X86ISelLowering.cpp revision 96428cea3d87aaac2e520a0df8f51c857ebf9cbd
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55using namespace llvm;
56using namespace dwarf;
57
58STATISTIC(NumTailCalls, "Number of tail calls");
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static SDValue Insert128BitVector(SDValue Result,
65                                  SDValue Vec,
66                                  SDValue Idx,
67                                  SelectionDAG &DAG,
68                                  DebugLoc dl);
69
70static SDValue Extract128BitVector(SDValue Vec,
71                                   SDValue Idx,
72                                   SelectionDAG &DAG,
73                                   DebugLoc dl);
74
75/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76/// sets things up to match to an AVX VEXTRACTF128 instruction or a
77/// simple subregister reference.  Idx is an index in the 128 bits we
78/// want.  It need not be aligned to a 128-bit bounday.  That makes
79/// lowering EXTRACT_VECTOR_ELT operations easier.
80static SDValue Extract128BitVector(SDValue Vec,
81                                   SDValue Idx,
82                                   SelectionDAG &DAG,
83                                   DebugLoc dl) {
84  EVT VT = Vec.getValueType();
85  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86  EVT ElVT = VT.getVectorElementType();
87  int Factor = VT.getSizeInBits()/128;
88  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                  VT.getVectorNumElements()/Factor);
90
91  // Extract from UNDEF is UNDEF.
92  if (Vec.getOpcode() == ISD::UNDEF)
93    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95  if (isa<ConstantSDNode>(Idx)) {
96    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99    // we can match to VEXTRACTF128.
100    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102    // This is the index of the first element of the 128-bit chunk
103    // we want.
104    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                 * ElemsPerChunk);
106
107    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                 VecIdx);
110
111    return Result;
112  }
113
114  return SDValue();
115}
116
117/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118/// sets things up to match to an AVX VINSERTF128 instruction or a
119/// simple superregister reference.  Idx is an index in the 128 bits
120/// we want.  It need not be aligned to a 128-bit bounday.  That makes
121/// lowering INSERT_VECTOR_ELT operations easier.
122static SDValue Insert128BitVector(SDValue Result,
123                                  SDValue Vec,
124                                  SDValue Idx,
125                                  SelectionDAG &DAG,
126                                  DebugLoc dl) {
127  if (isa<ConstantSDNode>(Idx)) {
128    EVT VT = Vec.getValueType();
129    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131    EVT ElVT = VT.getVectorElementType();
132    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133    EVT ResultVT = Result.getValueType();
134
135    // Insert the relevant 128 bits.
136    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138    // This is the index of the first element of the 128-bit chunk
139    // we want.
140    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                 * ElemsPerChunk);
142
143    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                         VecIdx);
146    return Result;
147  }
148
149  return SDValue();
150}
151
152static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154  bool is64Bit = Subtarget->is64Bit();
155
156  if (Subtarget->isTargetEnvMacho()) {
157    if (is64Bit)
158      return new X8664_MachoTargetObjectFile();
159    return new TargetLoweringObjectFileMachO();
160  }
161
162  if (Subtarget->isTargetELF())
163    return new TargetLoweringObjectFileELF();
164  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165    return new TargetLoweringObjectFileCOFF();
166  llvm_unreachable("unknown subtarget type");
167}
168
169X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170  : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<X86Subtarget>();
172  X86ScalarSSEf64 = Subtarget->hasXMMInt() || Subtarget->hasAVX();
173  X86ScalarSSEf32 = Subtarget->hasXMM() || Subtarget->hasAVX();
174  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176  RegInfo = TM.getRegisterInfo();
177  TD = getTargetData();
178
179  // Set up the TargetLowering object.
180  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182  // X86 is weird, it always uses i8 for shift amounts and setcc results.
183  setBooleanContents(ZeroOrOneBooleanContent);
184
185  // For 64-bit since we have so many registers use the ILP scheduler, for
186  // 32-bit code use the register pressure specific scheduling.
187  if (Subtarget->is64Bit())
188    setSchedulingPreference(Sched::ILP);
189  else
190    setSchedulingPreference(Sched::RegPressure);
191  setStackPointerRegisterToSaveRestore(X86StackPtr);
192
193  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
194    // Setup Windows compiler runtime calls.
195    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
196    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
197    setLibcallName(RTLIB::SREM_I64, "_allrem");
198    setLibcallName(RTLIB::UREM_I64, "_aullrem");
199    setLibcallName(RTLIB::MUL_I64, "_allmul");
200    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
201    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
202    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
208    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
209  }
210
211  if (Subtarget->isTargetDarwin()) {
212    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
213    setUseUnderscoreSetJmp(false);
214    setUseUnderscoreLongJmp(false);
215  } else if (Subtarget->isTargetMingw()) {
216    // MS runtime is weird: it exports _setjmp, but longjmp!
217    setUseUnderscoreSetJmp(true);
218    setUseUnderscoreLongJmp(false);
219  } else {
220    setUseUnderscoreSetJmp(true);
221    setUseUnderscoreLongJmp(true);
222  }
223
224  // Set up the register classes.
225  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
226  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
227  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
228  if (Subtarget->is64Bit())
229    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
230
231  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
232
233  // We don't accept any truncstore of integer registers.
234  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
236  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
237  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
238  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
239  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
240
241  // SETOEQ and SETUNE require checking two conditions.
242  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
247  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
248
249  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
250  // operation.
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
253  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
254
255  if (Subtarget->is64Bit()) {
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
258  } else if (!UseSoftFloat) {
259    // We have an algorithm for SSE2->double, and we turn this into a
260    // 64-bit FILD followed by conditional FADD for other targets.
261    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
262    // We have an algorithm for SSE2, and we turn this into a 64-bit
263    // FILD for other targets.
264    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
265  }
266
267  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
268  // this operation.
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
270  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
271
272  if (!UseSoftFloat) {
273    // SSE has no i16 to fp conversion, only i32
274    if (X86ScalarSSEf32) {
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
276      // f32 and f64 cases are Legal, f80 case is not
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
278    } else {
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
280      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
281    }
282  } else {
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
284    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
285  }
286
287  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
288  // are Legal, f80 is custom lowered.
289  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
290  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
291
292  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
293  // this operation.
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
295  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
296
297  if (X86ScalarSSEf32) {
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
299    // f32 and f64 cases are Legal, f80 case is not
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
301  } else {
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
303    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
304  }
305
306  // Handle FP_TO_UINT by promoting the destination to a larger signed
307  // conversion.
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
310  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
311
312  if (Subtarget->is64Bit()) {
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
314    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
315  } else if (!UseSoftFloat) {
316    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
317      // Expand FP_TO_UINT into a select.
318      // FIXME: We would like to use a Custom expander here eventually to do
319      // the optimal thing for SSE vs. the default expansion in the legalizer.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
321    else
322      // With SSE3 we can use fisttpll to convert to a signed i64; without
323      // SSE, we're stuck with a fistpll.
324      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
325  }
326
327  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328  if (!X86ScalarSSEf64) {
329    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331    if (Subtarget->is64Bit()) {
332      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333      // Without SSE, i64->f64 goes through memory.
334      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335    }
336  }
337
338  // Scalar integer divide and remainder are lowered to use operations that
339  // produce two results, to match the available instructions. This exposes
340  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341  // into a single instruction.
342  //
343  // Scalar integer multiply-high is also lowered to use two-result
344  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
381  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
383  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
384  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
385  if (Subtarget->is64Bit()) {
386    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
387    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
388  }
389
390  if (Subtarget->hasPOPCNT()) {
391    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
392  } else {
393    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
395    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
396    if (Subtarget->is64Bit())
397      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
398  }
399
400  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
401  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
402
403  // These should be promoted to a larger select which is supported.
404  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
405  // X86 wants to expand cmov itself.
406  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
411  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
417  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
418  if (Subtarget->is64Bit()) {
419    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
420    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
421  }
422  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
423
424  // Darwin ABI issue.
425  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
426  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
428  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
429  if (Subtarget->is64Bit())
430    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
431  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
432  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
433  if (Subtarget->is64Bit()) {
434    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
435    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
436    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
437    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
438    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
439  }
440  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
441  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
443  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
444  if (Subtarget->is64Bit()) {
445    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
447    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
448  }
449
450  if (Subtarget->hasXMM())
451    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
452
453  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
454  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
455
456  // On X86 and X86-64, atomic operations are lowered to locked instructions.
457  // Locked instructions, in turn, have implicit fence semantics (all memory
458  // operations are flushed before issuing the locked instruction, and they
459  // are not buffered), so we can fold away the common pattern of
460  // fence-atomic-fence.
461  setShouldFoldAtomicFences(true);
462
463  // Expand certain atomics
464  for (unsigned i = 0, e = 4; i != e; ++i) {
465    MVT VT = IntVTs[i];
466    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
467    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
468    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
469  }
470
471  if (!Subtarget->is64Bit()) {
472    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
477    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
478    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
479    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
480  }
481
482  if (Subtarget->hasCmpxchg16b()) {
483    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
484  }
485
486  // FIXME - use subtarget debug flags
487  if (!Subtarget->isTargetDarwin() &&
488      !Subtarget->isTargetELF() &&
489      !Subtarget->isTargetCygMing()) {
490    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
491  }
492
493  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
494  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
495  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
496  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
497  if (Subtarget->is64Bit()) {
498    setExceptionPointerRegister(X86::RAX);
499    setExceptionSelectorRegister(X86::RDX);
500  } else {
501    setExceptionPointerRegister(X86::EAX);
502    setExceptionSelectorRegister(X86::EDX);
503  }
504  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
505  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
506
507  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
508  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
509
510  setOperationAction(ISD::TRAP, MVT::Other, Legal);
511
512  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
513  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
514  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
515  if (Subtarget->is64Bit()) {
516    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
517    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
518  } else {
519    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
520    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
521  }
522
523  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
524  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
525
526  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
527    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
528                       MVT::i64 : MVT::i32, Custom);
529  else if (EnableSegmentedStacks)
530    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
531                       MVT::i64 : MVT::i32, Custom);
532  else
533    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
534                       MVT::i64 : MVT::i32, Expand);
535
536  if (!UseSoftFloat && X86ScalarSSEf64) {
537    // f32 and f64 use SSE.
538    // Set up the FP register classes.
539    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
540    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
541
542    // Use ANDPD to simulate FABS.
543    setOperationAction(ISD::FABS , MVT::f64, Custom);
544    setOperationAction(ISD::FABS , MVT::f32, Custom);
545
546    // Use XORP to simulate FNEG.
547    setOperationAction(ISD::FNEG , MVT::f64, Custom);
548    setOperationAction(ISD::FNEG , MVT::f32, Custom);
549
550    // Use ANDPD and ORPD to simulate FCOPYSIGN.
551    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
552    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
553
554    // Lower this to FGETSIGNx86 plus an AND.
555    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
556    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
557
558    // We don't support sin/cos/fmod
559    setOperationAction(ISD::FSIN , MVT::f64, Expand);
560    setOperationAction(ISD::FCOS , MVT::f64, Expand);
561    setOperationAction(ISD::FSIN , MVT::f32, Expand);
562    setOperationAction(ISD::FCOS , MVT::f32, Expand);
563
564    // Expand FP immediates into loads from the stack, except for the special
565    // cases we handle.
566    addLegalFPImmediate(APFloat(+0.0)); // xorpd
567    addLegalFPImmediate(APFloat(+0.0f)); // xorps
568  } else if (!UseSoftFloat && X86ScalarSSEf32) {
569    // Use SSE for f32, x87 for f64.
570    // Set up the FP register classes.
571    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
572    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
573
574    // Use ANDPS to simulate FABS.
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f32, Custom);
579
580    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
581
582    // Use ANDPS and ORPS to simulate FCOPYSIGN.
583    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
584    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
585
586    // We don't support sin/cos/fmod
587    setOperationAction(ISD::FSIN , MVT::f32, Expand);
588    setOperationAction(ISD::FCOS , MVT::f32, Expand);
589
590    // Special cases we handle for FP constants.
591    addLegalFPImmediate(APFloat(+0.0f)); // xorps
592    addLegalFPImmediate(APFloat(+0.0)); // FLD0
593    addLegalFPImmediate(APFloat(+1.0)); // FLD1
594    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
595    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
596
597    if (!UnsafeFPMath) {
598      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
599      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
600    }
601  } else if (!UseSoftFloat) {
602    // f32 and f64 in x87.
603    // Set up the FP register classes.
604    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
605    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
606
607    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
608    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
609    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
610    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
611
612    if (!UnsafeFPMath) {
613      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
614      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
615    }
616    addLegalFPImmediate(APFloat(+0.0)); // FLD0
617    addLegalFPImmediate(APFloat(+1.0)); // FLD1
618    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
619    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
620    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
621    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
622    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
623    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
624  }
625
626  // We don't support FMA.
627  setOperationAction(ISD::FMA, MVT::f64, Expand);
628  setOperationAction(ISD::FMA, MVT::f32, Expand);
629
630  // Long double always uses X87.
631  if (!UseSoftFloat) {
632    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
633    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
634    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
635    {
636      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
637      addLegalFPImmediate(TmpFlt);  // FLD0
638      TmpFlt.changeSign();
639      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
640
641      bool ignored;
642      APFloat TmpFlt2(+1.0);
643      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
644                      &ignored);
645      addLegalFPImmediate(TmpFlt2);  // FLD1
646      TmpFlt2.changeSign();
647      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
648    }
649
650    if (!UnsafeFPMath) {
651      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
652      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
653    }
654
655    setOperationAction(ISD::FMA, MVT::f80, Expand);
656  }
657
658  // Always use a library call for pow.
659  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
660  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
661  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
662
663  setOperationAction(ISD::FLOG, MVT::f80, Expand);
664  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
665  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
666  setOperationAction(ISD::FEXP, MVT::f80, Expand);
667  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
668
669  // First set operation action for all vector types to either promote
670  // (for widening) or expand (for scalarization). Then we will selectively
671  // turn on ones that can be effectively codegen'd.
672  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
673       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
674    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
676    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
678    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
679    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
689    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
691    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
692    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
724    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
728    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
729         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
730      setTruncStoreAction((MVT::SimpleValueType)VT,
731                          (MVT::SimpleValueType)InnerVT, Expand);
732    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
733    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
734    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
735  }
736
737  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
738  // with -msoft-float, disable use of MMX as well.
739  if (!UseSoftFloat && Subtarget->hasMMX()) {
740    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
741    // No operations on x86mmx supported, everything uses intrinsics.
742  }
743
744  // MMX-sized vectors (other than x86mmx) are expected to be expanded
745  // into smaller operations.
746  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
747  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
748  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
749  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
750  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
751  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
752  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
753  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
754  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
755  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
756  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
757  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
758  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
759  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
760  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
761  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
762  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
763  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
764  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
765  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
766  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
767  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
768  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
769  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
770  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
771  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
772  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
773  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
774  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
775
776  if (!UseSoftFloat && Subtarget->hasXMM()) {
777    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
778
779    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
780    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
781    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
782    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
783    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
784    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
785    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
786    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
787    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
788    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
789    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
790    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
791  }
792
793  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
794    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
795
796    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
797    // registers cannot be used even for integer operations.
798    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
799    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
800    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
801    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
802
803    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
804    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
805    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
806    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
807    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
808    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
809    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
810    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
811    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
812    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
813    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
815    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
816    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
817    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
818    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
819
820    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
821    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
822    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
823    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
824
825    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
826    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
827    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
828    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
829    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
830
831    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
832    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
833    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
834    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
835    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
836
837    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
838    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
839      EVT VT = (MVT::SimpleValueType)i;
840      // Do not attempt to custom lower non-power-of-2 vectors
841      if (!isPowerOf2_32(VT.getVectorNumElements()))
842        continue;
843      // Do not attempt to custom lower non-128-bit vectors
844      if (!VT.is128BitVector())
845        continue;
846      setOperationAction(ISD::BUILD_VECTOR,
847                         VT.getSimpleVT().SimpleTy, Custom);
848      setOperationAction(ISD::VECTOR_SHUFFLE,
849                         VT.getSimpleVT().SimpleTy, Custom);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
851                         VT.getSimpleVT().SimpleTy, Custom);
852    }
853
854    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
855    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
856    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
857    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
858    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
859    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
860
861    if (Subtarget->is64Bit()) {
862      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
863      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
864    }
865
866    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
867    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
868      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
869      EVT VT = SVT;
870
871      // Do not attempt to promote non-128-bit vectors
872      if (!VT.is128BitVector())
873        continue;
874
875      setOperationAction(ISD::AND,    SVT, Promote);
876      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
877      setOperationAction(ISD::OR,     SVT, Promote);
878      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
879      setOperationAction(ISD::XOR,    SVT, Promote);
880      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
881      setOperationAction(ISD::LOAD,   SVT, Promote);
882      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
883      setOperationAction(ISD::SELECT, SVT, Promote);
884      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
885    }
886
887    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
888
889    // Custom lower v2i64 and v2f64 selects.
890    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
891    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
892    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
893    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
894
895    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
896    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
897  }
898
899  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
900    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
901    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
902    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
903    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
904    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
905    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
906    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
907    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
908    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
909    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
910
911    // FIXME: Do we need to handle scalar-to-vector here?
912    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
913
914    // Can turn SHL into an integer multiply.
915    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
916    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
917
918    // i8 and i16 vectors are custom , because the source register and source
919    // source memory operand types are not the same width.  f32 vectors are
920    // custom since the immediate controlling the insert encodes additional
921    // information.
922    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
924    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
925    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
926
927    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
928    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
929    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
930    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
931
932    if (Subtarget->is64Bit()) {
933      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
934      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
935    }
936  }
937
938  if (Subtarget->hasSSE2() || Subtarget->hasAVX()) {
939    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
940    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
941    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
942    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
943
944    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
945    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
946    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
947
948    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
949    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
950  }
951
952  if (Subtarget->hasSSE42() || Subtarget->hasAVX())
953    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
954
955  if (!UseSoftFloat && Subtarget->hasAVX()) {
956    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
957    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
958    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
959    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
960    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
961    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
962
963    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
964    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
965    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
966
967    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
968    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
969    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
970    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
971    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
972    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
973
974    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
975    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
976    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
977    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
978    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
979    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
980
981    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
982    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
983    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
984
985    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
986    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
987    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
988    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
989    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
990    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
991
992    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
993    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
994    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
995    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
996
997    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
998    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
999    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1000    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1001
1002    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1003    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1004
1005    setOperationAction(ISD::VSETCC,            MVT::v32i8, Custom);
1006    setOperationAction(ISD::VSETCC,            MVT::v16i16, Custom);
1007    setOperationAction(ISD::VSETCC,            MVT::v8i32, Custom);
1008    setOperationAction(ISD::VSETCC,            MVT::v4i64, Custom);
1009
1010    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1011    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1012    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1013
1014    setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1015    setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1016    setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1017    setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1018
1019    setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1020    setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1021    setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1022    setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1023
1024    setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1025    setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1026    setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1027    // Don't lower v32i8 because there is no 128-bit byte mul
1028
1029    // Custom lower several nodes for 256-bit types.
1030    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1031                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1032      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1033      EVT VT = SVT;
1034
1035      // Extract subvector is special because the value type
1036      // (result) is 128-bit but the source is 256-bit wide.
1037      if (VT.is128BitVector())
1038        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1039
1040      // Do not attempt to custom lower other non-256-bit vectors
1041      if (!VT.is256BitVector())
1042        continue;
1043
1044      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1045      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1046      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1047      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1048      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1049      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1050    }
1051
1052    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1053    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1054      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1055      EVT VT = SVT;
1056
1057      // Do not attempt to promote non-256-bit vectors
1058      if (!VT.is256BitVector())
1059        continue;
1060
1061      setOperationAction(ISD::AND,    SVT, Promote);
1062      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1063      setOperationAction(ISD::OR,     SVT, Promote);
1064      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1065      setOperationAction(ISD::XOR,    SVT, Promote);
1066      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1067      setOperationAction(ISD::LOAD,   SVT, Promote);
1068      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1069      setOperationAction(ISD::SELECT, SVT, Promote);
1070      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1071    }
1072  }
1073
1074  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1075  // of this type with custom code.
1076  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1077         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1078    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1079  }
1080
1081  // We want to custom lower some of our intrinsics.
1082  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1083
1084
1085  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1086  // handle type legalization for these operations here.
1087  //
1088  // FIXME: We really should do custom legalization for addition and
1089  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1090  // than generic legalization for 64-bit multiplication-with-overflow, though.
1091  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1092    // Add/Sub/Mul with overflow operations are custom lowered.
1093    MVT VT = IntVTs[i];
1094    setOperationAction(ISD::SADDO, VT, Custom);
1095    setOperationAction(ISD::UADDO, VT, Custom);
1096    setOperationAction(ISD::SSUBO, VT, Custom);
1097    setOperationAction(ISD::USUBO, VT, Custom);
1098    setOperationAction(ISD::SMULO, VT, Custom);
1099    setOperationAction(ISD::UMULO, VT, Custom);
1100  }
1101
1102  // There are no 8-bit 3-address imul/mul instructions
1103  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1104  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1105
1106  if (!Subtarget->is64Bit()) {
1107    // These libcalls are not available in 32-bit.
1108    setLibcallName(RTLIB::SHL_I128, 0);
1109    setLibcallName(RTLIB::SRL_I128, 0);
1110    setLibcallName(RTLIB::SRA_I128, 0);
1111  }
1112
1113  // We have target-specific dag combine patterns for the following nodes:
1114  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1115  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1116  setTargetDAGCombine(ISD::BUILD_VECTOR);
1117  setTargetDAGCombine(ISD::SELECT);
1118  setTargetDAGCombine(ISD::SHL);
1119  setTargetDAGCombine(ISD::SRA);
1120  setTargetDAGCombine(ISD::SRL);
1121  setTargetDAGCombine(ISD::OR);
1122  setTargetDAGCombine(ISD::AND);
1123  setTargetDAGCombine(ISD::ADD);
1124  setTargetDAGCombine(ISD::SUB);
1125  setTargetDAGCombine(ISD::STORE);
1126  setTargetDAGCombine(ISD::ZERO_EXTEND);
1127  setTargetDAGCombine(ISD::SINT_TO_FP);
1128  if (Subtarget->is64Bit())
1129    setTargetDAGCombine(ISD::MUL);
1130
1131  computeRegisterProperties();
1132
1133  // On Darwin, -Os means optimize for size without hurting performance,
1134  // do not reduce the limit.
1135  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1136  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1137  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1138  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1139  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1140  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1141  setPrefLoopAlignment(16);
1142  benefitFromCodePlacementOpt = true;
1143
1144  setPrefFunctionAlignment(4);
1145}
1146
1147
1148MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1149  return MVT::i8;
1150}
1151
1152
1153/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1154/// the desired ByVal argument alignment.
1155static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1156  if (MaxAlign == 16)
1157    return;
1158  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1159    if (VTy->getBitWidth() == 128)
1160      MaxAlign = 16;
1161  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1162    unsigned EltAlign = 0;
1163    getMaxByValAlign(ATy->getElementType(), EltAlign);
1164    if (EltAlign > MaxAlign)
1165      MaxAlign = EltAlign;
1166  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1167    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1168      unsigned EltAlign = 0;
1169      getMaxByValAlign(STy->getElementType(i), EltAlign);
1170      if (EltAlign > MaxAlign)
1171        MaxAlign = EltAlign;
1172      if (MaxAlign == 16)
1173        break;
1174    }
1175  }
1176  return;
1177}
1178
1179/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1180/// function arguments in the caller parameter area. For X86, aggregates
1181/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1182/// are at 4-byte boundaries.
1183unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1184  if (Subtarget->is64Bit()) {
1185    // Max of 8 and alignment of type.
1186    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1187    if (TyAlign > 8)
1188      return TyAlign;
1189    return 8;
1190  }
1191
1192  unsigned Align = 4;
1193  if (Subtarget->hasXMM())
1194    getMaxByValAlign(Ty, Align);
1195  return Align;
1196}
1197
1198/// getOptimalMemOpType - Returns the target specific optimal type for load
1199/// and store operations as a result of memset, memcpy, and memmove
1200/// lowering. If DstAlign is zero that means it's safe to destination
1201/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1202/// means there isn't a need to check it against alignment requirement,
1203/// probably because the source does not need to be loaded. If
1204/// 'NonScalarIntSafe' is true, that means it's safe to return a
1205/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1206/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1207/// constant so it does not need to be loaded.
1208/// It returns EVT::Other if the type should be determined using generic
1209/// target-independent logic.
1210EVT
1211X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1212                                       unsigned DstAlign, unsigned SrcAlign,
1213                                       bool NonScalarIntSafe,
1214                                       bool MemcpyStrSrc,
1215                                       MachineFunction &MF) const {
1216  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1217  // linux.  This is because the stack realignment code can't handle certain
1218  // cases like PR2962.  This should be removed when PR2962 is fixed.
1219  const Function *F = MF.getFunction();
1220  if (NonScalarIntSafe &&
1221      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1222    if (Size >= 16 &&
1223        (Subtarget->isUnalignedMemAccessFast() ||
1224         ((DstAlign == 0 || DstAlign >= 16) &&
1225          (SrcAlign == 0 || SrcAlign >= 16))) &&
1226        Subtarget->getStackAlignment() >= 16) {
1227      if (Subtarget->hasSSE2())
1228        return MVT::v4i32;
1229      if (Subtarget->hasSSE1())
1230        return MVT::v4f32;
1231    } else if (!MemcpyStrSrc && Size >= 8 &&
1232               !Subtarget->is64Bit() &&
1233               Subtarget->getStackAlignment() >= 8 &&
1234               Subtarget->hasXMMInt()) {
1235      // Do not use f64 to lower memcpy if source is string constant. It's
1236      // better to use i32 to avoid the loads.
1237      return MVT::f64;
1238    }
1239  }
1240  if (Subtarget->is64Bit() && Size >= 8)
1241    return MVT::i64;
1242  return MVT::i32;
1243}
1244
1245/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1246/// current function.  The returned value is a member of the
1247/// MachineJumpTableInfo::JTEntryKind enum.
1248unsigned X86TargetLowering::getJumpTableEncoding() const {
1249  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1250  // symbol.
1251  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1252      Subtarget->isPICStyleGOT())
1253    return MachineJumpTableInfo::EK_Custom32;
1254
1255  // Otherwise, use the normal jump table encoding heuristics.
1256  return TargetLowering::getJumpTableEncoding();
1257}
1258
1259const MCExpr *
1260X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1261                                             const MachineBasicBlock *MBB,
1262                                             unsigned uid,MCContext &Ctx) const{
1263  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1264         Subtarget->isPICStyleGOT());
1265  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1266  // entries.
1267  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1268                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1269}
1270
1271/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1272/// jumptable.
1273SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1274                                                    SelectionDAG &DAG) const {
1275  if (!Subtarget->is64Bit())
1276    // This doesn't have DebugLoc associated with it, but is not really the
1277    // same as a Register.
1278    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1279  return Table;
1280}
1281
1282/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1283/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1284/// MCExpr.
1285const MCExpr *X86TargetLowering::
1286getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1287                             MCContext &Ctx) const {
1288  // X86-64 uses RIP relative addressing based on the jump table label.
1289  if (Subtarget->isPICStyleRIPRel())
1290    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1291
1292  // Otherwise, the reference is relative to the PIC base.
1293  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1294}
1295
1296// FIXME: Why this routine is here? Move to RegInfo!
1297std::pair<const TargetRegisterClass*, uint8_t>
1298X86TargetLowering::findRepresentativeClass(EVT VT) const{
1299  const TargetRegisterClass *RRC = 0;
1300  uint8_t Cost = 1;
1301  switch (VT.getSimpleVT().SimpleTy) {
1302  default:
1303    return TargetLowering::findRepresentativeClass(VT);
1304  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1305    RRC = (Subtarget->is64Bit()
1306           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1307    break;
1308  case MVT::x86mmx:
1309    RRC = X86::VR64RegisterClass;
1310    break;
1311  case MVT::f32: case MVT::f64:
1312  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1313  case MVT::v4f32: case MVT::v2f64:
1314  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1315  case MVT::v4f64:
1316    RRC = X86::VR128RegisterClass;
1317    break;
1318  }
1319  return std::make_pair(RRC, Cost);
1320}
1321
1322bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1323                                               unsigned &Offset) const {
1324  if (!Subtarget->isTargetLinux())
1325    return false;
1326
1327  if (Subtarget->is64Bit()) {
1328    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1329    Offset = 0x28;
1330    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1331      AddressSpace = 256;
1332    else
1333      AddressSpace = 257;
1334  } else {
1335    // %gs:0x14 on i386
1336    Offset = 0x14;
1337    AddressSpace = 256;
1338  }
1339  return true;
1340}
1341
1342
1343//===----------------------------------------------------------------------===//
1344//               Return Value Calling Convention Implementation
1345//===----------------------------------------------------------------------===//
1346
1347#include "X86GenCallingConv.inc"
1348
1349bool
1350X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1351				  MachineFunction &MF, bool isVarArg,
1352                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1353                        LLVMContext &Context) const {
1354  SmallVector<CCValAssign, 16> RVLocs;
1355  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1356                 RVLocs, Context);
1357  return CCInfo.CheckReturn(Outs, RetCC_X86);
1358}
1359
1360SDValue
1361X86TargetLowering::LowerReturn(SDValue Chain,
1362                               CallingConv::ID CallConv, bool isVarArg,
1363                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1364                               const SmallVectorImpl<SDValue> &OutVals,
1365                               DebugLoc dl, SelectionDAG &DAG) const {
1366  MachineFunction &MF = DAG.getMachineFunction();
1367  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1368
1369  SmallVector<CCValAssign, 16> RVLocs;
1370  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1371                 RVLocs, *DAG.getContext());
1372  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1373
1374  // Add the regs to the liveout set for the function.
1375  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1376  for (unsigned i = 0; i != RVLocs.size(); ++i)
1377    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1378      MRI.addLiveOut(RVLocs[i].getLocReg());
1379
1380  SDValue Flag;
1381
1382  SmallVector<SDValue, 6> RetOps;
1383  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1384  // Operand #1 = Bytes To Pop
1385  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1386                   MVT::i16));
1387
1388  // Copy the result values into the output registers.
1389  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1390    CCValAssign &VA = RVLocs[i];
1391    assert(VA.isRegLoc() && "Can only return in registers!");
1392    SDValue ValToCopy = OutVals[i];
1393    EVT ValVT = ValToCopy.getValueType();
1394
1395    // If this is x86-64, and we disabled SSE, we can't return FP values,
1396    // or SSE or MMX vectors.
1397    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1398         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1399          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1400      report_fatal_error("SSE register return with SSE disabled");
1401    }
1402    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1403    // llvm-gcc has never done it right and no one has noticed, so this
1404    // should be OK for now.
1405    if (ValVT == MVT::f64 &&
1406        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1407      report_fatal_error("SSE2 register return with SSE2 disabled");
1408
1409    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1410    // the RET instruction and handled by the FP Stackifier.
1411    if (VA.getLocReg() == X86::ST0 ||
1412        VA.getLocReg() == X86::ST1) {
1413      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1414      // change the value to the FP stack register class.
1415      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1416        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1417      RetOps.push_back(ValToCopy);
1418      // Don't emit a copytoreg.
1419      continue;
1420    }
1421
1422    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1423    // which is returned in RAX / RDX.
1424    if (Subtarget->is64Bit()) {
1425      if (ValVT == MVT::x86mmx) {
1426        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1427          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1428          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1429                                  ValToCopy);
1430          // If we don't have SSE2 available, convert to v4f32 so the generated
1431          // register is legal.
1432          if (!Subtarget->hasSSE2())
1433            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1434        }
1435      }
1436    }
1437
1438    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1439    Flag = Chain.getValue(1);
1440  }
1441
1442  // The x86-64 ABI for returning structs by value requires that we copy
1443  // the sret argument into %rax for the return. We saved the argument into
1444  // a virtual register in the entry block, so now we copy the value out
1445  // and into %rax.
1446  if (Subtarget->is64Bit() &&
1447      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1448    MachineFunction &MF = DAG.getMachineFunction();
1449    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1450    unsigned Reg = FuncInfo->getSRetReturnReg();
1451    assert(Reg &&
1452           "SRetReturnReg should have been set in LowerFormalArguments().");
1453    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1454
1455    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1456    Flag = Chain.getValue(1);
1457
1458    // RAX now acts like a return value.
1459    MRI.addLiveOut(X86::RAX);
1460  }
1461
1462  RetOps[0] = Chain;  // Update chain.
1463
1464  // Add the flag if we have it.
1465  if (Flag.getNode())
1466    RetOps.push_back(Flag);
1467
1468  return DAG.getNode(X86ISD::RET_FLAG, dl,
1469                     MVT::Other, &RetOps[0], RetOps.size());
1470}
1471
1472bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1473  if (N->getNumValues() != 1)
1474    return false;
1475  if (!N->hasNUsesOfValue(1, 0))
1476    return false;
1477
1478  SDNode *Copy = *N->use_begin();
1479  if (Copy->getOpcode() != ISD::CopyToReg &&
1480      Copy->getOpcode() != ISD::FP_EXTEND)
1481    return false;
1482
1483  bool HasRet = false;
1484  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1485       UI != UE; ++UI) {
1486    if (UI->getOpcode() != X86ISD::RET_FLAG)
1487      return false;
1488    HasRet = true;
1489  }
1490
1491  return HasRet;
1492}
1493
1494EVT
1495X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1496                                            ISD::NodeType ExtendKind) const {
1497  MVT ReturnMVT;
1498  // TODO: Is this also valid on 32-bit?
1499  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1500    ReturnMVT = MVT::i8;
1501  else
1502    ReturnMVT = MVT::i32;
1503
1504  EVT MinVT = getRegisterType(Context, ReturnMVT);
1505  return VT.bitsLT(MinVT) ? MinVT : VT;
1506}
1507
1508/// LowerCallResult - Lower the result values of a call into the
1509/// appropriate copies out of appropriate physical registers.
1510///
1511SDValue
1512X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1513                                   CallingConv::ID CallConv, bool isVarArg,
1514                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1515                                   DebugLoc dl, SelectionDAG &DAG,
1516                                   SmallVectorImpl<SDValue> &InVals) const {
1517
1518  // Assign locations to each value returned by this call.
1519  SmallVector<CCValAssign, 16> RVLocs;
1520  bool Is64Bit = Subtarget->is64Bit();
1521  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1522		 getTargetMachine(), RVLocs, *DAG.getContext());
1523  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1524
1525  // Copy all of the result registers out of their specified physreg.
1526  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1527    CCValAssign &VA = RVLocs[i];
1528    EVT CopyVT = VA.getValVT();
1529
1530    // If this is x86-64, and we disabled SSE, we can't return FP values
1531    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1532        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1533      report_fatal_error("SSE register return with SSE disabled");
1534    }
1535
1536    SDValue Val;
1537
1538    // If this is a call to a function that returns an fp value on the floating
1539    // point stack, we must guarantee the the value is popped from the stack, so
1540    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1541    // if the return value is not used. We use the FpPOP_RETVAL instruction
1542    // instead.
1543    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1544      // If we prefer to use the value in xmm registers, copy it out as f80 and
1545      // use a truncate to move it from fp stack reg to xmm reg.
1546      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1547      SDValue Ops[] = { Chain, InFlag };
1548      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1549                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1550      Val = Chain.getValue(0);
1551
1552      // Round the f80 to the right size, which also moves it to the appropriate
1553      // xmm register.
1554      if (CopyVT != VA.getValVT())
1555        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1556                          // This truncation won't change the value.
1557                          DAG.getIntPtrConstant(1));
1558    } else {
1559      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1560                                 CopyVT, InFlag).getValue(1);
1561      Val = Chain.getValue(0);
1562    }
1563    InFlag = Chain.getValue(2);
1564    InVals.push_back(Val);
1565  }
1566
1567  return Chain;
1568}
1569
1570
1571//===----------------------------------------------------------------------===//
1572//                C & StdCall & Fast Calling Convention implementation
1573//===----------------------------------------------------------------------===//
1574//  StdCall calling convention seems to be standard for many Windows' API
1575//  routines and around. It differs from C calling convention just a little:
1576//  callee should clean up the stack, not caller. Symbols should be also
1577//  decorated in some fancy way :) It doesn't support any vector arguments.
1578//  For info on fast calling convention see Fast Calling Convention (tail call)
1579//  implementation LowerX86_32FastCCCallTo.
1580
1581/// CallIsStructReturn - Determines whether a call uses struct return
1582/// semantics.
1583static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1584  if (Outs.empty())
1585    return false;
1586
1587  return Outs[0].Flags.isSRet();
1588}
1589
1590/// ArgsAreStructReturn - Determines whether a function uses struct
1591/// return semantics.
1592static bool
1593ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1594  if (Ins.empty())
1595    return false;
1596
1597  return Ins[0].Flags.isSRet();
1598}
1599
1600/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1601/// by "Src" to address "Dst" with size and alignment information specified by
1602/// the specific parameter attribute. The copy will be passed as a byval
1603/// function parameter.
1604static SDValue
1605CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1606                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1607                          DebugLoc dl) {
1608  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1609
1610  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1611                       /*isVolatile*/false, /*AlwaysInline=*/true,
1612                       MachinePointerInfo(), MachinePointerInfo());
1613}
1614
1615/// IsTailCallConvention - Return true if the calling convention is one that
1616/// supports tail call optimization.
1617static bool IsTailCallConvention(CallingConv::ID CC) {
1618  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1619}
1620
1621bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1622  if (!CI->isTailCall())
1623    return false;
1624
1625  CallSite CS(CI);
1626  CallingConv::ID CalleeCC = CS.getCallingConv();
1627  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1628    return false;
1629
1630  return true;
1631}
1632
1633/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1634/// a tailcall target by changing its ABI.
1635static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1636  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1637}
1638
1639SDValue
1640X86TargetLowering::LowerMemArgument(SDValue Chain,
1641                                    CallingConv::ID CallConv,
1642                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1643                                    DebugLoc dl, SelectionDAG &DAG,
1644                                    const CCValAssign &VA,
1645                                    MachineFrameInfo *MFI,
1646                                    unsigned i) const {
1647  // Create the nodes corresponding to a load from this parameter slot.
1648  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1649  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1650  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1651  EVT ValVT;
1652
1653  // If value is passed by pointer we have address passed instead of the value
1654  // itself.
1655  if (VA.getLocInfo() == CCValAssign::Indirect)
1656    ValVT = VA.getLocVT();
1657  else
1658    ValVT = VA.getValVT();
1659
1660  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1661  // changed with more analysis.
1662  // In case of tail call optimization mark all arguments mutable. Since they
1663  // could be overwritten by lowering of arguments in case of a tail call.
1664  if (Flags.isByVal()) {
1665    unsigned Bytes = Flags.getByValSize();
1666    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1667    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1668    return DAG.getFrameIndex(FI, getPointerTy());
1669  } else {
1670    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1671                                    VA.getLocMemOffset(), isImmutable);
1672    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1673    return DAG.getLoad(ValVT, dl, Chain, FIN,
1674                       MachinePointerInfo::getFixedStack(FI),
1675                       false, false, 0);
1676  }
1677}
1678
1679SDValue
1680X86TargetLowering::LowerFormalArguments(SDValue Chain,
1681                                        CallingConv::ID CallConv,
1682                                        bool isVarArg,
1683                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1684                                        DebugLoc dl,
1685                                        SelectionDAG &DAG,
1686                                        SmallVectorImpl<SDValue> &InVals)
1687                                          const {
1688  MachineFunction &MF = DAG.getMachineFunction();
1689  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1690
1691  const Function* Fn = MF.getFunction();
1692  if (Fn->hasExternalLinkage() &&
1693      Subtarget->isTargetCygMing() &&
1694      Fn->getName() == "main")
1695    FuncInfo->setForceFramePointer(true);
1696
1697  MachineFrameInfo *MFI = MF.getFrameInfo();
1698  bool Is64Bit = Subtarget->is64Bit();
1699  bool IsWin64 = Subtarget->isTargetWin64();
1700
1701  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1702         "Var args not supported with calling convention fastcc or ghc");
1703
1704  // Assign locations to all of the incoming arguments.
1705  SmallVector<CCValAssign, 16> ArgLocs;
1706  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1707                 ArgLocs, *DAG.getContext());
1708
1709  // Allocate shadow area for Win64
1710  if (IsWin64) {
1711    CCInfo.AllocateStack(32, 8);
1712  }
1713
1714  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1715
1716  unsigned LastVal = ~0U;
1717  SDValue ArgValue;
1718  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1719    CCValAssign &VA = ArgLocs[i];
1720    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1721    // places.
1722    assert(VA.getValNo() != LastVal &&
1723           "Don't support value assigned to multiple locs yet");
1724    LastVal = VA.getValNo();
1725
1726    if (VA.isRegLoc()) {
1727      EVT RegVT = VA.getLocVT();
1728      TargetRegisterClass *RC = NULL;
1729      if (RegVT == MVT::i32)
1730        RC = X86::GR32RegisterClass;
1731      else if (Is64Bit && RegVT == MVT::i64)
1732        RC = X86::GR64RegisterClass;
1733      else if (RegVT == MVT::f32)
1734        RC = X86::FR32RegisterClass;
1735      else if (RegVT == MVT::f64)
1736        RC = X86::FR64RegisterClass;
1737      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1738        RC = X86::VR256RegisterClass;
1739      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1740        RC = X86::VR128RegisterClass;
1741      else if (RegVT == MVT::x86mmx)
1742        RC = X86::VR64RegisterClass;
1743      else
1744        llvm_unreachable("Unknown argument type!");
1745
1746      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1747      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1748
1749      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1750      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1751      // right size.
1752      if (VA.getLocInfo() == CCValAssign::SExt)
1753        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1754                               DAG.getValueType(VA.getValVT()));
1755      else if (VA.getLocInfo() == CCValAssign::ZExt)
1756        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1757                               DAG.getValueType(VA.getValVT()));
1758      else if (VA.getLocInfo() == CCValAssign::BCvt)
1759        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1760
1761      if (VA.isExtInLoc()) {
1762        // Handle MMX values passed in XMM regs.
1763        if (RegVT.isVector()) {
1764          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1765                                 ArgValue);
1766        } else
1767          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1768      }
1769    } else {
1770      assert(VA.isMemLoc());
1771      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1772    }
1773
1774    // If value is passed via pointer - do a load.
1775    if (VA.getLocInfo() == CCValAssign::Indirect)
1776      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1777                             MachinePointerInfo(), false, false, 0);
1778
1779    InVals.push_back(ArgValue);
1780  }
1781
1782  // The x86-64 ABI for returning structs by value requires that we copy
1783  // the sret argument into %rax for the return. Save the argument into
1784  // a virtual register so that we can access it from the return points.
1785  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1786    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1787    unsigned Reg = FuncInfo->getSRetReturnReg();
1788    if (!Reg) {
1789      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1790      FuncInfo->setSRetReturnReg(Reg);
1791    }
1792    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1793    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1794  }
1795
1796  unsigned StackSize = CCInfo.getNextStackOffset();
1797  // Align stack specially for tail calls.
1798  if (FuncIsMadeTailCallSafe(CallConv))
1799    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1800
1801  // If the function takes variable number of arguments, make a frame index for
1802  // the start of the first vararg value... for expansion of llvm.va_start.
1803  if (isVarArg) {
1804    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1805                    CallConv != CallingConv::X86_ThisCall)) {
1806      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1807    }
1808    if (Is64Bit) {
1809      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1810
1811      // FIXME: We should really autogenerate these arrays
1812      static const unsigned GPR64ArgRegsWin64[] = {
1813        X86::RCX, X86::RDX, X86::R8,  X86::R9
1814      };
1815      static const unsigned GPR64ArgRegs64Bit[] = {
1816        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1817      };
1818      static const unsigned XMMArgRegs64Bit[] = {
1819        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1820        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1821      };
1822      const unsigned *GPR64ArgRegs;
1823      unsigned NumXMMRegs = 0;
1824
1825      if (IsWin64) {
1826        // The XMM registers which might contain var arg parameters are shadowed
1827        // in their paired GPR.  So we only need to save the GPR to their home
1828        // slots.
1829        TotalNumIntRegs = 4;
1830        GPR64ArgRegs = GPR64ArgRegsWin64;
1831      } else {
1832        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1833        GPR64ArgRegs = GPR64ArgRegs64Bit;
1834
1835        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1836      }
1837      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1838                                                       TotalNumIntRegs);
1839
1840      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1841      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1842             "SSE register cannot be used when SSE is disabled!");
1843      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1844             "SSE register cannot be used when SSE is disabled!");
1845      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1846        // Kernel mode asks for SSE to be disabled, so don't push them
1847        // on the stack.
1848        TotalNumXMMRegs = 0;
1849
1850      if (IsWin64) {
1851        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1852        // Get to the caller-allocated home save location.  Add 8 to account
1853        // for the return address.
1854        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1855        FuncInfo->setRegSaveFrameIndex(
1856          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1857        // Fixup to set vararg frame on shadow area (4 x i64).
1858        if (NumIntRegs < 4)
1859          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1860      } else {
1861        // For X86-64, if there are vararg parameters that are passed via
1862        // registers, then we must store them to their spots on the stack so they
1863        // may be loaded by deferencing the result of va_next.
1864        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1865        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1866        FuncInfo->setRegSaveFrameIndex(
1867          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1868                               false));
1869      }
1870
1871      // Store the integer parameter registers.
1872      SmallVector<SDValue, 8> MemOps;
1873      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1874                                        getPointerTy());
1875      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1876      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1877        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1878                                  DAG.getIntPtrConstant(Offset));
1879        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1880                                     X86::GR64RegisterClass);
1881        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1882        SDValue Store =
1883          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1884                       MachinePointerInfo::getFixedStack(
1885                         FuncInfo->getRegSaveFrameIndex(), Offset),
1886                       false, false, 0);
1887        MemOps.push_back(Store);
1888        Offset += 8;
1889      }
1890
1891      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1892        // Now store the XMM (fp + vector) parameter registers.
1893        SmallVector<SDValue, 11> SaveXMMOps;
1894        SaveXMMOps.push_back(Chain);
1895
1896        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1897        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1898        SaveXMMOps.push_back(ALVal);
1899
1900        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1901                               FuncInfo->getRegSaveFrameIndex()));
1902        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1903                               FuncInfo->getVarArgsFPOffset()));
1904
1905        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1906          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1907                                       X86::VR128RegisterClass);
1908          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1909          SaveXMMOps.push_back(Val);
1910        }
1911        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1912                                     MVT::Other,
1913                                     &SaveXMMOps[0], SaveXMMOps.size()));
1914      }
1915
1916      if (!MemOps.empty())
1917        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1918                            &MemOps[0], MemOps.size());
1919    }
1920  }
1921
1922  // Some CCs need callee pop.
1923  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1924    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1925  } else {
1926    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1927    // If this is an sret function, the return should pop the hidden pointer.
1928    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1929      FuncInfo->setBytesToPopOnReturn(4);
1930  }
1931
1932  if (!Is64Bit) {
1933    // RegSaveFrameIndex is X86-64 only.
1934    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1935    if (CallConv == CallingConv::X86_FastCall ||
1936        CallConv == CallingConv::X86_ThisCall)
1937      // fastcc functions can't have varargs.
1938      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1939  }
1940
1941  FuncInfo->setArgumentStackSize(StackSize);
1942
1943  return Chain;
1944}
1945
1946SDValue
1947X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1948                                    SDValue StackPtr, SDValue Arg,
1949                                    DebugLoc dl, SelectionDAG &DAG,
1950                                    const CCValAssign &VA,
1951                                    ISD::ArgFlagsTy Flags) const {
1952  unsigned LocMemOffset = VA.getLocMemOffset();
1953  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1954  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1955  if (Flags.isByVal())
1956    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1957
1958  return DAG.getStore(Chain, dl, Arg, PtrOff,
1959                      MachinePointerInfo::getStack(LocMemOffset),
1960                      false, false, 0);
1961}
1962
1963/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1964/// optimization is performed and it is required.
1965SDValue
1966X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1967                                           SDValue &OutRetAddr, SDValue Chain,
1968                                           bool IsTailCall, bool Is64Bit,
1969                                           int FPDiff, DebugLoc dl) const {
1970  // Adjust the Return address stack slot.
1971  EVT VT = getPointerTy();
1972  OutRetAddr = getReturnAddressFrameIndex(DAG);
1973
1974  // Load the "old" Return address.
1975  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1976                           false, false, 0);
1977  return SDValue(OutRetAddr.getNode(), 1);
1978}
1979
1980/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1981/// optimization is performed and it is required (FPDiff!=0).
1982static SDValue
1983EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1984                         SDValue Chain, SDValue RetAddrFrIdx,
1985                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1986  // Store the return address to the appropriate stack slot.
1987  if (!FPDiff) return Chain;
1988  // Calculate the new stack slot for the return address.
1989  int SlotSize = Is64Bit ? 8 : 4;
1990  int NewReturnAddrFI =
1991    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1992  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1993  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1994  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1995                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1996                       false, false, 0);
1997  return Chain;
1998}
1999
2000SDValue
2001X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2002                             CallingConv::ID CallConv, bool isVarArg,
2003                             bool &isTailCall,
2004                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2005                             const SmallVectorImpl<SDValue> &OutVals,
2006                             const SmallVectorImpl<ISD::InputArg> &Ins,
2007                             DebugLoc dl, SelectionDAG &DAG,
2008                             SmallVectorImpl<SDValue> &InVals) const {
2009  MachineFunction &MF = DAG.getMachineFunction();
2010  bool Is64Bit        = Subtarget->is64Bit();
2011  bool IsWin64        = Subtarget->isTargetWin64();
2012  bool IsStructRet    = CallIsStructReturn(Outs);
2013  bool IsSibcall      = false;
2014
2015  if (isTailCall) {
2016    // Check if it's really possible to do a tail call.
2017    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2018                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2019                                                   Outs, OutVals, Ins, DAG);
2020
2021    // Sibcalls are automatically detected tailcalls which do not require
2022    // ABI changes.
2023    if (!GuaranteedTailCallOpt && isTailCall)
2024      IsSibcall = true;
2025
2026    if (isTailCall)
2027      ++NumTailCalls;
2028  }
2029
2030  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2031         "Var args not supported with calling convention fastcc or ghc");
2032
2033  // Analyze operands of the call, assigning locations to each operand.
2034  SmallVector<CCValAssign, 16> ArgLocs;
2035  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2036                 ArgLocs, *DAG.getContext());
2037
2038  // Allocate shadow area for Win64
2039  if (IsWin64) {
2040    CCInfo.AllocateStack(32, 8);
2041  }
2042
2043  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2044
2045  // Get a count of how many bytes are to be pushed on the stack.
2046  unsigned NumBytes = CCInfo.getNextStackOffset();
2047  if (IsSibcall)
2048    // This is a sibcall. The memory operands are available in caller's
2049    // own caller's stack.
2050    NumBytes = 0;
2051  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2052    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2053
2054  int FPDiff = 0;
2055  if (isTailCall && !IsSibcall) {
2056    // Lower arguments at fp - stackoffset + fpdiff.
2057    unsigned NumBytesCallerPushed =
2058      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2059    FPDiff = NumBytesCallerPushed - NumBytes;
2060
2061    // Set the delta of movement of the returnaddr stackslot.
2062    // But only set if delta is greater than previous delta.
2063    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2064      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2065  }
2066
2067  if (!IsSibcall)
2068    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2069
2070  SDValue RetAddrFrIdx;
2071  // Load return address for tail calls.
2072  if (isTailCall && FPDiff)
2073    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2074                                    Is64Bit, FPDiff, dl);
2075
2076  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2077  SmallVector<SDValue, 8> MemOpChains;
2078  SDValue StackPtr;
2079
2080  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2081  // of tail call optimization arguments are handle later.
2082  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2083    CCValAssign &VA = ArgLocs[i];
2084    EVT RegVT = VA.getLocVT();
2085    SDValue Arg = OutVals[i];
2086    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2087    bool isByVal = Flags.isByVal();
2088
2089    // Promote the value if needed.
2090    switch (VA.getLocInfo()) {
2091    default: llvm_unreachable("Unknown loc info!");
2092    case CCValAssign::Full: break;
2093    case CCValAssign::SExt:
2094      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2095      break;
2096    case CCValAssign::ZExt:
2097      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2098      break;
2099    case CCValAssign::AExt:
2100      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2101        // Special case: passing MMX values in XMM registers.
2102        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2103        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2104        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2105      } else
2106        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2107      break;
2108    case CCValAssign::BCvt:
2109      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2110      break;
2111    case CCValAssign::Indirect: {
2112      // Store the argument.
2113      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2114      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2115      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2116                           MachinePointerInfo::getFixedStack(FI),
2117                           false, false, 0);
2118      Arg = SpillSlot;
2119      break;
2120    }
2121    }
2122
2123    if (VA.isRegLoc()) {
2124      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2125      if (isVarArg && IsWin64) {
2126        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2127        // shadow reg if callee is a varargs function.
2128        unsigned ShadowReg = 0;
2129        switch (VA.getLocReg()) {
2130        case X86::XMM0: ShadowReg = X86::RCX; break;
2131        case X86::XMM1: ShadowReg = X86::RDX; break;
2132        case X86::XMM2: ShadowReg = X86::R8; break;
2133        case X86::XMM3: ShadowReg = X86::R9; break;
2134        }
2135        if (ShadowReg)
2136          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2137      }
2138    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2139      assert(VA.isMemLoc());
2140      if (StackPtr.getNode() == 0)
2141        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2142      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2143                                             dl, DAG, VA, Flags));
2144    }
2145  }
2146
2147  if (!MemOpChains.empty())
2148    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2149                        &MemOpChains[0], MemOpChains.size());
2150
2151  // Build a sequence of copy-to-reg nodes chained together with token chain
2152  // and flag operands which copy the outgoing args into registers.
2153  SDValue InFlag;
2154  // Tail call byval lowering might overwrite argument registers so in case of
2155  // tail call optimization the copies to registers are lowered later.
2156  if (!isTailCall)
2157    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2158      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2159                               RegsToPass[i].second, InFlag);
2160      InFlag = Chain.getValue(1);
2161    }
2162
2163  if (Subtarget->isPICStyleGOT()) {
2164    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2165    // GOT pointer.
2166    if (!isTailCall) {
2167      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2168                               DAG.getNode(X86ISD::GlobalBaseReg,
2169                                           DebugLoc(), getPointerTy()),
2170                               InFlag);
2171      InFlag = Chain.getValue(1);
2172    } else {
2173      // If we are tail calling and generating PIC/GOT style code load the
2174      // address of the callee into ECX. The value in ecx is used as target of
2175      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2176      // for tail calls on PIC/GOT architectures. Normally we would just put the
2177      // address of GOT into ebx and then call target@PLT. But for tail calls
2178      // ebx would be restored (since ebx is callee saved) before jumping to the
2179      // target@PLT.
2180
2181      // Note: The actual moving to ECX is done further down.
2182      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2183      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2184          !G->getGlobal()->hasProtectedVisibility())
2185        Callee = LowerGlobalAddress(Callee, DAG);
2186      else if (isa<ExternalSymbolSDNode>(Callee))
2187        Callee = LowerExternalSymbol(Callee, DAG);
2188    }
2189  }
2190
2191  if (Is64Bit && isVarArg && !IsWin64) {
2192    // From AMD64 ABI document:
2193    // For calls that may call functions that use varargs or stdargs
2194    // (prototype-less calls or calls to functions containing ellipsis (...) in
2195    // the declaration) %al is used as hidden argument to specify the number
2196    // of SSE registers used. The contents of %al do not need to match exactly
2197    // the number of registers, but must be an ubound on the number of SSE
2198    // registers used and is in the range 0 - 8 inclusive.
2199
2200    // Count the number of XMM registers allocated.
2201    static const unsigned XMMArgRegs[] = {
2202      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2203      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2204    };
2205    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2206    assert((Subtarget->hasXMM() || !NumXMMRegs)
2207           && "SSE registers cannot be used when SSE is disabled");
2208
2209    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2210                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2211    InFlag = Chain.getValue(1);
2212  }
2213
2214
2215  // For tail calls lower the arguments to the 'real' stack slot.
2216  if (isTailCall) {
2217    // Force all the incoming stack arguments to be loaded from the stack
2218    // before any new outgoing arguments are stored to the stack, because the
2219    // outgoing stack slots may alias the incoming argument stack slots, and
2220    // the alias isn't otherwise explicit. This is slightly more conservative
2221    // than necessary, because it means that each store effectively depends
2222    // on every argument instead of just those arguments it would clobber.
2223    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2224
2225    SmallVector<SDValue, 8> MemOpChains2;
2226    SDValue FIN;
2227    int FI = 0;
2228    // Do not flag preceding copytoreg stuff together with the following stuff.
2229    InFlag = SDValue();
2230    if (GuaranteedTailCallOpt) {
2231      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2232        CCValAssign &VA = ArgLocs[i];
2233        if (VA.isRegLoc())
2234          continue;
2235        assert(VA.isMemLoc());
2236        SDValue Arg = OutVals[i];
2237        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2238        // Create frame index.
2239        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2240        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2241        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2242        FIN = DAG.getFrameIndex(FI, getPointerTy());
2243
2244        if (Flags.isByVal()) {
2245          // Copy relative to framepointer.
2246          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2247          if (StackPtr.getNode() == 0)
2248            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2249                                          getPointerTy());
2250          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2251
2252          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2253                                                           ArgChain,
2254                                                           Flags, DAG, dl));
2255        } else {
2256          // Store relative to framepointer.
2257          MemOpChains2.push_back(
2258            DAG.getStore(ArgChain, dl, Arg, FIN,
2259                         MachinePointerInfo::getFixedStack(FI),
2260                         false, false, 0));
2261        }
2262      }
2263    }
2264
2265    if (!MemOpChains2.empty())
2266      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2267                          &MemOpChains2[0], MemOpChains2.size());
2268
2269    // Copy arguments to their registers.
2270    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2271      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2272                               RegsToPass[i].second, InFlag);
2273      InFlag = Chain.getValue(1);
2274    }
2275    InFlag =SDValue();
2276
2277    // Store the return address to the appropriate stack slot.
2278    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2279                                     FPDiff, dl);
2280  }
2281
2282  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2283    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2284    // In the 64-bit large code model, we have to make all calls
2285    // through a register, since the call instruction's 32-bit
2286    // pc-relative offset may not be large enough to hold the whole
2287    // address.
2288  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2289    // If the callee is a GlobalAddress node (quite common, every direct call
2290    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2291    // it.
2292
2293    // We should use extra load for direct calls to dllimported functions in
2294    // non-JIT mode.
2295    const GlobalValue *GV = G->getGlobal();
2296    if (!GV->hasDLLImportLinkage()) {
2297      unsigned char OpFlags = 0;
2298      bool ExtraLoad = false;
2299      unsigned WrapperKind = ISD::DELETED_NODE;
2300
2301      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2302      // external symbols most go through the PLT in PIC mode.  If the symbol
2303      // has hidden or protected visibility, or if it is static or local, then
2304      // we don't need to use the PLT - we can directly call it.
2305      if (Subtarget->isTargetELF() &&
2306          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2307          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2308        OpFlags = X86II::MO_PLT;
2309      } else if (Subtarget->isPICStyleStubAny() &&
2310                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2311                 (!Subtarget->getTargetTriple().isMacOSX() ||
2312                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2313        // PC-relative references to external symbols should go through $stub,
2314        // unless we're building with the leopard linker or later, which
2315        // automatically synthesizes these stubs.
2316        OpFlags = X86II::MO_DARWIN_STUB;
2317      } else if (Subtarget->isPICStyleRIPRel() &&
2318                 isa<Function>(GV) &&
2319                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2320        // If the function is marked as non-lazy, generate an indirect call
2321        // which loads from the GOT directly. This avoids runtime overhead
2322        // at the cost of eager binding (and one extra byte of encoding).
2323        OpFlags = X86II::MO_GOTPCREL;
2324        WrapperKind = X86ISD::WrapperRIP;
2325        ExtraLoad = true;
2326      }
2327
2328      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2329                                          G->getOffset(), OpFlags);
2330
2331      // Add a wrapper if needed.
2332      if (WrapperKind != ISD::DELETED_NODE)
2333        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2334      // Add extra indirection if needed.
2335      if (ExtraLoad)
2336        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2337                             MachinePointerInfo::getGOT(),
2338                             false, false, 0);
2339    }
2340  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2341    unsigned char OpFlags = 0;
2342
2343    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2344    // external symbols should go through the PLT.
2345    if (Subtarget->isTargetELF() &&
2346        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2347      OpFlags = X86II::MO_PLT;
2348    } else if (Subtarget->isPICStyleStubAny() &&
2349               (!Subtarget->getTargetTriple().isMacOSX() ||
2350                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2351      // PC-relative references to external symbols should go through $stub,
2352      // unless we're building with the leopard linker or later, which
2353      // automatically synthesizes these stubs.
2354      OpFlags = X86II::MO_DARWIN_STUB;
2355    }
2356
2357    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2358                                         OpFlags);
2359  }
2360
2361  // Returns a chain & a flag for retval copy to use.
2362  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2363  SmallVector<SDValue, 8> Ops;
2364
2365  if (!IsSibcall && isTailCall) {
2366    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2367                           DAG.getIntPtrConstant(0, true), InFlag);
2368    InFlag = Chain.getValue(1);
2369  }
2370
2371  Ops.push_back(Chain);
2372  Ops.push_back(Callee);
2373
2374  if (isTailCall)
2375    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2376
2377  // Add argument registers to the end of the list so that they are known live
2378  // into the call.
2379  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2380    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2381                                  RegsToPass[i].second.getValueType()));
2382
2383  // Add an implicit use GOT pointer in EBX.
2384  if (!isTailCall && Subtarget->isPICStyleGOT())
2385    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2386
2387  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2388  if (Is64Bit && isVarArg && !IsWin64)
2389    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2390
2391  if (InFlag.getNode())
2392    Ops.push_back(InFlag);
2393
2394  if (isTailCall) {
2395    // We used to do:
2396    //// If this is the first return lowered for this function, add the regs
2397    //// to the liveout set for the function.
2398    // This isn't right, although it's probably harmless on x86; liveouts
2399    // should be computed from returns not tail calls.  Consider a void
2400    // function making a tail call to a function returning int.
2401    return DAG.getNode(X86ISD::TC_RETURN, dl,
2402                       NodeTys, &Ops[0], Ops.size());
2403  }
2404
2405  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2406  InFlag = Chain.getValue(1);
2407
2408  // Create the CALLSEQ_END node.
2409  unsigned NumBytesForCalleeToPush;
2410  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2411    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2412  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2413    // If this is a call to a struct-return function, the callee
2414    // pops the hidden struct pointer, so we have to push it back.
2415    // This is common for Darwin/X86, Linux & Mingw32 targets.
2416    NumBytesForCalleeToPush = 4;
2417  else
2418    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2419
2420  // Returns a flag for retval copy to use.
2421  if (!IsSibcall) {
2422    Chain = DAG.getCALLSEQ_END(Chain,
2423                               DAG.getIntPtrConstant(NumBytes, true),
2424                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2425                                                     true),
2426                               InFlag);
2427    InFlag = Chain.getValue(1);
2428  }
2429
2430  // Handle result values, copying them out of physregs into vregs that we
2431  // return.
2432  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2433                         Ins, dl, DAG, InVals);
2434}
2435
2436
2437//===----------------------------------------------------------------------===//
2438//                Fast Calling Convention (tail call) implementation
2439//===----------------------------------------------------------------------===//
2440
2441//  Like std call, callee cleans arguments, convention except that ECX is
2442//  reserved for storing the tail called function address. Only 2 registers are
2443//  free for argument passing (inreg). Tail call optimization is performed
2444//  provided:
2445//                * tailcallopt is enabled
2446//                * caller/callee are fastcc
2447//  On X86_64 architecture with GOT-style position independent code only local
2448//  (within module) calls are supported at the moment.
2449//  To keep the stack aligned according to platform abi the function
2450//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2451//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2452//  If a tail called function callee has more arguments than the caller the
2453//  caller needs to make sure that there is room to move the RETADDR to. This is
2454//  achieved by reserving an area the size of the argument delta right after the
2455//  original REtADDR, but before the saved framepointer or the spilled registers
2456//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2457//  stack layout:
2458//    arg1
2459//    arg2
2460//    RETADDR
2461//    [ new RETADDR
2462//      move area ]
2463//    (possible EBP)
2464//    ESI
2465//    EDI
2466//    local1 ..
2467
2468/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2469/// for a 16 byte align requirement.
2470unsigned
2471X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2472                                               SelectionDAG& DAG) const {
2473  MachineFunction &MF = DAG.getMachineFunction();
2474  const TargetMachine &TM = MF.getTarget();
2475  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2476  unsigned StackAlignment = TFI.getStackAlignment();
2477  uint64_t AlignMask = StackAlignment - 1;
2478  int64_t Offset = StackSize;
2479  uint64_t SlotSize = TD->getPointerSize();
2480  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2481    // Number smaller than 12 so just add the difference.
2482    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2483  } else {
2484    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2485    Offset = ((~AlignMask) & Offset) + StackAlignment +
2486      (StackAlignment-SlotSize);
2487  }
2488  return Offset;
2489}
2490
2491/// MatchingStackOffset - Return true if the given stack call argument is
2492/// already available in the same position (relatively) of the caller's
2493/// incoming argument stack.
2494static
2495bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2496                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2497                         const X86InstrInfo *TII) {
2498  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2499  int FI = INT_MAX;
2500  if (Arg.getOpcode() == ISD::CopyFromReg) {
2501    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2502    if (!TargetRegisterInfo::isVirtualRegister(VR))
2503      return false;
2504    MachineInstr *Def = MRI->getVRegDef(VR);
2505    if (!Def)
2506      return false;
2507    if (!Flags.isByVal()) {
2508      if (!TII->isLoadFromStackSlot(Def, FI))
2509        return false;
2510    } else {
2511      unsigned Opcode = Def->getOpcode();
2512      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2513          Def->getOperand(1).isFI()) {
2514        FI = Def->getOperand(1).getIndex();
2515        Bytes = Flags.getByValSize();
2516      } else
2517        return false;
2518    }
2519  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2520    if (Flags.isByVal())
2521      // ByVal argument is passed in as a pointer but it's now being
2522      // dereferenced. e.g.
2523      // define @foo(%struct.X* %A) {
2524      //   tail call @bar(%struct.X* byval %A)
2525      // }
2526      return false;
2527    SDValue Ptr = Ld->getBasePtr();
2528    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2529    if (!FINode)
2530      return false;
2531    FI = FINode->getIndex();
2532  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2533    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2534    FI = FINode->getIndex();
2535    Bytes = Flags.getByValSize();
2536  } else
2537    return false;
2538
2539  assert(FI != INT_MAX);
2540  if (!MFI->isFixedObjectIndex(FI))
2541    return false;
2542  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2543}
2544
2545/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2546/// for tail call optimization. Targets which want to do tail call
2547/// optimization should implement this function.
2548bool
2549X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2550                                                     CallingConv::ID CalleeCC,
2551                                                     bool isVarArg,
2552                                                     bool isCalleeStructRet,
2553                                                     bool isCallerStructRet,
2554                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2555                                    const SmallVectorImpl<SDValue> &OutVals,
2556                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2557                                                     SelectionDAG& DAG) const {
2558  if (!IsTailCallConvention(CalleeCC) &&
2559      CalleeCC != CallingConv::C)
2560    return false;
2561
2562  // If -tailcallopt is specified, make fastcc functions tail-callable.
2563  const MachineFunction &MF = DAG.getMachineFunction();
2564  const Function *CallerF = DAG.getMachineFunction().getFunction();
2565  CallingConv::ID CallerCC = CallerF->getCallingConv();
2566  bool CCMatch = CallerCC == CalleeCC;
2567
2568  if (GuaranteedTailCallOpt) {
2569    if (IsTailCallConvention(CalleeCC) && CCMatch)
2570      return true;
2571    return false;
2572  }
2573
2574  // Look for obvious safe cases to perform tail call optimization that do not
2575  // require ABI changes. This is what gcc calls sibcall.
2576
2577  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2578  // emit a special epilogue.
2579  if (RegInfo->needsStackRealignment(MF))
2580    return false;
2581
2582  // Also avoid sibcall optimization if either caller or callee uses struct
2583  // return semantics.
2584  if (isCalleeStructRet || isCallerStructRet)
2585    return false;
2586
2587  // An stdcall caller is expected to clean up its arguments; the callee
2588  // isn't going to do that.
2589  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2590    return false;
2591
2592  // Do not sibcall optimize vararg calls unless all arguments are passed via
2593  // registers.
2594  if (isVarArg && !Outs.empty()) {
2595
2596    // Optimizing for varargs on Win64 is unlikely to be safe without
2597    // additional testing.
2598    if (Subtarget->isTargetWin64())
2599      return false;
2600
2601    SmallVector<CCValAssign, 16> ArgLocs;
2602    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2603		   getTargetMachine(), ArgLocs, *DAG.getContext());
2604
2605    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2606    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2607      if (!ArgLocs[i].isRegLoc())
2608        return false;
2609  }
2610
2611  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2612  // Therefore if it's not used by the call it is not safe to optimize this into
2613  // a sibcall.
2614  bool Unused = false;
2615  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2616    if (!Ins[i].Used) {
2617      Unused = true;
2618      break;
2619    }
2620  }
2621  if (Unused) {
2622    SmallVector<CCValAssign, 16> RVLocs;
2623    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2624		   getTargetMachine(), RVLocs, *DAG.getContext());
2625    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2626    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2627      CCValAssign &VA = RVLocs[i];
2628      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2629        return false;
2630    }
2631  }
2632
2633  // If the calling conventions do not match, then we'd better make sure the
2634  // results are returned in the same way as what the caller expects.
2635  if (!CCMatch) {
2636    SmallVector<CCValAssign, 16> RVLocs1;
2637    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2638		    getTargetMachine(), RVLocs1, *DAG.getContext());
2639    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2640
2641    SmallVector<CCValAssign, 16> RVLocs2;
2642    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2643		    getTargetMachine(), RVLocs2, *DAG.getContext());
2644    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2645
2646    if (RVLocs1.size() != RVLocs2.size())
2647      return false;
2648    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2649      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2650        return false;
2651      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2652        return false;
2653      if (RVLocs1[i].isRegLoc()) {
2654        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2655          return false;
2656      } else {
2657        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2658          return false;
2659      }
2660    }
2661  }
2662
2663  // If the callee takes no arguments then go on to check the results of the
2664  // call.
2665  if (!Outs.empty()) {
2666    // Check if stack adjustment is needed. For now, do not do this if any
2667    // argument is passed on the stack.
2668    SmallVector<CCValAssign, 16> ArgLocs;
2669    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2670		   getTargetMachine(), ArgLocs, *DAG.getContext());
2671
2672    // Allocate shadow area for Win64
2673    if (Subtarget->isTargetWin64()) {
2674      CCInfo.AllocateStack(32, 8);
2675    }
2676
2677    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2678    if (CCInfo.getNextStackOffset()) {
2679      MachineFunction &MF = DAG.getMachineFunction();
2680      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2681        return false;
2682
2683      // Check if the arguments are already laid out in the right way as
2684      // the caller's fixed stack objects.
2685      MachineFrameInfo *MFI = MF.getFrameInfo();
2686      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2687      const X86InstrInfo *TII =
2688        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2689      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2690        CCValAssign &VA = ArgLocs[i];
2691        SDValue Arg = OutVals[i];
2692        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2693        if (VA.getLocInfo() == CCValAssign::Indirect)
2694          return false;
2695        if (!VA.isRegLoc()) {
2696          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2697                                   MFI, MRI, TII))
2698            return false;
2699        }
2700      }
2701    }
2702
2703    // If the tailcall address may be in a register, then make sure it's
2704    // possible to register allocate for it. In 32-bit, the call address can
2705    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2706    // callee-saved registers are restored. These happen to be the same
2707    // registers used to pass 'inreg' arguments so watch out for those.
2708    if (!Subtarget->is64Bit() &&
2709        !isa<GlobalAddressSDNode>(Callee) &&
2710        !isa<ExternalSymbolSDNode>(Callee)) {
2711      unsigned NumInRegs = 0;
2712      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2713        CCValAssign &VA = ArgLocs[i];
2714        if (!VA.isRegLoc())
2715          continue;
2716        unsigned Reg = VA.getLocReg();
2717        switch (Reg) {
2718        default: break;
2719        case X86::EAX: case X86::EDX: case X86::ECX:
2720          if (++NumInRegs == 3)
2721            return false;
2722          break;
2723        }
2724      }
2725    }
2726  }
2727
2728  return true;
2729}
2730
2731FastISel *
2732X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2733  return X86::createFastISel(funcInfo);
2734}
2735
2736
2737//===----------------------------------------------------------------------===//
2738//                           Other Lowering Hooks
2739//===----------------------------------------------------------------------===//
2740
2741static bool MayFoldLoad(SDValue Op) {
2742  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2743}
2744
2745static bool MayFoldIntoStore(SDValue Op) {
2746  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2747}
2748
2749static bool isTargetShuffle(unsigned Opcode) {
2750  switch(Opcode) {
2751  default: return false;
2752  case X86ISD::PSHUFD:
2753  case X86ISD::PSHUFHW:
2754  case X86ISD::PSHUFLW:
2755  case X86ISD::SHUFPD:
2756  case X86ISD::PALIGN:
2757  case X86ISD::SHUFPS:
2758  case X86ISD::MOVLHPS:
2759  case X86ISD::MOVLHPD:
2760  case X86ISD::MOVHLPS:
2761  case X86ISD::MOVLPS:
2762  case X86ISD::MOVLPD:
2763  case X86ISD::MOVSHDUP:
2764  case X86ISD::MOVSLDUP:
2765  case X86ISD::MOVDDUP:
2766  case X86ISD::MOVSS:
2767  case X86ISD::MOVSD:
2768  case X86ISD::UNPCKLPS:
2769  case X86ISD::UNPCKLPD:
2770  case X86ISD::VUNPCKLPSY:
2771  case X86ISD::VUNPCKLPDY:
2772  case X86ISD::PUNPCKLWD:
2773  case X86ISD::PUNPCKLBW:
2774  case X86ISD::PUNPCKLDQ:
2775  case X86ISD::PUNPCKLQDQ:
2776  case X86ISD::UNPCKHPS:
2777  case X86ISD::UNPCKHPD:
2778  case X86ISD::VUNPCKHPSY:
2779  case X86ISD::VUNPCKHPDY:
2780  case X86ISD::PUNPCKHWD:
2781  case X86ISD::PUNPCKHBW:
2782  case X86ISD::PUNPCKHDQ:
2783  case X86ISD::PUNPCKHQDQ:
2784  case X86ISD::VPERMILPS:
2785  case X86ISD::VPERMILPSY:
2786  case X86ISD::VPERMILPD:
2787  case X86ISD::VPERMILPDY:
2788  case X86ISD::VPERM2F128:
2789    return true;
2790  }
2791  return false;
2792}
2793
2794static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2795                                               SDValue V1, SelectionDAG &DAG) {
2796  switch(Opc) {
2797  default: llvm_unreachable("Unknown x86 shuffle node");
2798  case X86ISD::MOVSHDUP:
2799  case X86ISD::MOVSLDUP:
2800  case X86ISD::MOVDDUP:
2801    return DAG.getNode(Opc, dl, VT, V1);
2802  }
2803
2804  return SDValue();
2805}
2806
2807static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2808                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2809  switch(Opc) {
2810  default: llvm_unreachable("Unknown x86 shuffle node");
2811  case X86ISD::PSHUFD:
2812  case X86ISD::PSHUFHW:
2813  case X86ISD::PSHUFLW:
2814  case X86ISD::VPERMILPS:
2815  case X86ISD::VPERMILPSY:
2816  case X86ISD::VPERMILPD:
2817  case X86ISD::VPERMILPDY:
2818    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2819  }
2820
2821  return SDValue();
2822}
2823
2824static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2825               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2826  switch(Opc) {
2827  default: llvm_unreachable("Unknown x86 shuffle node");
2828  case X86ISD::PALIGN:
2829  case X86ISD::SHUFPD:
2830  case X86ISD::SHUFPS:
2831  case X86ISD::VPERM2F128:
2832    return DAG.getNode(Opc, dl, VT, V1, V2,
2833                       DAG.getConstant(TargetMask, MVT::i8));
2834  }
2835  return SDValue();
2836}
2837
2838static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2839                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2840  switch(Opc) {
2841  default: llvm_unreachable("Unknown x86 shuffle node");
2842  case X86ISD::MOVLHPS:
2843  case X86ISD::MOVLHPD:
2844  case X86ISD::MOVHLPS:
2845  case X86ISD::MOVLPS:
2846  case X86ISD::MOVLPD:
2847  case X86ISD::MOVSS:
2848  case X86ISD::MOVSD:
2849  case X86ISD::UNPCKLPS:
2850  case X86ISD::UNPCKLPD:
2851  case X86ISD::VUNPCKLPSY:
2852  case X86ISD::VUNPCKLPDY:
2853  case X86ISD::PUNPCKLWD:
2854  case X86ISD::PUNPCKLBW:
2855  case X86ISD::PUNPCKLDQ:
2856  case X86ISD::PUNPCKLQDQ:
2857  case X86ISD::UNPCKHPS:
2858  case X86ISD::UNPCKHPD:
2859  case X86ISD::VUNPCKHPSY:
2860  case X86ISD::VUNPCKHPDY:
2861  case X86ISD::PUNPCKHWD:
2862  case X86ISD::PUNPCKHBW:
2863  case X86ISD::PUNPCKHDQ:
2864  case X86ISD::PUNPCKHQDQ:
2865    return DAG.getNode(Opc, dl, VT, V1, V2);
2866  }
2867  return SDValue();
2868}
2869
2870SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2871  MachineFunction &MF = DAG.getMachineFunction();
2872  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2873  int ReturnAddrIndex = FuncInfo->getRAIndex();
2874
2875  if (ReturnAddrIndex == 0) {
2876    // Set up a frame object for the return address.
2877    uint64_t SlotSize = TD->getPointerSize();
2878    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2879                                                           false);
2880    FuncInfo->setRAIndex(ReturnAddrIndex);
2881  }
2882
2883  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2884}
2885
2886
2887bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2888                                       bool hasSymbolicDisplacement) {
2889  // Offset should fit into 32 bit immediate field.
2890  if (!isInt<32>(Offset))
2891    return false;
2892
2893  // If we don't have a symbolic displacement - we don't have any extra
2894  // restrictions.
2895  if (!hasSymbolicDisplacement)
2896    return true;
2897
2898  // FIXME: Some tweaks might be needed for medium code model.
2899  if (M != CodeModel::Small && M != CodeModel::Kernel)
2900    return false;
2901
2902  // For small code model we assume that latest object is 16MB before end of 31
2903  // bits boundary. We may also accept pretty large negative constants knowing
2904  // that all objects are in the positive half of address space.
2905  if (M == CodeModel::Small && Offset < 16*1024*1024)
2906    return true;
2907
2908  // For kernel code model we know that all object resist in the negative half
2909  // of 32bits address space. We may not accept negative offsets, since they may
2910  // be just off and we may accept pretty large positive ones.
2911  if (M == CodeModel::Kernel && Offset > 0)
2912    return true;
2913
2914  return false;
2915}
2916
2917/// isCalleePop - Determines whether the callee is required to pop its
2918/// own arguments. Callee pop is necessary to support tail calls.
2919bool X86::isCalleePop(CallingConv::ID CallingConv,
2920                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2921  if (IsVarArg)
2922    return false;
2923
2924  switch (CallingConv) {
2925  default:
2926    return false;
2927  case CallingConv::X86_StdCall:
2928    return !is64Bit;
2929  case CallingConv::X86_FastCall:
2930    return !is64Bit;
2931  case CallingConv::X86_ThisCall:
2932    return !is64Bit;
2933  case CallingConv::Fast:
2934    return TailCallOpt;
2935  case CallingConv::GHC:
2936    return TailCallOpt;
2937  }
2938}
2939
2940/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2941/// specific condition code, returning the condition code and the LHS/RHS of the
2942/// comparison to make.
2943static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2944                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2945  if (!isFP) {
2946    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2947      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2948        // X > -1   -> X == 0, jump !sign.
2949        RHS = DAG.getConstant(0, RHS.getValueType());
2950        return X86::COND_NS;
2951      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2952        // X < 0   -> X == 0, jump on sign.
2953        return X86::COND_S;
2954      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2955        // X < 1   -> X <= 0
2956        RHS = DAG.getConstant(0, RHS.getValueType());
2957        return X86::COND_LE;
2958      }
2959    }
2960
2961    switch (SetCCOpcode) {
2962    default: llvm_unreachable("Invalid integer condition!");
2963    case ISD::SETEQ:  return X86::COND_E;
2964    case ISD::SETGT:  return X86::COND_G;
2965    case ISD::SETGE:  return X86::COND_GE;
2966    case ISD::SETLT:  return X86::COND_L;
2967    case ISD::SETLE:  return X86::COND_LE;
2968    case ISD::SETNE:  return X86::COND_NE;
2969    case ISD::SETULT: return X86::COND_B;
2970    case ISD::SETUGT: return X86::COND_A;
2971    case ISD::SETULE: return X86::COND_BE;
2972    case ISD::SETUGE: return X86::COND_AE;
2973    }
2974  }
2975
2976  // First determine if it is required or is profitable to flip the operands.
2977
2978  // If LHS is a foldable load, but RHS is not, flip the condition.
2979  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2980      !ISD::isNON_EXTLoad(RHS.getNode())) {
2981    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2982    std::swap(LHS, RHS);
2983  }
2984
2985  switch (SetCCOpcode) {
2986  default: break;
2987  case ISD::SETOLT:
2988  case ISD::SETOLE:
2989  case ISD::SETUGT:
2990  case ISD::SETUGE:
2991    std::swap(LHS, RHS);
2992    break;
2993  }
2994
2995  // On a floating point condition, the flags are set as follows:
2996  // ZF  PF  CF   op
2997  //  0 | 0 | 0 | X > Y
2998  //  0 | 0 | 1 | X < Y
2999  //  1 | 0 | 0 | X == Y
3000  //  1 | 1 | 1 | unordered
3001  switch (SetCCOpcode) {
3002  default: llvm_unreachable("Condcode should be pre-legalized away");
3003  case ISD::SETUEQ:
3004  case ISD::SETEQ:   return X86::COND_E;
3005  case ISD::SETOLT:              // flipped
3006  case ISD::SETOGT:
3007  case ISD::SETGT:   return X86::COND_A;
3008  case ISD::SETOLE:              // flipped
3009  case ISD::SETOGE:
3010  case ISD::SETGE:   return X86::COND_AE;
3011  case ISD::SETUGT:              // flipped
3012  case ISD::SETULT:
3013  case ISD::SETLT:   return X86::COND_B;
3014  case ISD::SETUGE:              // flipped
3015  case ISD::SETULE:
3016  case ISD::SETLE:   return X86::COND_BE;
3017  case ISD::SETONE:
3018  case ISD::SETNE:   return X86::COND_NE;
3019  case ISD::SETUO:   return X86::COND_P;
3020  case ISD::SETO:    return X86::COND_NP;
3021  case ISD::SETOEQ:
3022  case ISD::SETUNE:  return X86::COND_INVALID;
3023  }
3024}
3025
3026/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3027/// code. Current x86 isa includes the following FP cmov instructions:
3028/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3029static bool hasFPCMov(unsigned X86CC) {
3030  switch (X86CC) {
3031  default:
3032    return false;
3033  case X86::COND_B:
3034  case X86::COND_BE:
3035  case X86::COND_E:
3036  case X86::COND_P:
3037  case X86::COND_A:
3038  case X86::COND_AE:
3039  case X86::COND_NE:
3040  case X86::COND_NP:
3041    return true;
3042  }
3043}
3044
3045/// isFPImmLegal - Returns true if the target can instruction select the
3046/// specified FP immediate natively. If false, the legalizer will
3047/// materialize the FP immediate as a load from a constant pool.
3048bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3049  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3050    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3051      return true;
3052  }
3053  return false;
3054}
3055
3056/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3057/// the specified range (L, H].
3058static bool isUndefOrInRange(int Val, int Low, int Hi) {
3059  return (Val < 0) || (Val >= Low && Val < Hi);
3060}
3061
3062/// isUndefOrInRange - Return true if every element in Mask, begining
3063/// from position Pos and ending in Pos+Size, falls within the specified
3064/// range (L, L+Pos]. or is undef.
3065static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3066                             int Pos, int Size, int Low, int Hi) {
3067  for (int i = Pos, e = Pos+Size; i != e; ++i)
3068    if (!isUndefOrInRange(Mask[i], Low, Hi))
3069      return false;
3070  return true;
3071}
3072
3073/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3074/// specified value.
3075static bool isUndefOrEqual(int Val, int CmpVal) {
3076  if (Val < 0 || Val == CmpVal)
3077    return true;
3078  return false;
3079}
3080
3081/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3082/// from position Pos and ending in Pos+Size, falls within the specified
3083/// sequential range (L, L+Pos]. or is undef.
3084static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3085                                       int Pos, int Size, int Low) {
3086  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3087    if (!isUndefOrEqual(Mask[i], Low))
3088      return false;
3089  return true;
3090}
3091
3092/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3093/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3094/// the second operand.
3095static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3096  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3097    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3098  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3099    return (Mask[0] < 2 && Mask[1] < 2);
3100  return false;
3101}
3102
3103bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3104  SmallVector<int, 8> M;
3105  N->getMask(M);
3106  return ::isPSHUFDMask(M, N->getValueType(0));
3107}
3108
3109/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3110/// is suitable for input to PSHUFHW.
3111static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3112  if (VT != MVT::v8i16)
3113    return false;
3114
3115  // Lower quadword copied in order or undef.
3116  for (int i = 0; i != 4; ++i)
3117    if (Mask[i] >= 0 && Mask[i] != i)
3118      return false;
3119
3120  // Upper quadword shuffled.
3121  for (int i = 4; i != 8; ++i)
3122    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3123      return false;
3124
3125  return true;
3126}
3127
3128bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3129  SmallVector<int, 8> M;
3130  N->getMask(M);
3131  return ::isPSHUFHWMask(M, N->getValueType(0));
3132}
3133
3134/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3135/// is suitable for input to PSHUFLW.
3136static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3137  if (VT != MVT::v8i16)
3138    return false;
3139
3140  // Upper quadword copied in order.
3141  for (int i = 4; i != 8; ++i)
3142    if (Mask[i] >= 0 && Mask[i] != i)
3143      return false;
3144
3145  // Lower quadword shuffled.
3146  for (int i = 0; i != 4; ++i)
3147    if (Mask[i] >= 4)
3148      return false;
3149
3150  return true;
3151}
3152
3153bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3154  SmallVector<int, 8> M;
3155  N->getMask(M);
3156  return ::isPSHUFLWMask(M, N->getValueType(0));
3157}
3158
3159/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3160/// is suitable for input to PALIGNR.
3161static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3162                          bool hasSSSE3) {
3163  int i, e = VT.getVectorNumElements();
3164  if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3165    return false;
3166
3167  // Do not handle v2i64 / v2f64 shuffles with palignr.
3168  if (e < 4 || !hasSSSE3)
3169    return false;
3170
3171  for (i = 0; i != e; ++i)
3172    if (Mask[i] >= 0)
3173      break;
3174
3175  // All undef, not a palignr.
3176  if (i == e)
3177    return false;
3178
3179  // Make sure we're shifting in the right direction.
3180  if (Mask[i] <= i)
3181    return false;
3182
3183  int s = Mask[i] - i;
3184
3185  // Check the rest of the elements to see if they are consecutive.
3186  for (++i; i != e; ++i) {
3187    int m = Mask[i];
3188    if (m >= 0 && m != s+i)
3189      return false;
3190  }
3191  return true;
3192}
3193
3194/// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3195/// specifies a shuffle of elements that is suitable for input to 256-bit
3196/// VSHUFPSY.
3197static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3198                          const X86Subtarget *Subtarget) {
3199  int NumElems = VT.getVectorNumElements();
3200
3201  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3202    return false;
3203
3204  if (NumElems != 8)
3205    return false;
3206
3207  // VSHUFPSY divides the resulting vector into 4 chunks.
3208  // The sources are also splitted into 4 chunks, and each destination
3209  // chunk must come from a different source chunk.
3210  //
3211  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3212  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3213  //
3214  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3215  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3216  //
3217  int QuarterSize = NumElems/4;
3218  int HalfSize = QuarterSize*2;
3219  for (int i = 0; i < QuarterSize; ++i)
3220    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3221      return false;
3222  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3223    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3224      return false;
3225
3226  // The mask of the second half must be the same as the first but with
3227  // the appropriate offsets. This works in the same way as VPERMILPS
3228  // works with masks.
3229  for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3230    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3231      return false;
3232    int FstHalfIdx = i-HalfSize;
3233    if (Mask[FstHalfIdx] < 0)
3234      continue;
3235    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3236      return false;
3237  }
3238  for (int i = QuarterSize*3; i < NumElems; ++i) {
3239    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3240      return false;
3241    int FstHalfIdx = i-HalfSize;
3242    if (Mask[FstHalfIdx] < 0)
3243      continue;
3244    if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3245      return false;
3246
3247  }
3248
3249  return true;
3250}
3251
3252/// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3253/// the specified VECTOR_MASK mask with VSHUFPSY instruction.
3254static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3255  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3256  EVT VT = SVOp->getValueType(0);
3257  int NumElems = VT.getVectorNumElements();
3258
3259  assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3260         "Only supports v8i32 and v8f32 types");
3261
3262  int HalfSize = NumElems/2;
3263  unsigned Mask = 0;
3264  for (int i = 0; i != NumElems ; ++i) {
3265    if (SVOp->getMaskElt(i) < 0)
3266      continue;
3267    // The mask of the first half must be equal to the second one.
3268    unsigned Shamt = (i%HalfSize)*2;
3269    unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3270    Mask |= Elt << Shamt;
3271  }
3272
3273  return Mask;
3274}
3275
3276/// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3277/// specifies a shuffle of elements that is suitable for input to 256-bit
3278/// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3279/// version and the mask of the second half isn't binded with the first
3280/// one.
3281static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3282                           const X86Subtarget *Subtarget) {
3283  int NumElems = VT.getVectorNumElements();
3284
3285  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3286    return false;
3287
3288  if (NumElems != 4)
3289    return false;
3290
3291  // VSHUFPSY divides the resulting vector into 4 chunks.
3292  // The sources are also splitted into 4 chunks, and each destination
3293  // chunk must come from a different source chunk.
3294  //
3295  //  SRC1 =>      X3       X2       X1       X0
3296  //  SRC2 =>      Y3       Y2       Y1       Y0
3297  //
3298  //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3299  //
3300  int QuarterSize = NumElems/4;
3301  int HalfSize = QuarterSize*2;
3302  for (int i = 0; i < QuarterSize; ++i)
3303    if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3304      return false;
3305  for (int i = QuarterSize; i < QuarterSize*2; ++i)
3306    if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3307      return false;
3308  for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3309    if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3310      return false;
3311  for (int i = QuarterSize*3; i < NumElems; ++i)
3312    if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3313      return false;
3314
3315  return true;
3316}
3317
3318/// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3319/// the specified VECTOR_MASK mask with VSHUFPDY instruction.
3320static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3321  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3322  EVT VT = SVOp->getValueType(0);
3323  int NumElems = VT.getVectorNumElements();
3324
3325  assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3326         "Only supports v4i64 and v4f64 types");
3327
3328  int HalfSize = NumElems/2;
3329  unsigned Mask = 0;
3330  for (int i = 0; i != NumElems ; ++i) {
3331    if (SVOp->getMaskElt(i) < 0)
3332      continue;
3333    int Elt = SVOp->getMaskElt(i) % HalfSize;
3334    Mask |= Elt << i;
3335  }
3336
3337  return Mask;
3338}
3339
3340/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3341/// specifies a shuffle of elements that is suitable for input to 128-bit
3342/// SHUFPS and SHUFPD.
3343static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3344  int NumElems = VT.getVectorNumElements();
3345
3346  if (VT.getSizeInBits() != 128)
3347    return false;
3348
3349  if (NumElems != 2 && NumElems != 4)
3350    return false;
3351
3352  int Half = NumElems / 2;
3353  for (int i = 0; i < Half; ++i)
3354    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3355      return false;
3356  for (int i = Half; i < NumElems; ++i)
3357    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3358      return false;
3359
3360  return true;
3361}
3362
3363bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3364  SmallVector<int, 8> M;
3365  N->getMask(M);
3366  return ::isSHUFPMask(M, N->getValueType(0));
3367}
3368
3369/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3370/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3371/// half elements to come from vector 1 (which would equal the dest.) and
3372/// the upper half to come from vector 2.
3373static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3374  int NumElems = VT.getVectorNumElements();
3375
3376  if (NumElems != 2 && NumElems != 4)
3377    return false;
3378
3379  int Half = NumElems / 2;
3380  for (int i = 0; i < Half; ++i)
3381    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3382      return false;
3383  for (int i = Half; i < NumElems; ++i)
3384    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3385      return false;
3386  return true;
3387}
3388
3389static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3390  SmallVector<int, 8> M;
3391  N->getMask(M);
3392  return isCommutedSHUFPMask(M, N->getValueType(0));
3393}
3394
3395/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3396/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3397bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3398  EVT VT = N->getValueType(0);
3399  unsigned NumElems = VT.getVectorNumElements();
3400
3401  if (VT.getSizeInBits() != 128)
3402    return false;
3403
3404  if (NumElems != 4)
3405    return false;
3406
3407  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3408  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3409         isUndefOrEqual(N->getMaskElt(1), 7) &&
3410         isUndefOrEqual(N->getMaskElt(2), 2) &&
3411         isUndefOrEqual(N->getMaskElt(3), 3);
3412}
3413
3414/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3415/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3416/// <2, 3, 2, 3>
3417bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3418  EVT VT = N->getValueType(0);
3419  unsigned NumElems = VT.getVectorNumElements();
3420
3421  if (VT.getSizeInBits() != 128)
3422    return false;
3423
3424  if (NumElems != 4)
3425    return false;
3426
3427  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3428         isUndefOrEqual(N->getMaskElt(1), 3) &&
3429         isUndefOrEqual(N->getMaskElt(2), 2) &&
3430         isUndefOrEqual(N->getMaskElt(3), 3);
3431}
3432
3433/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3434/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3435bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3436  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3437
3438  if (NumElems != 2 && NumElems != 4)
3439    return false;
3440
3441  for (unsigned i = 0; i < NumElems/2; ++i)
3442    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3443      return false;
3444
3445  for (unsigned i = NumElems/2; i < NumElems; ++i)
3446    if (!isUndefOrEqual(N->getMaskElt(i), i))
3447      return false;
3448
3449  return true;
3450}
3451
3452/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3453/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3454bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3455  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3456
3457  if ((NumElems != 2 && NumElems != 4)
3458      || N->getValueType(0).getSizeInBits() > 128)
3459    return false;
3460
3461  for (unsigned i = 0; i < NumElems/2; ++i)
3462    if (!isUndefOrEqual(N->getMaskElt(i), i))
3463      return false;
3464
3465  for (unsigned i = 0; i < NumElems/2; ++i)
3466    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3467      return false;
3468
3469  return true;
3470}
3471
3472/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3473/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3474static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3475                         bool V2IsSplat = false) {
3476  int NumElts = VT.getVectorNumElements();
3477
3478  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3479         "Unsupported vector type for unpckh");
3480
3481  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3482    return false;
3483
3484  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3485  // independently on 128-bit lanes.
3486  unsigned NumLanes = VT.getSizeInBits()/128;
3487  unsigned NumLaneElts = NumElts/NumLanes;
3488
3489  unsigned Start = 0;
3490  unsigned End = NumLaneElts;
3491  for (unsigned s = 0; s < NumLanes; ++s) {
3492    for (unsigned i = Start, j = s * NumLaneElts;
3493         i != End;
3494         i += 2, ++j) {
3495      int BitI  = Mask[i];
3496      int BitI1 = Mask[i+1];
3497      if (!isUndefOrEqual(BitI, j))
3498        return false;
3499      if (V2IsSplat) {
3500        if (!isUndefOrEqual(BitI1, NumElts))
3501          return false;
3502      } else {
3503        if (!isUndefOrEqual(BitI1, j + NumElts))
3504          return false;
3505      }
3506    }
3507    // Process the next 128 bits.
3508    Start += NumLaneElts;
3509    End += NumLaneElts;
3510  }
3511
3512  return true;
3513}
3514
3515bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3516  SmallVector<int, 8> M;
3517  N->getMask(M);
3518  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3519}
3520
3521/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3522/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3523static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3524                         bool V2IsSplat = false) {
3525  int NumElts = VT.getVectorNumElements();
3526
3527  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3528         "Unsupported vector type for unpckh");
3529
3530  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3531    return false;
3532
3533  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3534  // independently on 128-bit lanes.
3535  unsigned NumLanes = VT.getSizeInBits()/128;
3536  unsigned NumLaneElts = NumElts/NumLanes;
3537
3538  unsigned Start = 0;
3539  unsigned End = NumLaneElts;
3540  for (unsigned l = 0; l != NumLanes; ++l) {
3541    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3542                             i != End; i += 2, ++j) {
3543      int BitI  = Mask[i];
3544      int BitI1 = Mask[i+1];
3545      if (!isUndefOrEqual(BitI, j))
3546        return false;
3547      if (V2IsSplat) {
3548        if (isUndefOrEqual(BitI1, NumElts))
3549          return false;
3550      } else {
3551        if (!isUndefOrEqual(BitI1, j+NumElts))
3552          return false;
3553      }
3554    }
3555    // Process the next 128 bits.
3556    Start += NumLaneElts;
3557    End += NumLaneElts;
3558  }
3559  return true;
3560}
3561
3562bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3563  SmallVector<int, 8> M;
3564  N->getMask(M);
3565  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3566}
3567
3568/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3569/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3570/// <0, 0, 1, 1>
3571static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3572  int NumElems = VT.getVectorNumElements();
3573  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3574    return false;
3575
3576  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3577  // FIXME: Need a better way to get rid of this, there's no latency difference
3578  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3579  // the former later. We should also remove the "_undef" special mask.
3580  if (NumElems == 4 && VT.getSizeInBits() == 256)
3581    return false;
3582
3583  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3584  // independently on 128-bit lanes.
3585  unsigned NumLanes = VT.getSizeInBits() / 128;
3586  unsigned NumLaneElts = NumElems / NumLanes;
3587
3588  for (unsigned s = 0; s < NumLanes; ++s) {
3589    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3590         i != NumLaneElts * (s + 1);
3591         i += 2, ++j) {
3592      int BitI  = Mask[i];
3593      int BitI1 = Mask[i+1];
3594
3595      if (!isUndefOrEqual(BitI, j))
3596        return false;
3597      if (!isUndefOrEqual(BitI1, j))
3598        return false;
3599    }
3600  }
3601
3602  return true;
3603}
3604
3605bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3606  SmallVector<int, 8> M;
3607  N->getMask(M);
3608  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3609}
3610
3611/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3612/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3613/// <2, 2, 3, 3>
3614static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3615  int NumElems = VT.getVectorNumElements();
3616  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3617    return false;
3618
3619  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3620    int BitI  = Mask[i];
3621    int BitI1 = Mask[i+1];
3622    if (!isUndefOrEqual(BitI, j))
3623      return false;
3624    if (!isUndefOrEqual(BitI1, j))
3625      return false;
3626  }
3627  return true;
3628}
3629
3630bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3631  SmallVector<int, 8> M;
3632  N->getMask(M);
3633  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3634}
3635
3636/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3637/// specifies a shuffle of elements that is suitable for input to MOVSS,
3638/// MOVSD, and MOVD, i.e. setting the lowest element.
3639static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3640  if (VT.getVectorElementType().getSizeInBits() < 32)
3641    return false;
3642
3643  int NumElts = VT.getVectorNumElements();
3644
3645  if (!isUndefOrEqual(Mask[0], NumElts))
3646    return false;
3647
3648  for (int i = 1; i < NumElts; ++i)
3649    if (!isUndefOrEqual(Mask[i], i))
3650      return false;
3651
3652  return true;
3653}
3654
3655bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3656  SmallVector<int, 8> M;
3657  N->getMask(M);
3658  return ::isMOVLMask(M, N->getValueType(0));
3659}
3660
3661/// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3662/// as permutations between 128-bit chunks or halves. As an example: this
3663/// shuffle bellow:
3664///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3665/// The first half comes from the second half of V1 and the second half from the
3666/// the second half of V2.
3667static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3668                             const X86Subtarget *Subtarget) {
3669  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3670    return false;
3671
3672  // The shuffle result is divided into half A and half B. In total the two
3673  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3674  // B must come from C, D, E or F.
3675  int HalfSize = VT.getVectorNumElements()/2;
3676  bool MatchA = false, MatchB = false;
3677
3678  // Check if A comes from one of C, D, E, F.
3679  for (int Half = 0; Half < 4; ++Half) {
3680    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3681      MatchA = true;
3682      break;
3683    }
3684  }
3685
3686  // Check if B comes from one of C, D, E, F.
3687  for (int Half = 0; Half < 4; ++Half) {
3688    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3689      MatchB = true;
3690      break;
3691    }
3692  }
3693
3694  return MatchA && MatchB;
3695}
3696
3697/// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3698/// the specified VECTOR_MASK mask with VPERM2F128 instructions.
3699static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3700  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3701  EVT VT = SVOp->getValueType(0);
3702
3703  int HalfSize = VT.getVectorNumElements()/2;
3704
3705  int FstHalf = 0, SndHalf = 0;
3706  for (int i = 0; i < HalfSize; ++i) {
3707    if (SVOp->getMaskElt(i) > 0) {
3708      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3709      break;
3710    }
3711  }
3712  for (int i = HalfSize; i < HalfSize*2; ++i) {
3713    if (SVOp->getMaskElt(i) > 0) {
3714      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3715      break;
3716    }
3717  }
3718
3719  return (FstHalf | (SndHalf << 4));
3720}
3721
3722/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3723/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3724/// Note that VPERMIL mask matching is different depending whether theunderlying
3725/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3726/// to the same elements of the low, but to the higher half of the source.
3727/// In VPERMILPD the two lanes could be shuffled independently of each other
3728/// with the same restriction that lanes can't be crossed.
3729static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3730                            const X86Subtarget *Subtarget) {
3731  int NumElts = VT.getVectorNumElements();
3732  int NumLanes = VT.getSizeInBits()/128;
3733
3734  if (!Subtarget->hasAVX())
3735    return false;
3736
3737  // Match any permutation of 128-bit vector with 64-bit types
3738  if (NumLanes == 1 && NumElts != 2)
3739    return false;
3740
3741  // Only match 256-bit with 32 types
3742  if (VT.getSizeInBits() == 256 && NumElts != 4)
3743    return false;
3744
3745  // The mask on the high lane is independent of the low. Both can match
3746  // any element in inside its own lane, but can't cross.
3747  int LaneSize = NumElts/NumLanes;
3748  for (int l = 0; l < NumLanes; ++l)
3749    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3750      int LaneStart = l*LaneSize;
3751      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3752        return false;
3753    }
3754
3755  return true;
3756}
3757
3758/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3759/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3760/// Note that VPERMIL mask matching is different depending whether theunderlying
3761/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3762/// to the same elements of the low, but to the higher half of the source.
3763/// In VPERMILPD the two lanes could be shuffled independently of each other
3764/// with the same restriction that lanes can't be crossed.
3765static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3766                            const X86Subtarget *Subtarget) {
3767  unsigned NumElts = VT.getVectorNumElements();
3768  unsigned NumLanes = VT.getSizeInBits()/128;
3769
3770  if (!Subtarget->hasAVX())
3771    return false;
3772
3773  // Match any permutation of 128-bit vector with 32-bit types
3774  if (NumLanes == 1 && NumElts != 4)
3775    return false;
3776
3777  // Only match 256-bit with 32 types
3778  if (VT.getSizeInBits() == 256 && NumElts != 8)
3779    return false;
3780
3781  // The mask on the high lane should be the same as the low. Actually,
3782  // they can differ if any of the corresponding index in a lane is undef
3783  // and the other stays in range.
3784  int LaneSize = NumElts/NumLanes;
3785  for (int i = 0; i < LaneSize; ++i) {
3786    int HighElt = i+LaneSize;
3787    bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3788    bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3789
3790    if (!HighValid || !LowValid)
3791      return false;
3792    if (Mask[i] < 0 || Mask[HighElt] < 0)
3793      continue;
3794    if (Mask[HighElt]-Mask[i] != LaneSize)
3795      return false;
3796  }
3797
3798  return true;
3799}
3800
3801/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3802/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3803static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3804  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3805  EVT VT = SVOp->getValueType(0);
3806
3807  int NumElts = VT.getVectorNumElements();
3808  int NumLanes = VT.getSizeInBits()/128;
3809  int LaneSize = NumElts/NumLanes;
3810
3811  // Although the mask is equal for both lanes do it twice to get the cases
3812  // where a mask will match because the same mask element is undef on the
3813  // first half but valid on the second. This would get pathological cases
3814  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3815  unsigned Mask = 0;
3816  for (int l = 0; l < NumLanes; ++l) {
3817    for (int i = 0; i < LaneSize; ++i) {
3818      int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3819      if (MaskElt < 0)
3820        continue;
3821      if (MaskElt >= LaneSize)
3822        MaskElt -= LaneSize;
3823      Mask |= MaskElt << (i*2);
3824    }
3825  }
3826
3827  return Mask;
3828}
3829
3830/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3831/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3832static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3833  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3834  EVT VT = SVOp->getValueType(0);
3835
3836  int NumElts = VT.getVectorNumElements();
3837  int NumLanes = VT.getSizeInBits()/128;
3838
3839  unsigned Mask = 0;
3840  int LaneSize = NumElts/NumLanes;
3841  for (int l = 0; l < NumLanes; ++l)
3842    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3843      int MaskElt = SVOp->getMaskElt(i);
3844      if (MaskElt < 0)
3845        continue;
3846      Mask |= (MaskElt-l*LaneSize) << i;
3847    }
3848
3849  return Mask;
3850}
3851
3852/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3853/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3854/// element of vector 2 and the other elements to come from vector 1 in order.
3855static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3856                               bool V2IsSplat = false, bool V2IsUndef = false) {
3857  int NumOps = VT.getVectorNumElements();
3858  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3859    return false;
3860
3861  if (!isUndefOrEqual(Mask[0], 0))
3862    return false;
3863
3864  for (int i = 1; i < NumOps; ++i)
3865    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3866          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3867          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3868      return false;
3869
3870  return true;
3871}
3872
3873static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3874                           bool V2IsUndef = false) {
3875  SmallVector<int, 8> M;
3876  N->getMask(M);
3877  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3878}
3879
3880/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3881/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3882/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3883bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3884                         const X86Subtarget *Subtarget) {
3885  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3886    return false;
3887
3888  // The second vector must be undef
3889  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3890    return false;
3891
3892  EVT VT = N->getValueType(0);
3893  unsigned NumElems = VT.getVectorNumElements();
3894
3895  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3896      (VT.getSizeInBits() == 256 && NumElems != 8))
3897    return false;
3898
3899  // "i+1" is the value the indexed mask element must have
3900  for (unsigned i = 0; i < NumElems; i += 2)
3901    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3902        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3903      return false;
3904
3905  return true;
3906}
3907
3908/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3909/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3910/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3911bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3912                         const X86Subtarget *Subtarget) {
3913  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3914    return false;
3915
3916  // The second vector must be undef
3917  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3918    return false;
3919
3920  EVT VT = N->getValueType(0);
3921  unsigned NumElems = VT.getVectorNumElements();
3922
3923  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3924      (VT.getSizeInBits() == 256 && NumElems != 8))
3925    return false;
3926
3927  // "i" is the value the indexed mask element must have
3928  for (unsigned i = 0; i < NumElems; i += 2)
3929    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3930        !isUndefOrEqual(N->getMaskElt(i+1), i))
3931      return false;
3932
3933  return true;
3934}
3935
3936/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3937/// specifies a shuffle of elements that is suitable for input to 256-bit
3938/// version of MOVDDUP.
3939static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3940                           const X86Subtarget *Subtarget) {
3941  EVT VT = N->getValueType(0);
3942  int NumElts = VT.getVectorNumElements();
3943  bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3944
3945  if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3946      !V2IsUndef || NumElts != 4)
3947    return false;
3948
3949  for (int i = 0; i != NumElts/2; ++i)
3950    if (!isUndefOrEqual(N->getMaskElt(i), 0))
3951      return false;
3952  for (int i = NumElts/2; i != NumElts; ++i)
3953    if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3954      return false;
3955  return true;
3956}
3957
3958/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3959/// specifies a shuffle of elements that is suitable for input to 128-bit
3960/// version of MOVDDUP.
3961bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3962  EVT VT = N->getValueType(0);
3963
3964  if (VT.getSizeInBits() != 128)
3965    return false;
3966
3967  int e = VT.getVectorNumElements() / 2;
3968  for (int i = 0; i < e; ++i)
3969    if (!isUndefOrEqual(N->getMaskElt(i), i))
3970      return false;
3971  for (int i = 0; i < e; ++i)
3972    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3973      return false;
3974  return true;
3975}
3976
3977/// isVEXTRACTF128Index - Return true if the specified
3978/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3979/// suitable for input to VEXTRACTF128.
3980bool X86::isVEXTRACTF128Index(SDNode *N) {
3981  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3982    return false;
3983
3984  // The index should be aligned on a 128-bit boundary.
3985  uint64_t Index =
3986    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3987
3988  unsigned VL = N->getValueType(0).getVectorNumElements();
3989  unsigned VBits = N->getValueType(0).getSizeInBits();
3990  unsigned ElSize = VBits / VL;
3991  bool Result = (Index * ElSize) % 128 == 0;
3992
3993  return Result;
3994}
3995
3996/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3997/// operand specifies a subvector insert that is suitable for input to
3998/// VINSERTF128.
3999bool X86::isVINSERTF128Index(SDNode *N) {
4000  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4001    return false;
4002
4003  // The index should be aligned on a 128-bit boundary.
4004  uint64_t Index =
4005    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4006
4007  unsigned VL = N->getValueType(0).getVectorNumElements();
4008  unsigned VBits = N->getValueType(0).getSizeInBits();
4009  unsigned ElSize = VBits / VL;
4010  bool Result = (Index * ElSize) % 128 == 0;
4011
4012  return Result;
4013}
4014
4015/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4016/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4017unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4018  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4019  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4020
4021  unsigned Shift = (NumOperands == 4) ? 2 : 1;
4022  unsigned Mask = 0;
4023  for (int i = 0; i < NumOperands; ++i) {
4024    int Val = SVOp->getMaskElt(NumOperands-i-1);
4025    if (Val < 0) Val = 0;
4026    if (Val >= NumOperands) Val -= NumOperands;
4027    Mask |= Val;
4028    if (i != NumOperands - 1)
4029      Mask <<= Shift;
4030  }
4031  return Mask;
4032}
4033
4034/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4035/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4036unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4037  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4038  unsigned Mask = 0;
4039  // 8 nodes, but we only care about the last 4.
4040  for (unsigned i = 7; i >= 4; --i) {
4041    int Val = SVOp->getMaskElt(i);
4042    if (Val >= 0)
4043      Mask |= (Val - 4);
4044    if (i != 4)
4045      Mask <<= 2;
4046  }
4047  return Mask;
4048}
4049
4050/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4051/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4052unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4053  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4054  unsigned Mask = 0;
4055  // 8 nodes, but we only care about the first 4.
4056  for (int i = 3; i >= 0; --i) {
4057    int Val = SVOp->getMaskElt(i);
4058    if (Val >= 0)
4059      Mask |= Val;
4060    if (i != 0)
4061      Mask <<= 2;
4062  }
4063  return Mask;
4064}
4065
4066/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4067/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4068unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4069  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4070  EVT VVT = N->getValueType(0);
4071  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4072  int Val = 0;
4073
4074  unsigned i, e;
4075  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4076    Val = SVOp->getMaskElt(i);
4077    if (Val >= 0)
4078      break;
4079  }
4080  assert(Val - i > 0 && "PALIGNR imm should be positive");
4081  return (Val - i) * EltSize;
4082}
4083
4084/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4085/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4086/// instructions.
4087unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4088  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4089    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4090
4091  uint64_t Index =
4092    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4093
4094  EVT VecVT = N->getOperand(0).getValueType();
4095  EVT ElVT = VecVT.getVectorElementType();
4096
4097  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4098  return Index / NumElemsPerChunk;
4099}
4100
4101/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4102/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4103/// instructions.
4104unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4105  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4106    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4107
4108  uint64_t Index =
4109    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4110
4111  EVT VecVT = N->getValueType(0);
4112  EVT ElVT = VecVT.getVectorElementType();
4113
4114  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4115  return Index / NumElemsPerChunk;
4116}
4117
4118/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4119/// constant +0.0.
4120bool X86::isZeroNode(SDValue Elt) {
4121  return ((isa<ConstantSDNode>(Elt) &&
4122           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4123          (isa<ConstantFPSDNode>(Elt) &&
4124           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4125}
4126
4127/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4128/// their permute mask.
4129static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4130                                    SelectionDAG &DAG) {
4131  EVT VT = SVOp->getValueType(0);
4132  unsigned NumElems = VT.getVectorNumElements();
4133  SmallVector<int, 8> MaskVec;
4134
4135  for (unsigned i = 0; i != NumElems; ++i) {
4136    int idx = SVOp->getMaskElt(i);
4137    if (idx < 0)
4138      MaskVec.push_back(idx);
4139    else if (idx < (int)NumElems)
4140      MaskVec.push_back(idx + NumElems);
4141    else
4142      MaskVec.push_back(idx - NumElems);
4143  }
4144  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4145                              SVOp->getOperand(0), &MaskVec[0]);
4146}
4147
4148/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4149/// the two vector operands have swapped position.
4150static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4151  unsigned NumElems = VT.getVectorNumElements();
4152  for (unsigned i = 0; i != NumElems; ++i) {
4153    int idx = Mask[i];
4154    if (idx < 0)
4155      continue;
4156    else if (idx < (int)NumElems)
4157      Mask[i] = idx + NumElems;
4158    else
4159      Mask[i] = idx - NumElems;
4160  }
4161}
4162
4163/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4164/// match movhlps. The lower half elements should come from upper half of
4165/// V1 (and in order), and the upper half elements should come from the upper
4166/// half of V2 (and in order).
4167static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4168  EVT VT = Op->getValueType(0);
4169  if (VT.getSizeInBits() != 128)
4170    return false;
4171  if (VT.getVectorNumElements() != 4)
4172    return false;
4173  for (unsigned i = 0, e = 2; i != e; ++i)
4174    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4175      return false;
4176  for (unsigned i = 2; i != 4; ++i)
4177    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4178      return false;
4179  return true;
4180}
4181
4182/// isScalarLoadToVector - Returns true if the node is a scalar load that
4183/// is promoted to a vector. It also returns the LoadSDNode by reference if
4184/// required.
4185static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4186  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4187    return false;
4188  N = N->getOperand(0).getNode();
4189  if (!ISD::isNON_EXTLoad(N))
4190    return false;
4191  if (LD)
4192    *LD = cast<LoadSDNode>(N);
4193  return true;
4194}
4195
4196/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4197/// match movlp{s|d}. The lower half elements should come from lower half of
4198/// V1 (and in order), and the upper half elements should come from the upper
4199/// half of V2 (and in order). And since V1 will become the source of the
4200/// MOVLP, it must be either a vector load or a scalar load to vector.
4201static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4202                               ShuffleVectorSDNode *Op) {
4203  EVT VT = Op->getValueType(0);
4204  if (VT.getSizeInBits() != 128)
4205    return false;
4206
4207  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4208    return false;
4209  // Is V2 is a vector load, don't do this transformation. We will try to use
4210  // load folding shufps op.
4211  if (ISD::isNON_EXTLoad(V2))
4212    return false;
4213
4214  unsigned NumElems = VT.getVectorNumElements();
4215
4216  if (NumElems != 2 && NumElems != 4)
4217    return false;
4218  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4219    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4220      return false;
4221  for (unsigned i = NumElems/2; i != NumElems; ++i)
4222    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4223      return false;
4224  return true;
4225}
4226
4227/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4228/// all the same.
4229static bool isSplatVector(SDNode *N) {
4230  if (N->getOpcode() != ISD::BUILD_VECTOR)
4231    return false;
4232
4233  SDValue SplatValue = N->getOperand(0);
4234  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4235    if (N->getOperand(i) != SplatValue)
4236      return false;
4237  return true;
4238}
4239
4240/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4241/// to an zero vector.
4242/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4243static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4244  SDValue V1 = N->getOperand(0);
4245  SDValue V2 = N->getOperand(1);
4246  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4247  for (unsigned i = 0; i != NumElems; ++i) {
4248    int Idx = N->getMaskElt(i);
4249    if (Idx >= (int)NumElems) {
4250      unsigned Opc = V2.getOpcode();
4251      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4252        continue;
4253      if (Opc != ISD::BUILD_VECTOR ||
4254          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4255        return false;
4256    } else if (Idx >= 0) {
4257      unsigned Opc = V1.getOpcode();
4258      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4259        continue;
4260      if (Opc != ISD::BUILD_VECTOR ||
4261          !X86::isZeroNode(V1.getOperand(Idx)))
4262        return false;
4263    }
4264  }
4265  return true;
4266}
4267
4268/// getZeroVector - Returns a vector of specified type with all zero elements.
4269///
4270static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
4271                             DebugLoc dl) {
4272  assert(VT.isVector() && "Expected a vector type");
4273
4274  // Always build SSE zero vectors as <4 x i32> bitcasted
4275  // to their dest type. This ensures they get CSE'd.
4276  SDValue Vec;
4277  if (VT.getSizeInBits() == 128) {  // SSE
4278    if (HasSSE2) {  // SSE2
4279      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4280      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4281    } else { // SSE1
4282      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4283      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4284    }
4285  } else if (VT.getSizeInBits() == 256) { // AVX
4286    // 256-bit logic and arithmetic instructions in AVX are
4287    // all floating-point, no support for integer ops. Default
4288    // to emitting fp zeroed vectors then.
4289    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4290    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4291    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4292  }
4293  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4294}
4295
4296/// getOnesVector - Returns a vector of specified type with all bits set.
4297/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4298/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4299/// original type, ensuring they get CSE'd.
4300static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4301  assert(VT.isVector() && "Expected a vector type");
4302  assert((VT.is128BitVector() || VT.is256BitVector())
4303         && "Expected a 128-bit or 256-bit vector type");
4304
4305  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4306  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4307                            Cst, Cst, Cst, Cst);
4308
4309  if (VT.is256BitVector()) {
4310    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4311                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4312    Vec = Insert128BitVector(InsV, Vec,
4313                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4314  }
4315
4316  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4317}
4318
4319/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4320/// that point to V2 points to its first element.
4321static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4322  EVT VT = SVOp->getValueType(0);
4323  unsigned NumElems = VT.getVectorNumElements();
4324
4325  bool Changed = false;
4326  SmallVector<int, 8> MaskVec;
4327  SVOp->getMask(MaskVec);
4328
4329  for (unsigned i = 0; i != NumElems; ++i) {
4330    if (MaskVec[i] > (int)NumElems) {
4331      MaskVec[i] = NumElems;
4332      Changed = true;
4333    }
4334  }
4335  if (Changed)
4336    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4337                                SVOp->getOperand(1), &MaskVec[0]);
4338  return SDValue(SVOp, 0);
4339}
4340
4341/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4342/// operation of specified width.
4343static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4344                       SDValue V2) {
4345  unsigned NumElems = VT.getVectorNumElements();
4346  SmallVector<int, 8> Mask;
4347  Mask.push_back(NumElems);
4348  for (unsigned i = 1; i != NumElems; ++i)
4349    Mask.push_back(i);
4350  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4351}
4352
4353/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4354static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4355                          SDValue V2) {
4356  unsigned NumElems = VT.getVectorNumElements();
4357  SmallVector<int, 8> Mask;
4358  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4359    Mask.push_back(i);
4360    Mask.push_back(i + NumElems);
4361  }
4362  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4363}
4364
4365/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4366static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4367                          SDValue V2) {
4368  unsigned NumElems = VT.getVectorNumElements();
4369  unsigned Half = NumElems/2;
4370  SmallVector<int, 8> Mask;
4371  for (unsigned i = 0; i != Half; ++i) {
4372    Mask.push_back(i + Half);
4373    Mask.push_back(i + NumElems + Half);
4374  }
4375  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4376}
4377
4378// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4379// a generic shuffle instruction because the target has no such instructions.
4380// Generate shuffles which repeat i16 and i8 several times until they can be
4381// represented by v4f32 and then be manipulated by target suported shuffles.
4382static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4383  EVT VT = V.getValueType();
4384  int NumElems = VT.getVectorNumElements();
4385  DebugLoc dl = V.getDebugLoc();
4386
4387  while (NumElems > 4) {
4388    if (EltNo < NumElems/2) {
4389      V = getUnpackl(DAG, dl, VT, V, V);
4390    } else {
4391      V = getUnpackh(DAG, dl, VT, V, V);
4392      EltNo -= NumElems/2;
4393    }
4394    NumElems >>= 1;
4395  }
4396  return V;
4397}
4398
4399/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4400static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4401  EVT VT = V.getValueType();
4402  DebugLoc dl = V.getDebugLoc();
4403  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4404         && "Vector size not supported");
4405
4406  if (VT.getSizeInBits() == 128) {
4407    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4408    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4409    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4410                             &SplatMask[0]);
4411  } else {
4412    // To use VPERMILPS to splat scalars, the second half of indicies must
4413    // refer to the higher part, which is a duplication of the lower one,
4414    // because VPERMILPS can only handle in-lane permutations.
4415    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4416                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4417
4418    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4419    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4420                             &SplatMask[0]);
4421  }
4422
4423  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4424}
4425
4426/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4427static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4428  EVT SrcVT = SV->getValueType(0);
4429  SDValue V1 = SV->getOperand(0);
4430  DebugLoc dl = SV->getDebugLoc();
4431
4432  int EltNo = SV->getSplatIndex();
4433  int NumElems = SrcVT.getVectorNumElements();
4434  unsigned Size = SrcVT.getSizeInBits();
4435
4436  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4437          "Unknown how to promote splat for type");
4438
4439  // Extract the 128-bit part containing the splat element and update
4440  // the splat element index when it refers to the higher register.
4441  if (Size == 256) {
4442    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4443    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4444    if (Idx > 0)
4445      EltNo -= NumElems/2;
4446  }
4447
4448  // All i16 and i8 vector types can't be used directly by a generic shuffle
4449  // instruction because the target has no such instruction. Generate shuffles
4450  // which repeat i16 and i8 several times until they fit in i32, and then can
4451  // be manipulated by target suported shuffles.
4452  EVT EltVT = SrcVT.getVectorElementType();
4453  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4454    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4455
4456  // Recreate the 256-bit vector and place the same 128-bit vector
4457  // into the low and high part. This is necessary because we want
4458  // to use VPERM* to shuffle the vectors
4459  if (Size == 256) {
4460    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4461                         DAG.getConstant(0, MVT::i32), DAG, dl);
4462    V1 = Insert128BitVector(InsV, V1,
4463               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4464  }
4465
4466  return getLegalSplat(DAG, V1, EltNo);
4467}
4468
4469/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4470/// vector of zero or undef vector.  This produces a shuffle where the low
4471/// element of V2 is swizzled into the zero/undef vector, landing at element
4472/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4473static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4474                                             bool isZero, bool HasSSE2,
4475                                             SelectionDAG &DAG) {
4476  EVT VT = V2.getValueType();
4477  SDValue V1 = isZero
4478    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4479  unsigned NumElems = VT.getVectorNumElements();
4480  SmallVector<int, 16> MaskVec;
4481  for (unsigned i = 0; i != NumElems; ++i)
4482    // If this is the insertion idx, put the low elt of V2 here.
4483    MaskVec.push_back(i == Idx ? NumElems : i);
4484  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4485}
4486
4487/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4488/// element of the result of the vector shuffle.
4489static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4490                                   unsigned Depth) {
4491  if (Depth == 6)
4492    return SDValue();  // Limit search depth.
4493
4494  SDValue V = SDValue(N, 0);
4495  EVT VT = V.getValueType();
4496  unsigned Opcode = V.getOpcode();
4497
4498  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4499  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4500    Index = SV->getMaskElt(Index);
4501
4502    if (Index < 0)
4503      return DAG.getUNDEF(VT.getVectorElementType());
4504
4505    int NumElems = VT.getVectorNumElements();
4506    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4507    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4508  }
4509
4510  // Recurse into target specific vector shuffles to find scalars.
4511  if (isTargetShuffle(Opcode)) {
4512    int NumElems = VT.getVectorNumElements();
4513    SmallVector<unsigned, 16> ShuffleMask;
4514    SDValue ImmN;
4515
4516    switch(Opcode) {
4517    case X86ISD::SHUFPS:
4518    case X86ISD::SHUFPD:
4519      ImmN = N->getOperand(N->getNumOperands()-1);
4520      DecodeSHUFPSMask(NumElems,
4521                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4522                       ShuffleMask);
4523      break;
4524    case X86ISD::PUNPCKHBW:
4525    case X86ISD::PUNPCKHWD:
4526    case X86ISD::PUNPCKHDQ:
4527    case X86ISD::PUNPCKHQDQ:
4528      DecodePUNPCKHMask(NumElems, ShuffleMask);
4529      break;
4530    case X86ISD::UNPCKHPS:
4531    case X86ISD::UNPCKHPD:
4532    case X86ISD::VUNPCKHPSY:
4533    case X86ISD::VUNPCKHPDY:
4534      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4535      break;
4536    case X86ISD::PUNPCKLBW:
4537    case X86ISD::PUNPCKLWD:
4538    case X86ISD::PUNPCKLDQ:
4539    case X86ISD::PUNPCKLQDQ:
4540      DecodePUNPCKLMask(VT, ShuffleMask);
4541      break;
4542    case X86ISD::UNPCKLPS:
4543    case X86ISD::UNPCKLPD:
4544    case X86ISD::VUNPCKLPSY:
4545    case X86ISD::VUNPCKLPDY:
4546      DecodeUNPCKLPMask(VT, ShuffleMask);
4547      break;
4548    case X86ISD::MOVHLPS:
4549      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4550      break;
4551    case X86ISD::MOVLHPS:
4552      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4553      break;
4554    case X86ISD::PSHUFD:
4555      ImmN = N->getOperand(N->getNumOperands()-1);
4556      DecodePSHUFMask(NumElems,
4557                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4558                      ShuffleMask);
4559      break;
4560    case X86ISD::PSHUFHW:
4561      ImmN = N->getOperand(N->getNumOperands()-1);
4562      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4563                        ShuffleMask);
4564      break;
4565    case X86ISD::PSHUFLW:
4566      ImmN = N->getOperand(N->getNumOperands()-1);
4567      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4568                        ShuffleMask);
4569      break;
4570    case X86ISD::MOVSS:
4571    case X86ISD::MOVSD: {
4572      // The index 0 always comes from the first element of the second source,
4573      // this is why MOVSS and MOVSD are used in the first place. The other
4574      // elements come from the other positions of the first source vector.
4575      unsigned OpNum = (Index == 0) ? 1 : 0;
4576      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4577                                 Depth+1);
4578    }
4579    case X86ISD::VPERMILPS:
4580      ImmN = N->getOperand(N->getNumOperands()-1);
4581      DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4582                        ShuffleMask);
4583      break;
4584    case X86ISD::VPERMILPSY:
4585      ImmN = N->getOperand(N->getNumOperands()-1);
4586      DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4587                        ShuffleMask);
4588      break;
4589    case X86ISD::VPERMILPD:
4590      ImmN = N->getOperand(N->getNumOperands()-1);
4591      DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4592                        ShuffleMask);
4593      break;
4594    case X86ISD::VPERMILPDY:
4595      ImmN = N->getOperand(N->getNumOperands()-1);
4596      DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4597                        ShuffleMask);
4598      break;
4599    case X86ISD::VPERM2F128:
4600      ImmN = N->getOperand(N->getNumOperands()-1);
4601      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4602                           ShuffleMask);
4603      break;
4604    default:
4605      assert("not implemented for target shuffle node");
4606      return SDValue();
4607    }
4608
4609    Index = ShuffleMask[Index];
4610    if (Index < 0)
4611      return DAG.getUNDEF(VT.getVectorElementType());
4612
4613    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4614    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4615                               Depth+1);
4616  }
4617
4618  // Actual nodes that may contain scalar elements
4619  if (Opcode == ISD::BITCAST) {
4620    V = V.getOperand(0);
4621    EVT SrcVT = V.getValueType();
4622    unsigned NumElems = VT.getVectorNumElements();
4623
4624    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4625      return SDValue();
4626  }
4627
4628  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4629    return (Index == 0) ? V.getOperand(0)
4630                          : DAG.getUNDEF(VT.getVectorElementType());
4631
4632  if (V.getOpcode() == ISD::BUILD_VECTOR)
4633    return V.getOperand(Index);
4634
4635  return SDValue();
4636}
4637
4638/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4639/// shuffle operation which come from a consecutively from a zero. The
4640/// search can start in two different directions, from left or right.
4641static
4642unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4643                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4644  int i = 0;
4645
4646  while (i < NumElems) {
4647    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4648    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4649    if (!(Elt.getNode() &&
4650         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4651      break;
4652    ++i;
4653  }
4654
4655  return i;
4656}
4657
4658/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4659/// MaskE correspond consecutively to elements from one of the vector operands,
4660/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4661static
4662bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4663                              int OpIdx, int NumElems, unsigned &OpNum) {
4664  bool SeenV1 = false;
4665  bool SeenV2 = false;
4666
4667  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4668    int Idx = SVOp->getMaskElt(i);
4669    // Ignore undef indicies
4670    if (Idx < 0)
4671      continue;
4672
4673    if (Idx < NumElems)
4674      SeenV1 = true;
4675    else
4676      SeenV2 = true;
4677
4678    // Only accept consecutive elements from the same vector
4679    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4680      return false;
4681  }
4682
4683  OpNum = SeenV1 ? 0 : 1;
4684  return true;
4685}
4686
4687/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4688/// logical left shift of a vector.
4689static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4690                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4691  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4692  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4693              false /* check zeros from right */, DAG);
4694  unsigned OpSrc;
4695
4696  if (!NumZeros)
4697    return false;
4698
4699  // Considering the elements in the mask that are not consecutive zeros,
4700  // check if they consecutively come from only one of the source vectors.
4701  //
4702  //               V1 = {X, A, B, C}     0
4703  //                         \  \  \    /
4704  //   vector_shuffle V1, V2 <1, 2, 3, X>
4705  //
4706  if (!isShuffleMaskConsecutive(SVOp,
4707            0,                   // Mask Start Index
4708            NumElems-NumZeros-1, // Mask End Index
4709            NumZeros,            // Where to start looking in the src vector
4710            NumElems,            // Number of elements in vector
4711            OpSrc))              // Which source operand ?
4712    return false;
4713
4714  isLeft = false;
4715  ShAmt = NumZeros;
4716  ShVal = SVOp->getOperand(OpSrc);
4717  return true;
4718}
4719
4720/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4721/// logical left shift of a vector.
4722static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4723                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4724  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4725  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4726              true /* check zeros from left */, DAG);
4727  unsigned OpSrc;
4728
4729  if (!NumZeros)
4730    return false;
4731
4732  // Considering the elements in the mask that are not consecutive zeros,
4733  // check if they consecutively come from only one of the source vectors.
4734  //
4735  //                           0    { A, B, X, X } = V2
4736  //                          / \    /  /
4737  //   vector_shuffle V1, V2 <X, X, 4, 5>
4738  //
4739  if (!isShuffleMaskConsecutive(SVOp,
4740            NumZeros,     // Mask Start Index
4741            NumElems-1,   // Mask End Index
4742            0,            // Where to start looking in the src vector
4743            NumElems,     // Number of elements in vector
4744            OpSrc))       // Which source operand ?
4745    return false;
4746
4747  isLeft = true;
4748  ShAmt = NumZeros;
4749  ShVal = SVOp->getOperand(OpSrc);
4750  return true;
4751}
4752
4753/// isVectorShift - Returns true if the shuffle can be implemented as a
4754/// logical left or right shift of a vector.
4755static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4756                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4757  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4758      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4759    return true;
4760
4761  return false;
4762}
4763
4764/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4765///
4766static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4767                                       unsigned NumNonZero, unsigned NumZero,
4768                                       SelectionDAG &DAG,
4769                                       const TargetLowering &TLI) {
4770  if (NumNonZero > 8)
4771    return SDValue();
4772
4773  DebugLoc dl = Op.getDebugLoc();
4774  SDValue V(0, 0);
4775  bool First = true;
4776  for (unsigned i = 0; i < 16; ++i) {
4777    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4778    if (ThisIsNonZero && First) {
4779      if (NumZero)
4780        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4781      else
4782        V = DAG.getUNDEF(MVT::v8i16);
4783      First = false;
4784    }
4785
4786    if ((i & 1) != 0) {
4787      SDValue ThisElt(0, 0), LastElt(0, 0);
4788      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4789      if (LastIsNonZero) {
4790        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4791                              MVT::i16, Op.getOperand(i-1));
4792      }
4793      if (ThisIsNonZero) {
4794        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4795        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4796                              ThisElt, DAG.getConstant(8, MVT::i8));
4797        if (LastIsNonZero)
4798          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4799      } else
4800        ThisElt = LastElt;
4801
4802      if (ThisElt.getNode())
4803        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4804                        DAG.getIntPtrConstant(i/2));
4805    }
4806  }
4807
4808  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4809}
4810
4811/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4812///
4813static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4814                                     unsigned NumNonZero, unsigned NumZero,
4815                                     SelectionDAG &DAG,
4816                                     const TargetLowering &TLI) {
4817  if (NumNonZero > 4)
4818    return SDValue();
4819
4820  DebugLoc dl = Op.getDebugLoc();
4821  SDValue V(0, 0);
4822  bool First = true;
4823  for (unsigned i = 0; i < 8; ++i) {
4824    bool isNonZero = (NonZeros & (1 << i)) != 0;
4825    if (isNonZero) {
4826      if (First) {
4827        if (NumZero)
4828          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4829        else
4830          V = DAG.getUNDEF(MVT::v8i16);
4831        First = false;
4832      }
4833      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4834                      MVT::v8i16, V, Op.getOperand(i),
4835                      DAG.getIntPtrConstant(i));
4836    }
4837  }
4838
4839  return V;
4840}
4841
4842/// getVShift - Return a vector logical shift node.
4843///
4844static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4845                         unsigned NumBits, SelectionDAG &DAG,
4846                         const TargetLowering &TLI, DebugLoc dl) {
4847  EVT ShVT = MVT::v2i64;
4848  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4849  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4850  return DAG.getNode(ISD::BITCAST, dl, VT,
4851                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4852                             DAG.getConstant(NumBits,
4853                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4854}
4855
4856SDValue
4857X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4858                                          SelectionDAG &DAG) const {
4859
4860  // Check if the scalar load can be widened into a vector load. And if
4861  // the address is "base + cst" see if the cst can be "absorbed" into
4862  // the shuffle mask.
4863  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4864    SDValue Ptr = LD->getBasePtr();
4865    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4866      return SDValue();
4867    EVT PVT = LD->getValueType(0);
4868    if (PVT != MVT::i32 && PVT != MVT::f32)
4869      return SDValue();
4870
4871    int FI = -1;
4872    int64_t Offset = 0;
4873    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4874      FI = FINode->getIndex();
4875      Offset = 0;
4876    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4877               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4878      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4879      Offset = Ptr.getConstantOperandVal(1);
4880      Ptr = Ptr.getOperand(0);
4881    } else {
4882      return SDValue();
4883    }
4884
4885    // FIXME: 256-bit vector instructions don't require a strict alignment,
4886    // improve this code to support it better.
4887    unsigned RequiredAlign = VT.getSizeInBits()/8;
4888    SDValue Chain = LD->getChain();
4889    // Make sure the stack object alignment is at least 16 or 32.
4890    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4891    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4892      if (MFI->isFixedObjectIndex(FI)) {
4893        // Can't change the alignment. FIXME: It's possible to compute
4894        // the exact stack offset and reference FI + adjust offset instead.
4895        // If someone *really* cares about this. That's the way to implement it.
4896        return SDValue();
4897      } else {
4898        MFI->setObjectAlignment(FI, RequiredAlign);
4899      }
4900    }
4901
4902    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4903    // Ptr + (Offset & ~15).
4904    if (Offset < 0)
4905      return SDValue();
4906    if ((Offset % RequiredAlign) & 3)
4907      return SDValue();
4908    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4909    if (StartOffset)
4910      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4911                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4912
4913    int EltNo = (Offset - StartOffset) >> 2;
4914    int NumElems = VT.getVectorNumElements();
4915
4916    EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4917    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4918    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4919                             LD->getPointerInfo().getWithOffset(StartOffset),
4920                             false, false, 0);
4921
4922    // Canonicalize it to a v4i32 or v8i32 shuffle.
4923    SmallVector<int, 8> Mask;
4924    for (int i = 0; i < NumElems; ++i)
4925      Mask.push_back(EltNo);
4926
4927    V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4928    return DAG.getNode(ISD::BITCAST, dl, NVT,
4929                       DAG.getVectorShuffle(CanonVT, dl, V1,
4930                                            DAG.getUNDEF(CanonVT),&Mask[0]));
4931  }
4932
4933  return SDValue();
4934}
4935
4936/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4937/// vector of type 'VT', see if the elements can be replaced by a single large
4938/// load which has the same value as a build_vector whose operands are 'elts'.
4939///
4940/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4941///
4942/// FIXME: we'd also like to handle the case where the last elements are zero
4943/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4944/// There's even a handy isZeroNode for that purpose.
4945static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4946                                        DebugLoc &DL, SelectionDAG &DAG) {
4947  EVT EltVT = VT.getVectorElementType();
4948  unsigned NumElems = Elts.size();
4949
4950  LoadSDNode *LDBase = NULL;
4951  unsigned LastLoadedElt = -1U;
4952
4953  // For each element in the initializer, see if we've found a load or an undef.
4954  // If we don't find an initial load element, or later load elements are
4955  // non-consecutive, bail out.
4956  for (unsigned i = 0; i < NumElems; ++i) {
4957    SDValue Elt = Elts[i];
4958
4959    if (!Elt.getNode() ||
4960        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4961      return SDValue();
4962    if (!LDBase) {
4963      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4964        return SDValue();
4965      LDBase = cast<LoadSDNode>(Elt.getNode());
4966      LastLoadedElt = i;
4967      continue;
4968    }
4969    if (Elt.getOpcode() == ISD::UNDEF)
4970      continue;
4971
4972    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4973    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4974      return SDValue();
4975    LastLoadedElt = i;
4976  }
4977
4978  // If we have found an entire vector of loads and undefs, then return a large
4979  // load of the entire vector width starting at the base pointer.  If we found
4980  // consecutive loads for the low half, generate a vzext_load node.
4981  if (LastLoadedElt == NumElems - 1) {
4982    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4983      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4984                         LDBase->getPointerInfo(),
4985                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4986    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4987                       LDBase->getPointerInfo(),
4988                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4989                       LDBase->getAlignment());
4990  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4991             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4992    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4993    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4994    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4995                                              Ops, 2, MVT::i32,
4996                                              LDBase->getMemOperand());
4997    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4998  }
4999  return SDValue();
5000}
5001
5002SDValue
5003X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5004  DebugLoc dl = Op.getDebugLoc();
5005
5006  EVT VT = Op.getValueType();
5007  EVT ExtVT = VT.getVectorElementType();
5008  unsigned NumElems = Op.getNumOperands();
5009
5010  // Vectors containing all zeros can be matched by pxor and xorps later
5011  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5012    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5013    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5014    if (Op.getValueType() == MVT::v4i32 ||
5015        Op.getValueType() == MVT::v8i32)
5016      return Op;
5017
5018    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
5019  }
5020
5021  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5022  // vectors or broken into v4i32 operations on 256-bit vectors.
5023  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5024    if (Op.getValueType() == MVT::v4i32)
5025      return Op;
5026
5027    return getOnesVector(Op.getValueType(), DAG, dl);
5028  }
5029
5030  unsigned EVTBits = ExtVT.getSizeInBits();
5031
5032  unsigned NumZero  = 0;
5033  unsigned NumNonZero = 0;
5034  unsigned NonZeros = 0;
5035  bool IsAllConstants = true;
5036  SmallSet<SDValue, 8> Values;
5037  for (unsigned i = 0; i < NumElems; ++i) {
5038    SDValue Elt = Op.getOperand(i);
5039    if (Elt.getOpcode() == ISD::UNDEF)
5040      continue;
5041    Values.insert(Elt);
5042    if (Elt.getOpcode() != ISD::Constant &&
5043        Elt.getOpcode() != ISD::ConstantFP)
5044      IsAllConstants = false;
5045    if (X86::isZeroNode(Elt))
5046      NumZero++;
5047    else {
5048      NonZeros |= (1 << i);
5049      NumNonZero++;
5050    }
5051  }
5052
5053  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5054  if (NumNonZero == 0)
5055    return DAG.getUNDEF(VT);
5056
5057  // Special case for single non-zero, non-undef, element.
5058  if (NumNonZero == 1) {
5059    unsigned Idx = CountTrailingZeros_32(NonZeros);
5060    SDValue Item = Op.getOperand(Idx);
5061
5062    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5063    // the value are obviously zero, truncate the value to i32 and do the
5064    // insertion that way.  Only do this if the value is non-constant or if the
5065    // value is a constant being inserted into element 0.  It is cheaper to do
5066    // a constant pool load than it is to do a movd + shuffle.
5067    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5068        (!IsAllConstants || Idx == 0)) {
5069      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5070        // Handle SSE only.
5071        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5072        EVT VecVT = MVT::v4i32;
5073        unsigned VecElts = 4;
5074
5075        // Truncate the value (which may itself be a constant) to i32, and
5076        // convert it to a vector with movd (S2V+shuffle to zero extend).
5077        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5078        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5079        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5080                                           Subtarget->hasSSE2(), DAG);
5081
5082        // Now we have our 32-bit value zero extended in the low element of
5083        // a vector.  If Idx != 0, swizzle it into place.
5084        if (Idx != 0) {
5085          SmallVector<int, 4> Mask;
5086          Mask.push_back(Idx);
5087          for (unsigned i = 1; i != VecElts; ++i)
5088            Mask.push_back(i);
5089          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5090                                      DAG.getUNDEF(Item.getValueType()),
5091                                      &Mask[0]);
5092        }
5093        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5094      }
5095    }
5096
5097    // If we have a constant or non-constant insertion into the low element of
5098    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5099    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5100    // depending on what the source datatype is.
5101    if (Idx == 0) {
5102      if (NumZero == 0) {
5103        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5104      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5105          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5106        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5107        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5108        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
5109                                           DAG);
5110      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5111        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5112        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5113        EVT MiddleVT = MVT::v4i32;
5114        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5115        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5116                                           Subtarget->hasSSE2(), DAG);
5117        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5118      }
5119    }
5120
5121    // Is it a vector logical left shift?
5122    if (NumElems == 2 && Idx == 1 &&
5123        X86::isZeroNode(Op.getOperand(0)) &&
5124        !X86::isZeroNode(Op.getOperand(1))) {
5125      unsigned NumBits = VT.getSizeInBits();
5126      return getVShift(true, VT,
5127                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5128                                   VT, Op.getOperand(1)),
5129                       NumBits/2, DAG, *this, dl);
5130    }
5131
5132    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5133      return SDValue();
5134
5135    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5136    // is a non-constant being inserted into an element other than the low one,
5137    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5138    // movd/movss) to move this into the low element, then shuffle it into
5139    // place.
5140    if (EVTBits == 32) {
5141      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5142
5143      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5144      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5145                                         Subtarget->hasSSE2(), DAG);
5146      SmallVector<int, 8> MaskVec;
5147      for (unsigned i = 0; i < NumElems; i++)
5148        MaskVec.push_back(i == Idx ? 0 : 1);
5149      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5150    }
5151  }
5152
5153  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5154  if (Values.size() == 1) {
5155    if (EVTBits == 32) {
5156      // Instead of a shuffle like this:
5157      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5158      // Check if it's possible to issue this instead.
5159      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5160      unsigned Idx = CountTrailingZeros_32(NonZeros);
5161      SDValue Item = Op.getOperand(Idx);
5162      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5163        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5164    }
5165    return SDValue();
5166  }
5167
5168  // A vector full of immediates; various special cases are already
5169  // handled, so this is best done with a single constant-pool load.
5170  if (IsAllConstants)
5171    return SDValue();
5172
5173  // For AVX-length vectors, build the individual 128-bit pieces and use
5174  // shuffles to put them in place.
5175  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5176    SmallVector<SDValue, 32> V;
5177    for (unsigned i = 0; i < NumElems; ++i)
5178      V.push_back(Op.getOperand(i));
5179
5180    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5181
5182    // Build both the lower and upper subvector.
5183    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5184    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5185                                NumElems/2);
5186
5187    // Recreate the wider vector with the lower and upper part.
5188    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5189                                DAG.getConstant(0, MVT::i32), DAG, dl);
5190    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5191                              DAG, dl);
5192  }
5193
5194  // Let legalizer expand 2-wide build_vectors.
5195  if (EVTBits == 64) {
5196    if (NumNonZero == 1) {
5197      // One half is zero or undef.
5198      unsigned Idx = CountTrailingZeros_32(NonZeros);
5199      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5200                                 Op.getOperand(Idx));
5201      return getShuffleVectorZeroOrUndef(V2, Idx, true,
5202                                         Subtarget->hasSSE2(), DAG);
5203    }
5204    return SDValue();
5205  }
5206
5207  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5208  if (EVTBits == 8 && NumElems == 16) {
5209    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5210                                        *this);
5211    if (V.getNode()) return V;
5212  }
5213
5214  if (EVTBits == 16 && NumElems == 8) {
5215    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5216                                      *this);
5217    if (V.getNode()) return V;
5218  }
5219
5220  // If element VT is == 32 bits, turn it into a number of shuffles.
5221  SmallVector<SDValue, 8> V;
5222  V.resize(NumElems);
5223  if (NumElems == 4 && NumZero > 0) {
5224    for (unsigned i = 0; i < 4; ++i) {
5225      bool isZero = !(NonZeros & (1 << i));
5226      if (isZero)
5227        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5228      else
5229        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5230    }
5231
5232    for (unsigned i = 0; i < 2; ++i) {
5233      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5234        default: break;
5235        case 0:
5236          V[i] = V[i*2];  // Must be a zero vector.
5237          break;
5238        case 1:
5239          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5240          break;
5241        case 2:
5242          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5243          break;
5244        case 3:
5245          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5246          break;
5247      }
5248    }
5249
5250    SmallVector<int, 8> MaskVec;
5251    bool Reverse = (NonZeros & 0x3) == 2;
5252    for (unsigned i = 0; i < 2; ++i)
5253      MaskVec.push_back(Reverse ? 1-i : i);
5254    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5255    for (unsigned i = 0; i < 2; ++i)
5256      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5257    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5258  }
5259
5260  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5261    // Check for a build vector of consecutive loads.
5262    for (unsigned i = 0; i < NumElems; ++i)
5263      V[i] = Op.getOperand(i);
5264
5265    // Check for elements which are consecutive loads.
5266    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5267    if (LD.getNode())
5268      return LD;
5269
5270    // For SSE 4.1, use insertps to put the high elements into the low element.
5271    if (getSubtarget()->hasSSE41()) {
5272      SDValue Result;
5273      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5274        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5275      else
5276        Result = DAG.getUNDEF(VT);
5277
5278      for (unsigned i = 1; i < NumElems; ++i) {
5279        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5280        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5281                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5282      }
5283      return Result;
5284    }
5285
5286    // Otherwise, expand into a number of unpckl*, start by extending each of
5287    // our (non-undef) elements to the full vector width with the element in the
5288    // bottom slot of the vector (which generates no code for SSE).
5289    for (unsigned i = 0; i < NumElems; ++i) {
5290      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5291        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5292      else
5293        V[i] = DAG.getUNDEF(VT);
5294    }
5295
5296    // Next, we iteratively mix elements, e.g. for v4f32:
5297    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5298    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5299    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5300    unsigned EltStride = NumElems >> 1;
5301    while (EltStride != 0) {
5302      for (unsigned i = 0; i < EltStride; ++i) {
5303        // If V[i+EltStride] is undef and this is the first round of mixing,
5304        // then it is safe to just drop this shuffle: V[i] is already in the
5305        // right place, the one element (since it's the first round) being
5306        // inserted as undef can be dropped.  This isn't safe for successive
5307        // rounds because they will permute elements within both vectors.
5308        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5309            EltStride == NumElems/2)
5310          continue;
5311
5312        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5313      }
5314      EltStride >>= 1;
5315    }
5316    return V[0];
5317  }
5318  return SDValue();
5319}
5320
5321// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5322// them in a MMX register.  This is better than doing a stack convert.
5323static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5324  DebugLoc dl = Op.getDebugLoc();
5325  EVT ResVT = Op.getValueType();
5326
5327  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5328         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5329  int Mask[2];
5330  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5331  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5332  InVec = Op.getOperand(1);
5333  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5334    unsigned NumElts = ResVT.getVectorNumElements();
5335    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5336    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5337                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5338  } else {
5339    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5340    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5341    Mask[0] = 0; Mask[1] = 2;
5342    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5343  }
5344  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5345}
5346
5347// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5348// to create 256-bit vectors from two other 128-bit ones.
5349static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5350  DebugLoc dl = Op.getDebugLoc();
5351  EVT ResVT = Op.getValueType();
5352
5353  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5354
5355  SDValue V1 = Op.getOperand(0);
5356  SDValue V2 = Op.getOperand(1);
5357  unsigned NumElems = ResVT.getVectorNumElements();
5358
5359  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5360                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5361  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5362                            DAG, dl);
5363}
5364
5365SDValue
5366X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5367  EVT ResVT = Op.getValueType();
5368
5369  assert(Op.getNumOperands() == 2);
5370  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5371         "Unsupported CONCAT_VECTORS for value type");
5372
5373  // We support concatenate two MMX registers and place them in a MMX register.
5374  // This is better than doing a stack convert.
5375  if (ResVT.is128BitVector())
5376    return LowerMMXCONCAT_VECTORS(Op, DAG);
5377
5378  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5379  // from two other 128-bit ones.
5380  return LowerAVXCONCAT_VECTORS(Op, DAG);
5381}
5382
5383// v8i16 shuffles - Prefer shuffles in the following order:
5384// 1. [all]   pshuflw, pshufhw, optional move
5385// 2. [ssse3] 1 x pshufb
5386// 3. [ssse3] 2 x pshufb + 1 x por
5387// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5388SDValue
5389X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5390                                            SelectionDAG &DAG) const {
5391  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5392  SDValue V1 = SVOp->getOperand(0);
5393  SDValue V2 = SVOp->getOperand(1);
5394  DebugLoc dl = SVOp->getDebugLoc();
5395  SmallVector<int, 8> MaskVals;
5396
5397  // Determine if more than 1 of the words in each of the low and high quadwords
5398  // of the result come from the same quadword of one of the two inputs.  Undef
5399  // mask values count as coming from any quadword, for better codegen.
5400  SmallVector<unsigned, 4> LoQuad(4);
5401  SmallVector<unsigned, 4> HiQuad(4);
5402  BitVector InputQuads(4);
5403  for (unsigned i = 0; i < 8; ++i) {
5404    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5405    int EltIdx = SVOp->getMaskElt(i);
5406    MaskVals.push_back(EltIdx);
5407    if (EltIdx < 0) {
5408      ++Quad[0];
5409      ++Quad[1];
5410      ++Quad[2];
5411      ++Quad[3];
5412      continue;
5413    }
5414    ++Quad[EltIdx / 4];
5415    InputQuads.set(EltIdx / 4);
5416  }
5417
5418  int BestLoQuad = -1;
5419  unsigned MaxQuad = 1;
5420  for (unsigned i = 0; i < 4; ++i) {
5421    if (LoQuad[i] > MaxQuad) {
5422      BestLoQuad = i;
5423      MaxQuad = LoQuad[i];
5424    }
5425  }
5426
5427  int BestHiQuad = -1;
5428  MaxQuad = 1;
5429  for (unsigned i = 0; i < 4; ++i) {
5430    if (HiQuad[i] > MaxQuad) {
5431      BestHiQuad = i;
5432      MaxQuad = HiQuad[i];
5433    }
5434  }
5435
5436  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5437  // of the two input vectors, shuffle them into one input vector so only a
5438  // single pshufb instruction is necessary. If There are more than 2 input
5439  // quads, disable the next transformation since it does not help SSSE3.
5440  bool V1Used = InputQuads[0] || InputQuads[1];
5441  bool V2Used = InputQuads[2] || InputQuads[3];
5442  if (Subtarget->hasSSSE3()) {
5443    if (InputQuads.count() == 2 && V1Used && V2Used) {
5444      BestLoQuad = InputQuads.find_first();
5445      BestHiQuad = InputQuads.find_next(BestLoQuad);
5446    }
5447    if (InputQuads.count() > 2) {
5448      BestLoQuad = -1;
5449      BestHiQuad = -1;
5450    }
5451  }
5452
5453  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5454  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5455  // words from all 4 input quadwords.
5456  SDValue NewV;
5457  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5458    SmallVector<int, 8> MaskV;
5459    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5460    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5461    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5462                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5463                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5464    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5465
5466    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5467    // source words for the shuffle, to aid later transformations.
5468    bool AllWordsInNewV = true;
5469    bool InOrder[2] = { true, true };
5470    for (unsigned i = 0; i != 8; ++i) {
5471      int idx = MaskVals[i];
5472      if (idx != (int)i)
5473        InOrder[i/4] = false;
5474      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5475        continue;
5476      AllWordsInNewV = false;
5477      break;
5478    }
5479
5480    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5481    if (AllWordsInNewV) {
5482      for (int i = 0; i != 8; ++i) {
5483        int idx = MaskVals[i];
5484        if (idx < 0)
5485          continue;
5486        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5487        if ((idx != i) && idx < 4)
5488          pshufhw = false;
5489        if ((idx != i) && idx > 3)
5490          pshuflw = false;
5491      }
5492      V1 = NewV;
5493      V2Used = false;
5494      BestLoQuad = 0;
5495      BestHiQuad = 1;
5496    }
5497
5498    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5499    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5500    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5501      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5502      unsigned TargetMask = 0;
5503      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5504                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5505      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5506                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5507      V1 = NewV.getOperand(0);
5508      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5509    }
5510  }
5511
5512  // If we have SSSE3, and all words of the result are from 1 input vector,
5513  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5514  // is present, fall back to case 4.
5515  if (Subtarget->hasSSSE3()) {
5516    SmallVector<SDValue,16> pshufbMask;
5517
5518    // If we have elements from both input vectors, set the high bit of the
5519    // shuffle mask element to zero out elements that come from V2 in the V1
5520    // mask, and elements that come from V1 in the V2 mask, so that the two
5521    // results can be OR'd together.
5522    bool TwoInputs = V1Used && V2Used;
5523    for (unsigned i = 0; i != 8; ++i) {
5524      int EltIdx = MaskVals[i] * 2;
5525      if (TwoInputs && (EltIdx >= 16)) {
5526        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5527        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5528        continue;
5529      }
5530      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5531      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5532    }
5533    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5534    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5535                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5536                                 MVT::v16i8, &pshufbMask[0], 16));
5537    if (!TwoInputs)
5538      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5539
5540    // Calculate the shuffle mask for the second input, shuffle it, and
5541    // OR it with the first shuffled input.
5542    pshufbMask.clear();
5543    for (unsigned i = 0; i != 8; ++i) {
5544      int EltIdx = MaskVals[i] * 2;
5545      if (EltIdx < 16) {
5546        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5547        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5548        continue;
5549      }
5550      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5551      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5552    }
5553    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5554    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5555                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5556                                 MVT::v16i8, &pshufbMask[0], 16));
5557    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5558    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5559  }
5560
5561  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5562  // and update MaskVals with new element order.
5563  BitVector InOrder(8);
5564  if (BestLoQuad >= 0) {
5565    SmallVector<int, 8> MaskV;
5566    for (int i = 0; i != 4; ++i) {
5567      int idx = MaskVals[i];
5568      if (idx < 0) {
5569        MaskV.push_back(-1);
5570        InOrder.set(i);
5571      } else if ((idx / 4) == BestLoQuad) {
5572        MaskV.push_back(idx & 3);
5573        InOrder.set(i);
5574      } else {
5575        MaskV.push_back(-1);
5576      }
5577    }
5578    for (unsigned i = 4; i != 8; ++i)
5579      MaskV.push_back(i);
5580    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5581                                &MaskV[0]);
5582
5583    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5584      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5585                               NewV.getOperand(0),
5586                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5587                               DAG);
5588  }
5589
5590  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5591  // and update MaskVals with the new element order.
5592  if (BestHiQuad >= 0) {
5593    SmallVector<int, 8> MaskV;
5594    for (unsigned i = 0; i != 4; ++i)
5595      MaskV.push_back(i);
5596    for (unsigned i = 4; i != 8; ++i) {
5597      int idx = MaskVals[i];
5598      if (idx < 0) {
5599        MaskV.push_back(-1);
5600        InOrder.set(i);
5601      } else if ((idx / 4) == BestHiQuad) {
5602        MaskV.push_back((idx & 3) + 4);
5603        InOrder.set(i);
5604      } else {
5605        MaskV.push_back(-1);
5606      }
5607    }
5608    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5609                                &MaskV[0]);
5610
5611    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5612      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5613                              NewV.getOperand(0),
5614                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5615                              DAG);
5616  }
5617
5618  // In case BestHi & BestLo were both -1, which means each quadword has a word
5619  // from each of the four input quadwords, calculate the InOrder bitvector now
5620  // before falling through to the insert/extract cleanup.
5621  if (BestLoQuad == -1 && BestHiQuad == -1) {
5622    NewV = V1;
5623    for (int i = 0; i != 8; ++i)
5624      if (MaskVals[i] < 0 || MaskVals[i] == i)
5625        InOrder.set(i);
5626  }
5627
5628  // The other elements are put in the right place using pextrw and pinsrw.
5629  for (unsigned i = 0; i != 8; ++i) {
5630    if (InOrder[i])
5631      continue;
5632    int EltIdx = MaskVals[i];
5633    if (EltIdx < 0)
5634      continue;
5635    SDValue ExtOp = (EltIdx < 8)
5636    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5637                  DAG.getIntPtrConstant(EltIdx))
5638    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5639                  DAG.getIntPtrConstant(EltIdx - 8));
5640    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5641                       DAG.getIntPtrConstant(i));
5642  }
5643  return NewV;
5644}
5645
5646// v16i8 shuffles - Prefer shuffles in the following order:
5647// 1. [ssse3] 1 x pshufb
5648// 2. [ssse3] 2 x pshufb + 1 x por
5649// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5650static
5651SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5652                                 SelectionDAG &DAG,
5653                                 const X86TargetLowering &TLI) {
5654  SDValue V1 = SVOp->getOperand(0);
5655  SDValue V2 = SVOp->getOperand(1);
5656  DebugLoc dl = SVOp->getDebugLoc();
5657  SmallVector<int, 16> MaskVals;
5658  SVOp->getMask(MaskVals);
5659
5660  // If we have SSSE3, case 1 is generated when all result bytes come from
5661  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5662  // present, fall back to case 3.
5663  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5664  bool V1Only = true;
5665  bool V2Only = true;
5666  for (unsigned i = 0; i < 16; ++i) {
5667    int EltIdx = MaskVals[i];
5668    if (EltIdx < 0)
5669      continue;
5670    if (EltIdx < 16)
5671      V2Only = false;
5672    else
5673      V1Only = false;
5674  }
5675
5676  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5677  if (TLI.getSubtarget()->hasSSSE3()) {
5678    SmallVector<SDValue,16> pshufbMask;
5679
5680    // If all result elements are from one input vector, then only translate
5681    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5682    //
5683    // Otherwise, we have elements from both input vectors, and must zero out
5684    // elements that come from V2 in the first mask, and V1 in the second mask
5685    // so that we can OR them together.
5686    bool TwoInputs = !(V1Only || V2Only);
5687    for (unsigned i = 0; i != 16; ++i) {
5688      int EltIdx = MaskVals[i];
5689      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5690        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5691        continue;
5692      }
5693      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5694    }
5695    // If all the elements are from V2, assign it to V1 and return after
5696    // building the first pshufb.
5697    if (V2Only)
5698      V1 = V2;
5699    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5700                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5701                                 MVT::v16i8, &pshufbMask[0], 16));
5702    if (!TwoInputs)
5703      return V1;
5704
5705    // Calculate the shuffle mask for the second input, shuffle it, and
5706    // OR it with the first shuffled input.
5707    pshufbMask.clear();
5708    for (unsigned i = 0; i != 16; ++i) {
5709      int EltIdx = MaskVals[i];
5710      if (EltIdx < 16) {
5711        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5712        continue;
5713      }
5714      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5715    }
5716    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5717                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5718                                 MVT::v16i8, &pshufbMask[0], 16));
5719    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5720  }
5721
5722  // No SSSE3 - Calculate in place words and then fix all out of place words
5723  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5724  // the 16 different words that comprise the two doublequadword input vectors.
5725  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5726  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5727  SDValue NewV = V2Only ? V2 : V1;
5728  for (int i = 0; i != 8; ++i) {
5729    int Elt0 = MaskVals[i*2];
5730    int Elt1 = MaskVals[i*2+1];
5731
5732    // This word of the result is all undef, skip it.
5733    if (Elt0 < 0 && Elt1 < 0)
5734      continue;
5735
5736    // This word of the result is already in the correct place, skip it.
5737    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5738      continue;
5739    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5740      continue;
5741
5742    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5743    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5744    SDValue InsElt;
5745
5746    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5747    // using a single extract together, load it and store it.
5748    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5749      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5750                           DAG.getIntPtrConstant(Elt1 / 2));
5751      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5752                        DAG.getIntPtrConstant(i));
5753      continue;
5754    }
5755
5756    // If Elt1 is defined, extract it from the appropriate source.  If the
5757    // source byte is not also odd, shift the extracted word left 8 bits
5758    // otherwise clear the bottom 8 bits if we need to do an or.
5759    if (Elt1 >= 0) {
5760      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5761                           DAG.getIntPtrConstant(Elt1 / 2));
5762      if ((Elt1 & 1) == 0)
5763        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5764                             DAG.getConstant(8,
5765                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5766      else if (Elt0 >= 0)
5767        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5768                             DAG.getConstant(0xFF00, MVT::i16));
5769    }
5770    // If Elt0 is defined, extract it from the appropriate source.  If the
5771    // source byte is not also even, shift the extracted word right 8 bits. If
5772    // Elt1 was also defined, OR the extracted values together before
5773    // inserting them in the result.
5774    if (Elt0 >= 0) {
5775      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5776                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5777      if ((Elt0 & 1) != 0)
5778        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5779                              DAG.getConstant(8,
5780                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5781      else if (Elt1 >= 0)
5782        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5783                             DAG.getConstant(0x00FF, MVT::i16));
5784      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5785                         : InsElt0;
5786    }
5787    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5788                       DAG.getIntPtrConstant(i));
5789  }
5790  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5791}
5792
5793/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5794/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5795/// done when every pair / quad of shuffle mask elements point to elements in
5796/// the right sequence. e.g.
5797/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5798static
5799SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5800                                 SelectionDAG &DAG, DebugLoc dl) {
5801  EVT VT = SVOp->getValueType(0);
5802  SDValue V1 = SVOp->getOperand(0);
5803  SDValue V2 = SVOp->getOperand(1);
5804  unsigned NumElems = VT.getVectorNumElements();
5805  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5806  EVT NewVT;
5807  switch (VT.getSimpleVT().SimpleTy) {
5808  default: assert(false && "Unexpected!");
5809  case MVT::v4f32: NewVT = MVT::v2f64; break;
5810  case MVT::v4i32: NewVT = MVT::v2i64; break;
5811  case MVT::v8i16: NewVT = MVT::v4i32; break;
5812  case MVT::v16i8: NewVT = MVT::v4i32; break;
5813  }
5814
5815  int Scale = NumElems / NewWidth;
5816  SmallVector<int, 8> MaskVec;
5817  for (unsigned i = 0; i < NumElems; i += Scale) {
5818    int StartIdx = -1;
5819    for (int j = 0; j < Scale; ++j) {
5820      int EltIdx = SVOp->getMaskElt(i+j);
5821      if (EltIdx < 0)
5822        continue;
5823      if (StartIdx == -1)
5824        StartIdx = EltIdx - (EltIdx % Scale);
5825      if (EltIdx != StartIdx + j)
5826        return SDValue();
5827    }
5828    if (StartIdx == -1)
5829      MaskVec.push_back(-1);
5830    else
5831      MaskVec.push_back(StartIdx / Scale);
5832  }
5833
5834  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5835  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5836  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5837}
5838
5839/// getVZextMovL - Return a zero-extending vector move low node.
5840///
5841static SDValue getVZextMovL(EVT VT, EVT OpVT,
5842                            SDValue SrcOp, SelectionDAG &DAG,
5843                            const X86Subtarget *Subtarget, DebugLoc dl) {
5844  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5845    LoadSDNode *LD = NULL;
5846    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5847      LD = dyn_cast<LoadSDNode>(SrcOp);
5848    if (!LD) {
5849      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5850      // instead.
5851      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5852      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5853          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5854          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5855          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5856        // PR2108
5857        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5858        return DAG.getNode(ISD::BITCAST, dl, VT,
5859                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5860                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5861                                                   OpVT,
5862                                                   SrcOp.getOperand(0)
5863                                                          .getOperand(0))));
5864      }
5865    }
5866  }
5867
5868  return DAG.getNode(ISD::BITCAST, dl, VT,
5869                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5870                                 DAG.getNode(ISD::BITCAST, dl,
5871                                             OpVT, SrcOp)));
5872}
5873
5874/// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5875/// shuffle node referes to only one lane in the sources.
5876static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5877  EVT VT = SVOp->getValueType(0);
5878  int NumElems = VT.getVectorNumElements();
5879  int HalfSize = NumElems/2;
5880  SmallVector<int, 16> M;
5881  SVOp->getMask(M);
5882  bool MatchA = false, MatchB = false;
5883
5884  for (int l = 0; l < NumElems*2; l += HalfSize) {
5885    if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5886      MatchA = true;
5887      break;
5888    }
5889  }
5890
5891  for (int l = 0; l < NumElems*2; l += HalfSize) {
5892    if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5893      MatchB = true;
5894      break;
5895    }
5896  }
5897
5898  return MatchA && MatchB;
5899}
5900
5901/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5902/// which could not be matched by any known target speficic shuffle
5903static SDValue
5904LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5905  if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5906    // If each half of a vector shuffle node referes to only one lane in the
5907    // source vectors, extract each used 128-bit lane and shuffle them using
5908    // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5909    // the work to the legalizer.
5910    DebugLoc dl = SVOp->getDebugLoc();
5911    EVT VT = SVOp->getValueType(0);
5912    int NumElems = VT.getVectorNumElements();
5913    int HalfSize = NumElems/2;
5914
5915    // Extract the reference for each half
5916    int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5917    int FstVecOpNum = 0, SndVecOpNum = 0;
5918    for (int i = 0; i < HalfSize; ++i) {
5919      int Elt = SVOp->getMaskElt(i);
5920      if (SVOp->getMaskElt(i) < 0)
5921        continue;
5922      FstVecOpNum = Elt/NumElems;
5923      FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5924      break;
5925    }
5926    for (int i = HalfSize; i < NumElems; ++i) {
5927      int Elt = SVOp->getMaskElt(i);
5928      if (SVOp->getMaskElt(i) < 0)
5929        continue;
5930      SndVecOpNum = Elt/NumElems;
5931      SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5932      break;
5933    }
5934
5935    // Extract the subvectors
5936    SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5937                      DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5938    SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5939                      DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5940
5941    // Generate 128-bit shuffles
5942    SmallVector<int, 16> MaskV1, MaskV2;
5943    for (int i = 0; i < HalfSize; ++i) {
5944      int Elt = SVOp->getMaskElt(i);
5945      MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5946    }
5947    for (int i = HalfSize; i < NumElems; ++i) {
5948      int Elt = SVOp->getMaskElt(i);
5949      MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5950    }
5951
5952    EVT NVT = V1.getValueType();
5953    V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5954    V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
5955
5956    // Concatenate the result back
5957    SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
5958                                   DAG.getConstant(0, MVT::i32), DAG, dl);
5959    return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5960                              DAG, dl);
5961  }
5962
5963  return SDValue();
5964}
5965
5966/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5967/// 4 elements, and match them with several different shuffle types.
5968static SDValue
5969LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5970  SDValue V1 = SVOp->getOperand(0);
5971  SDValue V2 = SVOp->getOperand(1);
5972  DebugLoc dl = SVOp->getDebugLoc();
5973  EVT VT = SVOp->getValueType(0);
5974
5975  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5976
5977  SmallVector<std::pair<int, int>, 8> Locs;
5978  Locs.resize(4);
5979  SmallVector<int, 8> Mask1(4U, -1);
5980  SmallVector<int, 8> PermMask;
5981  SVOp->getMask(PermMask);
5982
5983  unsigned NumHi = 0;
5984  unsigned NumLo = 0;
5985  for (unsigned i = 0; i != 4; ++i) {
5986    int Idx = PermMask[i];
5987    if (Idx < 0) {
5988      Locs[i] = std::make_pair(-1, -1);
5989    } else {
5990      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5991      if (Idx < 4) {
5992        Locs[i] = std::make_pair(0, NumLo);
5993        Mask1[NumLo] = Idx;
5994        NumLo++;
5995      } else {
5996        Locs[i] = std::make_pair(1, NumHi);
5997        if (2+NumHi < 4)
5998          Mask1[2+NumHi] = Idx;
5999        NumHi++;
6000      }
6001    }
6002  }
6003
6004  if (NumLo <= 2 && NumHi <= 2) {
6005    // If no more than two elements come from either vector. This can be
6006    // implemented with two shuffles. First shuffle gather the elements.
6007    // The second shuffle, which takes the first shuffle as both of its
6008    // vector operands, put the elements into the right order.
6009    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6010
6011    SmallVector<int, 8> Mask2(4U, -1);
6012
6013    for (unsigned i = 0; i != 4; ++i) {
6014      if (Locs[i].first == -1)
6015        continue;
6016      else {
6017        unsigned Idx = (i < 2) ? 0 : 4;
6018        Idx += Locs[i].first * 2 + Locs[i].second;
6019        Mask2[i] = Idx;
6020      }
6021    }
6022
6023    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6024  } else if (NumLo == 3 || NumHi == 3) {
6025    // Otherwise, we must have three elements from one vector, call it X, and
6026    // one element from the other, call it Y.  First, use a shufps to build an
6027    // intermediate vector with the one element from Y and the element from X
6028    // that will be in the same half in the final destination (the indexes don't
6029    // matter). Then, use a shufps to build the final vector, taking the half
6030    // containing the element from Y from the intermediate, and the other half
6031    // from X.
6032    if (NumHi == 3) {
6033      // Normalize it so the 3 elements come from V1.
6034      CommuteVectorShuffleMask(PermMask, VT);
6035      std::swap(V1, V2);
6036    }
6037
6038    // Find the element from V2.
6039    unsigned HiIndex;
6040    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6041      int Val = PermMask[HiIndex];
6042      if (Val < 0)
6043        continue;
6044      if (Val >= 4)
6045        break;
6046    }
6047
6048    Mask1[0] = PermMask[HiIndex];
6049    Mask1[1] = -1;
6050    Mask1[2] = PermMask[HiIndex^1];
6051    Mask1[3] = -1;
6052    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6053
6054    if (HiIndex >= 2) {
6055      Mask1[0] = PermMask[0];
6056      Mask1[1] = PermMask[1];
6057      Mask1[2] = HiIndex & 1 ? 6 : 4;
6058      Mask1[3] = HiIndex & 1 ? 4 : 6;
6059      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6060    } else {
6061      Mask1[0] = HiIndex & 1 ? 2 : 0;
6062      Mask1[1] = HiIndex & 1 ? 0 : 2;
6063      Mask1[2] = PermMask[2];
6064      Mask1[3] = PermMask[3];
6065      if (Mask1[2] >= 0)
6066        Mask1[2] += 4;
6067      if (Mask1[3] >= 0)
6068        Mask1[3] += 4;
6069      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6070    }
6071  }
6072
6073  // Break it into (shuffle shuffle_hi, shuffle_lo).
6074  Locs.clear();
6075  Locs.resize(4);
6076  SmallVector<int,8> LoMask(4U, -1);
6077  SmallVector<int,8> HiMask(4U, -1);
6078
6079  SmallVector<int,8> *MaskPtr = &LoMask;
6080  unsigned MaskIdx = 0;
6081  unsigned LoIdx = 0;
6082  unsigned HiIdx = 2;
6083  for (unsigned i = 0; i != 4; ++i) {
6084    if (i == 2) {
6085      MaskPtr = &HiMask;
6086      MaskIdx = 1;
6087      LoIdx = 0;
6088      HiIdx = 2;
6089    }
6090    int Idx = PermMask[i];
6091    if (Idx < 0) {
6092      Locs[i] = std::make_pair(-1, -1);
6093    } else if (Idx < 4) {
6094      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6095      (*MaskPtr)[LoIdx] = Idx;
6096      LoIdx++;
6097    } else {
6098      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6099      (*MaskPtr)[HiIdx] = Idx;
6100      HiIdx++;
6101    }
6102  }
6103
6104  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6105  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6106  SmallVector<int, 8> MaskOps;
6107  for (unsigned i = 0; i != 4; ++i) {
6108    if (Locs[i].first == -1) {
6109      MaskOps.push_back(-1);
6110    } else {
6111      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6112      MaskOps.push_back(Idx);
6113    }
6114  }
6115  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6116}
6117
6118static bool MayFoldVectorLoad(SDValue V) {
6119  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6120    V = V.getOperand(0);
6121  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6122    V = V.getOperand(0);
6123  if (MayFoldLoad(V))
6124    return true;
6125  return false;
6126}
6127
6128// FIXME: the version above should always be used. Since there's
6129// a bug where several vector shuffles can't be folded because the
6130// DAG is not updated during lowering and a node claims to have two
6131// uses while it only has one, use this version, and let isel match
6132// another instruction if the load really happens to have more than
6133// one use. Remove this version after this bug get fixed.
6134// rdar://8434668, PR8156
6135static bool RelaxedMayFoldVectorLoad(SDValue V) {
6136  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6137    V = V.getOperand(0);
6138  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6139    V = V.getOperand(0);
6140  if (ISD::isNormalLoad(V.getNode()))
6141    return true;
6142  return false;
6143}
6144
6145/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6146/// a vector extract, and if both can be later optimized into a single load.
6147/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6148/// here because otherwise a target specific shuffle node is going to be
6149/// emitted for this shuffle, and the optimization not done.
6150/// FIXME: This is probably not the best approach, but fix the problem
6151/// until the right path is decided.
6152static
6153bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6154                                         const TargetLowering &TLI) {
6155  EVT VT = V.getValueType();
6156  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6157
6158  // Be sure that the vector shuffle is present in a pattern like this:
6159  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6160  if (!V.hasOneUse())
6161    return false;
6162
6163  SDNode *N = *V.getNode()->use_begin();
6164  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6165    return false;
6166
6167  SDValue EltNo = N->getOperand(1);
6168  if (!isa<ConstantSDNode>(EltNo))
6169    return false;
6170
6171  // If the bit convert changed the number of elements, it is unsafe
6172  // to examine the mask.
6173  bool HasShuffleIntoBitcast = false;
6174  if (V.getOpcode() == ISD::BITCAST) {
6175    EVT SrcVT = V.getOperand(0).getValueType();
6176    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6177      return false;
6178    V = V.getOperand(0);
6179    HasShuffleIntoBitcast = true;
6180  }
6181
6182  // Select the input vector, guarding against out of range extract vector.
6183  unsigned NumElems = VT.getVectorNumElements();
6184  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6185  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6186  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6187
6188  // Skip one more bit_convert if necessary
6189  if (V.getOpcode() == ISD::BITCAST)
6190    V = V.getOperand(0);
6191
6192  if (ISD::isNormalLoad(V.getNode())) {
6193    // Is the original load suitable?
6194    LoadSDNode *LN0 = cast<LoadSDNode>(V);
6195
6196    // FIXME: avoid the multi-use bug that is preventing lots of
6197    // of foldings to be detected, this is still wrong of course, but
6198    // give the temporary desired behavior, and if it happens that
6199    // the load has real more uses, during isel it will not fold, and
6200    // will generate poor code.
6201    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6202      return false;
6203
6204    if (!HasShuffleIntoBitcast)
6205      return true;
6206
6207    // If there's a bitcast before the shuffle, check if the load type and
6208    // alignment is valid.
6209    unsigned Align = LN0->getAlignment();
6210    unsigned NewAlign =
6211      TLI.getTargetData()->getABITypeAlignment(
6212                                    VT.getTypeForEVT(*DAG.getContext()));
6213
6214    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6215      return false;
6216  }
6217
6218  return true;
6219}
6220
6221static
6222SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6223  EVT VT = Op.getValueType();
6224
6225  // Canonizalize to v2f64.
6226  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6227  return DAG.getNode(ISD::BITCAST, dl, VT,
6228                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6229                                          V1, DAG));
6230}
6231
6232static
6233SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6234                        bool HasSSE2) {
6235  SDValue V1 = Op.getOperand(0);
6236  SDValue V2 = Op.getOperand(1);
6237  EVT VT = Op.getValueType();
6238
6239  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6240
6241  if (HasSSE2 && VT == MVT::v2f64)
6242    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6243
6244  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6245  return DAG.getNode(ISD::BITCAST, dl, VT,
6246                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6247                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6248                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6249}
6250
6251static
6252SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6253  SDValue V1 = Op.getOperand(0);
6254  SDValue V2 = Op.getOperand(1);
6255  EVT VT = Op.getValueType();
6256
6257  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6258         "unsupported shuffle type");
6259
6260  if (V2.getOpcode() == ISD::UNDEF)
6261    V2 = V1;
6262
6263  // v4i32 or v4f32
6264  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6265}
6266
6267static inline unsigned getSHUFPOpcode(EVT VT) {
6268  switch(VT.getSimpleVT().SimpleTy) {
6269  case MVT::v8i32: // Use fp unit for int unpack.
6270  case MVT::v8f32:
6271  case MVT::v4i32: // Use fp unit for int unpack.
6272  case MVT::v4f32: return X86ISD::SHUFPS;
6273  case MVT::v4i64: // Use fp unit for int unpack.
6274  case MVT::v4f64:
6275  case MVT::v2i64: // Use fp unit for int unpack.
6276  case MVT::v2f64: return X86ISD::SHUFPD;
6277  default:
6278    llvm_unreachable("Unknown type for shufp*");
6279  }
6280  return 0;
6281}
6282
6283static
6284SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6285  SDValue V1 = Op.getOperand(0);
6286  SDValue V2 = Op.getOperand(1);
6287  EVT VT = Op.getValueType();
6288  unsigned NumElems = VT.getVectorNumElements();
6289
6290  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6291  // operand of these instructions is only memory, so check if there's a
6292  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6293  // same masks.
6294  bool CanFoldLoad = false;
6295
6296  // Trivial case, when V2 comes from a load.
6297  if (MayFoldVectorLoad(V2))
6298    CanFoldLoad = true;
6299
6300  // When V1 is a load, it can be folded later into a store in isel, example:
6301  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6302  //    turns into:
6303  //  (MOVLPSmr addr:$src1, VR128:$src2)
6304  // So, recognize this potential and also use MOVLPS or MOVLPD
6305  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6306    CanFoldLoad = true;
6307
6308  // Both of them can't be memory operations though.
6309  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6310    CanFoldLoad = false;
6311
6312  if (CanFoldLoad) {
6313    if (HasSSE2 && NumElems == 2)
6314      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6315
6316    if (NumElems == 4)
6317      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6318  }
6319
6320  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6321  // movl and movlp will both match v2i64, but v2i64 is never matched by
6322  // movl earlier because we make it strict to avoid messing with the movlp load
6323  // folding logic (see the code above getMOVLP call). Match it here then,
6324  // this is horrible, but will stay like this until we move all shuffle
6325  // matching to x86 specific nodes. Note that for the 1st condition all
6326  // types are matched with movsd.
6327  if (HasSSE2) {
6328    if (NumElems == 2)
6329      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6330    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6331  }
6332
6333  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6334
6335  // Invert the operand order and use SHUFPS to match it.
6336  return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6337                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6338}
6339
6340static inline unsigned getUNPCKLOpcode(EVT VT) {
6341  switch(VT.getSimpleVT().SimpleTy) {
6342  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6343  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6344  case MVT::v4f32: return X86ISD::UNPCKLPS;
6345  case MVT::v2f64: return X86ISD::UNPCKLPD;
6346  case MVT::v8i32: // Use fp unit for int unpack.
6347  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6348  case MVT::v4i64: // Use fp unit for int unpack.
6349  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6350  case MVT::v16i8: return X86ISD::PUNPCKLBW;
6351  case MVT::v8i16: return X86ISD::PUNPCKLWD;
6352  default:
6353    llvm_unreachable("Unknown type for unpckl");
6354  }
6355  return 0;
6356}
6357
6358static inline unsigned getUNPCKHOpcode(EVT VT) {
6359  switch(VT.getSimpleVT().SimpleTy) {
6360  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6361  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6362  case MVT::v4f32: return X86ISD::UNPCKHPS;
6363  case MVT::v2f64: return X86ISD::UNPCKHPD;
6364  case MVT::v8i32: // Use fp unit for int unpack.
6365  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6366  case MVT::v4i64: // Use fp unit for int unpack.
6367  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6368  case MVT::v16i8: return X86ISD::PUNPCKHBW;
6369  case MVT::v8i16: return X86ISD::PUNPCKHWD;
6370  default:
6371    llvm_unreachable("Unknown type for unpckh");
6372  }
6373  return 0;
6374}
6375
6376static inline unsigned getVPERMILOpcode(EVT VT) {
6377  switch(VT.getSimpleVT().SimpleTy) {
6378  case MVT::v4i32:
6379  case MVT::v4f32: return X86ISD::VPERMILPS;
6380  case MVT::v2i64:
6381  case MVT::v2f64: return X86ISD::VPERMILPD;
6382  case MVT::v8i32:
6383  case MVT::v8f32: return X86ISD::VPERMILPSY;
6384  case MVT::v4i64:
6385  case MVT::v4f64: return X86ISD::VPERMILPDY;
6386  default:
6387    llvm_unreachable("Unknown type for vpermil");
6388  }
6389  return 0;
6390}
6391
6392/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6393/// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6394/// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
6395static bool isVectorBroadcast(SDValue &Op) {
6396  EVT VT = Op.getValueType();
6397  bool Is256 = VT.getSizeInBits() == 256;
6398
6399  assert((VT.getSizeInBits() == 128 || Is256) &&
6400         "Unsupported type for vbroadcast node");
6401
6402  SDValue V = Op;
6403  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6404    V = V.getOperand(0);
6405
6406  if (Is256 && !(V.hasOneUse() &&
6407                 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6408                 V.getOperand(0).getOpcode() == ISD::UNDEF))
6409    return false;
6410
6411  if (Is256)
6412    V = V.getOperand(1);
6413
6414  if (!V.hasOneUse())
6415    return false;
6416
6417  // Check the source scalar_to_vector type. 256-bit broadcasts are
6418  // supported for 32/64-bit sizes, while 128-bit ones are only supported
6419  // for 32-bit scalars.
6420  if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6421    return false;
6422
6423  unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6424  if (ScalarSize != 32 && ScalarSize != 64)
6425    return false;
6426  if (!Is256 && ScalarSize == 64)
6427    return false;
6428
6429  V = V.getOperand(0);
6430  if (!MayFoldLoad(V))
6431    return false;
6432
6433  // Return the load node
6434  Op = V;
6435  return true;
6436}
6437
6438static
6439SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6440                               const TargetLowering &TLI,
6441                               const X86Subtarget *Subtarget) {
6442  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6443  EVT VT = Op.getValueType();
6444  DebugLoc dl = Op.getDebugLoc();
6445  SDValue V1 = Op.getOperand(0);
6446  SDValue V2 = Op.getOperand(1);
6447
6448  if (isZeroShuffle(SVOp))
6449    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
6450
6451  // Handle splat operations
6452  if (SVOp->isSplat()) {
6453    unsigned NumElem = VT.getVectorNumElements();
6454    int Size = VT.getSizeInBits();
6455    // Special case, this is the only place now where it's allowed to return
6456    // a vector_shuffle operation without using a target specific node, because
6457    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6458    // this be moved to DAGCombine instead?
6459    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6460      return Op;
6461
6462    // Use vbroadcast whenever the splat comes from a foldable load
6463    if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6464      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6465
6466    // Handle splats by matching through known shuffle masks
6467    if ((Size == 128 && NumElem <= 4) ||
6468        (Size == 256 && NumElem < 8))
6469      return SDValue();
6470
6471    // All remaning splats are promoted to target supported vector shuffles.
6472    return PromoteSplat(SVOp, DAG);
6473  }
6474
6475  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6476  // do it!
6477  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6478    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6479    if (NewOp.getNode())
6480      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6481  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6482    // FIXME: Figure out a cleaner way to do this.
6483    // Try to make use of movq to zero out the top part.
6484    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6485      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6486      if (NewOp.getNode()) {
6487        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6488          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6489                              DAG, Subtarget, dl);
6490      }
6491    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6492      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6493      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6494        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6495                            DAG, Subtarget, dl);
6496    }
6497  }
6498  return SDValue();
6499}
6500
6501SDValue
6502X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6503  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6504  SDValue V1 = Op.getOperand(0);
6505  SDValue V2 = Op.getOperand(1);
6506  EVT VT = Op.getValueType();
6507  DebugLoc dl = Op.getDebugLoc();
6508  unsigned NumElems = VT.getVectorNumElements();
6509  bool isMMX = VT.getSizeInBits() == 64;
6510  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6511  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6512  bool V1IsSplat = false;
6513  bool V2IsSplat = false;
6514  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
6515  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
6516  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
6517  MachineFunction &MF = DAG.getMachineFunction();
6518  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6519
6520  // Shuffle operations on MMX not supported.
6521  if (isMMX)
6522    return Op;
6523
6524  // Vector shuffle lowering takes 3 steps:
6525  //
6526  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6527  //    narrowing and commutation of operands should be handled.
6528  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6529  //    shuffle nodes.
6530  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6531  //    so the shuffle can be broken into other shuffles and the legalizer can
6532  //    try the lowering again.
6533  //
6534  // The general ideia is that no vector_shuffle operation should be left to
6535  // be matched during isel, all of them must be converted to a target specific
6536  // node here.
6537
6538  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6539  // narrowing and commutation of operands should be handled. The actual code
6540  // doesn't include all of those, work in progress...
6541  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6542  if (NewOp.getNode())
6543    return NewOp;
6544
6545  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6546  // unpckh_undef). Only use pshufd if speed is more important than size.
6547  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6548    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6549  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6550    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6551
6552  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
6553      RelaxedMayFoldVectorLoad(V1))
6554    return getMOVDDup(Op, dl, V1, DAG);
6555
6556  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6557    return getMOVHighToLow(Op, dl, DAG);
6558
6559  // Use to match splats
6560  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6561      (VT == MVT::v2f64 || VT == MVT::v2i64))
6562    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6563
6564  if (X86::isPSHUFDMask(SVOp)) {
6565    // The actual implementation will match the mask in the if above and then
6566    // during isel it can match several different instructions, not only pshufd
6567    // as its name says, sad but true, emulate the behavior for now...
6568    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6569        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6570
6571    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6572
6573    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6574      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6575
6576    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6577                                TargetMask, DAG);
6578  }
6579
6580  // Check if this can be converted into a logical shift.
6581  bool isLeft = false;
6582  unsigned ShAmt = 0;
6583  SDValue ShVal;
6584  bool isShift = getSubtarget()->hasSSE2() &&
6585    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6586  if (isShift && ShVal.hasOneUse()) {
6587    // If the shifted value has multiple uses, it may be cheaper to use
6588    // v_set0 + movlhps or movhlps, etc.
6589    EVT EltVT = VT.getVectorElementType();
6590    ShAmt *= EltVT.getSizeInBits();
6591    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6592  }
6593
6594  if (X86::isMOVLMask(SVOp)) {
6595    if (V1IsUndef)
6596      return V2;
6597    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6598      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6599    if (!X86::isMOVLPMask(SVOp)) {
6600      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6601        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6602
6603      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6604        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6605    }
6606  }
6607
6608  // FIXME: fold these into legal mask.
6609  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6610    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6611
6612  if (X86::isMOVHLPSMask(SVOp))
6613    return getMOVHighToLow(Op, dl, DAG);
6614
6615  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6616    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6617
6618  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6619    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6620
6621  if (X86::isMOVLPMask(SVOp))
6622    return getMOVLP(Op, dl, DAG, HasSSE2);
6623
6624  if (ShouldXformToMOVHLPS(SVOp) ||
6625      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6626    return CommuteVectorShuffle(SVOp, DAG);
6627
6628  if (isShift) {
6629    // No better options. Use a vshl / vsrl.
6630    EVT EltVT = VT.getVectorElementType();
6631    ShAmt *= EltVT.getSizeInBits();
6632    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6633  }
6634
6635  bool Commuted = false;
6636  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6637  // 1,1,1,1 -> v8i16 though.
6638  V1IsSplat = isSplatVector(V1.getNode());
6639  V2IsSplat = isSplatVector(V2.getNode());
6640
6641  // Canonicalize the splat or undef, if present, to be on the RHS.
6642  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6643    Op = CommuteVectorShuffle(SVOp, DAG);
6644    SVOp = cast<ShuffleVectorSDNode>(Op);
6645    V1 = SVOp->getOperand(0);
6646    V2 = SVOp->getOperand(1);
6647    std::swap(V1IsSplat, V2IsSplat);
6648    std::swap(V1IsUndef, V2IsUndef);
6649    Commuted = true;
6650  }
6651
6652  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6653    // Shuffling low element of v1 into undef, just return v1.
6654    if (V2IsUndef)
6655      return V1;
6656    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6657    // the instruction selector will not match, so get a canonical MOVL with
6658    // swapped operands to undo the commute.
6659    return getMOVL(DAG, dl, VT, V2, V1);
6660  }
6661
6662  if (X86::isUNPCKLMask(SVOp))
6663    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6664
6665  if (X86::isUNPCKHMask(SVOp))
6666    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6667
6668  if (V2IsSplat) {
6669    // Normalize mask so all entries that point to V2 points to its first
6670    // element then try to match unpck{h|l} again. If match, return a
6671    // new vector_shuffle with the corrected mask.
6672    SDValue NewMask = NormalizeMask(SVOp, DAG);
6673    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6674    if (NSVOp != SVOp) {
6675      if (X86::isUNPCKLMask(NSVOp, true)) {
6676        return NewMask;
6677      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6678        return NewMask;
6679      }
6680    }
6681  }
6682
6683  if (Commuted) {
6684    // Commute is back and try unpck* again.
6685    // FIXME: this seems wrong.
6686    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6687    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6688
6689    if (X86::isUNPCKLMask(NewSVOp))
6690      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6691
6692    if (X86::isUNPCKHMask(NewSVOp))
6693      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6694  }
6695
6696  // Normalize the node to match x86 shuffle ops if needed
6697  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6698    return CommuteVectorShuffle(SVOp, DAG);
6699
6700  // The checks below are all present in isShuffleMaskLegal, but they are
6701  // inlined here right now to enable us to directly emit target specific
6702  // nodes, and remove one by one until they don't return Op anymore.
6703  SmallVector<int, 16> M;
6704  SVOp->getMask(M);
6705
6706  if (isPALIGNRMask(M, VT, HasSSSE3))
6707    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6708                                X86::getShufflePALIGNRImmediate(SVOp),
6709                                DAG);
6710
6711  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6712      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6713    if (VT == MVT::v2f64)
6714      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6715    if (VT == MVT::v2i64)
6716      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6717  }
6718
6719  if (isPSHUFHWMask(M, VT))
6720    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6721                                X86::getShufflePSHUFHWImmediate(SVOp),
6722                                DAG);
6723
6724  if (isPSHUFLWMask(M, VT))
6725    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6726                                X86::getShufflePSHUFLWImmediate(SVOp),
6727                                DAG);
6728
6729  if (isSHUFPMask(M, VT))
6730    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6731                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6732
6733  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6734    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6735  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6736    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6737
6738  //===--------------------------------------------------------------------===//
6739  // Generate target specific nodes for 128 or 256-bit shuffles only
6740  // supported in the AVX instruction set.
6741  //
6742
6743  // Handle VMOVDDUPY permutations
6744  if (isMOVDDUPYMask(SVOp, Subtarget))
6745    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6746
6747  // Handle VPERMILPS* permutations
6748  if (isVPERMILPSMask(M, VT, Subtarget))
6749    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6750                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6751
6752  // Handle VPERMILPD* permutations
6753  if (isVPERMILPDMask(M, VT, Subtarget))
6754    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6755                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6756
6757  // Handle VPERM2F128 permutations
6758  if (isVPERM2F128Mask(M, VT, Subtarget))
6759    return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6760                                getShuffleVPERM2F128Immediate(SVOp), DAG);
6761
6762  // Handle VSHUFPSY permutations
6763  if (isVSHUFPSYMask(M, VT, Subtarget))
6764    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6765                                getShuffleVSHUFPSYImmediate(SVOp), DAG);
6766
6767  // Handle VSHUFPDY permutations
6768  if (isVSHUFPDYMask(M, VT, Subtarget))
6769    return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6770                                getShuffleVSHUFPDYImmediate(SVOp), DAG);
6771
6772  //===--------------------------------------------------------------------===//
6773  // Since no target specific shuffle was selected for this generic one,
6774  // lower it into other known shuffles. FIXME: this isn't true yet, but
6775  // this is the plan.
6776  //
6777
6778  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6779  if (VT == MVT::v8i16) {
6780    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6781    if (NewOp.getNode())
6782      return NewOp;
6783  }
6784
6785  if (VT == MVT::v16i8) {
6786    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6787    if (NewOp.getNode())
6788      return NewOp;
6789  }
6790
6791  // Handle all 128-bit wide vectors with 4 elements, and match them with
6792  // several different shuffle types.
6793  if (NumElems == 4 && VT.getSizeInBits() == 128)
6794    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6795
6796  // Handle general 256-bit shuffles
6797  if (VT.is256BitVector())
6798    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6799
6800  return SDValue();
6801}
6802
6803SDValue
6804X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6805                                                SelectionDAG &DAG) const {
6806  EVT VT = Op.getValueType();
6807  DebugLoc dl = Op.getDebugLoc();
6808
6809  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6810    return SDValue();
6811
6812  if (VT.getSizeInBits() == 8) {
6813    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6814                                    Op.getOperand(0), Op.getOperand(1));
6815    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6816                                    DAG.getValueType(VT));
6817    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6818  } else if (VT.getSizeInBits() == 16) {
6819    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6820    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6821    if (Idx == 0)
6822      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6823                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6824                                     DAG.getNode(ISD::BITCAST, dl,
6825                                                 MVT::v4i32,
6826                                                 Op.getOperand(0)),
6827                                     Op.getOperand(1)));
6828    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6829                                    Op.getOperand(0), Op.getOperand(1));
6830    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6831                                    DAG.getValueType(VT));
6832    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6833  } else if (VT == MVT::f32) {
6834    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6835    // the result back to FR32 register. It's only worth matching if the
6836    // result has a single use which is a store or a bitcast to i32.  And in
6837    // the case of a store, it's not worth it if the index is a constant 0,
6838    // because a MOVSSmr can be used instead, which is smaller and faster.
6839    if (!Op.hasOneUse())
6840      return SDValue();
6841    SDNode *User = *Op.getNode()->use_begin();
6842    if ((User->getOpcode() != ISD::STORE ||
6843         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6844          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6845        (User->getOpcode() != ISD::BITCAST ||
6846         User->getValueType(0) != MVT::i32))
6847      return SDValue();
6848    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6849                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6850                                              Op.getOperand(0)),
6851                                              Op.getOperand(1));
6852    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6853  } else if (VT == MVT::i32) {
6854    // ExtractPS works with constant index.
6855    if (isa<ConstantSDNode>(Op.getOperand(1)))
6856      return Op;
6857  }
6858  return SDValue();
6859}
6860
6861
6862SDValue
6863X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6864                                           SelectionDAG &DAG) const {
6865  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6866    return SDValue();
6867
6868  SDValue Vec = Op.getOperand(0);
6869  EVT VecVT = Vec.getValueType();
6870
6871  // If this is a 256-bit vector result, first extract the 128-bit vector and
6872  // then extract the element from the 128-bit vector.
6873  if (VecVT.getSizeInBits() == 256) {
6874    DebugLoc dl = Op.getNode()->getDebugLoc();
6875    unsigned NumElems = VecVT.getVectorNumElements();
6876    SDValue Idx = Op.getOperand(1);
6877    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6878
6879    // Get the 128-bit vector.
6880    bool Upper = IdxVal >= NumElems/2;
6881    Vec = Extract128BitVector(Vec,
6882                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6883
6884    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6885                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6886  }
6887
6888  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6889
6890  if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6891    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6892    if (Res.getNode())
6893      return Res;
6894  }
6895
6896  EVT VT = Op.getValueType();
6897  DebugLoc dl = Op.getDebugLoc();
6898  // TODO: handle v16i8.
6899  if (VT.getSizeInBits() == 16) {
6900    SDValue Vec = Op.getOperand(0);
6901    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6902    if (Idx == 0)
6903      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6904                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6905                                     DAG.getNode(ISD::BITCAST, dl,
6906                                                 MVT::v4i32, Vec),
6907                                     Op.getOperand(1)));
6908    // Transform it so it match pextrw which produces a 32-bit result.
6909    EVT EltVT = MVT::i32;
6910    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6911                                    Op.getOperand(0), Op.getOperand(1));
6912    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6913                                    DAG.getValueType(VT));
6914    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6915  } else if (VT.getSizeInBits() == 32) {
6916    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6917    if (Idx == 0)
6918      return Op;
6919
6920    // SHUFPS the element to the lowest double word, then movss.
6921    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6922    EVT VVT = Op.getOperand(0).getValueType();
6923    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6924                                       DAG.getUNDEF(VVT), Mask);
6925    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6926                       DAG.getIntPtrConstant(0));
6927  } else if (VT.getSizeInBits() == 64) {
6928    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6929    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6930    //        to match extract_elt for f64.
6931    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6932    if (Idx == 0)
6933      return Op;
6934
6935    // UNPCKHPD the element to the lowest double word, then movsd.
6936    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6937    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6938    int Mask[2] = { 1, -1 };
6939    EVT VVT = Op.getOperand(0).getValueType();
6940    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6941                                       DAG.getUNDEF(VVT), Mask);
6942    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6943                       DAG.getIntPtrConstant(0));
6944  }
6945
6946  return SDValue();
6947}
6948
6949SDValue
6950X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6951                                               SelectionDAG &DAG) const {
6952  EVT VT = Op.getValueType();
6953  EVT EltVT = VT.getVectorElementType();
6954  DebugLoc dl = Op.getDebugLoc();
6955
6956  SDValue N0 = Op.getOperand(0);
6957  SDValue N1 = Op.getOperand(1);
6958  SDValue N2 = Op.getOperand(2);
6959
6960  if (VT.getSizeInBits() == 256)
6961    return SDValue();
6962
6963  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6964      isa<ConstantSDNode>(N2)) {
6965    unsigned Opc;
6966    if (VT == MVT::v8i16)
6967      Opc = X86ISD::PINSRW;
6968    else if (VT == MVT::v16i8)
6969      Opc = X86ISD::PINSRB;
6970    else
6971      Opc = X86ISD::PINSRB;
6972
6973    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6974    // argument.
6975    if (N1.getValueType() != MVT::i32)
6976      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6977    if (N2.getValueType() != MVT::i32)
6978      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6979    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6980  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6981    // Bits [7:6] of the constant are the source select.  This will always be
6982    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6983    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6984    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6985    // Bits [5:4] of the constant are the destination select.  This is the
6986    //  value of the incoming immediate.
6987    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6988    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6989    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6990    // Create this as a scalar to vector..
6991    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6992    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6993  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6994    // PINSR* works with constant index.
6995    return Op;
6996  }
6997  return SDValue();
6998}
6999
7000SDValue
7001X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7002  EVT VT = Op.getValueType();
7003  EVT EltVT = VT.getVectorElementType();
7004
7005  DebugLoc dl = Op.getDebugLoc();
7006  SDValue N0 = Op.getOperand(0);
7007  SDValue N1 = Op.getOperand(1);
7008  SDValue N2 = Op.getOperand(2);
7009
7010  // If this is a 256-bit vector result, first extract the 128-bit vector,
7011  // insert the element into the extracted half and then place it back.
7012  if (VT.getSizeInBits() == 256) {
7013    if (!isa<ConstantSDNode>(N2))
7014      return SDValue();
7015
7016    // Get the desired 128-bit vector half.
7017    unsigned NumElems = VT.getVectorNumElements();
7018    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7019    bool Upper = IdxVal >= NumElems/2;
7020    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7021    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7022
7023    // Insert the element into the desired half.
7024    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7025                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7026
7027    // Insert the changed part back to the 256-bit vector
7028    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7029  }
7030
7031  if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7032    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7033
7034  if (EltVT == MVT::i8)
7035    return SDValue();
7036
7037  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7038    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7039    // as its second argument.
7040    if (N1.getValueType() != MVT::i32)
7041      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7042    if (N2.getValueType() != MVT::i32)
7043      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7044    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7045  }
7046  return SDValue();
7047}
7048
7049SDValue
7050X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7051  LLVMContext *Context = DAG.getContext();
7052  DebugLoc dl = Op.getDebugLoc();
7053  EVT OpVT = Op.getValueType();
7054
7055  // If this is a 256-bit vector result, first insert into a 128-bit
7056  // vector and then insert into the 256-bit vector.
7057  if (OpVT.getSizeInBits() > 128) {
7058    // Insert into a 128-bit vector.
7059    EVT VT128 = EVT::getVectorVT(*Context,
7060                                 OpVT.getVectorElementType(),
7061                                 OpVT.getVectorNumElements() / 2);
7062
7063    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7064
7065    // Insert the 128-bit vector.
7066    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7067                              DAG.getConstant(0, MVT::i32),
7068                              DAG, dl);
7069  }
7070
7071  if (Op.getValueType() == MVT::v1i64 &&
7072      Op.getOperand(0).getValueType() == MVT::i64)
7073    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7074
7075  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7076  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7077         "Expected an SSE type!");
7078  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7079                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7080}
7081
7082// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7083// a simple subregister reference or explicit instructions to grab
7084// upper bits of a vector.
7085SDValue
7086X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7087  if (Subtarget->hasAVX()) {
7088    DebugLoc dl = Op.getNode()->getDebugLoc();
7089    SDValue Vec = Op.getNode()->getOperand(0);
7090    SDValue Idx = Op.getNode()->getOperand(1);
7091
7092    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7093        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7094        return Extract128BitVector(Vec, Idx, DAG, dl);
7095    }
7096  }
7097  return SDValue();
7098}
7099
7100// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7101// simple superregister reference or explicit instructions to insert
7102// the upper bits of a vector.
7103SDValue
7104X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7105  if (Subtarget->hasAVX()) {
7106    DebugLoc dl = Op.getNode()->getDebugLoc();
7107    SDValue Vec = Op.getNode()->getOperand(0);
7108    SDValue SubVec = Op.getNode()->getOperand(1);
7109    SDValue Idx = Op.getNode()->getOperand(2);
7110
7111    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7112        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7113      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7114    }
7115  }
7116  return SDValue();
7117}
7118
7119// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7120// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7121// one of the above mentioned nodes. It has to be wrapped because otherwise
7122// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7123// be used to form addressing mode. These wrapped nodes will be selected
7124// into MOV32ri.
7125SDValue
7126X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7127  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7128
7129  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7130  // global base reg.
7131  unsigned char OpFlag = 0;
7132  unsigned WrapperKind = X86ISD::Wrapper;
7133  CodeModel::Model M = getTargetMachine().getCodeModel();
7134
7135  if (Subtarget->isPICStyleRIPRel() &&
7136      (M == CodeModel::Small || M == CodeModel::Kernel))
7137    WrapperKind = X86ISD::WrapperRIP;
7138  else if (Subtarget->isPICStyleGOT())
7139    OpFlag = X86II::MO_GOTOFF;
7140  else if (Subtarget->isPICStyleStubPIC())
7141    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7142
7143  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7144                                             CP->getAlignment(),
7145                                             CP->getOffset(), OpFlag);
7146  DebugLoc DL = CP->getDebugLoc();
7147  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7148  // With PIC, the address is actually $g + Offset.
7149  if (OpFlag) {
7150    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7151                         DAG.getNode(X86ISD::GlobalBaseReg,
7152                                     DebugLoc(), getPointerTy()),
7153                         Result);
7154  }
7155
7156  return Result;
7157}
7158
7159SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7160  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7161
7162  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7163  // global base reg.
7164  unsigned char OpFlag = 0;
7165  unsigned WrapperKind = X86ISD::Wrapper;
7166  CodeModel::Model M = getTargetMachine().getCodeModel();
7167
7168  if (Subtarget->isPICStyleRIPRel() &&
7169      (M == CodeModel::Small || M == CodeModel::Kernel))
7170    WrapperKind = X86ISD::WrapperRIP;
7171  else if (Subtarget->isPICStyleGOT())
7172    OpFlag = X86II::MO_GOTOFF;
7173  else if (Subtarget->isPICStyleStubPIC())
7174    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7175
7176  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7177                                          OpFlag);
7178  DebugLoc DL = JT->getDebugLoc();
7179  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7180
7181  // With PIC, the address is actually $g + Offset.
7182  if (OpFlag)
7183    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7184                         DAG.getNode(X86ISD::GlobalBaseReg,
7185                                     DebugLoc(), getPointerTy()),
7186                         Result);
7187
7188  return Result;
7189}
7190
7191SDValue
7192X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7193  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7194
7195  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7196  // global base reg.
7197  unsigned char OpFlag = 0;
7198  unsigned WrapperKind = X86ISD::Wrapper;
7199  CodeModel::Model M = getTargetMachine().getCodeModel();
7200
7201  if (Subtarget->isPICStyleRIPRel() &&
7202      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7203    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7204      OpFlag = X86II::MO_GOTPCREL;
7205    WrapperKind = X86ISD::WrapperRIP;
7206  } else if (Subtarget->isPICStyleGOT()) {
7207    OpFlag = X86II::MO_GOT;
7208  } else if (Subtarget->isPICStyleStubPIC()) {
7209    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7210  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7211    OpFlag = X86II::MO_DARWIN_NONLAZY;
7212  }
7213
7214  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7215
7216  DebugLoc DL = Op.getDebugLoc();
7217  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7218
7219
7220  // With PIC, the address is actually $g + Offset.
7221  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7222      !Subtarget->is64Bit()) {
7223    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7224                         DAG.getNode(X86ISD::GlobalBaseReg,
7225                                     DebugLoc(), getPointerTy()),
7226                         Result);
7227  }
7228
7229  // For symbols that require a load from a stub to get the address, emit the
7230  // load.
7231  if (isGlobalStubReference(OpFlag))
7232    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7233                         MachinePointerInfo::getGOT(), false, false, 0);
7234
7235  return Result;
7236}
7237
7238SDValue
7239X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7240  // Create the TargetBlockAddressAddress node.
7241  unsigned char OpFlags =
7242    Subtarget->ClassifyBlockAddressReference();
7243  CodeModel::Model M = getTargetMachine().getCodeModel();
7244  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7245  DebugLoc dl = Op.getDebugLoc();
7246  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7247                                       /*isTarget=*/true, OpFlags);
7248
7249  if (Subtarget->isPICStyleRIPRel() &&
7250      (M == CodeModel::Small || M == CodeModel::Kernel))
7251    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7252  else
7253    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7254
7255  // With PIC, the address is actually $g + Offset.
7256  if (isGlobalRelativeToPICBase(OpFlags)) {
7257    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7258                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7259                         Result);
7260  }
7261
7262  return Result;
7263}
7264
7265SDValue
7266X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7267                                      int64_t Offset,
7268                                      SelectionDAG &DAG) const {
7269  // Create the TargetGlobalAddress node, folding in the constant
7270  // offset if it is legal.
7271  unsigned char OpFlags =
7272    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7273  CodeModel::Model M = getTargetMachine().getCodeModel();
7274  SDValue Result;
7275  if (OpFlags == X86II::MO_NO_FLAG &&
7276      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7277    // A direct static reference to a global.
7278    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7279    Offset = 0;
7280  } else {
7281    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7282  }
7283
7284  if (Subtarget->isPICStyleRIPRel() &&
7285      (M == CodeModel::Small || M == CodeModel::Kernel))
7286    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7287  else
7288    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7289
7290  // With PIC, the address is actually $g + Offset.
7291  if (isGlobalRelativeToPICBase(OpFlags)) {
7292    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7293                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7294                         Result);
7295  }
7296
7297  // For globals that require a load from a stub to get the address, emit the
7298  // load.
7299  if (isGlobalStubReference(OpFlags))
7300    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7301                         MachinePointerInfo::getGOT(), false, false, 0);
7302
7303  // If there was a non-zero offset that we didn't fold, create an explicit
7304  // addition for it.
7305  if (Offset != 0)
7306    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7307                         DAG.getConstant(Offset, getPointerTy()));
7308
7309  return Result;
7310}
7311
7312SDValue
7313X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7314  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7315  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7316  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7317}
7318
7319static SDValue
7320GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7321           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7322           unsigned char OperandFlags) {
7323  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7324  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7325  DebugLoc dl = GA->getDebugLoc();
7326  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7327                                           GA->getValueType(0),
7328                                           GA->getOffset(),
7329                                           OperandFlags);
7330  if (InFlag) {
7331    SDValue Ops[] = { Chain,  TGA, *InFlag };
7332    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7333  } else {
7334    SDValue Ops[]  = { Chain, TGA };
7335    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7336  }
7337
7338  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7339  MFI->setAdjustsStack(true);
7340
7341  SDValue Flag = Chain.getValue(1);
7342  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7343}
7344
7345// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7346static SDValue
7347LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7348                                const EVT PtrVT) {
7349  SDValue InFlag;
7350  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7351  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7352                                     DAG.getNode(X86ISD::GlobalBaseReg,
7353                                                 DebugLoc(), PtrVT), InFlag);
7354  InFlag = Chain.getValue(1);
7355
7356  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7357}
7358
7359// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7360static SDValue
7361LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7362                                const EVT PtrVT) {
7363  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7364                    X86::RAX, X86II::MO_TLSGD);
7365}
7366
7367// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7368// "local exec" model.
7369static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7370                                   const EVT PtrVT, TLSModel::Model model,
7371                                   bool is64Bit) {
7372  DebugLoc dl = GA->getDebugLoc();
7373
7374  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7375  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7376                                                         is64Bit ? 257 : 256));
7377
7378  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7379                                      DAG.getIntPtrConstant(0),
7380                                      MachinePointerInfo(Ptr), false, false, 0);
7381
7382  unsigned char OperandFlags = 0;
7383  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7384  // initialexec.
7385  unsigned WrapperKind = X86ISD::Wrapper;
7386  if (model == TLSModel::LocalExec) {
7387    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7388  } else if (is64Bit) {
7389    assert(model == TLSModel::InitialExec);
7390    OperandFlags = X86II::MO_GOTTPOFF;
7391    WrapperKind = X86ISD::WrapperRIP;
7392  } else {
7393    assert(model == TLSModel::InitialExec);
7394    OperandFlags = X86II::MO_INDNTPOFF;
7395  }
7396
7397  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7398  // exec)
7399  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7400                                           GA->getValueType(0),
7401                                           GA->getOffset(), OperandFlags);
7402  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7403
7404  if (model == TLSModel::InitialExec)
7405    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7406                         MachinePointerInfo::getGOT(), false, false, 0);
7407
7408  // The address of the thread local variable is the add of the thread
7409  // pointer with the offset of the variable.
7410  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7411}
7412
7413SDValue
7414X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7415
7416  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7417  const GlobalValue *GV = GA->getGlobal();
7418
7419  if (Subtarget->isTargetELF()) {
7420    // TODO: implement the "local dynamic" model
7421    // TODO: implement the "initial exec"model for pic executables
7422
7423    // If GV is an alias then use the aliasee for determining
7424    // thread-localness.
7425    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7426      GV = GA->resolveAliasedGlobal(false);
7427
7428    TLSModel::Model model
7429      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7430
7431    switch (model) {
7432      case TLSModel::GeneralDynamic:
7433      case TLSModel::LocalDynamic: // not implemented
7434        if (Subtarget->is64Bit())
7435          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7436        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7437
7438      case TLSModel::InitialExec:
7439      case TLSModel::LocalExec:
7440        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7441                                   Subtarget->is64Bit());
7442    }
7443  } else if (Subtarget->isTargetDarwin()) {
7444    // Darwin only has one model of TLS.  Lower to that.
7445    unsigned char OpFlag = 0;
7446    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7447                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7448
7449    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7450    // global base reg.
7451    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7452                  !Subtarget->is64Bit();
7453    if (PIC32)
7454      OpFlag = X86II::MO_TLVP_PIC_BASE;
7455    else
7456      OpFlag = X86II::MO_TLVP;
7457    DebugLoc DL = Op.getDebugLoc();
7458    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7459                                                GA->getValueType(0),
7460                                                GA->getOffset(), OpFlag);
7461    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7462
7463    // With PIC32, the address is actually $g + Offset.
7464    if (PIC32)
7465      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7466                           DAG.getNode(X86ISD::GlobalBaseReg,
7467                                       DebugLoc(), getPointerTy()),
7468                           Offset);
7469
7470    // Lowering the machine isd will make sure everything is in the right
7471    // location.
7472    SDValue Chain = DAG.getEntryNode();
7473    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7474    SDValue Args[] = { Chain, Offset };
7475    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7476
7477    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7478    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7479    MFI->setAdjustsStack(true);
7480
7481    // And our return value (tls address) is in the standard call return value
7482    // location.
7483    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7484    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
7485  }
7486
7487  assert(false &&
7488         "TLS not implemented for this target.");
7489
7490  llvm_unreachable("Unreachable");
7491  return SDValue();
7492}
7493
7494
7495/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7496/// take a 2 x i32 value to shift plus a shift amount.
7497SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7498  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7499  EVT VT = Op.getValueType();
7500  unsigned VTBits = VT.getSizeInBits();
7501  DebugLoc dl = Op.getDebugLoc();
7502  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7503  SDValue ShOpLo = Op.getOperand(0);
7504  SDValue ShOpHi = Op.getOperand(1);
7505  SDValue ShAmt  = Op.getOperand(2);
7506  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7507                                     DAG.getConstant(VTBits - 1, MVT::i8))
7508                       : DAG.getConstant(0, VT);
7509
7510  SDValue Tmp2, Tmp3;
7511  if (Op.getOpcode() == ISD::SHL_PARTS) {
7512    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7513    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7514  } else {
7515    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7516    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7517  }
7518
7519  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7520                                DAG.getConstant(VTBits, MVT::i8));
7521  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7522                             AndNode, DAG.getConstant(0, MVT::i8));
7523
7524  SDValue Hi, Lo;
7525  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7526  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7527  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7528
7529  if (Op.getOpcode() == ISD::SHL_PARTS) {
7530    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7531    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7532  } else {
7533    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7534    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7535  }
7536
7537  SDValue Ops[2] = { Lo, Hi };
7538  return DAG.getMergeValues(Ops, 2, dl);
7539}
7540
7541SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7542                                           SelectionDAG &DAG) const {
7543  EVT SrcVT = Op.getOperand(0).getValueType();
7544
7545  if (SrcVT.isVector())
7546    return SDValue();
7547
7548  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7549         "Unknown SINT_TO_FP to lower!");
7550
7551  // These are really Legal; return the operand so the caller accepts it as
7552  // Legal.
7553  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7554    return Op;
7555  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7556      Subtarget->is64Bit()) {
7557    return Op;
7558  }
7559
7560  DebugLoc dl = Op.getDebugLoc();
7561  unsigned Size = SrcVT.getSizeInBits()/8;
7562  MachineFunction &MF = DAG.getMachineFunction();
7563  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7564  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7565  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7566                               StackSlot,
7567                               MachinePointerInfo::getFixedStack(SSFI),
7568                               false, false, 0);
7569  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7570}
7571
7572SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7573                                     SDValue StackSlot,
7574                                     SelectionDAG &DAG) const {
7575  // Build the FILD
7576  DebugLoc DL = Op.getDebugLoc();
7577  SDVTList Tys;
7578  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7579  if (useSSE)
7580    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7581  else
7582    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7583
7584  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7585
7586  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7587  MachineMemOperand *MMO;
7588  if (FI) {
7589    int SSFI = FI->getIndex();
7590    MMO =
7591      DAG.getMachineFunction()
7592      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7593                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7594  } else {
7595    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7596    StackSlot = StackSlot.getOperand(1);
7597  }
7598  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7599  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7600                                           X86ISD::FILD, DL,
7601                                           Tys, Ops, array_lengthof(Ops),
7602                                           SrcVT, MMO);
7603
7604  if (useSSE) {
7605    Chain = Result.getValue(1);
7606    SDValue InFlag = Result.getValue(2);
7607
7608    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7609    // shouldn't be necessary except that RFP cannot be live across
7610    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7611    MachineFunction &MF = DAG.getMachineFunction();
7612    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7613    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7614    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7615    Tys = DAG.getVTList(MVT::Other);
7616    SDValue Ops[] = {
7617      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7618    };
7619    MachineMemOperand *MMO =
7620      DAG.getMachineFunction()
7621      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7622                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7623
7624    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7625                                    Ops, array_lengthof(Ops),
7626                                    Op.getValueType(), MMO);
7627    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7628                         MachinePointerInfo::getFixedStack(SSFI),
7629                         false, false, 0);
7630  }
7631
7632  return Result;
7633}
7634
7635// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7636SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7637                                               SelectionDAG &DAG) const {
7638  // This algorithm is not obvious. Here it is in C code, more or less:
7639  /*
7640    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7641      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7642      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7643
7644      // Copy ints to xmm registers.
7645      __m128i xh = _mm_cvtsi32_si128( hi );
7646      __m128i xl = _mm_cvtsi32_si128( lo );
7647
7648      // Combine into low half of a single xmm register.
7649      __m128i x = _mm_unpacklo_epi32( xh, xl );
7650      __m128d d;
7651      double sd;
7652
7653      // Merge in appropriate exponents to give the integer bits the right
7654      // magnitude.
7655      x = _mm_unpacklo_epi32( x, exp );
7656
7657      // Subtract away the biases to deal with the IEEE-754 double precision
7658      // implicit 1.
7659      d = _mm_sub_pd( (__m128d) x, bias );
7660
7661      // All conversions up to here are exact. The correctly rounded result is
7662      // calculated using the current rounding mode using the following
7663      // horizontal add.
7664      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7665      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7666                                // store doesn't really need to be here (except
7667                                // maybe to zero the other double)
7668      return sd;
7669    }
7670  */
7671
7672  DebugLoc dl = Op.getDebugLoc();
7673  LLVMContext *Context = DAG.getContext();
7674
7675  // Build some magic constants.
7676  std::vector<Constant*> CV0;
7677  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7678  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7679  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7680  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7681  Constant *C0 = ConstantVector::get(CV0);
7682  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7683
7684  std::vector<Constant*> CV1;
7685  CV1.push_back(
7686    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7687  CV1.push_back(
7688    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7689  Constant *C1 = ConstantVector::get(CV1);
7690  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7691
7692  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7693                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7694                                        Op.getOperand(0),
7695                                        DAG.getIntPtrConstant(1)));
7696  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7697                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7698                                        Op.getOperand(0),
7699                                        DAG.getIntPtrConstant(0)));
7700  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7701  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7702                              MachinePointerInfo::getConstantPool(),
7703                              false, false, 16);
7704  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7705  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7706  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7707                              MachinePointerInfo::getConstantPool(),
7708                              false, false, 16);
7709  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7710
7711  // Add the halves; easiest way is to swap them into another reg first.
7712  int ShufMask[2] = { 1, -1 };
7713  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7714                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7715  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7716  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7717                     DAG.getIntPtrConstant(0));
7718}
7719
7720// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7721SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7722                                               SelectionDAG &DAG) const {
7723  DebugLoc dl = Op.getDebugLoc();
7724  // FP constant to bias correct the final result.
7725  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7726                                   MVT::f64);
7727
7728  // Load the 32-bit value into an XMM register.
7729  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7730                             Op.getOperand(0));
7731
7732  // Zero out the upper parts of the register.
7733  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasSSE2(), DAG);
7734
7735  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7736                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7737                     DAG.getIntPtrConstant(0));
7738
7739  // Or the load with the bias.
7740  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7741                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7742                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7743                                                   MVT::v2f64, Load)),
7744                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7745                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7746                                                   MVT::v2f64, Bias)));
7747  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7748                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7749                   DAG.getIntPtrConstant(0));
7750
7751  // Subtract the bias.
7752  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7753
7754  // Handle final rounding.
7755  EVT DestVT = Op.getValueType();
7756
7757  if (DestVT.bitsLT(MVT::f64)) {
7758    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7759                       DAG.getIntPtrConstant(0));
7760  } else if (DestVT.bitsGT(MVT::f64)) {
7761    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7762  }
7763
7764  // Handle final rounding.
7765  return Sub;
7766}
7767
7768SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7769                                           SelectionDAG &DAG) const {
7770  SDValue N0 = Op.getOperand(0);
7771  DebugLoc dl = Op.getDebugLoc();
7772
7773  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7774  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7775  // the optimization here.
7776  if (DAG.SignBitIsZero(N0))
7777    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7778
7779  EVT SrcVT = N0.getValueType();
7780  EVT DstVT = Op.getValueType();
7781  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7782    return LowerUINT_TO_FP_i64(Op, DAG);
7783  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7784    return LowerUINT_TO_FP_i32(Op, DAG);
7785
7786  // Make a 64-bit buffer, and use it to build an FILD.
7787  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7788  if (SrcVT == MVT::i32) {
7789    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7790    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7791                                     getPointerTy(), StackSlot, WordOff);
7792    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7793                                  StackSlot, MachinePointerInfo(),
7794                                  false, false, 0);
7795    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7796                                  OffsetSlot, MachinePointerInfo(),
7797                                  false, false, 0);
7798    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7799    return Fild;
7800  }
7801
7802  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7803  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7804                                StackSlot, MachinePointerInfo(),
7805                               false, false, 0);
7806  // For i64 source, we need to add the appropriate power of 2 if the input
7807  // was negative.  This is the same as the optimization in
7808  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7809  // we must be careful to do the computation in x87 extended precision, not
7810  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7811  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7812  MachineMemOperand *MMO =
7813    DAG.getMachineFunction()
7814    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7815                          MachineMemOperand::MOLoad, 8, 8);
7816
7817  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7818  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7819  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7820                                         MVT::i64, MMO);
7821
7822  APInt FF(32, 0x5F800000ULL);
7823
7824  // Check whether the sign bit is set.
7825  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7826                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7827                                 ISD::SETLT);
7828
7829  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7830  SDValue FudgePtr = DAG.getConstantPool(
7831                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7832                                         getPointerTy());
7833
7834  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7835  SDValue Zero = DAG.getIntPtrConstant(0);
7836  SDValue Four = DAG.getIntPtrConstant(4);
7837  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7838                               Zero, Four);
7839  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7840
7841  // Load the value out, extending it from f32 to f80.
7842  // FIXME: Avoid the extend by constructing the right constant pool?
7843  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7844                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7845                                 MVT::f32, false, false, 4);
7846  // Extend everything to 80 bits to force it to be done on x87.
7847  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7848  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7849}
7850
7851std::pair<SDValue,SDValue> X86TargetLowering::
7852FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7853  DebugLoc DL = Op.getDebugLoc();
7854
7855  EVT DstTy = Op.getValueType();
7856
7857  if (!IsSigned) {
7858    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7859    DstTy = MVT::i64;
7860  }
7861
7862  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7863         DstTy.getSimpleVT() >= MVT::i16 &&
7864         "Unknown FP_TO_SINT to lower!");
7865
7866  // These are really Legal.
7867  if (DstTy == MVT::i32 &&
7868      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7869    return std::make_pair(SDValue(), SDValue());
7870  if (Subtarget->is64Bit() &&
7871      DstTy == MVT::i64 &&
7872      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7873    return std::make_pair(SDValue(), SDValue());
7874
7875  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7876  // stack slot.
7877  MachineFunction &MF = DAG.getMachineFunction();
7878  unsigned MemSize = DstTy.getSizeInBits()/8;
7879  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7880  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7881
7882
7883
7884  unsigned Opc;
7885  switch (DstTy.getSimpleVT().SimpleTy) {
7886  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7887  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7888  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7889  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7890  }
7891
7892  SDValue Chain = DAG.getEntryNode();
7893  SDValue Value = Op.getOperand(0);
7894  EVT TheVT = Op.getOperand(0).getValueType();
7895  if (isScalarFPTypeInSSEReg(TheVT)) {
7896    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7897    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7898                         MachinePointerInfo::getFixedStack(SSFI),
7899                         false, false, 0);
7900    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7901    SDValue Ops[] = {
7902      Chain, StackSlot, DAG.getValueType(TheVT)
7903    };
7904
7905    MachineMemOperand *MMO =
7906      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7907                              MachineMemOperand::MOLoad, MemSize, MemSize);
7908    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7909                                    DstTy, MMO);
7910    Chain = Value.getValue(1);
7911    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7912    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7913  }
7914
7915  MachineMemOperand *MMO =
7916    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7917                            MachineMemOperand::MOStore, MemSize, MemSize);
7918
7919  // Build the FP_TO_INT*_IN_MEM
7920  SDValue Ops[] = { Chain, Value, StackSlot };
7921  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7922                                         Ops, 3, DstTy, MMO);
7923
7924  return std::make_pair(FIST, StackSlot);
7925}
7926
7927SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7928                                           SelectionDAG &DAG) const {
7929  if (Op.getValueType().isVector())
7930    return SDValue();
7931
7932  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7933  SDValue FIST = Vals.first, StackSlot = Vals.second;
7934  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7935  if (FIST.getNode() == 0) return Op;
7936
7937  // Load the result.
7938  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7939                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7940}
7941
7942SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7943                                           SelectionDAG &DAG) const {
7944  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7945  SDValue FIST = Vals.first, StackSlot = Vals.second;
7946  assert(FIST.getNode() && "Unexpected failure");
7947
7948  // Load the result.
7949  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7950                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7951}
7952
7953SDValue X86TargetLowering::LowerFABS(SDValue Op,
7954                                     SelectionDAG &DAG) const {
7955  LLVMContext *Context = DAG.getContext();
7956  DebugLoc dl = Op.getDebugLoc();
7957  EVT VT = Op.getValueType();
7958  EVT EltVT = VT;
7959  if (VT.isVector())
7960    EltVT = VT.getVectorElementType();
7961  std::vector<Constant*> CV;
7962  if (EltVT == MVT::f64) {
7963    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7964    CV.push_back(C);
7965    CV.push_back(C);
7966  } else {
7967    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7968    CV.push_back(C);
7969    CV.push_back(C);
7970    CV.push_back(C);
7971    CV.push_back(C);
7972  }
7973  Constant *C = ConstantVector::get(CV);
7974  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7975  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7976                             MachinePointerInfo::getConstantPool(),
7977                             false, false, 16);
7978  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7979}
7980
7981SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7982  LLVMContext *Context = DAG.getContext();
7983  DebugLoc dl = Op.getDebugLoc();
7984  EVT VT = Op.getValueType();
7985  EVT EltVT = VT;
7986  if (VT.isVector())
7987    EltVT = VT.getVectorElementType();
7988  std::vector<Constant*> CV;
7989  if (EltVT == MVT::f64) {
7990    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7991    CV.push_back(C);
7992    CV.push_back(C);
7993  } else {
7994    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7995    CV.push_back(C);
7996    CV.push_back(C);
7997    CV.push_back(C);
7998    CV.push_back(C);
7999  }
8000  Constant *C = ConstantVector::get(CV);
8001  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8002  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8003                             MachinePointerInfo::getConstantPool(),
8004                             false, false, 16);
8005  if (VT.isVector()) {
8006    return DAG.getNode(ISD::BITCAST, dl, VT,
8007                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8008                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8009                                Op.getOperand(0)),
8010                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8011  } else {
8012    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8013  }
8014}
8015
8016SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8017  LLVMContext *Context = DAG.getContext();
8018  SDValue Op0 = Op.getOperand(0);
8019  SDValue Op1 = Op.getOperand(1);
8020  DebugLoc dl = Op.getDebugLoc();
8021  EVT VT = Op.getValueType();
8022  EVT SrcVT = Op1.getValueType();
8023
8024  // If second operand is smaller, extend it first.
8025  if (SrcVT.bitsLT(VT)) {
8026    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8027    SrcVT = VT;
8028  }
8029  // And if it is bigger, shrink it first.
8030  if (SrcVT.bitsGT(VT)) {
8031    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8032    SrcVT = VT;
8033  }
8034
8035  // At this point the operands and the result should have the same
8036  // type, and that won't be f80 since that is not custom lowered.
8037
8038  // First get the sign bit of second operand.
8039  std::vector<Constant*> CV;
8040  if (SrcVT == MVT::f64) {
8041    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8042    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8043  } else {
8044    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8045    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8046    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8047    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8048  }
8049  Constant *C = ConstantVector::get(CV);
8050  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8051  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8052                              MachinePointerInfo::getConstantPool(),
8053                              false, false, 16);
8054  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8055
8056  // Shift sign bit right or left if the two operands have different types.
8057  if (SrcVT.bitsGT(VT)) {
8058    // Op0 is MVT::f32, Op1 is MVT::f64.
8059    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8060    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8061                          DAG.getConstant(32, MVT::i32));
8062    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8063    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8064                          DAG.getIntPtrConstant(0));
8065  }
8066
8067  // Clear first operand sign bit.
8068  CV.clear();
8069  if (VT == MVT::f64) {
8070    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8071    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8072  } else {
8073    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8074    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8075    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8076    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8077  }
8078  C = ConstantVector::get(CV);
8079  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8080  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8081                              MachinePointerInfo::getConstantPool(),
8082                              false, false, 16);
8083  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8084
8085  // Or the value with the sign bit.
8086  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8087}
8088
8089SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8090  SDValue N0 = Op.getOperand(0);
8091  DebugLoc dl = Op.getDebugLoc();
8092  EVT VT = Op.getValueType();
8093
8094  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8095  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8096                                  DAG.getConstant(1, VT));
8097  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8098}
8099
8100/// Emit nodes that will be selected as "test Op0,Op0", or something
8101/// equivalent.
8102SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8103                                    SelectionDAG &DAG) const {
8104  DebugLoc dl = Op.getDebugLoc();
8105
8106  // CF and OF aren't always set the way we want. Determine which
8107  // of these we need.
8108  bool NeedCF = false;
8109  bool NeedOF = false;
8110  switch (X86CC) {
8111  default: break;
8112  case X86::COND_A: case X86::COND_AE:
8113  case X86::COND_B: case X86::COND_BE:
8114    NeedCF = true;
8115    break;
8116  case X86::COND_G: case X86::COND_GE:
8117  case X86::COND_L: case X86::COND_LE:
8118  case X86::COND_O: case X86::COND_NO:
8119    NeedOF = true;
8120    break;
8121  }
8122
8123  // See if we can use the EFLAGS value from the operand instead of
8124  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8125  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8126  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8127    // Emit a CMP with 0, which is the TEST pattern.
8128    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8129                       DAG.getConstant(0, Op.getValueType()));
8130
8131  unsigned Opcode = 0;
8132  unsigned NumOperands = 0;
8133  switch (Op.getNode()->getOpcode()) {
8134  case ISD::ADD:
8135    // Due to an isel shortcoming, be conservative if this add is likely to be
8136    // selected as part of a load-modify-store instruction. When the root node
8137    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8138    // uses of other nodes in the match, such as the ADD in this case. This
8139    // leads to the ADD being left around and reselected, with the result being
8140    // two adds in the output.  Alas, even if none our users are stores, that
8141    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8142    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8143    // climbing the DAG back to the root, and it doesn't seem to be worth the
8144    // effort.
8145    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8146           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8147      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8148        goto default_case;
8149
8150    if (ConstantSDNode *C =
8151        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8152      // An add of one will be selected as an INC.
8153      if (C->getAPIntValue() == 1) {
8154        Opcode = X86ISD::INC;
8155        NumOperands = 1;
8156        break;
8157      }
8158
8159      // An add of negative one (subtract of one) will be selected as a DEC.
8160      if (C->getAPIntValue().isAllOnesValue()) {
8161        Opcode = X86ISD::DEC;
8162        NumOperands = 1;
8163        break;
8164      }
8165    }
8166
8167    // Otherwise use a regular EFLAGS-setting add.
8168    Opcode = X86ISD::ADD;
8169    NumOperands = 2;
8170    break;
8171  case ISD::AND: {
8172    // If the primary and result isn't used, don't bother using X86ISD::AND,
8173    // because a TEST instruction will be better.
8174    bool NonFlagUse = false;
8175    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8176           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8177      SDNode *User = *UI;
8178      unsigned UOpNo = UI.getOperandNo();
8179      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8180        // Look pass truncate.
8181        UOpNo = User->use_begin().getOperandNo();
8182        User = *User->use_begin();
8183      }
8184
8185      if (User->getOpcode() != ISD::BRCOND &&
8186          User->getOpcode() != ISD::SETCC &&
8187          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8188        NonFlagUse = true;
8189        break;
8190      }
8191    }
8192
8193    if (!NonFlagUse)
8194      break;
8195  }
8196    // FALL THROUGH
8197  case ISD::SUB:
8198  case ISD::OR:
8199  case ISD::XOR:
8200    // Due to the ISEL shortcoming noted above, be conservative if this op is
8201    // likely to be selected as part of a load-modify-store instruction.
8202    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8203           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8204      if (UI->getOpcode() == ISD::STORE)
8205        goto default_case;
8206
8207    // Otherwise use a regular EFLAGS-setting instruction.
8208    switch (Op.getNode()->getOpcode()) {
8209    default: llvm_unreachable("unexpected operator!");
8210    case ISD::SUB: Opcode = X86ISD::SUB; break;
8211    case ISD::OR:  Opcode = X86ISD::OR;  break;
8212    case ISD::XOR: Opcode = X86ISD::XOR; break;
8213    case ISD::AND: Opcode = X86ISD::AND; break;
8214    }
8215
8216    NumOperands = 2;
8217    break;
8218  case X86ISD::ADD:
8219  case X86ISD::SUB:
8220  case X86ISD::INC:
8221  case X86ISD::DEC:
8222  case X86ISD::OR:
8223  case X86ISD::XOR:
8224  case X86ISD::AND:
8225    return SDValue(Op.getNode(), 1);
8226  default:
8227  default_case:
8228    break;
8229  }
8230
8231  if (Opcode == 0)
8232    // Emit a CMP with 0, which is the TEST pattern.
8233    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8234                       DAG.getConstant(0, Op.getValueType()));
8235
8236  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8237  SmallVector<SDValue, 4> Ops;
8238  for (unsigned i = 0; i != NumOperands; ++i)
8239    Ops.push_back(Op.getOperand(i));
8240
8241  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8242  DAG.ReplaceAllUsesWith(Op, New);
8243  return SDValue(New.getNode(), 1);
8244}
8245
8246/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8247/// equivalent.
8248SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8249                                   SelectionDAG &DAG) const {
8250  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8251    if (C->getAPIntValue() == 0)
8252      return EmitTest(Op0, X86CC, DAG);
8253
8254  DebugLoc dl = Op0.getDebugLoc();
8255  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8256}
8257
8258/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8259/// if it's possible.
8260SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8261                                     DebugLoc dl, SelectionDAG &DAG) const {
8262  SDValue Op0 = And.getOperand(0);
8263  SDValue Op1 = And.getOperand(1);
8264  if (Op0.getOpcode() == ISD::TRUNCATE)
8265    Op0 = Op0.getOperand(0);
8266  if (Op1.getOpcode() == ISD::TRUNCATE)
8267    Op1 = Op1.getOperand(0);
8268
8269  SDValue LHS, RHS;
8270  if (Op1.getOpcode() == ISD::SHL)
8271    std::swap(Op0, Op1);
8272  if (Op0.getOpcode() == ISD::SHL) {
8273    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8274      if (And00C->getZExtValue() == 1) {
8275        // If we looked past a truncate, check that it's only truncating away
8276        // known zeros.
8277        unsigned BitWidth = Op0.getValueSizeInBits();
8278        unsigned AndBitWidth = And.getValueSizeInBits();
8279        if (BitWidth > AndBitWidth) {
8280          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8281          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8282          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8283            return SDValue();
8284        }
8285        LHS = Op1;
8286        RHS = Op0.getOperand(1);
8287      }
8288  } else if (Op1.getOpcode() == ISD::Constant) {
8289    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8290    SDValue AndLHS = Op0;
8291    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8292      LHS = AndLHS.getOperand(0);
8293      RHS = AndLHS.getOperand(1);
8294    }
8295  }
8296
8297  if (LHS.getNode()) {
8298    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8299    // instruction.  Since the shift amount is in-range-or-undefined, we know
8300    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8301    // the encoding for the i16 version is larger than the i32 version.
8302    // Also promote i16 to i32 for performance / code size reason.
8303    if (LHS.getValueType() == MVT::i8 ||
8304        LHS.getValueType() == MVT::i16)
8305      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8306
8307    // If the operand types disagree, extend the shift amount to match.  Since
8308    // BT ignores high bits (like shifts) we can use anyextend.
8309    if (LHS.getValueType() != RHS.getValueType())
8310      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8311
8312    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8313    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8314    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8315                       DAG.getConstant(Cond, MVT::i8), BT);
8316  }
8317
8318  return SDValue();
8319}
8320
8321SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8322  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8323  SDValue Op0 = Op.getOperand(0);
8324  SDValue Op1 = Op.getOperand(1);
8325  DebugLoc dl = Op.getDebugLoc();
8326  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8327
8328  // Optimize to BT if possible.
8329  // Lower (X & (1 << N)) == 0 to BT(X, N).
8330  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8331  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8332  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8333      Op1.getOpcode() == ISD::Constant &&
8334      cast<ConstantSDNode>(Op1)->isNullValue() &&
8335      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8336    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8337    if (NewSetCC.getNode())
8338      return NewSetCC;
8339  }
8340
8341  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8342  // these.
8343  if (Op1.getOpcode() == ISD::Constant &&
8344      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8345       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8346      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8347
8348    // If the input is a setcc, then reuse the input setcc or use a new one with
8349    // the inverted condition.
8350    if (Op0.getOpcode() == X86ISD::SETCC) {
8351      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8352      bool Invert = (CC == ISD::SETNE) ^
8353        cast<ConstantSDNode>(Op1)->isNullValue();
8354      if (!Invert) return Op0;
8355
8356      CCode = X86::GetOppositeBranchCondition(CCode);
8357      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8358                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8359    }
8360  }
8361
8362  bool isFP = Op1.getValueType().isFloatingPoint();
8363  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8364  if (X86CC == X86::COND_INVALID)
8365    return SDValue();
8366
8367  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8368  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8369                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8370}
8371
8372// Lower256IntVETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8373// ones, and then concatenate the result back.
8374static SDValue Lower256IntVETCC(SDValue Op, SelectionDAG &DAG) {
8375  EVT VT = Op.getValueType();
8376
8377  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::VSETCC &&
8378         "Unsupported value type for operation");
8379
8380  int NumElems = VT.getVectorNumElements();
8381  DebugLoc dl = Op.getDebugLoc();
8382  SDValue CC = Op.getOperand(2);
8383  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8384  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8385
8386  // Extract the LHS vectors
8387  SDValue LHS = Op.getOperand(0);
8388  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8389  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8390
8391  // Extract the RHS vectors
8392  SDValue RHS = Op.getOperand(1);
8393  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8394  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8395
8396  // Issue the operation on the smaller types and concatenate the result back
8397  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8398  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8399  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8400                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8401                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8402}
8403
8404
8405SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8406  SDValue Cond;
8407  SDValue Op0 = Op.getOperand(0);
8408  SDValue Op1 = Op.getOperand(1);
8409  SDValue CC = Op.getOperand(2);
8410  EVT VT = Op.getValueType();
8411  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8412  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8413  DebugLoc dl = Op.getDebugLoc();
8414
8415  if (isFP) {
8416    unsigned SSECC = 8;
8417    EVT EltVT = Op0.getValueType().getVectorElementType();
8418    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8419
8420    unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8421    bool Swap = false;
8422
8423    switch (SetCCOpcode) {
8424    default: break;
8425    case ISD::SETOEQ:
8426    case ISD::SETEQ:  SSECC = 0; break;
8427    case ISD::SETOGT:
8428    case ISD::SETGT: Swap = true; // Fallthrough
8429    case ISD::SETLT:
8430    case ISD::SETOLT: SSECC = 1; break;
8431    case ISD::SETOGE:
8432    case ISD::SETGE: Swap = true; // Fallthrough
8433    case ISD::SETLE:
8434    case ISD::SETOLE: SSECC = 2; break;
8435    case ISD::SETUO:  SSECC = 3; break;
8436    case ISD::SETUNE:
8437    case ISD::SETNE:  SSECC = 4; break;
8438    case ISD::SETULE: Swap = true;
8439    case ISD::SETUGE: SSECC = 5; break;
8440    case ISD::SETULT: Swap = true;
8441    case ISD::SETUGT: SSECC = 6; break;
8442    case ISD::SETO:   SSECC = 7; break;
8443    }
8444    if (Swap)
8445      std::swap(Op0, Op1);
8446
8447    // In the two special cases we can't handle, emit two comparisons.
8448    if (SSECC == 8) {
8449      if (SetCCOpcode == ISD::SETUEQ) {
8450        SDValue UNORD, EQ;
8451        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8452        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8453        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8454      }
8455      else if (SetCCOpcode == ISD::SETONE) {
8456        SDValue ORD, NEQ;
8457        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8458        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8459        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8460      }
8461      llvm_unreachable("Illegal FP comparison");
8462    }
8463    // Handle all other FP comparisons here.
8464    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8465  }
8466
8467  // Break 256-bit integer vector compare into smaller ones.
8468  if (!isFP && VT.getSizeInBits() == 256)
8469    return Lower256IntVETCC(Op, DAG);
8470
8471  // We are handling one of the integer comparisons here.  Since SSE only has
8472  // GT and EQ comparisons for integer, swapping operands and multiple
8473  // operations may be required for some comparisons.
8474  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8475  bool Swap = false, Invert = false, FlipSigns = false;
8476
8477  switch (VT.getSimpleVT().SimpleTy) {
8478  default: break;
8479  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8480  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8481  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8482  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8483  }
8484
8485  switch (SetCCOpcode) {
8486  default: break;
8487  case ISD::SETNE:  Invert = true;
8488  case ISD::SETEQ:  Opc = EQOpc; break;
8489  case ISD::SETLT:  Swap = true;
8490  case ISD::SETGT:  Opc = GTOpc; break;
8491  case ISD::SETGE:  Swap = true;
8492  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8493  case ISD::SETULT: Swap = true;
8494  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8495  case ISD::SETUGE: Swap = true;
8496  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8497  }
8498  if (Swap)
8499    std::swap(Op0, Op1);
8500
8501  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8502  // bits of the inputs before performing those operations.
8503  if (FlipSigns) {
8504    EVT EltVT = VT.getVectorElementType();
8505    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8506                                      EltVT);
8507    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8508    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8509                                    SignBits.size());
8510    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8511    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8512  }
8513
8514  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8515
8516  // If the logical-not of the result is required, perform that now.
8517  if (Invert)
8518    Result = DAG.getNOT(dl, Result, VT);
8519
8520  return Result;
8521}
8522
8523// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8524static bool isX86LogicalCmp(SDValue Op) {
8525  unsigned Opc = Op.getNode()->getOpcode();
8526  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8527    return true;
8528  if (Op.getResNo() == 1 &&
8529      (Opc == X86ISD::ADD ||
8530       Opc == X86ISD::SUB ||
8531       Opc == X86ISD::ADC ||
8532       Opc == X86ISD::SBB ||
8533       Opc == X86ISD::SMUL ||
8534       Opc == X86ISD::UMUL ||
8535       Opc == X86ISD::INC ||
8536       Opc == X86ISD::DEC ||
8537       Opc == X86ISD::OR ||
8538       Opc == X86ISD::XOR ||
8539       Opc == X86ISD::AND))
8540    return true;
8541
8542  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8543    return true;
8544
8545  return false;
8546}
8547
8548static bool isZero(SDValue V) {
8549  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8550  return C && C->isNullValue();
8551}
8552
8553static bool isAllOnes(SDValue V) {
8554  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8555  return C && C->isAllOnesValue();
8556}
8557
8558SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8559  bool addTest = true;
8560  SDValue Cond  = Op.getOperand(0);
8561  SDValue Op1 = Op.getOperand(1);
8562  SDValue Op2 = Op.getOperand(2);
8563  DebugLoc DL = Op.getDebugLoc();
8564  SDValue CC;
8565
8566  if (Cond.getOpcode() == ISD::SETCC) {
8567    SDValue NewCond = LowerSETCC(Cond, DAG);
8568    if (NewCond.getNode())
8569      Cond = NewCond;
8570  }
8571
8572  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8573  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8574  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8575  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8576  if (Cond.getOpcode() == X86ISD::SETCC &&
8577      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8578      isZero(Cond.getOperand(1).getOperand(1))) {
8579    SDValue Cmp = Cond.getOperand(1);
8580
8581    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8582
8583    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8584        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8585      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8586
8587      SDValue CmpOp0 = Cmp.getOperand(0);
8588      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8589                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8590
8591      SDValue Res =   // Res = 0 or -1.
8592        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8593                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8594
8595      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8596        Res = DAG.getNOT(DL, Res, Res.getValueType());
8597
8598      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8599      if (N2C == 0 || !N2C->isNullValue())
8600        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8601      return Res;
8602    }
8603  }
8604
8605  // Look past (and (setcc_carry (cmp ...)), 1).
8606  if (Cond.getOpcode() == ISD::AND &&
8607      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8608    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8609    if (C && C->getAPIntValue() == 1)
8610      Cond = Cond.getOperand(0);
8611  }
8612
8613  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8614  // setting operand in place of the X86ISD::SETCC.
8615  if (Cond.getOpcode() == X86ISD::SETCC ||
8616      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8617    CC = Cond.getOperand(0);
8618
8619    SDValue Cmp = Cond.getOperand(1);
8620    unsigned Opc = Cmp.getOpcode();
8621    EVT VT = Op.getValueType();
8622
8623    bool IllegalFPCMov = false;
8624    if (VT.isFloatingPoint() && !VT.isVector() &&
8625        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8626      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8627
8628    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8629        Opc == X86ISD::BT) { // FIXME
8630      Cond = Cmp;
8631      addTest = false;
8632    }
8633  }
8634
8635  if (addTest) {
8636    // Look pass the truncate.
8637    if (Cond.getOpcode() == ISD::TRUNCATE)
8638      Cond = Cond.getOperand(0);
8639
8640    // We know the result of AND is compared against zero. Try to match
8641    // it to BT.
8642    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8643      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8644      if (NewSetCC.getNode()) {
8645        CC = NewSetCC.getOperand(0);
8646        Cond = NewSetCC.getOperand(1);
8647        addTest = false;
8648      }
8649    }
8650  }
8651
8652  if (addTest) {
8653    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8654    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8655  }
8656
8657  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8658  // a <  b ?  0 : -1 -> RES = setcc_carry
8659  // a >= b ? -1 :  0 -> RES = setcc_carry
8660  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8661  if (Cond.getOpcode() == X86ISD::CMP) {
8662    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8663
8664    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8665        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8666      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8667                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8668      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8669        return DAG.getNOT(DL, Res, Res.getValueType());
8670      return Res;
8671    }
8672  }
8673
8674  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8675  // condition is true.
8676  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8677  SDValue Ops[] = { Op2, Op1, CC, Cond };
8678  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8679}
8680
8681// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8682// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8683// from the AND / OR.
8684static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8685  Opc = Op.getOpcode();
8686  if (Opc != ISD::OR && Opc != ISD::AND)
8687    return false;
8688  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8689          Op.getOperand(0).hasOneUse() &&
8690          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8691          Op.getOperand(1).hasOneUse());
8692}
8693
8694// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8695// 1 and that the SETCC node has a single use.
8696static bool isXor1OfSetCC(SDValue Op) {
8697  if (Op.getOpcode() != ISD::XOR)
8698    return false;
8699  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8700  if (N1C && N1C->getAPIntValue() == 1) {
8701    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8702      Op.getOperand(0).hasOneUse();
8703  }
8704  return false;
8705}
8706
8707SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8708  bool addTest = true;
8709  SDValue Chain = Op.getOperand(0);
8710  SDValue Cond  = Op.getOperand(1);
8711  SDValue Dest  = Op.getOperand(2);
8712  DebugLoc dl = Op.getDebugLoc();
8713  SDValue CC;
8714
8715  if (Cond.getOpcode() == ISD::SETCC) {
8716    SDValue NewCond = LowerSETCC(Cond, DAG);
8717    if (NewCond.getNode())
8718      Cond = NewCond;
8719  }
8720#if 0
8721  // FIXME: LowerXALUO doesn't handle these!!
8722  else if (Cond.getOpcode() == X86ISD::ADD  ||
8723           Cond.getOpcode() == X86ISD::SUB  ||
8724           Cond.getOpcode() == X86ISD::SMUL ||
8725           Cond.getOpcode() == X86ISD::UMUL)
8726    Cond = LowerXALUO(Cond, DAG);
8727#endif
8728
8729  // Look pass (and (setcc_carry (cmp ...)), 1).
8730  if (Cond.getOpcode() == ISD::AND &&
8731      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8732    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8733    if (C && C->getAPIntValue() == 1)
8734      Cond = Cond.getOperand(0);
8735  }
8736
8737  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8738  // setting operand in place of the X86ISD::SETCC.
8739  if (Cond.getOpcode() == X86ISD::SETCC ||
8740      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8741    CC = Cond.getOperand(0);
8742
8743    SDValue Cmp = Cond.getOperand(1);
8744    unsigned Opc = Cmp.getOpcode();
8745    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8746    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8747      Cond = Cmp;
8748      addTest = false;
8749    } else {
8750      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8751      default: break;
8752      case X86::COND_O:
8753      case X86::COND_B:
8754        // These can only come from an arithmetic instruction with overflow,
8755        // e.g. SADDO, UADDO.
8756        Cond = Cond.getNode()->getOperand(1);
8757        addTest = false;
8758        break;
8759      }
8760    }
8761  } else {
8762    unsigned CondOpc;
8763    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8764      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8765      if (CondOpc == ISD::OR) {
8766        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8767        // two branches instead of an explicit OR instruction with a
8768        // separate test.
8769        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8770            isX86LogicalCmp(Cmp)) {
8771          CC = Cond.getOperand(0).getOperand(0);
8772          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8773                              Chain, Dest, CC, Cmp);
8774          CC = Cond.getOperand(1).getOperand(0);
8775          Cond = Cmp;
8776          addTest = false;
8777        }
8778      } else { // ISD::AND
8779        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8780        // two branches instead of an explicit AND instruction with a
8781        // separate test. However, we only do this if this block doesn't
8782        // have a fall-through edge, because this requires an explicit
8783        // jmp when the condition is false.
8784        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8785            isX86LogicalCmp(Cmp) &&
8786            Op.getNode()->hasOneUse()) {
8787          X86::CondCode CCode =
8788            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8789          CCode = X86::GetOppositeBranchCondition(CCode);
8790          CC = DAG.getConstant(CCode, MVT::i8);
8791          SDNode *User = *Op.getNode()->use_begin();
8792          // Look for an unconditional branch following this conditional branch.
8793          // We need this because we need to reverse the successors in order
8794          // to implement FCMP_OEQ.
8795          if (User->getOpcode() == ISD::BR) {
8796            SDValue FalseBB = User->getOperand(1);
8797            SDNode *NewBR =
8798              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8799            assert(NewBR == User);
8800            (void)NewBR;
8801            Dest = FalseBB;
8802
8803            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8804                                Chain, Dest, CC, Cmp);
8805            X86::CondCode CCode =
8806              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8807            CCode = X86::GetOppositeBranchCondition(CCode);
8808            CC = DAG.getConstant(CCode, MVT::i8);
8809            Cond = Cmp;
8810            addTest = false;
8811          }
8812        }
8813      }
8814    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8815      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8816      // It should be transformed during dag combiner except when the condition
8817      // is set by a arithmetics with overflow node.
8818      X86::CondCode CCode =
8819        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8820      CCode = X86::GetOppositeBranchCondition(CCode);
8821      CC = DAG.getConstant(CCode, MVT::i8);
8822      Cond = Cond.getOperand(0).getOperand(1);
8823      addTest = false;
8824    }
8825  }
8826
8827  if (addTest) {
8828    // Look pass the truncate.
8829    if (Cond.getOpcode() == ISD::TRUNCATE)
8830      Cond = Cond.getOperand(0);
8831
8832    // We know the result of AND is compared against zero. Try to match
8833    // it to BT.
8834    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8835      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8836      if (NewSetCC.getNode()) {
8837        CC = NewSetCC.getOperand(0);
8838        Cond = NewSetCC.getOperand(1);
8839        addTest = false;
8840      }
8841    }
8842  }
8843
8844  if (addTest) {
8845    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8846    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8847  }
8848  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8849                     Chain, Dest, CC, Cond);
8850}
8851
8852
8853// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8854// Calls to _alloca is needed to probe the stack when allocating more than 4k
8855// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8856// that the guard pages used by the OS virtual memory manager are allocated in
8857// correct sequence.
8858SDValue
8859X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8860                                           SelectionDAG &DAG) const {
8861  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8862          EnableSegmentedStacks) &&
8863         "This should be used only on Windows targets or when segmented stacks "
8864         "are being used");
8865  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8866  DebugLoc dl = Op.getDebugLoc();
8867
8868  // Get the inputs.
8869  SDValue Chain = Op.getOperand(0);
8870  SDValue Size  = Op.getOperand(1);
8871  // FIXME: Ensure alignment here
8872
8873  bool Is64Bit = Subtarget->is64Bit();
8874  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8875
8876  if (EnableSegmentedStacks) {
8877    MachineFunction &MF = DAG.getMachineFunction();
8878    MachineRegisterInfo &MRI = MF.getRegInfo();
8879
8880    if (Is64Bit) {
8881      // The 64 bit implementation of segmented stacks needs to clobber both r10
8882      // r11. This makes it impossible to use it along with nested parameters.
8883      const Function *F = MF.getFunction();
8884
8885      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8886           I != E; I++)
8887        if (I->hasNestAttr())
8888          report_fatal_error("Cannot use segmented stacks with functions that "
8889                             "have nested arguments.");
8890    }
8891
8892    const TargetRegisterClass *AddrRegClass =
8893      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8894    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8895    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8896    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8897                                DAG.getRegister(Vreg, SPTy));
8898    SDValue Ops1[2] = { Value, Chain };
8899    return DAG.getMergeValues(Ops1, 2, dl);
8900  } else {
8901    SDValue Flag;
8902    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8903
8904    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8905    Flag = Chain.getValue(1);
8906    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8907
8908    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8909    Flag = Chain.getValue(1);
8910
8911    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8912
8913    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8914    return DAG.getMergeValues(Ops1, 2, dl);
8915  }
8916}
8917
8918SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8919  MachineFunction &MF = DAG.getMachineFunction();
8920  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8921
8922  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8923  DebugLoc DL = Op.getDebugLoc();
8924
8925  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8926    // vastart just stores the address of the VarArgsFrameIndex slot into the
8927    // memory location argument.
8928    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8929                                   getPointerTy());
8930    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8931                        MachinePointerInfo(SV), false, false, 0);
8932  }
8933
8934  // __va_list_tag:
8935  //   gp_offset         (0 - 6 * 8)
8936  //   fp_offset         (48 - 48 + 8 * 16)
8937  //   overflow_arg_area (point to parameters coming in memory).
8938  //   reg_save_area
8939  SmallVector<SDValue, 8> MemOps;
8940  SDValue FIN = Op.getOperand(1);
8941  // Store gp_offset
8942  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8943                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8944                                               MVT::i32),
8945                               FIN, MachinePointerInfo(SV), false, false, 0);
8946  MemOps.push_back(Store);
8947
8948  // Store fp_offset
8949  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8950                    FIN, DAG.getIntPtrConstant(4));
8951  Store = DAG.getStore(Op.getOperand(0), DL,
8952                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8953                                       MVT::i32),
8954                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8955  MemOps.push_back(Store);
8956
8957  // Store ptr to overflow_arg_area
8958  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8959                    FIN, DAG.getIntPtrConstant(4));
8960  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8961                                    getPointerTy());
8962  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8963                       MachinePointerInfo(SV, 8),
8964                       false, false, 0);
8965  MemOps.push_back(Store);
8966
8967  // Store ptr to reg_save_area.
8968  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8969                    FIN, DAG.getIntPtrConstant(8));
8970  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8971                                    getPointerTy());
8972  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8973                       MachinePointerInfo(SV, 16), false, false, 0);
8974  MemOps.push_back(Store);
8975  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8976                     &MemOps[0], MemOps.size());
8977}
8978
8979SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8980  assert(Subtarget->is64Bit() &&
8981         "LowerVAARG only handles 64-bit va_arg!");
8982  assert((Subtarget->isTargetLinux() ||
8983          Subtarget->isTargetDarwin()) &&
8984          "Unhandled target in LowerVAARG");
8985  assert(Op.getNode()->getNumOperands() == 4);
8986  SDValue Chain = Op.getOperand(0);
8987  SDValue SrcPtr = Op.getOperand(1);
8988  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8989  unsigned Align = Op.getConstantOperandVal(3);
8990  DebugLoc dl = Op.getDebugLoc();
8991
8992  EVT ArgVT = Op.getNode()->getValueType(0);
8993  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8994  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8995  uint8_t ArgMode;
8996
8997  // Decide which area this value should be read from.
8998  // TODO: Implement the AMD64 ABI in its entirety. This simple
8999  // selection mechanism works only for the basic types.
9000  if (ArgVT == MVT::f80) {
9001    llvm_unreachable("va_arg for f80 not yet implemented");
9002  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9003    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9004  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9005    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9006  } else {
9007    llvm_unreachable("Unhandled argument type in LowerVAARG");
9008  }
9009
9010  if (ArgMode == 2) {
9011    // Sanity Check: Make sure using fp_offset makes sense.
9012    assert(!UseSoftFloat &&
9013           !(DAG.getMachineFunction()
9014                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9015           Subtarget->hasXMM());
9016  }
9017
9018  // Insert VAARG_64 node into the DAG
9019  // VAARG_64 returns two values: Variable Argument Address, Chain
9020  SmallVector<SDValue, 11> InstOps;
9021  InstOps.push_back(Chain);
9022  InstOps.push_back(SrcPtr);
9023  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9024  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9025  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9026  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9027  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9028                                          VTs, &InstOps[0], InstOps.size(),
9029                                          MVT::i64,
9030                                          MachinePointerInfo(SV),
9031                                          /*Align=*/0,
9032                                          /*Volatile=*/false,
9033                                          /*ReadMem=*/true,
9034                                          /*WriteMem=*/true);
9035  Chain = VAARG.getValue(1);
9036
9037  // Load the next argument and return it
9038  return DAG.getLoad(ArgVT, dl,
9039                     Chain,
9040                     VAARG,
9041                     MachinePointerInfo(),
9042                     false, false, 0);
9043}
9044
9045SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9046  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9047  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9048  SDValue Chain = Op.getOperand(0);
9049  SDValue DstPtr = Op.getOperand(1);
9050  SDValue SrcPtr = Op.getOperand(2);
9051  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9052  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9053  DebugLoc DL = Op.getDebugLoc();
9054
9055  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9056                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9057                       false,
9058                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9059}
9060
9061SDValue
9062X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9063  DebugLoc dl = Op.getDebugLoc();
9064  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9065  switch (IntNo) {
9066  default: return SDValue();    // Don't custom lower most intrinsics.
9067  // Comparison intrinsics.
9068  case Intrinsic::x86_sse_comieq_ss:
9069  case Intrinsic::x86_sse_comilt_ss:
9070  case Intrinsic::x86_sse_comile_ss:
9071  case Intrinsic::x86_sse_comigt_ss:
9072  case Intrinsic::x86_sse_comige_ss:
9073  case Intrinsic::x86_sse_comineq_ss:
9074  case Intrinsic::x86_sse_ucomieq_ss:
9075  case Intrinsic::x86_sse_ucomilt_ss:
9076  case Intrinsic::x86_sse_ucomile_ss:
9077  case Intrinsic::x86_sse_ucomigt_ss:
9078  case Intrinsic::x86_sse_ucomige_ss:
9079  case Intrinsic::x86_sse_ucomineq_ss:
9080  case Intrinsic::x86_sse2_comieq_sd:
9081  case Intrinsic::x86_sse2_comilt_sd:
9082  case Intrinsic::x86_sse2_comile_sd:
9083  case Intrinsic::x86_sse2_comigt_sd:
9084  case Intrinsic::x86_sse2_comige_sd:
9085  case Intrinsic::x86_sse2_comineq_sd:
9086  case Intrinsic::x86_sse2_ucomieq_sd:
9087  case Intrinsic::x86_sse2_ucomilt_sd:
9088  case Intrinsic::x86_sse2_ucomile_sd:
9089  case Intrinsic::x86_sse2_ucomigt_sd:
9090  case Intrinsic::x86_sse2_ucomige_sd:
9091  case Intrinsic::x86_sse2_ucomineq_sd: {
9092    unsigned Opc = 0;
9093    ISD::CondCode CC = ISD::SETCC_INVALID;
9094    switch (IntNo) {
9095    default: break;
9096    case Intrinsic::x86_sse_comieq_ss:
9097    case Intrinsic::x86_sse2_comieq_sd:
9098      Opc = X86ISD::COMI;
9099      CC = ISD::SETEQ;
9100      break;
9101    case Intrinsic::x86_sse_comilt_ss:
9102    case Intrinsic::x86_sse2_comilt_sd:
9103      Opc = X86ISD::COMI;
9104      CC = ISD::SETLT;
9105      break;
9106    case Intrinsic::x86_sse_comile_ss:
9107    case Intrinsic::x86_sse2_comile_sd:
9108      Opc = X86ISD::COMI;
9109      CC = ISD::SETLE;
9110      break;
9111    case Intrinsic::x86_sse_comigt_ss:
9112    case Intrinsic::x86_sse2_comigt_sd:
9113      Opc = X86ISD::COMI;
9114      CC = ISD::SETGT;
9115      break;
9116    case Intrinsic::x86_sse_comige_ss:
9117    case Intrinsic::x86_sse2_comige_sd:
9118      Opc = X86ISD::COMI;
9119      CC = ISD::SETGE;
9120      break;
9121    case Intrinsic::x86_sse_comineq_ss:
9122    case Intrinsic::x86_sse2_comineq_sd:
9123      Opc = X86ISD::COMI;
9124      CC = ISD::SETNE;
9125      break;
9126    case Intrinsic::x86_sse_ucomieq_ss:
9127    case Intrinsic::x86_sse2_ucomieq_sd:
9128      Opc = X86ISD::UCOMI;
9129      CC = ISD::SETEQ;
9130      break;
9131    case Intrinsic::x86_sse_ucomilt_ss:
9132    case Intrinsic::x86_sse2_ucomilt_sd:
9133      Opc = X86ISD::UCOMI;
9134      CC = ISD::SETLT;
9135      break;
9136    case Intrinsic::x86_sse_ucomile_ss:
9137    case Intrinsic::x86_sse2_ucomile_sd:
9138      Opc = X86ISD::UCOMI;
9139      CC = ISD::SETLE;
9140      break;
9141    case Intrinsic::x86_sse_ucomigt_ss:
9142    case Intrinsic::x86_sse2_ucomigt_sd:
9143      Opc = X86ISD::UCOMI;
9144      CC = ISD::SETGT;
9145      break;
9146    case Intrinsic::x86_sse_ucomige_ss:
9147    case Intrinsic::x86_sse2_ucomige_sd:
9148      Opc = X86ISD::UCOMI;
9149      CC = ISD::SETGE;
9150      break;
9151    case Intrinsic::x86_sse_ucomineq_ss:
9152    case Intrinsic::x86_sse2_ucomineq_sd:
9153      Opc = X86ISD::UCOMI;
9154      CC = ISD::SETNE;
9155      break;
9156    }
9157
9158    SDValue LHS = Op.getOperand(1);
9159    SDValue RHS = Op.getOperand(2);
9160    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9161    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9162    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9163    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9164                                DAG.getConstant(X86CC, MVT::i8), Cond);
9165    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9166  }
9167  // ptest and testp intrinsics. The intrinsic these come from are designed to
9168  // return an integer value, not just an instruction so lower it to the ptest
9169  // or testp pattern and a setcc for the result.
9170  case Intrinsic::x86_sse41_ptestz:
9171  case Intrinsic::x86_sse41_ptestc:
9172  case Intrinsic::x86_sse41_ptestnzc:
9173  case Intrinsic::x86_avx_ptestz_256:
9174  case Intrinsic::x86_avx_ptestc_256:
9175  case Intrinsic::x86_avx_ptestnzc_256:
9176  case Intrinsic::x86_avx_vtestz_ps:
9177  case Intrinsic::x86_avx_vtestc_ps:
9178  case Intrinsic::x86_avx_vtestnzc_ps:
9179  case Intrinsic::x86_avx_vtestz_pd:
9180  case Intrinsic::x86_avx_vtestc_pd:
9181  case Intrinsic::x86_avx_vtestnzc_pd:
9182  case Intrinsic::x86_avx_vtestz_ps_256:
9183  case Intrinsic::x86_avx_vtestc_ps_256:
9184  case Intrinsic::x86_avx_vtestnzc_ps_256:
9185  case Intrinsic::x86_avx_vtestz_pd_256:
9186  case Intrinsic::x86_avx_vtestc_pd_256:
9187  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9188    bool IsTestPacked = false;
9189    unsigned X86CC = 0;
9190    switch (IntNo) {
9191    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9192    case Intrinsic::x86_avx_vtestz_ps:
9193    case Intrinsic::x86_avx_vtestz_pd:
9194    case Intrinsic::x86_avx_vtestz_ps_256:
9195    case Intrinsic::x86_avx_vtestz_pd_256:
9196      IsTestPacked = true; // Fallthrough
9197    case Intrinsic::x86_sse41_ptestz:
9198    case Intrinsic::x86_avx_ptestz_256:
9199      // ZF = 1
9200      X86CC = X86::COND_E;
9201      break;
9202    case Intrinsic::x86_avx_vtestc_ps:
9203    case Intrinsic::x86_avx_vtestc_pd:
9204    case Intrinsic::x86_avx_vtestc_ps_256:
9205    case Intrinsic::x86_avx_vtestc_pd_256:
9206      IsTestPacked = true; // Fallthrough
9207    case Intrinsic::x86_sse41_ptestc:
9208    case Intrinsic::x86_avx_ptestc_256:
9209      // CF = 1
9210      X86CC = X86::COND_B;
9211      break;
9212    case Intrinsic::x86_avx_vtestnzc_ps:
9213    case Intrinsic::x86_avx_vtestnzc_pd:
9214    case Intrinsic::x86_avx_vtestnzc_ps_256:
9215    case Intrinsic::x86_avx_vtestnzc_pd_256:
9216      IsTestPacked = true; // Fallthrough
9217    case Intrinsic::x86_sse41_ptestnzc:
9218    case Intrinsic::x86_avx_ptestnzc_256:
9219      // ZF and CF = 0
9220      X86CC = X86::COND_A;
9221      break;
9222    }
9223
9224    SDValue LHS = Op.getOperand(1);
9225    SDValue RHS = Op.getOperand(2);
9226    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9227    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9228    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9229    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9230    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9231  }
9232
9233  // Fix vector shift instructions where the last operand is a non-immediate
9234  // i32 value.
9235  case Intrinsic::x86_sse2_pslli_w:
9236  case Intrinsic::x86_sse2_pslli_d:
9237  case Intrinsic::x86_sse2_pslli_q:
9238  case Intrinsic::x86_sse2_psrli_w:
9239  case Intrinsic::x86_sse2_psrli_d:
9240  case Intrinsic::x86_sse2_psrli_q:
9241  case Intrinsic::x86_sse2_psrai_w:
9242  case Intrinsic::x86_sse2_psrai_d:
9243  case Intrinsic::x86_mmx_pslli_w:
9244  case Intrinsic::x86_mmx_pslli_d:
9245  case Intrinsic::x86_mmx_pslli_q:
9246  case Intrinsic::x86_mmx_psrli_w:
9247  case Intrinsic::x86_mmx_psrli_d:
9248  case Intrinsic::x86_mmx_psrli_q:
9249  case Intrinsic::x86_mmx_psrai_w:
9250  case Intrinsic::x86_mmx_psrai_d: {
9251    SDValue ShAmt = Op.getOperand(2);
9252    if (isa<ConstantSDNode>(ShAmt))
9253      return SDValue();
9254
9255    unsigned NewIntNo = 0;
9256    EVT ShAmtVT = MVT::v4i32;
9257    switch (IntNo) {
9258    case Intrinsic::x86_sse2_pslli_w:
9259      NewIntNo = Intrinsic::x86_sse2_psll_w;
9260      break;
9261    case Intrinsic::x86_sse2_pslli_d:
9262      NewIntNo = Intrinsic::x86_sse2_psll_d;
9263      break;
9264    case Intrinsic::x86_sse2_pslli_q:
9265      NewIntNo = Intrinsic::x86_sse2_psll_q;
9266      break;
9267    case Intrinsic::x86_sse2_psrli_w:
9268      NewIntNo = Intrinsic::x86_sse2_psrl_w;
9269      break;
9270    case Intrinsic::x86_sse2_psrli_d:
9271      NewIntNo = Intrinsic::x86_sse2_psrl_d;
9272      break;
9273    case Intrinsic::x86_sse2_psrli_q:
9274      NewIntNo = Intrinsic::x86_sse2_psrl_q;
9275      break;
9276    case Intrinsic::x86_sse2_psrai_w:
9277      NewIntNo = Intrinsic::x86_sse2_psra_w;
9278      break;
9279    case Intrinsic::x86_sse2_psrai_d:
9280      NewIntNo = Intrinsic::x86_sse2_psra_d;
9281      break;
9282    default: {
9283      ShAmtVT = MVT::v2i32;
9284      switch (IntNo) {
9285      case Intrinsic::x86_mmx_pslli_w:
9286        NewIntNo = Intrinsic::x86_mmx_psll_w;
9287        break;
9288      case Intrinsic::x86_mmx_pslli_d:
9289        NewIntNo = Intrinsic::x86_mmx_psll_d;
9290        break;
9291      case Intrinsic::x86_mmx_pslli_q:
9292        NewIntNo = Intrinsic::x86_mmx_psll_q;
9293        break;
9294      case Intrinsic::x86_mmx_psrli_w:
9295        NewIntNo = Intrinsic::x86_mmx_psrl_w;
9296        break;
9297      case Intrinsic::x86_mmx_psrli_d:
9298        NewIntNo = Intrinsic::x86_mmx_psrl_d;
9299        break;
9300      case Intrinsic::x86_mmx_psrli_q:
9301        NewIntNo = Intrinsic::x86_mmx_psrl_q;
9302        break;
9303      case Intrinsic::x86_mmx_psrai_w:
9304        NewIntNo = Intrinsic::x86_mmx_psra_w;
9305        break;
9306      case Intrinsic::x86_mmx_psrai_d:
9307        NewIntNo = Intrinsic::x86_mmx_psra_d;
9308        break;
9309      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9310      }
9311      break;
9312    }
9313    }
9314
9315    // The vector shift intrinsics with scalars uses 32b shift amounts but
9316    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9317    // to be zero.
9318    SDValue ShOps[4];
9319    ShOps[0] = ShAmt;
9320    ShOps[1] = DAG.getConstant(0, MVT::i32);
9321    if (ShAmtVT == MVT::v4i32) {
9322      ShOps[2] = DAG.getUNDEF(MVT::i32);
9323      ShOps[3] = DAG.getUNDEF(MVT::i32);
9324      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9325    } else {
9326      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9327// FIXME this must be lowered to get rid of the invalid type.
9328    }
9329
9330    EVT VT = Op.getValueType();
9331    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9332    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9333                       DAG.getConstant(NewIntNo, MVT::i32),
9334                       Op.getOperand(1), ShAmt);
9335  }
9336  }
9337}
9338
9339SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9340                                           SelectionDAG &DAG) const {
9341  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9342  MFI->setReturnAddressIsTaken(true);
9343
9344  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9345  DebugLoc dl = Op.getDebugLoc();
9346
9347  if (Depth > 0) {
9348    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9349    SDValue Offset =
9350      DAG.getConstant(TD->getPointerSize(),
9351                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9352    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9353                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9354                                   FrameAddr, Offset),
9355                       MachinePointerInfo(), false, false, 0);
9356  }
9357
9358  // Just load the return address.
9359  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9360  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9361                     RetAddrFI, MachinePointerInfo(), false, false, 0);
9362}
9363
9364SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9365  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9366  MFI->setFrameAddressIsTaken(true);
9367
9368  EVT VT = Op.getValueType();
9369  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9370  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9371  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9372  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9373  while (Depth--)
9374    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9375                            MachinePointerInfo(),
9376                            false, false, 0);
9377  return FrameAddr;
9378}
9379
9380SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9381                                                     SelectionDAG &DAG) const {
9382  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9383}
9384
9385SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9386  MachineFunction &MF = DAG.getMachineFunction();
9387  SDValue Chain     = Op.getOperand(0);
9388  SDValue Offset    = Op.getOperand(1);
9389  SDValue Handler   = Op.getOperand(2);
9390  DebugLoc dl       = Op.getDebugLoc();
9391
9392  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9393                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9394                                     getPointerTy());
9395  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9396
9397  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9398                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9399  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9400  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9401                       false, false, 0);
9402  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9403  MF.getRegInfo().addLiveOut(StoreAddrReg);
9404
9405  return DAG.getNode(X86ISD::EH_RETURN, dl,
9406                     MVT::Other,
9407                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9408}
9409
9410SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9411                                                  SelectionDAG &DAG) const {
9412  return Op.getOperand(0);
9413}
9414
9415SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9416                                                SelectionDAG &DAG) const {
9417  SDValue Root = Op.getOperand(0);
9418  SDValue Trmp = Op.getOperand(1); // trampoline
9419  SDValue FPtr = Op.getOperand(2); // nested function
9420  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9421  DebugLoc dl  = Op.getDebugLoc();
9422
9423  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9424
9425  if (Subtarget->is64Bit()) {
9426    SDValue OutChains[6];
9427
9428    // Large code-model.
9429    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9430    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9431
9432    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9433    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9434
9435    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9436
9437    // Load the pointer to the nested function into R11.
9438    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9439    SDValue Addr = Trmp;
9440    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9441                                Addr, MachinePointerInfo(TrmpAddr),
9442                                false, false, 0);
9443
9444    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9445                       DAG.getConstant(2, MVT::i64));
9446    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9447                                MachinePointerInfo(TrmpAddr, 2),
9448                                false, false, 2);
9449
9450    // Load the 'nest' parameter value into R10.
9451    // R10 is specified in X86CallingConv.td
9452    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9453    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9454                       DAG.getConstant(10, MVT::i64));
9455    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9456                                Addr, MachinePointerInfo(TrmpAddr, 10),
9457                                false, false, 0);
9458
9459    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9460                       DAG.getConstant(12, MVT::i64));
9461    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9462                                MachinePointerInfo(TrmpAddr, 12),
9463                                false, false, 2);
9464
9465    // Jump to the nested function.
9466    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9467    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9468                       DAG.getConstant(20, MVT::i64));
9469    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9470                                Addr, MachinePointerInfo(TrmpAddr, 20),
9471                                false, false, 0);
9472
9473    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9474    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9475                       DAG.getConstant(22, MVT::i64));
9476    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9477                                MachinePointerInfo(TrmpAddr, 22),
9478                                false, false, 0);
9479
9480    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9481  } else {
9482    const Function *Func =
9483      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9484    CallingConv::ID CC = Func->getCallingConv();
9485    unsigned NestReg;
9486
9487    switch (CC) {
9488    default:
9489      llvm_unreachable("Unsupported calling convention");
9490    case CallingConv::C:
9491    case CallingConv::X86_StdCall: {
9492      // Pass 'nest' parameter in ECX.
9493      // Must be kept in sync with X86CallingConv.td
9494      NestReg = X86::ECX;
9495
9496      // Check that ECX wasn't needed by an 'inreg' parameter.
9497      FunctionType *FTy = Func->getFunctionType();
9498      const AttrListPtr &Attrs = Func->getAttributes();
9499
9500      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9501        unsigned InRegCount = 0;
9502        unsigned Idx = 1;
9503
9504        for (FunctionType::param_iterator I = FTy->param_begin(),
9505             E = FTy->param_end(); I != E; ++I, ++Idx)
9506          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9507            // FIXME: should only count parameters that are lowered to integers.
9508            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9509
9510        if (InRegCount > 2) {
9511          report_fatal_error("Nest register in use - reduce number of inreg"
9512                             " parameters!");
9513        }
9514      }
9515      break;
9516    }
9517    case CallingConv::X86_FastCall:
9518    case CallingConv::X86_ThisCall:
9519    case CallingConv::Fast:
9520      // Pass 'nest' parameter in EAX.
9521      // Must be kept in sync with X86CallingConv.td
9522      NestReg = X86::EAX;
9523      break;
9524    }
9525
9526    SDValue OutChains[4];
9527    SDValue Addr, Disp;
9528
9529    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9530                       DAG.getConstant(10, MVT::i32));
9531    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9532
9533    // This is storing the opcode for MOV32ri.
9534    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9535    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9536    OutChains[0] = DAG.getStore(Root, dl,
9537                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9538                                Trmp, MachinePointerInfo(TrmpAddr),
9539                                false, false, 0);
9540
9541    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9542                       DAG.getConstant(1, MVT::i32));
9543    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9544                                MachinePointerInfo(TrmpAddr, 1),
9545                                false, false, 1);
9546
9547    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9548    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9549                       DAG.getConstant(5, MVT::i32));
9550    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9551                                MachinePointerInfo(TrmpAddr, 5),
9552                                false, false, 1);
9553
9554    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9555                       DAG.getConstant(6, MVT::i32));
9556    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9557                                MachinePointerInfo(TrmpAddr, 6),
9558                                false, false, 1);
9559
9560    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9561  }
9562}
9563
9564SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9565                                            SelectionDAG &DAG) const {
9566  /*
9567   The rounding mode is in bits 11:10 of FPSR, and has the following
9568   settings:
9569     00 Round to nearest
9570     01 Round to -inf
9571     10 Round to +inf
9572     11 Round to 0
9573
9574  FLT_ROUNDS, on the other hand, expects the following:
9575    -1 Undefined
9576     0 Round to 0
9577     1 Round to nearest
9578     2 Round to +inf
9579     3 Round to -inf
9580
9581  To perform the conversion, we do:
9582    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9583  */
9584
9585  MachineFunction &MF = DAG.getMachineFunction();
9586  const TargetMachine &TM = MF.getTarget();
9587  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9588  unsigned StackAlignment = TFI.getStackAlignment();
9589  EVT VT = Op.getValueType();
9590  DebugLoc DL = Op.getDebugLoc();
9591
9592  // Save FP Control Word to stack slot
9593  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9594  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9595
9596
9597  MachineMemOperand *MMO =
9598   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9599                           MachineMemOperand::MOStore, 2, 2);
9600
9601  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9602  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9603                                          DAG.getVTList(MVT::Other),
9604                                          Ops, 2, MVT::i16, MMO);
9605
9606  // Load FP Control Word from stack slot
9607  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9608                            MachinePointerInfo(), false, false, 0);
9609
9610  // Transform as necessary
9611  SDValue CWD1 =
9612    DAG.getNode(ISD::SRL, DL, MVT::i16,
9613                DAG.getNode(ISD::AND, DL, MVT::i16,
9614                            CWD, DAG.getConstant(0x800, MVT::i16)),
9615                DAG.getConstant(11, MVT::i8));
9616  SDValue CWD2 =
9617    DAG.getNode(ISD::SRL, DL, MVT::i16,
9618                DAG.getNode(ISD::AND, DL, MVT::i16,
9619                            CWD, DAG.getConstant(0x400, MVT::i16)),
9620                DAG.getConstant(9, MVT::i8));
9621
9622  SDValue RetVal =
9623    DAG.getNode(ISD::AND, DL, MVT::i16,
9624                DAG.getNode(ISD::ADD, DL, MVT::i16,
9625                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9626                            DAG.getConstant(1, MVT::i16)),
9627                DAG.getConstant(3, MVT::i16));
9628
9629
9630  return DAG.getNode((VT.getSizeInBits() < 16 ?
9631                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9632}
9633
9634SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9635  EVT VT = Op.getValueType();
9636  EVT OpVT = VT;
9637  unsigned NumBits = VT.getSizeInBits();
9638  DebugLoc dl = Op.getDebugLoc();
9639
9640  Op = Op.getOperand(0);
9641  if (VT == MVT::i8) {
9642    // Zero extend to i32 since there is not an i8 bsr.
9643    OpVT = MVT::i32;
9644    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9645  }
9646
9647  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9648  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9649  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9650
9651  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9652  SDValue Ops[] = {
9653    Op,
9654    DAG.getConstant(NumBits+NumBits-1, OpVT),
9655    DAG.getConstant(X86::COND_E, MVT::i8),
9656    Op.getValue(1)
9657  };
9658  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9659
9660  // Finally xor with NumBits-1.
9661  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9662
9663  if (VT == MVT::i8)
9664    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9665  return Op;
9666}
9667
9668SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9669  EVT VT = Op.getValueType();
9670  EVT OpVT = VT;
9671  unsigned NumBits = VT.getSizeInBits();
9672  DebugLoc dl = Op.getDebugLoc();
9673
9674  Op = Op.getOperand(0);
9675  if (VT == MVT::i8) {
9676    OpVT = MVT::i32;
9677    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9678  }
9679
9680  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9681  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9682  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9683
9684  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9685  SDValue Ops[] = {
9686    Op,
9687    DAG.getConstant(NumBits, OpVT),
9688    DAG.getConstant(X86::COND_E, MVT::i8),
9689    Op.getValue(1)
9690  };
9691  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9692
9693  if (VT == MVT::i8)
9694    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9695  return Op;
9696}
9697
9698// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9699// ones, and then concatenate the result back.
9700static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9701  EVT VT = Op.getValueType();
9702
9703  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9704         "Unsupported value type for operation");
9705
9706  int NumElems = VT.getVectorNumElements();
9707  DebugLoc dl = Op.getDebugLoc();
9708  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9709  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9710
9711  // Extract the LHS vectors
9712  SDValue LHS = Op.getOperand(0);
9713  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9714  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9715
9716  // Extract the RHS vectors
9717  SDValue RHS = Op.getOperand(1);
9718  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9719  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9720
9721  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9722  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9723
9724  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9725                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9726                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9727}
9728
9729SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9730  assert(Op.getValueType().getSizeInBits() == 256 &&
9731         Op.getValueType().isInteger() &&
9732         "Only handle AVX 256-bit vector integer operation");
9733  return Lower256IntArith(Op, DAG);
9734}
9735
9736SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9737  assert(Op.getValueType().getSizeInBits() == 256 &&
9738         Op.getValueType().isInteger() &&
9739         "Only handle AVX 256-bit vector integer operation");
9740  return Lower256IntArith(Op, DAG);
9741}
9742
9743SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9744  EVT VT = Op.getValueType();
9745
9746  // Decompose 256-bit ops into smaller 128-bit ops.
9747  if (VT.getSizeInBits() == 256)
9748    return Lower256IntArith(Op, DAG);
9749
9750  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9751  DebugLoc dl = Op.getDebugLoc();
9752
9753  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9754  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9755  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9756  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9757  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9758  //
9759  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9760  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9761  //  return AloBlo + AloBhi + AhiBlo;
9762
9763  SDValue A = Op.getOperand(0);
9764  SDValue B = Op.getOperand(1);
9765
9766  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9767                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9768                       A, DAG.getConstant(32, MVT::i32));
9769  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9770                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9771                       B, DAG.getConstant(32, MVT::i32));
9772  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9773                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9774                       A, B);
9775  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9776                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9777                       A, Bhi);
9778  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9779                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9780                       Ahi, B);
9781  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9782                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9783                       AloBhi, DAG.getConstant(32, MVT::i32));
9784  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9785                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9786                       AhiBlo, DAG.getConstant(32, MVT::i32));
9787  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9788  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9789  return Res;
9790}
9791
9792SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9793
9794  EVT VT = Op.getValueType();
9795  DebugLoc dl = Op.getDebugLoc();
9796  SDValue R = Op.getOperand(0);
9797  SDValue Amt = Op.getOperand(1);
9798  LLVMContext *Context = DAG.getContext();
9799
9800  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
9801    return SDValue();
9802
9803  // Decompose 256-bit shifts into smaller 128-bit shifts.
9804  if (VT.getSizeInBits() == 256) {
9805    int NumElems = VT.getVectorNumElements();
9806    MVT EltVT = VT.getVectorElementType().getSimpleVT();
9807    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9808
9809    // Extract the two vectors
9810    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9811    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9812                                     DAG, dl);
9813
9814    // Recreate the shift amount vectors
9815    SDValue Amt1, Amt2;
9816    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9817      // Constant shift amount
9818      SmallVector<SDValue, 4> Amt1Csts;
9819      SmallVector<SDValue, 4> Amt2Csts;
9820      for (int i = 0; i < NumElems/2; ++i)
9821        Amt1Csts.push_back(Amt->getOperand(i));
9822      for (int i = NumElems/2; i < NumElems; ++i)
9823        Amt2Csts.push_back(Amt->getOperand(i));
9824
9825      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9826                                 &Amt1Csts[0], NumElems/2);
9827      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9828                                 &Amt2Csts[0], NumElems/2);
9829    } else {
9830      // Variable shift amount
9831      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9832      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9833                                 DAG, dl);
9834    }
9835
9836    // Issue new vector shifts for the smaller types
9837    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9838    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9839
9840    // Concatenate the result back
9841    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9842  }
9843
9844  // Optimize shl/srl/sra with constant shift amount.
9845  if (isSplatVector(Amt.getNode())) {
9846    SDValue SclrAmt = Amt->getOperand(0);
9847    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9848      uint64_t ShiftAmt = C->getZExtValue();
9849
9850      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9851       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9852                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9853                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9854
9855      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9856       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9857                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9858                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9859
9860      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9861       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9862                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9863                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9864
9865      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9866       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9867                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9868                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9869
9870      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9871       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9872                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9873                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9874
9875      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9876       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9877                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9878                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9879
9880      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9881       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9882                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9883                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9884
9885      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9886       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9887                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9888                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9889    }
9890  }
9891
9892  // Lower SHL with variable shift amount.
9893  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9894    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9895                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9896                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9897
9898    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9899
9900    std::vector<Constant*> CV(4, CI);
9901    Constant *C = ConstantVector::get(CV);
9902    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9903    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9904                                 MachinePointerInfo::getConstantPool(),
9905                                 false, false, 16);
9906
9907    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9908    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9909    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9910    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9911  }
9912  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9913    // a = a << 5;
9914    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9915                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9916                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9917
9918    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9919    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9920
9921    std::vector<Constant*> CVM1(16, CM1);
9922    std::vector<Constant*> CVM2(16, CM2);
9923    Constant *C = ConstantVector::get(CVM1);
9924    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9925    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9926                            MachinePointerInfo::getConstantPool(),
9927                            false, false, 16);
9928
9929    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9930    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9931    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9932                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9933                    DAG.getConstant(4, MVT::i32));
9934    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9935    // a += a
9936    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9937
9938    C = ConstantVector::get(CVM2);
9939    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9940    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9941                    MachinePointerInfo::getConstantPool(),
9942                    false, false, 16);
9943
9944    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9945    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9946    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9947                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9948                    DAG.getConstant(2, MVT::i32));
9949    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9950    // a += a
9951    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9952
9953    // return pblendv(r, r+r, a);
9954    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9955                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9956    return R;
9957  }
9958  return SDValue();
9959}
9960
9961SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9962  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9963  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9964  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9965  // has only one use.
9966  SDNode *N = Op.getNode();
9967  SDValue LHS = N->getOperand(0);
9968  SDValue RHS = N->getOperand(1);
9969  unsigned BaseOp = 0;
9970  unsigned Cond = 0;
9971  DebugLoc DL = Op.getDebugLoc();
9972  switch (Op.getOpcode()) {
9973  default: llvm_unreachable("Unknown ovf instruction!");
9974  case ISD::SADDO:
9975    // A subtract of one will be selected as a INC. Note that INC doesn't
9976    // set CF, so we can't do this for UADDO.
9977    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9978      if (C->isOne()) {
9979        BaseOp = X86ISD::INC;
9980        Cond = X86::COND_O;
9981        break;
9982      }
9983    BaseOp = X86ISD::ADD;
9984    Cond = X86::COND_O;
9985    break;
9986  case ISD::UADDO:
9987    BaseOp = X86ISD::ADD;
9988    Cond = X86::COND_B;
9989    break;
9990  case ISD::SSUBO:
9991    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9992    // set CF, so we can't do this for USUBO.
9993    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9994      if (C->isOne()) {
9995        BaseOp = X86ISD::DEC;
9996        Cond = X86::COND_O;
9997        break;
9998      }
9999    BaseOp = X86ISD::SUB;
10000    Cond = X86::COND_O;
10001    break;
10002  case ISD::USUBO:
10003    BaseOp = X86ISD::SUB;
10004    Cond = X86::COND_B;
10005    break;
10006  case ISD::SMULO:
10007    BaseOp = X86ISD::SMUL;
10008    Cond = X86::COND_O;
10009    break;
10010  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10011    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10012                                 MVT::i32);
10013    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10014
10015    SDValue SetCC =
10016      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10017                  DAG.getConstant(X86::COND_O, MVT::i32),
10018                  SDValue(Sum.getNode(), 2));
10019
10020    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10021  }
10022  }
10023
10024  // Also sets EFLAGS.
10025  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10026  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10027
10028  SDValue SetCC =
10029    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10030                DAG.getConstant(Cond, MVT::i32),
10031                SDValue(Sum.getNode(), 1));
10032
10033  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10034}
10035
10036SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10037  DebugLoc dl = Op.getDebugLoc();
10038  SDNode* Node = Op.getNode();
10039  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10040  EVT VT = Node->getValueType(0);
10041
10042  if (Subtarget->hasSSE2() && VT.isVector()) {
10043    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10044                        ExtraVT.getScalarType().getSizeInBits();
10045    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10046
10047    unsigned SHLIntrinsicsID = 0;
10048    unsigned SRAIntrinsicsID = 0;
10049    switch (VT.getSimpleVT().SimpleTy) {
10050      default:
10051        return SDValue();
10052      case MVT::v2i64: {
10053        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
10054        SRAIntrinsicsID = 0;
10055        break;
10056      }
10057      case MVT::v4i32: {
10058        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10059        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10060        break;
10061      }
10062      case MVT::v8i16: {
10063        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10064        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10065        break;
10066      }
10067    }
10068
10069    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10070                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10071                         Node->getOperand(0), ShAmt);
10072
10073    // In case of 1 bit sext, no need to shr
10074    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10075
10076    if (SRAIntrinsicsID) {
10077      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10078                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10079                         Tmp1, ShAmt);
10080    }
10081    return Tmp1;
10082  }
10083
10084  return SDValue();
10085}
10086
10087
10088SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10089  DebugLoc dl = Op.getDebugLoc();
10090
10091  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10092  // There isn't any reason to disable it if the target processor supports it.
10093  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10094    SDValue Chain = Op.getOperand(0);
10095    SDValue Zero = DAG.getConstant(0, MVT::i32);
10096    SDValue Ops[] = {
10097      DAG.getRegister(X86::ESP, MVT::i32), // Base
10098      DAG.getTargetConstant(1, MVT::i8),   // Scale
10099      DAG.getRegister(0, MVT::i32),        // Index
10100      DAG.getTargetConstant(0, MVT::i32),  // Disp
10101      DAG.getRegister(0, MVT::i32),        // Segment.
10102      Zero,
10103      Chain
10104    };
10105    SDNode *Res =
10106      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10107                          array_lengthof(Ops));
10108    return SDValue(Res, 0);
10109  }
10110
10111  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10112  if (!isDev)
10113    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10114
10115  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10116  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10117  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10118  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10119
10120  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10121  if (!Op1 && !Op2 && !Op3 && Op4)
10122    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10123
10124  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10125  if (Op1 && !Op2 && !Op3 && !Op4)
10126    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10127
10128  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10129  //           (MFENCE)>;
10130  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10131}
10132
10133SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10134                                             SelectionDAG &DAG) const {
10135  DebugLoc dl = Op.getDebugLoc();
10136  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10137    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10138  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10139    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10140
10141  // The only fence that needs an instruction is a sequentially-consistent
10142  // cross-thread fence.
10143  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10144    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10145    // no-sse2). There isn't any reason to disable it if the target processor
10146    // supports it.
10147    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10148      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10149
10150    SDValue Chain = Op.getOperand(0);
10151    SDValue Zero = DAG.getConstant(0, MVT::i32);
10152    SDValue Ops[] = {
10153      DAG.getRegister(X86::ESP, MVT::i32), // Base
10154      DAG.getTargetConstant(1, MVT::i8),   // Scale
10155      DAG.getRegister(0, MVT::i32),        // Index
10156      DAG.getTargetConstant(0, MVT::i32),  // Disp
10157      DAG.getRegister(0, MVT::i32),        // Segment.
10158      Zero,
10159      Chain
10160    };
10161    SDNode *Res =
10162      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10163                         array_lengthof(Ops));
10164    return SDValue(Res, 0);
10165  }
10166
10167  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10168  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10169}
10170
10171
10172SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10173  EVT T = Op.getValueType();
10174  DebugLoc DL = Op.getDebugLoc();
10175  unsigned Reg = 0;
10176  unsigned size = 0;
10177  switch(T.getSimpleVT().SimpleTy) {
10178  default:
10179    assert(false && "Invalid value type!");
10180  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10181  case MVT::i16: Reg = X86::AX;  size = 2; break;
10182  case MVT::i32: Reg = X86::EAX; size = 4; break;
10183  case MVT::i64:
10184    assert(Subtarget->is64Bit() && "Node not type legal!");
10185    Reg = X86::RAX; size = 8;
10186    break;
10187  }
10188  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10189                                    Op.getOperand(2), SDValue());
10190  SDValue Ops[] = { cpIn.getValue(0),
10191                    Op.getOperand(1),
10192                    Op.getOperand(3),
10193                    DAG.getTargetConstant(size, MVT::i8),
10194                    cpIn.getValue(1) };
10195  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10196  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10197  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10198                                           Ops, 5, T, MMO);
10199  SDValue cpOut =
10200    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10201  return cpOut;
10202}
10203
10204SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10205                                                 SelectionDAG &DAG) const {
10206  assert(Subtarget->is64Bit() && "Result not type legalized?");
10207  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10208  SDValue TheChain = Op.getOperand(0);
10209  DebugLoc dl = Op.getDebugLoc();
10210  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10211  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10212  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10213                                   rax.getValue(2));
10214  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10215                            DAG.getConstant(32, MVT::i8));
10216  SDValue Ops[] = {
10217    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10218    rdx.getValue(1)
10219  };
10220  return DAG.getMergeValues(Ops, 2, dl);
10221}
10222
10223SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10224                                            SelectionDAG &DAG) const {
10225  EVT SrcVT = Op.getOperand(0).getValueType();
10226  EVT DstVT = Op.getValueType();
10227  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10228         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10229  assert((DstVT == MVT::i64 ||
10230          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10231         "Unexpected custom BITCAST");
10232  // i64 <=> MMX conversions are Legal.
10233  if (SrcVT==MVT::i64 && DstVT.isVector())
10234    return Op;
10235  if (DstVT==MVT::i64 && SrcVT.isVector())
10236    return Op;
10237  // MMX <=> MMX conversions are Legal.
10238  if (SrcVT.isVector() && DstVT.isVector())
10239    return Op;
10240  // All other conversions need to be expanded.
10241  return SDValue();
10242}
10243
10244SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10245  SDNode *Node = Op.getNode();
10246  DebugLoc dl = Node->getDebugLoc();
10247  EVT T = Node->getValueType(0);
10248  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10249                              DAG.getConstant(0, T), Node->getOperand(2));
10250  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10251                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10252                       Node->getOperand(0),
10253                       Node->getOperand(1), negOp,
10254                       cast<AtomicSDNode>(Node)->getSrcValue(),
10255                       cast<AtomicSDNode>(Node)->getAlignment(),
10256                       cast<AtomicSDNode>(Node)->getOrdering(),
10257                       cast<AtomicSDNode>(Node)->getSynchScope());
10258}
10259
10260static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10261  SDNode *Node = Op.getNode();
10262  DebugLoc dl = Node->getDebugLoc();
10263  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10264
10265  // Convert seq_cst store -> xchg
10266  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10267  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10268  //        (The only way to get a 16-byte store is cmpxchg16b)
10269  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10270  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10271      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10272    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10273                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10274                                 Node->getOperand(0),
10275                                 Node->getOperand(1), Node->getOperand(2),
10276                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10277                                 cast<AtomicSDNode>(Node)->getOrdering(),
10278                                 cast<AtomicSDNode>(Node)->getSynchScope());
10279    return Swap.getValue(1);
10280  }
10281  // Other atomic stores have a simple pattern.
10282  return Op;
10283}
10284
10285static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10286  EVT VT = Op.getNode()->getValueType(0);
10287
10288  // Let legalize expand this if it isn't a legal type yet.
10289  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10290    return SDValue();
10291
10292  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10293
10294  unsigned Opc;
10295  bool ExtraOp = false;
10296  switch (Op.getOpcode()) {
10297  default: assert(0 && "Invalid code");
10298  case ISD::ADDC: Opc = X86ISD::ADD; break;
10299  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10300  case ISD::SUBC: Opc = X86ISD::SUB; break;
10301  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10302  }
10303
10304  if (!ExtraOp)
10305    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10306                       Op.getOperand(1));
10307  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10308                     Op.getOperand(1), Op.getOperand(2));
10309}
10310
10311/// LowerOperation - Provide custom lowering hooks for some operations.
10312///
10313SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10314  switch (Op.getOpcode()) {
10315  default: llvm_unreachable("Should not custom lower this!");
10316  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10317  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10318  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10319  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10320  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10321  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10322  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10323  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10324  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10325  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10326  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10327  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10328  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10329  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10330  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10331  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10332  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10333  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10334  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10335  case ISD::SHL_PARTS:
10336  case ISD::SRA_PARTS:
10337  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10338  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10339  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10340  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10341  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10342  case ISD::FABS:               return LowerFABS(Op, DAG);
10343  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10344  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10345  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10346  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10347  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
10348  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10349  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10350  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10351  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10352  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10353  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10354  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10355  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10356  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10357  case ISD::FRAME_TO_ARGS_OFFSET:
10358                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10359  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10360  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10361  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10362  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10363  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10364  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10365  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10366  case ISD::MUL:                return LowerMUL(Op, DAG);
10367  case ISD::SRA:
10368  case ISD::SRL:
10369  case ISD::SHL:                return LowerShift(Op, DAG);
10370  case ISD::SADDO:
10371  case ISD::UADDO:
10372  case ISD::SSUBO:
10373  case ISD::USUBO:
10374  case ISD::SMULO:
10375  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10376  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10377  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10378  case ISD::ADDC:
10379  case ISD::ADDE:
10380  case ISD::SUBC:
10381  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10382  case ISD::ADD:                return LowerADD(Op, DAG);
10383  case ISD::SUB:                return LowerSUB(Op, DAG);
10384  }
10385}
10386
10387static void ReplaceATOMIC_LOAD(SDNode *Node,
10388                                  SmallVectorImpl<SDValue> &Results,
10389                                  SelectionDAG &DAG) {
10390  DebugLoc dl = Node->getDebugLoc();
10391  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10392
10393  // Convert wide load -> cmpxchg8b/cmpxchg16b
10394  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10395  //        (The only way to get a 16-byte load is cmpxchg16b)
10396  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10397  SDValue Zero = DAG.getConstant(0, VT);
10398  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10399                               Node->getOperand(0),
10400                               Node->getOperand(1), Zero, Zero,
10401                               cast<AtomicSDNode>(Node)->getMemOperand(),
10402                               cast<AtomicSDNode>(Node)->getOrdering(),
10403                               cast<AtomicSDNode>(Node)->getSynchScope());
10404  Results.push_back(Swap.getValue(0));
10405  Results.push_back(Swap.getValue(1));
10406}
10407
10408void X86TargetLowering::
10409ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10410                        SelectionDAG &DAG, unsigned NewOp) const {
10411  EVT T = Node->getValueType(0);
10412  DebugLoc dl = Node->getDebugLoc();
10413  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
10414
10415  SDValue Chain = Node->getOperand(0);
10416  SDValue In1 = Node->getOperand(1);
10417  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10418                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10419  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10420                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10421  SDValue Ops[] = { Chain, In1, In2L, In2H };
10422  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10423  SDValue Result =
10424    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10425                            cast<MemSDNode>(Node)->getMemOperand());
10426  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10427  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10428  Results.push_back(Result.getValue(2));
10429}
10430
10431/// ReplaceNodeResults - Replace a node with an illegal result type
10432/// with a new node built out of custom code.
10433void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10434                                           SmallVectorImpl<SDValue>&Results,
10435                                           SelectionDAG &DAG) const {
10436  DebugLoc dl = N->getDebugLoc();
10437  switch (N->getOpcode()) {
10438  default:
10439    assert(false && "Do not know how to custom type legalize this operation!");
10440    return;
10441  case ISD::SIGN_EXTEND_INREG:
10442  case ISD::ADDC:
10443  case ISD::ADDE:
10444  case ISD::SUBC:
10445  case ISD::SUBE:
10446    // We don't want to expand or promote these.
10447    return;
10448  case ISD::FP_TO_SINT: {
10449    std::pair<SDValue,SDValue> Vals =
10450        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10451    SDValue FIST = Vals.first, StackSlot = Vals.second;
10452    if (FIST.getNode() != 0) {
10453      EVT VT = N->getValueType(0);
10454      // Return a load from the stack slot.
10455      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10456                                    MachinePointerInfo(), false, false, 0));
10457    }
10458    return;
10459  }
10460  case ISD::READCYCLECOUNTER: {
10461    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10462    SDValue TheChain = N->getOperand(0);
10463    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10464    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10465                                     rd.getValue(1));
10466    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10467                                     eax.getValue(2));
10468    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10469    SDValue Ops[] = { eax, edx };
10470    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10471    Results.push_back(edx.getValue(1));
10472    return;
10473  }
10474  case ISD::ATOMIC_CMP_SWAP: {
10475    EVT T = N->getValueType(0);
10476    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10477    bool Regs64bit = T == MVT::i128;
10478    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10479    SDValue cpInL, cpInH;
10480    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10481                        DAG.getConstant(0, HalfT));
10482    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10483                        DAG.getConstant(1, HalfT));
10484    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10485                             Regs64bit ? X86::RAX : X86::EAX,
10486                             cpInL, SDValue());
10487    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10488                             Regs64bit ? X86::RDX : X86::EDX,
10489                             cpInH, cpInL.getValue(1));
10490    SDValue swapInL, swapInH;
10491    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10492                          DAG.getConstant(0, HalfT));
10493    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10494                          DAG.getConstant(1, HalfT));
10495    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10496                               Regs64bit ? X86::RBX : X86::EBX,
10497                               swapInL, cpInH.getValue(1));
10498    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10499                               Regs64bit ? X86::RCX : X86::ECX,
10500                               swapInH, swapInL.getValue(1));
10501    SDValue Ops[] = { swapInH.getValue(0),
10502                      N->getOperand(1),
10503                      swapInH.getValue(1) };
10504    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10505    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10506    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10507                                  X86ISD::LCMPXCHG8_DAG;
10508    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10509                                             Ops, 3, T, MMO);
10510    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10511                                        Regs64bit ? X86::RAX : X86::EAX,
10512                                        HalfT, Result.getValue(1));
10513    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10514                                        Regs64bit ? X86::RDX : X86::EDX,
10515                                        HalfT, cpOutL.getValue(2));
10516    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10517    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10518    Results.push_back(cpOutH.getValue(1));
10519    return;
10520  }
10521  case ISD::ATOMIC_LOAD_ADD:
10522    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10523    return;
10524  case ISD::ATOMIC_LOAD_AND:
10525    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10526    return;
10527  case ISD::ATOMIC_LOAD_NAND:
10528    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10529    return;
10530  case ISD::ATOMIC_LOAD_OR:
10531    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10532    return;
10533  case ISD::ATOMIC_LOAD_SUB:
10534    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10535    return;
10536  case ISD::ATOMIC_LOAD_XOR:
10537    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10538    return;
10539  case ISD::ATOMIC_SWAP:
10540    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10541    return;
10542  case ISD::ATOMIC_LOAD:
10543    ReplaceATOMIC_LOAD(N, Results, DAG);
10544  }
10545}
10546
10547const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10548  switch (Opcode) {
10549  default: return NULL;
10550  case X86ISD::BSF:                return "X86ISD::BSF";
10551  case X86ISD::BSR:                return "X86ISD::BSR";
10552  case X86ISD::SHLD:               return "X86ISD::SHLD";
10553  case X86ISD::SHRD:               return "X86ISD::SHRD";
10554  case X86ISD::FAND:               return "X86ISD::FAND";
10555  case X86ISD::FOR:                return "X86ISD::FOR";
10556  case X86ISD::FXOR:               return "X86ISD::FXOR";
10557  case X86ISD::FSRL:               return "X86ISD::FSRL";
10558  case X86ISD::FILD:               return "X86ISD::FILD";
10559  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10560  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10561  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10562  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10563  case X86ISD::FLD:                return "X86ISD::FLD";
10564  case X86ISD::FST:                return "X86ISD::FST";
10565  case X86ISD::CALL:               return "X86ISD::CALL";
10566  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10567  case X86ISD::BT:                 return "X86ISD::BT";
10568  case X86ISD::CMP:                return "X86ISD::CMP";
10569  case X86ISD::COMI:               return "X86ISD::COMI";
10570  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10571  case X86ISD::SETCC:              return "X86ISD::SETCC";
10572  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10573  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10574  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10575  case X86ISD::CMOV:               return "X86ISD::CMOV";
10576  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10577  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10578  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10579  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10580  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10581  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10582  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10583  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10584  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10585  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10586  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10587  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10588  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10589  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10590  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10591  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10592  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10593  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
10594  case X86ISD::FMAX:               return "X86ISD::FMAX";
10595  case X86ISD::FMIN:               return "X86ISD::FMIN";
10596  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10597  case X86ISD::FRCP:               return "X86ISD::FRCP";
10598  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10599  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10600  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10601  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10602  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10603  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10604  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10605  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10606  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10607  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10608  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10609  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10610  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10611  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10612  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10613  case X86ISD::VSHL:               return "X86ISD::VSHL";
10614  case X86ISD::VSRL:               return "X86ISD::VSRL";
10615  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10616  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10617  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10618  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10619  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10620  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10621  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10622  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10623  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10624  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10625  case X86ISD::ADD:                return "X86ISD::ADD";
10626  case X86ISD::SUB:                return "X86ISD::SUB";
10627  case X86ISD::ADC:                return "X86ISD::ADC";
10628  case X86ISD::SBB:                return "X86ISD::SBB";
10629  case X86ISD::SMUL:               return "X86ISD::SMUL";
10630  case X86ISD::UMUL:               return "X86ISD::UMUL";
10631  case X86ISD::INC:                return "X86ISD::INC";
10632  case X86ISD::DEC:                return "X86ISD::DEC";
10633  case X86ISD::OR:                 return "X86ISD::OR";
10634  case X86ISD::XOR:                return "X86ISD::XOR";
10635  case X86ISD::AND:                return "X86ISD::AND";
10636  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10637  case X86ISD::PTEST:              return "X86ISD::PTEST";
10638  case X86ISD::TESTP:              return "X86ISD::TESTP";
10639  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10640  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10641  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10642  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10643  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10644  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10645  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10646  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10647  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10648  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10649  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10650  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10651  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10652  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10653  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10654  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10655  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10656  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10657  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10658  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10659  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10660  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10661  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10662  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10663  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10664  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10665  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10666  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10667  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10668  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10669  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10670  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10671  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10672  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10673  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10674  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10675  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10676  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10677  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10678  case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10679  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10680  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10681  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10682  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10683  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10684  }
10685}
10686
10687// isLegalAddressingMode - Return true if the addressing mode represented
10688// by AM is legal for this target, for a load/store of the specified type.
10689bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10690                                              Type *Ty) const {
10691  // X86 supports extremely general addressing modes.
10692  CodeModel::Model M = getTargetMachine().getCodeModel();
10693  Reloc::Model R = getTargetMachine().getRelocationModel();
10694
10695  // X86 allows a sign-extended 32-bit immediate field as a displacement.
10696  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10697    return false;
10698
10699  if (AM.BaseGV) {
10700    unsigned GVFlags =
10701      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10702
10703    // If a reference to this global requires an extra load, we can't fold it.
10704    if (isGlobalStubReference(GVFlags))
10705      return false;
10706
10707    // If BaseGV requires a register for the PIC base, we cannot also have a
10708    // BaseReg specified.
10709    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10710      return false;
10711
10712    // If lower 4G is not available, then we must use rip-relative addressing.
10713    if ((M != CodeModel::Small || R != Reloc::Static) &&
10714        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10715      return false;
10716  }
10717
10718  switch (AM.Scale) {
10719  case 0:
10720  case 1:
10721  case 2:
10722  case 4:
10723  case 8:
10724    // These scales always work.
10725    break;
10726  case 3:
10727  case 5:
10728  case 9:
10729    // These scales are formed with basereg+scalereg.  Only accept if there is
10730    // no basereg yet.
10731    if (AM.HasBaseReg)
10732      return false;
10733    break;
10734  default:  // Other stuff never works.
10735    return false;
10736  }
10737
10738  return true;
10739}
10740
10741
10742bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10743  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10744    return false;
10745  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10746  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10747  if (NumBits1 <= NumBits2)
10748    return false;
10749  return true;
10750}
10751
10752bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10753  if (!VT1.isInteger() || !VT2.isInteger())
10754    return false;
10755  unsigned NumBits1 = VT1.getSizeInBits();
10756  unsigned NumBits2 = VT2.getSizeInBits();
10757  if (NumBits1 <= NumBits2)
10758    return false;
10759  return true;
10760}
10761
10762bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10763  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10764  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10765}
10766
10767bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10768  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10769  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10770}
10771
10772bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10773  // i16 instructions are longer (0x66 prefix) and potentially slower.
10774  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10775}
10776
10777/// isShuffleMaskLegal - Targets can use this to indicate that they only
10778/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10779/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10780/// are assumed to be legal.
10781bool
10782X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10783                                      EVT VT) const {
10784  // Very little shuffling can be done for 64-bit vectors right now.
10785  if (VT.getSizeInBits() == 64)
10786    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
10787
10788  // FIXME: pshufb, blends, shifts.
10789  return (VT.getVectorNumElements() == 2 ||
10790          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10791          isMOVLMask(M, VT) ||
10792          isSHUFPMask(M, VT) ||
10793          isPSHUFDMask(M, VT) ||
10794          isPSHUFHWMask(M, VT) ||
10795          isPSHUFLWMask(M, VT) ||
10796          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
10797          isUNPCKLMask(M, VT) ||
10798          isUNPCKHMask(M, VT) ||
10799          isUNPCKL_v_undef_Mask(M, VT) ||
10800          isUNPCKH_v_undef_Mask(M, VT));
10801}
10802
10803bool
10804X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10805                                          EVT VT) const {
10806  unsigned NumElts = VT.getVectorNumElements();
10807  // FIXME: This collection of masks seems suspect.
10808  if (NumElts == 2)
10809    return true;
10810  if (NumElts == 4 && VT.getSizeInBits() == 128) {
10811    return (isMOVLMask(Mask, VT)  ||
10812            isCommutedMOVLMask(Mask, VT, true) ||
10813            isSHUFPMask(Mask, VT) ||
10814            isCommutedSHUFPMask(Mask, VT));
10815  }
10816  return false;
10817}
10818
10819//===----------------------------------------------------------------------===//
10820//                           X86 Scheduler Hooks
10821//===----------------------------------------------------------------------===//
10822
10823// private utility function
10824MachineBasicBlock *
10825X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10826                                                       MachineBasicBlock *MBB,
10827                                                       unsigned regOpc,
10828                                                       unsigned immOpc,
10829                                                       unsigned LoadOpc,
10830                                                       unsigned CXchgOpc,
10831                                                       unsigned notOpc,
10832                                                       unsigned EAXreg,
10833                                                       TargetRegisterClass *RC,
10834                                                       bool invSrc) const {
10835  // For the atomic bitwise operator, we generate
10836  //   thisMBB:
10837  //   newMBB:
10838  //     ld  t1 = [bitinstr.addr]
10839  //     op  t2 = t1, [bitinstr.val]
10840  //     mov EAX = t1
10841  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10842  //     bz  newMBB
10843  //     fallthrough -->nextMBB
10844  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10845  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10846  MachineFunction::iterator MBBIter = MBB;
10847  ++MBBIter;
10848
10849  /// First build the CFG
10850  MachineFunction *F = MBB->getParent();
10851  MachineBasicBlock *thisMBB = MBB;
10852  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10853  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10854  F->insert(MBBIter, newMBB);
10855  F->insert(MBBIter, nextMBB);
10856
10857  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10858  nextMBB->splice(nextMBB->begin(), thisMBB,
10859                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10860                  thisMBB->end());
10861  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10862
10863  // Update thisMBB to fall through to newMBB
10864  thisMBB->addSuccessor(newMBB);
10865
10866  // newMBB jumps to itself and fall through to nextMBB
10867  newMBB->addSuccessor(nextMBB);
10868  newMBB->addSuccessor(newMBB);
10869
10870  // Insert instructions into newMBB based on incoming instruction
10871  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10872         "unexpected number of operands");
10873  DebugLoc dl = bInstr->getDebugLoc();
10874  MachineOperand& destOper = bInstr->getOperand(0);
10875  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10876  int numArgs = bInstr->getNumOperands() - 1;
10877  for (int i=0; i < numArgs; ++i)
10878    argOpers[i] = &bInstr->getOperand(i+1);
10879
10880  // x86 address has 4 operands: base, index, scale, and displacement
10881  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10882  int valArgIndx = lastAddrIndx + 1;
10883
10884  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10885  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10886  for (int i=0; i <= lastAddrIndx; ++i)
10887    (*MIB).addOperand(*argOpers[i]);
10888
10889  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10890  if (invSrc) {
10891    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10892  }
10893  else
10894    tt = t1;
10895
10896  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10897  assert((argOpers[valArgIndx]->isReg() ||
10898          argOpers[valArgIndx]->isImm()) &&
10899         "invalid operand");
10900  if (argOpers[valArgIndx]->isReg())
10901    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10902  else
10903    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10904  MIB.addReg(tt);
10905  (*MIB).addOperand(*argOpers[valArgIndx]);
10906
10907  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10908  MIB.addReg(t1);
10909
10910  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10911  for (int i=0; i <= lastAddrIndx; ++i)
10912    (*MIB).addOperand(*argOpers[i]);
10913  MIB.addReg(t2);
10914  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10915  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10916                    bInstr->memoperands_end());
10917
10918  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10919  MIB.addReg(EAXreg);
10920
10921  // insert branch
10922  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10923
10924  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10925  return nextMBB;
10926}
10927
10928// private utility function:  64 bit atomics on 32 bit host.
10929MachineBasicBlock *
10930X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10931                                                       MachineBasicBlock *MBB,
10932                                                       unsigned regOpcL,
10933                                                       unsigned regOpcH,
10934                                                       unsigned immOpcL,
10935                                                       unsigned immOpcH,
10936                                                       bool invSrc) const {
10937  // For the atomic bitwise operator, we generate
10938  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10939  //     ld t1,t2 = [bitinstr.addr]
10940  //   newMBB:
10941  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10942  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10943  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10944  //     mov ECX, EBX <- t5, t6
10945  //     mov EAX, EDX <- t1, t2
10946  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10947  //     mov t3, t4 <- EAX, EDX
10948  //     bz  newMBB
10949  //     result in out1, out2
10950  //     fallthrough -->nextMBB
10951
10952  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10953  const unsigned LoadOpc = X86::MOV32rm;
10954  const unsigned NotOpc = X86::NOT32r;
10955  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10956  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10957  MachineFunction::iterator MBBIter = MBB;
10958  ++MBBIter;
10959
10960  /// First build the CFG
10961  MachineFunction *F = MBB->getParent();
10962  MachineBasicBlock *thisMBB = MBB;
10963  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10964  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10965  F->insert(MBBIter, newMBB);
10966  F->insert(MBBIter, nextMBB);
10967
10968  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10969  nextMBB->splice(nextMBB->begin(), thisMBB,
10970                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10971                  thisMBB->end());
10972  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10973
10974  // Update thisMBB to fall through to newMBB
10975  thisMBB->addSuccessor(newMBB);
10976
10977  // newMBB jumps to itself and fall through to nextMBB
10978  newMBB->addSuccessor(nextMBB);
10979  newMBB->addSuccessor(newMBB);
10980
10981  DebugLoc dl = bInstr->getDebugLoc();
10982  // Insert instructions into newMBB based on incoming instruction
10983  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10984  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10985         "unexpected number of operands");
10986  MachineOperand& dest1Oper = bInstr->getOperand(0);
10987  MachineOperand& dest2Oper = bInstr->getOperand(1);
10988  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10989  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10990    argOpers[i] = &bInstr->getOperand(i+2);
10991
10992    // We use some of the operands multiple times, so conservatively just
10993    // clear any kill flags that might be present.
10994    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10995      argOpers[i]->setIsKill(false);
10996  }
10997
10998  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10999  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11000
11001  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11002  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11003  for (int i=0; i <= lastAddrIndx; ++i)
11004    (*MIB).addOperand(*argOpers[i]);
11005  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11006  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11007  // add 4 to displacement.
11008  for (int i=0; i <= lastAddrIndx-2; ++i)
11009    (*MIB).addOperand(*argOpers[i]);
11010  MachineOperand newOp3 = *(argOpers[3]);
11011  if (newOp3.isImm())
11012    newOp3.setImm(newOp3.getImm()+4);
11013  else
11014    newOp3.setOffset(newOp3.getOffset()+4);
11015  (*MIB).addOperand(newOp3);
11016  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11017
11018  // t3/4 are defined later, at the bottom of the loop
11019  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11020  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11021  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11022    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11023  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11024    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11025
11026  // The subsequent operations should be using the destination registers of
11027  //the PHI instructions.
11028  if (invSrc) {
11029    t1 = F->getRegInfo().createVirtualRegister(RC);
11030    t2 = F->getRegInfo().createVirtualRegister(RC);
11031    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11032    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11033  } else {
11034    t1 = dest1Oper.getReg();
11035    t2 = dest2Oper.getReg();
11036  }
11037
11038  int valArgIndx = lastAddrIndx + 1;
11039  assert((argOpers[valArgIndx]->isReg() ||
11040          argOpers[valArgIndx]->isImm()) &&
11041         "invalid operand");
11042  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11043  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11044  if (argOpers[valArgIndx]->isReg())
11045    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11046  else
11047    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11048  if (regOpcL != X86::MOV32rr)
11049    MIB.addReg(t1);
11050  (*MIB).addOperand(*argOpers[valArgIndx]);
11051  assert(argOpers[valArgIndx + 1]->isReg() ==
11052         argOpers[valArgIndx]->isReg());
11053  assert(argOpers[valArgIndx + 1]->isImm() ==
11054         argOpers[valArgIndx]->isImm());
11055  if (argOpers[valArgIndx + 1]->isReg())
11056    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11057  else
11058    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11059  if (regOpcH != X86::MOV32rr)
11060    MIB.addReg(t2);
11061  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11062
11063  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11064  MIB.addReg(t1);
11065  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11066  MIB.addReg(t2);
11067
11068  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11069  MIB.addReg(t5);
11070  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11071  MIB.addReg(t6);
11072
11073  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11074  for (int i=0; i <= lastAddrIndx; ++i)
11075    (*MIB).addOperand(*argOpers[i]);
11076
11077  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11078  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11079                    bInstr->memoperands_end());
11080
11081  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11082  MIB.addReg(X86::EAX);
11083  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11084  MIB.addReg(X86::EDX);
11085
11086  // insert branch
11087  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11088
11089  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11090  return nextMBB;
11091}
11092
11093// private utility function
11094MachineBasicBlock *
11095X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11096                                                      MachineBasicBlock *MBB,
11097                                                      unsigned cmovOpc) const {
11098  // For the atomic min/max operator, we generate
11099  //   thisMBB:
11100  //   newMBB:
11101  //     ld t1 = [min/max.addr]
11102  //     mov t2 = [min/max.val]
11103  //     cmp  t1, t2
11104  //     cmov[cond] t2 = t1
11105  //     mov EAX = t1
11106  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11107  //     bz   newMBB
11108  //     fallthrough -->nextMBB
11109  //
11110  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11111  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11112  MachineFunction::iterator MBBIter = MBB;
11113  ++MBBIter;
11114
11115  /// First build the CFG
11116  MachineFunction *F = MBB->getParent();
11117  MachineBasicBlock *thisMBB = MBB;
11118  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11119  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11120  F->insert(MBBIter, newMBB);
11121  F->insert(MBBIter, nextMBB);
11122
11123  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11124  nextMBB->splice(nextMBB->begin(), thisMBB,
11125                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11126                  thisMBB->end());
11127  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11128
11129  // Update thisMBB to fall through to newMBB
11130  thisMBB->addSuccessor(newMBB);
11131
11132  // newMBB jumps to newMBB and fall through to nextMBB
11133  newMBB->addSuccessor(nextMBB);
11134  newMBB->addSuccessor(newMBB);
11135
11136  DebugLoc dl = mInstr->getDebugLoc();
11137  // Insert instructions into newMBB based on incoming instruction
11138  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11139         "unexpected number of operands");
11140  MachineOperand& destOper = mInstr->getOperand(0);
11141  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11142  int numArgs = mInstr->getNumOperands() - 1;
11143  for (int i=0; i < numArgs; ++i)
11144    argOpers[i] = &mInstr->getOperand(i+1);
11145
11146  // x86 address has 4 operands: base, index, scale, and displacement
11147  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11148  int valArgIndx = lastAddrIndx + 1;
11149
11150  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11151  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11152  for (int i=0; i <= lastAddrIndx; ++i)
11153    (*MIB).addOperand(*argOpers[i]);
11154
11155  // We only support register and immediate values
11156  assert((argOpers[valArgIndx]->isReg() ||
11157          argOpers[valArgIndx]->isImm()) &&
11158         "invalid operand");
11159
11160  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11161  if (argOpers[valArgIndx]->isReg())
11162    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11163  else
11164    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11165  (*MIB).addOperand(*argOpers[valArgIndx]);
11166
11167  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11168  MIB.addReg(t1);
11169
11170  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11171  MIB.addReg(t1);
11172  MIB.addReg(t2);
11173
11174  // Generate movc
11175  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11176  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11177  MIB.addReg(t2);
11178  MIB.addReg(t1);
11179
11180  // Cmp and exchange if none has modified the memory location
11181  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11182  for (int i=0; i <= lastAddrIndx; ++i)
11183    (*MIB).addOperand(*argOpers[i]);
11184  MIB.addReg(t3);
11185  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11186  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11187                    mInstr->memoperands_end());
11188
11189  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11190  MIB.addReg(X86::EAX);
11191
11192  // insert branch
11193  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11194
11195  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11196  return nextMBB;
11197}
11198
11199// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11200// or XMM0_V32I8 in AVX all of this code can be replaced with that
11201// in the .td file.
11202MachineBasicBlock *
11203X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11204                            unsigned numArgs, bool memArg) const {
11205  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11206         "Target must have SSE4.2 or AVX features enabled");
11207
11208  DebugLoc dl = MI->getDebugLoc();
11209  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11210  unsigned Opc;
11211  if (!Subtarget->hasAVX()) {
11212    if (memArg)
11213      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11214    else
11215      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11216  } else {
11217    if (memArg)
11218      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11219    else
11220      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11221  }
11222
11223  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11224  for (unsigned i = 0; i < numArgs; ++i) {
11225    MachineOperand &Op = MI->getOperand(i+1);
11226    if (!(Op.isReg() && Op.isImplicit()))
11227      MIB.addOperand(Op);
11228  }
11229  BuildMI(*BB, MI, dl,
11230    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11231             MI->getOperand(0).getReg())
11232    .addReg(X86::XMM0);
11233
11234  MI->eraseFromParent();
11235  return BB;
11236}
11237
11238MachineBasicBlock *
11239X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11240  DebugLoc dl = MI->getDebugLoc();
11241  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11242
11243  // Address into RAX/EAX, other two args into ECX, EDX.
11244  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11245  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11246  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11247  for (int i = 0; i < X86::AddrNumOperands; ++i)
11248    MIB.addOperand(MI->getOperand(i));
11249
11250  unsigned ValOps = X86::AddrNumOperands;
11251  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11252    .addReg(MI->getOperand(ValOps).getReg());
11253  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11254    .addReg(MI->getOperand(ValOps+1).getReg());
11255
11256  // The instruction doesn't actually take any operands though.
11257  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11258
11259  MI->eraseFromParent(); // The pseudo is gone now.
11260  return BB;
11261}
11262
11263MachineBasicBlock *
11264X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11265  DebugLoc dl = MI->getDebugLoc();
11266  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11267
11268  // First arg in ECX, the second in EAX.
11269  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11270    .addReg(MI->getOperand(0).getReg());
11271  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11272    .addReg(MI->getOperand(1).getReg());
11273
11274  // The instruction doesn't actually take any operands though.
11275  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11276
11277  MI->eraseFromParent(); // The pseudo is gone now.
11278  return BB;
11279}
11280
11281MachineBasicBlock *
11282X86TargetLowering::EmitVAARG64WithCustomInserter(
11283                   MachineInstr *MI,
11284                   MachineBasicBlock *MBB) const {
11285  // Emit va_arg instruction on X86-64.
11286
11287  // Operands to this pseudo-instruction:
11288  // 0  ) Output        : destination address (reg)
11289  // 1-5) Input         : va_list address (addr, i64mem)
11290  // 6  ) ArgSize       : Size (in bytes) of vararg type
11291  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11292  // 8  ) Align         : Alignment of type
11293  // 9  ) EFLAGS (implicit-def)
11294
11295  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11296  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11297
11298  unsigned DestReg = MI->getOperand(0).getReg();
11299  MachineOperand &Base = MI->getOperand(1);
11300  MachineOperand &Scale = MI->getOperand(2);
11301  MachineOperand &Index = MI->getOperand(3);
11302  MachineOperand &Disp = MI->getOperand(4);
11303  MachineOperand &Segment = MI->getOperand(5);
11304  unsigned ArgSize = MI->getOperand(6).getImm();
11305  unsigned ArgMode = MI->getOperand(7).getImm();
11306  unsigned Align = MI->getOperand(8).getImm();
11307
11308  // Memory Reference
11309  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11310  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11311  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11312
11313  // Machine Information
11314  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11315  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11316  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11317  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11318  DebugLoc DL = MI->getDebugLoc();
11319
11320  // struct va_list {
11321  //   i32   gp_offset
11322  //   i32   fp_offset
11323  //   i64   overflow_area (address)
11324  //   i64   reg_save_area (address)
11325  // }
11326  // sizeof(va_list) = 24
11327  // alignment(va_list) = 8
11328
11329  unsigned TotalNumIntRegs = 6;
11330  unsigned TotalNumXMMRegs = 8;
11331  bool UseGPOffset = (ArgMode == 1);
11332  bool UseFPOffset = (ArgMode == 2);
11333  unsigned MaxOffset = TotalNumIntRegs * 8 +
11334                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11335
11336  /* Align ArgSize to a multiple of 8 */
11337  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11338  bool NeedsAlign = (Align > 8);
11339
11340  MachineBasicBlock *thisMBB = MBB;
11341  MachineBasicBlock *overflowMBB;
11342  MachineBasicBlock *offsetMBB;
11343  MachineBasicBlock *endMBB;
11344
11345  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11346  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11347  unsigned OffsetReg = 0;
11348
11349  if (!UseGPOffset && !UseFPOffset) {
11350    // If we only pull from the overflow region, we don't create a branch.
11351    // We don't need to alter control flow.
11352    OffsetDestReg = 0; // unused
11353    OverflowDestReg = DestReg;
11354
11355    offsetMBB = NULL;
11356    overflowMBB = thisMBB;
11357    endMBB = thisMBB;
11358  } else {
11359    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11360    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11361    // If not, pull from overflow_area. (branch to overflowMBB)
11362    //
11363    //       thisMBB
11364    //         |     .
11365    //         |        .
11366    //     offsetMBB   overflowMBB
11367    //         |        .
11368    //         |     .
11369    //        endMBB
11370
11371    // Registers for the PHI in endMBB
11372    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11373    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11374
11375    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11376    MachineFunction *MF = MBB->getParent();
11377    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11378    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11379    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11380
11381    MachineFunction::iterator MBBIter = MBB;
11382    ++MBBIter;
11383
11384    // Insert the new basic blocks
11385    MF->insert(MBBIter, offsetMBB);
11386    MF->insert(MBBIter, overflowMBB);
11387    MF->insert(MBBIter, endMBB);
11388
11389    // Transfer the remainder of MBB and its successor edges to endMBB.
11390    endMBB->splice(endMBB->begin(), thisMBB,
11391                    llvm::next(MachineBasicBlock::iterator(MI)),
11392                    thisMBB->end());
11393    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11394
11395    // Make offsetMBB and overflowMBB successors of thisMBB
11396    thisMBB->addSuccessor(offsetMBB);
11397    thisMBB->addSuccessor(overflowMBB);
11398
11399    // endMBB is a successor of both offsetMBB and overflowMBB
11400    offsetMBB->addSuccessor(endMBB);
11401    overflowMBB->addSuccessor(endMBB);
11402
11403    // Load the offset value into a register
11404    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11405    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11406      .addOperand(Base)
11407      .addOperand(Scale)
11408      .addOperand(Index)
11409      .addDisp(Disp, UseFPOffset ? 4 : 0)
11410      .addOperand(Segment)
11411      .setMemRefs(MMOBegin, MMOEnd);
11412
11413    // Check if there is enough room left to pull this argument.
11414    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11415      .addReg(OffsetReg)
11416      .addImm(MaxOffset + 8 - ArgSizeA8);
11417
11418    // Branch to "overflowMBB" if offset >= max
11419    // Fall through to "offsetMBB" otherwise
11420    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11421      .addMBB(overflowMBB);
11422  }
11423
11424  // In offsetMBB, emit code to use the reg_save_area.
11425  if (offsetMBB) {
11426    assert(OffsetReg != 0);
11427
11428    // Read the reg_save_area address.
11429    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11430    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11431      .addOperand(Base)
11432      .addOperand(Scale)
11433      .addOperand(Index)
11434      .addDisp(Disp, 16)
11435      .addOperand(Segment)
11436      .setMemRefs(MMOBegin, MMOEnd);
11437
11438    // Zero-extend the offset
11439    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11440      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11441        .addImm(0)
11442        .addReg(OffsetReg)
11443        .addImm(X86::sub_32bit);
11444
11445    // Add the offset to the reg_save_area to get the final address.
11446    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11447      .addReg(OffsetReg64)
11448      .addReg(RegSaveReg);
11449
11450    // Compute the offset for the next argument
11451    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11452    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11453      .addReg(OffsetReg)
11454      .addImm(UseFPOffset ? 16 : 8);
11455
11456    // Store it back into the va_list.
11457    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11458      .addOperand(Base)
11459      .addOperand(Scale)
11460      .addOperand(Index)
11461      .addDisp(Disp, UseFPOffset ? 4 : 0)
11462      .addOperand(Segment)
11463      .addReg(NextOffsetReg)
11464      .setMemRefs(MMOBegin, MMOEnd);
11465
11466    // Jump to endMBB
11467    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11468      .addMBB(endMBB);
11469  }
11470
11471  //
11472  // Emit code to use overflow area
11473  //
11474
11475  // Load the overflow_area address into a register.
11476  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11477  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11478    .addOperand(Base)
11479    .addOperand(Scale)
11480    .addOperand(Index)
11481    .addDisp(Disp, 8)
11482    .addOperand(Segment)
11483    .setMemRefs(MMOBegin, MMOEnd);
11484
11485  // If we need to align it, do so. Otherwise, just copy the address
11486  // to OverflowDestReg.
11487  if (NeedsAlign) {
11488    // Align the overflow address
11489    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11490    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11491
11492    // aligned_addr = (addr + (align-1)) & ~(align-1)
11493    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11494      .addReg(OverflowAddrReg)
11495      .addImm(Align-1);
11496
11497    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11498      .addReg(TmpReg)
11499      .addImm(~(uint64_t)(Align-1));
11500  } else {
11501    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11502      .addReg(OverflowAddrReg);
11503  }
11504
11505  // Compute the next overflow address after this argument.
11506  // (the overflow address should be kept 8-byte aligned)
11507  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11508  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11509    .addReg(OverflowDestReg)
11510    .addImm(ArgSizeA8);
11511
11512  // Store the new overflow address.
11513  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11514    .addOperand(Base)
11515    .addOperand(Scale)
11516    .addOperand(Index)
11517    .addDisp(Disp, 8)
11518    .addOperand(Segment)
11519    .addReg(NextAddrReg)
11520    .setMemRefs(MMOBegin, MMOEnd);
11521
11522  // If we branched, emit the PHI to the front of endMBB.
11523  if (offsetMBB) {
11524    BuildMI(*endMBB, endMBB->begin(), DL,
11525            TII->get(X86::PHI), DestReg)
11526      .addReg(OffsetDestReg).addMBB(offsetMBB)
11527      .addReg(OverflowDestReg).addMBB(overflowMBB);
11528  }
11529
11530  // Erase the pseudo instruction
11531  MI->eraseFromParent();
11532
11533  return endMBB;
11534}
11535
11536MachineBasicBlock *
11537X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11538                                                 MachineInstr *MI,
11539                                                 MachineBasicBlock *MBB) const {
11540  // Emit code to save XMM registers to the stack. The ABI says that the
11541  // number of registers to save is given in %al, so it's theoretically
11542  // possible to do an indirect jump trick to avoid saving all of them,
11543  // however this code takes a simpler approach and just executes all
11544  // of the stores if %al is non-zero. It's less code, and it's probably
11545  // easier on the hardware branch predictor, and stores aren't all that
11546  // expensive anyway.
11547
11548  // Create the new basic blocks. One block contains all the XMM stores,
11549  // and one block is the final destination regardless of whether any
11550  // stores were performed.
11551  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11552  MachineFunction *F = MBB->getParent();
11553  MachineFunction::iterator MBBIter = MBB;
11554  ++MBBIter;
11555  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11556  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11557  F->insert(MBBIter, XMMSaveMBB);
11558  F->insert(MBBIter, EndMBB);
11559
11560  // Transfer the remainder of MBB and its successor edges to EndMBB.
11561  EndMBB->splice(EndMBB->begin(), MBB,
11562                 llvm::next(MachineBasicBlock::iterator(MI)),
11563                 MBB->end());
11564  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11565
11566  // The original block will now fall through to the XMM save block.
11567  MBB->addSuccessor(XMMSaveMBB);
11568  // The XMMSaveMBB will fall through to the end block.
11569  XMMSaveMBB->addSuccessor(EndMBB);
11570
11571  // Now add the instructions.
11572  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11573  DebugLoc DL = MI->getDebugLoc();
11574
11575  unsigned CountReg = MI->getOperand(0).getReg();
11576  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11577  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11578
11579  if (!Subtarget->isTargetWin64()) {
11580    // If %al is 0, branch around the XMM save block.
11581    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11582    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11583    MBB->addSuccessor(EndMBB);
11584  }
11585
11586  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11587  // In the XMM save block, save all the XMM argument registers.
11588  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11589    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11590    MachineMemOperand *MMO =
11591      F->getMachineMemOperand(
11592          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11593        MachineMemOperand::MOStore,
11594        /*Size=*/16, /*Align=*/16);
11595    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11596      .addFrameIndex(RegSaveFrameIndex)
11597      .addImm(/*Scale=*/1)
11598      .addReg(/*IndexReg=*/0)
11599      .addImm(/*Disp=*/Offset)
11600      .addReg(/*Segment=*/0)
11601      .addReg(MI->getOperand(i).getReg())
11602      .addMemOperand(MMO);
11603  }
11604
11605  MI->eraseFromParent();   // The pseudo instruction is gone now.
11606
11607  return EndMBB;
11608}
11609
11610MachineBasicBlock *
11611X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11612                                     MachineBasicBlock *BB) const {
11613  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11614  DebugLoc DL = MI->getDebugLoc();
11615
11616  // To "insert" a SELECT_CC instruction, we actually have to insert the
11617  // diamond control-flow pattern.  The incoming instruction knows the
11618  // destination vreg to set, the condition code register to branch on, the
11619  // true/false values to select between, and a branch opcode to use.
11620  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11621  MachineFunction::iterator It = BB;
11622  ++It;
11623
11624  //  thisMBB:
11625  //  ...
11626  //   TrueVal = ...
11627  //   cmpTY ccX, r1, r2
11628  //   bCC copy1MBB
11629  //   fallthrough --> copy0MBB
11630  MachineBasicBlock *thisMBB = BB;
11631  MachineFunction *F = BB->getParent();
11632  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11633  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11634  F->insert(It, copy0MBB);
11635  F->insert(It, sinkMBB);
11636
11637  // If the EFLAGS register isn't dead in the terminator, then claim that it's
11638  // live into the sink and copy blocks.
11639  if (!MI->killsRegister(X86::EFLAGS)) {
11640    copy0MBB->addLiveIn(X86::EFLAGS);
11641    sinkMBB->addLiveIn(X86::EFLAGS);
11642  }
11643
11644  // Transfer the remainder of BB and its successor edges to sinkMBB.
11645  sinkMBB->splice(sinkMBB->begin(), BB,
11646                  llvm::next(MachineBasicBlock::iterator(MI)),
11647                  BB->end());
11648  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11649
11650  // Add the true and fallthrough blocks as its successors.
11651  BB->addSuccessor(copy0MBB);
11652  BB->addSuccessor(sinkMBB);
11653
11654  // Create the conditional branch instruction.
11655  unsigned Opc =
11656    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11657  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11658
11659  //  copy0MBB:
11660  //   %FalseValue = ...
11661  //   # fallthrough to sinkMBB
11662  copy0MBB->addSuccessor(sinkMBB);
11663
11664  //  sinkMBB:
11665  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11666  //  ...
11667  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11668          TII->get(X86::PHI), MI->getOperand(0).getReg())
11669    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11670    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11671
11672  MI->eraseFromParent();   // The pseudo instruction is gone now.
11673  return sinkMBB;
11674}
11675
11676MachineBasicBlock *
11677X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11678                                        bool Is64Bit) const {
11679  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11680  DebugLoc DL = MI->getDebugLoc();
11681  MachineFunction *MF = BB->getParent();
11682  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11683
11684  assert(EnableSegmentedStacks);
11685
11686  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11687  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11688
11689  // BB:
11690  //  ... [Till the alloca]
11691  // If stacklet is not large enough, jump to mallocMBB
11692  //
11693  // bumpMBB:
11694  //  Allocate by subtracting from RSP
11695  //  Jump to continueMBB
11696  //
11697  // mallocMBB:
11698  //  Allocate by call to runtime
11699  //
11700  // continueMBB:
11701  //  ...
11702  //  [rest of original BB]
11703  //
11704
11705  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11706  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11707  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11708
11709  MachineRegisterInfo &MRI = MF->getRegInfo();
11710  const TargetRegisterClass *AddrRegClass =
11711    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11712
11713  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11714    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11715    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11716    sizeVReg = MI->getOperand(1).getReg(),
11717    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11718
11719  MachineFunction::iterator MBBIter = BB;
11720  ++MBBIter;
11721
11722  MF->insert(MBBIter, bumpMBB);
11723  MF->insert(MBBIter, mallocMBB);
11724  MF->insert(MBBIter, continueMBB);
11725
11726  continueMBB->splice(continueMBB->begin(), BB, llvm::next
11727                      (MachineBasicBlock::iterator(MI)), BB->end());
11728  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11729
11730  // Add code to the main basic block to check if the stack limit has been hit,
11731  // and if so, jump to mallocMBB otherwise to bumpMBB.
11732  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11733  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
11734    .addReg(tmpSPVReg).addReg(sizeVReg);
11735  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11736    .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11737    .addReg(tmpSPVReg);
11738  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11739
11740  // bumpMBB simply decreases the stack pointer, since we know the current
11741  // stacklet has enough space.
11742  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11743    .addReg(tmpSPVReg);
11744  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11745    .addReg(tmpSPVReg);
11746  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11747
11748  // Calls into a routine in libgcc to allocate more space from the heap.
11749  if (Is64Bit) {
11750    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11751      .addReg(sizeVReg);
11752    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11753    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11754  } else {
11755    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11756      .addImm(12);
11757    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11758    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11759      .addExternalSymbol("__morestack_allocate_stack_space");
11760  }
11761
11762  if (!Is64Bit)
11763    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11764      .addImm(16);
11765
11766  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11767    .addReg(Is64Bit ? X86::RAX : X86::EAX);
11768  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11769
11770  // Set up the CFG correctly.
11771  BB->addSuccessor(bumpMBB);
11772  BB->addSuccessor(mallocMBB);
11773  mallocMBB->addSuccessor(continueMBB);
11774  bumpMBB->addSuccessor(continueMBB);
11775
11776  // Take care of the PHI nodes.
11777  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11778          MI->getOperand(0).getReg())
11779    .addReg(mallocPtrVReg).addMBB(mallocMBB)
11780    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11781
11782  // Delete the original pseudo instruction.
11783  MI->eraseFromParent();
11784
11785  // And we're done.
11786  return continueMBB;
11787}
11788
11789MachineBasicBlock *
11790X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11791                                          MachineBasicBlock *BB) const {
11792  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11793  DebugLoc DL = MI->getDebugLoc();
11794
11795  assert(!Subtarget->isTargetEnvMacho());
11796
11797  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11798  // non-trivial part is impdef of ESP.
11799
11800  if (Subtarget->isTargetWin64()) {
11801    if (Subtarget->isTargetCygMing()) {
11802      // ___chkstk(Mingw64):
11803      // Clobbers R10, R11, RAX and EFLAGS.
11804      // Updates RSP.
11805      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11806        .addExternalSymbol("___chkstk")
11807        .addReg(X86::RAX, RegState::Implicit)
11808        .addReg(X86::RSP, RegState::Implicit)
11809        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11810        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11811        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11812    } else {
11813      // __chkstk(MSVCRT): does not update stack pointer.
11814      // Clobbers R10, R11 and EFLAGS.
11815      // FIXME: RAX(allocated size) might be reused and not killed.
11816      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11817        .addExternalSymbol("__chkstk")
11818        .addReg(X86::RAX, RegState::Implicit)
11819        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11820      // RAX has the offset to subtracted from RSP.
11821      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11822        .addReg(X86::RSP)
11823        .addReg(X86::RAX);
11824    }
11825  } else {
11826    const char *StackProbeSymbol =
11827      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11828
11829    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11830      .addExternalSymbol(StackProbeSymbol)
11831      .addReg(X86::EAX, RegState::Implicit)
11832      .addReg(X86::ESP, RegState::Implicit)
11833      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11834      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11835      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11836  }
11837
11838  MI->eraseFromParent();   // The pseudo instruction is gone now.
11839  return BB;
11840}
11841
11842MachineBasicBlock *
11843X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11844                                      MachineBasicBlock *BB) const {
11845  // This is pretty easy.  We're taking the value that we received from
11846  // our load from the relocation, sticking it in either RDI (x86-64)
11847  // or EAX and doing an indirect call.  The return value will then
11848  // be in the normal return register.
11849  const X86InstrInfo *TII
11850    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11851  DebugLoc DL = MI->getDebugLoc();
11852  MachineFunction *F = BB->getParent();
11853
11854  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11855  assert(MI->getOperand(3).isGlobal() && "This should be a global");
11856
11857  if (Subtarget->is64Bit()) {
11858    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11859                                      TII->get(X86::MOV64rm), X86::RDI)
11860    .addReg(X86::RIP)
11861    .addImm(0).addReg(0)
11862    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11863                      MI->getOperand(3).getTargetFlags())
11864    .addReg(0);
11865    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11866    addDirectMem(MIB, X86::RDI);
11867  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11868    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11869                                      TII->get(X86::MOV32rm), X86::EAX)
11870    .addReg(0)
11871    .addImm(0).addReg(0)
11872    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11873                      MI->getOperand(3).getTargetFlags())
11874    .addReg(0);
11875    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11876    addDirectMem(MIB, X86::EAX);
11877  } else {
11878    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11879                                      TII->get(X86::MOV32rm), X86::EAX)
11880    .addReg(TII->getGlobalBaseReg(F))
11881    .addImm(0).addReg(0)
11882    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11883                      MI->getOperand(3).getTargetFlags())
11884    .addReg(0);
11885    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11886    addDirectMem(MIB, X86::EAX);
11887  }
11888
11889  MI->eraseFromParent(); // The pseudo instruction is gone now.
11890  return BB;
11891}
11892
11893MachineBasicBlock *
11894X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11895                                               MachineBasicBlock *BB) const {
11896  switch (MI->getOpcode()) {
11897  default: assert(false && "Unexpected instr type to insert");
11898  case X86::TAILJMPd64:
11899  case X86::TAILJMPr64:
11900  case X86::TAILJMPm64:
11901    assert(!"TAILJMP64 would not be touched here.");
11902  case X86::TCRETURNdi64:
11903  case X86::TCRETURNri64:
11904  case X86::TCRETURNmi64:
11905    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11906    // On AMD64, additional defs should be added before register allocation.
11907    if (!Subtarget->isTargetWin64()) {
11908      MI->addRegisterDefined(X86::RSI);
11909      MI->addRegisterDefined(X86::RDI);
11910      MI->addRegisterDefined(X86::XMM6);
11911      MI->addRegisterDefined(X86::XMM7);
11912      MI->addRegisterDefined(X86::XMM8);
11913      MI->addRegisterDefined(X86::XMM9);
11914      MI->addRegisterDefined(X86::XMM10);
11915      MI->addRegisterDefined(X86::XMM11);
11916      MI->addRegisterDefined(X86::XMM12);
11917      MI->addRegisterDefined(X86::XMM13);
11918      MI->addRegisterDefined(X86::XMM14);
11919      MI->addRegisterDefined(X86::XMM15);
11920    }
11921    return BB;
11922  case X86::WIN_ALLOCA:
11923    return EmitLoweredWinAlloca(MI, BB);
11924  case X86::SEG_ALLOCA_32:
11925    return EmitLoweredSegAlloca(MI, BB, false);
11926  case X86::SEG_ALLOCA_64:
11927    return EmitLoweredSegAlloca(MI, BB, true);
11928  case X86::TLSCall_32:
11929  case X86::TLSCall_64:
11930    return EmitLoweredTLSCall(MI, BB);
11931  case X86::CMOV_GR8:
11932  case X86::CMOV_FR32:
11933  case X86::CMOV_FR64:
11934  case X86::CMOV_V4F32:
11935  case X86::CMOV_V2F64:
11936  case X86::CMOV_V2I64:
11937  case X86::CMOV_V8F32:
11938  case X86::CMOV_V4F64:
11939  case X86::CMOV_V4I64:
11940  case X86::CMOV_GR16:
11941  case X86::CMOV_GR32:
11942  case X86::CMOV_RFP32:
11943  case X86::CMOV_RFP64:
11944  case X86::CMOV_RFP80:
11945    return EmitLoweredSelect(MI, BB);
11946
11947  case X86::FP32_TO_INT16_IN_MEM:
11948  case X86::FP32_TO_INT32_IN_MEM:
11949  case X86::FP32_TO_INT64_IN_MEM:
11950  case X86::FP64_TO_INT16_IN_MEM:
11951  case X86::FP64_TO_INT32_IN_MEM:
11952  case X86::FP64_TO_INT64_IN_MEM:
11953  case X86::FP80_TO_INT16_IN_MEM:
11954  case X86::FP80_TO_INT32_IN_MEM:
11955  case X86::FP80_TO_INT64_IN_MEM: {
11956    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11957    DebugLoc DL = MI->getDebugLoc();
11958
11959    // Change the floating point control register to use "round towards zero"
11960    // mode when truncating to an integer value.
11961    MachineFunction *F = BB->getParent();
11962    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
11963    addFrameReference(BuildMI(*BB, MI, DL,
11964                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
11965
11966    // Load the old value of the high byte of the control word...
11967    unsigned OldCW =
11968      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
11969    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
11970                      CWFrameIdx);
11971
11972    // Set the high part to be round to zero...
11973    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
11974      .addImm(0xC7F);
11975
11976    // Reload the modified control word now...
11977    addFrameReference(BuildMI(*BB, MI, DL,
11978                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11979
11980    // Restore the memory image of control word to original value
11981    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
11982      .addReg(OldCW);
11983
11984    // Get the X86 opcode to use.
11985    unsigned Opc;
11986    switch (MI->getOpcode()) {
11987    default: llvm_unreachable("illegal opcode!");
11988    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
11989    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
11990    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
11991    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
11992    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
11993    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
11994    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
11995    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
11996    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
11997    }
11998
11999    X86AddressMode AM;
12000    MachineOperand &Op = MI->getOperand(0);
12001    if (Op.isReg()) {
12002      AM.BaseType = X86AddressMode::RegBase;
12003      AM.Base.Reg = Op.getReg();
12004    } else {
12005      AM.BaseType = X86AddressMode::FrameIndexBase;
12006      AM.Base.FrameIndex = Op.getIndex();
12007    }
12008    Op = MI->getOperand(1);
12009    if (Op.isImm())
12010      AM.Scale = Op.getImm();
12011    Op = MI->getOperand(2);
12012    if (Op.isImm())
12013      AM.IndexReg = Op.getImm();
12014    Op = MI->getOperand(3);
12015    if (Op.isGlobal()) {
12016      AM.GV = Op.getGlobal();
12017    } else {
12018      AM.Disp = Op.getImm();
12019    }
12020    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12021                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12022
12023    // Reload the original control word now.
12024    addFrameReference(BuildMI(*BB, MI, DL,
12025                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12026
12027    MI->eraseFromParent();   // The pseudo instruction is gone now.
12028    return BB;
12029  }
12030    // String/text processing lowering.
12031  case X86::PCMPISTRM128REG:
12032  case X86::VPCMPISTRM128REG:
12033    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12034  case X86::PCMPISTRM128MEM:
12035  case X86::VPCMPISTRM128MEM:
12036    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12037  case X86::PCMPESTRM128REG:
12038  case X86::VPCMPESTRM128REG:
12039    return EmitPCMP(MI, BB, 5, false /* in mem */);
12040  case X86::PCMPESTRM128MEM:
12041  case X86::VPCMPESTRM128MEM:
12042    return EmitPCMP(MI, BB, 5, true /* in mem */);
12043
12044    // Thread synchronization.
12045  case X86::MONITOR:
12046    return EmitMonitor(MI, BB);
12047  case X86::MWAIT:
12048    return EmitMwait(MI, BB);
12049
12050    // Atomic Lowering.
12051  case X86::ATOMAND32:
12052    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12053                                               X86::AND32ri, X86::MOV32rm,
12054                                               X86::LCMPXCHG32,
12055                                               X86::NOT32r, X86::EAX,
12056                                               X86::GR32RegisterClass);
12057  case X86::ATOMOR32:
12058    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12059                                               X86::OR32ri, X86::MOV32rm,
12060                                               X86::LCMPXCHG32,
12061                                               X86::NOT32r, X86::EAX,
12062                                               X86::GR32RegisterClass);
12063  case X86::ATOMXOR32:
12064    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12065                                               X86::XOR32ri, X86::MOV32rm,
12066                                               X86::LCMPXCHG32,
12067                                               X86::NOT32r, X86::EAX,
12068                                               X86::GR32RegisterClass);
12069  case X86::ATOMNAND32:
12070    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12071                                               X86::AND32ri, X86::MOV32rm,
12072                                               X86::LCMPXCHG32,
12073                                               X86::NOT32r, X86::EAX,
12074                                               X86::GR32RegisterClass, true);
12075  case X86::ATOMMIN32:
12076    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12077  case X86::ATOMMAX32:
12078    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12079  case X86::ATOMUMIN32:
12080    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12081  case X86::ATOMUMAX32:
12082    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12083
12084  case X86::ATOMAND16:
12085    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12086                                               X86::AND16ri, X86::MOV16rm,
12087                                               X86::LCMPXCHG16,
12088                                               X86::NOT16r, X86::AX,
12089                                               X86::GR16RegisterClass);
12090  case X86::ATOMOR16:
12091    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12092                                               X86::OR16ri, X86::MOV16rm,
12093                                               X86::LCMPXCHG16,
12094                                               X86::NOT16r, X86::AX,
12095                                               X86::GR16RegisterClass);
12096  case X86::ATOMXOR16:
12097    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12098                                               X86::XOR16ri, X86::MOV16rm,
12099                                               X86::LCMPXCHG16,
12100                                               X86::NOT16r, X86::AX,
12101                                               X86::GR16RegisterClass);
12102  case X86::ATOMNAND16:
12103    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12104                                               X86::AND16ri, X86::MOV16rm,
12105                                               X86::LCMPXCHG16,
12106                                               X86::NOT16r, X86::AX,
12107                                               X86::GR16RegisterClass, true);
12108  case X86::ATOMMIN16:
12109    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12110  case X86::ATOMMAX16:
12111    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12112  case X86::ATOMUMIN16:
12113    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12114  case X86::ATOMUMAX16:
12115    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12116
12117  case X86::ATOMAND8:
12118    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12119                                               X86::AND8ri, X86::MOV8rm,
12120                                               X86::LCMPXCHG8,
12121                                               X86::NOT8r, X86::AL,
12122                                               X86::GR8RegisterClass);
12123  case X86::ATOMOR8:
12124    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12125                                               X86::OR8ri, X86::MOV8rm,
12126                                               X86::LCMPXCHG8,
12127                                               X86::NOT8r, X86::AL,
12128                                               X86::GR8RegisterClass);
12129  case X86::ATOMXOR8:
12130    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12131                                               X86::XOR8ri, X86::MOV8rm,
12132                                               X86::LCMPXCHG8,
12133                                               X86::NOT8r, X86::AL,
12134                                               X86::GR8RegisterClass);
12135  case X86::ATOMNAND8:
12136    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12137                                               X86::AND8ri, X86::MOV8rm,
12138                                               X86::LCMPXCHG8,
12139                                               X86::NOT8r, X86::AL,
12140                                               X86::GR8RegisterClass, true);
12141  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12142  // This group is for 64-bit host.
12143  case X86::ATOMAND64:
12144    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12145                                               X86::AND64ri32, X86::MOV64rm,
12146                                               X86::LCMPXCHG64,
12147                                               X86::NOT64r, X86::RAX,
12148                                               X86::GR64RegisterClass);
12149  case X86::ATOMOR64:
12150    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12151                                               X86::OR64ri32, X86::MOV64rm,
12152                                               X86::LCMPXCHG64,
12153                                               X86::NOT64r, X86::RAX,
12154                                               X86::GR64RegisterClass);
12155  case X86::ATOMXOR64:
12156    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12157                                               X86::XOR64ri32, X86::MOV64rm,
12158                                               X86::LCMPXCHG64,
12159                                               X86::NOT64r, X86::RAX,
12160                                               X86::GR64RegisterClass);
12161  case X86::ATOMNAND64:
12162    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12163                                               X86::AND64ri32, X86::MOV64rm,
12164                                               X86::LCMPXCHG64,
12165                                               X86::NOT64r, X86::RAX,
12166                                               X86::GR64RegisterClass, true);
12167  case X86::ATOMMIN64:
12168    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12169  case X86::ATOMMAX64:
12170    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12171  case X86::ATOMUMIN64:
12172    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12173  case X86::ATOMUMAX64:
12174    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12175
12176  // This group does 64-bit operations on a 32-bit host.
12177  case X86::ATOMAND6432:
12178    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12179                                               X86::AND32rr, X86::AND32rr,
12180                                               X86::AND32ri, X86::AND32ri,
12181                                               false);
12182  case X86::ATOMOR6432:
12183    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12184                                               X86::OR32rr, X86::OR32rr,
12185                                               X86::OR32ri, X86::OR32ri,
12186                                               false);
12187  case X86::ATOMXOR6432:
12188    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12189                                               X86::XOR32rr, X86::XOR32rr,
12190                                               X86::XOR32ri, X86::XOR32ri,
12191                                               false);
12192  case X86::ATOMNAND6432:
12193    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12194                                               X86::AND32rr, X86::AND32rr,
12195                                               X86::AND32ri, X86::AND32ri,
12196                                               true);
12197  case X86::ATOMADD6432:
12198    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12199                                               X86::ADD32rr, X86::ADC32rr,
12200                                               X86::ADD32ri, X86::ADC32ri,
12201                                               false);
12202  case X86::ATOMSUB6432:
12203    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12204                                               X86::SUB32rr, X86::SBB32rr,
12205                                               X86::SUB32ri, X86::SBB32ri,
12206                                               false);
12207  case X86::ATOMSWAP6432:
12208    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12209                                               X86::MOV32rr, X86::MOV32rr,
12210                                               X86::MOV32ri, X86::MOV32ri,
12211                                               false);
12212  case X86::VASTART_SAVE_XMM_REGS:
12213    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12214
12215  case X86::VAARG_64:
12216    return EmitVAARG64WithCustomInserter(MI, BB);
12217  }
12218}
12219
12220//===----------------------------------------------------------------------===//
12221//                           X86 Optimization Hooks
12222//===----------------------------------------------------------------------===//
12223
12224void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12225                                                       const APInt &Mask,
12226                                                       APInt &KnownZero,
12227                                                       APInt &KnownOne,
12228                                                       const SelectionDAG &DAG,
12229                                                       unsigned Depth) const {
12230  unsigned Opc = Op.getOpcode();
12231  assert((Opc >= ISD::BUILTIN_OP_END ||
12232          Opc == ISD::INTRINSIC_WO_CHAIN ||
12233          Opc == ISD::INTRINSIC_W_CHAIN ||
12234          Opc == ISD::INTRINSIC_VOID) &&
12235         "Should use MaskedValueIsZero if you don't know whether Op"
12236         " is a target node!");
12237
12238  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12239  switch (Opc) {
12240  default: break;
12241  case X86ISD::ADD:
12242  case X86ISD::SUB:
12243  case X86ISD::ADC:
12244  case X86ISD::SBB:
12245  case X86ISD::SMUL:
12246  case X86ISD::UMUL:
12247  case X86ISD::INC:
12248  case X86ISD::DEC:
12249  case X86ISD::OR:
12250  case X86ISD::XOR:
12251  case X86ISD::AND:
12252    // These nodes' second result is a boolean.
12253    if (Op.getResNo() == 0)
12254      break;
12255    // Fallthrough
12256  case X86ISD::SETCC:
12257    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12258                                       Mask.getBitWidth() - 1);
12259    break;
12260  }
12261}
12262
12263unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12264                                                         unsigned Depth) const {
12265  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12266  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12267    return Op.getValueType().getScalarType().getSizeInBits();
12268
12269  // Fallback case.
12270  return 1;
12271}
12272
12273/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12274/// node is a GlobalAddress + offset.
12275bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12276                                       const GlobalValue* &GA,
12277                                       int64_t &Offset) const {
12278  if (N->getOpcode() == X86ISD::Wrapper) {
12279    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12280      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12281      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12282      return true;
12283    }
12284  }
12285  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12286}
12287
12288/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12289/// same as extracting the high 128-bit part of 256-bit vector and then
12290/// inserting the result into the low part of a new 256-bit vector
12291static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12292  EVT VT = SVOp->getValueType(0);
12293  int NumElems = VT.getVectorNumElements();
12294
12295  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12296  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12297    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12298        SVOp->getMaskElt(j) >= 0)
12299      return false;
12300
12301  return true;
12302}
12303
12304/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12305/// same as extracting the low 128-bit part of 256-bit vector and then
12306/// inserting the result into the high part of a new 256-bit vector
12307static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12308  EVT VT = SVOp->getValueType(0);
12309  int NumElems = VT.getVectorNumElements();
12310
12311  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12312  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12313    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12314        SVOp->getMaskElt(j) >= 0)
12315      return false;
12316
12317  return true;
12318}
12319
12320/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12321static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12322                                        TargetLowering::DAGCombinerInfo &DCI) {
12323  DebugLoc dl = N->getDebugLoc();
12324  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12325  SDValue V1 = SVOp->getOperand(0);
12326  SDValue V2 = SVOp->getOperand(1);
12327  EVT VT = SVOp->getValueType(0);
12328  int NumElems = VT.getVectorNumElements();
12329
12330  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12331      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12332    //
12333    //                   0,0,0,...
12334    //                      |
12335    //    V      UNDEF    BUILD_VECTOR    UNDEF
12336    //     \      /           \           /
12337    //  CONCAT_VECTOR         CONCAT_VECTOR
12338    //         \                  /
12339    //          \                /
12340    //          RESULT: V + zero extended
12341    //
12342    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12343        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12344        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12345      return SDValue();
12346
12347    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12348      return SDValue();
12349
12350    // To match the shuffle mask, the first half of the mask should
12351    // be exactly the first vector, and all the rest a splat with the
12352    // first element of the second one.
12353    for (int i = 0; i < NumElems/2; ++i)
12354      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12355          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12356        return SDValue();
12357
12358    // Emit a zeroed vector and insert the desired subvector on its
12359    // first half.
12360    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
12361    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12362                         DAG.getConstant(0, MVT::i32), DAG, dl);
12363    return DCI.CombineTo(N, InsV);
12364  }
12365
12366  //===--------------------------------------------------------------------===//
12367  // Combine some shuffles into subvector extracts and inserts:
12368  //
12369
12370  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12371  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12372    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12373                                    DAG, dl);
12374    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12375                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12376    return DCI.CombineTo(N, InsV);
12377  }
12378
12379  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12380  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12381    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12382    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12383                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12384    return DCI.CombineTo(N, InsV);
12385  }
12386
12387  return SDValue();
12388}
12389
12390/// PerformShuffleCombine - Performs several different shuffle combines.
12391static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12392                                     TargetLowering::DAGCombinerInfo &DCI,
12393                                     const X86Subtarget *Subtarget) {
12394  DebugLoc dl = N->getDebugLoc();
12395  EVT VT = N->getValueType(0);
12396
12397  // Don't create instructions with illegal types after legalize types has run.
12398  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12399  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12400    return SDValue();
12401
12402  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12403  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12404      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12405    return PerformShuffleCombine256(N, DAG, DCI);
12406
12407  // Only handle 128 wide vector from here on.
12408  if (VT.getSizeInBits() != 128)
12409    return SDValue();
12410
12411  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12412  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12413  // consecutive, non-overlapping, and in the right order.
12414  SmallVector<SDValue, 16> Elts;
12415  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12416    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12417
12418  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12419}
12420
12421/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12422/// generation and convert it from being a bunch of shuffles and extracts
12423/// to a simple store and scalar loads to extract the elements.
12424static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12425                                                const TargetLowering &TLI) {
12426  SDValue InputVector = N->getOperand(0);
12427
12428  // Only operate on vectors of 4 elements, where the alternative shuffling
12429  // gets to be more expensive.
12430  if (InputVector.getValueType() != MVT::v4i32)
12431    return SDValue();
12432
12433  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12434  // single use which is a sign-extend or zero-extend, and all elements are
12435  // used.
12436  SmallVector<SDNode *, 4> Uses;
12437  unsigned ExtractedElements = 0;
12438  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12439       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12440    if (UI.getUse().getResNo() != InputVector.getResNo())
12441      return SDValue();
12442
12443    SDNode *Extract = *UI;
12444    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12445      return SDValue();
12446
12447    if (Extract->getValueType(0) != MVT::i32)
12448      return SDValue();
12449    if (!Extract->hasOneUse())
12450      return SDValue();
12451    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12452        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12453      return SDValue();
12454    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12455      return SDValue();
12456
12457    // Record which element was extracted.
12458    ExtractedElements |=
12459      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12460
12461    Uses.push_back(Extract);
12462  }
12463
12464  // If not all the elements were used, this may not be worthwhile.
12465  if (ExtractedElements != 15)
12466    return SDValue();
12467
12468  // Ok, we've now decided to do the transformation.
12469  DebugLoc dl = InputVector.getDebugLoc();
12470
12471  // Store the value to a temporary stack slot.
12472  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12473  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12474                            MachinePointerInfo(), false, false, 0);
12475
12476  // Replace each use (extract) with a load of the appropriate element.
12477  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12478       UE = Uses.end(); UI != UE; ++UI) {
12479    SDNode *Extract = *UI;
12480
12481    // cOMpute the element's address.
12482    SDValue Idx = Extract->getOperand(1);
12483    unsigned EltSize =
12484        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12485    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12486    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12487
12488    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12489                                     StackPtr, OffsetVal);
12490
12491    // Load the scalar.
12492    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12493                                     ScalarAddr, MachinePointerInfo(),
12494                                     false, false, 0);
12495
12496    // Replace the exact with the load.
12497    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12498  }
12499
12500  // The replacement was made in place; don't return anything.
12501  return SDValue();
12502}
12503
12504/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
12505static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12506                                    const X86Subtarget *Subtarget) {
12507  DebugLoc DL = N->getDebugLoc();
12508  SDValue Cond = N->getOperand(0);
12509  // Get the LHS/RHS of the select.
12510  SDValue LHS = N->getOperand(1);
12511  SDValue RHS = N->getOperand(2);
12512
12513  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12514  // instructions match the semantics of the common C idiom x<y?x:y but not
12515  // x<=y?x:y, because of how they handle negative zero (which can be
12516  // ignored in unsafe-math mode).
12517  if (Subtarget->hasSSE2() &&
12518      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
12519      Cond.getOpcode() == ISD::SETCC) {
12520    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12521
12522    unsigned Opcode = 0;
12523    // Check for x CC y ? x : y.
12524    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12525        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12526      switch (CC) {
12527      default: break;
12528      case ISD::SETULT:
12529        // Converting this to a min would handle NaNs incorrectly, and swapping
12530        // the operands would cause it to handle comparisons between positive
12531        // and negative zero incorrectly.
12532        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12533          if (!UnsafeFPMath &&
12534              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12535            break;
12536          std::swap(LHS, RHS);
12537        }
12538        Opcode = X86ISD::FMIN;
12539        break;
12540      case ISD::SETOLE:
12541        // Converting this to a min would handle comparisons between positive
12542        // and negative zero incorrectly.
12543        if (!UnsafeFPMath &&
12544            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12545          break;
12546        Opcode = X86ISD::FMIN;
12547        break;
12548      case ISD::SETULE:
12549        // Converting this to a min would handle both negative zeros and NaNs
12550        // incorrectly, but we can swap the operands to fix both.
12551        std::swap(LHS, RHS);
12552      case ISD::SETOLT:
12553      case ISD::SETLT:
12554      case ISD::SETLE:
12555        Opcode = X86ISD::FMIN;
12556        break;
12557
12558      case ISD::SETOGE:
12559        // Converting this to a max would handle comparisons between positive
12560        // and negative zero incorrectly.
12561        if (!UnsafeFPMath &&
12562            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12563          break;
12564        Opcode = X86ISD::FMAX;
12565        break;
12566      case ISD::SETUGT:
12567        // Converting this to a max would handle NaNs incorrectly, and swapping
12568        // the operands would cause it to handle comparisons between positive
12569        // and negative zero incorrectly.
12570        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12571          if (!UnsafeFPMath &&
12572              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12573            break;
12574          std::swap(LHS, RHS);
12575        }
12576        Opcode = X86ISD::FMAX;
12577        break;
12578      case ISD::SETUGE:
12579        // Converting this to a max would handle both negative zeros and NaNs
12580        // incorrectly, but we can swap the operands to fix both.
12581        std::swap(LHS, RHS);
12582      case ISD::SETOGT:
12583      case ISD::SETGT:
12584      case ISD::SETGE:
12585        Opcode = X86ISD::FMAX;
12586        break;
12587      }
12588    // Check for x CC y ? y : x -- a min/max with reversed arms.
12589    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12590               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12591      switch (CC) {
12592      default: break;
12593      case ISD::SETOGE:
12594        // Converting this to a min would handle comparisons between positive
12595        // and negative zero incorrectly, and swapping the operands would
12596        // cause it to handle NaNs incorrectly.
12597        if (!UnsafeFPMath &&
12598            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12599          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12600            break;
12601          std::swap(LHS, RHS);
12602        }
12603        Opcode = X86ISD::FMIN;
12604        break;
12605      case ISD::SETUGT:
12606        // Converting this to a min would handle NaNs incorrectly.
12607        if (!UnsafeFPMath &&
12608            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12609          break;
12610        Opcode = X86ISD::FMIN;
12611        break;
12612      case ISD::SETUGE:
12613        // Converting this to a min would handle both negative zeros and NaNs
12614        // incorrectly, but we can swap the operands to fix both.
12615        std::swap(LHS, RHS);
12616      case ISD::SETOGT:
12617      case ISD::SETGT:
12618      case ISD::SETGE:
12619        Opcode = X86ISD::FMIN;
12620        break;
12621
12622      case ISD::SETULT:
12623        // Converting this to a max would handle NaNs incorrectly.
12624        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12625          break;
12626        Opcode = X86ISD::FMAX;
12627        break;
12628      case ISD::SETOLE:
12629        // Converting this to a max would handle comparisons between positive
12630        // and negative zero incorrectly, and swapping the operands would
12631        // cause it to handle NaNs incorrectly.
12632        if (!UnsafeFPMath &&
12633            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12634          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12635            break;
12636          std::swap(LHS, RHS);
12637        }
12638        Opcode = X86ISD::FMAX;
12639        break;
12640      case ISD::SETULE:
12641        // Converting this to a max would handle both negative zeros and NaNs
12642        // incorrectly, but we can swap the operands to fix both.
12643        std::swap(LHS, RHS);
12644      case ISD::SETOLT:
12645      case ISD::SETLT:
12646      case ISD::SETLE:
12647        Opcode = X86ISD::FMAX;
12648        break;
12649      }
12650    }
12651
12652    if (Opcode)
12653      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12654  }
12655
12656  // If this is a select between two integer constants, try to do some
12657  // optimizations.
12658  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12659    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12660      // Don't do this for crazy integer types.
12661      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12662        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12663        // so that TrueC (the true value) is larger than FalseC.
12664        bool NeedsCondInvert = false;
12665
12666        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12667            // Efficiently invertible.
12668            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12669             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12670              isa<ConstantSDNode>(Cond.getOperand(1))))) {
12671          NeedsCondInvert = true;
12672          std::swap(TrueC, FalseC);
12673        }
12674
12675        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12676        if (FalseC->getAPIntValue() == 0 &&
12677            TrueC->getAPIntValue().isPowerOf2()) {
12678          if (NeedsCondInvert) // Invert the condition if needed.
12679            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12680                               DAG.getConstant(1, Cond.getValueType()));
12681
12682          // Zero extend the condition if needed.
12683          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12684
12685          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12686          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12687                             DAG.getConstant(ShAmt, MVT::i8));
12688        }
12689
12690        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12691        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12692          if (NeedsCondInvert) // Invert the condition if needed.
12693            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12694                               DAG.getConstant(1, Cond.getValueType()));
12695
12696          // Zero extend the condition if needed.
12697          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12698                             FalseC->getValueType(0), Cond);
12699          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12700                             SDValue(FalseC, 0));
12701        }
12702
12703        // Optimize cases that will turn into an LEA instruction.  This requires
12704        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12705        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12706          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12707          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12708
12709          bool isFastMultiplier = false;
12710          if (Diff < 10) {
12711            switch ((unsigned char)Diff) {
12712              default: break;
12713              case 1:  // result = add base, cond
12714              case 2:  // result = lea base(    , cond*2)
12715              case 3:  // result = lea base(cond, cond*2)
12716              case 4:  // result = lea base(    , cond*4)
12717              case 5:  // result = lea base(cond, cond*4)
12718              case 8:  // result = lea base(    , cond*8)
12719              case 9:  // result = lea base(cond, cond*8)
12720                isFastMultiplier = true;
12721                break;
12722            }
12723          }
12724
12725          if (isFastMultiplier) {
12726            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12727            if (NeedsCondInvert) // Invert the condition if needed.
12728              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12729                                 DAG.getConstant(1, Cond.getValueType()));
12730
12731            // Zero extend the condition if needed.
12732            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12733                               Cond);
12734            // Scale the condition by the difference.
12735            if (Diff != 1)
12736              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12737                                 DAG.getConstant(Diff, Cond.getValueType()));
12738
12739            // Add the base if non-zero.
12740            if (FalseC->getAPIntValue() != 0)
12741              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12742                                 SDValue(FalseC, 0));
12743            return Cond;
12744          }
12745        }
12746      }
12747  }
12748
12749  return SDValue();
12750}
12751
12752/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
12753static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12754                                  TargetLowering::DAGCombinerInfo &DCI) {
12755  DebugLoc DL = N->getDebugLoc();
12756
12757  // If the flag operand isn't dead, don't touch this CMOV.
12758  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12759    return SDValue();
12760
12761  SDValue FalseOp = N->getOperand(0);
12762  SDValue TrueOp = N->getOperand(1);
12763  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12764  SDValue Cond = N->getOperand(3);
12765  if (CC == X86::COND_E || CC == X86::COND_NE) {
12766    switch (Cond.getOpcode()) {
12767    default: break;
12768    case X86ISD::BSR:
12769    case X86ISD::BSF:
12770      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12771      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12772        return (CC == X86::COND_E) ? FalseOp : TrueOp;
12773    }
12774  }
12775
12776  // If this is a select between two integer constants, try to do some
12777  // optimizations.  Note that the operands are ordered the opposite of SELECT
12778  // operands.
12779  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12780    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12781      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12782      // larger than FalseC (the false value).
12783      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12784        CC = X86::GetOppositeBranchCondition(CC);
12785        std::swap(TrueC, FalseC);
12786      }
12787
12788      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12789      // This is efficient for any integer data type (including i8/i16) and
12790      // shift amount.
12791      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12792        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12793                           DAG.getConstant(CC, MVT::i8), Cond);
12794
12795        // Zero extend the condition if needed.
12796        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12797
12798        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12799        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12800                           DAG.getConstant(ShAmt, MVT::i8));
12801        if (N->getNumValues() == 2)  // Dead flag value?
12802          return DCI.CombineTo(N, Cond, SDValue());
12803        return Cond;
12804      }
12805
12806      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12807      // for any integer data type, including i8/i16.
12808      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12809        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12810                           DAG.getConstant(CC, MVT::i8), Cond);
12811
12812        // Zero extend the condition if needed.
12813        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12814                           FalseC->getValueType(0), Cond);
12815        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12816                           SDValue(FalseC, 0));
12817
12818        if (N->getNumValues() == 2)  // Dead flag value?
12819          return DCI.CombineTo(N, Cond, SDValue());
12820        return Cond;
12821      }
12822
12823      // Optimize cases that will turn into an LEA instruction.  This requires
12824      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12825      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12826        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12827        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12828
12829        bool isFastMultiplier = false;
12830        if (Diff < 10) {
12831          switch ((unsigned char)Diff) {
12832          default: break;
12833          case 1:  // result = add base, cond
12834          case 2:  // result = lea base(    , cond*2)
12835          case 3:  // result = lea base(cond, cond*2)
12836          case 4:  // result = lea base(    , cond*4)
12837          case 5:  // result = lea base(cond, cond*4)
12838          case 8:  // result = lea base(    , cond*8)
12839          case 9:  // result = lea base(cond, cond*8)
12840            isFastMultiplier = true;
12841            break;
12842          }
12843        }
12844
12845        if (isFastMultiplier) {
12846          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12847          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12848                             DAG.getConstant(CC, MVT::i8), Cond);
12849          // Zero extend the condition if needed.
12850          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12851                             Cond);
12852          // Scale the condition by the difference.
12853          if (Diff != 1)
12854            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12855                               DAG.getConstant(Diff, Cond.getValueType()));
12856
12857          // Add the base if non-zero.
12858          if (FalseC->getAPIntValue() != 0)
12859            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12860                               SDValue(FalseC, 0));
12861          if (N->getNumValues() == 2)  // Dead flag value?
12862            return DCI.CombineTo(N, Cond, SDValue());
12863          return Cond;
12864        }
12865      }
12866    }
12867  }
12868  return SDValue();
12869}
12870
12871
12872/// PerformMulCombine - Optimize a single multiply with constant into two
12873/// in order to implement it with two cheaper instructions, e.g.
12874/// LEA + SHL, LEA + LEA.
12875static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
12876                                 TargetLowering::DAGCombinerInfo &DCI) {
12877  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12878    return SDValue();
12879
12880  EVT VT = N->getValueType(0);
12881  if (VT != MVT::i64)
12882    return SDValue();
12883
12884  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12885  if (!C)
12886    return SDValue();
12887  uint64_t MulAmt = C->getZExtValue();
12888  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
12889    return SDValue();
12890
12891  uint64_t MulAmt1 = 0;
12892  uint64_t MulAmt2 = 0;
12893  if ((MulAmt % 9) == 0) {
12894    MulAmt1 = 9;
12895    MulAmt2 = MulAmt / 9;
12896  } else if ((MulAmt % 5) == 0) {
12897    MulAmt1 = 5;
12898    MulAmt2 = MulAmt / 5;
12899  } else if ((MulAmt % 3) == 0) {
12900    MulAmt1 = 3;
12901    MulAmt2 = MulAmt / 3;
12902  }
12903  if (MulAmt2 &&
12904      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
12905    DebugLoc DL = N->getDebugLoc();
12906
12907    if (isPowerOf2_64(MulAmt2) &&
12908        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
12909      // If second multiplifer is pow2, issue it first. We want the multiply by
12910      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
12911      // is an add.
12912      std::swap(MulAmt1, MulAmt2);
12913
12914    SDValue NewMul;
12915    if (isPowerOf2_64(MulAmt1))
12916      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
12917                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
12918    else
12919      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
12920                           DAG.getConstant(MulAmt1, VT));
12921
12922    if (isPowerOf2_64(MulAmt2))
12923      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
12924                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
12925    else
12926      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
12927                           DAG.getConstant(MulAmt2, VT));
12928
12929    // Do not add new nodes to DAG combiner worklist.
12930    DCI.CombineTo(N, NewMul, false);
12931  }
12932  return SDValue();
12933}
12934
12935static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
12936  SDValue N0 = N->getOperand(0);
12937  SDValue N1 = N->getOperand(1);
12938  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12939  EVT VT = N0.getValueType();
12940
12941  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
12942  // since the result of setcc_c is all zero's or all ones.
12943  if (N1C && N0.getOpcode() == ISD::AND &&
12944      N0.getOperand(1).getOpcode() == ISD::Constant) {
12945    SDValue N00 = N0.getOperand(0);
12946    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
12947        ((N00.getOpcode() == ISD::ANY_EXTEND ||
12948          N00.getOpcode() == ISD::ZERO_EXTEND) &&
12949         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
12950      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
12951      APInt ShAmt = N1C->getAPIntValue();
12952      Mask = Mask.shl(ShAmt);
12953      if (Mask != 0)
12954        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
12955                           N00, DAG.getConstant(Mask, VT));
12956    }
12957  }
12958
12959  return SDValue();
12960}
12961
12962/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
12963///                       when possible.
12964static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
12965                                   const X86Subtarget *Subtarget) {
12966  EVT VT = N->getValueType(0);
12967  if (!VT.isVector() && VT.isInteger() &&
12968      N->getOpcode() == ISD::SHL)
12969    return PerformSHLCombine(N, DAG);
12970
12971  // On X86 with SSE2 support, we can transform this to a vector shift if
12972  // all elements are shifted by the same amount.  We can't do this in legalize
12973  // because the a constant vector is typically transformed to a constant pool
12974  // so we have no knowledge of the shift amount.
12975  if (!(Subtarget->hasSSE2() || Subtarget->hasAVX()))
12976    return SDValue();
12977
12978  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
12979    return SDValue();
12980
12981  SDValue ShAmtOp = N->getOperand(1);
12982  EVT EltVT = VT.getVectorElementType();
12983  DebugLoc DL = N->getDebugLoc();
12984  SDValue BaseShAmt = SDValue();
12985  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
12986    unsigned NumElts = VT.getVectorNumElements();
12987    unsigned i = 0;
12988    for (; i != NumElts; ++i) {
12989      SDValue Arg = ShAmtOp.getOperand(i);
12990      if (Arg.getOpcode() == ISD::UNDEF) continue;
12991      BaseShAmt = Arg;
12992      break;
12993    }
12994    for (; i != NumElts; ++i) {
12995      SDValue Arg = ShAmtOp.getOperand(i);
12996      if (Arg.getOpcode() == ISD::UNDEF) continue;
12997      if (Arg != BaseShAmt) {
12998        return SDValue();
12999      }
13000    }
13001  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13002             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13003    SDValue InVec = ShAmtOp.getOperand(0);
13004    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13005      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13006      unsigned i = 0;
13007      for (; i != NumElts; ++i) {
13008        SDValue Arg = InVec.getOperand(i);
13009        if (Arg.getOpcode() == ISD::UNDEF) continue;
13010        BaseShAmt = Arg;
13011        break;
13012      }
13013    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13014       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13015         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13016         if (C->getZExtValue() == SplatIdx)
13017           BaseShAmt = InVec.getOperand(1);
13018       }
13019    }
13020    if (BaseShAmt.getNode() == 0)
13021      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13022                              DAG.getIntPtrConstant(0));
13023  } else
13024    return SDValue();
13025
13026  // The shift amount is an i32.
13027  if (EltVT.bitsGT(MVT::i32))
13028    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13029  else if (EltVT.bitsLT(MVT::i32))
13030    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13031
13032  // The shift amount is identical so we can do a vector shift.
13033  SDValue  ValOp = N->getOperand(0);
13034  switch (N->getOpcode()) {
13035  default:
13036    llvm_unreachable("Unknown shift opcode!");
13037    break;
13038  case ISD::SHL:
13039    if (VT == MVT::v2i64)
13040      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13041                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13042                         ValOp, BaseShAmt);
13043    if (VT == MVT::v4i32)
13044      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13045                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13046                         ValOp, BaseShAmt);
13047    if (VT == MVT::v8i16)
13048      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13049                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13050                         ValOp, BaseShAmt);
13051    break;
13052  case ISD::SRA:
13053    if (VT == MVT::v4i32)
13054      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13055                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13056                         ValOp, BaseShAmt);
13057    if (VT == MVT::v8i16)
13058      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13059                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13060                         ValOp, BaseShAmt);
13061    break;
13062  case ISD::SRL:
13063    if (VT == MVT::v2i64)
13064      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13065                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13066                         ValOp, BaseShAmt);
13067    if (VT == MVT::v4i32)
13068      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13069                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13070                         ValOp, BaseShAmt);
13071    if (VT ==  MVT::v8i16)
13072      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13073                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13074                         ValOp, BaseShAmt);
13075    break;
13076  }
13077  return SDValue();
13078}
13079
13080
13081// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13082// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13083// and friends.  Likewise for OR -> CMPNEQSS.
13084static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13085                            TargetLowering::DAGCombinerInfo &DCI,
13086                            const X86Subtarget *Subtarget) {
13087  unsigned opcode;
13088
13089  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13090  // we're requiring SSE2 for both.
13091  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13092    SDValue N0 = N->getOperand(0);
13093    SDValue N1 = N->getOperand(1);
13094    SDValue CMP0 = N0->getOperand(1);
13095    SDValue CMP1 = N1->getOperand(1);
13096    DebugLoc DL = N->getDebugLoc();
13097
13098    // The SETCCs should both refer to the same CMP.
13099    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13100      return SDValue();
13101
13102    SDValue CMP00 = CMP0->getOperand(0);
13103    SDValue CMP01 = CMP0->getOperand(1);
13104    EVT     VT    = CMP00.getValueType();
13105
13106    if (VT == MVT::f32 || VT == MVT::f64) {
13107      bool ExpectingFlags = false;
13108      // Check for any users that want flags:
13109      for (SDNode::use_iterator UI = N->use_begin(),
13110             UE = N->use_end();
13111           !ExpectingFlags && UI != UE; ++UI)
13112        switch (UI->getOpcode()) {
13113        default:
13114        case ISD::BR_CC:
13115        case ISD::BRCOND:
13116        case ISD::SELECT:
13117          ExpectingFlags = true;
13118          break;
13119        case ISD::CopyToReg:
13120        case ISD::SIGN_EXTEND:
13121        case ISD::ZERO_EXTEND:
13122        case ISD::ANY_EXTEND:
13123          break;
13124        }
13125
13126      if (!ExpectingFlags) {
13127        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13128        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13129
13130        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13131          X86::CondCode tmp = cc0;
13132          cc0 = cc1;
13133          cc1 = tmp;
13134        }
13135
13136        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13137            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13138          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13139          X86ISD::NodeType NTOperator = is64BitFP ?
13140            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13141          // FIXME: need symbolic constants for these magic numbers.
13142          // See X86ATTInstPrinter.cpp:printSSECC().
13143          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13144          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13145                                              DAG.getConstant(x86cc, MVT::i8));
13146          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13147                                              OnesOrZeroesF);
13148          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13149                                      DAG.getConstant(1, MVT::i32));
13150          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13151          return OneBitOfTruth;
13152        }
13153      }
13154    }
13155  }
13156  return SDValue();
13157}
13158
13159/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13160/// so it can be folded inside ANDNP.
13161static bool CanFoldXORWithAllOnes(const SDNode *N) {
13162  EVT VT = N->getValueType(0);
13163
13164  // Match direct AllOnes for 128 and 256-bit vectors
13165  if (ISD::isBuildVectorAllOnes(N))
13166    return true;
13167
13168  // Look through a bit convert.
13169  if (N->getOpcode() == ISD::BITCAST)
13170    N = N->getOperand(0).getNode();
13171
13172  // Sometimes the operand may come from a insert_subvector building a 256-bit
13173  // allones vector
13174  if (VT.getSizeInBits() == 256 &&
13175      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13176    SDValue V1 = N->getOperand(0);
13177    SDValue V2 = N->getOperand(1);
13178
13179    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13180        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13181        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13182        ISD::isBuildVectorAllOnes(V2.getNode()))
13183      return true;
13184  }
13185
13186  return false;
13187}
13188
13189static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13190                                 TargetLowering::DAGCombinerInfo &DCI,
13191                                 const X86Subtarget *Subtarget) {
13192  if (DCI.isBeforeLegalizeOps())
13193    return SDValue();
13194
13195  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13196  if (R.getNode())
13197    return R;
13198
13199  // Want to form ANDNP nodes:
13200  // 1) In the hopes of then easily combining them with OR and AND nodes
13201  //    to form PBLEND/PSIGN.
13202  // 2) To match ANDN packed intrinsics
13203  EVT VT = N->getValueType(0);
13204  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13205    return SDValue();
13206
13207  SDValue N0 = N->getOperand(0);
13208  SDValue N1 = N->getOperand(1);
13209  DebugLoc DL = N->getDebugLoc();
13210
13211  // Check LHS for vnot
13212  if (N0.getOpcode() == ISD::XOR &&
13213      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13214      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13215    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13216
13217  // Check RHS for vnot
13218  if (N1.getOpcode() == ISD::XOR &&
13219      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13220      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13221    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13222
13223  return SDValue();
13224}
13225
13226static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13227                                TargetLowering::DAGCombinerInfo &DCI,
13228                                const X86Subtarget *Subtarget) {
13229  if (DCI.isBeforeLegalizeOps())
13230    return SDValue();
13231
13232  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13233  if (R.getNode())
13234    return R;
13235
13236  EVT VT = N->getValueType(0);
13237  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13238    return SDValue();
13239
13240  SDValue N0 = N->getOperand(0);
13241  SDValue N1 = N->getOperand(1);
13242
13243  // look for psign/blend
13244  if (Subtarget->hasSSSE3()) {
13245    if (VT == MVT::v2i64) {
13246      // Canonicalize pandn to RHS
13247      if (N0.getOpcode() == X86ISD::ANDNP)
13248        std::swap(N0, N1);
13249      // or (and (m, x), (pandn m, y))
13250      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13251        SDValue Mask = N1.getOperand(0);
13252        SDValue X    = N1.getOperand(1);
13253        SDValue Y;
13254        if (N0.getOperand(0) == Mask)
13255          Y = N0.getOperand(1);
13256        if (N0.getOperand(1) == Mask)
13257          Y = N0.getOperand(0);
13258
13259        // Check to see if the mask appeared in both the AND and ANDNP and
13260        if (!Y.getNode())
13261          return SDValue();
13262
13263        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13264        if (Mask.getOpcode() != ISD::BITCAST ||
13265            X.getOpcode() != ISD::BITCAST ||
13266            Y.getOpcode() != ISD::BITCAST)
13267          return SDValue();
13268
13269        // Look through mask bitcast.
13270        Mask = Mask.getOperand(0);
13271        EVT MaskVT = Mask.getValueType();
13272
13273        // Validate that the Mask operand is a vector sra node.  The sra node
13274        // will be an intrinsic.
13275        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13276          return SDValue();
13277
13278        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13279        // there is no psrai.b
13280        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13281        case Intrinsic::x86_sse2_psrai_w:
13282        case Intrinsic::x86_sse2_psrai_d:
13283          break;
13284        default: return SDValue();
13285        }
13286
13287        // Check that the SRA is all signbits.
13288        SDValue SraC = Mask.getOperand(2);
13289        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13290        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13291        if ((SraAmt + 1) != EltBits)
13292          return SDValue();
13293
13294        DebugLoc DL = N->getDebugLoc();
13295
13296        // Now we know we at least have a plendvb with the mask val.  See if
13297        // we can form a psignb/w/d.
13298        // psign = x.type == y.type == mask.type && y = sub(0, x);
13299        X = X.getOperand(0);
13300        Y = Y.getOperand(0);
13301        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13302            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13303            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13304          unsigned Opc = 0;
13305          switch (EltBits) {
13306          case 8: Opc = X86ISD::PSIGNB; break;
13307          case 16: Opc = X86ISD::PSIGNW; break;
13308          case 32: Opc = X86ISD::PSIGND; break;
13309          default: break;
13310          }
13311          if (Opc) {
13312            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13313            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13314          }
13315        }
13316        // PBLENDVB only available on SSE 4.1
13317        if (!Subtarget->hasSSE41())
13318          return SDValue();
13319
13320        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13321        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13322        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13323        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
13324        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13325      }
13326    }
13327  }
13328
13329  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13330  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13331    std::swap(N0, N1);
13332  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13333    return SDValue();
13334  if (!N0.hasOneUse() || !N1.hasOneUse())
13335    return SDValue();
13336
13337  SDValue ShAmt0 = N0.getOperand(1);
13338  if (ShAmt0.getValueType() != MVT::i8)
13339    return SDValue();
13340  SDValue ShAmt1 = N1.getOperand(1);
13341  if (ShAmt1.getValueType() != MVT::i8)
13342    return SDValue();
13343  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13344    ShAmt0 = ShAmt0.getOperand(0);
13345  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13346    ShAmt1 = ShAmt1.getOperand(0);
13347
13348  DebugLoc DL = N->getDebugLoc();
13349  unsigned Opc = X86ISD::SHLD;
13350  SDValue Op0 = N0.getOperand(0);
13351  SDValue Op1 = N1.getOperand(0);
13352  if (ShAmt0.getOpcode() == ISD::SUB) {
13353    Opc = X86ISD::SHRD;
13354    std::swap(Op0, Op1);
13355    std::swap(ShAmt0, ShAmt1);
13356  }
13357
13358  unsigned Bits = VT.getSizeInBits();
13359  if (ShAmt1.getOpcode() == ISD::SUB) {
13360    SDValue Sum = ShAmt1.getOperand(0);
13361    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13362      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13363      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13364        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13365      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13366        return DAG.getNode(Opc, DL, VT,
13367                           Op0, Op1,
13368                           DAG.getNode(ISD::TRUNCATE, DL,
13369                                       MVT::i8, ShAmt0));
13370    }
13371  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13372    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13373    if (ShAmt0C &&
13374        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13375      return DAG.getNode(Opc, DL, VT,
13376                         N0.getOperand(0), N1.getOperand(0),
13377                         DAG.getNode(ISD::TRUNCATE, DL,
13378                                       MVT::i8, ShAmt0));
13379  }
13380
13381  return SDValue();
13382}
13383
13384/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
13385static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13386                                   const X86Subtarget *Subtarget) {
13387  StoreSDNode *St = cast<StoreSDNode>(N);
13388  EVT VT = St->getValue().getValueType();
13389  EVT StVT = St->getMemoryVT();
13390  DebugLoc dl = St->getDebugLoc();
13391  SDValue StoredVal = St->getOperand(1);
13392  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13393
13394  // If we are saving a concatination of two XMM registers, perform two stores.
13395  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13396  // 128-bit ones. If in the future the cost becomes only one memory access the
13397  // first version would be better.
13398  if (VT.getSizeInBits() == 256 &&
13399    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13400    StoredVal.getNumOperands() == 2) {
13401
13402    SDValue Value0 = StoredVal.getOperand(0);
13403    SDValue Value1 = StoredVal.getOperand(1);
13404
13405    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13406    SDValue Ptr0 = St->getBasePtr();
13407    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13408
13409    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13410                                St->getPointerInfo(), St->isVolatile(),
13411                                St->isNonTemporal(), St->getAlignment());
13412    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13413                                St->getPointerInfo(), St->isVolatile(),
13414                                St->isNonTemporal(), St->getAlignment());
13415    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13416  }
13417
13418  // Optimize trunc store (of multiple scalars) to shuffle and store.
13419  // First, pack all of the elements in one place. Next, store to memory
13420  // in fewer chunks.
13421  if (St->isTruncatingStore() && VT.isVector()) {
13422    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13423    unsigned NumElems = VT.getVectorNumElements();
13424    assert(StVT != VT && "Cannot truncate to the same type");
13425    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13426    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13427
13428    // From, To sizes and ElemCount must be pow of two
13429    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13430    // We are going to use the original vector elt for storing.
13431    // accumulated smaller vector elements must be a multiple of bigger size.
13432    if (0 != (NumElems * ToSz) % FromSz) return SDValue();
13433    unsigned SizeRatio  = FromSz / ToSz;
13434
13435    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13436
13437    // Create a type on which we perform the shuffle
13438    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13439            StVT.getScalarType(), NumElems*SizeRatio);
13440
13441    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13442
13443    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13444    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13445    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13446
13447    // Can't shuffle using an illegal type
13448    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13449
13450    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13451                                DAG.getUNDEF(WideVec.getValueType()),
13452                                ShuffleVec.data());
13453    // At this point all of the data is stored at the bottom of the
13454    // register. We now need to save it to mem.
13455
13456    // Find the largest store unit
13457    MVT StoreType = MVT::i8;
13458    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13459         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13460      MVT Tp = (MVT::SimpleValueType)tp;
13461      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13462        StoreType = Tp;
13463    }
13464
13465    // Bitcast the original vector into a vector of store-size units
13466    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13467            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13468    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13469    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13470    SmallVector<SDValue, 8> Chains;
13471    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13472                                        TLI.getPointerTy());
13473    SDValue Ptr = St->getBasePtr();
13474
13475    // Perform one or more big stores into memory.
13476    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13477      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13478                                   StoreType, ShuffWide,
13479                                   DAG.getIntPtrConstant(i));
13480      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13481                                St->getPointerInfo(), St->isVolatile(),
13482                                St->isNonTemporal(), St->getAlignment());
13483      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13484      Chains.push_back(Ch);
13485    }
13486
13487    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13488                               Chains.size());
13489  }
13490
13491
13492  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13493  // the FP state in cases where an emms may be missing.
13494  // A preferable solution to the general problem is to figure out the right
13495  // places to insert EMMS.  This qualifies as a quick hack.
13496
13497  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13498  if (VT.getSizeInBits() != 64)
13499    return SDValue();
13500
13501  const Function *F = DAG.getMachineFunction().getFunction();
13502  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13503  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13504    && Subtarget->hasSSE2();
13505  if ((VT.isVector() ||
13506       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13507      isa<LoadSDNode>(St->getValue()) &&
13508      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13509      St->getChain().hasOneUse() && !St->isVolatile()) {
13510    SDNode* LdVal = St->getValue().getNode();
13511    LoadSDNode *Ld = 0;
13512    int TokenFactorIndex = -1;
13513    SmallVector<SDValue, 8> Ops;
13514    SDNode* ChainVal = St->getChain().getNode();
13515    // Must be a store of a load.  We currently handle two cases:  the load
13516    // is a direct child, and it's under an intervening TokenFactor.  It is
13517    // possible to dig deeper under nested TokenFactors.
13518    if (ChainVal == LdVal)
13519      Ld = cast<LoadSDNode>(St->getChain());
13520    else if (St->getValue().hasOneUse() &&
13521             ChainVal->getOpcode() == ISD::TokenFactor) {
13522      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13523        if (ChainVal->getOperand(i).getNode() == LdVal) {
13524          TokenFactorIndex = i;
13525          Ld = cast<LoadSDNode>(St->getValue());
13526        } else
13527          Ops.push_back(ChainVal->getOperand(i));
13528      }
13529    }
13530
13531    if (!Ld || !ISD::isNormalLoad(Ld))
13532      return SDValue();
13533
13534    // If this is not the MMX case, i.e. we are just turning i64 load/store
13535    // into f64 load/store, avoid the transformation if there are multiple
13536    // uses of the loaded value.
13537    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13538      return SDValue();
13539
13540    DebugLoc LdDL = Ld->getDebugLoc();
13541    DebugLoc StDL = N->getDebugLoc();
13542    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13543    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13544    // pair instead.
13545    if (Subtarget->is64Bit() || F64IsLegal) {
13546      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13547      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13548                                  Ld->getPointerInfo(), Ld->isVolatile(),
13549                                  Ld->isNonTemporal(), Ld->getAlignment());
13550      SDValue NewChain = NewLd.getValue(1);
13551      if (TokenFactorIndex != -1) {
13552        Ops.push_back(NewChain);
13553        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13554                               Ops.size());
13555      }
13556      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13557                          St->getPointerInfo(),
13558                          St->isVolatile(), St->isNonTemporal(),
13559                          St->getAlignment());
13560    }
13561
13562    // Otherwise, lower to two pairs of 32-bit loads / stores.
13563    SDValue LoAddr = Ld->getBasePtr();
13564    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13565                                 DAG.getConstant(4, MVT::i32));
13566
13567    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13568                               Ld->getPointerInfo(),
13569                               Ld->isVolatile(), Ld->isNonTemporal(),
13570                               Ld->getAlignment());
13571    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13572                               Ld->getPointerInfo().getWithOffset(4),
13573                               Ld->isVolatile(), Ld->isNonTemporal(),
13574                               MinAlign(Ld->getAlignment(), 4));
13575
13576    SDValue NewChain = LoLd.getValue(1);
13577    if (TokenFactorIndex != -1) {
13578      Ops.push_back(LoLd);
13579      Ops.push_back(HiLd);
13580      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13581                             Ops.size());
13582    }
13583
13584    LoAddr = St->getBasePtr();
13585    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13586                         DAG.getConstant(4, MVT::i32));
13587
13588    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13589                                St->getPointerInfo(),
13590                                St->isVolatile(), St->isNonTemporal(),
13591                                St->getAlignment());
13592    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13593                                St->getPointerInfo().getWithOffset(4),
13594                                St->isVolatile(),
13595                                St->isNonTemporal(),
13596                                MinAlign(St->getAlignment(), 4));
13597    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13598  }
13599  return SDValue();
13600}
13601
13602/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13603/// X86ISD::FXOR nodes.
13604static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13605  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13606  // F[X]OR(0.0, x) -> x
13607  // F[X]OR(x, 0.0) -> x
13608  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13609    if (C->getValueAPF().isPosZero())
13610      return N->getOperand(1);
13611  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13612    if (C->getValueAPF().isPosZero())
13613      return N->getOperand(0);
13614  return SDValue();
13615}
13616
13617/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
13618static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13619  // FAND(0.0, x) -> 0.0
13620  // FAND(x, 0.0) -> 0.0
13621  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13622    if (C->getValueAPF().isPosZero())
13623      return N->getOperand(0);
13624  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13625    if (C->getValueAPF().isPosZero())
13626      return N->getOperand(1);
13627  return SDValue();
13628}
13629
13630static SDValue PerformBTCombine(SDNode *N,
13631                                SelectionDAG &DAG,
13632                                TargetLowering::DAGCombinerInfo &DCI) {
13633  // BT ignores high bits in the bit index operand.
13634  SDValue Op1 = N->getOperand(1);
13635  if (Op1.hasOneUse()) {
13636    unsigned BitWidth = Op1.getValueSizeInBits();
13637    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
13638    APInt KnownZero, KnownOne;
13639    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
13640                                          !DCI.isBeforeLegalizeOps());
13641    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13642    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
13643        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
13644      DCI.CommitTargetLoweringOpt(TLO);
13645  }
13646  return SDValue();
13647}
13648
13649static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
13650  SDValue Op = N->getOperand(0);
13651  if (Op.getOpcode() == ISD::BITCAST)
13652    Op = Op.getOperand(0);
13653  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
13654  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
13655      VT.getVectorElementType().getSizeInBits() ==
13656      OpVT.getVectorElementType().getSizeInBits()) {
13657    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
13658  }
13659  return SDValue();
13660}
13661
13662static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
13663  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
13664  //           (and (i32 x86isd::setcc_carry), 1)
13665  // This eliminates the zext. This transformation is necessary because
13666  // ISD::SETCC is always legalized to i8.
13667  DebugLoc dl = N->getDebugLoc();
13668  SDValue N0 = N->getOperand(0);
13669  EVT VT = N->getValueType(0);
13670  if (N0.getOpcode() == ISD::AND &&
13671      N0.hasOneUse() &&
13672      N0.getOperand(0).hasOneUse()) {
13673    SDValue N00 = N0.getOperand(0);
13674    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
13675      return SDValue();
13676    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
13677    if (!C || C->getZExtValue() != 1)
13678      return SDValue();
13679    return DAG.getNode(ISD::AND, dl, VT,
13680                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
13681                                   N00.getOperand(0), N00.getOperand(1)),
13682                       DAG.getConstant(1, VT));
13683  }
13684
13685  return SDValue();
13686}
13687
13688// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
13689static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
13690  unsigned X86CC = N->getConstantOperandVal(0);
13691  SDValue EFLAG = N->getOperand(1);
13692  DebugLoc DL = N->getDebugLoc();
13693
13694  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
13695  // a zext and produces an all-ones bit which is more useful than 0/1 in some
13696  // cases.
13697  if (X86CC == X86::COND_B)
13698    return DAG.getNode(ISD::AND, DL, MVT::i8,
13699                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
13700                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
13701                       DAG.getConstant(1, MVT::i8));
13702
13703  return SDValue();
13704}
13705
13706static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
13707                                        const X86TargetLowering *XTLI) {
13708  SDValue Op0 = N->getOperand(0);
13709  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
13710  // a 32-bit target where SSE doesn't support i64->FP operations.
13711  if (Op0.getOpcode() == ISD::LOAD) {
13712    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
13713    EVT VT = Ld->getValueType(0);
13714    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
13715        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
13716        !XTLI->getSubtarget()->is64Bit() &&
13717        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13718      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
13719                                          Ld->getChain(), Op0, DAG);
13720      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
13721      return FILDChain;
13722    }
13723  }
13724  return SDValue();
13725}
13726
13727// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
13728static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
13729                                 X86TargetLowering::DAGCombinerInfo &DCI) {
13730  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
13731  // the result is either zero or one (depending on the input carry bit).
13732  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
13733  if (X86::isZeroNode(N->getOperand(0)) &&
13734      X86::isZeroNode(N->getOperand(1)) &&
13735      // We don't have a good way to replace an EFLAGS use, so only do this when
13736      // dead right now.
13737      SDValue(N, 1).use_empty()) {
13738    DebugLoc DL = N->getDebugLoc();
13739    EVT VT = N->getValueType(0);
13740    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
13741    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
13742                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
13743                                           DAG.getConstant(X86::COND_B,MVT::i8),
13744                                           N->getOperand(2)),
13745                               DAG.getConstant(1, VT));
13746    return DCI.CombineTo(N, Res1, CarryOut);
13747  }
13748
13749  return SDValue();
13750}
13751
13752// fold (add Y, (sete  X, 0)) -> adc  0, Y
13753//      (add Y, (setne X, 0)) -> sbb -1, Y
13754//      (sub (sete  X, 0), Y) -> sbb  0, Y
13755//      (sub (setne X, 0), Y) -> adc -1, Y
13756static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
13757  DebugLoc DL = N->getDebugLoc();
13758
13759  // Look through ZExts.
13760  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
13761  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
13762    return SDValue();
13763
13764  SDValue SetCC = Ext.getOperand(0);
13765  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
13766    return SDValue();
13767
13768  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
13769  if (CC != X86::COND_E && CC != X86::COND_NE)
13770    return SDValue();
13771
13772  SDValue Cmp = SetCC.getOperand(1);
13773  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
13774      !X86::isZeroNode(Cmp.getOperand(1)) ||
13775      !Cmp.getOperand(0).getValueType().isInteger())
13776    return SDValue();
13777
13778  SDValue CmpOp0 = Cmp.getOperand(0);
13779  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
13780                               DAG.getConstant(1, CmpOp0.getValueType()));
13781
13782  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
13783  if (CC == X86::COND_NE)
13784    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
13785                       DL, OtherVal.getValueType(), OtherVal,
13786                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
13787  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
13788                     DL, OtherVal.getValueType(), OtherVal,
13789                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
13790}
13791
13792static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
13793  SDValue Op0 = N->getOperand(0);
13794  SDValue Op1 = N->getOperand(1);
13795
13796  // X86 can't encode an immediate LHS of a sub. See if we can push the
13797  // negation into a preceding instruction.
13798  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
13799    // If the RHS of the sub is a XOR with one use and a constant, invert the
13800    // immediate. Then add one to the LHS of the sub so we can turn
13801    // X-Y -> X+~Y+1, saving one register.
13802    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
13803        isa<ConstantSDNode>(Op1.getOperand(1))) {
13804      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
13805      EVT VT = Op0.getValueType();
13806      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
13807                                   Op1.getOperand(0),
13808                                   DAG.getConstant(~XorC, VT));
13809      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
13810                         DAG.getConstant(C->getAPIntValue()+1, VT));
13811    }
13812  }
13813
13814  return OptimizeConditionalInDecrement(N, DAG);
13815}
13816
13817SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
13818                                             DAGCombinerInfo &DCI) const {
13819  SelectionDAG &DAG = DCI.DAG;
13820  switch (N->getOpcode()) {
13821  default: break;
13822  case ISD::EXTRACT_VECTOR_ELT:
13823    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
13824  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
13825  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
13826  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
13827  case ISD::SUB:            return PerformSubCombine(N, DAG);
13828  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
13829  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
13830  case ISD::SHL:
13831  case ISD::SRA:
13832  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
13833  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
13834  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
13835  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
13836  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
13837  case X86ISD::FXOR:
13838  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
13839  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
13840  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
13841  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
13842  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
13843  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
13844  case X86ISD::SHUFPS:      // Handle all target specific shuffles
13845  case X86ISD::SHUFPD:
13846  case X86ISD::PALIGN:
13847  case X86ISD::PUNPCKHBW:
13848  case X86ISD::PUNPCKHWD:
13849  case X86ISD::PUNPCKHDQ:
13850  case X86ISD::PUNPCKHQDQ:
13851  case X86ISD::UNPCKHPS:
13852  case X86ISD::UNPCKHPD:
13853  case X86ISD::VUNPCKHPSY:
13854  case X86ISD::VUNPCKHPDY:
13855  case X86ISD::PUNPCKLBW:
13856  case X86ISD::PUNPCKLWD:
13857  case X86ISD::PUNPCKLDQ:
13858  case X86ISD::PUNPCKLQDQ:
13859  case X86ISD::UNPCKLPS:
13860  case X86ISD::UNPCKLPD:
13861  case X86ISD::VUNPCKLPSY:
13862  case X86ISD::VUNPCKLPDY:
13863  case X86ISD::MOVHLPS:
13864  case X86ISD::MOVLHPS:
13865  case X86ISD::PSHUFD:
13866  case X86ISD::PSHUFHW:
13867  case X86ISD::PSHUFLW:
13868  case X86ISD::MOVSS:
13869  case X86ISD::MOVSD:
13870  case X86ISD::VPERMILPS:
13871  case X86ISD::VPERMILPSY:
13872  case X86ISD::VPERMILPD:
13873  case X86ISD::VPERMILPDY:
13874  case X86ISD::VPERM2F128:
13875  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
13876  }
13877
13878  return SDValue();
13879}
13880
13881/// isTypeDesirableForOp - Return true if the target has native support for
13882/// the specified value type and it is 'desirable' to use the type for the
13883/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
13884/// instruction encodings are longer and some i16 instructions are slow.
13885bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
13886  if (!isTypeLegal(VT))
13887    return false;
13888  if (VT != MVT::i16)
13889    return true;
13890
13891  switch (Opc) {
13892  default:
13893    return true;
13894  case ISD::LOAD:
13895  case ISD::SIGN_EXTEND:
13896  case ISD::ZERO_EXTEND:
13897  case ISD::ANY_EXTEND:
13898  case ISD::SHL:
13899  case ISD::SRL:
13900  case ISD::SUB:
13901  case ISD::ADD:
13902  case ISD::MUL:
13903  case ISD::AND:
13904  case ISD::OR:
13905  case ISD::XOR:
13906    return false;
13907  }
13908}
13909
13910/// IsDesirableToPromoteOp - This method query the target whether it is
13911/// beneficial for dag combiner to promote the specified node. If true, it
13912/// should return the desired promotion type by reference.
13913bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
13914  EVT VT = Op.getValueType();
13915  if (VT != MVT::i16)
13916    return false;
13917
13918  bool Promote = false;
13919  bool Commute = false;
13920  switch (Op.getOpcode()) {
13921  default: break;
13922  case ISD::LOAD: {
13923    LoadSDNode *LD = cast<LoadSDNode>(Op);
13924    // If the non-extending load has a single use and it's not live out, then it
13925    // might be folded.
13926    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
13927                                                     Op.hasOneUse()*/) {
13928      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
13929             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
13930        // The only case where we'd want to promote LOAD (rather then it being
13931        // promoted as an operand is when it's only use is liveout.
13932        if (UI->getOpcode() != ISD::CopyToReg)
13933          return false;
13934      }
13935    }
13936    Promote = true;
13937    break;
13938  }
13939  case ISD::SIGN_EXTEND:
13940  case ISD::ZERO_EXTEND:
13941  case ISD::ANY_EXTEND:
13942    Promote = true;
13943    break;
13944  case ISD::SHL:
13945  case ISD::SRL: {
13946    SDValue N0 = Op.getOperand(0);
13947    // Look out for (store (shl (load), x)).
13948    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
13949      return false;
13950    Promote = true;
13951    break;
13952  }
13953  case ISD::ADD:
13954  case ISD::MUL:
13955  case ISD::AND:
13956  case ISD::OR:
13957  case ISD::XOR:
13958    Commute = true;
13959    // fallthrough
13960  case ISD::SUB: {
13961    SDValue N0 = Op.getOperand(0);
13962    SDValue N1 = Op.getOperand(1);
13963    if (!Commute && MayFoldLoad(N1))
13964      return false;
13965    // Avoid disabling potential load folding opportunities.
13966    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
13967      return false;
13968    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
13969      return false;
13970    Promote = true;
13971  }
13972  }
13973
13974  PVT = MVT::i32;
13975  return Promote;
13976}
13977
13978//===----------------------------------------------------------------------===//
13979//                           X86 Inline Assembly Support
13980//===----------------------------------------------------------------------===//
13981
13982bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
13983  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13984
13985  std::string AsmStr = IA->getAsmString();
13986
13987  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
13988  SmallVector<StringRef, 4> AsmPieces;
13989  SplitString(AsmStr, AsmPieces, ";\n");
13990
13991  switch (AsmPieces.size()) {
13992  default: return false;
13993  case 1:
13994    AsmStr = AsmPieces[0];
13995    AsmPieces.clear();
13996    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
13997
13998    // FIXME: this should verify that we are targeting a 486 or better.  If not,
13999    // we will turn this bswap into something that will be lowered to logical ops
14000    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14001    // so don't worry about this.
14002    // bswap $0
14003    if (AsmPieces.size() == 2 &&
14004        (AsmPieces[0] == "bswap" ||
14005         AsmPieces[0] == "bswapq" ||
14006         AsmPieces[0] == "bswapl") &&
14007        (AsmPieces[1] == "$0" ||
14008         AsmPieces[1] == "${0:q}")) {
14009      // No need to check constraints, nothing other than the equivalent of
14010      // "=r,0" would be valid here.
14011      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14012      if (!Ty || Ty->getBitWidth() % 16 != 0)
14013        return false;
14014      return IntrinsicLowering::LowerToByteSwap(CI);
14015    }
14016    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14017    if (CI->getType()->isIntegerTy(16) &&
14018        AsmPieces.size() == 3 &&
14019        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14020        AsmPieces[1] == "$$8," &&
14021        AsmPieces[2] == "${0:w}" &&
14022        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14023      AsmPieces.clear();
14024      const std::string &ConstraintsStr = IA->getConstraintString();
14025      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14026      std::sort(AsmPieces.begin(), AsmPieces.end());
14027      if (AsmPieces.size() == 4 &&
14028          AsmPieces[0] == "~{cc}" &&
14029          AsmPieces[1] == "~{dirflag}" &&
14030          AsmPieces[2] == "~{flags}" &&
14031          AsmPieces[3] == "~{fpsr}") {
14032        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14033        if (!Ty || Ty->getBitWidth() % 16 != 0)
14034          return false;
14035        return IntrinsicLowering::LowerToByteSwap(CI);
14036      }
14037    }
14038    break;
14039  case 3:
14040    if (CI->getType()->isIntegerTy(32) &&
14041        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14042      SmallVector<StringRef, 4> Words;
14043      SplitString(AsmPieces[0], Words, " \t,");
14044      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14045          Words[2] == "${0:w}") {
14046        Words.clear();
14047        SplitString(AsmPieces[1], Words, " \t,");
14048        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14049            Words[2] == "$0") {
14050          Words.clear();
14051          SplitString(AsmPieces[2], Words, " \t,");
14052          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14053              Words[2] == "${0:w}") {
14054            AsmPieces.clear();
14055            const std::string &ConstraintsStr = IA->getConstraintString();
14056            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14057            std::sort(AsmPieces.begin(), AsmPieces.end());
14058            if (AsmPieces.size() == 4 &&
14059                AsmPieces[0] == "~{cc}" &&
14060                AsmPieces[1] == "~{dirflag}" &&
14061                AsmPieces[2] == "~{flags}" &&
14062                AsmPieces[3] == "~{fpsr}") {
14063              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14064              if (!Ty || Ty->getBitWidth() % 16 != 0)
14065                return false;
14066              return IntrinsicLowering::LowerToByteSwap(CI);
14067            }
14068          }
14069        }
14070      }
14071    }
14072
14073    if (CI->getType()->isIntegerTy(64)) {
14074      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14075      if (Constraints.size() >= 2 &&
14076          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14077          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14078        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14079        SmallVector<StringRef, 4> Words;
14080        SplitString(AsmPieces[0], Words, " \t");
14081        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14082          Words.clear();
14083          SplitString(AsmPieces[1], Words, " \t");
14084          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14085            Words.clear();
14086            SplitString(AsmPieces[2], Words, " \t,");
14087            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14088                Words[2] == "%edx") {
14089              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14090              if (!Ty || Ty->getBitWidth() % 16 != 0)
14091                return false;
14092              return IntrinsicLowering::LowerToByteSwap(CI);
14093            }
14094          }
14095        }
14096      }
14097    }
14098    break;
14099  }
14100  return false;
14101}
14102
14103
14104
14105/// getConstraintType - Given a constraint letter, return the type of
14106/// constraint it is for this target.
14107X86TargetLowering::ConstraintType
14108X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14109  if (Constraint.size() == 1) {
14110    switch (Constraint[0]) {
14111    case 'R':
14112    case 'q':
14113    case 'Q':
14114    case 'f':
14115    case 't':
14116    case 'u':
14117    case 'y':
14118    case 'x':
14119    case 'Y':
14120    case 'l':
14121      return C_RegisterClass;
14122    case 'a':
14123    case 'b':
14124    case 'c':
14125    case 'd':
14126    case 'S':
14127    case 'D':
14128    case 'A':
14129      return C_Register;
14130    case 'I':
14131    case 'J':
14132    case 'K':
14133    case 'L':
14134    case 'M':
14135    case 'N':
14136    case 'G':
14137    case 'C':
14138    case 'e':
14139    case 'Z':
14140      return C_Other;
14141    default:
14142      break;
14143    }
14144  }
14145  return TargetLowering::getConstraintType(Constraint);
14146}
14147
14148/// Examine constraint type and operand type and determine a weight value.
14149/// This object must already have been set up with the operand type
14150/// and the current alternative constraint selected.
14151TargetLowering::ConstraintWeight
14152  X86TargetLowering::getSingleConstraintMatchWeight(
14153    AsmOperandInfo &info, const char *constraint) const {
14154  ConstraintWeight weight = CW_Invalid;
14155  Value *CallOperandVal = info.CallOperandVal;
14156    // If we don't have a value, we can't do a match,
14157    // but allow it at the lowest weight.
14158  if (CallOperandVal == NULL)
14159    return CW_Default;
14160  Type *type = CallOperandVal->getType();
14161  // Look at the constraint type.
14162  switch (*constraint) {
14163  default:
14164    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14165  case 'R':
14166  case 'q':
14167  case 'Q':
14168  case 'a':
14169  case 'b':
14170  case 'c':
14171  case 'd':
14172  case 'S':
14173  case 'D':
14174  case 'A':
14175    if (CallOperandVal->getType()->isIntegerTy())
14176      weight = CW_SpecificReg;
14177    break;
14178  case 'f':
14179  case 't':
14180  case 'u':
14181      if (type->isFloatingPointTy())
14182        weight = CW_SpecificReg;
14183      break;
14184  case 'y':
14185      if (type->isX86_MMXTy() && Subtarget->hasMMX())
14186        weight = CW_SpecificReg;
14187      break;
14188  case 'x':
14189  case 'Y':
14190    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14191      weight = CW_Register;
14192    break;
14193  case 'I':
14194    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14195      if (C->getZExtValue() <= 31)
14196        weight = CW_Constant;
14197    }
14198    break;
14199  case 'J':
14200    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14201      if (C->getZExtValue() <= 63)
14202        weight = CW_Constant;
14203    }
14204    break;
14205  case 'K':
14206    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14207      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14208        weight = CW_Constant;
14209    }
14210    break;
14211  case 'L':
14212    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14213      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14214        weight = CW_Constant;
14215    }
14216    break;
14217  case 'M':
14218    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14219      if (C->getZExtValue() <= 3)
14220        weight = CW_Constant;
14221    }
14222    break;
14223  case 'N':
14224    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14225      if (C->getZExtValue() <= 0xff)
14226        weight = CW_Constant;
14227    }
14228    break;
14229  case 'G':
14230  case 'C':
14231    if (dyn_cast<ConstantFP>(CallOperandVal)) {
14232      weight = CW_Constant;
14233    }
14234    break;
14235  case 'e':
14236    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14237      if ((C->getSExtValue() >= -0x80000000LL) &&
14238          (C->getSExtValue() <= 0x7fffffffLL))
14239        weight = CW_Constant;
14240    }
14241    break;
14242  case 'Z':
14243    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14244      if (C->getZExtValue() <= 0xffffffff)
14245        weight = CW_Constant;
14246    }
14247    break;
14248  }
14249  return weight;
14250}
14251
14252/// LowerXConstraint - try to replace an X constraint, which matches anything,
14253/// with another that has more specific requirements based on the type of the
14254/// corresponding operand.
14255const char *X86TargetLowering::
14256LowerXConstraint(EVT ConstraintVT) const {
14257  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14258  // 'f' like normal targets.
14259  if (ConstraintVT.isFloatingPoint()) {
14260    if (Subtarget->hasXMMInt())
14261      return "Y";
14262    if (Subtarget->hasXMM())
14263      return "x";
14264  }
14265
14266  return TargetLowering::LowerXConstraint(ConstraintVT);
14267}
14268
14269/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14270/// vector.  If it is invalid, don't add anything to Ops.
14271void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14272                                                     std::string &Constraint,
14273                                                     std::vector<SDValue>&Ops,
14274                                                     SelectionDAG &DAG) const {
14275  SDValue Result(0, 0);
14276
14277  // Only support length 1 constraints for now.
14278  if (Constraint.length() > 1) return;
14279
14280  char ConstraintLetter = Constraint[0];
14281  switch (ConstraintLetter) {
14282  default: break;
14283  case 'I':
14284    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14285      if (C->getZExtValue() <= 31) {
14286        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14287        break;
14288      }
14289    }
14290    return;
14291  case 'J':
14292    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14293      if (C->getZExtValue() <= 63) {
14294        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14295        break;
14296      }
14297    }
14298    return;
14299  case 'K':
14300    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14301      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14302        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14303        break;
14304      }
14305    }
14306    return;
14307  case 'N':
14308    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14309      if (C->getZExtValue() <= 255) {
14310        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14311        break;
14312      }
14313    }
14314    return;
14315  case 'e': {
14316    // 32-bit signed value
14317    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14318      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14319                                           C->getSExtValue())) {
14320        // Widen to 64 bits here to get it sign extended.
14321        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14322        break;
14323      }
14324    // FIXME gcc accepts some relocatable values here too, but only in certain
14325    // memory models; it's complicated.
14326    }
14327    return;
14328  }
14329  case 'Z': {
14330    // 32-bit unsigned value
14331    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14332      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14333                                           C->getZExtValue())) {
14334        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14335        break;
14336      }
14337    }
14338    // FIXME gcc accepts some relocatable values here too, but only in certain
14339    // memory models; it's complicated.
14340    return;
14341  }
14342  case 'i': {
14343    // Literal immediates are always ok.
14344    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14345      // Widen to 64 bits here to get it sign extended.
14346      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14347      break;
14348    }
14349
14350    // In any sort of PIC mode addresses need to be computed at runtime by
14351    // adding in a register or some sort of table lookup.  These can't
14352    // be used as immediates.
14353    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14354      return;
14355
14356    // If we are in non-pic codegen mode, we allow the address of a global (with
14357    // an optional displacement) to be used with 'i'.
14358    GlobalAddressSDNode *GA = 0;
14359    int64_t Offset = 0;
14360
14361    // Match either (GA), (GA+C), (GA+C1+C2), etc.
14362    while (1) {
14363      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14364        Offset += GA->getOffset();
14365        break;
14366      } else if (Op.getOpcode() == ISD::ADD) {
14367        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14368          Offset += C->getZExtValue();
14369          Op = Op.getOperand(0);
14370          continue;
14371        }
14372      } else if (Op.getOpcode() == ISD::SUB) {
14373        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14374          Offset += -C->getZExtValue();
14375          Op = Op.getOperand(0);
14376          continue;
14377        }
14378      }
14379
14380      // Otherwise, this isn't something we can handle, reject it.
14381      return;
14382    }
14383
14384    const GlobalValue *GV = GA->getGlobal();
14385    // If we require an extra load to get this address, as in PIC mode, we
14386    // can't accept it.
14387    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14388                                                        getTargetMachine())))
14389      return;
14390
14391    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14392                                        GA->getValueType(0), Offset);
14393    break;
14394  }
14395  }
14396
14397  if (Result.getNode()) {
14398    Ops.push_back(Result);
14399    return;
14400  }
14401  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14402}
14403
14404std::pair<unsigned, const TargetRegisterClass*>
14405X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14406                                                EVT VT) const {
14407  // First, see if this is a constraint that directly corresponds to an LLVM
14408  // register class.
14409  if (Constraint.size() == 1) {
14410    // GCC Constraint Letters
14411    switch (Constraint[0]) {
14412    default: break;
14413      // TODO: Slight differences here in allocation order and leaving
14414      // RIP in the class. Do they matter any more here than they do
14415      // in the normal allocation?
14416    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14417      if (Subtarget->is64Bit()) {
14418	if (VT == MVT::i32 || VT == MVT::f32)
14419	  return std::make_pair(0U, X86::GR32RegisterClass);
14420	else if (VT == MVT::i16)
14421	  return std::make_pair(0U, X86::GR16RegisterClass);
14422	else if (VT == MVT::i8 || VT == MVT::i1)
14423	  return std::make_pair(0U, X86::GR8RegisterClass);
14424	else if (VT == MVT::i64 || VT == MVT::f64)
14425	  return std::make_pair(0U, X86::GR64RegisterClass);
14426	break;
14427      }
14428      // 32-bit fallthrough
14429    case 'Q':   // Q_REGS
14430      if (VT == MVT::i32 || VT == MVT::f32)
14431	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14432      else if (VT == MVT::i16)
14433	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14434      else if (VT == MVT::i8 || VT == MVT::i1)
14435	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14436      else if (VT == MVT::i64)
14437	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14438      break;
14439    case 'r':   // GENERAL_REGS
14440    case 'l':   // INDEX_REGS
14441      if (VT == MVT::i8 || VT == MVT::i1)
14442        return std::make_pair(0U, X86::GR8RegisterClass);
14443      if (VT == MVT::i16)
14444        return std::make_pair(0U, X86::GR16RegisterClass);
14445      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14446        return std::make_pair(0U, X86::GR32RegisterClass);
14447      return std::make_pair(0U, X86::GR64RegisterClass);
14448    case 'R':   // LEGACY_REGS
14449      if (VT == MVT::i8 || VT == MVT::i1)
14450        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14451      if (VT == MVT::i16)
14452        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14453      if (VT == MVT::i32 || !Subtarget->is64Bit())
14454        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14455      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14456    case 'f':  // FP Stack registers.
14457      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14458      // value to the correct fpstack register class.
14459      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14460        return std::make_pair(0U, X86::RFP32RegisterClass);
14461      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14462        return std::make_pair(0U, X86::RFP64RegisterClass);
14463      return std::make_pair(0U, X86::RFP80RegisterClass);
14464    case 'y':   // MMX_REGS if MMX allowed.
14465      if (!Subtarget->hasMMX()) break;
14466      return std::make_pair(0U, X86::VR64RegisterClass);
14467    case 'Y':   // SSE_REGS if SSE2 allowed
14468      if (!Subtarget->hasXMMInt()) break;
14469      // FALL THROUGH.
14470    case 'x':   // SSE_REGS if SSE1 allowed
14471      if (!Subtarget->hasXMM()) break;
14472
14473      switch (VT.getSimpleVT().SimpleTy) {
14474      default: break;
14475      // Scalar SSE types.
14476      case MVT::f32:
14477      case MVT::i32:
14478        return std::make_pair(0U, X86::FR32RegisterClass);
14479      case MVT::f64:
14480      case MVT::i64:
14481        return std::make_pair(0U, X86::FR64RegisterClass);
14482      // Vector types.
14483      case MVT::v16i8:
14484      case MVT::v8i16:
14485      case MVT::v4i32:
14486      case MVT::v2i64:
14487      case MVT::v4f32:
14488      case MVT::v2f64:
14489        return std::make_pair(0U, X86::VR128RegisterClass);
14490      }
14491      break;
14492    }
14493  }
14494
14495  // Use the default implementation in TargetLowering to convert the register
14496  // constraint into a member of a register class.
14497  std::pair<unsigned, const TargetRegisterClass*> Res;
14498  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14499
14500  // Not found as a standard register?
14501  if (Res.second == 0) {
14502    // Map st(0) -> st(7) -> ST0
14503    if (Constraint.size() == 7 && Constraint[0] == '{' &&
14504        tolower(Constraint[1]) == 's' &&
14505        tolower(Constraint[2]) == 't' &&
14506        Constraint[3] == '(' &&
14507        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14508        Constraint[5] == ')' &&
14509        Constraint[6] == '}') {
14510
14511      Res.first = X86::ST0+Constraint[4]-'0';
14512      Res.second = X86::RFP80RegisterClass;
14513      return Res;
14514    }
14515
14516    // GCC allows "st(0)" to be called just plain "st".
14517    if (StringRef("{st}").equals_lower(Constraint)) {
14518      Res.first = X86::ST0;
14519      Res.second = X86::RFP80RegisterClass;
14520      return Res;
14521    }
14522
14523    // flags -> EFLAGS
14524    if (StringRef("{flags}").equals_lower(Constraint)) {
14525      Res.first = X86::EFLAGS;
14526      Res.second = X86::CCRRegisterClass;
14527      return Res;
14528    }
14529
14530    // 'A' means EAX + EDX.
14531    if (Constraint == "A") {
14532      Res.first = X86::EAX;
14533      Res.second = X86::GR32_ADRegisterClass;
14534      return Res;
14535    }
14536    return Res;
14537  }
14538
14539  // Otherwise, check to see if this is a register class of the wrong value
14540  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14541  // turn into {ax},{dx}.
14542  if (Res.second->hasType(VT))
14543    return Res;   // Correct type already, nothing to do.
14544
14545  // All of the single-register GCC register classes map their values onto
14546  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14547  // really want an 8-bit or 32-bit register, map to the appropriate register
14548  // class and return the appropriate register.
14549  if (Res.second == X86::GR16RegisterClass) {
14550    if (VT == MVT::i8) {
14551      unsigned DestReg = 0;
14552      switch (Res.first) {
14553      default: break;
14554      case X86::AX: DestReg = X86::AL; break;
14555      case X86::DX: DestReg = X86::DL; break;
14556      case X86::CX: DestReg = X86::CL; break;
14557      case X86::BX: DestReg = X86::BL; break;
14558      }
14559      if (DestReg) {
14560        Res.first = DestReg;
14561        Res.second = X86::GR8RegisterClass;
14562      }
14563    } else if (VT == MVT::i32) {
14564      unsigned DestReg = 0;
14565      switch (Res.first) {
14566      default: break;
14567      case X86::AX: DestReg = X86::EAX; break;
14568      case X86::DX: DestReg = X86::EDX; break;
14569      case X86::CX: DestReg = X86::ECX; break;
14570      case X86::BX: DestReg = X86::EBX; break;
14571      case X86::SI: DestReg = X86::ESI; break;
14572      case X86::DI: DestReg = X86::EDI; break;
14573      case X86::BP: DestReg = X86::EBP; break;
14574      case X86::SP: DestReg = X86::ESP; break;
14575      }
14576      if (DestReg) {
14577        Res.first = DestReg;
14578        Res.second = X86::GR32RegisterClass;
14579      }
14580    } else if (VT == MVT::i64) {
14581      unsigned DestReg = 0;
14582      switch (Res.first) {
14583      default: break;
14584      case X86::AX: DestReg = X86::RAX; break;
14585      case X86::DX: DestReg = X86::RDX; break;
14586      case X86::CX: DestReg = X86::RCX; break;
14587      case X86::BX: DestReg = X86::RBX; break;
14588      case X86::SI: DestReg = X86::RSI; break;
14589      case X86::DI: DestReg = X86::RDI; break;
14590      case X86::BP: DestReg = X86::RBP; break;
14591      case X86::SP: DestReg = X86::RSP; break;
14592      }
14593      if (DestReg) {
14594        Res.first = DestReg;
14595        Res.second = X86::GR64RegisterClass;
14596      }
14597    }
14598  } else if (Res.second == X86::FR32RegisterClass ||
14599             Res.second == X86::FR64RegisterClass ||
14600             Res.second == X86::VR128RegisterClass) {
14601    // Handle references to XMM physical registers that got mapped into the
14602    // wrong class.  This can happen with constraints like {xmm0} where the
14603    // target independent register mapper will just pick the first match it can
14604    // find, ignoring the required type.
14605    if (VT == MVT::f32)
14606      Res.second = X86::FR32RegisterClass;
14607    else if (VT == MVT::f64)
14608      Res.second = X86::FR64RegisterClass;
14609    else if (X86::VR128RegisterClass->hasType(VT))
14610      Res.second = X86::VR128RegisterClass;
14611  }
14612
14613  return Res;
14614}
14615