStack(), LocMemOffset,
1716                      false, false, 0);
1717}
1718
1719/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1720/// optimization is performed and it is required.
1721SDValue
1722X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1723                                           SDValue &OutRetAddr, SDValue Chain,
1724                                           bool IsTailCall, bool Is64Bit,
1725                                           int FPDiff, DebugLoc dl) {
1726  // Adjust the Return address stack slot.
1727  EVT VT = getPointerTy();
1728  OutRetAddr = getReturnAddressFrameIndex(DAG);
1729
1730  // Load the "old" Return address.
1731  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1732  return SDValue(OutRetAddr.getNode(), 1);
1733}
1734
1735/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1736/// optimization is performed and it is required (FPDiff!=0).
1737static SDValue
1738EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1739                         SDValue Chain, SDValue RetAddrFrIdx,
1740                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1741  // Store the return address to the appropriate stack slot.
1742  if (!FPDiff) return Chain;
1743  // Calculate the new stack slot for the return address.
1744  int SlotSize = Is64Bit ? 8 : 4;
1745  int NewReturnAddrFI =
1746    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, true,false);
1747  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1748  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1749  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1750                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1751                       false, false, 0);
1752  return Chain;
1753}
1754
1755SDValue
1756X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1757                             CallingConv::ID CallConv, bool isVarArg,
1758                             bool &isTailCall,
1759                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1760                             const SmallVectorImpl<ISD::InputArg> &Ins,
1761                             DebugLoc dl, SelectionDAG &DAG,
1762                             SmallVectorImpl<SDValue> &InVals) {
1763  MachineFunction &MF = DAG.getMachineFunction();
1764  bool Is64Bit        = Subtarget->is64Bit();
1765  bool IsStructRet    = CallIsStructReturn(Outs);
1766  bool IsSibcall      = false;
1767
1768  if (isTailCall) {
1769    // Check if it's really possible to do a tail call.
1770    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
1771                                                   Outs, Ins, DAG);
1772
1773    // Sibcalls are automatically detected tailcalls which do not require
1774    // ABI changes.
1775    if (!GuaranteedTailCallOpt && isTailCall)
1776      IsSibcall = true;
1777
1778    if (isTailCall)
1779      ++NumTailCalls;
1780  }
1781
1782  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1783         "Var args not supported with calling convention fastcc");
1784
1785  // Analyze operands of the call, assigning locations to each operand.
1786  SmallVector<CCValAssign, 16> ArgLocs;
1787  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1788                 ArgLocs, *DAG.getContext());
1789  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1790
1791  // Get a count of how many bytes are to be pushed on the stack.
1792  unsigned NumBytes = CCInfo.getNextStackOffset();
1793  if (IsSibcall)
1794    // This is a sibcall. The memory operands are available in caller's
1795    // own caller's stack.
1796    NumBytes = 0;
1797  else if (GuaranteedTailCallOpt && CallConv == CallingConv::Fast)
1798    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1799
1800  int FPDiff = 0;
1801  if (isTailCall && !IsSibcall) {
1802    // Lower arguments at fp - stackoffset + fpdiff.
1803    unsigned NumBytesCallerPushed =
1804      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1805    FPDiff = NumBytesCallerPushed - NumBytes;
1806
1807    // Set the delta of movement of the returnaddr stackslot.
1808    // But only set if delta is greater than previous delta.
1809    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1810      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1811  }
1812
1813  if (!IsSibcall)
1814    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1815
1816  SDValue RetAddrFrIdx;
1817  // Load return adress for tail calls.
1818  if (isTailCall && FPDiff)
1819    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1820                                    Is64Bit, FPDiff, dl);
1821
1822  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1823  SmallVector<SDValue, 8> MemOpChains;
1824  SDValue StackPtr;
1825
1826  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1827  // of tail call optimization arguments are handle later.
1828  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1829    CCValAssign &VA = ArgLocs[i];
1830    EVT RegVT = VA.getLocVT();
1831    SDValue Arg = Outs[i].Val;
1832    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1833    bool isByVal = Flags.isByVal();
1834
1835    // Promote the value if needed.
1836    switch (VA.getLocInfo()) {
1837    default: llvm_unreachable("Unknown loc info!");
1838    case CCValAssign::Full: break;
1839    case CCValAssign::SExt:
1840      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1841      break;
1842    case CCValAssign::ZExt:
1843      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1844      break;
1845    case CCValAssign::AExt:
1846      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1847        // Special case: passing MMX values in XMM registers.
1848        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1849        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1850        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1851      } else
1852        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1853      break;
1854    case CCValAssign::BCvt:
1855      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1856      break;
1857    case CCValAssign::Indirect: {
1858      // Store the argument.
1859      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1860      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1861      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1862                           PseudoSourceValue::getFixedStack(FI), 0,
1863                           false, false, 0);
1864      Arg = SpillSlot;
1865      break;
1866    }
1867    }
1868
1869    if (VA.isRegLoc()) {
1870      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1871    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1872      assert(VA.isMemLoc());
1873      if (StackPtr.getNode() == 0)
1874        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1875      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1876                                             dl, DAG, VA, Flags));
1877    }
1878  }
1879
1880  if (!MemOpChains.empty())
1881    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1882                        &MemOpChains[0], MemOpChains.size());
1883
1884  // Build a sequence of copy-to-reg nodes chained together with token chain
1885  // and flag operands which copy the outgoing args into registers.
1886  SDValue InFlag;
1887  // Tail call byval lowering might overwrite argument registers so in case of
1888  // tail call optimization the copies to registers are lowered later.
1889  if (!isTailCall)
1890    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1891      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1892                               RegsToPass[i].second, InFlag);
1893      InFlag = Chain.getValue(1);
1894    }
1895
1896  if (Subtarget->isPICStyleGOT()) {
1897    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1898    // GOT pointer.
1899    if (!isTailCall) {
1900      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1901                               DAG.getNode(X86ISD::GlobalBaseReg,
1902                                           DebugLoc::getUnknownLoc(),
1903                                           getPointerTy()),
1904                               InFlag);
1905      InFlag = Chain.getValue(1);
1906    } else {
1907      // If we are tail calling and generating PIC/GOT style code load the
1908      // address of the callee into ECX. The value in ecx is used as target of
1909      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1910      // for tail calls on PIC/GOT architectures. Normally we would just put the
1911      // address of GOT into ebx and then call target@PLT. But for tail calls
1912      // ebx would be restored (since ebx is callee saved) before jumping to the
1913      // target@PLT.
1914
1915      // Note: The actual moving to ECX is done further down.
1916      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1917      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1918          !G->getGlobal()->hasProtectedVisibility())
1919        Callee = LowerGlobalAddress(Callee, DAG);
1920      else if (isa<ExternalSymbolSDNode>(Callee))
1921        Callee = LowerExternalSymbol(Callee, DAG);
1922    }
1923  }
1924
1925  if (Is64Bit && isVarArg) {
1926    // From AMD64 ABI document:
1927    // For calls that may call functions that use varargs or stdargs
1928    // (prototype-less calls or calls to functions containing ellipsis (...) in
1929    // the declaration) %al is used as hidden argument to specify the number
1930    // of SSE registers used. The contents of %al do not need to match exactly
1931    // the number of registers, but must be an ubound on the number of SSE
1932    // registers used and is in the range 0 - 8 inclusive.
1933
1934    // FIXME: Verify this on Win64
1935    // Count the number of XMM registers allocated.
1936    static const unsigned XMMArgRegs[] = {
1937      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1939    };
1940    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1941    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1942           && "SSE registers cannot be used when SSE is disabled");
1943
1944    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1945                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1946    InFlag = Chain.getValue(1);
1947  }
1948
1949
1950  // For tail calls lower the arguments to the 'real' stack slot.
1951  if (isTailCall) {
1952    // Force all the incoming stack arguments to be loaded from the stack
1953    // before any new outgoing arguments are stored to the stack, because the
1954    // outgoing stack slots may alias the incoming argument stack slots, and
1955    // the alias isn't otherwise explicit. This is slightly more conservative
1956    // than necessary, because it means that each store effectively depends
1957    // on every argument instead of just those arguments it would clobber.
1958    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1959
1960    SmallVector<SDValue, 8> MemOpChains2;
1961    SDValue FIN;
1962    int FI = 0;
1963    // Do not flag preceeding copytoreg stuff together with the following stuff.
1964    InFlag = SDValue();
1965    if (GuaranteedTailCallOpt) {
1966      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1967        CCValAssign &VA = ArgLocs[i];
1968        if (VA.isRegLoc())
1969          continue;
1970        assert(VA.isMemLoc());
1971        SDValue Arg = Outs[i].Val;
1972        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1973        // Create frame index.
1974        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1975        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1976        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1977        FIN = DAG.getFrameIndex(FI, getPointerTy());
1978
1979        if (Flags.isByVal()) {
1980          // Copy relative to framepointer.
1981          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1982          if (StackPtr.getNode() == 0)
1983            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1984                                          getPointerTy());
1985          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1986
1987          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1988                                                           ArgChain,
1989                                                           Flags, DAG, dl));
1990        } else {
1991          // Store relative to framepointer.
1992          MemOpChains2.push_back(
1993            DAG.getStore(ArgChain, dl, Arg, FIN,
1994                         PseudoSourceValue::getFixedStack(FI), 0,
1995                         false, false, 0));
1996        }
1997      }
1998    }
1999
2000    if (!MemOpChains2.empty())
2001      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2002                          &MemOpChains2[0], MemOpChains2.size());
2003
2004    // Copy arguments to their registers.
2005    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2006      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2007                               RegsToPass[i].second, InFlag);
2008      InFlag = Chain.getValue(1);
2009    }
2010    InFlag =SDValue();
2011
2012    // Store the return address to the appropriate stack slot.
2013    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2014                                     FPDiff, dl);
2015  }
2016
2017  bool WasGlobalOrExternal = false;
2018  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2019    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2020    // In the 64-bit large code model, we have to make all calls
2021    // through a register, since the call instruction's 32-bit
2022    // pc-relative offset may not be large enough to hold the whole
2023    // address.
2024  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2025    WasGlobalOrExternal = true;
2026    // If the callee is a GlobalAddress node (quite common, every direct call
2027    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2028    // it.
2029
2030    // We should use extra load for direct calls to dllimported functions in
2031    // non-JIT mode.
2032    GlobalValue *GV = G->getGlobal();
2033    if (!GV->hasDLLImportLinkage()) {
2034      unsigned char OpFlags = 0;
2035
2036      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2037      // external symbols most go through the PLT in PIC mode.  If the symbol
2038      // has hidden or protected visibility, or if it is static or local, then
2039      // we don't need to use the PLT - we can directly call it.
2040      if (Subtarget->isTargetELF() &&
2041          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2042          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2043        OpFlags = X86II::MO_PLT;
2044      } else if (Subtarget->isPICStyleStubAny() &&
2045               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2046               Subtarget->getDarwinVers() < 9) {
2047        // PC-relative references to external symbols should go through $stub,
2048        // unless we're building with the leopard linker or later, which
2049        // automatically synthesizes these stubs.
2050        OpFlags = X86II::MO_DARWIN_STUB;
2051      }
2052
2053      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2054                                          G->getOffset(), OpFlags);
2055    }
2056  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2057    WasGlobalOrExternal = true;
2058    unsigned char OpFlags = 0;
2059
2060    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2061    // symbols should go through the PLT.
2062    if (Subtarget->isTargetELF() &&
2063        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2064      OpFlags = X86II::MO_PLT;
2065    } else if (Subtarget->isPICStyleStubAny() &&
2066             Subtarget->getDarwinVers() < 9) {
2067      // PC-relative references to external symbols should go through $stub,
2068      // unless we're building with the leopard linker or later, which
2069      // automatically synthesizes these stubs.
2070      OpFlags = X86II::MO_DARWIN_STUB;
2071    }
2072
2073    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2074                                         OpFlags);
2075  }
2076
2077  if (isTailCall && !WasGlobalOrExternal) {
2078    // Force the address into a (call preserved) caller-saved register since
2079    // tailcall must happen after callee-saved registers are poped.
2080    // FIXME: Give it a special register class that contains caller-saved
2081    // register instead?
2082    unsigned TCReg = Is64Bit ? X86::R11 : X86::EAX;
2083    Chain = DAG.getCopyToReg(Chain,  dl,
2084                             DAG.getRegister(TCReg, getPointerTy()),
2085                             Callee,InFlag);
2086    Callee = DAG.getRegister(TCReg, getPointerTy());
2087  }
2088
2089  // Returns a chain & a flag for retval copy to use.
2090  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2091  SmallVector<SDValue, 8> Ops;
2092
2093  if (!IsSibcall && isTailCall) {
2094    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2095                           DAG.getIntPtrConstant(0, true), InFlag);
2096    InFlag = Chain.getValue(1);
2097  }
2098
2099  Ops.push_back(Chain);
2100  Ops.push_back(Callee);
2101
2102  if (isTailCall)
2103    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2104
2105  // Add argument registers to the end of the list so that they are known live
2106  // into the call.
2107  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2108    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2109                                  RegsToPass[i].second.getValueType()));
2110
2111  // Add an implicit use GOT pointer in EBX.
2112  if (!isTailCall && Subtarget->isPICStyleGOT())
2113    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2114
2115  // Add an implicit use of AL for x86 vararg functions.
2116  if (Is64Bit && isVarArg)
2117    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2118
2119  if (InFlag.getNode())
2120    Ops.push_back(InFlag);
2121
2122  if (isTailCall) {
2123    // If this is the first return lowered for this function, add the regs
2124    // to the liveout set for the function.
2125    if (MF.getRegInfo().liveout_empty()) {
2126      SmallVector<CCValAssign, 16> RVLocs;
2127      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2128                     *DAG.getContext());
2129      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2130      for (unsigned i = 0; i != RVLocs.size(); ++i)
2131        if (RVLocs[i].isRegLoc())
2132          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2133    }
2134
2135    assert(((Callee.getOpcode() == ISD::Register &&
2136               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2137                cast<RegisterSDNode>(Callee)->getReg() == X86::R11)) ||
2138              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2139              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2140           "Expecting a global address, external symbol, or scratch register");
2141
2142    return DAG.getNode(X86ISD::TC_RETURN, dl,
2143                       NodeTys, &Ops[0], Ops.size());
2144  }
2145
2146  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2147  InFlag = Chain.getValue(1);
2148
2149  // Create the CALLSEQ_END node.
2150  unsigned NumBytesForCalleeToPush;
2151  if (IsCalleePop(isVarArg, CallConv))
2152    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2153  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2154    // If this is a call to a struct-return function, the callee
2155    // pops the hidden struct pointer, so we have to push it back.
2156    // This is common for Darwin/X86, Linux & Mingw32 targets.
2157    NumBytesForCalleeToPush = 4;
2158  else
2159    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2160
2161  // Returns a flag for retval copy to use.
2162  if (!IsSibcall) {
2163    Chain = DAG.getCALLSEQ_END(Chain,
2164                               DAG.getIntPtrConstant(NumBytes, true),
2165                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2166                                                     true),
2167                               InFlag);
2168    InFlag = Chain.getValue(1);
2169  }
2170
2171  // Handle result values, copying them out of physregs into vregs that we
2172  // return.
2173  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2174                         Ins, dl, DAG, InVals);
2175}
2176
2177
2178//===----------------------------------------------------------------------===//
2179//                Fast Calling Convention (tail call) implementation
2180//===----------------------------------------------------------------------===//
2181
2182//  Like std call, callee cleans arguments, convention except that ECX is
2183//  reserved for storing the tail called function address. Only 2 registers are
2184//  free for argument passing (inreg). Tail call optimization is performed
2185//  provided:
2186//                * tailcallopt is enabled
2187//                * caller/callee are fastcc
2188//  On X86_64 architecture with GOT-style position independent code only local
2189//  (within module) calls are supported at the moment.
2190//  To keep the stack aligned according to platform abi the function
2191//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2192//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2193//  If a tail called function callee has more arguments than the caller the
2194//  caller needs to make sure that there is room to move the RETADDR to. This is
2195//  achieved by reserving an area the size of the argument delta right after the
2196//  original REtADDR, but before the saved framepointer or the spilled registers
2197//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2198//  stack layout:
2199//    arg1
2200//    arg2
2201//    RETADDR
2202//    [ new RETADDR
2203//      move area ]
2204//    (possible EBP)
2205//    ESI
2206//    EDI
2207//    local1 ..
2208
2209/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2210/// for a 16 byte align requirement.
2211unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2212                                                        SelectionDAG& DAG) {
2213  MachineFunction &MF = DAG.getMachineFunction();
2214  const TargetMachine &TM = MF.getTarget();
2215  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2216  unsigned StackAlignment = TFI.getStackAlignment();
2217  uint64_t AlignMask = StackAlignment - 1;
2218  int64_t Offset = StackSize;
2219  uint64_t SlotSize = TD->getPointerSize();
2220  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2221    // Number smaller than 12 so just add the difference.
2222    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2223  } else {
2224    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2225    Offset = ((~AlignMask) & Offset) + StackAlignment +
2226      (StackAlignment-SlotSize);
2227  }
2228  return Offset;
2229}
2230
2231/// MatchingStackOffset - Return true if the given stack call argument is
2232/// already available in the same position (relatively) of the caller's
2233/// incoming argument stack.
2234static
2235bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2236                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2237                         const X86InstrInfo *TII) {
2238  int FI;
2239  if (Arg.getOpcode() == ISD::CopyFromReg) {
2240    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2241    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2242      return false;
2243    MachineInstr *Def = MRI->getVRegDef(VR);
2244    if (!Def)
2245      return false;
2246    if (!Flags.isByVal()) {
2247      if (!TII->isLoadFromStackSlot(Def, FI))
2248        return false;
2249    } else {
2250      unsigned Opcode = Def->getOpcode();
2251      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2252          Def->getOperand(1).isFI()) {
2253        FI = Def->getOperand(1).getIndex();
2254        if (MFI->getObjectSize(FI) != Flags.getByValSize())
2255          return false;
2256      } else
2257        return false;
2258    }
2259  } else {
2260    LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg);
2261    if (!Ld)
2262      return false;
2263    SDValue Ptr = Ld->getBasePtr();
2264    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2265    if (!FINode)
2266      return false;
2267    FI = FINode->getIndex();
2268  }
2269
2270  if (!MFI->isFixedObjectIndex(FI))
2271    return false;
2272  return Offset == MFI->getObjectOffset(FI);
2273}
2274
2275/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2276/// for tail call optimization. Targets which want to do tail call
2277/// optimization should implement this function.
2278bool
2279X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2280                                                     CallingConv::ID CalleeCC,
2281                                                     bool isVarArg,
2282                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2283                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2284                                                     SelectionDAG& DAG) const {
2285  if (CalleeCC != CallingConv::Fast &&
2286      CalleeCC != CallingConv::C)
2287    return false;
2288
2289  // If -tailcallopt is specified, make fastcc functions tail-callable.
2290  const Function *CallerF = DAG.getMachineFunction().getFunction();
2291  if (GuaranteedTailCallOpt) {
2292    if (CalleeCC == CallingConv::Fast &&
2293        CallerF->getCallingConv() == CalleeCC)
2294      return true;
2295    return false;
2296  }
2297
2298  // Look for obvious safe cases to perform tail call optimization that does not
2299  // requite ABI changes. This is what gcc calls sibcall.
2300
2301  // Do not tail call optimize vararg calls for now.
2302  if (isVarArg)
2303    return false;
2304
2305  // If the callee takes no arguments then go on to check the results of the
2306  // call.
2307  if (!Outs.empty()) {
2308    // Check if stack adjustment is needed. For now, do not do this if any
2309    // argument is passed on the stack.
2310    SmallVector<CCValAssign, 16> ArgLocs;
2311    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2312                   ArgLocs, *DAG.getContext());
2313    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2314    if (CCInfo.getNextStackOffset()) {
2315      MachineFunction &MF = DAG.getMachineFunction();
2316      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2317        return false;
2318      if (Subtarget->isTargetWin64())
2319        // Win64 ABI has additional complications.
2320        return false;
2321
2322      // Check if the arguments are already laid out in the right way as
2323      // the caller's fixed stack objects.
2324      MachineFrameInfo *MFI = MF.getFrameInfo();
2325      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2326      const X86InstrInfo *TII =
2327        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2328      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2329        CCValAssign &VA = ArgLocs[i];
2330        EVT RegVT = VA.getLocVT();
2331        SDValue Arg = Outs[i].Val;
2332        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2333        if (VA.getLocInfo() == CCValAssign::Indirect)
2334          return false;
2335        if (!VA.isRegLoc()) {
2336          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2337                                   MFI, MRI, TII))
2338            return false;
2339        }
2340      }
2341    }
2342  }
2343
2344  return true;
2345}
2346
2347FastISel *
2348X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2349                            DwarfWriter *dw,
2350                            DenseMap<const Value *, unsigned> &vm,
2351                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2352                            DenseMap<const AllocaInst *, int> &am
2353#ifndef NDEBUG
2354                          , SmallSet<Instruction*, 8> &cil
2355#endif
2356                                  ) {
2357  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2358#ifndef NDEBUG
2359                             , cil
2360#endif
2361                             );
2362}
2363
2364
2365//===----------------------------------------------------------------------===//
2366//                           Other Lowering Hooks
2367//===----------------------------------------------------------------------===//
2368
2369
2370SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2371  MachineFunction &MF = DAG.getMachineFunction();
2372  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2373  int ReturnAddrIndex = FuncInfo->getRAIndex();
2374
2375  if (ReturnAddrIndex == 0) {
2376    // Set up a frame object for the return address.
2377    uint64_t SlotSize = TD->getPointerSize();
2378    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2379                                                           true, false);
2380    FuncInfo->setRAIndex(ReturnAddrIndex);
2381  }
2382
2383  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2384}
2385
2386
2387bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2388                                       bool hasSymbolicDisplacement) {
2389  // Offset should fit into 32 bit immediate field.
2390  if (!isInt32(Offset))
2391    return false;
2392
2393  // If we don't have a symbolic displacement - we don't have any extra
2394  // restrictions.
2395  if (!hasSymbolicDisplacement)
2396    return true;
2397
2398  // FIXME: Some tweaks might be needed for medium code model.
2399  if (M != CodeModel::Small && M != CodeModel::Kernel)
2400    return false;
2401
2402  // For small code model we assume that latest object is 16MB before end of 31
2403  // bits boundary. We may also accept pretty large negative constants knowing
2404  // that all objects are in the positive half of address space.
2405  if (M == CodeModel::Small && Offset < 16*1024*1024)
2406    return true;
2407
2408  // For kernel code model we know that all object resist in the negative half
2409  // of 32bits address space. We may not accept negative offsets, since they may
2410  // be just off and we may accept pretty large positive ones.
2411  if (M == CodeModel::Kernel && Offset > 0)
2412    return true;
2413
2414  return false;
2415}
2416
2417/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2418/// specific condition code, returning the condition code and the LHS/RHS of the
2419/// comparison to make.
2420static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2421                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2422  if (!isFP) {
2423    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2424      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2425        // X > -1   -> X == 0, jump !sign.
2426        RHS = DAG.getConstant(0, RHS.getValueType());
2427        return X86::COND_NS;
2428      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2429        // X < 0   -> X == 0, jump on sign.
2430        return X86::COND_S;
2431      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2432        // X < 1   -> X <= 0
2433        RHS = DAG.getConstant(0, RHS.getValueType());
2434        return X86::COND_LE;
2435      }
2436    }
2437
2438    switch (SetCCOpcode) {
2439    default: llvm_unreachable("Invalid integer condition!");
2440    case ISD::SETEQ:  return X86::COND_E;
2441    case ISD::SETGT:  return X86::COND_G;
2442    case ISD::SETGE:  return X86::COND_GE;
2443    case ISD::SETLT:  return X86::COND_L;
2444    case ISD::SETLE:  return X86::COND_LE;
2445    case ISD::SETNE:  return X86::COND_NE;
2446    case ISD::SETULT: return X86::COND_B;
2447    case ISD::SETUGT: return X86::COND_A;
2448    case ISD::SETULE: return X86::COND_BE;
2449    case ISD::SETUGE: return X86::COND_AE;
2450    }
2451  }
2452
2453  // First determine if it is required or is profitable to flip the operands.
2454
2455  // If LHS is a foldable load, but RHS is not, flip the condition.
2456  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2457      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2458    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2459    std::swap(LHS, RHS);
2460  }
2461
2462  switch (SetCCOpcode) {
2463  default: break;
2464  case ISD::SETOLT:
2465  case ISD::SETOLE:
2466  case ISD::SETUGT:
2467  case ISD::SETUGE:
2468    std::swap(LHS, RHS);
2469    break;
2470  }
2471
2472  // On a floating point condition, the flags are set as follows:
2473  // ZF  PF  CF   op
2474  //  0 | 0 | 0 | X > Y
2475  //  0 | 0 | 1 | X < Y
2476  //  1 | 0 | 0 | X == Y
2477  //  1 | 1 | 1 | unordered
2478  switch (SetCCOpcode) {
2479  default: llvm_unreachable("Condcode should be pre-legalized away");
2480  case ISD::SETUEQ:
2481  case ISD::SETEQ:   return X86::COND_E;
2482  case ISD::SETOLT:              // flipped
2483  case ISD::SETOGT:
2484  case ISD::SETGT:   return X86::COND_A;
2485  case ISD::SETOLE:              // flipped
2486  case ISD::SETOGE:
2487  case ISD::SETGE:   return X86::COND_AE;
2488  case ISD::SETUGT:              // flipped
2489  case ISD::SETULT:
2490  case ISD::SETLT:   return X86::COND_B;
2491  case ISD::SETUGE:              // flipped
2492  case ISD::SETULE:
2493  case ISD::SETLE:   return X86::COND_BE;
2494  case ISD::SETONE:
2495  case ISD::SETNE:   return X86::COND_NE;
2496  case ISD::SETUO:   return X86::COND_P;
2497  case ISD::SETO:    return X86::COND_NP;
2498  case ISD::SETOEQ:
2499  case ISD::SETUNE:  return X86::COND_INVALID;
2500  }
2501}
2502
2503/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2504/// code. Current x86 isa includes the following FP cmov instructions:
2505/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2506static bool hasFPCMov(unsigned X86CC) {
2507  switch (X86CC) {
2508  default:
2509    return false;
2510  case X86::COND_B:
2511  case X86::COND_BE:
2512  case X86::COND_E:
2513  case X86::COND_P:
2514  case X86::COND_A:
2515  case X86::COND_AE:
2516  case X86::COND_NE:
2517  case X86::COND_NP:
2518    return true;
2519  }
2520}
2521
2522/// isFPImmLegal - Returns true if the target can instruction select the
2523/// specified FP immediate natively. If false, the legalizer will
2524/// materialize the FP immediate as a load from a constant pool.
2525bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2526  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2527    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2528      return true;
2529  }
2530  return false;
2531}
2532
2533/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2534/// the specified range (L, H].
2535static bool isUndefOrInRange(int Val, int Low, int Hi) {
2536  return (Val < 0) || (Val >= Low && Val < Hi);
2537}
2538
2539/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2540/// specified value.
2541static bool isUndefOrEqual(int Val, int CmpVal) {
2542  if (Val < 0 || Val == CmpVal)
2543    return true;
2544  return false;
2545}
2546
2547/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2548/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2549/// the second operand.
2550static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2551  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2552    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2553  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2554    return (Mask[0] < 2 && Mask[1] < 2);
2555  return false;
2556}
2557
2558bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2559  SmallVector<int, 8> M;
2560  N->getMask(M);
2561  return ::isPSHUFDMask(M, N->getValueType(0));
2562}
2563
2564/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2565/// is suitable for input to PSHUFHW.
2566static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2567  if (VT != MVT::v8i16)
2568    return false;
2569
2570  // Lower quadword copied in order or undef.
2571  for (int i = 0; i != 4; ++i)
2572    if (Mask[i] >= 0 && Mask[i] != i)
2573      return false;
2574
2575  // Upper quadword shuffled.
2576  for (int i = 4; i != 8; ++i)
2577    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2578      return false;
2579
2580  return true;
2581}
2582
2583bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2584  SmallVector<int, 8> M;
2585  N->getMask(M);
2586  return ::isPSHUFHWMask(M, N->getValueType(0));
2587}
2588
2589/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2590/// is suitable for input to PSHUFLW.
2591static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2592  if (VT != MVT::v8i16)
2593    return false;
2594
2595  // Upper quadword copied in order.
2596  for (int i = 4; i != 8; ++i)
2597    if (Mask[i] >= 0 && Mask[i] != i)
2598      return false;
2599
2600  // Lower quadword shuffled.
2601  for (int i = 0; i != 4; ++i)
2602    if (Mask[i] >= 4)
2603      return false;
2604
2605  return true;
2606}
2607
2608bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2609  SmallVector<int, 8> M;
2610  N->getMask(M);
2611  return ::isPSHUFLWMask(M, N->getValueType(0));
2612}
2613
2614/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2615/// is suitable for input to PALIGNR.
2616static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2617                          bool hasSSSE3) {
2618  int i, e = VT.getVectorNumElements();
2619
2620  // Do not handle v2i64 / v2f64 shuffles with palignr.
2621  if (e < 4 || !hasSSSE3)
2622    return false;
2623
2624  for (i = 0; i != e; ++i)
2625    if (Mask[i] >= 0)
2626      break;
2627
2628  // All undef, not a palignr.
2629  if (i == e)
2630    return false;
2631
2632  // Determine if it's ok to perform a palignr with only the LHS, since we
2633  // don't have access to the actual shuffle elements to see if RHS is undef.
2634  bool Unary = Mask[i] < (int)e;
2635  bool NeedsUnary = false;
2636
2637  int s = Mask[i] - i;
2638
2639  // Check the rest of the elements to see if they are consecutive.
2640  for (++i; i != e; ++i) {
2641    int m = Mask[i];
2642    if (m < 0)
2643      continue;
2644
2645    Unary = Unary && (m < (int)e);
2646    NeedsUnary = NeedsUnary || (m < s);
2647
2648    if (NeedsUnary && !Unary)
2649      return false;
2650    if (Unary && m != ((s+i) & (e-1)))
2651      return false;
2652    if (!Unary && m != (s+i))
2653      return false;
2654  }
2655  return true;
2656}
2657
2658bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2659  SmallVector<int, 8> M;
2660  N->getMask(M);
2661  return ::isPALIGNRMask(M, N->getValueType(0), true);
2662}
2663
2664/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2665/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2666static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2667  int NumElems = VT.getVectorNumElements();
2668  if (NumElems != 2 && NumElems != 4)
2669    return false;
2670
2671  int Half = NumElems / 2;
2672  for (int i = 0; i < Half; ++i)
2673    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2674      return false;
2675  for (int i = Half; i < NumElems; ++i)
2676    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2677      return false;
2678
2679  return true;
2680}
2681
2682bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2683  SmallVector<int, 8> M;
2684  N->getMask(M);
2685  return ::isSHUFPMask(M, N->getValueType(0));
2686}
2687
2688/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2689/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2690/// half elements to come from vector 1 (which would equal the dest.) and
2691/// the upper half to come from vector 2.
2692static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2693  int NumElems = VT.getVectorNumElements();
2694
2695  if (NumElems != 2 && NumElems != 4)
2696    return false;
2697
2698  int Half = NumElems / 2;
2699  for (int i = 0; i < Half; ++i)
2700    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2701      return false;
2702  for (int i = Half; i < NumElems; ++i)
2703    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2704      return false;
2705  return true;
2706}
2707
2708static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2709  SmallVector<int, 8> M;
2710  N->getMask(M);
2711  return isCommutedSHUFPMask(M, N->getValueType(0));
2712}
2713
2714/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2715/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2716bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2717  if (N->getValueType(0).getVectorNumElements() != 4)
2718    return false;
2719
2720  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2721  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2722         isUndefOrEqual(N->getMaskElt(1), 7) &&
2723         isUndefOrEqual(N->getMaskElt(2), 2) &&
2724         isUndefOrEqual(N->getMaskElt(3), 3);
2725}
2726
2727/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2728/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2729/// <2, 3, 2, 3>
2730bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2731  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2732
2733  if (NumElems != 4)
2734    return false;
2735
2736  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2737  isUndefOrEqual(N->getMaskElt(1), 3) &&
2738  isUndefOrEqual(N->getMaskElt(2), 2) &&
2739  isUndefOrEqual(N->getMaskElt(3), 3);
2740}
2741
2742/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2743/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2744bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2745  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2746
2747  if (NumElems != 2 && NumElems != 4)
2748    return false;
2749
2750  for (unsigned i = 0; i < NumElems/2; ++i)
2751    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2752      return false;
2753
2754  for (unsigned i = NumElems/2; i < NumElems; ++i)
2755    if (!isUndefOrEqual(N->getMaskElt(i), i))
2756      return false;
2757
2758  return true;
2759}
2760
2761/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2762/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2763bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2764  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2765
2766  if (NumElems != 2 && NumElems != 4)
2767    return false;
2768
2769  for (unsigned i = 0; i < NumElems/2; ++i)
2770    if (!isUndefOrEqual(N->getMaskElt(i), i))
2771      return false;
2772
2773  for (unsigned i = 0; i < NumElems/2; ++i)
2774    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2775      return false;
2776
2777  return true;
2778}
2779
2780/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2781/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2782static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2783                         bool V2IsSplat = false) {
2784  int NumElts = VT.getVectorNumElements();
2785  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2786    return false;
2787
2788  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2789    int BitI  = Mask[i];
2790    int BitI1 = Mask[i+1];
2791    if (!isUndefOrEqual(BitI, j))
2792      return false;
2793    if (V2IsSplat) {
2794      if (!isUndefOrEqual(BitI1, NumElts))
2795        return false;
2796    } else {
2797      if (!isUndefOrEqual(BitI1, j + NumElts))
2798        return false;
2799    }
2800  }
2801  return true;
2802}
2803
2804bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2805  SmallVector<int, 8> M;
2806  N->getMask(M);
2807  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2808}
2809
2810/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2811/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2812static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2813                         bool V2IsSplat = false) {
2814  int NumElts = VT.getVectorNumElements();
2815  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2816    return false;
2817
2818  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2819    int BitI  = Mask[i];
2820    int BitI1 = Mask[i+1];
2821    if (!isUndefOrEqual(BitI, j + NumElts/2))
2822      return false;
2823    if (V2IsSplat) {
2824      if (isUndefOrEqual(BitI1, NumElts))
2825        return false;
2826    } else {
2827      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2828        return false;
2829    }
2830  }
2831  return true;
2832}
2833
2834bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2835  SmallVector<int, 8> M;
2836  N->getMask(M);
2837  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2838}
2839
2840/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2841/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2842/// <0, 0, 1, 1>
2843static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2844  int NumElems = VT.getVectorNumElements();
2845  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2846    return false;
2847
2848  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2849    int BitI  = Mask[i];
2850    int BitI1 = Mask[i+1];
2851    if (!isUndefOrEqual(BitI, j))
2852      return false;
2853    if (!isUndefOrEqual(BitI1, j))
2854      return false;
2855  }
2856  return true;
2857}
2858
2859bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2860  SmallVector<int, 8> M;
2861  N->getMask(M);
2862  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2863}
2864
2865/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2866/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2867/// <2, 2, 3, 3>
2868static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2869  int NumElems = VT.getVectorNumElements();
2870  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2871    return false;
2872
2873  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2874    int BitI  = Mask[i];
2875    int BitI1 = Mask[i+1];
2876    if (!isUndefOrEqual(BitI, j))
2877      return false;
2878    if (!isUndefOrEqual(BitI1, j))
2879      return false;
2880  }
2881  return true;
2882}
2883
2884bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2885  SmallVector<int, 8> M;
2886  N->getMask(M);
2887  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2888}
2889
2890/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2891/// specifies a shuffle of elements that is suitable for input to MOVSS,
2892/// MOVSD, and MOVD, i.e. setting the lowest element.
2893static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2894  if (VT.getVectorElementType().getSizeInBits() < 32)
2895    return false;
2896
2897  int NumElts = VT.getVectorNumElements();
2898
2899  if (!isUndefOrEqual(Mask[0], NumElts))
2900    return false;
2901
2902  for (int i = 1; i < NumElts; ++i)
2903    if (!isUndefOrEqual(Mask[i], i))
2904      return false;
2905
2906  return true;
2907}
2908
2909bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2910  SmallVector<int, 8> M;
2911  N->getMask(M);
2912  return ::isMOVLMask(M, N->getValueType(0));
2913}
2914
2915/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2916/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2917/// element of vector 2 and the other elements to come from vector 1 in order.
2918static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2919                               bool V2IsSplat = false, bool V2IsUndef = false) {
2920  int NumOps = VT.getVectorNumElements();
2921  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2922    return false;
2923
2924  if (!isUndefOrEqual(Mask[0], 0))
2925    return false;
2926
2927  for (int i = 1; i < NumOps; ++i)
2928    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2929          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2930          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2931      return false;
2932
2933  return true;
2934}
2935
2936static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2937                           bool V2IsUndef = false) {
2938  SmallVector<int, 8> M;
2939  N->getMask(M);
2940  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2941}
2942
2943/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2944/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2945bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2946  if (N->getValueType(0).getVectorNumElements() != 4)
2947    return false;
2948
2949  // Expect 1, 1, 3, 3
2950  for (unsigned i = 0; i < 2; ++i) {
2951    int Elt = N->getMaskElt(i);
2952    if (Elt >= 0 && Elt != 1)
2953      return false;
2954  }
2955
2956  bool HasHi = false;
2957  for (unsigned i = 2; i < 4; ++i) {
2958    int Elt = N->getMaskElt(i);
2959    if (Elt >= 0 && Elt != 3)
2960      return false;
2961    if (Elt == 3)
2962      HasHi = true;
2963  }
2964  // Don't use movshdup if it can be done with a shufps.
2965  // FIXME: verify that matching u, u, 3, 3 is what we want.
2966  return HasHi;
2967}
2968
2969/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2970/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2971bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2972  if (N->getValueType(0).getVectorNumElements() != 4)
2973    return false;
2974
2975  // Expect 0, 0, 2, 2
2976  for (unsigned i = 0; i < 2; ++i)
2977    if (N->getMaskElt(i) > 0)
2978      return false;
2979
2980  bool HasHi = false;
2981  for (unsigned i = 2; i < 4; ++i) {
2982    int Elt = N->getMaskElt(i);
2983    if (Elt >= 0 && Elt != 2)
2984      return false;
2985    if (Elt == 2)
2986      HasHi = true;
2987  }
2988  // Don't use movsldup if it can be done with a shufps.
2989  return HasHi;
2990}
2991
2992/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2993/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2994bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2995  int e = N->getValueType(0).getVectorNumElements() / 2;
2996
2997  for (int i = 0; i < e; ++i)
2998    if (!isUndefOrEqual(N->getMaskElt(i), i))
2999      return false;
3000  for (int i = 0; i < e; ++i)
3001    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3002      return false;
3003  return true;
3004}
3005
3006/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3007/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3008unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3009  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3010  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3011
3012  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3013  unsigned Mask = 0;
3014  for (int i = 0; i < NumOperands; ++i) {
3015    int Val = SVOp->getMaskElt(NumOperands-i-1);
3016    if (Val < 0) Val = 0;
3017    if (Val >= NumOperands) Val -= NumOperands;
3018    Mask |= Val;
3019    if (i != NumOperands - 1)
3020      Mask <<= Shift;
3021  }
3022  return Mask;
3023}
3024
3025/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3026/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3027unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3028  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3029  unsigned Mask = 0;
3030  // 8 nodes, but we only care about the last 4.
3031  for (unsigned i = 7; i >= 4; --i) {
3032    int Val = SVOp->getMaskElt(i);
3033    if (Val >= 0)
3034      Mask |= (Val - 4);
3035    if (i != 4)
3036      Mask <<= 2;
3037  }
3038  return Mask;
3039}
3040
3041/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3042/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3043unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3044  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3045  unsigned Mask = 0;
3046  // 8 nodes, but we only care about the first 4.
3047  for (int i = 3; i >= 0; --i) {
3048    int Val = SVOp->getMaskElt(i);
3049    if (Val >= 0)
3050      Mask |= Val;
3051    if (i != 0)
3052      Mask <<= 2;
3053  }
3054  return Mask;
3055}
3056
3057/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3058/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3059unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3060  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3061  EVT VVT = N->getValueType(0);
3062  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3063  int Val = 0;
3064
3065  unsigned i, e;
3066  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3067    Val = SVOp->getMaskElt(i);
3068    if (Val >= 0)
3069      break;
3070  }
3071  return (Val - i) * EltSize;
3072}
3073
3074/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3075/// constant +0.0.
3076bool X86::isZeroNode(SDValue Elt) {
3077  return ((isa<ConstantSDNode>(Elt) &&
3078           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3079          (isa<ConstantFPSDNode>(Elt) &&
3080           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3081}
3082
3083/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3084/// their permute mask.
3085static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3086                                    SelectionDAG &DAG) {
3087  EVT VT = SVOp->getValueType(0);
3088  unsigned NumElems = VT.getVectorNumElements();
3089  SmallVector<int, 8> MaskVec;
3090
3091  for (unsigned i = 0; i != NumElems; ++i) {
3092    int idx = SVOp->getMaskElt(i);
3093    if (idx < 0)
3094      MaskVec.push_back(idx);
3095    else if (idx < (int)NumElems)
3096      MaskVec.push_back(idx + NumElems);
3097    else
3098      MaskVec.push_back(idx - NumElems);
3099  }
3100  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3101                              SVOp->getOperand(0), &MaskVec[0]);
3102}
3103
3104/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3105/// the two vector operands have swapped position.
3106static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3107  unsigned NumElems = VT.getVectorNumElements();
3108  for (unsigned i = 0; i != NumElems; ++i) {
3109    int idx = Mask[i];
3110    if (idx < 0)
3111      continue;
3112    else if (idx < (int)NumElems)
3113      Mask[i] = idx + NumElems;
3114    else
3115      Mask[i] = idx - NumElems;
3116  }
3117}
3118
3119/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3120/// match movhlps. The lower half elements should come from upper half of
3121/// V1 (and in order), and the upper half elements should come from the upper
3122/// half of V2 (and in order).
3123static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3124  if (Op->getValueType(0).getVectorNumElements() != 4)
3125    return false;
3126  for (unsigned i = 0, e = 2; i != e; ++i)
3127    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3128      return false;
3129  for (unsigned i = 2; i != 4; ++i)
3130    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3131      return false;
3132  return true;
3133}
3134
3135/// isScalarLoadToVector - Returns true if the node is a scalar load that
3136/// is promoted to a vector. It also returns the LoadSDNode by reference if
3137/// required.
3138static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3139  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3140    return false;
3141  N = N->getOperand(0).getNode();
3142  if (!ISD::isNON_EXTLoad(N))
3143    return false;
3144  if (LD)
3145    *LD = cast<LoadSDNode>(N);
3146  return true;
3147}
3148
3149/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3150/// match movlp{s|d}. The lower half elements should come from lower half of
3151/// V1 (and in order), and the upper half elements should come from the upper
3152/// half of V2 (and in order). And since V1 will become the source of the
3153/// MOVLP, it must be either a vector load or a scalar load to vector.
3154static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3155                               ShuffleVectorSDNode *Op) {
3156  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3157    return false;
3158  // Is V2 is a vector load, don't do this transformation. We will try to use
3159  // load folding shufps op.
3160  if (ISD::isNON_EXTLoad(V2))
3161    return false;
3162
3163  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3164
3165  if (NumElems != 2 && NumElems != 4)
3166    return false;
3167  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3168    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3169      return false;
3170  for (unsigned i = NumElems/2; i != NumElems; ++i)
3171    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3172      return false;
3173  return true;
3174}
3175
3176/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3177/// all the same.
3178static bool isSplatVector(SDNode *N) {
3179  if (N->getOpcode() != ISD::BUILD_VECTOR)
3180    return false;
3181
3182  SDValue SplatValue = N->getOperand(0);
3183  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3184    if (N->getOperand(i) != SplatValue)
3185      return false;
3186  return true;
3187}
3188
3189/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3190/// to an zero vector.
3191/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3192static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3193  SDValue V1 = N->getOperand(0);
3194  SDValue V2 = N->getOperand(1);
3195  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3196  for (unsigned i = 0; i != NumElems; ++i) {
3197    int Idx = N->getMaskElt(i);
3198    if (Idx >= (int)NumElems) {
3199      unsigned Opc = V2.getOpcode();
3200      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3201        continue;
3202      if (Opc != ISD::BUILD_VECTOR ||
3203          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3204        return false;
3205    } else if (Idx >= 0) {
3206      unsigned Opc = V1.getOpcode();
3207      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3208        continue;
3209      if (Opc != ISD::BUILD_VECTOR ||
3210          !X86::isZeroNode(V1.getOperand(Idx)))
3211        return false;
3212    }
3213  }
3214  return true;
3215}
3216
3217/// getZeroVector - Returns a vector of specified type with all zero elements.
3218///
3219static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3220                             DebugLoc dl) {
3221  assert(VT.isVector() && "Expected a vector type");
3222
3223  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3224  // type.  This ensures they get CSE'd.
3225  SDValue Vec;
3226  if (VT.getSizeInBits() == 64) { // MMX
3227    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3228    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3229  } else if (HasSSE2) {  // SSE2
3230    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3231    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3232  } else { // SSE1
3233    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3234    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3235  }
3236  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3237}
3238
3239/// getOnesVector - Returns a vector of specified type with all bits set.
3240///
3241static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3242  assert(VT.isVector() && "Expected a vector type");
3243
3244  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3245  // type.  This ensures they get CSE'd.
3246  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3247  SDValue Vec;
3248  if (VT.getSizeInBits() == 64)  // MMX
3249    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3250  else                                              // SSE
3251    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3252  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3253}
3254
3255
3256/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3257/// that point to V2 points to its first element.
3258static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3259  EVT VT = SVOp->getValueType(0);
3260  unsigned NumElems = VT.getVectorNumElements();
3261
3262  bool Changed = false;
3263  SmallVector<int, 8> MaskVec;
3264  SVOp->getMask(MaskVec);
3265
3266  for (unsigned i = 0; i != NumElems; ++i) {
3267    if (MaskVec[i] > (int)NumElems) {
3268      MaskVec[i] = NumElems;
3269      Changed = true;
3270    }
3271  }
3272  if (Changed)
3273    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3274                                SVOp->getOperand(1), &MaskVec[0]);
3275  return SDValue(SVOp, 0);
3276}
3277
3278/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3279/// operation of specified width.
3280static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3281                       SDValue V2) {
3282  unsigned NumElems = VT.getVectorNumElements();
3283  SmallVector<int, 8> Mask;
3284  Mask.push_back(NumElems);
3285  for (unsigned i = 1; i != NumElems; ++i)
3286    Mask.push_back(i);
3287  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3288}
3289
3290/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3291static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3292                          SDValue V2) {
3293  unsigned NumElems = VT.getVectorNumElements();
3294  SmallVector<int, 8> Mask;
3295  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3296    Mask.push_back(i);
3297    Mask.push_back(i + NumElems);
3298  }
3299  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3300}
3301
3302/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3303static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3304                          SDValue V2) {
3305  unsigned NumElems = VT.getVectorNumElements();
3306  unsigned Half = NumElems/2;
3307  SmallVector<int, 8> Mask;
3308  for (unsigned i = 0; i != Half; ++i) {
3309    Mask.push_back(i + Half);
3310    Mask.push_back(i + NumElems + Half);
3311  }
3312  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3313}
3314
3315/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3316static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3317                            bool HasSSE2) {
3318  if (SV->getValueType(0).getVectorNumElements() <= 4)
3319    return SDValue(SV, 0);
3320
3321  EVT PVT = MVT::v4f32;
3322  EVT VT = SV->getValueType(0);
3323  DebugLoc dl = SV->getDebugLoc();
3324  SDValue V1 = SV->getOperand(0);
3325  int NumElems = VT.getVectorNumElements();
3326  int EltNo = SV->getSplatIndex();
3327
3328  // unpack elements to the correct location
3329  while (NumElems > 4) {
3330    if (EltNo < NumElems/2) {
3331      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3332    } else {
3333      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3334      EltNo -= NumElems/2;
3335    }
3336    NumElems >>= 1;
3337  }
3338
3339  // Perform the splat.
3340  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3341  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3342  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3343  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3344}
3345
3346/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3347/// vector of zero or undef vector.  This produces a shuffle where the low
3348/// element of V2 is swizzled into the zero/undef vector, landing at element
3349/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3350static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3351                                             bool isZero, bool HasSSE2,
3352                                             SelectionDAG &DAG) {
3353  EVT VT = V2.getValueType();
3354  SDValue V1 = isZero
3355    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3356  unsigned NumElems = VT.getVectorNumElements();
3357  SmallVector<int, 16> MaskVec;
3358  for (unsigned i = 0; i != NumElems; ++i)
3359    // If this is the insertion idx, put the low elt of V2 here.
3360    MaskVec.push_back(i == Idx ? NumElems : i);
3361  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3362}
3363
3364/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3365/// a shuffle that is zero.
3366static
3367unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3368                                  bool Low, SelectionDAG &DAG) {
3369  unsigned NumZeros = 0;
3370  for (int i = 0; i < NumElems; ++i) {
3371    unsigned Index = Low ? i : NumElems-i-1;
3372    int Idx = SVOp->getMaskElt(Index);
3373    if (Idx < 0) {
3374      ++NumZeros;
3375      continue;
3376    }
3377    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3378    if (Elt.getNode() && X86::isZeroNode(Elt))
3379      ++NumZeros;
3380    else
3381      break;
3382  }
3383  return NumZeros;
3384}
3385
3386/// isVectorShift - Returns true if the shuffle can be implemented as a
3387/// logical left or right shift of a vector.
3388/// FIXME: split into pslldqi, psrldqi, palignr variants.
3389static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3390                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3391  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3392
3393  isLeft = true;
3394  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3395  if (!NumZeros) {
3396    isLeft = false;
3397    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3398    if (!NumZeros)
3399      return false;
3400  }
3401  bool SeenV1 = false;
3402  bool SeenV2 = false;
3403  for (int i = NumZeros; i < NumElems; ++i) {
3404    int Val = isLeft ? (i - NumZeros) : i;
3405    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3406    if (Idx < 0)
3407      continue;
3408    if (Idx < NumElems)
3409      SeenV1 = true;
3410    else {
3411      Idx -= NumElems;
3412      SeenV2 = true;
3413    }
3414    if (Idx != Val)
3415      return false;
3416  }
3417  if (SeenV1 && SeenV2)
3418    return false;
3419
3420  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3421  ShAmt = NumZeros;
3422  return true;
3423}
3424
3425
3426/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3427///
3428static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3429                                       unsigned NumNonZero, unsigned NumZero,
3430                                       SelectionDAG &DAG, TargetLowering &TLI) {
3431  if (NumNonZero > 8)
3432    return SDValue();
3433
3434  DebugLoc dl = Op.getDebugLoc();
3435  SDValue V(0, 0);
3436  bool First = true;
3437  for (unsigned i = 0; i < 16; ++i) {
3438    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3439    if (ThisIsNonZero && First) {
3440      if (NumZero)
3441        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3442      else
3443        V = DAG.getUNDEF(MVT::v8i16);
3444      First = false;
3445    }
3446
3447    if ((i & 1) != 0) {
3448      SDValue ThisElt(0, 0), LastElt(0, 0);
3449      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3450      if (LastIsNonZero) {
3451        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3452                              MVT::i16, Op.getOperand(i-1));
3453      }
3454      if (ThisIsNonZero) {
3455        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3456        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3457                              ThisElt, DAG.getConstant(8, MVT::i8));
3458        if (LastIsNonZero)
3459          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3460      } else
3461        ThisElt = LastElt;
3462
3463      if (ThisElt.getNode())
3464        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3465                        DAG.getIntPtrConstant(i/2));
3466    }
3467  }
3468
3469  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3470}
3471
3472/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3473///
3474static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3475                                       unsigned NumNonZero, unsigned NumZero,
3476                                       SelectionDAG &DAG, TargetLowering &TLI) {
3477  if (NumNonZero > 4)
3478    return SDValue();
3479
3480  DebugLoc dl = Op.getDebugLoc();
3481  SDValue V(0, 0);
3482  bool First = true;
3483  for (unsigned i = 0; i < 8; ++i) {
3484    bool isNonZero = (NonZeros & (1 << i)) != 0;
3485    if (isNonZero) {
3486      if (First) {
3487        if (NumZero)
3488          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3489        else
3490          V = DAG.getUNDEF(MVT::v8i16);
3491        First = false;
3492      }
3493      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3494                      MVT::v8i16, V, Op.getOperand(i),
3495                      DAG.getIntPtrConstant(i));
3496    }
3497  }
3498
3499  return V;
3500}
3501
3502/// getVShift - Return a vector logical shift node.
3503///
3504static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3505                         unsigned NumBits, SelectionDAG &DAG,
3506                         const TargetLowering &TLI, DebugLoc dl) {
3507  bool isMMX = VT.getSizeInBits() == 64;
3508  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3509  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3510  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3511  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3512                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3513                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3514}
3515
3516SDValue
3517X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3518                                          SelectionDAG &DAG) {
3519
3520  // Check if the scalar load can be widened into a vector load. And if
3521  // the address is "base + cst" see if the cst can be "absorbed" into
3522  // the shuffle mask.
3523  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3524    SDValue Ptr = LD->getBasePtr();
3525    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3526      return SDValue();
3527    EVT PVT = LD->getValueType(0);
3528    if (PVT != MVT::i32 && PVT != MVT::f32)
3529      return SDValue();
3530
3531    int FI = -1;
3532    int64_t Offset = 0;
3533    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3534      FI = FINode->getIndex();
3535      Offset = 0;
3536    } else if (Ptr.getOpcode() == ISD::ADD &&
3537               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3538               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3539      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3540      Offset = Ptr.getConstantOperandVal(1);
3541      Ptr = Ptr.getOperand(0);
3542    } else {
3543      return SDValue();
3544    }
3545
3546    SDValue Chain = LD->getChain();
3547    // Make sure the stack object alignment is at least 16.
3548    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3549    if (DAG.InferPtrAlignment(Ptr) < 16) {
3550      if (MFI->isFixedObjectIndex(FI)) {
3551        // Can't change the alignment. FIXME: It's possible to compute
3552        // the exact stack offset and reference FI + adjust offset instead.
3553        // If someone *really* cares about this. That's the way to implement it.
3554        return SDValue();
3555      } else {
3556        MFI->setObjectAlignment(FI, 16);
3557      }
3558    }
3559
3560    // (Offset % 16) must be multiple of 4. Then address is then
3561    // Ptr + (Offset & ~15).
3562    if (Offset < 0)
3563      return SDValue();
3564    if ((Offset % 16) & 3)
3565      return SDValue();
3566    int64_t StartOffset = Offset & ~15;
3567    if (StartOffset)
3568      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3569                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3570
3571    int EltNo = (Offset - StartOffset) >> 2;
3572    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3573    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3574    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3575                             false, false, 0);
3576    // Canonicalize it to a v4i32 shuffle.
3577    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3578    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3579                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3580                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3581  }
3582
3583  return SDValue();
3584}
3585
3586SDValue
3587X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3588  DebugLoc dl = Op.getDebugLoc();
3589  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3590  if (ISD::isBuildVectorAllZeros(Op.getNode())
3591      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3592    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3593    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3594    // eliminated on x86-32 hosts.
3595    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3596      return Op;
3597
3598    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3599      return getOnesVector(Op.getValueType(), DAG, dl);
3600    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3601  }
3602
3603  EVT VT = Op.getValueType();
3604  EVT ExtVT = VT.getVectorElementType();
3605  unsigned EVTBits = ExtVT.getSizeInBits();
3606
3607  unsigned NumElems = Op.getNumOperands();
3608  unsigned NumZero  = 0;
3609  unsigned NumNonZero = 0;
3610  unsigned NonZeros = 0;
3611  bool IsAllConstants = true;
3612  SmallSet<SDValue, 8> Values;
3613  for (unsigned i = 0; i < NumElems; ++i) {
3614    SDValue Elt = Op.getOperand(i);
3615    if (Elt.getOpcode() == ISD::UNDEF)
3616      continue;
3617    Values.insert(Elt);
3618    if (Elt.getOpcode() != ISD::Constant &&
3619        Elt.getOpcode() != ISD::ConstantFP)
3620      IsAllConstants = false;
3621    if (X86::isZeroNode(Elt))
3622      NumZero++;
3623    else {
3624      NonZeros |= (1 << i);
3625      NumNonZero++;
3626    }
3627  }
3628
3629  if (NumNonZero == 0) {
3630    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3631    return DAG.getUNDEF(VT);
3632  }
3633
3634  // Special case for single non-zero, non-undef, element.
3635  if (NumNonZero == 1) {
3636    unsigned Idx = CountTrailingZeros_32(NonZeros);
3637    SDValue Item = Op.getOperand(Idx);
3638
3639    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3640    // the value are obviously zero, truncate the value to i32 and do the
3641    // insertion that way.  Only do this if the value is non-constant or if the
3642    // value is a constant being inserted into element 0.  It is cheaper to do
3643    // a constant pool load than it is to do a movd + shuffle.
3644    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3645        (!IsAllConstants || Idx == 0)) {
3646      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3647        // Handle MMX and SSE both.
3648        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3649        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3650
3651        // Truncate the value (which may itself be a constant) to i32, and
3652        // convert it to a vector with movd (S2V+shuffle to zero extend).
3653        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3654        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3655        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3656                                           Subtarget->hasSSE2(), DAG);
3657
3658        // Now we have our 32-bit value zero extended in the low element of
3659        // a vector.  If Idx != 0, swizzle it into place.
3660        if (Idx != 0) {
3661          SmallVector<int, 4> Mask;
3662          Mask.push_back(Idx);
3663          for (unsigned i = 1; i != VecElts; ++i)
3664            Mask.push_back(i);
3665          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3666                                      DAG.getUNDEF(Item.getValueType()),
3667                                      &Mask[0]);
3668        }
3669        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3670      }
3671    }
3672
3673    // If we have a constant or non-constant insertion into the low element of
3674    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3675    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3676    // depending on what the source datatype is.
3677    if (Idx == 0) {
3678      if (NumZero == 0) {
3679        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3680      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3681          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3682        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3683        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3684        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3685                                           DAG);
3686      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3687        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3688        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3689        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3690        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3691                                           Subtarget->hasSSE2(), DAG);
3692        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3693      }
3694    }
3695
3696    // Is it a vector logical left shift?
3697    if (NumElems == 2 && Idx == 1 &&
3698        X86::isZeroNode(Op.getOperand(0)) &&
3699        !X86::isZeroNode(Op.getOperand(1))) {
3700      unsigned NumBits = VT.getSizeInBits();
3701      return getVShift(true, VT,
3702                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3703                                   VT, Op.getOperand(1)),
3704                       NumBits/2, DAG, *this, dl);
3705    }
3706
3707    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3708      return SDValue();
3709
3710    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3711    // is a non-constant being inserted into an element other than the low one,
3712    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3713    // movd/movss) to move this into the low element, then shuffle it into
3714    // place.
3715    if (EVTBits == 32) {
3716      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3717
3718      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3719      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3720                                         Subtarget->hasSSE2(), DAG);
3721      SmallVector<int, 8> MaskVec;
3722      for (unsigned i = 0; i < NumElems; i++)
3723        MaskVec.push_back(i == Idx ? 0 : 1);
3724      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3725    }
3726  }
3727
3728  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3729  if (Values.size() == 1) {
3730    if (EVTBits == 32) {
3731      // Instead of a shuffle like this:
3732      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3733      // Check if it's possible to issue this instead.
3734      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3735      unsigned Idx = CountTrailingZeros_32(NonZeros);
3736      SDValue Item = Op.getOperand(Idx);
3737      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3738        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3739    }
3740    return SDValue();
3741  }
3742
3743  // A vector full of immediates; various special cases are already
3744  // handled, so this is best done with a single constant-pool load.
3745  if (IsAllConstants)
3746    return SDValue();
3747
3748  // Let legalizer expand 2-wide build_vectors.
3749  if (EVTBits == 64) {
3750    if (NumNonZero == 1) {
3751      // One half is zero or undef.
3752      unsigned Idx = CountTrailingZeros_32(NonZeros);
3753      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3754                                 Op.getOperand(Idx));
3755      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3756                                         Subtarget->hasSSE2(), DAG);
3757    }
3758    return SDValue();
3759  }
3760
3761  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3762  if (EVTBits == 8 && NumElems == 16) {
3763    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3764                                        *this);
3765    if (V.getNode()) return V;
3766  }
3767
3768  if (EVTBits == 16 && NumElems == 8) {
3769    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3770                                        *this);
3771    if (V.getNode()) return V;
3772  }
3773
3774  // If element VT is == 32 bits, turn it into a number of shuffles.
3775  SmallVector<SDValue, 8> V;
3776  V.resize(NumElems);
3777  if (NumElems == 4 && NumZero > 0) {
3778    for (unsigned i = 0; i < 4; ++i) {
3779      bool isZero = !(NonZeros & (1 << i));
3780      if (isZero)
3781        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3782      else
3783        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3784    }
3785
3786    for (unsigned i = 0; i < 2; ++i) {
3787      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3788        default: break;
3789        case 0:
3790          V[i] = V[i*2];  // Must be a zero vector.
3791          break;
3792        case 1:
3793          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3794          break;
3795        case 2:
3796          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3797          break;
3798        case 3:
3799          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3800          break;
3801      }
3802    }
3803
3804    SmallVector<int, 8> MaskVec;
3805    bool Reverse = (NonZeros & 0x3) == 2;
3806    for (unsigned i = 0; i < 2; ++i)
3807      MaskVec.push_back(Reverse ? 1-i : i);
3808    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3809    for (unsigned i = 0; i < 2; ++i)
3810      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3811    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3812  }
3813
3814  if (Values.size() > 2) {
3815    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3816    // values to be inserted is equal to the number of elements, in which case
3817    // use the unpack code below in the hopes of matching the consecutive elts
3818    // load merge pattern for shuffles.
3819    // FIXME: We could probably just check that here directly.
3820    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3821        getSubtarget()->hasSSE41()) {
3822      V[0] = DAG.getUNDEF(VT);
3823      for (unsigned i = 0; i < NumElems; ++i)
3824        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3825          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3826                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3827      return V[0];
3828    }
3829    // Expand into a number of unpckl*.
3830    // e.g. for v4f32
3831    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3832    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3833    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3834    for (unsigned i = 0; i < NumElems; ++i)
3835      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3836    NumElems >>= 1;
3837    while (NumElems != 0) {
3838      for (unsigned i = 0; i < NumElems; ++i)
3839        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3840      NumElems >>= 1;
3841    }
3842    return V[0];
3843  }
3844
3845  return SDValue();
3846}
3847
3848SDValue
3849X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3850  // We support concatenate two MMX registers and place them in a MMX
3851  // register.  This is better than doing a stack convert.
3852  DebugLoc dl = Op.getDebugLoc();
3853  EVT ResVT = Op.getValueType();
3854  assert(Op.getNumOperands() == 2);
3855  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3856         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3857  int Mask[2];
3858  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3859  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3860  InVec = Op.getOperand(1);
3861  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3862    unsigned NumElts = ResVT.getVectorNumElements();
3863    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3864    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3865                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3866  } else {
3867    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3868    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3869    Mask[0] = 0; Mask[1] = 2;
3870    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3871  }
3872  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3873}
3874
3875// v8i16 shuffles - Prefer shuffles in the following order:
3876// 1. [all]   pshuflw, pshufhw, optional move
3877// 2. [ssse3] 1 x pshufb
3878// 3. [ssse3] 2 x pshufb + 1 x por
3879// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3880static
3881SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3882                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3883  SDValue V1 = SVOp->getOperand(0);
3884  SDValue V2 = SVOp->getOperand(1);
3885  DebugLoc dl = SVOp->getDebugLoc();
3886  SmallVector<int, 8> MaskVals;
3887
3888  // Determine if more than 1 of the words in each of the low and high quadwords
3889  // of the result come from the same quadword of one of the two inputs.  Undef
3890  // mask values count as coming from any quadword, for better codegen.
3891  SmallVector<unsigned, 4> LoQuad(4);
3892  SmallVector<unsigned, 4> HiQuad(4);
3893  BitVector InputQuads(4);
3894  for (unsigned i = 0; i < 8; ++i) {
3895    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3896    int EltIdx = SVOp->getMaskElt(i);
3897    MaskVals.push_back(EltIdx);
3898    if (EltIdx < 0) {
3899      ++Quad[0];
3900      ++Quad[1];
3901      ++Quad[2];
3902      ++Quad[3];
3903      continue;
3904    }
3905    ++Quad[EltIdx / 4];
3906    InputQuads.set(EltIdx / 4);
3907  }
3908
3909  int BestLoQuad = -1;
3910  unsigned MaxQuad = 1;
3911  for (unsigned i = 0; i < 4; ++i) {
3912    if (LoQuad[i] > MaxQuad) {
3913      BestLoQuad = i;
3914      MaxQuad = LoQuad[i];
3915    }
3916  }
3917
3918  int BestHiQuad = -1;
3919  MaxQuad = 1;
3920  for (unsigned i = 0; i < 4; ++i) {
3921    if (HiQuad[i] > MaxQuad) {
3922      BestHiQuad = i;
3923      MaxQuad = HiQuad[i];
3924    }
3925  }
3926
3927  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3928  // of the two input vectors, shuffle them into one input vector so only a
3929  // single pshufb instruction is necessary. If There are more than 2 input
3930  // quads, disable the next transformation since it does not help SSSE3.
3931  bool V1Used = InputQuads[0] || InputQuads[1];
3932  bool V2Used = InputQuads[2] || InputQuads[3];
3933  if (TLI.getSubtarget()->hasSSSE3()) {
3934    if (InputQuads.count() == 2 && V1Used && V2Used) {
3935      BestLoQuad = InputQuads.find_first();
3936      BestHiQuad = InputQuads.find_next(BestLoQuad);
3937    }
3938    if (InputQuads.count() > 2) {
3939      BestLoQuad = -1;
3940      BestHiQuad = -1;
3941    }
3942  }
3943
3944  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3945  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3946  // words from all 4 input quadwords.
3947  SDValue NewV;
3948  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3949    SmallVector<int, 8> MaskV;
3950    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3951    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3952    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3953                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3954                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3955    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3956
3957    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3958    // source words for the shuffle, to aid later transformations.
3959    bool AllWordsInNewV = true;
3960    bool InOrder[2] = { true, true };
3961    for (unsigned i = 0; i != 8; ++i) {
3962      int idx = MaskVals[i];
3963      if (idx != (int)i)
3964        InOrder[i/4] = false;
3965      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3966        continue;
3967      AllWordsInNewV = false;
3968      break;
3969    }
3970
3971    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3972    if (AllWordsInNewV) {
3973      for (int i = 0; i != 8; ++i) {
3974        int idx = MaskVals[i];
3975        if (idx < 0)
3976          continue;
3977        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3978        if ((idx != i) && idx < 4)
3979          pshufhw = false;
3980        if ((idx != i) && idx > 3)
3981          pshuflw = false;
3982      }
3983      V1 = NewV;
3984      V2Used = false;
3985      BestLoQuad = 0;
3986      BestHiQuad = 1;
3987    }
3988
3989    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3990    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3991    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3992      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3993                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3994    }
3995  }
3996
3997  // If we have SSSE3, and all words of the result are from 1 input vector,
3998  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
3999  // is present, fall back to case 4.
4000  if (TLI.getSubtarget()->hasSSSE3()) {
4001    SmallVector<SDValue,16> pshufbMask;
4002
4003    // If we have elements from both input vectors, set the high bit of the
4004    // shuffle mask element to zero out elements that come from V2 in the V1
4005    // mask, and elements that come from V1 in the V2 mask, so that the two
4006    // results can be OR'd together.
4007    bool TwoInputs = V1Used && V2Used;
4008    for (unsigned i = 0; i != 8; ++i) {
4009      int EltIdx = MaskVals[i] * 2;
4010      if (TwoInputs && (EltIdx >= 16)) {
4011        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4012        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4013        continue;
4014      }
4015      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4016      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4017    }
4018    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4019    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4020                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4021                                 MVT::v16i8, &pshufbMask[0], 16));
4022    if (!TwoInputs)
4023      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4024
4025    // Calculate the shuffle mask for the second input, shuffle it, and
4026    // OR it with the first shuffled input.
4027    pshufbMask.clear();
4028    for (unsigned i = 0; i != 8; ++i) {
4029      int EltIdx = MaskVals[i] * 2;
4030      if (EltIdx < 16) {
4031        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4032        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4033        continue;
4034      }
4035      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4036      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4037    }
4038    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4039    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4040                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4041                                 MVT::v16i8, &pshufbMask[0], 16));
4042    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4043    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4044  }
4045
4046  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4047  // and update MaskVals with new element order.
4048  BitVector InOrder(8);
4049  if (BestLoQuad >= 0) {
4050    SmallVector<int, 8> MaskV;
4051    for (int i = 0; i != 4; ++i) {
4052      int idx = MaskVals[i];
4053      if (idx < 0) {
4054        MaskV.push_back(-1);
4055        InOrder.set(i);
4056      } else if ((idx / 4) == BestLoQuad) {
4057        MaskV.push_back(idx & 3);
4058        InOrder.set(i);
4059      } else {
4060        MaskV.push_back(-1);
4061      }
4062    }
4063    for (unsigned i = 4; i != 8; ++i)
4064      MaskV.push_back(i);
4065    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4066                                &MaskV[0]);
4067  }
4068
4069  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4070  // and update MaskVals with the new element order.
4071  if (BestHiQuad >= 0) {
4072    SmallVector<int, 8> MaskV;
4073    for (unsigned i = 0; i != 4; ++i)
4074      MaskV.push_back(i);
4075    for (unsigned i = 4; i != 8; ++i) {
4076      int idx = MaskVals[i];
4077      if (idx < 0) {
4078        MaskV.push_back(-1);
4079        InOrder.set(i);
4080      } else if ((idx / 4) == BestHiQuad) {
4081        MaskV.push_back((idx & 3) + 4);
4082        InOrder.set(i);
4083      } else {
4084        MaskV.push_back(-1);
4085      }
4086    }
4087    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4088                                &MaskV[0]);
4089  }
4090
4091  // In case BestHi & BestLo were both -1, which means each quadword has a word
4092  // from each of the four input quadwords, calculate the InOrder bitvector now
4093  // before falling through to the insert/extract cleanup.
4094  if (BestLoQuad == -1 && BestHiQuad == -1) {
4095    NewV = V1;
4096    for (int i = 0; i != 8; ++i)
4097      if (MaskVals[i] < 0 || MaskVals[i] == i)
4098        InOrder.set(i);
4099  }
4100
4101  // The other elements are put in the right place using pextrw and pinsrw.
4102  for (unsigned i = 0; i != 8; ++i) {
4103    if (InOrder[i])
4104      continue;
4105    int EltIdx = MaskVals[i];
4106    if (EltIdx < 0)
4107      continue;
4108    SDValue ExtOp = (EltIdx < 8)
4109    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4110                  DAG.getIntPtrConstant(EltIdx))
4111    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4112                  DAG.getIntPtrConstant(EltIdx - 8));
4113    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4114                       DAG.getIntPtrConstant(i));
4115  }
4116  return NewV;
4117}
4118
4119// v16i8 shuffles - Prefer shuffles in the following order:
4120// 1. [ssse3] 1 x pshufb
4121// 2. [ssse3] 2 x pshufb + 1 x por
4122// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4123static
4124SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4125                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4126  SDValue V1 = SVOp->getOperand(0);
4127  SDValue V2 = SVOp->getOperand(1);
4128  DebugLoc dl = SVOp->getDebugLoc();
4129  SmallVector<int, 16> MaskVals;
4130  SVOp->getMask(MaskVals);
4131
4132  // If we have SSSE3, case 1 is generated when all result bytes come from
4133  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4134  // present, fall back to case 3.
4135  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4136  bool V1Only = true;
4137  bool V2Only = true;
4138  for (unsigned i = 0; i < 16; ++i) {
4139    int EltIdx = MaskVals[i];
4140    if (EltIdx < 0)
4141      continue;
4142    if (EltIdx < 16)
4143      V2Only = false;
4144    else
4145      V1Only = false;
4146  }
4147
4148  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4149  if (TLI.getSubtarget()->hasSSSE3()) {
4150    SmallVector<SDValue,16> pshufbMask;
4151
4152    // If all result elements are from one input vector, then only translate
4153    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4154    //
4155    // Otherwise, we have elements from both input vectors, and must zero out
4156    // elements that come from V2 in the first mask, and V1 in the second mask
4157    // so that we can OR them together.
4158    bool TwoInputs = !(V1Only || V2Only);
4159    for (unsigned i = 0; i != 16; ++i) {
4160      int EltIdx = MaskVals[i];
4161      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4162        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4163        continue;
4164      }
4165      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4166    }
4167    // If all the elements are from V2, assign it to V1 and return after
4168    // building the first pshufb.
4169    if (V2Only)
4170      V1 = V2;
4171    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4172                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4173                                 MVT::v16i8, &pshufbMask[0], 16));
4174    if (!TwoInputs)
4175      return V1;
4176
4177    // Calculate the shuffle mask for the second input, shuffle it, and
4178    // OR it with the first shuffled input.
4179    pshufbMask.clear();
4180    for (unsigned i = 0; i != 16; ++i) {
4181      int EltIdx = MaskVals[i];
4182      if (EltIdx < 16) {
4183        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4184        continue;
4185      }
4186      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4187    }
4188    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4189                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4190                                 MVT::v16i8, &pshufbMask[0], 16));
4191    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4192  }
4193
4194  // No SSSE3 - Calculate in place words and then fix all out of place words
4195  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4196  // the 16 different words that comprise the two doublequadword input vectors.
4197  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4198  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4199  SDValue NewV = V2Only ? V2 : V1;
4200  for (int i = 0; i != 8; ++i) {
4201    int Elt0 = MaskVals[i*2];
4202    int Elt1 = MaskVals[i*2+1];
4203
4204    // This word of the result is all undef, skip it.
4205    if (Elt0 < 0 && Elt1 < 0)
4206      continue;
4207
4208    // This word of the result is already in the correct place, skip it.
4209    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4210      continue;
4211    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4212      continue;
4213
4214    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4215    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4216    SDValue InsElt;
4217
4218    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4219    // using a single extract together, load it and store it.
4220    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4221      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4222                           DAG.getIntPtrConstant(Elt1 / 2));
4223      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4224                        DAG.getIntPtrConstant(i));
4225      continue;
4226    }
4227
4228    // If Elt1 is defined, extract it from the appropriate source.  If the
4229    // source byte is not also odd, shift the extracted word left 8 bits
4230    // otherwise clear the bottom 8 bits if we need to do an or.
4231    if (Elt1 >= 0) {
4232      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4233                           DAG.getIntPtrConstant(Elt1 / 2));
4234      if ((Elt1 & 1) == 0)
4235        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4236                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4237      else if (Elt0 >= 0)
4238        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4239                             DAG.getConstant(0xFF00, MVT::i16));
4240    }
4241    // If Elt0 is defined, extract it from the appropriate source.  If the
4242    // source byte is not also even, shift the extracted word right 8 bits. If
4243    // Elt1 was also defined, OR the extracted values together before
4244    // inserting them in the result.
4245    if (Elt0 >= 0) {
4246      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4247                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4248      if ((Elt0 & 1) != 0)
4249        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4250                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4251      else if (Elt1 >= 0)
4252        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4253                             DAG.getConstant(0x00FF, MVT::i16));
4254      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4255                         : InsElt0;
4256    }
4257    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4258                       DAG.getIntPtrConstant(i));
4259  }
4260  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4261}
4262
4263/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4264/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4265/// done when every pair / quad of shuffle mask elements point to elements in
4266/// the right sequence. e.g.
4267/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4268static
4269SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4270                                 SelectionDAG &DAG,
4271                                 TargetLowering &TLI, DebugLoc dl) {
4272  EVT VT = SVOp->getValueType(0);
4273  SDValue V1 = SVOp->getOperand(0);
4274  SDValue V2 = SVOp->getOperand(1);
4275  unsigned NumElems = VT.getVectorNumElements();
4276  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4277  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4278  EVT MaskEltVT = MaskVT.getVectorElementType();
4279  EVT NewVT = MaskVT;
4280  switch (VT.getSimpleVT().SimpleTy) {
4281  default: assert(false && "Unexpected!");
4282  case MVT::v4f32: NewVT = MVT::v2f64; break;
4283  case MVT::v4i32: NewVT = MVT::v2i64; break;
4284  case MVT::v8i16: NewVT = MVT::v4i32; break;
4285  case MVT::v16i8: NewVT = MVT::v4i32; break;
4286  }
4287
4288  if (NewWidth == 2) {
4289    if (VT.isInteger())
4290      NewVT = MVT::v2i64;
4291    else
4292      NewVT = MVT::v2f64;
4293  }
4294  int Scale = NumElems / NewWidth;
4295  SmallVector<int, 8> MaskVec;
4296  for (unsigned i = 0; i < NumElems; i += Scale) {
4297    int StartIdx = -1;
4298    for (int j = 0; j < Scale; ++j) {
4299      int EltIdx = SVOp->getMaskElt(i+j);
4300      if (EltIdx < 0)
4301        continue;
4302      if (StartIdx == -1)
4303        StartIdx = EltIdx - (EltIdx % Scale);
4304      if (EltIdx != StartIdx + j)
4305        return SDValue();
4306    }
4307    if (StartIdx == -1)
4308      MaskVec.push_back(-1);
4309    else
4310      MaskVec.push_back(StartIdx / Scale);
4311  }
4312
4313  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4314  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4315  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4316}
4317
4318/// getVZextMovL - Return a zero-extending vector move low node.
4319///
4320static SDValue getVZextMovL(EVT VT, EVT OpVT,
4321                            SDValue SrcOp, SelectionDAG &DAG,
4322                            const X86Subtarget *Subtarget, DebugLoc dl) {
4323  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4324    LoadSDNode *LD = NULL;
4325    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4326      LD = dyn_cast<LoadSDNode>(SrcOp);
4327    if (!LD) {
4328      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4329      // instead.
4330      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4331      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4332          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4333          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4334          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4335        // PR2108
4336        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4337        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4338                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4339                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4340                                                   OpVT,
4341                                                   SrcOp.getOperand(0)
4342                                                          .getOperand(0))));
4343      }
4344    }
4345  }
4346
4347  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4348                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4349                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4350                                             OpVT, SrcOp)));
4351}
4352
4353/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4354/// shuffles.
4355static SDValue
4356LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4357  SDValue V1 = SVOp->getOperand(0);
4358  SDValue V2 = SVOp->getOperand(1);
4359  DebugLoc dl = SVOp->getDebugLoc();
4360  EVT VT = SVOp->getValueType(0);
4361
4362  SmallVector<std::pair<int, int>, 8> Locs;
4363  Locs.resize(4);
4364  SmallVector<int, 8> Mask1(4U, -1);
4365  SmallVector<int, 8> PermMask;
4366  SVOp->getMask(PermMask);
4367
4368  unsigned NumHi = 0;
4369  unsigned NumLo = 0;
4370  for (unsigned i = 0; i != 4; ++i) {
4371    int Idx = PermMask[i];
4372    if (Idx < 0) {
4373      Locs[i] = std::make_pair(-1, -1);
4374    } else {
4375      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4376      if (Idx < 4) {
4377        Locs[i] = std::make_pair(0, NumLo);
4378        Mask1[NumLo] = Idx;
4379        NumLo++;
4380      } else {
4381        Locs[i] = std::make_pair(1, NumHi);
4382        if (2+NumHi < 4)
4383          Mask1[2+NumHi] = Idx;
4384        NumHi++;
4385      }
4386    }
4387  }
4388
4389  if (NumLo <= 2 && NumHi <= 2) {
4390    // If no more than two elements come from either vector. This can be
4391    // implemented with two shuffles. First shuffle gather the elements.
4392    // The second shuffle, which takes the first shuffle as both of its
4393    // vector operands, put the elements into the right order.
4394    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4395
4396    SmallVector<int, 8> Mask2(4U, -1);
4397
4398    for (unsigned i = 0; i != 4; ++i) {
4399      if (Locs[i].first == -1)
4400        continue;
4401      else {
4402        unsigned Idx = (i < 2) ? 0 : 4;
4403        Idx += Locs[i].first * 2 + Locs[i].second;
4404        Mask2[i] = Idx;
4405      }
4406    }
4407
4408    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4409  } else if (NumLo == 3 || NumHi == 3) {
4410    // Otherwise, we must have three elements from one vector, call it X, and
4411    // one element from the other, call it Y.  First, use a shufps to build an
4412    // intermediate vector with the one element from Y and the element from X
4413    // that will be in the same half in the final destination (the indexes don't
4414    // matter). Then, use a shufps to build the final vector, taking the half
4415    // containing the element from Y from the intermediate, and the other half
4416    // from X.
4417    if (NumHi == 3) {
4418      // Normalize it so the 3 elements come from V1.
4419      CommuteVectorShuffleMask(PermMask, VT);
4420      std::swap(V1, V2);
4421    }
4422
4423    // Find the element from V2.
4424    unsigned HiIndex;
4425    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4426      int Val = PermMask[HiIndex];
4427      if (Val < 0)
4428        continue;
4429      if (Val >= 4)
4430        break;
4431    }
4432
4433    Mask1[0] = PermMask[HiIndex];
4434    Mask1[1] = -1;
4435    Mask1[2] = PermMask[HiIndex^1];
4436    Mask1[3] = -1;
4437    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4438
4439    if (HiIndex >= 2) {
4440      Mask1[0] = PermMask[0];
4441      Mask1[1] = PermMask[1];
4442      Mask1[2] = HiIndex & 1 ? 6 : 4;
4443      Mask1[3] = HiIndex & 1 ? 4 : 6;
4444      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4445    } else {
4446      Mask1[0] = HiIndex & 1 ? 2 : 0;
4447      Mask1[1] = HiIndex & 1 ? 0 : 2;
4448      Mask1[2] = PermMask[2];
4449      Mask1[3] = PermMask[3];
4450      if (Mask1[2] >= 0)
4451        Mask1[2] += 4;
4452      if (Mask1[3] >= 0)
4453        Mask1[3] += 4;
4454      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4455    }
4456  }
4457
4458  // Break it into (shuffle shuffle_hi, shuffle_lo).
4459  Locs.clear();
4460  SmallVector<int,8> LoMask(4U, -1);
4461  SmallVector<int,8> HiMask(4U, -1);
4462
4463  SmallVector<int,8> *MaskPtr = &LoMask;
4464  unsigned MaskIdx = 0;
4465  unsigned LoIdx = 0;
4466  unsigned HiIdx = 2;
4467  for (unsigned i = 0; i != 4; ++i) {
4468    if (i == 2) {
4469      MaskPtr = &HiMask;
4470      MaskIdx = 1;
4471      LoIdx = 0;
4472      HiIdx = 2;
4473    }
4474    int Idx = PermMask[i];
4475    if (Idx < 0) {
4476      Locs[i] = std::make_pair(-1, -1);
4477    } else if (Idx < 4) {
4478      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4479      (*MaskPtr)[LoIdx] = Idx;
4480      LoIdx++;
4481    } else {
4482      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4483      (*MaskPtr)[HiIdx] = Idx;
4484      HiIdx++;
4485    }
4486  }
4487
4488  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4489  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4490  SmallVector<int, 8> MaskOps;
4491  for (unsigned i = 0; i != 4; ++i) {
4492    if (Locs[i].first == -1) {
4493      MaskOps.push_back(-1);
4494    } else {
4495      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4496      MaskOps.push_back(Idx);
4497    }
4498  }
4499  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4500}
4501
4502SDValue
4503X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4504  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4505  SDValue V1 = Op.getOperand(0);
4506  SDValue V2 = Op.getOperand(1);
4507  EVT VT = Op.getValueType();
4508  DebugLoc dl = Op.getDebugLoc();
4509  unsigned NumElems = VT.getVectorNumElements();
4510  bool isMMX = VT.getSizeInBits() == 64;
4511  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4512  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4513  bool V1IsSplat = false;
4514  bool V2IsSplat = false;
4515
4516  if (isZeroShuffle(SVOp))
4517    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4518
4519  // Promote splats to v4f32.
4520  if (SVOp->isSplat()) {
4521    if (isMMX || NumElems < 4)
4522      return Op;
4523    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4524  }
4525
4526  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4527  // do it!
4528  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4529    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4530    if (NewOp.getNode())
4531      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4532                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4533  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4534    // FIXME: Figure out a cleaner way to do this.
4535    // Try to make use of movq to zero out the top part.
4536    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4537      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4538      if (NewOp.getNode()) {
4539        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4540          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4541                              DAG, Subtarget, dl);
4542      }
4543    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4544      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4545      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4546        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4547                            DAG, Subtarget, dl);
4548    }
4549  }
4550
4551  if (X86::isPSHUFDMask(SVOp))
4552    return Op;
4553
4554  // Check if this can be converted into a logical shift.
4555  bool isLeft = false;
4556  unsigned ShAmt = 0;
4557  SDValue ShVal;
4558  bool isShift = getSubtarget()->hasSSE2() &&
4559    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4560  if (isShift && ShVal.hasOneUse()) {
4561    // If the shifted value has multiple uses, it may be cheaper to use
4562    // v_set0 + movlhps or movhlps, etc.
4563    EVT EltVT = VT.getVectorElementType();
4564    ShAmt *= EltVT.getSizeInBits();
4565    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4566  }
4567
4568  if (X86::isMOVLMask(SVOp)) {
4569    if (V1IsUndef)
4570      return V2;
4571    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4572      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4573    if (!isMMX)
4574      return Op;
4575  }
4576
4577  // FIXME: fold these into legal mask.
4578  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4579                 X86::isMOVSLDUPMask(SVOp) ||
4580                 X86::isMOVHLPSMask(SVOp) ||
4581                 X86::isMOVLHPSMask(SVOp) ||
4582                 X86::isMOVLPMask(SVOp)))
4583    return Op;
4584
4585  if (ShouldXformToMOVHLPS(SVOp) ||
4586      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4587    return CommuteVectorShuffle(SVOp, DAG);
4588
4589  if (isShift) {
4590    // No better options. Use a vshl / vsrl.
4591    EVT EltVT = VT.getVectorElementType();
4592    ShAmt *= EltVT.getSizeInBits();
4593    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4594  }
4595
4596  bool Commuted = false;
4597  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4598  // 1,1,1,1 -> v8i16 though.
4599  V1IsSplat = isSplatVector(V1.getNode());
4600  V2IsSplat = isSplatVector(V2.getNode());
4601
4602  // Canonicalize the splat or undef, if present, to be on the RHS.
4603  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4604    Op = CommuteVectorShuffle(SVOp, DAG);
4605    SVOp = cast<ShuffleVectorSDNode>(Op);
4606    V1 = SVOp->getOperand(0);
4607    V2 = SVOp->getOperand(1);
4608    std::swap(V1IsSplat, V2IsSplat);
4609    std::swap(V1IsUndef, V2IsUndef);
4610    Commuted = true;
4611  }
4612
4613  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4614    // Shuffling low element of v1 into undef, just return v1.
4615    if (V2IsUndef)
4616      return V1;
4617    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4618    // the instruction selector will not match, so get a canonical MOVL with
4619    // swapped operands to undo the commute.
4620    return getMOVL(DAG, dl, VT, V2, V1);
4621  }
4622
4623  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4624      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4625      X86::isUNPCKLMask(SVOp) ||
4626      X86::isUNPCKHMask(SVOp))
4627    return Op;
4628
4629  if (V2IsSplat) {
4630    // Normalize mask so all entries that point to V2 points to its first
4631    // element then try to match unpck{h|l} again. If match, return a
4632    // new vector_shuffle with the corrected mask.
4633    SDValue NewMask = NormalizeMask(SVOp, DAG);
4634    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4635    if (NSVOp != SVOp) {
4636      if (X86::isUNPCKLMask(NSVOp, true)) {
4637        return NewMask;
4638      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4639        return NewMask;
4640      }
4641    }
4642  }
4643
4644  if (Commuted) {
4645    // Commute is back and try unpck* again.
4646    // FIXME: this seems wrong.
4647    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4648    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4649    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4650        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4651        X86::isUNPCKLMask(NewSVOp) ||
4652        X86::isUNPCKHMask(NewSVOp))
4653      return NewOp;
4654  }
4655
4656  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4657
4658  // Normalize the node to match x86 shuffle ops if needed
4659  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4660    return CommuteVectorShuffle(SVOp, DAG);
4661
4662  // Check for legal shuffle and return?
4663  SmallVector<int, 16> PermMask;
4664  SVOp->getMask(PermMask);
4665  if (isShuffleMaskLegal(PermMask, VT))
4666    return Op;
4667
4668  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4669  if (VT == MVT::v8i16) {
4670    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4671    if (NewOp.getNode())
4672      return NewOp;
4673  }
4674
4675  if (VT == MVT::v16i8) {
4676    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4677    if (NewOp.getNode())
4678      return NewOp;
4679  }
4680
4681  // Handle all 4 wide cases with a number of shuffles except for MMX.
4682  if (NumElems == 4 && !isMMX)
4683    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4684
4685  return SDValue();
4686}
4687
4688SDValue
4689X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4690                                                SelectionDAG &DAG) {
4691  EVT VT = Op.getValueType();
4692  DebugLoc dl = Op.getDebugLoc();
4693  if (VT.getSizeInBits() == 8) {
4694    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4695                                    Op.getOperand(0), Op.getOperand(1));
4696    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4697                                    DAG.getValueType(VT));
4698    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4699  } else if (VT.getSizeInBits() == 16) {
4700    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4701    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4702    if (Idx == 0)
4703      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4704                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4705                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4706                                                 MVT::v4i32,
4707                                                 Op.getOperand(0)),
4708                                     Op.getOperand(1)));
4709    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4710                                    Op.getOperand(0), Op.getOperand(1));
4711    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4712                                    DAG.getValueType(VT));
4713    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4714  } else if (VT == MVT::f32) {
4715    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4716    // the result back to FR32 register. It's only worth matching if the
4717    // result has a single use which is a store or a bitcast to i32.  And in
4718    // the case of a store, it's not worth it if the index is a constant 0,
4719    // because a MOVSSmr can be used instead, which is smaller and faster.
4720    if (!Op.hasOneUse())
4721      return SDValue();
4722    SDNode *User = *Op.getNode()->use_begin();
4723    if ((User->getOpcode() != ISD::STORE ||
4724         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4725          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4726        (User->getOpcode() != ISD::BIT_CONVERT ||
4727         User->getValueType(0) != MVT::i32))
4728      return SDValue();
4729    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4730                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4731                                              Op.getOperand(0)),
4732                                              Op.getOperand(1));
4733    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4734  } else if (VT == MVT::i32) {
4735    // ExtractPS works with constant index.
4736    if (isa<ConstantSDNode>(Op.getOperand(1)))
4737      return Op;
4738  }
4739  return SDValue();
4740}
4741
4742
4743SDValue
4744X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4745  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4746    return SDValue();
4747
4748  if (Subtarget->hasSSE41()) {
4749    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4750    if (Res.getNode())
4751      return Res;
4752  }
4753
4754  EVT VT = Op.getValueType();
4755  DebugLoc dl = Op.getDebugLoc();
4756  // TODO: handle v16i8.
4757  if (VT.getSizeInBits() == 16) {
4758    SDValue Vec = Op.getOperand(0);
4759    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4760    if (Idx == 0)
4761      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4762                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4763                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4764                                                 MVT::v4i32, Vec),
4765                                     Op.getOperand(1)));
4766    // Transform it so it match pextrw which produces a 32-bit result.
4767    EVT EltVT = MVT::i32;
4768    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4769                                    Op.getOperand(0), Op.getOperand(1));
4770    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4771                                    DAG.getValueType(VT));
4772    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4773  } else if (VT.getSizeInBits() == 32) {
4774    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4775    if (Idx == 0)
4776      return Op;
4777
4778    // SHUFPS the element to the lowest double word, then movss.
4779    int Mask[4] = { Idx, -1, -1, -1 };
4780    EVT VVT = Op.getOperand(0).getValueType();
4781    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4782                                       DAG.getUNDEF(VVT), Mask);
4783    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4784                       DAG.getIntPtrConstant(0));
4785  } else if (VT.getSizeInBits() == 64) {
4786    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4787    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4788    //        to match extract_elt for f64.
4789    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4790    if (Idx == 0)
4791      return Op;
4792
4793    // UNPCKHPD the element to the lowest double word, then movsd.
4794    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4795    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4796    int Mask[2] = { 1, -1 };
4797    EVT VVT = Op.getOperand(0).getValueType();
4798    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4799                                       DAG.getUNDEF(VVT), Mask);
4800    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4801                       DAG.getIntPtrConstant(0));
4802  }
4803
4804  return SDValue();
4805}
4806
4807SDValue
4808X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4809  EVT VT = Op.getValueType();
4810  EVT EltVT = VT.getVectorElementType();
4811  DebugLoc dl = Op.getDebugLoc();
4812
4813  SDValue N0 = Op.getOperand(0);
4814  SDValue N1 = Op.getOperand(1);
4815  SDValue N2 = Op.getOperand(2);
4816
4817  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4818      isa<ConstantSDNode>(N2)) {
4819    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4820                                                : X86ISD::PINSRW;
4821    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4822    // argument.
4823    if (N1.getValueType() != MVT::i32)
4824      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4825    if (N2.getValueType() != MVT::i32)
4826      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4827    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4828  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4829    // Bits [7:6] of the constant are the source select.  This will always be
4830    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4831    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4832    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4833    // Bits [5:4] of the constant are the destination select.  This is the
4834    //  value of the incoming immediate.
4835    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4836    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4837    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4838    // Create this as a scalar to vector..
4839    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4840    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4841  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4842    // PINSR* works with constant index.
4843    return Op;
4844  }
4845  return SDValue();
4846}
4847
4848SDValue
4849X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4850  EVT VT = Op.getValueType();
4851  EVT EltVT = VT.getVectorElementType();
4852
4853  if (Subtarget->hasSSE41())
4854    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4855
4856  if (EltVT == MVT::i8)
4857    return SDValue();
4858
4859  DebugLoc dl = Op.getDebugLoc();
4860  SDValue N0 = Op.getOperand(0);
4861  SDValue N1 = Op.getOperand(1);
4862  SDValue N2 = Op.getOperand(2);
4863
4864  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4865    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4866    // as its second argument.
4867    if (N1.getValueType() != MVT::i32)
4868      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4869    if (N2.getValueType() != MVT::i32)
4870      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4871    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4872  }
4873  return SDValue();
4874}
4875
4876SDValue
4877X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4878  DebugLoc dl = Op.getDebugLoc();
4879  if (Op.getValueType() == MVT::v2f32)
4880    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4881                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4882                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4883                                               Op.getOperand(0))));
4884
4885  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4886    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4887
4888  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4889  EVT VT = MVT::v2i32;
4890  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4891  default: break;
4892  case MVT::v16i8:
4893  case MVT::v8i16:
4894    VT = MVT::v4i32;
4895    break;
4896  }
4897  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4898                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4899}
4900
4901// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4902// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4903// one of the above mentioned nodes. It has to be wrapped because otherwise
4904// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4905// be used to form addressing mode. These wrapped nodes will be selected
4906// into MOV32ri.
4907SDValue
4908X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4909  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4910
4911  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4912  // global base reg.
4913  unsigned char OpFlag = 0;
4914  unsigned WrapperKind = X86ISD::Wrapper;
4915  CodeModel::Model M = getTargetMachine().getCodeModel();
4916
4917  if (Subtarget->isPICStyleRIPRel() &&
4918      (M == CodeModel::Small || M == CodeModel::Kernel))
4919    WrapperKind = X86ISD::WrapperRIP;
4920  else if (Subtarget->isPICStyleGOT())
4921    OpFlag = X86II::MO_GOTOFF;
4922  else if (Subtarget->isPICStyleStubPIC())
4923    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4924
4925  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4926                                             CP->getAlignment(),
4927                                             CP->getOffset(), OpFlag);
4928  DebugLoc DL = CP->getDebugLoc();
4929  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4930  // With PIC, the address is actually $g + Offset.
4931  if (OpFlag) {
4932    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4933                         DAG.getNode(X86ISD::GlobalBaseReg,
4934                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4935                         Result);
4936  }
4937
4938  return Result;
4939}
4940
4941SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4942  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4943
4944  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4945  // global base reg.
4946  unsigned char OpFlag = 0;
4947  unsigned WrapperKind = X86ISD::Wrapper;
4948  CodeModel::Model M = getTargetMachine().getCodeModel();
4949
4950  if (Subtarget->isPICStyleRIPRel() &&
4951      (M == CodeModel::Small || M == CodeModel::Kernel))
4952    WrapperKind = X86ISD::WrapperRIP;
4953  else if (Subtarget->isPICStyleGOT())
4954    OpFlag = X86II::MO_GOTOFF;
4955  else if (Subtarget->isPICStyleStubPIC())
4956    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4957
4958  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4959                                          OpFlag);
4960  DebugLoc DL = JT->getDebugLoc();
4961  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4962
4963  // With PIC, the address is actually $g + Offset.
4964  if (OpFlag) {
4965    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4966                         DAG.getNode(X86ISD::GlobalBaseReg,
4967                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4968                         Result);
4969  }
4970
4971  return Result;
4972}
4973
4974SDValue
4975X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4976  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4977
4978  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4979  // global base reg.
4980  unsigned char OpFlag = 0;
4981  unsigned WrapperKind = X86ISD::Wrapper;
4982  CodeModel::Model M = getTargetMachine().getCodeModel();
4983
4984  if (Subtarget->isPICStyleRIPRel() &&
4985      (M == CodeModel::Small || M == CodeModel::Kernel))
4986    WrapperKind = X86ISD::WrapperRIP;
4987  else if (Subtarget->isPICStyleGOT())
4988    OpFlag = X86II::MO_GOTOFF;
4989  else if (Subtarget->isPICStyleStubPIC())
4990    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4991
4992  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4993
4994  DebugLoc DL = Op.getDebugLoc();
4995  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4996
4997
4998  // With PIC, the address is actually $g + Offset.
4999  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5000      !Subtarget->is64Bit()) {
5001    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5002                         DAG.getNode(X86ISD::GlobalBaseReg,
5003                                     DebugLoc::getUnknownLoc(),
5004                                     getPointerTy()),
5005                         Result);
5006  }
5007
5008  return Result;
5009}
5010
5011SDValue
5012X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5013  // Create the TargetBlockAddressAddress node.
5014  unsigned char OpFlags =
5015    Subtarget->ClassifyBlockAddressReference();
5016  CodeModel::Model M = getTargetMachine().getCodeModel();
5017  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5018  DebugLoc dl = Op.getDebugLoc();
5019  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5020                                       /*isTarget=*/true, OpFlags);
5021
5022  if (Subtarget->isPICStyleRIPRel() &&
5023      (M == CodeModel::Small || M == CodeModel::Kernel))
5024    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5025  else
5026    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5027
5028  // With PIC, the address is actually $g + Offset.
5029  if (isGlobalRelativeToPICBase(OpFlags)) {
5030    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5031                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5032                         Result);
5033  }
5034
5035  return Result;
5036}
5037
5038SDValue
5039X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5040                                      int64_t Offset,
5041                                      SelectionDAG &DAG) const {
5042  // Create the TargetGlobalAddress node, folding in the constant
5043  // offset if it is legal.
5044  unsigned char OpFlags =
5045    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5046  CodeModel::Model M = getTargetMachine().getCodeModel();
5047  SDValue Result;
5048  if (OpFlags == X86II::MO_NO_FLAG &&
5049      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5050    // A direct static reference to a global.
5051    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5052    Offset = 0;
5053  } else {
5054    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5055  }
5056
5057  if (Subtarget->isPICStyleRIPRel() &&
5058      (M == CodeModel::Small || M == CodeModel::Kernel))
5059    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5060  else
5061    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5062
5063  // With PIC, the address is actually $g + Offset.
5064  if (isGlobalRelativeToPICBase(OpFlags)) {
5065    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5066                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5067                         Result);
5068  }
5069
5070  // For globals that require a load from a stub to get the address, emit the
5071  // load.
5072  if (isGlobalStubReference(OpFlags))
5073    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5074                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5075
5076  // If there was a non-zero offset that we didn't fold, create an explicit
5077  // addition for it.
5078  if (Offset != 0)
5079    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5080                         DAG.getConstant(Offset, getPointerTy()));
5081
5082  return Result;
5083}
5084
5085SDValue
5086X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5087  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5088  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5089  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5090}
5091
5092static SDValue
5093GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5094           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5095           unsigned char OperandFlags) {
5096  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5097  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5098  DebugLoc dl = GA->getDebugLoc();
5099  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5100                                           GA->getValueType(0),
5101                                           GA->getOffset(),
5102                                           OperandFlags);
5103  if (InFlag) {
5104    SDValue Ops[] = { Chain,  TGA, *InFlag };
5105    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5106  } else {
5107    SDValue Ops[]  = { Chain, TGA };
5108    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5109  }
5110
5111  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5112  MFI->setHasCalls(true);
5113
5114  SDValue Flag = Chain.getValue(1);
5115  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5116}
5117
5118// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5119static SDValue
5120LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5121                                const EVT PtrVT) {
5122  SDValue InFlag;
5123  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5124  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5125                                     DAG.getNode(X86ISD::GlobalBaseReg,
5126                                                 DebugLoc::getUnknownLoc(),
5127                                                 PtrVT), InFlag);
5128  InFlag = Chain.getValue(1);
5129
5130  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5131}
5132
5133// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5134static SDValue
5135LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5136                                const EVT PtrVT) {
5137  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5138                    X86::RAX, X86II::MO_TLSGD);
5139}
5140
5141// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5142// "local exec" model.
5143static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5144                                   const EVT PtrVT, TLSModel::Model model,
5145                                   bool is64Bit) {
5146  DebugLoc dl = GA->getDebugLoc();
5147  // Get the Thread Pointer
5148  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5149                             DebugLoc::getUnknownLoc(), PtrVT,
5150                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5151                                             MVT::i32));
5152
5153  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5154                                      NULL, 0, false, false, 0);
5155
5156  unsigned char OperandFlags = 0;
5157  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5158  // initialexec.
5159  unsigned WrapperKind = X86ISD::Wrapper;
5160  if (model == TLSModel::LocalExec) {
5161    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5162  } else if (is64Bit) {
5163    assert(model == TLSModel::InitialExec);
5164    OperandFlags = X86II::MO_GOTTPOFF;
5165    WrapperKind = X86ISD::WrapperRIP;
5166  } else {
5167    assert(model == TLSModel::InitialExec);
5168    OperandFlags = X86II::MO_INDNTPOFF;
5169  }
5170
5171  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5172  // exec)
5173  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5174                                           GA->getOffset(), OperandFlags);
5175  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5176
5177  if (model == TLSModel::InitialExec)
5178    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5179                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5180
5181  // The address of the thread local variable is the add of the thread
5182  // pointer with the offset of the variable.
5183  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5184}
5185
5186SDValue
5187X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5188  // TODO: implement the "local dynamic" model
5189  // TODO: implement the "initial exec"model for pic executables
5190  assert(Subtarget->isTargetELF() &&
5191         "TLS not implemented for non-ELF targets");
5192  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5193  const GlobalValue *GV = GA->getGlobal();
5194
5195  // If GV is an alias then use the aliasee for determining
5196  // thread-localness.
5197  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5198    GV = GA->resolveAliasedGlobal(false);
5199
5200  TLSModel::Model model = getTLSModel(GV,
5201                                      getTargetMachine().getRelocationModel());
5202
5203  switch (model) {
5204  case TLSModel::GeneralDynamic:
5205  case TLSModel::LocalDynamic: // not implemented
5206    if (Subtarget->is64Bit())
5207      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5208    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5209
5210  case TLSModel::InitialExec:
5211  case TLSModel::LocalExec:
5212    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5213                               Subtarget->is64Bit());
5214  }
5215
5216  llvm_unreachable("Unreachable");
5217  return SDValue();
5218}
5219
5220
5221/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5222/// take a 2 x i32 value to shift plus a shift amount.
5223SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5224  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5225  EVT VT = Op.getValueType();
5226  unsigned VTBits = VT.getSizeInBits();
5227  DebugLoc dl = Op.getDebugLoc();
5228  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5229  SDValue ShOpLo = Op.getOperand(0);
5230  SDValue ShOpHi = Op.getOperand(1);
5231  SDValue ShAmt  = Op.getOperand(2);
5232  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5233                                     DAG.getConstant(VTBits - 1, MVT::i8))
5234                       : DAG.getConstant(0, VT);
5235
5236  SDValue Tmp2, Tmp3;
5237  if (Op.getOpcode() == ISD::SHL_PARTS) {
5238    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5239    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5240  } else {
5241    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5242    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5243  }
5244
5245  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5246                                DAG.getConstant(VTBits, MVT::i8));
5247  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
5248                             AndNode, DAG.getConstant(0, MVT::i8));
5249
5250  SDValue Hi, Lo;
5251  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5252  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5253  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5254
5255  if (Op.getOpcode() == ISD::SHL_PARTS) {
5256    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5257    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5258  } else {
5259    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5260    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5261  }
5262
5263  SDValue Ops[2] = { Lo, Hi };
5264  return DAG.getMergeValues(Ops, 2, dl);
5265}
5266
5267SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5268  EVT SrcVT = Op.getOperand(0).getValueType();
5269
5270  if (SrcVT.isVector()) {
5271    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5272      return Op;
5273    }
5274    return SDValue();
5275  }
5276
5277  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5278         "Unknown SINT_TO_FP to lower!");
5279
5280  // These are really Legal; return the operand so the caller accepts it as
5281  // Legal.
5282  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5283    return Op;
5284  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5285      Subtarget->is64Bit()) {
5286    return Op;
5287  }
5288
5289  DebugLoc dl = Op.getDebugLoc();
5290  unsigned Size = SrcVT.getSizeInBits()/8;
5291  MachineFunction &MF = DAG.getMachineFunction();
5292  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5293  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5294  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5295                               StackSlot,
5296                               PseudoSourceValue::getFixedStack(SSFI), 0,
5297                               false, false, 0);
5298  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5299}
5300
5301SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5302                                     SDValue StackSlot,
5303                                     SelectionDAG &DAG) {
5304  // Build the FILD
5305  DebugLoc dl = Op.getDebugLoc();
5306  SDVTList Tys;
5307  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5308  if (useSSE)
5309    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5310  else
5311    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5312  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5313  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5314                               Tys, Ops, array_lengthof(Ops));
5315
5316  if (useSSE) {
5317    Chain = Result.getValue(1);
5318    SDValue InFlag = Result.getValue(2);
5319
5320    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5321    // shouldn't be necessary except that RFP cannot be live across
5322    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5323    MachineFunction &MF = DAG.getMachineFunction();
5324    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5325    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5326    Tys = DAG.getVTList(MVT::Other);
5327    SDValue Ops[] = {
5328      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5329    };
5330    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5331    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5332                         PseudoSourceValue::getFixedStack(SSFI), 0,
5333                         false, false, 0);
5334  }
5335
5336  return Result;
5337}
5338
5339// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5340SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5341  // This algorithm is not obvious. Here it is in C code, more or less:
5342  /*
5343    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5344      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5345      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5346
5347      // Copy ints to xmm registers.
5348      __m128i xh = _mm_cvtsi32_si128( hi );
5349      __m128i xl = _mm_cvtsi32_si128( lo );
5350
5351      // Combine into low half of a single xmm register.
5352      __m128i x = _mm_unpacklo_epi32( xh, xl );
5353      __m128d d;
5354      double sd;
5355
5356      // Merge in appropriate exponents to give the integer bits the right
5357      // magnitude.
5358      x = _mm_unpacklo_epi32( x, exp );
5359
5360      // Subtract away the biases to deal with the IEEE-754 double precision
5361      // implicit 1.
5362      d = _mm_sub_pd( (__m128d) x, bias );
5363
5364      // All conversions up to here are exact. The correctly rounded result is
5365      // calculated using the current rounding mode using the following
5366      // horizontal add.
5367      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5368      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5369                                // store doesn't really need to be here (except
5370                                // maybe to zero the other double)
5371      return sd;
5372    }
5373  */
5374
5375  DebugLoc dl = Op.getDebugLoc();
5376  LLVMContext *Context = DAG.getContext();
5377
5378  // Build some magic constants.
5379  std::vector<Constant*> CV0;
5380  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5381  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5382  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5383  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5384  Constant *C0 = ConstantVector::get(CV0);
5385  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5386
5387  std::vector<Constant*> CV1;
5388  CV1.push_back(
5389    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5390  CV1.push_back(
5391    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5392  Constant *C1 = ConstantVector::get(CV1);
5393  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5394
5395  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5396                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5397                                        Op.getOperand(0),
5398                                        DAG.getIntPtrConstant(1)));
5399  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5400                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5401                                        Op.getOperand(0),
5402                                        DAG.getIntPtrConstant(0)));
5403  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5404  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5405                              PseudoSourceValue::getConstantPool(), 0,
5406                              false, false, 16);
5407  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5408  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5409  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5410                              PseudoSourceValue::getConstantPool(), 0,
5411                              false, false, 16);
5412  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5413
5414  // Add the halves; easiest way is to swap them into another reg first.
5415  int ShufMask[2] = { 1, -1 };
5416  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5417                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5418  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5419  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5420                     DAG.getIntPtrConstant(0));
5421}
5422
5423// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5424SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5425  DebugLoc dl = Op.getDebugLoc();
5426  // FP constant to bias correct the final result.
5427  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5428                                   MVT::f64);
5429
5430  // Load the 32-bit value into an XMM register.
5431  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5432                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5433                                         Op.getOperand(0),
5434                                         DAG.getIntPtrConstant(0)));
5435
5436  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5437                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5438                     DAG.getIntPtrConstant(0));
5439
5440  // Or the load with the bias.
5441  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5442                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5443                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5444                                                   MVT::v2f64, Load)),
5445                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5446                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5447                                                   MVT::v2f64, Bias)));
5448  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5449                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5450                   DAG.getIntPtrConstant(0));
5451
5452  // Subtract the bias.
5453  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5454
5455  // Handle final rounding.
5456  EVT DestVT = Op.getValueType();
5457
5458  if (DestVT.bitsLT(MVT::f64)) {
5459    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5460                       DAG.getIntPtrConstant(0));
5461  } else if (DestVT.bitsGT(MVT::f64)) {
5462    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5463  }
5464
5465  // Handle final rounding.
5466  return Sub;
5467}
5468
5469SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5470  SDValue N0 = Op.getOperand(0);
5471  DebugLoc dl = Op.getDebugLoc();
5472
5473  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5474  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5475  // the optimization here.
5476  if (DAG.SignBitIsZero(N0))
5477    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5478
5479  EVT SrcVT = N0.getValueType();
5480  if (SrcVT == MVT::i64) {
5481    // We only handle SSE2 f64 target here; caller can expand the rest.
5482    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5483      return SDValue();
5484
5485    return LowerUINT_TO_FP_i64(Op, DAG);
5486  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5487    return LowerUINT_TO_FP_i32(Op, DAG);
5488  }
5489
5490  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5491
5492  // Make a 64-bit buffer, and use it to build an FILD.
5493  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5494  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5495  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5496                                   getPointerTy(), StackSlot, WordOff);
5497  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5498                                StackSlot, NULL, 0, false, false, 0);
5499  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5500                                OffsetSlot, NULL, 0, false, false, 0);
5501  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5502}
5503
5504std::pair<SDValue,SDValue> X86TargetLowering::
5505FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5506  DebugLoc dl = Op.getDebugLoc();
5507
5508  EVT DstTy = Op.getValueType();
5509
5510  if (!IsSigned) {
5511    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5512    DstTy = MVT::i64;
5513  }
5514
5515  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5516         DstTy.getSimpleVT() >= MVT::i16 &&
5517         "Unknown FP_TO_SINT to lower!");
5518
5519  // These are really Legal.
5520  if (DstTy == MVT::i32 &&
5521      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5522    return std::make_pair(SDValue(), SDValue());
5523  if (Subtarget->is64Bit() &&
5524      DstTy == MVT::i64 &&
5525      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5526    return std::make_pair(SDValue(), SDValue());
5527
5528  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5529  // stack slot.
5530  MachineFunction &MF = DAG.getMachineFunction();
5531  unsigned MemSize = DstTy.getSizeInBits()/8;
5532  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5533  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5534
5535  unsigned Opc;
5536  switch (DstTy.getSimpleVT().SimpleTy) {
5537  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5538  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5539  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5540  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5541  }
5542
5543  SDValue Chain = DAG.getEntryNode();
5544  SDValue Value = Op.getOperand(0);
5545  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5546    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5547    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5548                         PseudoSourceValue::getFixedStack(SSFI), 0,
5549                         false, false, 0);
5550    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5551    SDValue Ops[] = {
5552      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5553    };
5554    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5555    Chain = Value.getValue(1);
5556    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5557    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5558  }
5559
5560  // Build the FP_TO_INT*_IN_MEM
5561  SDValue Ops[] = { Chain, Value, StackSlot };
5562  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5563
5564  return std::make_pair(FIST, StackSlot);
5565}
5566
5567SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5568  if (Op.getValueType().isVector()) {
5569    if (Op.getValueType() == MVT::v2i32 &&
5570        Op.getOperand(0).getValueType() == MVT::v2f64) {
5571      return Op;
5572    }
5573    return SDValue();
5574  }
5575
5576  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5577  SDValue FIST = Vals.first, StackSlot = Vals.second;
5578  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5579  if (FIST.getNode() == 0) return Op;
5580
5581  // Load the result.
5582  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5583                     FIST, StackSlot, NULL, 0, false, false, 0);
5584}
5585
5586SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5587  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5588  SDValue FIST = Vals.first, StackSlot = Vals.second;
5589  assert(FIST.getNode() && "Unexpected failure");
5590
5591  // Load the result.
5592  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5593                     FIST, StackSlot, NULL, 0, false, false, 0);
5594}
5595
5596SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5597  LLVMContext *Context = DAG.getContext();
5598  DebugLoc dl = Op.getDebugLoc();
5599  EVT VT = Op.getValueType();
5600  EVT EltVT = VT;
5601  if (VT.isVector())
5602    EltVT = VT.getVectorElementType();
5603  std::vector<Constant*> CV;
5604  if (EltVT == MVT::f64) {
5605    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5606    CV.push_back(C);
5607    CV.push_back(C);
5608  } else {
5609    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5610    CV.push_back(C);
5611    CV.push_back(C);
5612    CV.push_back(C);
5613    CV.push_back(C);
5614  }
5615  Constant *C = ConstantVector::get(CV);
5616  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5617  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5618                             PseudoSourceValue::getConstantPool(), 0,
5619                             false, false, 16);
5620  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5621}
5622
5623SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5624  LLVMContext *Context = DAG.getContext();
5625  DebugLoc dl = Op.getDebugLoc();
5626  EVT VT = Op.getValueType();
5627  EVT EltVT = VT;
5628  if (VT.isVector())
5629    EltVT = VT.getVectorElementType();
5630  std::vector<Constant*> CV;
5631  if (EltVT == MVT::f64) {
5632    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5633    CV.push_back(C);
5634    CV.push_back(C);
5635  } else {
5636    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5637    CV.push_back(C);
5638    CV.push_back(C);
5639    CV.push_back(C);
5640    CV.push_back(C);
5641  }
5642  Constant *C = ConstantVector::get(CV);
5643  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5644  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5645                             PseudoSourceValue::getConstantPool(), 0,
5646                             false, false, 16);
5647  if (VT.isVector()) {
5648    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5649                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5650                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5651                                Op.getOperand(0)),
5652                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5653  } else {
5654    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5655  }
5656}
5657
5658SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5659  LLVMContext *Context = DAG.getContext();
5660  SDValue Op0 = Op.getOperand(0);
5661  SDValue Op1 = Op.getOperand(1);
5662  DebugLoc dl = Op.getDebugLoc();
5663  EVT VT = Op.getValueType();
5664  EVT SrcVT = Op1.getValueType();
5665
5666  // If second operand is smaller, extend it first.
5667  if (SrcVT.bitsLT(VT)) {
5668    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5669    SrcVT = VT;
5670  }
5671  // And if it is bigger, shrink it first.
5672  if (SrcVT.bitsGT(VT)) {
5673    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5674    SrcVT = VT;
5675  }
5676
5677  // At this point the operands and the result should have the same
5678  // type, and that won't be f80 since that is not custom lowered.
5679
5680  // First get the sign bit of second operand.
5681  std::vector<Constant*> CV;
5682  if (SrcVT == MVT::f64) {
5683    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5684    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5685  } else {
5686    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5687    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5688    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5689    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5690  }
5691  Constant *C = ConstantVector::get(CV);
5692  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5693  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5694                              PseudoSourceValue::getConstantPool(), 0,
5695                              false, false, 16);
5696  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5697
5698  // Shift sign bit right or left if the two operands have different types.
5699  if (SrcVT.bitsGT(VT)) {
5700    // Op0 is MVT::f32, Op1 is MVT::f64.
5701    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5702    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5703                          DAG.getConstant(32, MVT::i32));
5704    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5705    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5706                          DAG.getIntPtrConstant(0));
5707  }
5708
5709  // Clear first operand sign bit.
5710  CV.clear();
5711  if (VT == MVT::f64) {
5712    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5713    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5714  } else {
5715    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5716    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5717    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5718    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5719  }
5720  C = ConstantVector::get(CV);
5721  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5722  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5723                              PseudoSourceValue::getConstantPool(), 0,
5724                              false, false, 16);
5725  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5726
5727  // Or the value with the sign bit.
5728  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5729}
5730
5731/// Emit nodes that will be selected as "test Op0,Op0", or something
5732/// equivalent.
5733SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5734                                    SelectionDAG &DAG) {
5735  DebugLoc dl = Op.getDebugLoc();
5736
5737  // CF and OF aren't always set the way we want. Determine which
5738  // of these we need.
5739  bool NeedCF = false;
5740  bool NeedOF = false;
5741  switch (X86CC) {
5742  case X86::COND_A: case X86::COND_AE:
5743  case X86::COND_B: case X86::COND_BE:
5744    NeedCF = true;
5745    break;
5746  case X86::COND_G: case X86::COND_GE:
5747  case X86::COND_L: case X86::COND_LE:
5748  case X86::COND_O: case X86::COND_NO:
5749    NeedOF = true;
5750    break;
5751  default: break;
5752  }
5753
5754  // See if we can use the EFLAGS value from the operand instead of
5755  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5756  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5757  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5758    unsigned Opcode = 0;
5759    unsigned NumOperands = 0;
5760    switch (Op.getNode()->getOpcode()) {
5761    case ISD::ADD:
5762      // Due to an isel shortcoming, be conservative if this add is likely to
5763      // be selected as part of a load-modify-store instruction. When the root
5764      // node in a match is a store, isel doesn't know how to remap non-chain
5765      // non-flag uses of other nodes in the match, such as the ADD in this
5766      // case. This leads to the ADD being left around and reselected, with
5767      // the result being two adds in the output.
5768      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5769           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5770        if (UI->getOpcode() == ISD::STORE)
5771          goto default_case;
5772      if (ConstantSDNode *C =
5773            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5774        // An add of one will be selected as an INC.
5775        if (C->getAPIntValue() == 1) {
5776          Opcode = X86ISD::INC;
5777          NumOperands = 1;
5778          break;
5779        }
5780        // An add of negative one (subtract of one) will be selected as a DEC.
5781        if (C->getAPIntValue().isAllOnesValue()) {
5782          Opcode = X86ISD::DEC;
5783          NumOperands = 1;
5784          break;
5785        }
5786      }
5787      // Otherwise use a regular EFLAGS-setting add.
5788      Opcode = X86ISD::ADD;
5789      NumOperands = 2;
5790      break;
5791    case ISD::AND: {
5792      // If the primary and result isn't used, don't bother using X86ISD::AND,
5793      // because a TEST instruction will be better.
5794      bool NonFlagUse = false;
5795      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5796             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5797        SDNode *User = *UI;
5798        unsigned UOpNo = UI.getOperandNo();
5799        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5800          // Look pass truncate.
5801          UOpNo = User->use_begin().getOperandNo();
5802          User = *User->use_begin();
5803        }
5804        if (User->getOpcode() != ISD::BRCOND &&
5805            User->getOpcode() != ISD::SETCC &&
5806            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5807          NonFlagUse = true;
5808          break;
5809        }
5810      }
5811      if (!NonFlagUse)
5812        break;
5813    }
5814    // FALL THROUGH
5815    case ISD::SUB:
5816    case ISD::OR:
5817    case ISD::XOR:
5818      // Due to the ISEL shortcoming noted above, be conservative if this op is
5819      // likely to be selected as part of a load-modify-store instruction.
5820      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5821           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5822        if (UI->getOpcode() == ISD::STORE)
5823          goto default_case;
5824      // Otherwise use a regular EFLAGS-setting instruction.
5825      switch (Op.getNode()->getOpcode()) {
5826      case ISD::SUB: Opcode = X86ISD::SUB; break;
5827      case ISD::OR:  Opcode = X86ISD::OR;  break;
5828      case ISD::XOR: Opcode = X86ISD::XOR; break;
5829      case ISD::AND: Opcode = X86ISD::AND; break;
5830      default: llvm_unreachable("unexpected operator!");
5831      }
5832      NumOperands = 2;
5833      break;
5834    case X86ISD::ADD:
5835    case X86ISD::SUB:
5836    case X86ISD::INC:
5837    case X86ISD::DEC:
5838    case X86ISD::OR:
5839    case X86ISD::XOR:
5840    case X86ISD::AND:
5841      return SDValue(Op.getNode(), 1);
5842    default:
5843    default_case:
5844      break;
5845    }
5846    if (Opcode != 0) {
5847      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5848      SmallVector<SDValue, 4> Ops;
5849      for (unsigned i = 0; i != NumOperands; ++i)
5850        Ops.push_back(Op.getOperand(i));
5851      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5852      DAG.ReplaceAllUsesWith(Op, New);
5853      return SDValue(New.getNode(), 1);
5854    }
5855  }
5856
5857  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5858  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5859                     DAG.getConstant(0, Op.getValueType()));
5860}
5861
5862/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5863/// equivalent.
5864SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5865                                   SelectionDAG &DAG) {
5866  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5867    if (C->getAPIntValue() == 0)
5868      return EmitTest(Op0, X86CC, DAG);
5869
5870  DebugLoc dl = Op0.getDebugLoc();
5871  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5872}
5873
5874/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
5875/// if it's possible.
5876static SDValue LowerToBT(SDValue Op0, ISD::CondCode CC,
5877                         DebugLoc dl, SelectionDAG &DAG) {
5878  SDValue LHS, RHS;
5879  if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5880    if (ConstantSDNode *Op010C =
5881        dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5882      if (Op010C->getZExtValue() == 1) {
5883        LHS = Op0.getOperand(0);
5884        RHS = Op0.getOperand(1).getOperand(1);
5885      }
5886  } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5887    if (ConstantSDNode *Op000C =
5888        dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5889      if (Op000C->getZExtValue() == 1) {
5890        LHS = Op0.getOperand(1);
5891        RHS = Op0.getOperand(0).getOperand(1);
5892      }
5893  } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5894    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5895    SDValue AndLHS = Op0.getOperand(0);
5896    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5897      LHS = AndLHS.getOperand(0);
5898      RHS = AndLHS.getOperand(1);
5899    }
5900  }
5901
5902  if (LHS.getNode()) {
5903    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5904    // instruction.  Since the shift amount is in-range-or-undefined, we know
5905    // that doing a bittest on the i16 value is ok.  We extend to i32 because
5906    // the encoding for the i16 version is larger than the i32 version.
5907    if (LHS.getValueType() == MVT::i8)
5908      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5909
5910    // If the operand types disagree, extend the shift amount to match.  Since
5911    // BT ignores high bits (like shifts) we can use anyextend.
5912    if (LHS.getValueType() != RHS.getValueType())
5913      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5914
5915    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5916    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5917    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5918                       DAG.getConstant(Cond, MVT::i8), BT);
5919  }
5920
5921  return SDValue();
5922}
5923
5924SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5925  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5926  SDValue Op0 = Op.getOperand(0);
5927  SDValue Op1 = Op.getOperand(1);
5928  DebugLoc dl = Op.getDebugLoc();
5929  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5930
5931  // Optimize to BT if possible.
5932  // Lower (X & (1 << N)) == 0 to BT(X, N).
5933  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5934  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5935  if (Op0.getOpcode() == ISD::AND &&
5936      Op0.hasOneUse() &&
5937      Op1.getOpcode() == ISD::Constant &&
5938      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5939      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5940    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
5941    if (NewSetCC.getNode())
5942      return NewSetCC;
5943  }
5944
5945  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5946  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5947  if (X86CC == X86::COND_INVALID)
5948    return SDValue();
5949
5950  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5951
5952  // Use sbb x, x to materialize carry bit into a GPR.
5953  if (X86CC == X86::COND_B)
5954    return DAG.getNode(ISD::AND, dl, MVT::i8,
5955                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
5956                                   DAG.getConstant(X86CC, MVT::i8), Cond),
5957                       DAG.getConstant(1, MVT::i8));
5958
5959  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5960                     DAG.getConstant(X86CC, MVT::i8), Cond);
5961}
5962
5963SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5964  SDValue Cond;
5965  SDValue Op0 = Op.getOperand(0);
5966  SDValue Op1 = Op.getOperand(1);
5967  SDValue CC = Op.getOperand(2);
5968  EVT VT = Op.getValueType();
5969  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5970  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5971  DebugLoc dl = Op.getDebugLoc();
5972
5973  if (isFP) {
5974    unsigned SSECC = 8;
5975    EVT VT0 = Op0.getValueType();
5976    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5977    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5978    bool Swap = false;
5979
5980    switch (SetCCOpcode) {
5981    default: break;
5982    case ISD::SETOEQ:
5983    case ISD::SETEQ:  SSECC = 0; break;
5984    case ISD::SETOGT:
5985    case ISD::SETGT: Swap = true; // Fallthrough
5986    case ISD::SETLT:
5987    case ISD::SETOLT: SSECC = 1; break;
5988    case ISD::SETOGE:
5989    case ISD::SETGE: Swap = true; // Fallthrough
5990    case ISD::SETLE:
5991    case ISD::SETOLE: SSECC = 2; break;
5992    case ISD::SETUO:  SSECC = 3; break;
5993    case ISD::SETUNE:
5994    case ISD::SETNE:  SSECC = 4; break;
5995    case ISD::SETULE: Swap = true;
5996    case ISD::SETUGE: SSECC = 5; break;
5997    case ISD::SETULT: Swap = true;
5998    case ISD::SETUGT: SSECC = 6; break;
5999    case ISD::SETO:   SSECC = 7; break;
6000    }
6001    if (Swap)
6002      std::swap(Op0, Op1);
6003
6004    // In the two special cases we can't handle, emit two comparisons.
6005    if (SSECC == 8) {
6006      if (SetCCOpcode == ISD::SETUEQ) {
6007        SDValue UNORD, EQ;
6008        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6009        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6010        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6011      }
6012      else if (SetCCOpcode == ISD::SETONE) {
6013        SDValue ORD, NEQ;
6014        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6015        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6016        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6017      }
6018      llvm_unreachable("Illegal FP comparison");
6019    }
6020    // Handle all other FP comparisons here.
6021    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6022  }
6023
6024  // We are handling one of the integer comparisons here.  Since SSE only has
6025  // GT and EQ comparisons for integer, swapping operands and multiple
6026  // operations may be required for some comparisons.
6027  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6028  bool Swap = false, Invert = false, FlipSigns = false;
6029
6030  switch (VT.getSimpleVT().SimpleTy) {
6031  default: break;
6032  case MVT::v8i8:
6033  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6034  case MVT::v4i16:
6035  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6036  case MVT::v2i32:
6037  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6038  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6039  }
6040
6041  switch (SetCCOpcode) {
6042  default: break;
6043  case ISD::SETNE:  Invert = true;
6044  case ISD::SETEQ:  Opc = EQOpc; break;
6045  case ISD::SETLT:  Swap = true;
6046  case ISD::SETGT:  Opc = GTOpc; break;
6047  case ISD::SETGE:  Swap = true;
6048  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6049  case ISD::SETULT: Swap = true;
6050  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6051  case ISD::SETUGE: Swap = true;
6052  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6053  }
6054  if (Swap)
6055    std::swap(Op0, Op1);
6056
6057  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6058  // bits of the inputs before performing those operations.
6059  if (FlipSigns) {
6060    EVT EltVT = VT.getVectorElementType();
6061    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6062                                      EltVT);
6063    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6064    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6065                                    SignBits.size());
6066    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6067    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6068  }
6069
6070  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6071
6072  // If the logical-not of the result is required, perform that now.
6073  if (Invert)
6074    Result = DAG.getNOT(dl, Result, VT);
6075
6076  return Result;
6077}
6078
6079// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6080static bool isX86LogicalCmp(SDValue Op) {
6081  unsigned Opc = Op.getNode()->getOpcode();
6082  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6083    return true;
6084  if (Op.getResNo() == 1 &&
6085      (Opc == X86ISD::ADD ||
6086       Opc == X86ISD::SUB ||
6087       Opc == X86ISD::SMUL ||
6088       Opc == X86ISD::UMUL ||
6089       Opc == X86ISD::INC ||
6090       Opc == X86ISD::DEC ||
6091       Opc == X86ISD::OR ||
6092       Opc == X86ISD::XOR ||
6093       Opc == X86ISD::AND))
6094    return true;
6095
6096  return false;
6097}
6098
6099SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6100  bool addTest = true;
6101  SDValue Cond  = Op.getOperand(0);
6102  DebugLoc dl = Op.getDebugLoc();
6103  SDValue CC;
6104
6105  if (Cond.getOpcode() == ISD::SETCC) {
6106    SDValue NewCond = LowerSETCC(Cond, DAG);
6107    if (NewCond.getNode())
6108      Cond = NewCond;
6109  }
6110
6111  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6112  SDValue Op1 = Op.getOperand(1);
6113  SDValue Op2 = Op.getOperand(2);
6114  if (Cond.getOpcode() == X86ISD::SETCC &&
6115      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6116    SDValue Cmp = Cond.getOperand(1);
6117    if (Cmp.getOpcode() == X86ISD::CMP) {
6118      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6119      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6120      ConstantSDNode *RHSC =
6121        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6122      if (N1C && N1C->isAllOnesValue() &&
6123          N2C && N2C->isNullValue() &&
6124          RHSC && RHSC->isNullValue()) {
6125        SDValue CmpOp0 = Cmp.getOperand(0);
6126        Cmp = DAG.getNode(X86ISD::CMP, dl, CmpOp0.getValueType(),
6127                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6128        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6129                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6130      }
6131    }
6132  }
6133
6134  // Look pass (and (setcc_carry (cmp ...)), 1).
6135  if (Cond.getOpcode() == ISD::AND &&
6136      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6137    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6138    if (C && C->getAPIntValue() == 1)
6139      Cond = Cond.getOperand(0);
6140  }
6141
6142  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6143  // setting operand in place of the X86ISD::SETCC.
6144  if (Cond.getOpcode() == X86ISD::SETCC ||
6145      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6146    CC = Cond.getOperand(0);
6147
6148    SDValue Cmp = Cond.getOperand(1);
6149    unsigned Opc = Cmp.getOpcode();
6150    EVT VT = Op.getValueType();
6151
6152    bool IllegalFPCMov = false;
6153    if (VT.isFloatingPoint() && !VT.isVector() &&
6154        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6155      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6156
6157    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6158        Opc == X86ISD::BT) { // FIXME
6159      Cond = Cmp;
6160      addTest = false;
6161    }
6162  }
6163
6164  if (addTest) {
6165    // Look pass the truncate.
6166    if (Cond.getOpcode() == ISD::TRUNCATE)
6167      Cond = Cond.getOperand(0);
6168
6169    // We know the result of AND is compared against zero. Try to match
6170    // it to BT.
6171    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6172      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6173      if (NewSetCC.getNode()) {
6174        CC = NewSetCC.getOperand(0);
6175        Cond = NewSetCC.getOperand(1);
6176        addTest = false;
6177      }
6178    }
6179  }
6180
6181  if (addTest) {
6182    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6183    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6184  }
6185
6186  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6187  // condition is true.
6188  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6189  SDValue Ops[] = { Op2, Op1, CC, Cond };
6190  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6191}
6192
6193// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6194// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6195// from the AND / OR.
6196static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6197  Opc = Op.getOpcode();
6198  if (Opc != ISD::OR && Opc != ISD::AND)
6199    return false;
6200  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6201          Op.getOperand(0).hasOneUse() &&
6202          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6203          Op.getOperand(1).hasOneUse());
6204}
6205
6206// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6207// 1 and that the SETCC node has a single use.
6208static bool isXor1OfSetCC(SDValue Op) {
6209  if (Op.getOpcode() != ISD::XOR)
6210    return false;
6211  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6212  if (N1C && N1C->getAPIntValue() == 1) {
6213    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6214      Op.getOperand(0).hasOneUse();
6215  }
6216  return false;
6217}
6218
6219SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6220  bool addTest = true;
6221  SDValue Chain = Op.getOperand(0);
6222  SDValue Cond  = Op.getOperand(1);
6223  SDValue Dest  = Op.getOperand(2);
6224  DebugLoc dl = Op.getDebugLoc();
6225  SDValue CC;
6226
6227  if (Cond.getOpcode() == ISD::SETCC) {
6228    SDValue NewCond = LowerSETCC(Cond, DAG);
6229    if (NewCond.getNode())
6230      Cond = NewCond;
6231  }
6232#if 0
6233  // FIXME: LowerXALUO doesn't handle these!!
6234  else if (Cond.getOpcode() == X86ISD::ADD  ||
6235           Cond.getOpcode() == X86ISD::SUB  ||
6236           Cond.getOpcode() == X86ISD::SMUL ||
6237           Cond.getOpcode() == X86ISD::UMUL)
6238    Cond = LowerXALUO(Cond, DAG);
6239#endif
6240
6241  // Look pass (and (setcc_carry (cmp ...)), 1).
6242  if (Cond.getOpcode() == ISD::AND &&
6243      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6244    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6245    if (C && C->getAPIntValue() == 1)
6246      Cond = Cond.getOperand(0);
6247  }
6248
6249  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6250  // setting operand in place of the X86ISD::SETCC.
6251  if (Cond.getOpcode() == X86ISD::SETCC ||
6252      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6253    CC = Cond.getOperand(0);
6254
6255    SDValue Cmp = Cond.getOperand(1);
6256    unsigned Opc = Cmp.getOpcode();
6257    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6258    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6259      Cond = Cmp;
6260      addTest = false;
6261    } else {
6262      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6263      default: break;
6264      case X86::COND_O:
6265      case X86::COND_B:
6266        // These can only come from an arithmetic instruction with overflow,
6267        // e.g. SADDO, UADDO.
6268        Cond = Cond.getNode()->getOperand(1);
6269        addTest = false;
6270        break;
6271      }
6272    }
6273  } else {
6274    unsigned CondOpc;
6275    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6276      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6277      if (CondOpc == ISD::OR) {
6278        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6279        // two branches instead of an explicit OR instruction with a
6280        // separate test.
6281        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6282            isX86LogicalCmp(Cmp)) {
6283          CC = Cond.getOperand(0).getOperand(0);
6284          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6285                              Chain, Dest, CC, Cmp);
6286          CC = Cond.getOperand(1).getOperand(0);
6287          Cond = Cmp;
6288          addTest = false;
6289        }
6290      } else { // ISD::AND
6291        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6292        // two branches instead of an explicit AND instruction with a
6293        // separate test. However, we only do this if this block doesn't
6294        // have a fall-through edge, because this requires an explicit
6295        // jmp when the condition is false.
6296        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6297            isX86LogicalCmp(Cmp) &&
6298            Op.getNode()->hasOneUse()) {
6299          X86::CondCode CCode =
6300            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6301          CCode = X86::GetOppositeBranchCondition(CCode);
6302          CC = DAG.getConstant(CCode, MVT::i8);
6303          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6304          // Look for an unconditional branch following this conditional branch.
6305          // We need this because we need to reverse the successors in order
6306          // to implement FCMP_OEQ.
6307          if (User.getOpcode() == ISD::BR) {
6308            SDValue FalseBB = User.getOperand(1);
6309            SDValue NewBR =
6310              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6311            assert(NewBR == User);
6312            Dest = FalseBB;
6313
6314            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6315                                Chain, Dest, CC, Cmp);
6316            X86::CondCode CCode =
6317              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6318            CCode = X86::GetOppositeBranchCondition(CCode);
6319            CC = DAG.getConstant(CCode, MVT::i8);
6320            Cond = Cmp;
6321            addTest = false;
6322          }
6323        }
6324      }
6325    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6326      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6327      // It should be transformed during dag combiner except when the condition
6328      // is set by a arithmetics with overflow node.
6329      X86::CondCode CCode =
6330        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6331      CCode = X86::GetOppositeBranchCondition(CCode);
6332      CC = DAG.getConstant(CCode, MVT::i8);
6333      Cond = Cond.getOperand(0).getOperand(1);
6334      addTest = false;
6335    }
6336  }
6337
6338  if (addTest) {
6339    // Look pass the truncate.
6340    if (Cond.getOpcode() == ISD::TRUNCATE)
6341      Cond = Cond.getOperand(0);
6342
6343    // We know the result of AND is compared against zero. Try to match
6344    // it to BT.
6345    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6346      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6347      if (NewSetCC.getNode()) {
6348        CC = NewSetCC.getOperand(0);
6349        Cond = NewSetCC.getOperand(1);
6350        addTest = false;
6351      }
6352    }
6353  }
6354
6355  if (addTest) {
6356    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6357    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6358  }
6359  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6360                     Chain, Dest, CC, Cond);
6361}
6362
6363
6364// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6365// Calls to _alloca is needed to probe the stack when allocating more than 4k
6366// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6367// that the guard pages used by the OS virtual memory manager are allocated in
6368// correct sequence.
6369SDValue
6370X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6371                                           SelectionDAG &DAG) {
6372  assert(Subtarget->isTargetCygMing() &&
6373         "This should be used only on Cygwin/Mingw targets");
6374  DebugLoc dl = Op.getDebugLoc();
6375
6376  // Get the inputs.
6377  SDValue Chain = Op.getOperand(0);
6378  SDValue Size  = Op.getOperand(1);
6379  // FIXME: Ensure alignment here
6380
6381  SDValue Flag;
6382
6383  EVT IntPtr = getPointerTy();
6384  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6385
6386  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
6387
6388  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6389  Flag = Chain.getValue(1);
6390
6391  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6392  SDValue Ops[] = { Chain,
6393                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
6394                      DAG.getRegister(X86::EAX, IntPtr),
6395                      DAG.getRegister(X86StackPtr, SPTy),
6396                      Flag };
6397  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
6398  Flag = Chain.getValue(1);
6399
6400  Chain = DAG.getCALLSEQ_END(Chain,
6401                             DAG.getIntPtrConstant(0, true),
6402                             DAG.getIntPtrConstant(0, true),
6403                             Flag);
6404
6405  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6406
6407  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6408  return DAG.getMergeValues(Ops1, 2, dl);
6409}
6410
6411SDValue
6412X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6413                                           SDValue Chain,
6414                                           SDValue Dst, SDValue Src,
6415                                           SDValue Size, unsigned Align,
6416                                           const Value *DstSV,
6417                                           uint64_t DstSVOff) {
6418  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6419
6420  // If not DWORD aligned or size is more than the threshold, call the library.
6421  // The libc version is likely to be faster for these cases. It can use the
6422  // address value and run time information about the CPU.
6423  if ((Align & 3) != 0 ||
6424      !ConstantSize ||
6425      ConstantSize->getZExtValue() >
6426        getSubtarget()->getMaxInlineSizeThreshold()) {
6427    SDValue InFlag(0, 0);
6428
6429    // Check to see if there is a specialized entry-point for memory zeroing.
6430    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6431
6432    if (const char *bzeroEntry =  V &&
6433        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6434      EVT IntPtr = getPointerTy();
6435      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6436      TargetLowering::ArgListTy Args;
6437      TargetLowering::ArgListEntry Entry;
6438      Entry.Node = Dst;
6439      Entry.Ty = IntPtrTy;
6440      Args.push_back(Entry);
6441      Entry.Node = Size;
6442      Args.push_back(Entry);
6443      std::pair<SDValue,SDValue> CallResult =
6444        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6445                    false, false, false, false,
6446                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6447                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl,
6448                    DAG.GetOrdering(Chain.getNode()));
6449      return CallResult.second;
6450    }
6451
6452    // Otherwise have the target-independent code call memset.
6453    return SDValue();
6454  }
6455
6456  uint64_t SizeVal = ConstantSize->getZExtValue();
6457  SDValue InFlag(0, 0);
6458  EVT AVT;
6459  SDValue Count;
6460  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6461  unsigned BytesLeft = 0;
6462  bool TwoRepStos = false;
6463  if (ValC) {
6464    unsigned ValReg;
6465    uint64_t Val = ValC->getZExtValue() & 255;
6466
6467    // If the value is a constant, then we can potentially use larger sets.
6468    switch (Align & 3) {
6469    case 2:   // WORD aligned
6470      AVT = MVT::i16;
6471      ValReg = X86::AX;
6472      Val = (Val << 8) | Val;
6473      break;
6474    case 0:  // DWORD aligned
6475      AVT = MVT::i32;
6476      ValReg = X86::EAX;
6477      Val = (Val << 8)  | Val;
6478      Val = (Val << 16) | Val;
6479      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6480        AVT = MVT::i64;
6481        ValReg = X86::RAX;
6482        Val = (Val << 32) | Val;
6483      }
6484      break;
6485    default:  // Byte aligned
6486      AVT = MVT::i8;
6487      ValReg = X86::AL;
6488      Count = DAG.getIntPtrConstant(SizeVal);
6489      break;
6490    }
6491
6492    if (AVT.bitsGT(MVT::i8)) {
6493      unsigned UBytes = AVT.getSizeInBits() / 8;
6494      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6495      BytesLeft = SizeVal % UBytes;
6496    }
6497
6498    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6499                              InFlag);
6500    InFlag = Chain.getValue(1);
6501  } else {
6502    AVT = MVT::i8;
6503    Count  = DAG.getIntPtrConstant(SizeVal);
6504    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6505    InFlag = Chain.getValue(1);
6506  }
6507
6508  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6509                                                              X86::ECX,
6510                            Count, InFlag);
6511  InFlag = Chain.getValue(1);
6512  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6513                                                              X86::EDI,
6514                            Dst, InFlag);
6515  InFlag = Chain.getValue(1);
6516
6517  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6518  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6519  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6520
6521  if (TwoRepStos) {
6522    InFlag = Chain.getValue(1);
6523    Count  = Size;
6524    EVT CVT = Count.getValueType();
6525    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6526                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6527    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6528                                                             X86::ECX,
6529                              Left, InFlag);
6530    InFlag = Chain.getValue(1);
6531    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6532    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6533    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6534  } else if (BytesLeft) {
6535    // Handle the last 1 - 7 bytes.
6536    unsigned Offset = SizeVal - BytesLeft;
6537    EVT AddrVT = Dst.getValueType();
6538    EVT SizeVT = Size.getValueType();
6539
6540    Chain = DAG.getMemset(Chain, dl,
6541                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6542                                      DAG.getConstant(Offset, AddrVT)),
6543                          Src,
6544                          DAG.getConstant(BytesLeft, SizeVT),
6545                          Align, DstSV, DstSVOff + Offset);
6546  }
6547
6548  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6549  return Chain;
6550}
6551
6552SDValue
6553X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6554                                      SDValue Chain, SDValue Dst, SDValue Src,
6555                                      SDValue Size, unsigned Align,
6556                                      bool AlwaysInline,
6557                                      const Value *DstSV, uint64_t DstSVOff,
6558                                      const Value *SrcSV, uint64_t SrcSVOff) {
6559  // This requires the copy size to be a constant, preferrably
6560  // within a subtarget-specific limit.
6561  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6562  if (!ConstantSize)
6563    return SDValue();
6564  uint64_t SizeVal = ConstantSize->getZExtValue();
6565  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6566    return SDValue();
6567
6568  /// If not DWORD aligned, call the library.
6569  if ((Align & 3) != 0)
6570    return SDValue();
6571
6572  // DWORD aligned
6573  EVT AVT = MVT::i32;
6574  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6575    AVT = MVT::i64;
6576
6577  unsigned UBytes = AVT.getSizeInBits() / 8;
6578  unsigned CountVal = SizeVal / UBytes;
6579  SDValue Count = DAG.getIntPtrConstant(CountVal);
6580  unsigned BytesLeft = SizeVal % UBytes;
6581
6582  SDValue InFlag(0, 0);
6583  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6584                                                              X86::ECX,
6585                            Count, InFlag);
6586  InFlag = Chain.getValue(1);
6587  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6588                                                             X86::EDI,
6589                            Dst, InFlag);
6590  InFlag = Chain.getValue(1);
6591  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6592                                                              X86::ESI,
6593                            Src, InFlag);
6594  InFlag = Chain.getValue(1);
6595
6596  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6597  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6598  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6599                                array_lengthof(Ops));
6600
6601  SmallVector<SDValue, 4> Results;
6602  Results.push_back(RepMovs);
6603  if (BytesLeft) {
6604    // Handle the last 1 - 7 bytes.
6605    unsigned Offset = SizeVal - BytesLeft;
6606    EVT DstVT = Dst.getValueType();
6607    EVT SrcVT = Src.getValueType();
6608    EVT SizeVT = Size.getValueType();
6609    Results.push_back(DAG.getMemcpy(Chain, dl,
6610                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6611                                                DAG.getConstant(Offset, DstVT)),
6612                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6613                                                DAG.getConstant(Offset, SrcVT)),
6614                                    DAG.getConstant(BytesLeft, SizeVT),
6615                                    Align, AlwaysInline,
6616                                    DstSV, DstSVOff + Offset,
6617                                    SrcSV, SrcSVOff + Offset));
6618  }
6619
6620  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6621                     &Results[0], Results.size());
6622}
6623
6624SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6625  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6626  DebugLoc dl = Op.getDebugLoc();
6627
6628  if (!Subtarget->is64Bit()) {
6629    // vastart just stores the address of the VarArgsFrameIndex slot into the
6630    // memory location argument.
6631    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6632    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6633                        false, false, 0);
6634  }
6635
6636  // __va_list_tag:
6637  //   gp_offset         (0 - 6 * 8)
6638  //   fp_offset         (48 - 48 + 8 * 16)
6639  //   overflow_arg_area (point to parameters coming in memory).
6640  //   reg_save_area
6641  SmallVector<SDValue, 8> MemOps;
6642  SDValue FIN = Op.getOperand(1);
6643  // Store gp_offset
6644  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6645                               DAG.getConstant(VarArgsGPOffset, MVT::i32),
6646                               FIN, SV, 0, false, false, 0);
6647  MemOps.push_back(Store);
6648
6649  // Store fp_offset
6650  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6651                    FIN, DAG.getIntPtrConstant(4));
6652  Store = DAG.getStore(Op.getOperand(0), dl,
6653                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6654                       FIN, SV, 0, false, false, 0);
6655  MemOps.push_back(Store);
6656
6657  // Store ptr to overflow_arg_area
6658  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6659                    FIN, DAG.getIntPtrConstant(4));
6660  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6661  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
6662                       false, false, 0);
6663  MemOps.push_back(Store);
6664
6665  // Store ptr to reg_save_area.
6666  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6667                    FIN, DAG.getIntPtrConstant(8));
6668  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6669  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
6670                       false, false, 0);
6671  MemOps.push_back(Store);
6672  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6673                     &MemOps[0], MemOps.size());
6674}
6675
6676SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6677  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6678  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6679  SDValue Chain = Op.getOperand(0);
6680  SDValue SrcPtr = Op.getOperand(1);
6681  SDValue SrcSV = Op.getOperand(2);
6682
6683  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6684  return SDValue();
6685}
6686
6687SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6688  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6689  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6690  SDValue Chain = Op.getOperand(0);
6691  SDValue DstPtr = Op.getOperand(1);
6692  SDValue SrcPtr = Op.getOperand(2);
6693  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6694  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6695  DebugLoc dl = Op.getDebugLoc();
6696
6697  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6698                       DAG.getIntPtrConstant(24), 8, false,
6699                       DstSV, 0, SrcSV, 0);
6700}
6701
6702SDValue
6703X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6704  DebugLoc dl = Op.getDebugLoc();
6705  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6706  switch (IntNo) {
6707  default: return SDValue();    // Don't custom lower most intrinsics.
6708  // Comparison intrinsics.
6709  case Intrinsic::x86_sse_comieq_ss:
6710  case Intrinsic::x86_sse_comilt_ss:
6711  case Intrinsic::x86_sse_comile_ss:
6712  case Intrinsic::x86_sse_comigt_ss:
6713  case Intrinsic::x86_sse_comige_ss:
6714  case Intrinsic::x86_sse_comineq_ss:
6715  case Intrinsic::x86_sse_ucomieq_ss:
6716  case Intrinsic::x86_sse_ucomilt_ss:
6717  case Intrinsic::x86_sse_ucomile_ss:
6718  case Intrinsic::x86_sse_ucomigt_ss:
6719  case Intrinsic::x86_sse_ucomige_ss:
6720  case Intrinsic::x86_sse_ucomineq_ss:
6721  case Intrinsic::x86_sse2_comieq_sd:
6722  case Intrinsic::x86_sse2_comilt_sd:
6723  case Intrinsic::x86_sse2_comile_sd:
6724  case Intrinsic::x86_sse2_comigt_sd:
6725  case Intrinsic::x86_sse2_comige_sd:
6726  case Intrinsic::x86_sse2_comineq_sd:
6727  case Intrinsic::x86_sse2_ucomieq_sd:
6728  case Intrinsic::x86_sse2_ucomilt_sd:
6729  case Intrinsic::x86_sse2_ucomile_sd:
6730  case Intrinsic::x86_sse2_ucomigt_sd:
6731  case Intrinsic::x86_sse2_ucomige_sd:
6732  case Intrinsic::x86_sse2_ucomineq_sd: {
6733    unsigned Opc = 0;
6734    ISD::CondCode CC = ISD::SETCC_INVALID;
6735    switch (IntNo) {
6736    default: break;
6737    case Intrinsic::x86_sse_comieq_ss:
6738    case Intrinsic::x86_sse2_comieq_sd:
6739      Opc = X86ISD::COMI;
6740      CC = ISD::SETEQ;
6741      break;
6742    case Intrinsic::x86_sse_comilt_ss:
6743    case Intrinsic::x86_sse2_comilt_sd:
6744      Opc = X86ISD::COMI;
6745      CC = ISD::SETLT;
6746      break;
6747    case Intrinsic::x86_sse_comile_ss:
6748    case Intrinsic::x86_sse2_comile_sd:
6749      Opc = X86ISD::COMI;
6750      CC = ISD::SETLE;
6751      break;
6752    case Intrinsic::x86_sse_comigt_ss:
6753    case Intrinsic::x86_sse2_comigt_sd:
6754      Opc = X86ISD::COMI;
6755      CC = ISD::SETGT;
6756      break;
6757    case Intrinsic::x86_sse_comige_ss:
6758    case Intrinsic::x86_sse2_comige_sd:
6759      Opc = X86ISD::COMI;
6760      CC = ISD::SETGE;
6761      break;
6762    case Intrinsic::x86_sse_comineq_ss:
6763    case Intrinsic::x86_sse2_comineq_sd:
6764      Opc = X86ISD::COMI;
6765      CC = ISD::SETNE;
6766      break;
6767    case Intrinsic::x86_sse_ucomieq_ss:
6768    case Intrinsic::x86_sse2_ucomieq_sd:
6769      Opc = X86ISD::UCOMI;
6770      CC = ISD::SETEQ;
6771      break;
6772    case Intrinsic::x86_sse_ucomilt_ss:
6773    case Intrinsic::x86_sse2_ucomilt_sd:
6774      Opc = X86ISD::UCOMI;
6775      CC = ISD::SETLT;
6776      break;
6777    case Intrinsic::x86_sse_ucomile_ss:
6778    case Intrinsic::x86_sse2_ucomile_sd:
6779      Opc = X86ISD::UCOMI;
6780      CC = ISD::SETLE;
6781      break;
6782    case Intrinsic::x86_sse_ucomigt_ss:
6783    case Intrinsic::x86_sse2_ucomigt_sd:
6784      Opc = X86ISD::UCOMI;
6785      CC = ISD::SETGT;
6786      break;
6787    case Intrinsic::x86_sse_ucomige_ss:
6788    case Intrinsic::x86_sse2_ucomige_sd:
6789      Opc = X86ISD::UCOMI;
6790      CC = ISD::SETGE;
6791      break;
6792    case Intrinsic::x86_sse_ucomineq_ss:
6793    case Intrinsic::x86_sse2_ucomineq_sd:
6794      Opc = X86ISD::UCOMI;
6795      CC = ISD::SETNE;
6796      break;
6797    }
6798
6799    SDValue LHS = Op.getOperand(1);
6800    SDValue RHS = Op.getOperand(2);
6801    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6802    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6803    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6804    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6805                                DAG.getConstant(X86CC, MVT::i8), Cond);
6806    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6807  }
6808  // ptest intrinsics. The intrinsic these come from are designed to return
6809  // an integer value, not just an instruction so lower it to the ptest
6810  // pattern and a setcc for the result.
6811  case Intrinsic::x86_sse41_ptestz:
6812  case Intrinsic::x86_sse41_ptestc:
6813  case Intrinsic::x86_sse41_ptestnzc:{
6814    unsigned X86CC = 0;
6815    switch (IntNo) {
6816    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6817    case Intrinsic::x86_sse41_ptestz:
6818      // ZF = 1
6819      X86CC = X86::COND_E;
6820      break;
6821    case Intrinsic::x86_sse41_ptestc:
6822      // CF = 1
6823      X86CC = X86::COND_B;
6824      break;
6825    case Intrinsic::x86_sse41_ptestnzc:
6826      // ZF and CF = 0
6827      X86CC = X86::COND_A;
6828      break;
6829    }
6830
6831    SDValue LHS = Op.getOperand(1);
6832    SDValue RHS = Op.getOperand(2);
6833    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6834    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6835    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6836    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6837  }
6838
6839  // Fix vector shift instructions where the last operand is a non-immediate
6840  // i32 value.
6841  case Intrinsic::x86_sse2_pslli_w:
6842  case Intrinsic::x86_sse2_pslli_d:
6843  case Intrinsic::x86_sse2_pslli_q:
6844  case Intrinsic::x86_sse2_psrli_w:
6845  case Intrinsic::x86_sse2_psrli_d:
6846  case Intrinsic::x86_sse2_psrli_q:
6847  case Intrinsic::x86_sse2_psrai_w:
6848  case Intrinsic::x86_sse2_psrai_d:
6849  case Intrinsic::x86_mmx_pslli_w:
6850  case Intrinsic::x86_mmx_pslli_d:
6851  case Intrinsic::x86_mmx_pslli_q:
6852  case Intrinsic::x86_mmx_psrli_w:
6853  case Intrinsic::x86_mmx_psrli_d:
6854  case Intrinsic::x86_mmx_psrli_q:
6855  case Intrinsic::x86_mmx_psrai_w:
6856  case Intrinsic::x86_mmx_psrai_d: {
6857    SDValue ShAmt = Op.getOperand(2);
6858    if (isa<ConstantSDNode>(ShAmt))
6859      return SDValue();
6860
6861    unsigned NewIntNo = 0;
6862    EVT ShAmtVT = MVT::v4i32;
6863    switch (IntNo) {
6864    case Intrinsic::x86_sse2_pslli_w:
6865      NewIntNo = Intrinsic::x86_sse2_psll_w;
6866      break;
6867    case Intrinsic::x86_sse2_pslli_d:
6868      NewIntNo = Intrinsic::x86_sse2_psll_d;
6869      break;
6870    case Intrinsic::x86_sse2_pslli_q:
6871      NewIntNo = Intrinsic::x86_sse2_psll_q;
6872      break;
6873    case Intrinsic::x86_sse2_psrli_w:
6874      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6875      break;
6876    case Intrinsic::x86_sse2_psrli_d:
6877      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6878      break;
6879    case Intrinsic::x86_sse2_psrli_q:
6880      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6881      break;
6882    case Intrinsic::x86_sse2_psrai_w:
6883      NewIntNo = Intrinsic::x86_sse2_psra_w;
6884      break;
6885    case Intrinsic::x86_sse2_psrai_d:
6886      NewIntNo = Intrinsic::x86_sse2_psra_d;
6887      break;
6888    default: {
6889      ShAmtVT = MVT::v2i32;
6890      switch (IntNo) {
6891      case Intrinsic::x86_mmx_pslli_w:
6892        NewIntNo = Intrinsic::x86_mmx_psll_w;
6893        break;
6894      case Intrinsic::x86_mmx_pslli_d:
6895        NewIntNo = Intrinsic::x86_mmx_psll_d;
6896        break;
6897      case Intrinsic::x86_mmx_pslli_q:
6898        NewIntNo = Intrinsic::x86_mmx_psll_q;
6899        break;
6900      case Intrinsic::x86_mmx_psrli_w:
6901        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6902        break;
6903      case Intrinsic::x86_mmx_psrli_d:
6904        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6905        break;
6906      case Intrinsic::x86_mmx_psrli_q:
6907        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6908        break;
6909      case Intrinsic::x86_mmx_psrai_w:
6910        NewIntNo = Intrinsic::x86_mmx_psra_w;
6911        break;
6912      case Intrinsic::x86_mmx_psrai_d:
6913        NewIntNo = Intrinsic::x86_mmx_psra_d;
6914        break;
6915      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6916      }
6917      break;
6918    }
6919    }
6920
6921    // The vector shift intrinsics with scalars uses 32b shift amounts but
6922    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6923    // to be zero.
6924    SDValue ShOps[4];
6925    ShOps[0] = ShAmt;
6926    ShOps[1] = DAG.getConstant(0, MVT::i32);
6927    if (ShAmtVT == MVT::v4i32) {
6928      ShOps[2] = DAG.getUNDEF(MVT::i32);
6929      ShOps[3] = DAG.getUNDEF(MVT::i32);
6930      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6931    } else {
6932      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6933    }
6934
6935    EVT VT = Op.getValueType();
6936    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6937    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6938                       DAG.getConstant(NewIntNo, MVT::i32),
6939                       Op.getOperand(1), ShAmt);
6940  }
6941  }
6942}
6943
6944SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6945  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6946  DebugLoc dl = Op.getDebugLoc();
6947
6948  if (Depth > 0) {
6949    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6950    SDValue Offset =
6951      DAG.getConstant(TD->getPointerSize(),
6952                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6953    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6954                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6955                                   FrameAddr, Offset),
6956                       NULL, 0, false, false, 0);
6957  }
6958
6959  // Just load the return address.
6960  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6961  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6962                     RetAddrFI, NULL, 0, false, false, 0);
6963}
6964
6965SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6966  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6967  MFI->setFrameAddressIsTaken(true);
6968  EVT VT = Op.getValueType();
6969  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6970  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6971  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6972  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6973  while (Depth--)
6974    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
6975                            false, false, 0);
6976  return FrameAddr;
6977}
6978
6979SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6980                                                     SelectionDAG &DAG) {
6981  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6982}
6983
6984SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6985{
6986  MachineFunction &MF = DAG.getMachineFunction();
6987  SDValue Chain     = Op.getOperand(0);
6988  SDValue Offset    = Op.getOperand(1);
6989  SDValue Handler   = Op.getOperand(2);
6990  DebugLoc dl       = Op.getDebugLoc();
6991
6992  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6993                                  getPointerTy());
6994  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6995
6996  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6997                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6998  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6999  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7000  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7001  MF.getRegInfo().addLiveOut(StoreAddrReg);
7002
7003  return DAG.getNode(X86ISD::EH_RETURN, dl,
7004                     MVT::Other,
7005                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7006}
7007
7008SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7009                                             SelectionDAG &DAG) {
7010  SDValue Root = Op.getOperand(0);
7011  SDValue Trmp = Op.getOperand(1); // trampoline
7012  SDValue FPtr = Op.getOperand(2); // nested function
7013  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7014  DebugLoc dl  = Op.getDebugLoc();
7015
7016  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7017
7018  if (Subtarget->is64Bit()) {
7019    SDValue OutChains[6];
7020
7021    // Large code-model.
7022    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7023    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7024
7025    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7026    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7027
7028    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7029
7030    // Load the pointer to the nested function into R11.
7031    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7032    SDValue Addr = Trmp;
7033    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7034                                Addr, TrmpAddr, 0, false, false, 0);
7035
7036    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7037                       DAG.getConstant(2, MVT::i64));
7038    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7039                                false, false, 2);
7040
7041    // Load the 'nest' parameter value into R10.
7042    // R10 is specified in X86CallingConv.td
7043    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7044    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7045                       DAG.getConstant(10, MVT::i64));
7046    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7047                                Addr, TrmpAddr, 10, false, false, 0);
7048
7049    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7050                       DAG.getConstant(12, MVT::i64));
7051    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7052                                false, false, 2);
7053
7054    // Jump to the nested function.
7055    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7056    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7057                       DAG.getConstant(20, MVT::i64));
7058    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7059                                Addr, TrmpAddr, 20, false, false, 0);
7060
7061    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7062    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7063                       DAG.getConstant(22, MVT::i64));
7064    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7065                                TrmpAddr, 22, false, false, 0);
7066
7067    SDValue Ops[] =
7068      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7069    return DAG.getMergeValues(Ops, 2, dl);
7070  } else {
7071    const Function *Func =
7072      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7073    CallingConv::ID CC = Func->getCallingConv();
7074    unsigned NestReg;
7075
7076    switch (CC) {
7077    default:
7078      llvm_unreachable("Unsupported calling convention");
7079    case CallingConv::C:
7080    case CallingConv::X86_StdCall: {
7081      // Pass 'nest' parameter in ECX.
7082      // Must be kept in sync with X86CallingConv.td
7083      NestReg = X86::ECX;
7084
7085      // Check that ECX wasn't needed by an 'inreg' parameter.
7086      const FunctionType *FTy = Func->getFunctionType();
7087      const AttrListPtr &Attrs = Func->getAttributes();
7088
7089      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7090        unsigned InRegCount = 0;
7091        unsigned Idx = 1;
7092
7093        for (FunctionType::param_iterator I = FTy->param_begin(),
7094             E = FTy->param_end(); I != E; ++I, ++Idx)
7095          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7096            // FIXME: should only count parameters that are lowered to integers.
7097            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7098
7099        if (InRegCount > 2) {
7100          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7101        }
7102      }
7103      break;
7104    }
7105    case CallingConv::X86_FastCall:
7106    case CallingConv::Fast:
7107      // Pass 'nest' parameter in EAX.
7108      // Must be kept in sync with X86CallingConv.td
7109      NestReg = X86::EAX;
7110      break;
7111    }
7112
7113    SDValue OutChains[4];
7114    SDValue Addr, Disp;
7115
7116    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7117                       DAG.getConstant(10, MVT::i32));
7118    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7119
7120    // This is storing the opcode for MOV32ri.
7121    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7122    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7123    OutChains[0] = DAG.getStore(Root, dl,
7124                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7125                                Trmp, TrmpAddr, 0, false, false, 0);
7126
7127    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7128                       DAG.getConstant(1, MVT::i32));
7129    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7130                                false, false, 1);
7131
7132    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7133    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7134                       DAG.getConstant(5, MVT::i32));
7135    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7136                                TrmpAddr, 5, false, false, 1);
7137
7138    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7139                       DAG.getConstant(6, MVT::i32));
7140    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7141                                false, false, 1);
7142
7143    SDValue Ops[] =
7144      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7145    return DAG.getMergeValues(Ops, 2, dl);
7146  }
7147}
7148
7149SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7150  /*
7151   The rounding mode is in bits 11:10 of FPSR, and has the following
7152   settings:
7153     00 Round to nearest
7154     01 Round to -inf
7155     10 Round to +inf
7156     11 Round to 0
7157
7158  FLT_ROUNDS, on the other hand, expects the following:
7159    -1 Undefined
7160     0 Round to 0
7161     1 Round to nearest
7162     2 Round to +inf
7163     3 Round to -inf
7164
7165  To perform the conversion, we do:
7166    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7167  */
7168
7169  MachineFunction &MF = DAG.getMachineFunction();
7170  const TargetMachine &TM = MF.getTarget();
7171  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7172  unsigned StackAlignment = TFI.getStackAlignment();
7173  EVT VT = Op.getValueType();
7174  DebugLoc dl = Op.getDebugLoc();
7175
7176  // Save FP Control Word to stack slot
7177  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7178  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7179
7180  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7181                              DAG.getEntryNode(), StackSlot);
7182
7183  // Load FP Control Word from stack slot
7184  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7185                            false, false, 0);
7186
7187  // Transform as necessary
7188  SDValue CWD1 =
7189    DAG.getNode(ISD::SRL, dl, MVT::i16,
7190                DAG.getNode(ISD::AND, dl, MVT::i16,
7191                            CWD, DAG.getConstant(0x800, MVT::i16)),
7192                DAG.getConstant(11, MVT::i8));
7193  SDValue CWD2 =
7194    DAG.getNode(ISD::SRL, dl, MVT::i16,
7195                DAG.getNode(ISD::AND, dl, MVT::i16,
7196                            CWD, DAG.getConstant(0x400, MVT::i16)),
7197                DAG.getConstant(9, MVT::i8));
7198
7199  SDValue RetVal =
7200    DAG.getNode(ISD::AND, dl, MVT::i16,
7201                DAG.getNode(ISD::ADD, dl, MVT::i16,
7202                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7203                            DAG.getConstant(1, MVT::i16)),
7204                DAG.getConstant(3, MVT::i16));
7205
7206
7207  return DAG.getNode((VT.getSizeInBits() < 16 ?
7208                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7209}
7210
7211SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7212  EVT VT = Op.getValueType();
7213  EVT OpVT = VT;
7214  unsigned NumBits = VT.getSizeInBits();
7215  DebugLoc dl = Op.getDebugLoc();
7216
7217  Op = Op.getOperand(0);
7218  if (VT == MVT::i8) {
7219    // Zero extend to i32 since there is not an i8 bsr.
7220    OpVT = MVT::i32;
7221    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7222  }
7223
7224  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7225  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7226  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7227
7228  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7229  SDValue Ops[] = {
7230    Op,
7231    DAG.getConstant(NumBits+NumBits-1, OpVT),
7232    DAG.getConstant(X86::COND_E, MVT::i8),
7233    Op.getValue(1)
7234  };
7235  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7236
7237  // Finally xor with NumBits-1.
7238  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7239
7240  if (VT == MVT::i8)
7241    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7242  return Op;
7243}
7244
7245SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7246  EVT VT = Op.getValueType();
7247  EVT OpVT = VT;
7248  unsigned NumBits = VT.getSizeInBits();
7249  DebugLoc dl = Op.getDebugLoc();
7250
7251  Op = Op.getOperand(0);
7252  if (VT == MVT::i8) {
7253    OpVT = MVT::i32;
7254    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7255  }
7256
7257  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7258  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7259  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7260
7261  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7262  SDValue Ops[] = {
7263    Op,
7264    DAG.getConstant(NumBits, OpVT),
7265    DAG.getConstant(X86::COND_E, MVT::i8),
7266    Op.getValue(1)
7267  };
7268  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7269
7270  if (VT == MVT::i8)
7271    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7272  return Op;
7273}
7274
7275SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7276  EVT VT = Op.getValueType();
7277  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7278  DebugLoc dl = Op.getDebugLoc();
7279
7280  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7281  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7282  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7283  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7284  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7285  //
7286  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7287  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7288  //  return AloBlo + AloBhi + AhiBlo;
7289
7290  SDValue A = Op.getOperand(0);
7291  SDValue B = Op.getOperand(1);
7292
7293  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7294                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7295                       A, DAG.getConstant(32, MVT::i32));
7296  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7297                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7298                       B, DAG.getConstant(32, MVT::i32));
7299  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7300                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7301                       A, B);
7302  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7303                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7304                       A, Bhi);
7305  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7306                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7307                       Ahi, B);
7308  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7309                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7310                       AloBhi, DAG.getConstant(32, MVT::i32));
7311  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7312                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7313                       AhiBlo, DAG.getConstant(32, MVT::i32));
7314  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7315  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7316  return Res;
7317}
7318
7319
7320SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7321  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7322  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7323  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7324  // has only one use.
7325  SDNode *N = Op.getNode();
7326  SDValue LHS = N->getOperand(0);
7327  SDValue RHS = N->getOperand(1);
7328  unsigned BaseOp = 0;
7329  unsigned Cond = 0;
7330  DebugLoc dl = Op.getDebugLoc();
7331
7332  switch (Op.getOpcode()) {
7333  default: llvm_unreachable("Unknown ovf instruction!");
7334  case ISD::SADDO:
7335    // A subtract of one will be selected as a INC. Note that INC doesn't
7336    // set CF, so we can't do this for UADDO.
7337    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7338      if (C->getAPIntValue() == 1) {
7339        BaseOp = X86ISD::INC;
7340        Cond = X86::COND_O;
7341        break;
7342      }
7343    BaseOp = X86ISD::ADD;
7344    Cond = X86::COND_O;
7345    break;
7346  case ISD::UADDO:
7347    BaseOp = X86ISD::ADD;
7348    Cond = X86::COND_B;
7349    break;
7350  case ISD::SSUBO:
7351    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7352    // set CF, so we can't do this for USUBO.
7353    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7354      if (C->getAPIntValue() == 1) {
7355        BaseOp = X86ISD::DEC;
7356        Cond = X86::COND_O;
7357        break;
7358      }
7359    BaseOp = X86ISD::SUB;
7360    Cond = X86::COND_O;
7361    break;
7362  case ISD::USUBO:
7363    BaseOp = X86ISD::SUB;
7364    Cond = X86::COND_B;
7365    break;
7366  case ISD::SMULO:
7367    BaseOp = X86ISD::SMUL;
7368    Cond = X86::COND_O;
7369    break;
7370  case ISD::UMULO:
7371    BaseOp = X86ISD::UMUL;
7372    Cond = X86::COND_B;
7373    break;
7374  }
7375
7376  // Also sets EFLAGS.
7377  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7378  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7379
7380  SDValue SetCC =
7381    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7382                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7383
7384  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7385  return Sum;
7386}
7387
7388SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7389  EVT T = Op.getValueType();
7390  DebugLoc dl = Op.getDebugLoc();
7391  unsigned Reg = 0;
7392  unsigned size = 0;
7393  switch(T.getSimpleVT().SimpleTy) {
7394  default:
7395    assert(false && "Invalid value type!");
7396  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7397  case MVT::i16: Reg = X86::AX;  size = 2; break;
7398  case MVT::i32: Reg = X86::EAX; size = 4; break;
7399  case MVT::i64:
7400    assert(Subtarget->is64Bit() && "Node not type legal!");
7401    Reg = X86::RAX; size = 8;
7402    break;
7403  }
7404  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7405                                    Op.getOperand(2), SDValue());
7406  SDValue Ops[] = { cpIn.getValue(0),
7407                    Op.getOperand(1),
7408                    Op.getOperand(3),
7409                    DAG.getTargetConstant(size, MVT::i8),
7410                    cpIn.getValue(1) };
7411  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7412  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7413  SDValue cpOut =
7414    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7415  return cpOut;
7416}
7417
7418SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7419                                                 SelectionDAG &DAG) {
7420  assert(Subtarget->is64Bit() && "Result not type legalized?");
7421  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7422  SDValue TheChain = Op.getOperand(0);
7423  DebugLoc dl = Op.getDebugLoc();
7424  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7425  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7426  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7427                                   rax.getValue(2));
7428  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7429                            DAG.getConstant(32, MVT::i8));
7430  SDValue Ops[] = {
7431    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7432    rdx.getValue(1)
7433  };
7434  return DAG.getMergeValues(Ops, 2, dl);
7435}
7436
7437SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7438  SDNode *Node = Op.getNode();
7439  DebugLoc dl = Node->getDebugLoc();
7440  EVT T = Node->getValueType(0);
7441  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7442                              DAG.getConstant(0, T), Node->getOperand(2));
7443  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7444                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7445                       Node->getOperand(0),
7446                       Node->getOperand(1), negOp,
7447                       cast<AtomicSDNode>(Node)->getSrcValue(),
7448                       cast<AtomicSDNode>(Node)->getAlignment());
7449}
7450
7451/// LowerOperation - Provide custom lowering hooks for some operations.
7452///
7453SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7454  switch (Op.getOpcode()) {
7455  default: llvm_unreachable("Should not custom lower this!");
7456  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7457  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7458  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7459  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7460  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7461  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7462  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7463  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7464  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7465  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7466  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7467  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7468  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7469  case ISD::SHL_PARTS:
7470  case ISD::SRA_PARTS:
7471  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7472  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7473  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7474  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7475  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7476  case ISD::FABS:               return LowerFABS(Op, DAG);
7477  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7478  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7479  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7480  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7481  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7482  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7483  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7484  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7485  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7486  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7487  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7488  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7489  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7490  case ISD::FRAME_TO_ARGS_OFFSET:
7491                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7492  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7493  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7494  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7495  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7496  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7497  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7498  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7499  case ISD::SADDO:
7500  case ISD::UADDO:
7501  case ISD::SSUBO:
7502  case ISD::USUBO:
7503  case ISD::SMULO:
7504  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7505  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7506  }
7507}
7508
7509void X86TargetLowering::
7510ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7511                        SelectionDAG &DAG, unsigned NewOp) {
7512  EVT T = Node->getValueType(0);
7513  DebugLoc dl = Node->getDebugLoc();
7514  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7515
7516  SDValue Chain = Node->getOperand(0);
7517  SDValue In1 = Node->getOperand(1);
7518  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7519                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7520  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7521                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7522  SDValue Ops[] = { Chain, In1, In2L, In2H };
7523  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7524  SDValue Result =
7525    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7526                            cast<MemSDNode>(Node)->getMemOperand());
7527  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7528  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7529  Results.push_back(Result.getValue(2));
7530}
7531
7532/// ReplaceNodeResults - Replace a node with an illegal result type
7533/// with a new node built out of custom code.
7534void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7535                                           SmallVectorImpl<SDValue>&Results,
7536                                           SelectionDAG &DAG) {
7537  DebugLoc dl = N->getDebugLoc();
7538  switch (N->getOpcode()) {
7539  default:
7540    assert(false && "Do not know how to custom type legalize this operation!");
7541    return;
7542  case ISD::FP_TO_SINT: {
7543    std::pair<SDValue,SDValue> Vals =
7544        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7545    SDValue FIST = Vals.first, StackSlot = Vals.second;
7546    if (FIST.getNode() != 0) {
7547      EVT VT = N->getValueType(0);
7548      // Return a load from the stack slot.
7549      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7550                                    false, false, 0));
7551    }
7552    return;
7553  }
7554  case ISD::READCYCLECOUNTER: {
7555    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7556    SDValue TheChain = N->getOperand(0);
7557    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7558    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7559                                     rd.getValue(1));
7560    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7561                                     eax.getValue(2));
7562    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7563    SDValue Ops[] = { eax, edx };
7564    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7565    Results.push_back(edx.getValue(1));
7566    return;
7567  }
7568  case ISD::ATOMIC_CMP_SWAP: {
7569    EVT T = N->getValueType(0);
7570    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7571    SDValue cpInL, cpInH;
7572    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7573                        DAG.getConstant(0, MVT::i32));
7574    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7575                        DAG.getConstant(1, MVT::i32));
7576    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7577    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7578                             cpInL.getValue(1));
7579    SDValue swapInL, swapInH;
7580    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7581                          DAG.getConstant(0, MVT::i32));
7582    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7583                          DAG.getConstant(1, MVT::i32));
7584    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7585                               cpInH.getValue(1));
7586    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7587                               swapInL.getValue(1));
7588    SDValue Ops[] = { swapInH.getValue(0),
7589                      N->getOperand(1),
7590                      swapInH.getValue(1) };
7591    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7592    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7593    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7594                                        MVT::i32, Result.getValue(1));
7595    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7596                                        MVT::i32, cpOutL.getValue(2));
7597    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7598    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7599    Results.push_back(cpOutH.getValue(1));
7600    return;
7601  }
7602  case ISD::ATOMIC_LOAD_ADD:
7603    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7604    return;
7605  case ISD::ATOMIC_LOAD_AND:
7606    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7607    return;
7608  case ISD::ATOMIC_LOAD_NAND:
7609    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7610    return;
7611  case ISD::ATOMIC_LOAD_OR:
7612    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7613    return;
7614  case ISD::ATOMIC_LOAD_SUB:
7615    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7616    return;
7617  case ISD::ATOMIC_LOAD_XOR:
7618    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7619    return;
7620  case ISD::ATOMIC_SWAP:
7621    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7622    return;
7623  }
7624}
7625
7626const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7627  switch (Opcode) {
7628  default: return NULL;
7629  case X86ISD::BSF:                return "X86ISD::BSF";
7630  case X86ISD::BSR:                return "X86ISD::BSR";
7631  case X86ISD::SHLD:               return "X86ISD::SHLD";
7632  case X86ISD::SHRD:               return "X86ISD::SHRD";
7633  case X86ISD::FAND:               return "X86ISD::FAND";
7634  case X86ISD::FOR:                return "X86ISD::FOR";
7635  case X86ISD::FXOR:               return "X86ISD::FXOR";
7636  case X86ISD::FSRL:               return "X86ISD::FSRL";
7637  case X86ISD::FILD:               return "X86ISD::FILD";
7638  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7639  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7640  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7641  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7642  case X86ISD::FLD:                return "X86ISD::FLD";
7643  case X86ISD::FST:                return "X86ISD::FST";
7644  case X86ISD::CALL:               return "X86ISD::CALL";
7645  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7646  case X86ISD::BT:                 return "X86ISD::BT";
7647  case X86ISD::CMP:                return "X86ISD::CMP";
7648  case X86ISD::COMI:               return "X86ISD::COMI";
7649  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7650  case X86ISD::SETCC:              return "X86ISD::SETCC";
7651  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7652  case X86ISD::CMOV:               return "X86ISD::CMOV";
7653  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7654  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7655  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7656  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7657  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7658  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7659  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7660  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7661  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7662  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7663  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7664  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7665  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7666  case X86ISD::FMAX:               return "X86ISD::FMAX";
7667  case X86ISD::FMIN:               return "X86ISD::FMIN";
7668  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7669  case X86ISD::FRCP:               return "X86ISD::FRCP";
7670  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7671  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7672  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7673  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7674  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7675  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7676  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7677  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7678  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7679  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7680  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7681  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7682  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7683  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7684  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7685  case X86ISD::VSHL:               return "X86ISD::VSHL";
7686  case X86ISD::VSRL:               return "X86ISD::VSRL";
7687  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7688  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7689  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7690  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7691  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7692  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7693  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7694  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7695  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7696  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7697  case X86ISD::ADD:                return "X86ISD::ADD";
7698  case X86ISD::SUB:                return "X86ISD::SUB";
7699  case X86ISD::SMUL:               return "X86ISD::SMUL";
7700  case X86ISD::UMUL:               return "X86ISD::UMUL";
7701  case X86ISD::INC:                return "X86ISD::INC";
7702  case X86ISD::DEC:                return "X86ISD::DEC";
7703  case X86ISD::OR:                 return "X86ISD::OR";
7704  case X86ISD::XOR:                return "X86ISD::XOR";
7705  case X86ISD::AND:                return "X86ISD::AND";
7706  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7707  case X86ISD::PTEST:              return "X86ISD::PTEST";
7708  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7709  }
7710}
7711
7712// isLegalAddressingMode - Return true if the addressing mode represented
7713// by AM is legal for this target, for a load/store of the specified type.
7714bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7715                                              const Type *Ty) const {
7716  // X86 supports extremely general addressing modes.
7717  CodeModel::Model M = getTargetMachine().getCodeModel();
7718
7719  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7720  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7721    return false;
7722
7723  if (AM.BaseGV) {
7724    unsigned GVFlags =
7725      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7726
7727    // If a reference to this global requires an extra load, we can't fold it.
7728    if (isGlobalStubReference(GVFlags))
7729      return false;
7730
7731    // If BaseGV requires a register for the PIC base, we cannot also have a
7732    // BaseReg specified.
7733    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7734      return false;
7735
7736    // If lower 4G is not available, then we must use rip-relative addressing.
7737    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7738      return false;
7739  }
7740
7741  switch (AM.Scale) {
7742  case 0:
7743  case 1:
7744  case 2:
7745  case 4:
7746  case 8:
7747    // These scales always work.
7748    break;
7749  case 3:
7750  case 5:
7751  case 9:
7752    // These scales are formed with basereg+scalereg.  Only accept if there is
7753    // no basereg yet.
7754    if (AM.HasBaseReg)
7755      return false;
7756    break;
7757  default:  // Other stuff never works.
7758    return false;
7759  }
7760
7761  return true;
7762}
7763
7764
7765bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7766  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7767    return false;
7768  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7769  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7770  if (NumBits1 <= NumBits2)
7771    return false;
7772  return Subtarget->is64Bit() || NumBits1 < 64;
7773}
7774
7775bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7776  if (!VT1.isInteger() || !VT2.isInteger())
7777    return false;
7778  unsigned NumBits1 = VT1.getSizeInBits();
7779  unsigned NumBits2 = VT2.getSizeInBits();
7780  if (NumBits1 <= NumBits2)
7781    return false;
7782  return Subtarget->is64Bit() || NumBits1 < 64;
7783}
7784
7785bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7786  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7787  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
7788}
7789
7790bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7791  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7792  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7793}
7794
7795bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7796  // i16 instructions are longer (0x66 prefix) and potentially slower.
7797  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7798}
7799
7800/// isShuffleMaskLegal - Targets can use this to indicate that they only
7801/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7802/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7803/// are assumed to be legal.
7804bool
7805X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7806                                      EVT VT) const {
7807  // Only do shuffles on 128-bit vector types for now.
7808  if (VT.getSizeInBits() == 64)
7809    return false;
7810
7811  // FIXME: pshufb, blends, shifts.
7812  return (VT.getVectorNumElements() == 2 ||
7813          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7814          isMOVLMask(M, VT) ||
7815          isSHUFPMask(M, VT) ||
7816          isPSHUFDMask(M, VT) ||
7817          isPSHUFHWMask(M, VT) ||
7818          isPSHUFLWMask(M, VT) ||
7819          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7820          isUNPCKLMask(M, VT) ||
7821          isUNPCKHMask(M, VT) ||
7822          isUNPCKL_v_undef_Mask(M, VT) ||
7823          isUNPCKH_v_undef_Mask(M, VT));
7824}
7825
7826bool
7827X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7828                                          EVT VT) const {
7829  unsigned NumElts = VT.getVectorNumElements();
7830  // FIXME: This collection of masks seems suspect.
7831  if (NumElts == 2)
7832    return true;
7833  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7834    return (isMOVLMask(Mask, VT)  ||
7835            isCommutedMOVLMask(Mask, VT, true) ||
7836            isSHUFPMask(Mask, VT) ||
7837            isCommutedSHUFPMask(Mask, VT));
7838  }
7839  return false;
7840}
7841
7842//===----------------------------------------------------------------------===//
7843//                           X86 Scheduler Hooks
7844//===----------------------------------------------------------------------===//
7845
7846// private utility function
7847MachineBasicBlock *
7848X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7849                                                       MachineBasicBlock *MBB,
7850                                                       unsigned regOpc,
7851                                                       unsigned immOpc,
7852                                                       unsigned LoadOpc,
7853                                                       unsigned CXchgOpc,
7854                                                       unsigned copyOpc,
7855                                                       unsigned notOpc,
7856                                                       unsigned EAXreg,
7857                                                       TargetRegisterClass *RC,
7858                                                       bool invSrc) const {
7859  // For the atomic bitwise operator, we generate
7860  //   thisMBB:
7861  //   newMBB:
7862  //     ld  t1 = [bitinstr.addr]
7863  //     op  t2 = t1, [bitinstr.val]
7864  //     mov EAX = t1
7865  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7866  //     bz  newMBB
7867  //     fallthrough -->nextMBB
7868  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7869  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7870  MachineFunction::iterator MBBIter = MBB;
7871  ++MBBIter;
7872
7873  /// First build the CFG
7874  MachineFunction *F = MBB->getParent();
7875  MachineBasicBlock *thisMBB = MBB;
7876  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7877  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7878  F->insert(MBBIter, newMBB);
7879  F->insert(MBBIter, nextMBB);
7880
7881  // Move all successors to thisMBB to nextMBB
7882  nextMBB->transferSuccessors(thisMBB);
7883
7884  // Update thisMBB to fall through to newMBB
7885  thisMBB->addSuccessor(newMBB);
7886
7887  // newMBB jumps to itself and fall through to nextMBB
7888  newMBB->addSuccessor(nextMBB);
7889  newMBB->addSuccessor(newMBB);
7890
7891  // Insert instructions into newMBB based on incoming instruction
7892  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7893         "unexpected number of operands");
7894  DebugLoc dl = bInstr->getDebugLoc();
7895  MachineOperand& destOper = bInstr->getOperand(0);
7896  MachineOperand* argOpers[2 + X86AddrNumOperands];
7897  int numArgs = bInstr->getNumOperands() - 1;
7898  for (int i=0; i < numArgs; ++i)
7899    argOpers[i] = &bInstr->getOperand(i+1);
7900
7901  // x86 address has 4 operands: base, index, scale, and displacement
7902  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7903  int valArgIndx = lastAddrIndx + 1;
7904
7905  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7906  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7907  for (int i=0; i <= lastAddrIndx; ++i)
7908    (*MIB).addOperand(*argOpers[i]);
7909
7910  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7911  if (invSrc) {
7912    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7913  }
7914  else
7915    tt = t1;
7916
7917  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7918  assert((argOpers[valArgIndx]->isReg() ||
7919          argOpers[valArgIndx]->isImm()) &&
7920         "invalid operand");
7921  if (argOpers[valArgIndx]->isReg())
7922    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7923  else
7924    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7925  MIB.addReg(tt);
7926  (*MIB).addOperand(*argOpers[valArgIndx]);
7927
7928  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7929  MIB.addReg(t1);
7930
7931  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7932  for (int i=0; i <= lastAddrIndx; ++i)
7933    (*MIB).addOperand(*argOpers[i]);
7934  MIB.addReg(t2);
7935  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7936  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7937                    bInstr->memoperands_end());
7938
7939  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7940  MIB.addReg(EAXreg);
7941
7942  // insert branch
7943  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
7944
7945  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7946  return nextMBB;
7947}
7948
7949// private utility function:  64 bit atomics on 32 bit host.
7950MachineBasicBlock *
7951X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7952                                                       MachineBasicBlock *MBB,
7953                                                       unsigned regOpcL,
7954                                                       unsigned regOpcH,
7955                                                       unsigned immOpcL,
7956                                                       unsigned immOpcH,
7957                                                       bool invSrc) const {
7958  // For the atomic bitwise operator, we generate
7959  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7960  //     ld t1,t2 = [bitinstr.addr]
7961  //   newMBB:
7962  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7963  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7964  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7965  //     mov ECX, EBX <- t5, t6
7966  //     mov EAX, EDX <- t1, t2
7967  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7968  //     mov t3, t4 <- EAX, EDX
7969  //     bz  newMBB
7970  //     result in out1, out2
7971  //     fallthrough -->nextMBB
7972
7973  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7974  const unsigned LoadOpc = X86::MOV32rm;
7975  const unsigned copyOpc = X86::MOV32rr;
7976  const unsigned NotOpc = X86::NOT32r;
7977  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7978  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7979  MachineFunction::iterator MBBIter = MBB;
7980  ++MBBIter;
7981
7982  /// First build the CFG
7983  MachineFunction *F = MBB->getParent();
7984  MachineBasicBlock *thisMBB = MBB;
7985  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7986  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7987  F->insert(MBBIter, newMBB);
7988  F->insert(MBBIter, nextMBB);
7989
7990  // Move all successors to thisMBB to nextMBB
7991  nextMBB->transferSuccessors(thisMBB);
7992
7993  // Update thisMBB to fall through to newMBB
7994  thisMBB->addSuccessor(newMBB);
7995
7996  // newMBB jumps to itself and fall through to nextMBB
7997  newMBB->addSuccessor(nextMBB);
7998  newMBB->addSuccessor(newMBB);
7999
8000  DebugLoc dl = bInstr->getDebugLoc();
8001  // Insert instructions into newMBB based on incoming instruction
8002  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8003  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
8004         "unexpected number of operands");
8005  MachineOperand& dest1Oper = bInstr->getOperand(0);
8006  MachineOperand& dest2Oper = bInstr->getOperand(1);
8007  MachineOperand* argOpers[2 + X86AddrNumOperands];
8008  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8009    argOpers[i] = &bInstr->getOperand(i+2);
8010
8011  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8012  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8013
8014  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8015  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8016  for (int i=0; i <= lastAddrIndx; ++i)
8017    (*MIB).addOperand(*argOpers[i]);
8018  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8019  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8020  // add 4 to displacement.
8021  for (int i=0; i <= lastAddrIndx-2; ++i)
8022    (*MIB).addOperand(*argOpers[i]);
8023  MachineOperand newOp3 = *(argOpers[3]);
8024  if (newOp3.isImm())
8025    newOp3.setImm(newOp3.getImm()+4);
8026  else
8027    newOp3.setOffset(newOp3.getOffset()+4);
8028  (*MIB).addOperand(newOp3);
8029  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8030
8031  // t3/4 are defined later, at the bottom of the loop
8032  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8033  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8034  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8035    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8036  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8037    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8038
8039  // The subsequent operations should be using the destination registers of
8040  //the PHI instructions.
8041  if (invSrc) {
8042    t1 = F->getRegInfo().createVirtualRegister(RC);
8043    t2 = F->getRegInfo().createVirtualRegister(RC);
8044    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8045    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8046  } else {
8047    t1 = dest1Oper.getReg();
8048    t2 = dest2Oper.getReg();
8049  }
8050
8051  int valArgIndx = lastAddrIndx + 1;
8052  assert((argOpers[valArgIndx]->isReg() ||
8053          argOpers[valArgIndx]->isImm()) &&
8054         "invalid operand");
8055  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8056  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8057  if (argOpers[valArgIndx]->isReg())
8058    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8059  else
8060    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8061  if (regOpcL != X86::MOV32rr)
8062    MIB.addReg(t1);
8063  (*MIB).addOperand(*argOpers[valArgIndx]);
8064  assert(argOpers[valArgIndx + 1]->isReg() ==
8065         argOpers[valArgIndx]->isReg());
8066  assert(argOpers[valArgIndx + 1]->isImm() ==
8067         argOpers[valArgIndx]->isImm());
8068  if (argOpers[valArgIndx + 1]->isReg())
8069    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8070  else
8071    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8072  if (regOpcH != X86::MOV32rr)
8073    MIB.addReg(t2);
8074  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8075
8076  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8077  MIB.addReg(t1);
8078  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8079  MIB.addReg(t2);
8080
8081  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8082  MIB.addReg(t5);
8083  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8084  MIB.addReg(t6);
8085
8086  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8087  for (int i=0; i <= lastAddrIndx; ++i)
8088    (*MIB).addOperand(*argOpers[i]);
8089
8090  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8091  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8092                    bInstr->memoperands_end());
8093
8094  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8095  MIB.addReg(X86::EAX);
8096  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8097  MIB.addReg(X86::EDX);
8098
8099  // insert branch
8100  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8101
8102  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8103  return nextMBB;
8104}
8105
8106// private utility function
8107MachineBasicBlock *
8108X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8109                                                      MachineBasicBlock *MBB,
8110                                                      unsigned cmovOpc) const {
8111  // For the atomic min/max operator, we generate
8112  //   thisMBB:
8113  //   newMBB:
8114  //     ld t1 = [min/max.addr]
8115  //     mov t2 = [min/max.val]
8116  //     cmp  t1, t2
8117  //     cmov[cond] t2 = t1
8118  //     mov EAX = t1
8119  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8120  //     bz   newMBB
8121  //     fallthrough -->nextMBB
8122  //
8123  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8124  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8125  MachineFunction::iterator MBBIter = MBB;
8126  ++MBBIter;
8127
8128  /// First build the CFG
8129  MachineFunction *F = MBB->getParent();
8130  MachineBasicBlock *thisMBB = MBB;
8131  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8132  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8133  F->insert(MBBIter, newMBB);
8134  F->insert(MBBIter, nextMBB);
8135
8136  // Move all successors of thisMBB to nextMBB
8137  nextMBB->transferSuccessors(thisMBB);
8138
8139  // Update thisMBB to fall through to newMBB
8140  thisMBB->addSuccessor(newMBB);
8141
8142  // newMBB jumps to newMBB and fall through to nextMBB
8143  newMBB->addSuccessor(nextMBB);
8144  newMBB->addSuccessor(newMBB);
8145
8146  DebugLoc dl = mInstr->getDebugLoc();
8147  // Insert instructions into newMBB based on incoming instruction
8148  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8149         "unexpected number of operands");
8150  MachineOperand& destOper = mInstr->getOperand(0);
8151  MachineOperand* argOpers[2 + X86AddrNumOperands];
8152  int numArgs = mInstr->getNumOperands() - 1;
8153  for (int i=0; i < numArgs; ++i)
8154    argOpers[i] = &mInstr->getOperand(i+1);
8155
8156  // x86 address has 4 operands: base, index, scale, and displacement
8157  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8158  int valArgIndx = lastAddrIndx + 1;
8159
8160  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8161  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8162  for (int i=0; i <= lastAddrIndx; ++i)
8163    (*MIB).addOperand(*argOpers[i]);
8164
8165  // We only support register and immediate values
8166  assert((argOpers[valArgIndx]->isReg() ||
8167          argOpers[valArgIndx]->isImm()) &&
8168         "invalid operand");
8169
8170  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8171  if (argOpers[valArgIndx]->isReg())
8172    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8173  else
8174    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8175  (*MIB).addOperand(*argOpers[valArgIndx]);
8176
8177  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8178  MIB.addReg(t1);
8179
8180  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8181  MIB.addReg(t1);
8182  MIB.addReg(t2);
8183
8184  // Generate movc
8185  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8186  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8187  MIB.addReg(t2);
8188  MIB.addReg(t1);
8189
8190  // Cmp and exchange if none has modified the memory location
8191  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8192  for (int i=0; i <= lastAddrIndx; ++i)
8193    (*MIB).addOperand(*argOpers[i]);
8194  MIB.addReg(t3);
8195  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8196  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8197                    mInstr->memoperands_end());
8198
8199  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8200  MIB.addReg(X86::EAX);
8201
8202  // insert branch
8203  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8204
8205  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8206  return nextMBB;
8207}
8208
8209// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8210// all of this code can be replaced with that in the .td file.
8211MachineBasicBlock *
8212X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8213                            unsigned numArgs, bool memArg) const {
8214
8215  MachineFunction *F = BB->getParent();
8216  DebugLoc dl = MI->getDebugLoc();
8217  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8218
8219  unsigned Opc;
8220  if (memArg)
8221    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8222  else
8223    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8224
8225  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8226
8227  for (unsigned i = 0; i < numArgs; ++i) {
8228    MachineOperand &Op = MI->getOperand(i+1);
8229
8230    if (!(Op.isReg() && Op.isImplicit()))
8231      MIB.addOperand(Op);
8232  }
8233
8234  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8235    .addReg(X86::XMM0);
8236
8237  F->DeleteMachineInstr(MI);
8238
8239  return BB;
8240}
8241
8242MachineBasicBlock *
8243X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8244                                                 MachineInstr *MI,
8245                                                 MachineBasicBlock *MBB) const {
8246  // Emit code to save XMM registers to the stack. The ABI says that the
8247  // number of registers to save is given in %al, so it's theoretically
8248  // possible to do an indirect jump trick to avoid saving all of them,
8249  // however this code takes a simpler approach and just executes all
8250  // of the stores if %al is non-zero. It's less code, and it's probably
8251  // easier on the hardware branch predictor, and stores aren't all that
8252  // expensive anyway.
8253
8254  // Create the new basic blocks. One block contains all the XMM stores,
8255  // and one block is the final destination regardless of whether any
8256  // stores were performed.
8257  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8258  MachineFunction *F = MBB->getParent();
8259  MachineFunction::iterator MBBIter = MBB;
8260  ++MBBIter;
8261  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8262  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8263  F->insert(MBBIter, XMMSaveMBB);
8264  F->insert(MBBIter, EndMBB);
8265
8266  // Set up the CFG.
8267  // Move any original successors of MBB to the end block.
8268  EndMBB->transferSuccessors(MBB);
8269  // The original block will now fall through to the XMM save block.
8270  MBB->addSuccessor(XMMSaveMBB);
8271  // The XMMSaveMBB will fall through to the end block.
8272  XMMSaveMBB->addSuccessor(EndMBB);
8273
8274  // Now add the instructions.
8275  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8276  DebugLoc DL = MI->getDebugLoc();
8277
8278  unsigned CountReg = MI->getOperand(0).getReg();
8279  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8280  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8281
8282  if (!Subtarget->isTargetWin64()) {
8283    // If %al is 0, branch around the XMM save block.
8284    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8285    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8286    MBB->addSuccessor(EndMBB);
8287  }
8288
8289  // In the XMM save block, save all the XMM argument registers.
8290  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8291    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8292    MachineMemOperand *MMO =
8293      F->getMachineMemOperand(
8294        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8295        MachineMemOperand::MOStore, Offset,
8296        /*Size=*/16, /*Align=*/16);
8297    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8298      .addFrameIndex(RegSaveFrameIndex)
8299      .addImm(/*Scale=*/1)
8300      .addReg(/*IndexReg=*/0)
8301      .addImm(/*Disp=*/Offset)
8302      .addReg(/*Segment=*/0)
8303      .addReg(MI->getOperand(i).getReg())
8304      .addMemOperand(MMO);
8305  }
8306
8307  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8308
8309  return EndMBB;
8310}
8311
8312MachineBasicBlock *
8313X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8314                                     MachineBasicBlock *BB,
8315                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8316  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8317  DebugLoc DL = MI->getDebugLoc();
8318
8319  // To "insert" a SELECT_CC instruction, we actually have to insert the
8320  // diamond control-flow pattern.  The incoming instruction knows the
8321  // destination vreg to set, the condition code register to branch on, the
8322  // true/false values to select between, and a branch opcode to use.
8323  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8324  MachineFunction::iterator It = BB;
8325  ++It;
8326
8327  //  thisMBB:
8328  //  ...
8329  //   TrueVal = ...
8330  //   cmpTY ccX, r1, r2
8331  //   bCC copy1MBB
8332  //   fallthrough --> copy0MBB
8333  MachineBasicBlock *thisMBB = BB;
8334  MachineFunction *F = BB->getParent();
8335  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8336  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8337  unsigned Opc =
8338    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8339  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8340  F->insert(It, copy0MBB);
8341  F->insert(It, sinkMBB);
8342  // Update machine-CFG edges by first adding all successors of the current
8343  // block to the new block which will contain the Phi node for the select.
8344  // Also inform sdisel of the edge changes.
8345  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8346         E = BB->succ_end(); I != E; ++I) {
8347    EM->insert(std::make_pair(*I, sinkMBB));
8348    sinkMBB->addSuccessor(*I);
8349  }
8350  // Next, remove all successors of the current block, and add the true
8351  // and fallthrough blocks as its successors.
8352  while (!BB->succ_empty())
8353    BB->removeSuccessor(BB->succ_begin());
8354  // Add the true and fallthrough blocks as its successors.
8355  BB->addSuccessor(copy0MBB);
8356  BB->addSuccessor(sinkMBB);
8357
8358  //  copy0MBB:
8359  //   %FalseValue = ...
8360  //   # fallthrough to sinkMBB
8361  BB = copy0MBB;
8362
8363  // Update machine-CFG edges
8364  BB->addSuccessor(sinkMBB);
8365
8366  //  sinkMBB:
8367  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8368  //  ...
8369  BB = sinkMBB;
8370  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8371    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8372    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8373
8374  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8375  return BB;
8376}
8377
8378
8379MachineBasicBlock *
8380X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8381                                               MachineBasicBlock *BB,
8382                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8383  switch (MI->getOpcode()) {
8384  default: assert(false && "Unexpected instr type to insert");
8385  case X86::CMOV_GR8:
8386  case X86::CMOV_V1I64:
8387  case X86::CMOV_FR32:
8388  case X86::CMOV_FR64:
8389  case X86::CMOV_V4F32:
8390  case X86::CMOV_V2F64:
8391  case X86::CMOV_V2I64:
8392    return EmitLoweredSelect(MI, BB, EM);
8393
8394  case X86::FP32_TO_INT16_IN_MEM:
8395  case X86::FP32_TO_INT32_IN_MEM:
8396  case X86::FP32_TO_INT64_IN_MEM:
8397  case X86::FP64_TO_INT16_IN_MEM:
8398  case X86::FP64_TO_INT32_IN_MEM:
8399  case X86::FP64_TO_INT64_IN_MEM:
8400  case X86::FP80_TO_INT16_IN_MEM:
8401  case X86::FP80_TO_INT32_IN_MEM:
8402  case X86::FP80_TO_INT64_IN_MEM: {
8403    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8404    DebugLoc DL = MI->getDebugLoc();
8405
8406    // Change the floating point control register to use "round towards zero"
8407    // mode when truncating to an integer value.
8408    MachineFunction *F = BB->getParent();
8409    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8410    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8411
8412    // Load the old value of the high byte of the control word...
8413    unsigned OldCW =
8414      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8415    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8416                      CWFrameIdx);
8417
8418    // Set the high part to be round to zero...
8419    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8420      .addImm(0xC7F);
8421
8422    // Reload the modified control word now...
8423    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8424
8425    // Restore the memory image of control word to original value
8426    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8427      .addReg(OldCW);
8428
8429    // Get the X86 opcode to use.
8430    unsigned Opc;
8431    switch (MI->getOpcode()) {
8432    default: llvm_unreachable("illegal opcode!");
8433    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8434    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8435    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8436    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8437    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8438    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8439    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8440    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8441    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8442    }
8443
8444    X86AddressMode AM;
8445    MachineOperand &Op = MI->getOperand(0);
8446    if (Op.isReg()) {
8447      AM.BaseType = X86AddressMode::RegBase;
8448      AM.Base.Reg = Op.getReg();
8449    } else {
8450      AM.BaseType = X86AddressMode::FrameIndexBase;
8451      AM.Base.FrameIndex = Op.getIndex();
8452    }
8453    Op = MI->getOperand(1);
8454    if (Op.isImm())
8455      AM.Scale = Op.getImm();
8456    Op = MI->getOperand(2);
8457    if (Op.isImm())
8458      AM.IndexReg = Op.getImm();
8459    Op = MI->getOperand(3);
8460    if (Op.isGlobal()) {
8461      AM.GV = Op.getGlobal();
8462    } else {
8463      AM.Disp = Op.getImm();
8464    }
8465    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8466                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8467
8468    // Reload the original control word now.
8469    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8470
8471    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8472    return BB;
8473  }
8474    // String/text processing lowering.
8475  case X86::PCMPISTRM128REG:
8476    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8477  case X86::PCMPISTRM128MEM:
8478    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8479  case X86::PCMPESTRM128REG:
8480    return EmitPCMP(MI, BB, 5, false /* in mem */);
8481  case X86::PCMPESTRM128MEM:
8482    return EmitPCMP(MI, BB, 5, true /* in mem */);
8483
8484    // Atomic Lowering.
8485  case X86::ATOMAND32:
8486    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8487                                               X86::AND32ri, X86::MOV32rm,
8488                                               X86::LCMPXCHG32, X86::MOV32rr,
8489                                               X86::NOT32r, X86::EAX,
8490                                               X86::GR32RegisterClass);
8491  case X86::ATOMOR32:
8492    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8493                                               X86::OR32ri, X86::MOV32rm,
8494                                               X86::LCMPXCHG32, X86::MOV32rr,
8495                                               X86::NOT32r, X86::EAX,
8496                                               X86::GR32RegisterClass);
8497  case X86::ATOMXOR32:
8498    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8499                                               X86::XOR32ri, X86::MOV32rm,
8500                                               X86::LCMPXCHG32, X86::MOV32rr,
8501                                               X86::NOT32r, X86::EAX,
8502                                               X86::GR32RegisterClass);
8503  case X86::ATOMNAND32:
8504    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8505                                               X86::AND32ri, X86::MOV32rm,
8506                                               X86::LCMPXCHG32, X86::MOV32rr,
8507                                               X86::NOT32r, X86::EAX,
8508                                               X86::GR32RegisterClass, true);
8509  case X86::ATOMMIN32:
8510    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8511  case X86::ATOMMAX32:
8512    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8513  case X86::ATOMUMIN32:
8514    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8515  case X86::ATOMUMAX32:
8516    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8517
8518  case X86::ATOMAND16:
8519    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8520                                               X86::AND16ri, X86::MOV16rm,
8521                                               X86::LCMPXCHG16, X86::MOV16rr,
8522                                               X86::NOT16r, X86::AX,
8523                                               X86::GR16RegisterClass);
8524  case X86::ATOMOR16:
8525    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8526                                               X86::OR16ri, X86::MOV16rm,
8527                                               X86::LCMPXCHG16, X86::MOV16rr,
8528                                               X86::NOT16r, X86::AX,
8529                                               X86::GR16RegisterClass);
8530  case X86::ATOMXOR16:
8531    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8532                                               X86::XOR16ri, X86::MOV16rm,
8533                                               X86::LCMPXCHG16, X86::MOV16rr,
8534                                               X86::NOT16r, X86::AX,
8535                                               X86::GR16RegisterClass);
8536  case X86::ATOMNAND16:
8537    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8538                                               X86::AND16ri, X86::MOV16rm,
8539                                               X86::LCMPXCHG16, X86::MOV16rr,
8540                                               X86::NOT16r, X86::AX,
8541                                               X86::GR16RegisterClass, true);
8542  case X86::ATOMMIN16:
8543    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8544  case X86::ATOMMAX16:
8545    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8546  case X86::ATOMUMIN16:
8547    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8548  case X86::ATOMUMAX16:
8549    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8550
8551  case X86::ATOMAND8:
8552    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8553                                               X86::AND8ri, X86::MOV8rm,
8554                                               X86::LCMPXCHG8, X86::MOV8rr,
8555                                               X86::NOT8r, X86::AL,
8556                                               X86::GR8RegisterClass);
8557  case X86::ATOMOR8:
8558    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8559                                               X86::OR8ri, X86::MOV8rm,
8560                                               X86::LCMPXCHG8, X86::MOV8rr,
8561                                               X86::NOT8r, X86::AL,
8562                                               X86::GR8RegisterClass);
8563  case X86::ATOMXOR8:
8564    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8565                                               X86::XOR8ri, X86::MOV8rm,
8566                                               X86::LCMPXCHG8, X86::MOV8rr,
8567                                               X86::NOT8r, X86::AL,
8568                                               X86::GR8RegisterClass);
8569  case X86::ATOMNAND8:
8570    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8571                                               X86::AND8ri, X86::MOV8rm,
8572                                               X86::LCMPXCHG8, X86::MOV8rr,
8573                                               X86::NOT8r, X86::AL,
8574                                               X86::GR8RegisterClass, true);
8575  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8576  // This group is for 64-bit host.
8577  case X86::ATOMAND64:
8578    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8579                                               X86::AND64ri32, X86::MOV64rm,
8580                                               X86::LCMPXCHG64, X86::MOV64rr,
8581                                               X86::NOT64r, X86::RAX,
8582                                               X86::GR64RegisterClass);
8583  case X86::ATOMOR64:
8584    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8585                                               X86::OR64ri32, X86::MOV64rm,
8586                                               X86::LCMPXCHG64, X86::MOV64rr,
8587                                               X86::NOT64r, X86::RAX,
8588                                               X86::GR64RegisterClass);
8589  case X86::ATOMXOR64:
8590    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8591                                               X86::XOR64ri32, X86::MOV64rm,
8592                                               X86::LCMPXCHG64, X86::MOV64rr,
8593                                               X86::NOT64r, X86::RAX,
8594                                               X86::GR64RegisterClass);
8595  case X86::ATOMNAND64:
8596    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8597                                               X86::AND64ri32, X86::MOV64rm,
8598                                               X86::LCMPXCHG64, X86::MOV64rr,
8599                                               X86::NOT64r, X86::RAX,
8600                                               X86::GR64RegisterClass, true);
8601  case X86::ATOMMIN64:
8602    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8603  case X86::ATOMMAX64:
8604    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8605  case X86::ATOMUMIN64:
8606    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8607  case X86::ATOMUMAX64:
8608    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8609
8610  // This group does 64-bit operations on a 32-bit host.
8611  case X86::ATOMAND6432:
8612    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8613                                               X86::AND32rr, X86::AND32rr,
8614                                               X86::AND32ri, X86::AND32ri,
8615                                               false);
8616  case X86::ATOMOR6432:
8617    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8618                                               X86::OR32rr, X86::OR32rr,
8619                                               X86::OR32ri, X86::OR32ri,
8620                                               false);
8621  case X86::ATOMXOR6432:
8622    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8623                                               X86::XOR32rr, X86::XOR32rr,
8624                                               X86::XOR32ri, X86::XOR32ri,
8625                                               false);
8626  case X86::ATOMNAND6432:
8627    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8628                                               X86::AND32rr, X86::AND32rr,
8629                                               X86::AND32ri, X86::AND32ri,
8630                                               true);
8631  case X86::ATOMADD6432:
8632    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8633                                               X86::ADD32rr, X86::ADC32rr,
8634                                               X86::ADD32ri, X86::ADC32ri,
8635                                               false);
8636  case X86::ATOMSUB6432:
8637    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8638                                               X86::SUB32rr, X86::SBB32rr,
8639                                               X86::SUB32ri, X86::SBB32ri,
8640                                               false);
8641  case X86::ATOMSWAP6432:
8642    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8643                                               X86::MOV32rr, X86::MOV32rr,
8644                                               X86::MOV32ri, X86::MOV32ri,
8645                                               false);
8646  case X86::VASTART_SAVE_XMM_REGS:
8647    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8648  }
8649}
8650
8651//===----------------------------------------------------------------------===//
8652//                           X86 Optimization Hooks
8653//===----------------------------------------------------------------------===//
8654
8655void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8656                                                       const APInt &Mask,
8657                                                       APInt &KnownZero,
8658                                                       APInt &KnownOne,
8659                                                       const SelectionDAG &DAG,
8660                                                       unsigned Depth) const {
8661  unsigned Opc = Op.getOpcode();
8662  assert((Opc >= ISD::BUILTIN_OP_END ||
8663          Opc == ISD::INTRINSIC_WO_CHAIN ||
8664          Opc == ISD::INTRINSIC_W_CHAIN ||
8665          Opc == ISD::INTRINSIC_VOID) &&
8666         "Should use MaskedValueIsZero if you don't know whether Op"
8667         " is a target node!");
8668
8669  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8670  switch (Opc) {
8671  default: break;
8672  case X86ISD::ADD:
8673  case X86ISD::SUB:
8674  case X86ISD::SMUL:
8675  case X86ISD::UMUL:
8676  case X86ISD::INC:
8677  case X86ISD::DEC:
8678  case X86ISD::OR:
8679  case X86ISD::XOR:
8680  case X86ISD::AND:
8681    // These nodes' second result is a boolean.
8682    if (Op.getResNo() == 0)
8683      break;
8684    // Fallthrough
8685  case X86ISD::SETCC:
8686    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8687                                       Mask.getBitWidth() - 1);
8688    break;
8689  }
8690}
8691
8692/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8693/// node is a GlobalAddress + offset.
8694bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8695                                       GlobalValue* &GA, int64_t &Offset) const{
8696  if (N->getOpcode() == X86ISD::Wrapper) {
8697    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8698      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8699      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8700      return true;
8701    }
8702  }
8703  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8704}
8705
8706static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8707                                     EVT EltVT, LoadSDNode *&LDBase,
8708                                     unsigned &LastLoadedElt,
8709                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8710                                     const TargetLowering &TLI) {
8711  LDBase = NULL;
8712  LastLoadedElt = -1U;
8713  for (unsigned i = 0; i < NumElems; ++i) {
8714    if (N->getMaskElt(i) < 0) {
8715      if (!LDBase)
8716        return false;
8717      continue;
8718    }
8719
8720    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8721    if (!Elt.getNode() ||
8722        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8723      return false;
8724    if (!LDBase) {
8725      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8726        return false;
8727      LDBase = cast<LoadSDNode>(Elt.getNode());
8728      LastLoadedElt = i;
8729      continue;
8730    }
8731    if (Elt.getOpcode() == ISD::UNDEF)
8732      continue;
8733
8734    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8735    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
8736      return false;
8737    LastLoadedElt = i;
8738  }
8739  return true;
8740}
8741
8742/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8743/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8744/// if the load addresses are consecutive, non-overlapping, and in the right
8745/// order.  In the case of v2i64, it will see if it can rewrite the
8746/// shuffle to be an appropriate build vector so it can take advantage of
8747// performBuildVectorCombine.
8748static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8749                                     const TargetLowering &TLI) {
8750  DebugLoc dl = N->getDebugLoc();
8751  EVT VT = N->getValueType(0);
8752  EVT EltVT = VT.getVectorElementType();
8753  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8754  unsigned NumElems = VT.getVectorNumElements();
8755
8756  if (VT.getSizeInBits() != 128)
8757    return SDValue();
8758
8759  // Try to combine a vector_shuffle into a 128-bit load.
8760  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8761  LoadSDNode *LD = NULL;
8762  unsigned LastLoadedElt;
8763  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8764                                MFI, TLI))
8765    return SDValue();
8766
8767  if (LastLoadedElt == NumElems - 1) {
8768    if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16)
8769      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8770                         LD->getSrcValue(), LD->getSrcValueOffset(),
8771                         LD->isVolatile(), LD->isNonTemporal(), 0);
8772    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8773                       LD->getSrcValue(), LD->getSrcValueOffset(),
8774                       LD->isVolatile(), LD->isNonTemporal(),
8775                       LD->getAlignment());
8776  } else if (NumElems == 4 && LastLoadedElt == 1) {
8777    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8778    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8779    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8780    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8781  }
8782  return SDValue();
8783}
8784
8785/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8786static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8787                                    const X86Subtarget *Subtarget) {
8788  DebugLoc DL = N->getDebugLoc();
8789  SDValue Cond = N->getOperand(0);
8790  // Get the LHS/RHS of the select.
8791  SDValue LHS = N->getOperand(1);
8792  SDValue RHS = N->getOperand(2);
8793
8794  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8795  // instructions have the peculiarity that if either operand is a NaN,
8796  // they chose what we call the RHS operand (and as such are not symmetric).
8797  // It happens that this matches the semantics of the common C idiom
8798  // x<y?x:y and related forms, so we can recognize these cases.
8799  if (Subtarget->hasSSE2() &&
8800      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8801      Cond.getOpcode() == ISD::SETCC) {
8802    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8803
8804    unsigned Opcode = 0;
8805    // Check for x CC y ? x : y.
8806    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8807      switch (CC) {
8808      default: break;
8809      case ISD::SETULT:
8810        // This can be a min if we can prove that at least one of the operands
8811        // is not a nan.
8812        if (!FiniteOnlyFPMath()) {
8813          if (DAG.isKnownNeverNaN(RHS)) {
8814            // Put the potential NaN in the RHS so that SSE will preserve it.
8815            std::swap(LHS, RHS);
8816          } else if (!DAG.isKnownNeverNaN(LHS))
8817            break;
8818        }
8819        Opcode = X86ISD::FMIN;
8820        break;
8821      case ISD::SETOLE:
8822        // This can be a min if we can prove that at least one of the operands
8823        // is not a nan.
8824        if (!FiniteOnlyFPMath()) {
8825          if (DAG.isKnownNeverNaN(LHS)) {
8826            // Put the potential NaN in the RHS so that SSE will preserve it.
8827            std::swap(LHS, RHS);
8828          } else if (!DAG.isKnownNeverNaN(RHS))
8829            break;
8830        }
8831        Opcode = X86ISD::FMIN;
8832        break;
8833      case ISD::SETULE:
8834        // This can be a min, but if either operand is a NaN we need it to
8835        // preserve the original LHS.
8836        std::swap(LHS, RHS);
8837      case ISD::SETOLT:
8838      case ISD::SETLT:
8839      case ISD::SETLE:
8840        Opcode = X86ISD::FMIN;
8841        break;
8842
8843      case ISD::SETOGE:
8844        // This can be a max if we can prove that at least one of the operands
8845        // is not a nan.
8846        if (!FiniteOnlyFPMath()) {
8847          if (DAG.isKnownNeverNaN(LHS)) {
8848            // Put the potential NaN in the RHS so that SSE will preserve it.
8849            std::swap(LHS, RHS);
8850          } else if (!DAG.isKnownNeverNaN(RHS))
8851            break;
8852        }
8853        Opcode = X86ISD::FMAX;
8854        break;
8855      case ISD::SETUGT:
8856        // This can be a max if we can prove that at least one of the operands
8857        // is not a nan.
8858        if (!FiniteOnlyFPMath()) {
8859          if (DAG.isKnownNeverNaN(RHS)) {
8860            // Put the potential NaN in the RHS so that SSE will preserve it.
8861            std::swap(LHS, RHS);
8862          } else if (!DAG.isKnownNeverNaN(LHS))
8863            break;
8864        }
8865        Opcode = X86ISD::FMAX;
8866        break;
8867      case ISD::SETUGE:
8868        // This can be a max, but if either operand is a NaN we need it to
8869        // preserve the original LHS.
8870        std::swap(LHS, RHS);
8871      case ISD::SETOGT:
8872      case ISD::SETGT:
8873      case ISD::SETGE:
8874        Opcode = X86ISD::FMAX;
8875        break;
8876      }
8877    // Check for x CC y ? y : x -- a min/max with reversed arms.
8878    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8879      switch (CC) {
8880      default: break;
8881      case ISD::SETOGE:
8882        // This can be a min if we can prove that at least one of the operands
8883        // is not a nan.
8884        if (!FiniteOnlyFPMath()) {
8885          if (DAG.isKnownNeverNaN(RHS)) {
8886            // Put the potential NaN in the RHS so that SSE will preserve it.
8887            std::swap(LHS, RHS);
8888          } else if (!DAG.isKnownNeverNaN(LHS))
8889            break;
8890        }
8891        Opcode = X86ISD::FMIN;
8892        break;
8893      case ISD::SETUGT:
8894        // This can be a min if we can prove that at least one of the operands
8895        // is not a nan.
8896        if (!FiniteOnlyFPMath()) {
8897          if (DAG.isKnownNeverNaN(LHS)) {
8898            // Put the potential NaN in the RHS so that SSE will preserve it.
8899            std::swap(LHS, RHS);
8900          } else if (!DAG.isKnownNeverNaN(RHS))
8901            break;
8902        }
8903        Opcode = X86ISD::FMIN;
8904        break;
8905      case ISD::SETUGE:
8906        // This can be a min, but if either operand is a NaN we need it to
8907        // preserve the original LHS.
8908        std::swap(LHS, RHS);
8909      case ISD::SETOGT:
8910      case ISD::SETGT:
8911      case ISD::SETGE:
8912        Opcode = X86ISD::FMIN;
8913        break;
8914
8915      case ISD::SETULT:
8916        // This can be a max if we can prove that at least one of the operands
8917        // is not a nan.
8918        if (!FiniteOnlyFPMath()) {
8919          if (DAG.isKnownNeverNaN(LHS)) {
8920            // Put the potential NaN in the RHS so that SSE will preserve it.
8921            std::swap(LHS, RHS);
8922          } else if (!DAG.isKnownNeverNaN(RHS))
8923            break;
8924        }
8925        Opcode = X86ISD::FMAX;
8926        break;
8927      case ISD::SETOLE:
8928        // This can be a max if we can prove that at least one of the operands
8929        // is not a nan.
8930        if (!FiniteOnlyFPMath()) {
8931          if (DAG.isKnownNeverNaN(RHS)) {
8932            // Put the potential NaN in the RHS so that SSE will preserve it.
8933            std::swap(LHS, RHS);
8934          } else if (!DAG.isKnownNeverNaN(LHS))
8935            break;
8936        }
8937        Opcode = X86ISD::FMAX;
8938        break;
8939      case ISD::SETULE:
8940        // This can be a max, but if either operand is a NaN we need it to
8941        // preserve the original LHS.
8942        std::swap(LHS, RHS);
8943      case ISD::SETOLT:
8944      case ISD::SETLT:
8945      case ISD::SETLE:
8946        Opcode = X86ISD::FMAX;
8947        break;
8948      }
8949    }
8950
8951    if (Opcode)
8952      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8953  }
8954
8955  // If this is a select between two integer constants, try to do some
8956  // optimizations.
8957  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8958    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8959      // Don't do this for crazy integer types.
8960      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8961        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8962        // so that TrueC (the true value) is larger than FalseC.
8963        bool NeedsCondInvert = false;
8964
8965        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8966            // Efficiently invertible.
8967            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8968             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8969              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8970          NeedsCondInvert = true;
8971          std::swap(TrueC, FalseC);
8972        }
8973
8974        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8975        if (FalseC->getAPIntValue() == 0 &&
8976            TrueC->getAPIntValue().isPowerOf2()) {
8977          if (NeedsCondInvert) // Invert the condition if needed.
8978            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8979                               DAG.getConstant(1, Cond.getValueType()));
8980
8981          // Zero extend the condition if needed.
8982          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8983
8984          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8985          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8986                             DAG.getConstant(ShAmt, MVT::i8));
8987        }
8988
8989        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8990        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8991          if (NeedsCondInvert) // Invert the condition if needed.
8992            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8993                               DAG.getConstant(1, Cond.getValueType()));
8994
8995          // Zero extend the condition if needed.
8996          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8997                             FalseC->getValueType(0), Cond);
8998          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8999                             SDValue(FalseC, 0));
9000        }
9001
9002        // Optimize cases that will turn into an LEA instruction.  This requires
9003        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9004        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9005          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9006          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9007
9008          bool isFastMultiplier = false;
9009          if (Diff < 10) {
9010            switch ((unsigned char)Diff) {
9011              default: break;
9012              case 1:  // result = add base, cond
9013              case 2:  // result = lea base(    , cond*2)
9014              case 3:  // result = lea base(cond, cond*2)
9015              case 4:  // result = lea base(    , cond*4)
9016              case 5:  // result = lea base(cond, cond*4)
9017              case 8:  // result = lea base(    , cond*8)
9018              case 9:  // result = lea base(cond, cond*8)
9019                isFastMultiplier = true;
9020                break;
9021            }
9022          }
9023
9024          if (isFastMultiplier) {
9025            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9026            if (NeedsCondInvert) // Invert the condition if needed.
9027              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9028                                 DAG.getConstant(1, Cond.getValueType()));
9029
9030            // Zero extend the condition if needed.
9031            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9032                               Cond);
9033            // Scale the condition by the difference.
9034            if (Diff != 1)
9035              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9036                                 DAG.getConstant(Diff, Cond.getValueType()));
9037
9038            // Add the base if non-zero.
9039            if (FalseC->getAPIntValue() != 0)
9040              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9041                                 SDValue(FalseC, 0));
9042            return Cond;
9043          }
9044        }
9045      }
9046  }
9047
9048  return SDValue();
9049}
9050
9051/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9052static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9053                                  TargetLowering::DAGCombinerInfo &DCI) {
9054  DebugLoc DL = N->getDebugLoc();
9055
9056  // If the flag operand isn't dead, don't touch this CMOV.
9057  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9058    return SDValue();
9059
9060  // If this is a select between two integer constants, try to do some
9061  // optimizations.  Note that the operands are ordered the opposite of SELECT
9062  // operands.
9063  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9064    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9065      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9066      // larger than FalseC (the false value).
9067      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9068
9069      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9070        CC = X86::GetOppositeBranchCondition(CC);
9071        std::swap(TrueC, FalseC);
9072      }
9073
9074      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9075      // This is efficient for any integer data type (including i8/i16) and
9076      // shift amount.
9077      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9078        SDValue Cond = N->getOperand(3);
9079        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9080                           DAG.getConstant(CC, MVT::i8), Cond);
9081
9082        // Zero extend the condition if needed.
9083        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9084
9085        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9086        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9087                           DAG.getConstant(ShAmt, MVT::i8));
9088        if (N->getNumValues() == 2)  // Dead flag value?
9089          return DCI.CombineTo(N, Cond, SDValue());
9090        return Cond;
9091      }
9092
9093      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9094      // for any integer data type, including i8/i16.
9095      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9096        SDValue Cond = N->getOperand(3);
9097        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9098                           DAG.getConstant(CC, MVT::i8), Cond);
9099
9100        // Zero extend the condition if needed.
9101        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9102                           FalseC->getValueType(0), Cond);
9103        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9104                           SDValue(FalseC, 0));
9105
9106        if (N->getNumValues() == 2)  // Dead flag value?
9107          return DCI.CombineTo(N, Cond, SDValue());
9108        return Cond;
9109      }
9110
9111      // Optimize cases that will turn into an LEA instruction.  This requires
9112      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9113      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9114        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9115        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9116
9117        bool isFastMultiplier = false;
9118        if (Diff < 10) {
9119          switch ((unsigned char)Diff) {
9120          default: break;
9121          case 1:  // result = add base, cond
9122          case 2:  // result = lea base(    , cond*2)
9123          case 3:  // result = lea base(cond, cond*2)
9124          case 4:  // result = lea base(    , cond*4)
9125          case 5:  // result = lea base(cond, cond*4)
9126          case 8:  // result = lea base(    , cond*8)
9127          case 9:  // result = lea base(cond, cond*8)
9128            isFastMultiplier = true;
9129            break;
9130          }
9131        }
9132
9133        if (isFastMultiplier) {
9134          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9135          SDValue Cond = N->getOperand(3);
9136          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9137                             DAG.getConstant(CC, MVT::i8), Cond);
9138          // Zero extend the condition if needed.
9139          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9140                             Cond);
9141          // Scale the condition by the difference.
9142          if (Diff != 1)
9143            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9144                               DAG.getConstant(Diff, Cond.getValueType()));
9145
9146          // Add the base if non-zero.
9147          if (FalseC->getAPIntValue() != 0)
9148            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9149                               SDValue(FalseC, 0));
9150          if (N->getNumValues() == 2)  // Dead flag value?
9151            return DCI.CombineTo(N, Cond, SDValue());
9152          return Cond;
9153        }
9154      }
9155    }
9156  }
9157  return SDValue();
9158}
9159
9160
9161/// PerformMulCombine - Optimize a single multiply with constant into two
9162/// in order to implement it with two cheaper instructions, e.g.
9163/// LEA + SHL, LEA + LEA.
9164static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9165                                 TargetLowering::DAGCombinerInfo &DCI) {
9166  if (DAG.getMachineFunction().
9167      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
9168    return SDValue();
9169
9170  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9171    return SDValue();
9172
9173  EVT VT = N->getValueType(0);
9174  if (VT != MVT::i64)
9175    return SDValue();
9176
9177  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9178  if (!C)
9179    return SDValue();
9180  uint64_t MulAmt = C->getZExtValue();
9181  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9182    return SDValue();
9183
9184  uint64_t MulAmt1 = 0;
9185  uint64_t MulAmt2 = 0;
9186  if ((MulAmt % 9) == 0) {
9187    MulAmt1 = 9;
9188    MulAmt2 = MulAmt / 9;
9189  } else if ((MulAmt % 5) == 0) {
9190    MulAmt1 = 5;
9191    MulAmt2 = MulAmt / 5;
9192  } else if ((MulAmt % 3) == 0) {
9193    MulAmt1 = 3;
9194    MulAmt2 = MulAmt / 3;
9195  }
9196  if (MulAmt2 &&
9197      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9198    DebugLoc DL = N->getDebugLoc();
9199
9200    if (isPowerOf2_64(MulAmt2) &&
9201        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9202      // If second multiplifer is pow2, issue it first. We want the multiply by
9203      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9204      // is an add.
9205      std::swap(MulAmt1, MulAmt2);
9206
9207    SDValue NewMul;
9208    if (isPowerOf2_64(MulAmt1))
9209      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9210                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9211    else
9212      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9213                           DAG.getConstant(MulAmt1, VT));
9214
9215    if (isPowerOf2_64(MulAmt2))
9216      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9217                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9218    else
9219      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9220                           DAG.getConstant(MulAmt2, VT));
9221
9222    // Do not add new nodes to DAG combiner worklist.
9223    DCI.CombineTo(N, NewMul, false);
9224  }
9225  return SDValue();
9226}
9227
9228static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9229  SDValue N0 = N->getOperand(0);
9230  SDValue N1 = N->getOperand(1);
9231  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9232  EVT VT = N0.getValueType();
9233
9234  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9235  // since the result of setcc_c is all zero's or all ones.
9236  if (N1C && N0.getOpcode() == ISD::AND &&
9237      N0.getOperand(1).getOpcode() == ISD::Constant) {
9238    SDValue N00 = N0.getOperand(0);
9239    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9240        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9241          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9242         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9243      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9244      APInt ShAmt = N1C->getAPIntValue();
9245      Mask = Mask.shl(ShAmt);
9246      if (Mask != 0)
9247        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9248                           N00, DAG.getConstant(Mask, VT));
9249    }
9250  }
9251
9252  return SDValue();
9253}
9254
9255/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9256///                       when possible.
9257static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9258                                   const X86Subtarget *Subtarget) {
9259  EVT VT = N->getValueType(0);
9260  if (!VT.isVector() && VT.isInteger() &&
9261      N->getOpcode() == ISD::SHL)
9262    return PerformSHLCombine(N, DAG);
9263
9264  // On X86 with SSE2 support, we can transform this to a vector shift if
9265  // all elements are shifted by the same amount.  We can't do this in legalize
9266  // because the a constant vector is typically transformed to a constant pool
9267  // so we have no knowledge of the shift amount.
9268  if (!Subtarget->hasSSE2())
9269    return SDValue();
9270
9271  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9272    return SDValue();
9273
9274  SDValue ShAmtOp = N->getOperand(1);
9275  EVT EltVT = VT.getVectorElementType();
9276  DebugLoc DL = N->getDebugLoc();
9277  SDValue BaseShAmt = SDValue();
9278  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9279    unsigned NumElts = VT.getVectorNumElements();
9280    unsigned i = 0;
9281    for (; i != NumElts; ++i) {
9282      SDValue Arg = ShAmtOp.getOperand(i);
9283      if (Arg.getOpcode() == ISD::UNDEF) continue;
9284      BaseShAmt = Arg;
9285      break;
9286    }
9287    for (; i != NumElts; ++i) {
9288      SDValue Arg = ShAmtOp.getOperand(i);
9289      if (Arg.getOpcode() == ISD::UNDEF) continue;
9290      if (Arg != BaseShAmt) {
9291        return SDValue();
9292      }
9293    }
9294  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9295             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9296    SDValue InVec = ShAmtOp.getOperand(0);
9297    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9298      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9299      unsigned i = 0;
9300      for (; i != NumElts; ++i) {
9301        SDValue Arg = InVec.getOperand(i);
9302        if (Arg.getOpcode() == ISD::UNDEF) continue;
9303        BaseShAmt = Arg;
9304        break;
9305      }
9306    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9307       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9308         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9309         if (C->getZExtValue() == SplatIdx)
9310           BaseShAmt = InVec.getOperand(1);
9311       }
9312    }
9313    if (BaseShAmt.getNode() == 0)
9314      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9315                              DAG.getIntPtrConstant(0));
9316  } else
9317    return SDValue();
9318
9319  // The shift amount is an i32.
9320  if (EltVT.bitsGT(MVT::i32))
9321    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9322  else if (EltVT.bitsLT(MVT::i32))
9323    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9324
9325  // The shift amount is identical so we can do a vector shift.
9326  SDValue  ValOp = N->getOperand(0);
9327  switch (N->getOpcode()) {
9328  default:
9329    llvm_unreachable("Unknown shift opcode!");
9330    break;
9331  case ISD::SHL:
9332    if (VT == MVT::v2i64)
9333      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9334                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9335                         ValOp, BaseShAmt);
9336    if (VT == MVT::v4i32)
9337      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9338                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9339                         ValOp, BaseShAmt);
9340    if (VT == MVT::v8i16)
9341      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9342                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9343                         ValOp, BaseShAmt);
9344    break;
9345  case ISD::SRA:
9346    if (VT == MVT::v4i32)
9347      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9348                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9349                         ValOp, BaseShAmt);
9350    if (VT == MVT::v8i16)
9351      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9352                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9353                         ValOp, BaseShAmt);
9354    break;
9355  case ISD::SRL:
9356    if (VT == MVT::v2i64)
9357      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9358                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9359                         ValOp, BaseShAmt);
9360    if (VT == MVT::v4i32)
9361      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9362                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9363                         ValOp, BaseShAmt);
9364    if (VT ==  MVT::v8i16)
9365      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9366                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9367                         ValOp, BaseShAmt);
9368    break;
9369  }
9370  return SDValue();
9371}
9372
9373static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9374                                const X86Subtarget *Subtarget) {
9375  EVT VT = N->getValueType(0);
9376  if (VT != MVT::i64 || !Subtarget->is64Bit())
9377    return SDValue();
9378
9379  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9380  SDValue N0 = N->getOperand(0);
9381  SDValue N1 = N->getOperand(1);
9382  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9383    std::swap(N0, N1);
9384  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9385    return SDValue();
9386
9387  SDValue ShAmt0 = N0.getOperand(1);
9388  if (ShAmt0.getValueType() != MVT::i8)
9389    return SDValue();
9390  SDValue ShAmt1 = N1.getOperand(1);
9391  if (ShAmt1.getValueType() != MVT::i8)
9392    return SDValue();
9393  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9394    ShAmt0 = ShAmt0.getOperand(0);
9395  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9396    ShAmt1 = ShAmt1.getOperand(0);
9397
9398  DebugLoc DL = N->getDebugLoc();
9399  unsigned Opc = X86ISD::SHLD;
9400  SDValue Op0 = N0.getOperand(0);
9401  SDValue Op1 = N1.getOperand(0);
9402  if (ShAmt0.getOpcode() == ISD::SUB) {
9403    Opc = X86ISD::SHRD;
9404    std::swap(Op0, Op1);
9405    std::swap(ShAmt0, ShAmt1);
9406  }
9407
9408  if (ShAmt1.getOpcode() == ISD::SUB) {
9409    SDValue Sum = ShAmt1.getOperand(0);
9410    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9411      if (SumC->getSExtValue() == 64 &&
9412          ShAmt1.getOperand(1) == ShAmt0)
9413        return DAG.getNode(Opc, DL, VT,
9414                           Op0, Op1,
9415                           DAG.getNode(ISD::TRUNCATE, DL,
9416                                       MVT::i8, ShAmt0));
9417    }
9418  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9419    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9420    if (ShAmt0C &&
9421        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9422      return DAG.getNode(Opc, DL, VT,
9423                         N0.getOperand(0), N1.getOperand(0),
9424                         DAG.getNode(ISD::TRUNCATE, DL,
9425                                       MVT::i8, ShAmt0));
9426  }
9427
9428  return SDValue();
9429}
9430
9431/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9432static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9433                                   const X86Subtarget *Subtarget) {
9434  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9435  // the FP state in cases where an emms may be missing.
9436  // A preferable solution to the general problem is to figure out the right
9437  // places to insert EMMS.  This qualifies as a quick hack.
9438
9439  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9440  StoreSDNode *St = cast<StoreSDNode>(N);
9441  EVT VT = St->getValue().getValueType();
9442  if (VT.getSizeInBits() != 64)
9443    return SDValue();
9444
9445  const Function *F = DAG.getMachineFunction().getFunction();
9446  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9447  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9448    && Subtarget->hasSSE2();
9449  if ((VT.isVector() ||
9450       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9451      isa<LoadSDNode>(St->getValue()) &&
9452      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9453      St->getChain().hasOneUse() && !St->isVolatile()) {
9454    SDNode* LdVal = St->getValue().getNode();
9455    LoadSDNode *Ld = 0;
9456    int TokenFactorIndex = -1;
9457    SmallVector<SDValue, 8> Ops;
9458    SDNode* ChainVal = St->getChain().getNode();
9459    // Must be a store of a load.  We currently handle two cases:  the load
9460    // is a direct child, and it's under an intervening TokenFactor.  It is
9461    // possible to dig deeper under nested TokenFactors.
9462    if (ChainVal == LdVal)
9463      Ld = cast<LoadSDNode>(St->getChain());
9464    else if (St->getValue().hasOneUse() &&
9465             ChainVal->getOpcode() == ISD::TokenFactor) {
9466      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9467        if (ChainVal->getOperand(i).getNode() == LdVal) {
9468          TokenFactorIndex = i;
9469          Ld = cast<LoadSDNode>(St->getValue());
9470        } else
9471          Ops.push_back(ChainVal->getOperand(i));
9472      }
9473    }
9474
9475    if (!Ld || !ISD::isNormalLoad(Ld))
9476      return SDValue();
9477
9478    // If this is not the MMX case, i.e. we are just turning i64 load/store
9479    // into f64 load/store, avoid the transformation if there are multiple
9480    // uses of the loaded value.
9481    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9482      return SDValue();
9483
9484    DebugLoc LdDL = Ld->getDebugLoc();
9485    DebugLoc StDL = N->getDebugLoc();
9486    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9487    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9488    // pair instead.
9489    if (Subtarget->is64Bit() || F64IsLegal) {
9490      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9491      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9492                                  Ld->getBasePtr(), Ld->getSrcValue(),
9493                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9494                                  Ld->isNonTemporal(), Ld->getAlignment());
9495      SDValue NewChain = NewLd.getValue(1);
9496      if (TokenFactorIndex != -1) {
9497        Ops.push_back(NewChain);
9498        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9499                               Ops.size());
9500      }
9501      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9502                          St->getSrcValue(), St->getSrcValueOffset(),
9503                          St->isVolatile(), St->isNonTemporal(),
9504                          St->getAlignment());
9505    }
9506
9507    // Otherwise, lower to two pairs of 32-bit loads / stores.
9508    SDValue LoAddr = Ld->getBasePtr();
9509    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9510                                 DAG.getConstant(4, MVT::i32));
9511
9512    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9513                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9514                               Ld->isVolatile(), Ld->isNonTemporal(),
9515                               Ld->getAlignment());
9516    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9517                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9518                               Ld->isVolatile(), Ld->isNonTemporal(),
9519                               MinAlign(Ld->getAlignment(), 4));
9520
9521    SDValue NewChain = LoLd.getValue(1);
9522    if (TokenFactorIndex != -1) {
9523      Ops.push_back(LoLd);
9524      Ops.push_back(HiLd);
9525      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9526                             Ops.size());
9527    }
9528
9529    LoAddr = St->getBasePtr();
9530    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9531                         DAG.getConstant(4, MVT::i32));
9532
9533    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9534                                St->getSrcValue(), St->getSrcValueOffset(),
9535                                St->isVolatile(), St->isNonTemporal(),
9536                                St->getAlignment());
9537    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9538                                St->getSrcValue(),
9539                                St->getSrcValueOffset() + 4,
9540                                St->isVolatile(),
9541                                St->isNonTemporal(),
9542                                MinAlign(St->getAlignment(), 4));
9543    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9544  }
9545  return SDValue();
9546}
9547
9548/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9549/// X86ISD::FXOR nodes.
9550static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9551  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9552  // F[X]OR(0.0, x) -> x
9553  // F[X]OR(x, 0.0) -> x
9554  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9555    if (C->getValueAPF().isPosZero())
9556      return N->getOperand(1);
9557  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9558    if (C->getValueAPF().isPosZero())
9559      return N->getOperand(0);
9560  return SDValue();
9561}
9562
9563/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9564static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9565  // FAND(0.0, x) -> 0.0
9566  // FAND(x, 0.0) -> 0.0
9567  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9568    if (C->getValueAPF().isPosZero())
9569      return N->getOperand(0);
9570  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9571    if (C->getValueAPF().isPosZero())
9572      return N->getOperand(1);
9573  return SDValue();
9574}
9575
9576static SDValue PerformBTCombine(SDNode *N,
9577                                SelectionDAG &DAG,
9578                                TargetLowering::DAGCombinerInfo &DCI) {
9579  // BT ignores high bits in the bit index operand.
9580  SDValue Op1 = N->getOperand(1);
9581  if (Op1.hasOneUse()) {
9582    unsigned BitWidth = Op1.getValueSizeInBits();
9583    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9584    APInt KnownZero, KnownOne;
9585    TargetLowering::TargetLoweringOpt TLO(DAG);
9586    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9587    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9588        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9589      DCI.CommitTargetLoweringOpt(TLO);
9590  }
9591  return SDValue();
9592}
9593
9594static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9595  SDValue Op = N->getOperand(0);
9596  if (Op.getOpcode() == ISD::BIT_CONVERT)
9597    Op = Op.getOperand(0);
9598  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9599  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9600      VT.getVectorElementType().getSizeInBits() ==
9601      OpVT.getVectorElementType().getSizeInBits()) {
9602    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9603  }
9604  return SDValue();
9605}
9606
9607// On X86 and X86-64, atomic operations are lowered to locked instructions.
9608// Locked instructions, in turn, have implicit fence semantics (all memory
9609// operations are flushed before issuing the locked instruction, and the
9610// are not buffered), so we can fold away the common pattern of
9611// fence-atomic-fence.
9612static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9613  SDValue atomic = N->getOperand(0);
9614  switch (atomic.getOpcode()) {
9615    case ISD::ATOMIC_CMP_SWAP:
9616    case ISD::ATOMIC_SWAP:
9617    case ISD::ATOMIC_LOAD_ADD:
9618    case ISD::ATOMIC_LOAD_SUB:
9619    case ISD::ATOMIC_LOAD_AND:
9620    case ISD::ATOMIC_LOAD_OR:
9621    case ISD::ATOMIC_LOAD_XOR:
9622    case ISD::ATOMIC_LOAD_NAND:
9623    case ISD::ATOMIC_LOAD_MIN:
9624    case ISD::ATOMIC_LOAD_MAX:
9625    case ISD::ATOMIC_LOAD_UMIN:
9626    case ISD::ATOMIC_LOAD_UMAX:
9627      break;
9628    default:
9629      return SDValue();
9630  }
9631
9632  SDValue fence = atomic.getOperand(0);
9633  if (fence.getOpcode() != ISD::MEMBARRIER)
9634    return SDValue();
9635
9636  switch (atomic.getOpcode()) {
9637    case ISD::ATOMIC_CMP_SWAP:
9638      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9639                                    atomic.getOperand(1), atomic.getOperand(2),
9640                                    atomic.getOperand(3));
9641    case ISD::ATOMIC_SWAP:
9642    case ISD::ATOMIC_LOAD_ADD:
9643    case ISD::ATOMIC_LOAD_SUB:
9644    case ISD::ATOMIC_LOAD_AND:
9645    case ISD::ATOMIC_LOAD_OR:
9646    case ISD::ATOMIC_LOAD_XOR:
9647    case ISD::ATOMIC_LOAD_NAND:
9648    case ISD::ATOMIC_LOAD_MIN:
9649    case ISD::ATOMIC_LOAD_MAX:
9650    case ISD::ATOMIC_LOAD_UMIN:
9651    case ISD::ATOMIC_LOAD_UMAX:
9652      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9653                                    atomic.getOperand(1), atomic.getOperand(2));
9654    default:
9655      return SDValue();
9656  }
9657}
9658
9659static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9660  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9661  //           (and (i32 x86isd::setcc_carry), 1)
9662  // This eliminates the zext. This transformation is necessary because
9663  // ISD::SETCC is always legalized to i8.
9664  DebugLoc dl = N->getDebugLoc();
9665  SDValue N0 = N->getOperand(0);
9666  EVT VT = N->getValueType(0);
9667  if (N0.getOpcode() == ISD::AND &&
9668      N0.hasOneUse() &&
9669      N0.getOperand(0).hasOneUse()) {
9670    SDValue N00 = N0.getOperand(0);
9671    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9672      return SDValue();
9673    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9674    if (!C || C->getZExtValue() != 1)
9675      return SDValue();
9676    return DAG.getNode(ISD::AND, dl, VT,
9677                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9678                                   N00.getOperand(0), N00.getOperand(1)),
9679                       DAG.getConstant(1, VT));
9680  }
9681
9682  return SDValue();
9683}
9684
9685SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9686                                             DAGCombinerInfo &DCI) const {
9687  SelectionDAG &DAG = DCI.DAG;
9688  switch (N->getOpcode()) {
9689  default: break;
9690  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9691  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9692  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9693  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9694  case ISD::SHL:
9695  case ISD::SRA:
9696  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9697  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9698  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9699  case X86ISD::FXOR:
9700  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9701  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9702  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9703  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9704  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9705  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9706  }
9707
9708  return SDValue();
9709}
9710
9711//===----------------------------------------------------------------------===//
9712//                           X86 Inline Assembly Support
9713//===----------------------------------------------------------------------===//
9714
9715static bool LowerToBSwap(CallInst *CI) {
9716  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9717  // we will turn this bswap into something that will be lowered to logical ops
9718  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9719  // so don't worry about this.
9720
9721  // Verify this is a simple bswap.
9722  if (CI->getNumOperands() != 2 ||
9723      CI->getType() != CI->getOperand(1)->getType() ||
9724      !CI->getType()->isIntegerTy())
9725    return false;
9726
9727  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9728  if (!Ty || Ty->getBitWidth() % 16 != 0)
9729    return false;
9730
9731  // Okay, we can do this xform, do so now.
9732  const Type *Tys[] = { Ty };
9733  Module *M = CI->getParent()->getParent()->getParent();
9734  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9735
9736  Value *Op = CI->getOperand(1);
9737  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9738
9739  CI->replaceAllUsesWith(Op);
9740  CI->eraseFromParent();
9741  return true;
9742}
9743
9744bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9745  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9746  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9747
9748  std::string AsmStr = IA->getAsmString();
9749
9750  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9751  SmallVector<StringRef, 4> AsmPieces;
9752  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9753
9754  switch (AsmPieces.size()) {
9755  default: return false;
9756  case 1:
9757    AsmStr = AsmPieces[0];
9758    AsmPieces.clear();
9759    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9760
9761    // bswap $0
9762    if (AsmPieces.size() == 2 &&
9763        (AsmPieces[0] == "bswap" ||
9764         AsmPieces[0] == "bswapq" ||
9765         AsmPieces[0] == "bswapl") &&
9766        (AsmPieces[1] == "$0" ||
9767         AsmPieces[1] == "${0:q}")) {
9768      // No need to check constraints, nothing other than the equivalent of
9769      // "=r,0" would be valid here.
9770      return LowerToBSwap(CI);
9771    }
9772    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9773    if (CI->getType()->isIntegerTy(16) &&
9774        AsmPieces.size() == 3 &&
9775        AsmPieces[0] == "rorw" &&
9776        AsmPieces[1] == "$$8," &&
9777        AsmPieces[2] == "${0:w}" &&
9778        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9779      return LowerToBSwap(CI);
9780    }
9781    break;
9782  case 3:
9783    if (CI->getType()->isIntegerTy(64) &&
9784        Constraints.size() >= 2 &&
9785        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9786        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9787      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9788      SmallVector<StringRef, 4> Words;
9789      SplitString(AsmPieces[0], Words, " \t");
9790      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9791        Words.clear();
9792        SplitString(AsmPieces[1], Words, " \t");
9793        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9794          Words.clear();
9795          SplitString(AsmPieces[2], Words, " \t,");
9796          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9797              Words[2] == "%edx") {
9798            return LowerToBSwap(CI);
9799          }
9800        }
9801      }
9802    }
9803    break;
9804  }
9805  return false;
9806}
9807
9808
9809
9810/// getConstraintType - Given a constraint letter, return the type of
9811/// constraint it is for this target.
9812X86TargetLowering::ConstraintType
9813X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9814  if (Constraint.size() == 1) {
9815    switch (Constraint[0]) {
9816    case 'A':
9817      return C_Register;
9818    case 'f':
9819    case 'r':
9820    case 'R':
9821    case 'l':
9822    case 'q':
9823    case 'Q':
9824    case 'x':
9825    case 'y':
9826    case 'Y':
9827      return C_RegisterClass;
9828    case 'e':
9829    case 'Z':
9830      return C_Other;
9831    default:
9832      break;
9833    }
9834  }
9835  return TargetLowering::getConstraintType(Constraint);
9836}
9837
9838/// LowerXConstraint - try to replace an X constraint, which matches anything,
9839/// with another that has more specific requirements based on the type of the
9840/// corresponding operand.
9841const char *X86TargetLowering::
9842LowerXConstraint(EVT ConstraintVT) const {
9843  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9844  // 'f' like normal targets.
9845  if (ConstraintVT.isFloatingPoint()) {
9846    if (Subtarget->hasSSE2())
9847      return "Y";
9848    if (Subtarget->hasSSE1())
9849      return "x";
9850  }
9851
9852  return TargetLowering::LowerXConstraint(ConstraintVT);
9853}
9854
9855/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9856/// vector.  If it is invalid, don't add anything to Ops.
9857void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9858                                                     char Constraint,
9859                                                     bool hasMemory,
9860                                                     std::vector<SDValue>&Ops,
9861                                                     SelectionDAG &DAG) const {
9862  SDValue Result(0, 0);
9863
9864  switch (Constraint) {
9865  default: break;
9866  case 'I':
9867    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9868      if (C->getZExtValue() <= 31) {
9869        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9870        break;
9871      }
9872    }
9873    return;
9874  case 'J':
9875    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9876      if (C->getZExtValue() <= 63) {
9877        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9878        break;
9879      }
9880    }
9881    return;
9882  case 'K':
9883    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9884      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9885        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9886        break;
9887      }
9888    }
9889    return;
9890  case 'N':
9891    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9892      if (C->getZExtValue() <= 255) {
9893        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9894        break;
9895      }
9896    }
9897    return;
9898  case 'e': {
9899    // 32-bit signed value
9900    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9901      const ConstantInt *CI = C->getConstantIntValue();
9902      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9903                                  C->getSExtValue())) {
9904        // Widen to 64 bits here to get it sign extended.
9905        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9906        break;
9907      }
9908    // FIXME gcc accepts some relocatable values here too, but only in certain
9909    // memory models; it's complicated.
9910    }
9911    return;
9912  }
9913  case 'Z': {
9914    // 32-bit unsigned value
9915    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9916      const ConstantInt *CI = C->getConstantIntValue();
9917      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9918                                  C->getZExtValue())) {
9919        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9920        break;
9921      }
9922    }
9923    // FIXME gcc accepts some relocatable values here too, but only in certain
9924    // memory models; it's complicated.
9925    return;
9926  }
9927  case 'i': {
9928    // Literal immediates are always ok.
9929    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9930      // Widen to 64 bits here to get it sign extended.
9931      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9932      break;
9933    }
9934
9935    // If we are in non-pic codegen mode, we allow the address of a global (with
9936    // an optional displacement) to be used with 'i'.
9937    GlobalAddressSDNode *GA = 0;
9938    int64_t Offset = 0;
9939
9940    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9941    while (1) {
9942      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9943        Offset += GA->getOffset();
9944        break;
9945      } else if (Op.getOpcode() == ISD::ADD) {
9946        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9947          Offset += C->getZExtValue();
9948          Op = Op.getOperand(0);
9949          continue;
9950        }
9951      } else if (Op.getOpcode() == ISD::SUB) {
9952        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9953          Offset += -C->getZExtValue();
9954          Op = Op.getOperand(0);
9955          continue;
9956        }
9957      }
9958
9959      // Otherwise, this isn't something we can handle, reject it.
9960      return;
9961    }
9962
9963    GlobalValue *GV = GA->getGlobal();
9964    // If we require an extra load to get this address, as in PIC mode, we
9965    // can't accept it.
9966    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9967                                                        getTargetMachine())))
9968      return;
9969
9970    if (hasMemory)
9971      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9972    else
9973      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9974    Result = Op;
9975    break;
9976  }
9977  }
9978
9979  if (Result.getNode()) {
9980    Ops.push_back(Result);
9981    return;
9982  }
9983  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9984                                                      Ops, DAG);
9985}
9986
9987std::vector<unsigned> X86TargetLowering::
9988getRegClassForInlineAsmConstraint(const std::string &Constraint,
9989                                  EVT VT) const {
9990  if (Constraint.size() == 1) {
9991    // FIXME: not handling fp-stack yet!
9992    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9993    default: break;  // Unknown constraint letter
9994    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9995      if (Subtarget->is64Bit()) {
9996        if (VT == MVT::i32)
9997          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9998                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9999                                       X86::R10D,X86::R11D,X86::R12D,
10000                                       X86::R13D,X86::R14D,X86::R15D,
10001                                       X86::EBP, X86::ESP, 0);
10002        else if (VT == MVT::i16)
10003          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10004                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10005                                       X86::R10W,X86::R11W,X86::R12W,
10006                                       X86::R13W,X86::R14W,X86::R15W,
10007                                       X86::BP,  X86::SP, 0);
10008        else if (VT == MVT::i8)
10009          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10010                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10011                                       X86::R10B,X86::R11B,X86::R12B,
10012                                       X86::R13B,X86::R14B,X86::R15B,
10013                                       X86::BPL, X86::SPL, 0);
10014
10015        else if (VT == MVT::i64)
10016          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10017                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10018                                       X86::R10, X86::R11, X86::R12,
10019                                       X86::R13, X86::R14, X86::R15,
10020                                       X86::RBP, X86::RSP, 0);
10021
10022        break;
10023      }
10024      // 32-bit fallthrough
10025    case 'Q':   // Q_REGS
10026      if (VT == MVT::i32)
10027        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10028      else if (VT == MVT::i16)
10029        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10030      else if (VT == MVT::i8)
10031        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10032      else if (VT == MVT::i64)
10033        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10034      break;
10035    }
10036  }
10037
10038  return std::vector<unsigned>();
10039}
10040
10041std::pair<unsigned, const TargetRegisterClass*>
10042X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10043                                                EVT VT) const {
10044  // First, see if this is a constraint that directly corresponds to an LLVM
10045  // register class.
10046  if (Constraint.size() == 1) {
10047    // GCC Constraint Letters
10048    switch (Constraint[0]) {
10049    default: break;
10050    case 'r':   // GENERAL_REGS
10051    case 'l':   // INDEX_REGS
10052      if (VT == MVT::i8)
10053        return std::make_pair(0U, X86::GR8RegisterClass);
10054      if (VT == MVT::i16)
10055        return std::make_pair(0U, X86::GR16RegisterClass);
10056      if (VT == MVT::i32 || !Subtarget->is64Bit())
10057        return std::make_pair(0U, X86::GR32RegisterClass);
10058      return std::make_pair(0U, X86::GR64RegisterClass);
10059    case 'R':   // LEGACY_REGS
10060      if (VT == MVT::i8)
10061        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10062      if (VT == MVT::i16)
10063        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10064      if (VT == MVT::i32 || !Subtarget->is64Bit())
10065        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10066      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10067    case 'f':  // FP Stack registers.
10068      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10069      // value to the correct fpstack register class.
10070      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10071        return std::make_pair(0U, X86::RFP32RegisterClass);
10072      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10073        return std::make_pair(0U, X86::RFP64RegisterClass);
10074      return std::make_pair(0U, X86::RFP80RegisterClass);
10075    case 'y':   // MMX_REGS if MMX allowed.
10076      if (!Subtarget->hasMMX()) break;
10077      return std::make_pair(0U, X86::VR64RegisterClass);
10078    case 'Y':   // SSE_REGS if SSE2 allowed
10079      if (!Subtarget->hasSSE2()) break;
10080      // FALL THROUGH.
10081    case 'x':   // SSE_REGS if SSE1 allowed
10082      if (!Subtarget->hasSSE1()) break;
10083
10084      switch (VT.getSimpleVT().SimpleTy) {
10085      default: break;
10086      // Scalar SSE types.
10087      case MVT::f32:
10088      case MVT::i32:
10089        return std::make_pair(0U, X86::FR32RegisterClass);
10090      case MVT::f64:
10091      case MVT::i64:
10092        return std::make_pair(0U, X86::FR64RegisterClass);
10093      // Vector types.
10094      case MVT::v16i8:
10095      case MVT::v8i16:
10096      case MVT::v4i32:
10097      case MVT::v2i64:
10098      case MVT::v4f32:
10099      case MVT::v2f64:
10100        return std::make_pair(0U, X86::VR128RegisterClass);
10101      }
10102      break;
10103    }
10104  }
10105
10106  // Use the default implementation in TargetLowering to convert the register
10107  // constraint into a member of a register class.
10108  std::pair<unsigned, const TargetRegisterClass*> Res;
10109  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10110
10111  // Not found as a standard register?
10112  if (Res.second == 0) {
10113    // Map st(0) -> st(7) -> ST0
10114    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10115        tolower(Constraint[1]) == 's' &&
10116        tolower(Constraint[2]) == 't' &&
10117        Constraint[3] == '(' &&
10118        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10119        Constraint[5] == ')' &&
10120        Constraint[6] == '}') {
10121
10122      Res.first = X86::ST0+Constraint[4]-'0';
10123      Res.second = X86::RFP80RegisterClass;
10124      return Res;
10125    }
10126
10127    // GCC allows "st(0)" to be called just plain "st".
10128    if (StringRef("{st}").equals_lower(Constraint)) {
10129      Res.first = X86::ST0;
10130      Res.second = X86::RFP80RegisterClass;
10131      return Res;
10132    }
10133
10134    // flags -> EFLAGS
10135    if (StringRef("{flags}").equals_lower(Constraint)) {
10136      Res.first = X86::EFLAGS;
10137      Res.second = X86::CCRRegisterClass;
10138      return Res;
10139    }
10140
10141    // 'A' means EAX + EDX.
10142    if (Constraint == "A") {
10143      Res.first = X86::EAX;
10144      Res.second = X86::GR32_ADRegisterClass;
10145      return Res;
10146    }
10147    return Res;
10148  }
10149
10150  // Otherwise, check to see if this is a register class of the wrong value
10151  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10152  // turn into {ax},{dx}.
10153  if (Res.second->hasType(VT))
10154    return Res;   // Correct type already, nothing to do.
10155
10156  // All of the single-register GCC register classes map their values onto
10157  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10158  // really want an 8-bit or 32-bit register, map to the appropriate register
10159  // class and return the appropriate register.
10160  if (Res.second == X86::GR16RegisterClass) {
10161    if (VT == MVT::i8) {
10162      unsigned DestReg = 0;
10163      switch (Res.first) {
10164      default: break;
10165      case X86::AX: DestReg = X86::AL; break;
10166      case X86::DX: DestReg = X86::DL; break;
10167      case X86::CX: DestReg = X86::CL; break;
10168      case X86::BX: DestReg = X86::BL; break;
10169      }
10170      if (DestReg) {
10171        Res.first = DestReg;
10172        Res.second = X86::GR8RegisterClass;
10173      }
10174    } else if (VT == MVT::i32) {
10175      unsigned DestReg = 0;
10176      switch (Res.first) {
10177      default: break;
10178      case X86::AX: DestReg = X86::EAX; break;
10179      case X86::DX: DestReg = X86::EDX; break;
10180      case X86::CX: DestReg = X86::ECX; break;
10181      case X86::BX: DestReg = X86::EBX; break;
10182      case X86::SI: DestReg = X86::ESI; break;
10183      case X86::DI: DestReg = X86::EDI; break;
10184      case X86::BP: DestReg = X86::EBP; break;
10185      case X86::SP: DestReg = X86::ESP; break;
10186      }
10187      if (DestReg) {
10188        Res.first = DestReg;
10189        Res.second = X86::GR32RegisterClass;
10190      }
10191    } else if (VT == MVT::i64) {
10192      unsigned DestReg = 0;
10193      switch (Res.first) {
10194      default: break;
10195      case X86::AX: DestReg = X86::RAX; break;
10196      case X86::DX: DestReg = X86::RDX; break;
10197      case X86::CX: DestReg = X86::RCX; break;
10198      case X86::BX: DestReg = X86::RBX; break;
10199      case X86::SI: DestReg = X86::RSI; break;
10200      case X86::DI: DestReg = X86::RDI; break;
10201      case X86::BP: DestReg = X86::RBP; break;
10202      case X86::SP: DestReg = X86::RSP; break;
10203      }
10204      if (DestReg) {
10205        Res.first = DestReg;
10206        Res.second = X86::GR64RegisterClass;
10207      }
10208    }
10209  } else if (Res.second == X86::FR32RegisterClass ||
10210             Res.second == X86::FR64RegisterClass ||
10211             Res.second == X86::VR128RegisterClass) {
10212    // Handle references to XMM physical registers that got mapped into the
10213    // wrong class.  This can happen with constraints like {xmm0} where the
10214    // target independent register mapper will just pick the first match it can
10215    // find, ignoring the required type.
10216    if (VT == MVT::f32)
10217      Res.second = X86::FR32RegisterClass;
10218    else if (VT == MVT::f64)
10219      Res.second = X86::FR64RegisterClass;
10220    else if (X86::VR128RegisterClass->hasType(VT))
10221      Res.second = X86::VR128RegisterClass;
10222  }
10223
10224  return Res;
10225}
10226
10227//===----------------------------------------------------------------------===//
10228//                           X86 Widen vector type
10229//===----------------------------------------------------------------------===//
10230
10231/// getWidenVectorType: given a vector type, returns the type to widen
10232/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
10233/// If there is no vector type that we want to widen to, returns MVT::Other
10234/// When and where to widen is target dependent based on the cost of
10235/// scalarizing vs using the wider vector type.
10236
10237EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
10238  assert(VT.isVector());
10239  if (isTypeLegal(VT))
10240    return VT;
10241
10242  // TODO: In computeRegisterProperty, we can compute the list of legal vector
10243  //       type based on element type.  This would speed up our search (though
10244  //       it may not be worth it since the size of the list is relatively
10245  //       small).
10246  EVT EltVT = VT.getVectorElementType();
10247  unsigned NElts = VT.getVectorNumElements();
10248
10249  // On X86, it make sense to widen any vector wider than 1
10250  if (NElts <= 1)
10251    return MVT::Other;
10252
10253  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
10254       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
10255    EVT SVT = (MVT::SimpleValueType)nVT;
10256
10257    if (isTypeLegal(SVT) &&
10258        SVT.getVectorElementType() == EltVT &&
10259        SVT.getVectorNumElements() > NElts)
10260      return SVT;
10261  }
10262  return MVT::Other;
10263}
10264