X86ISelLowering.cpp revision 96908b17ae7df4c838853a41df9a4c034b435446
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58static cl::opt<bool>
59DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
60
61// Forward declarations.
62static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63                       SDValue V2);
64
65static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
66
67  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
68
69  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
70    if (is64Bit) return new X8664_MachoTargetObjectFile();
71    return new TargetLoweringObjectFileMachO();
72  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
74    return new X8632_ELFTargetObjectFile(TM);
75  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
76    return new TargetLoweringObjectFileCOFF();
77  }
78  llvm_unreachable("unknown subtarget type");
79}
80
81X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
82  : TargetLowering(TM, createTLOF(TM)) {
83  Subtarget = &TM.getSubtarget<X86Subtarget>();
84  X86ScalarSSEf64 = Subtarget->hasSSE2();
85  X86ScalarSSEf32 = Subtarget->hasSSE1();
86  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
87
88  RegInfo = TM.getRegisterInfo();
89  TD = getTargetData();
90
91  // Set up the TargetLowering object.
92
93  // X86 is weird, it always uses i8 for shift amounts and setcc results.
94  setShiftAmountType(MVT::i8);
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setSchedulingPreference(Sched::RegPressure);
97  setStackPointerRegisterToSaveRestore(X86StackPtr);
98
99  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
100    // Setup Windows compiler runtime calls.
101    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
102    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
103    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
104    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
105    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
106    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
107    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
108    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
109  }
110
111  if (Subtarget->isTargetDarwin()) {
112    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
113    setUseUnderscoreSetJmp(false);
114    setUseUnderscoreLongJmp(false);
115  } else if (Subtarget->isTargetMingw()) {
116    // MS runtime is weird: it exports _setjmp, but longjmp!
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(false);
119  } else {
120    setUseUnderscoreSetJmp(true);
121    setUseUnderscoreLongJmp(true);
122  }
123
124  // Set up the register classes.
125  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
126  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
127  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
128  if (Subtarget->is64Bit())
129    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
130
131  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
132
133  // We don't accept any truncstore of integer registers.
134  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
136  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
137  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    // We have an algorithm for SSE2->double, and we turn this into a
160    // 64-bit FILD followed by conditional FADD for other targets.
161    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
162    // We have an algorithm for SSE2, and we turn this into a 64-bit
163    // FILD for other targets.
164    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
165  }
166
167  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
168  // this operation.
169  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
171
172  if (!UseSoftFloat) {
173    // SSE has no i16 to fp conversion, only i32
174    if (X86ScalarSSEf32) {
175      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
176      // f32 and f64 cases are Legal, f80 case is not
177      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
178    } else {
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
181    }
182  } else {
183    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
185  }
186
187  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
188  // are Legal, f80 is custom lowered.
189  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
190  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
191
192  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
193  // this operation.
194  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
196
197  if (X86ScalarSSEf32) {
198    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
199    // f32 and f64 cases are Legal, f80 case is not
200    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
201  } else {
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
204  }
205
206  // Handle FP_TO_UINT by promoting the destination to a larger signed
207  // conversion.
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
211
212  if (Subtarget->is64Bit()) {
213    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
215  } else if (!UseSoftFloat) {
216    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
217      // Expand FP_TO_UINT into a select.
218      // FIXME: We would like to use a Custom expander here eventually to do
219      // the optimal thing for SSE vs. the default expansion in the legalizer.
220      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
221    else
222      // With SSE3 we can use fisttpll to convert to a signed i64; without
223      // SSE, we're stuck with a fistpll.
224      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
225  }
226
227  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
228  if (!X86ScalarSSEf64) {
229    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
230    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
231    if (Subtarget->is64Bit()) {
232      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
233      // Without SSE, i64->f64 goes through memory.
234      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
235    }
236  }
237
238  // Scalar integer divide and remainder are lowered to use operations that
239  // produce two results, to match the available instructions. This exposes
240  // the two-result form to trivial CSE, which is able to combine x/y and x%y
241  // into a single instruction.
242  //
243  // Scalar integer multiply-high is also lowered to use two-result
244  // operations, to match the available instructions. However, plain multiply
245  // (low) operations are left as Legal, as there are single-result
246  // instructions for this in x86. Using the two-result multiply instructions
247  // when both high and low results are needed must be arranged by dagcombine.
248  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
249  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
250  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
251  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
252  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
253  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
254  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
255  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
256  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
257  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
258  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
259  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
260  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
261  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
262  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
263  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
264  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
265  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
266  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
267  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
268  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
269  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
270  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
271  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
272
273  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
274  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
275  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
276  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
277  if (Subtarget->is64Bit())
278    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
279  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
280  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
281  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
282  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
283  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
284  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
285  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
286  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
287
288  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
289  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
290  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
291  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
292  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
293  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
294  if (Subtarget->is64Bit()) {
295    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
296    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
297  }
298
299  if (Subtarget->hasPOPCNT()) {
300    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
301  } else {
302    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
303    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
304    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
305    if (Subtarget->is64Bit())
306      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
307  }
308
309  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
310  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
311
312  // These should be promoted to a larger select which is supported.
313  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
314  // X86 wants to expand cmov itself.
315  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
316  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
317  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
318  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
319  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
320  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
321  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
322  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
323  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
325  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
326  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
327  if (Subtarget->is64Bit()) {
328    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
329    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
330  }
331  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
332
333  // Darwin ABI issue.
334  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
335  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
336  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
337  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
338  if (Subtarget->is64Bit())
339    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
340  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
341  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
342  if (Subtarget->is64Bit()) {
343    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
344    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
345    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
346    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
347    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
348  }
349  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
350  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
351  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
352  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
353  if (Subtarget->is64Bit()) {
354    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
355    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
356    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
357  }
358
359  if (Subtarget->hasSSE1())
360    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
361
362  // We may not have a libcall for MEMBARRIER so we should lower this.
363  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
364
365  // On X86 and X86-64, atomic operations are lowered to locked instructions.
366  // Locked instructions, in turn, have implicit fence semantics (all memory
367  // operations are flushed before issuing the locked instruction, and they
368  // are not buffered), so we can fold away the common pattern of
369  // fence-atomic-fence.
370  setShouldFoldAtomicFences(true);
371
372  // Expand certain atomics
373  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
374  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
375  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
376  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
377
378  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
379  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
380  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
381  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
382
383  if (!Subtarget->is64Bit()) {
384    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
385    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
386    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
387    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
388    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
389    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
390    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
391  }
392
393  // FIXME - use subtarget debug flags
394  if (!Subtarget->isTargetDarwin() &&
395      !Subtarget->isTargetELF() &&
396      !Subtarget->isTargetCygMing()) {
397    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
398  }
399
400  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
401  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
402  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
403  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
404  if (Subtarget->is64Bit()) {
405    setExceptionPointerRegister(X86::RAX);
406    setExceptionSelectorRegister(X86::RDX);
407  } else {
408    setExceptionPointerRegister(X86::EAX);
409    setExceptionSelectorRegister(X86::EDX);
410  }
411  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
412  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
413
414  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
415
416  setOperationAction(ISD::TRAP, MVT::Other, Legal);
417
418  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
419  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
420  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
421  if (Subtarget->is64Bit()) {
422    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
423    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
424  } else {
425    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
426    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
427  }
428
429  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
430  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
431  if (Subtarget->is64Bit())
432    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
433  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
434    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
435  else
436    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
437
438  if (!UseSoftFloat && X86ScalarSSEf64) {
439    // f32 and f64 use SSE.
440    // Set up the FP register classes.
441    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
442    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
443
444    // Use ANDPD to simulate FABS.
445    setOperationAction(ISD::FABS , MVT::f64, Custom);
446    setOperationAction(ISD::FABS , MVT::f32, Custom);
447
448    // Use XORP to simulate FNEG.
449    setOperationAction(ISD::FNEG , MVT::f64, Custom);
450    setOperationAction(ISD::FNEG , MVT::f32, Custom);
451
452    // Use ANDPD and ORPD to simulate FCOPYSIGN.
453    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
454    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
455
456    // We don't support sin/cos/fmod
457    setOperationAction(ISD::FSIN , MVT::f64, Expand);
458    setOperationAction(ISD::FCOS , MVT::f64, Expand);
459    setOperationAction(ISD::FSIN , MVT::f32, Expand);
460    setOperationAction(ISD::FCOS , MVT::f32, Expand);
461
462    // Expand FP immediates into loads from the stack, except for the special
463    // cases we handle.
464    addLegalFPImmediate(APFloat(+0.0)); // xorpd
465    addLegalFPImmediate(APFloat(+0.0f)); // xorps
466  } else if (!UseSoftFloat && X86ScalarSSEf32) {
467    // Use SSE for f32, x87 for f64.
468    // Set up the FP register classes.
469    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
470    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
471
472    // Use ANDPS to simulate FABS.
473    setOperationAction(ISD::FABS , MVT::f32, Custom);
474
475    // Use XORP to simulate FNEG.
476    setOperationAction(ISD::FNEG , MVT::f32, Custom);
477
478    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
479
480    // Use ANDPS and ORPS to simulate FCOPYSIGN.
481    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
482    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
483
484    // We don't support sin/cos/fmod
485    setOperationAction(ISD::FSIN , MVT::f32, Expand);
486    setOperationAction(ISD::FCOS , MVT::f32, Expand);
487
488    // Special cases we handle for FP constants.
489    addLegalFPImmediate(APFloat(+0.0f)); // xorps
490    addLegalFPImmediate(APFloat(+0.0)); // FLD0
491    addLegalFPImmediate(APFloat(+1.0)); // FLD1
492    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
493    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
494
495    if (!UnsafeFPMath) {
496      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
497      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
498    }
499  } else if (!UseSoftFloat) {
500    // f32 and f64 in x87.
501    // Set up the FP register classes.
502    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
503    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
504
505    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
506    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
507    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
508    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
509
510    if (!UnsafeFPMath) {
511      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
512      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
513    }
514    addLegalFPImmediate(APFloat(+0.0)); // FLD0
515    addLegalFPImmediate(APFloat(+1.0)); // FLD1
516    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
517    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
518    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
519    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
520    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
521    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
522  }
523
524  // Long double always uses X87.
525  if (!UseSoftFloat) {
526    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
527    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
528    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
529    {
530      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
531      addLegalFPImmediate(TmpFlt);  // FLD0
532      TmpFlt.changeSign();
533      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
534
535      bool ignored;
536      APFloat TmpFlt2(+1.0);
537      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
538                      &ignored);
539      addLegalFPImmediate(TmpFlt2);  // FLD1
540      TmpFlt2.changeSign();
541      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
542    }
543
544    if (!UnsafeFPMath) {
545      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
546      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
547    }
548  }
549
550  // Always use a library call for pow.
551  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
552  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
553  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
554
555  setOperationAction(ISD::FLOG, MVT::f80, Expand);
556  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
557  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
558  setOperationAction(ISD::FEXP, MVT::f80, Expand);
559  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
560
561  // First set operation action for all vector types to either promote
562  // (for widening) or expand (for scalarization). Then we will selectively
563  // turn on ones that can be effectively codegen'd.
564  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
565       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
566    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
581    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
582    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
610    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
614    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
615    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
616    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
617    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
618    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
619    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
620         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
621      setTruncStoreAction((MVT::SimpleValueType)VT,
622                          (MVT::SimpleValueType)InnerVT, Expand);
623    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
624    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
625    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
626  }
627
628  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
629  // with -msoft-float, disable use of MMX as well.
630  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
631    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
632    // No operations on x86mmx supported, everything uses intrinsics.
633  }
634
635  // MMX-sized vectors (other than x86mmx) are expected to be expanded
636  // into smaller operations.
637  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
638  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
639  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
640  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
641  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
642  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
643  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
644  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
645  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
646  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
647  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
648  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
649  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
650  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
651  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
652  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
653  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
654  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
655  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
656  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
657  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
658  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
659  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
660  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
661  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
662  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
663  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
664  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
665  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
666
667  if (!UseSoftFloat && Subtarget->hasSSE1()) {
668    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
669
670    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
671    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
672    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
673    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
674    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
675    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
676    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
677    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
678    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
679    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
680    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
681    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
682  }
683
684  if (!UseSoftFloat && Subtarget->hasSSE2()) {
685    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
686
687    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
688    // registers cannot be used even for integer operations.
689    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
690    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
691    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
692    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
693
694    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
695    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
696    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
697    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
698    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
699    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
700    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
701    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
702    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
703    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
704    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
705    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
706    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
707    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
708    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
709    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
710
711    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
712    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
714    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
715
716    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
717    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
718    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
719    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
720    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
721
722    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
723    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
724    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
725    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
726    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
727
728    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
729    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
730      EVT VT = (MVT::SimpleValueType)i;
731      // Do not attempt to custom lower non-power-of-2 vectors
732      if (!isPowerOf2_32(VT.getVectorNumElements()))
733        continue;
734      // Do not attempt to custom lower non-128-bit vectors
735      if (!VT.is128BitVector())
736        continue;
737      setOperationAction(ISD::BUILD_VECTOR,
738                         VT.getSimpleVT().SimpleTy, Custom);
739      setOperationAction(ISD::VECTOR_SHUFFLE,
740                         VT.getSimpleVT().SimpleTy, Custom);
741      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
742                         VT.getSimpleVT().SimpleTy, Custom);
743    }
744
745    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
746    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
747    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
748    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
749    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
750    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
751
752    if (Subtarget->is64Bit()) {
753      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
754      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
755    }
756
757    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
758    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
759      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
760      EVT VT = SVT;
761
762      // Do not attempt to promote non-128-bit vectors
763      if (!VT.is128BitVector())
764        continue;
765
766      setOperationAction(ISD::AND,    SVT, Promote);
767      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
768      setOperationAction(ISD::OR,     SVT, Promote);
769      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
770      setOperationAction(ISD::XOR,    SVT, Promote);
771      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
772      setOperationAction(ISD::LOAD,   SVT, Promote);
773      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
774      setOperationAction(ISD::SELECT, SVT, Promote);
775      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
776    }
777
778    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
779
780    // Custom lower v2i64 and v2f64 selects.
781    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
782    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
783    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
784    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
785
786    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
787    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
788  }
789
790  if (Subtarget->hasSSE41()) {
791    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
792    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
793    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
794    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
795    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
796    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
797    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
798    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
799    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
800    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
801
802    // FIXME: Do we need to handle scalar-to-vector here?
803    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
804
805    // Can turn SHL into an integer multiply.
806    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
807    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
808
809    // i8 and i16 vectors are custom , because the source register and source
810    // source memory operand types are not the same width.  f32 vectors are
811    // custom since the immediate controlling the insert encodes additional
812    // information.
813    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
817
818    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
819    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
820    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
821    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
822
823    if (Subtarget->is64Bit()) {
824      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
825      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
826    }
827  }
828
829  if (Subtarget->hasSSE42()) {
830    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
831  }
832
833  if (!UseSoftFloat && Subtarget->hasAVX()) {
834    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
835    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
836    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
837    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
838    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
839
840    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
841    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
842    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
843    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
844    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
845    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
846    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
847    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
848    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
849    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
850    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
851    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
852    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
853    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
854    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
855
856    // Operations to consider commented out -v16i16 v32i8
857    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
858    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
859    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
860    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
861    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
862    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
863    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
864    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
865    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
866    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
867    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
868    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
869    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
870    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
871
872    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
873    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
874    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
875    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
876
877    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
878    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
879    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
880    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
881    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
882
883    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
884    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
885    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
886    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
887    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
888    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
889
890#if 0
891    // Not sure we want to do this since there are no 256-bit integer
892    // operations in AVX
893
894    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
895    // This includes 256-bit vectors
896    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
897      EVT VT = (MVT::SimpleValueType)i;
898
899      // Do not attempt to custom lower non-power-of-2 vectors
900      if (!isPowerOf2_32(VT.getVectorNumElements()))
901        continue;
902
903      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
904      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
906    }
907
908    if (Subtarget->is64Bit()) {
909      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
910      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
911    }
912#endif
913
914#if 0
915    // Not sure we want to do this since there are no 256-bit integer
916    // operations in AVX
917
918    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
919    // Including 256-bit vectors
920    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
921      EVT VT = (MVT::SimpleValueType)i;
922
923      if (!VT.is256BitVector()) {
924        continue;
925      }
926      setOperationAction(ISD::AND,    VT, Promote);
927      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
928      setOperationAction(ISD::OR,     VT, Promote);
929      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
930      setOperationAction(ISD::XOR,    VT, Promote);
931      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
932      setOperationAction(ISD::LOAD,   VT, Promote);
933      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
934      setOperationAction(ISD::SELECT, VT, Promote);
935      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
936    }
937
938    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
939#endif
940  }
941
942  // We want to custom lower some of our intrinsics.
943  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
944
945  // Add/Sub/Mul with overflow operations are custom lowered.
946  setOperationAction(ISD::SADDO, MVT::i32, Custom);
947  setOperationAction(ISD::UADDO, MVT::i32, Custom);
948  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
949  setOperationAction(ISD::USUBO, MVT::i32, Custom);
950  setOperationAction(ISD::SMULO, MVT::i32, Custom);
951
952  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
953  // handle type legalization for these operations here.
954  //
955  // FIXME: We really should do custom legalization for addition and
956  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
957  // than generic legalization for 64-bit multiplication-with-overflow, though.
958  if (Subtarget->is64Bit()) {
959    setOperationAction(ISD::SADDO, MVT::i64, Custom);
960    setOperationAction(ISD::UADDO, MVT::i64, Custom);
961    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
962    setOperationAction(ISD::USUBO, MVT::i64, Custom);
963    setOperationAction(ISD::SMULO, MVT::i64, Custom);
964  }
965
966  if (!Subtarget->is64Bit()) {
967    // These libcalls are not available in 32-bit.
968    setLibcallName(RTLIB::SHL_I128, 0);
969    setLibcallName(RTLIB::SRL_I128, 0);
970    setLibcallName(RTLIB::SRA_I128, 0);
971  }
972
973  // We have target-specific dag combine patterns for the following nodes:
974  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
975  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
976  setTargetDAGCombine(ISD::BUILD_VECTOR);
977  setTargetDAGCombine(ISD::SELECT);
978  setTargetDAGCombine(ISD::SHL);
979  setTargetDAGCombine(ISD::SRA);
980  setTargetDAGCombine(ISD::SRL);
981  setTargetDAGCombine(ISD::OR);
982  setTargetDAGCombine(ISD::STORE);
983  setTargetDAGCombine(ISD::ZERO_EXTEND);
984  if (Subtarget->is64Bit())
985    setTargetDAGCombine(ISD::MUL);
986
987  computeRegisterProperties();
988
989  // FIXME: These should be based on subtarget info. Plus, the values should
990  // be smaller when we are in optimizing for size mode.
991  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
992  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
993  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
994  setPrefLoopAlignment(16);
995  benefitFromCodePlacementOpt = true;
996}
997
998
999MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1000  return MVT::i8;
1001}
1002
1003
1004/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1005/// the desired ByVal argument alignment.
1006static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1007  if (MaxAlign == 16)
1008    return;
1009  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1010    if (VTy->getBitWidth() == 128)
1011      MaxAlign = 16;
1012  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1013    unsigned EltAlign = 0;
1014    getMaxByValAlign(ATy->getElementType(), EltAlign);
1015    if (EltAlign > MaxAlign)
1016      MaxAlign = EltAlign;
1017  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1018    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1019      unsigned EltAlign = 0;
1020      getMaxByValAlign(STy->getElementType(i), EltAlign);
1021      if (EltAlign > MaxAlign)
1022        MaxAlign = EltAlign;
1023      if (MaxAlign == 16)
1024        break;
1025    }
1026  }
1027  return;
1028}
1029
1030/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1031/// function arguments in the caller parameter area. For X86, aggregates
1032/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1033/// are at 4-byte boundaries.
1034unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1035  if (Subtarget->is64Bit()) {
1036    // Max of 8 and alignment of type.
1037    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1038    if (TyAlign > 8)
1039      return TyAlign;
1040    return 8;
1041  }
1042
1043  unsigned Align = 4;
1044  if (Subtarget->hasSSE1())
1045    getMaxByValAlign(Ty, Align);
1046  return Align;
1047}
1048
1049/// getOptimalMemOpType - Returns the target specific optimal type for load
1050/// and store operations as a result of memset, memcpy, and memmove
1051/// lowering. If DstAlign is zero that means it's safe to destination
1052/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1053/// means there isn't a need to check it against alignment requirement,
1054/// probably because the source does not need to be loaded. If
1055/// 'NonScalarIntSafe' is true, that means it's safe to return a
1056/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1057/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1058/// constant so it does not need to be loaded.
1059/// It returns EVT::Other if the type should be determined using generic
1060/// target-independent logic.
1061EVT
1062X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1063                                       unsigned DstAlign, unsigned SrcAlign,
1064                                       bool NonScalarIntSafe,
1065                                       bool MemcpyStrSrc,
1066                                       MachineFunction &MF) const {
1067  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1068  // linux.  This is because the stack realignment code can't handle certain
1069  // cases like PR2962.  This should be removed when PR2962 is fixed.
1070  const Function *F = MF.getFunction();
1071  if (NonScalarIntSafe &&
1072      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1073    if (Size >= 16 &&
1074        (Subtarget->isUnalignedMemAccessFast() ||
1075         ((DstAlign == 0 || DstAlign >= 16) &&
1076          (SrcAlign == 0 || SrcAlign >= 16))) &&
1077        Subtarget->getStackAlignment() >= 16) {
1078      if (Subtarget->hasSSE2())
1079        return MVT::v4i32;
1080      if (Subtarget->hasSSE1())
1081        return MVT::v4f32;
1082    } else if (!MemcpyStrSrc && Size >= 8 &&
1083               !Subtarget->is64Bit() &&
1084               Subtarget->getStackAlignment() >= 8 &&
1085               Subtarget->hasSSE2()) {
1086      // Do not use f64 to lower memcpy if source is string constant. It's
1087      // better to use i32 to avoid the loads.
1088      return MVT::f64;
1089    }
1090  }
1091  if (Subtarget->is64Bit() && Size >= 8)
1092    return MVT::i64;
1093  return MVT::i32;
1094}
1095
1096/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1097/// current function.  The returned value is a member of the
1098/// MachineJumpTableInfo::JTEntryKind enum.
1099unsigned X86TargetLowering::getJumpTableEncoding() const {
1100  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1101  // symbol.
1102  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1103      Subtarget->isPICStyleGOT())
1104    return MachineJumpTableInfo::EK_Custom32;
1105
1106  // Otherwise, use the normal jump table encoding heuristics.
1107  return TargetLowering::getJumpTableEncoding();
1108}
1109
1110const MCExpr *
1111X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1112                                             const MachineBasicBlock *MBB,
1113                                             unsigned uid,MCContext &Ctx) const{
1114  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1115         Subtarget->isPICStyleGOT());
1116  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1117  // entries.
1118  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1119                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1120}
1121
1122/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1123/// jumptable.
1124SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1125                                                    SelectionDAG &DAG) const {
1126  if (!Subtarget->is64Bit())
1127    // This doesn't have DebugLoc associated with it, but is not really the
1128    // same as a Register.
1129    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1130  return Table;
1131}
1132
1133/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1134/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1135/// MCExpr.
1136const MCExpr *X86TargetLowering::
1137getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1138                             MCContext &Ctx) const {
1139  // X86-64 uses RIP relative addressing based on the jump table label.
1140  if (Subtarget->isPICStyleRIPRel())
1141    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1142
1143  // Otherwise, the reference is relative to the PIC base.
1144  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1145}
1146
1147/// getFunctionAlignment - Return the Log2 alignment of this function.
1148unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1149  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1150}
1151
1152std::pair<const TargetRegisterClass*, uint8_t>
1153X86TargetLowering::findRepresentativeClass(EVT VT) const{
1154  const TargetRegisterClass *RRC = 0;
1155  uint8_t Cost = 1;
1156  switch (VT.getSimpleVT().SimpleTy) {
1157  default:
1158    return TargetLowering::findRepresentativeClass(VT);
1159  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1160    RRC = (Subtarget->is64Bit()
1161           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1162    break;
1163  case MVT::x86mmx:
1164    RRC = X86::VR64RegisterClass;
1165    break;
1166  case MVT::f32: case MVT::f64:
1167  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1168  case MVT::v4f32: case MVT::v2f64:
1169  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1170  case MVT::v4f64:
1171    RRC = X86::VR128RegisterClass;
1172    break;
1173  }
1174  return std::make_pair(RRC, Cost);
1175}
1176
1177unsigned
1178X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1179                                       MachineFunction &MF) const {
1180  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
1181
1182  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
1183  switch (RC->getID()) {
1184  default:
1185    return 0;
1186  case X86::GR32RegClassID:
1187    return 4 - FPDiff;
1188  case X86::GR64RegClassID:
1189    return 8 - FPDiff;
1190  case X86::VR128RegClassID:
1191    return Subtarget->is64Bit() ? 10 : 4;
1192  case X86::VR64RegClassID:
1193    return 4;
1194  }
1195}
1196
1197bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1198                                               unsigned &Offset) const {
1199  if (!Subtarget->isTargetLinux())
1200    return false;
1201
1202  if (Subtarget->is64Bit()) {
1203    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1204    Offset = 0x28;
1205    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1206      AddressSpace = 256;
1207    else
1208      AddressSpace = 257;
1209  } else {
1210    // %gs:0x14 on i386
1211    Offset = 0x14;
1212    AddressSpace = 256;
1213  }
1214  return true;
1215}
1216
1217
1218//===----------------------------------------------------------------------===//
1219//               Return Value Calling Convention Implementation
1220//===----------------------------------------------------------------------===//
1221
1222#include "X86GenCallingConv.inc"
1223
1224bool
1225X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1226                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1227                        LLVMContext &Context) const {
1228  SmallVector<CCValAssign, 16> RVLocs;
1229  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1230                 RVLocs, Context);
1231  return CCInfo.CheckReturn(Outs, RetCC_X86);
1232}
1233
1234SDValue
1235X86TargetLowering::LowerReturn(SDValue Chain,
1236                               CallingConv::ID CallConv, bool isVarArg,
1237                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1238                               const SmallVectorImpl<SDValue> &OutVals,
1239                               DebugLoc dl, SelectionDAG &DAG) const {
1240  MachineFunction &MF = DAG.getMachineFunction();
1241  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1242
1243  SmallVector<CCValAssign, 16> RVLocs;
1244  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1245                 RVLocs, *DAG.getContext());
1246  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1247
1248  // Add the regs to the liveout set for the function.
1249  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1250  for (unsigned i = 0; i != RVLocs.size(); ++i)
1251    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1252      MRI.addLiveOut(RVLocs[i].getLocReg());
1253
1254  SDValue Flag;
1255
1256  SmallVector<SDValue, 6> RetOps;
1257  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1258  // Operand #1 = Bytes To Pop
1259  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1260                   MVT::i16));
1261
1262  // Copy the result values into the output registers.
1263  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1264    CCValAssign &VA = RVLocs[i];
1265    assert(VA.isRegLoc() && "Can only return in registers!");
1266    SDValue ValToCopy = OutVals[i];
1267    EVT ValVT = ValToCopy.getValueType();
1268
1269    // If this is x86-64, and we disabled SSE, we can't return FP values,
1270    // or SSE or MMX vectors.
1271    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1272         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1273          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1274      report_fatal_error("SSE register return with SSE disabled");
1275    }
1276    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1277    // llvm-gcc has never done it right and no one has noticed, so this
1278    // should be OK for now.
1279    if (ValVT == MVT::f64 &&
1280        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1281      report_fatal_error("SSE2 register return with SSE2 disabled");
1282
1283    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1284    // the RET instruction and handled by the FP Stackifier.
1285    if (VA.getLocReg() == X86::ST0 ||
1286        VA.getLocReg() == X86::ST1) {
1287      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1288      // change the value to the FP stack register class.
1289      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1290        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1291      RetOps.push_back(ValToCopy);
1292      // Don't emit a copytoreg.
1293      continue;
1294    }
1295
1296    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1297    // which is returned in RAX / RDX.
1298    if (Subtarget->is64Bit()) {
1299      if (ValVT == MVT::x86mmx) {
1300        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1301          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1302          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1303                                  ValToCopy);
1304          // If we don't have SSE2 available, convert to v4f32 so the generated
1305          // register is legal.
1306          if (!Subtarget->hasSSE2())
1307            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1308        }
1309      }
1310    }
1311
1312    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1313    Flag = Chain.getValue(1);
1314  }
1315
1316  // The x86-64 ABI for returning structs by value requires that we copy
1317  // the sret argument into %rax for the return. We saved the argument into
1318  // a virtual register in the entry block, so now we copy the value out
1319  // and into %rax.
1320  if (Subtarget->is64Bit() &&
1321      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1322    MachineFunction &MF = DAG.getMachineFunction();
1323    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1324    unsigned Reg = FuncInfo->getSRetReturnReg();
1325    assert(Reg &&
1326           "SRetReturnReg should have been set in LowerFormalArguments().");
1327    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1328
1329    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1330    Flag = Chain.getValue(1);
1331
1332    // RAX now acts like a return value.
1333    MRI.addLiveOut(X86::RAX);
1334  }
1335
1336  RetOps[0] = Chain;  // Update chain.
1337
1338  // Add the flag if we have it.
1339  if (Flag.getNode())
1340    RetOps.push_back(Flag);
1341
1342  return DAG.getNode(X86ISD::RET_FLAG, dl,
1343                     MVT::Other, &RetOps[0], RetOps.size());
1344}
1345
1346bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1347  if (N->getNumValues() != 1)
1348    return false;
1349  if (!N->hasNUsesOfValue(1, 0))
1350    return false;
1351
1352  SDNode *Copy = *N->use_begin();
1353  if (Copy->getOpcode() != ISD::CopyToReg &&
1354      Copy->getOpcode() != ISD::FP_EXTEND)
1355    return false;
1356
1357  bool HasRet = false;
1358  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1359       UI != UE; ++UI) {
1360    if (UI->getOpcode() != X86ISD::RET_FLAG)
1361      return false;
1362    HasRet = true;
1363  }
1364
1365  return HasRet;
1366}
1367
1368/// LowerCallResult - Lower the result values of a call into the
1369/// appropriate copies out of appropriate physical registers.
1370///
1371SDValue
1372X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1373                                   CallingConv::ID CallConv, bool isVarArg,
1374                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1375                                   DebugLoc dl, SelectionDAG &DAG,
1376                                   SmallVectorImpl<SDValue> &InVals) const {
1377
1378  // Assign locations to each value returned by this call.
1379  SmallVector<CCValAssign, 16> RVLocs;
1380  bool Is64Bit = Subtarget->is64Bit();
1381  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1382                 RVLocs, *DAG.getContext());
1383  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1384
1385  // Copy all of the result registers out of their specified physreg.
1386  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1387    CCValAssign &VA = RVLocs[i];
1388    EVT CopyVT = VA.getValVT();
1389
1390    // If this is x86-64, and we disabled SSE, we can't return FP values
1391    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1392        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1393      report_fatal_error("SSE register return with SSE disabled");
1394    }
1395
1396    SDValue Val;
1397
1398    // If this is a call to a function that returns an fp value on the floating
1399    // point stack, we must guarantee the the value is popped from the stack, so
1400    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1401    // if the return value is not used. We use the FpGET_ST0 instructions
1402    // instead.
1403    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1404      // If we prefer to use the value in xmm registers, copy it out as f80 and
1405      // use a truncate to move it from fp stack reg to xmm reg.
1406      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1407      bool isST0 = VA.getLocReg() == X86::ST0;
1408      unsigned Opc = 0;
1409      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1410      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1411      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1412      SDValue Ops[] = { Chain, InFlag };
1413      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1414                                         Ops, 2), 1);
1415      Val = Chain.getValue(0);
1416
1417      // Round the f80 to the right size, which also moves it to the appropriate
1418      // xmm register.
1419      if (CopyVT != VA.getValVT())
1420        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1421                          // This truncation won't change the value.
1422                          DAG.getIntPtrConstant(1));
1423    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1424      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1425      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1426        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1427                                   MVT::v2i64, InFlag).getValue(1);
1428        Val = Chain.getValue(0);
1429        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1430                          Val, DAG.getConstant(0, MVT::i64));
1431      } else {
1432        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1433                                   MVT::i64, InFlag).getValue(1);
1434        Val = Chain.getValue(0);
1435      }
1436      Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1437    } else {
1438      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1439                                 CopyVT, InFlag).getValue(1);
1440      Val = Chain.getValue(0);
1441    }
1442    InFlag = Chain.getValue(2);
1443    InVals.push_back(Val);
1444  }
1445
1446  return Chain;
1447}
1448
1449
1450//===----------------------------------------------------------------------===//
1451//                C & StdCall & Fast Calling Convention implementation
1452//===----------------------------------------------------------------------===//
1453//  StdCall calling convention seems to be standard for many Windows' API
1454//  routines and around. It differs from C calling convention just a little:
1455//  callee should clean up the stack, not caller. Symbols should be also
1456//  decorated in some fancy way :) It doesn't support any vector arguments.
1457//  For info on fast calling convention see Fast Calling Convention (tail call)
1458//  implementation LowerX86_32FastCCCallTo.
1459
1460/// CallIsStructReturn - Determines whether a call uses struct return
1461/// semantics.
1462static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1463  if (Outs.empty())
1464    return false;
1465
1466  return Outs[0].Flags.isSRet();
1467}
1468
1469/// ArgsAreStructReturn - Determines whether a function uses struct
1470/// return semantics.
1471static bool
1472ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1473  if (Ins.empty())
1474    return false;
1475
1476  return Ins[0].Flags.isSRet();
1477}
1478
1479/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1480/// by "Src" to address "Dst" with size and alignment information specified by
1481/// the specific parameter attribute. The copy will be passed as a byval
1482/// function parameter.
1483static SDValue
1484CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1485                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1486                          DebugLoc dl) {
1487  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1488
1489  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1490                       /*isVolatile*/false, /*AlwaysInline=*/true,
1491                       MachinePointerInfo(), MachinePointerInfo());
1492}
1493
1494/// IsTailCallConvention - Return true if the calling convention is one that
1495/// supports tail call optimization.
1496static bool IsTailCallConvention(CallingConv::ID CC) {
1497  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1498}
1499
1500/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1501/// a tailcall target by changing its ABI.
1502static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1503  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1504}
1505
1506SDValue
1507X86TargetLowering::LowerMemArgument(SDValue Chain,
1508                                    CallingConv::ID CallConv,
1509                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1510                                    DebugLoc dl, SelectionDAG &DAG,
1511                                    const CCValAssign &VA,
1512                                    MachineFrameInfo *MFI,
1513                                    unsigned i) const {
1514  // Create the nodes corresponding to a load from this parameter slot.
1515  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1516  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1517  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1518  EVT ValVT;
1519
1520  // If value is passed by pointer we have address passed instead of the value
1521  // itself.
1522  if (VA.getLocInfo() == CCValAssign::Indirect)
1523    ValVT = VA.getLocVT();
1524  else
1525    ValVT = VA.getValVT();
1526
1527  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1528  // changed with more analysis.
1529  // In case of tail call optimization mark all arguments mutable. Since they
1530  // could be overwritten by lowering of arguments in case of a tail call.
1531  if (Flags.isByVal()) {
1532    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1533                                    VA.getLocMemOffset(), isImmutable);
1534    return DAG.getFrameIndex(FI, getPointerTy());
1535  } else {
1536    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1537                                    VA.getLocMemOffset(), isImmutable);
1538    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1539    return DAG.getLoad(ValVT, dl, Chain, FIN,
1540                       MachinePointerInfo::getFixedStack(FI),
1541                       false, false, 0);
1542  }
1543}
1544
1545SDValue
1546X86TargetLowering::LowerFormalArguments(SDValue Chain,
1547                                        CallingConv::ID CallConv,
1548                                        bool isVarArg,
1549                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1550                                        DebugLoc dl,
1551                                        SelectionDAG &DAG,
1552                                        SmallVectorImpl<SDValue> &InVals)
1553                                          const {
1554  MachineFunction &MF = DAG.getMachineFunction();
1555  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1556
1557  const Function* Fn = MF.getFunction();
1558  if (Fn->hasExternalLinkage() &&
1559      Subtarget->isTargetCygMing() &&
1560      Fn->getName() == "main")
1561    FuncInfo->setForceFramePointer(true);
1562
1563  MachineFrameInfo *MFI = MF.getFrameInfo();
1564  bool Is64Bit = Subtarget->is64Bit();
1565  bool IsWin64 = Subtarget->isTargetWin64();
1566
1567  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1568         "Var args not supported with calling convention fastcc or ghc");
1569
1570  // Assign locations to all of the incoming arguments.
1571  SmallVector<CCValAssign, 16> ArgLocs;
1572  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1573                 ArgLocs, *DAG.getContext());
1574  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1575
1576  unsigned LastVal = ~0U;
1577  SDValue ArgValue;
1578  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1579    CCValAssign &VA = ArgLocs[i];
1580    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1581    // places.
1582    assert(VA.getValNo() != LastVal &&
1583           "Don't support value assigned to multiple locs yet");
1584    LastVal = VA.getValNo();
1585
1586    if (VA.isRegLoc()) {
1587      EVT RegVT = VA.getLocVT();
1588      TargetRegisterClass *RC = NULL;
1589      if (RegVT == MVT::i32)
1590        RC = X86::GR32RegisterClass;
1591      else if (Is64Bit && RegVT == MVT::i64)
1592        RC = X86::GR64RegisterClass;
1593      else if (RegVT == MVT::f32)
1594        RC = X86::FR32RegisterClass;
1595      else if (RegVT == MVT::f64)
1596        RC = X86::FR64RegisterClass;
1597      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1598        RC = X86::VR256RegisterClass;
1599      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1600        RC = X86::VR128RegisterClass;
1601      else if (RegVT == MVT::x86mmx)
1602        RC = X86::VR64RegisterClass;
1603      else
1604        llvm_unreachable("Unknown argument type!");
1605
1606      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1607      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1608
1609      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1610      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1611      // right size.
1612      if (VA.getLocInfo() == CCValAssign::SExt)
1613        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1614                               DAG.getValueType(VA.getValVT()));
1615      else if (VA.getLocInfo() == CCValAssign::ZExt)
1616        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1617                               DAG.getValueType(VA.getValVT()));
1618      else if (VA.getLocInfo() == CCValAssign::BCvt)
1619        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1620
1621      if (VA.isExtInLoc()) {
1622        // Handle MMX values passed in XMM regs.
1623        if (RegVT.isVector()) {
1624          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1625                                 ArgValue);
1626        } else
1627          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1628      }
1629    } else {
1630      assert(VA.isMemLoc());
1631      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1632    }
1633
1634    // If value is passed via pointer - do a load.
1635    if (VA.getLocInfo() == CCValAssign::Indirect)
1636      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1637                             MachinePointerInfo(), false, false, 0);
1638
1639    InVals.push_back(ArgValue);
1640  }
1641
1642  // The x86-64 ABI for returning structs by value requires that we copy
1643  // the sret argument into %rax for the return. Save the argument into
1644  // a virtual register so that we can access it from the return points.
1645  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1646    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1647    unsigned Reg = FuncInfo->getSRetReturnReg();
1648    if (!Reg) {
1649      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1650      FuncInfo->setSRetReturnReg(Reg);
1651    }
1652    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1653    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1654  }
1655
1656  unsigned StackSize = CCInfo.getNextStackOffset();
1657  // Align stack specially for tail calls.
1658  if (FuncIsMadeTailCallSafe(CallConv))
1659    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1660
1661  // If the function takes variable number of arguments, make a frame index for
1662  // the start of the first vararg value... for expansion of llvm.va_start.
1663  if (isVarArg) {
1664    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1665                    CallConv != CallingConv::X86_ThisCall))) {
1666      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1667    }
1668    if (Is64Bit) {
1669      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1670
1671      // FIXME: We should really autogenerate these arrays
1672      static const unsigned GPR64ArgRegsWin64[] = {
1673        X86::RCX, X86::RDX, X86::R8,  X86::R9
1674      };
1675      static const unsigned GPR64ArgRegs64Bit[] = {
1676        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1677      };
1678      static const unsigned XMMArgRegs64Bit[] = {
1679        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1680        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1681      };
1682      const unsigned *GPR64ArgRegs;
1683      unsigned NumXMMRegs = 0;
1684
1685      if (IsWin64) {
1686        // The XMM registers which might contain var arg parameters are shadowed
1687        // in their paired GPR.  So we only need to save the GPR to their home
1688        // slots.
1689        TotalNumIntRegs = 4;
1690        GPR64ArgRegs = GPR64ArgRegsWin64;
1691      } else {
1692        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1693        GPR64ArgRegs = GPR64ArgRegs64Bit;
1694
1695        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1696      }
1697      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1698                                                       TotalNumIntRegs);
1699
1700      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1701      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1702             "SSE register cannot be used when SSE is disabled!");
1703      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1704             "SSE register cannot be used when SSE is disabled!");
1705      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1706        // Kernel mode asks for SSE to be disabled, so don't push them
1707        // on the stack.
1708        TotalNumXMMRegs = 0;
1709
1710      if (IsWin64) {
1711        const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
1712        // Get to the caller-allocated home save location.  Add 8 to account
1713        // for the return address.
1714        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1715        FuncInfo->setRegSaveFrameIndex(
1716          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1717        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1718      } else {
1719        // For X86-64, if there are vararg parameters that are passed via
1720        // registers, then we must store them to their spots on the stack so they
1721        // may be loaded by deferencing the result of va_next.
1722        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1723        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1724        FuncInfo->setRegSaveFrameIndex(
1725          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1726                               false));
1727      }
1728
1729      // Store the integer parameter registers.
1730      SmallVector<SDValue, 8> MemOps;
1731      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1732                                        getPointerTy());
1733      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1734      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1735        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1736                                  DAG.getIntPtrConstant(Offset));
1737        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1738                                     X86::GR64RegisterClass);
1739        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1740        SDValue Store =
1741          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1742                       MachinePointerInfo::getFixedStack(
1743                         FuncInfo->getRegSaveFrameIndex(), Offset),
1744                       false, false, 0);
1745        MemOps.push_back(Store);
1746        Offset += 8;
1747      }
1748
1749      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1750        // Now store the XMM (fp + vector) parameter registers.
1751        SmallVector<SDValue, 11> SaveXMMOps;
1752        SaveXMMOps.push_back(Chain);
1753
1754        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1755        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1756        SaveXMMOps.push_back(ALVal);
1757
1758        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1759                               FuncInfo->getRegSaveFrameIndex()));
1760        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1761                               FuncInfo->getVarArgsFPOffset()));
1762
1763        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1764          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1765                                       X86::VR128RegisterClass);
1766          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1767          SaveXMMOps.push_back(Val);
1768        }
1769        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1770                                     MVT::Other,
1771                                     &SaveXMMOps[0], SaveXMMOps.size()));
1772      }
1773
1774      if (!MemOps.empty())
1775        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1776                            &MemOps[0], MemOps.size());
1777    }
1778  }
1779
1780  // Some CCs need callee pop.
1781  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1782    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1783  } else {
1784    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1785    // If this is an sret function, the return should pop the hidden pointer.
1786    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1787      FuncInfo->setBytesToPopOnReturn(4);
1788  }
1789
1790  if (!Is64Bit) {
1791    // RegSaveFrameIndex is X86-64 only.
1792    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1793    if (CallConv == CallingConv::X86_FastCall ||
1794        CallConv == CallingConv::X86_ThisCall)
1795      // fastcc functions can't have varargs.
1796      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1797  }
1798
1799  return Chain;
1800}
1801
1802SDValue
1803X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1804                                    SDValue StackPtr, SDValue Arg,
1805                                    DebugLoc dl, SelectionDAG &DAG,
1806                                    const CCValAssign &VA,
1807                                    ISD::ArgFlagsTy Flags) const {
1808  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1809  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1810  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1811  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1812  if (Flags.isByVal())
1813    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1814
1815  return DAG.getStore(Chain, dl, Arg, PtrOff,
1816                      MachinePointerInfo::getStack(LocMemOffset),
1817                      false, false, 0);
1818}
1819
1820/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1821/// optimization is performed and it is required.
1822SDValue
1823X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1824                                           SDValue &OutRetAddr, SDValue Chain,
1825                                           bool IsTailCall, bool Is64Bit,
1826                                           int FPDiff, DebugLoc dl) const {
1827  // Adjust the Return address stack slot.
1828  EVT VT = getPointerTy();
1829  OutRetAddr = getReturnAddressFrameIndex(DAG);
1830
1831  // Load the "old" Return address.
1832  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1833                           false, false, 0);
1834  return SDValue(OutRetAddr.getNode(), 1);
1835}
1836
1837/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1838/// optimization is performed and it is required (FPDiff!=0).
1839static SDValue
1840EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1841                         SDValue Chain, SDValue RetAddrFrIdx,
1842                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1843  // Store the return address to the appropriate stack slot.
1844  if (!FPDiff) return Chain;
1845  // Calculate the new stack slot for the return address.
1846  int SlotSize = Is64Bit ? 8 : 4;
1847  int NewReturnAddrFI =
1848    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1849  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1850  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1851  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1852                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1853                       false, false, 0);
1854  return Chain;
1855}
1856
1857SDValue
1858X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1859                             CallingConv::ID CallConv, bool isVarArg,
1860                             bool &isTailCall,
1861                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1862                             const SmallVectorImpl<SDValue> &OutVals,
1863                             const SmallVectorImpl<ISD::InputArg> &Ins,
1864                             DebugLoc dl, SelectionDAG &DAG,
1865                             SmallVectorImpl<SDValue> &InVals) const {
1866  MachineFunction &MF = DAG.getMachineFunction();
1867  bool Is64Bit        = Subtarget->is64Bit();
1868  bool IsStructRet    = CallIsStructReturn(Outs);
1869  bool IsSibcall      = false;
1870
1871  if (isTailCall) {
1872    // Check if it's really possible to do a tail call.
1873    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1874                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1875                                                   Outs, OutVals, Ins, DAG);
1876
1877    // Sibcalls are automatically detected tailcalls which do not require
1878    // ABI changes.
1879    if (!GuaranteedTailCallOpt && isTailCall)
1880      IsSibcall = true;
1881
1882    if (isTailCall)
1883      ++NumTailCalls;
1884  }
1885
1886  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1887         "Var args not supported with calling convention fastcc or ghc");
1888
1889  // Analyze operands of the call, assigning locations to each operand.
1890  SmallVector<CCValAssign, 16> ArgLocs;
1891  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1892                 ArgLocs, *DAG.getContext());
1893  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1894
1895  // Get a count of how many bytes are to be pushed on the stack.
1896  unsigned NumBytes = CCInfo.getNextStackOffset();
1897  if (IsSibcall)
1898    // This is a sibcall. The memory operands are available in caller's
1899    // own caller's stack.
1900    NumBytes = 0;
1901  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1902    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1903
1904  int FPDiff = 0;
1905  if (isTailCall && !IsSibcall) {
1906    // Lower arguments at fp - stackoffset + fpdiff.
1907    unsigned NumBytesCallerPushed =
1908      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1909    FPDiff = NumBytesCallerPushed - NumBytes;
1910
1911    // Set the delta of movement of the returnaddr stackslot.
1912    // But only set if delta is greater than previous delta.
1913    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1914      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1915  }
1916
1917  if (!IsSibcall)
1918    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1919
1920  SDValue RetAddrFrIdx;
1921  // Load return adress for tail calls.
1922  if (isTailCall && FPDiff)
1923    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1924                                    Is64Bit, FPDiff, dl);
1925
1926  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1927  SmallVector<SDValue, 8> MemOpChains;
1928  SDValue StackPtr;
1929
1930  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1931  // of tail call optimization arguments are handle later.
1932  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1933    CCValAssign &VA = ArgLocs[i];
1934    EVT RegVT = VA.getLocVT();
1935    SDValue Arg = OutVals[i];
1936    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1937    bool isByVal = Flags.isByVal();
1938
1939    // Promote the value if needed.
1940    switch (VA.getLocInfo()) {
1941    default: llvm_unreachable("Unknown loc info!");
1942    case CCValAssign::Full: break;
1943    case CCValAssign::SExt:
1944      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1945      break;
1946    case CCValAssign::ZExt:
1947      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1948      break;
1949    case CCValAssign::AExt:
1950      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1951        // Special case: passing MMX values in XMM registers.
1952        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
1953        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1954        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1955      } else
1956        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1957      break;
1958    case CCValAssign::BCvt:
1959      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
1960      break;
1961    case CCValAssign::Indirect: {
1962      // Store the argument.
1963      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1964      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1965      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1966                           MachinePointerInfo::getFixedStack(FI),
1967                           false, false, 0);
1968      Arg = SpillSlot;
1969      break;
1970    }
1971    }
1972
1973    if (VA.isRegLoc()) {
1974      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1975      if (isVarArg && Subtarget->isTargetWin64()) {
1976        // Win64 ABI requires argument XMM reg to be copied to the corresponding
1977        // shadow reg if callee is a varargs function.
1978        unsigned ShadowReg = 0;
1979        switch (VA.getLocReg()) {
1980        case X86::XMM0: ShadowReg = X86::RCX; break;
1981        case X86::XMM1: ShadowReg = X86::RDX; break;
1982        case X86::XMM2: ShadowReg = X86::R8; break;
1983        case X86::XMM3: ShadowReg = X86::R9; break;
1984        }
1985        if (ShadowReg)
1986          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1987      }
1988    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1989      assert(VA.isMemLoc());
1990      if (StackPtr.getNode() == 0)
1991        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1992      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1993                                             dl, DAG, VA, Flags));
1994    }
1995  }
1996
1997  if (!MemOpChains.empty())
1998    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1999                        &MemOpChains[0], MemOpChains.size());
2000
2001  // Build a sequence of copy-to-reg nodes chained together with token chain
2002  // and flag operands which copy the outgoing args into registers.
2003  SDValue InFlag;
2004  // Tail call byval lowering might overwrite argument registers so in case of
2005  // tail call optimization the copies to registers are lowered later.
2006  if (!isTailCall)
2007    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2008      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2009                               RegsToPass[i].second, InFlag);
2010      InFlag = Chain.getValue(1);
2011    }
2012
2013  if (Subtarget->isPICStyleGOT()) {
2014    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2015    // GOT pointer.
2016    if (!isTailCall) {
2017      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2018                               DAG.getNode(X86ISD::GlobalBaseReg,
2019                                           DebugLoc(), getPointerTy()),
2020                               InFlag);
2021      InFlag = Chain.getValue(1);
2022    } else {
2023      // If we are tail calling and generating PIC/GOT style code load the
2024      // address of the callee into ECX. The value in ecx is used as target of
2025      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2026      // for tail calls on PIC/GOT architectures. Normally we would just put the
2027      // address of GOT into ebx and then call target@PLT. But for tail calls
2028      // ebx would be restored (since ebx is callee saved) before jumping to the
2029      // target@PLT.
2030
2031      // Note: The actual moving to ECX is done further down.
2032      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2033      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2034          !G->getGlobal()->hasProtectedVisibility())
2035        Callee = LowerGlobalAddress(Callee, DAG);
2036      else if (isa<ExternalSymbolSDNode>(Callee))
2037        Callee = LowerExternalSymbol(Callee, DAG);
2038    }
2039  }
2040
2041  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2042    // From AMD64 ABI document:
2043    // For calls that may call functions that use varargs or stdargs
2044    // (prototype-less calls or calls to functions containing ellipsis (...) in
2045    // the declaration) %al is used as hidden argument to specify the number
2046    // of SSE registers used. The contents of %al do not need to match exactly
2047    // the number of registers, but must be an ubound on the number of SSE
2048    // registers used and is in the range 0 - 8 inclusive.
2049
2050    // Count the number of XMM registers allocated.
2051    static const unsigned XMMArgRegs[] = {
2052      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2053      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2054    };
2055    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2056    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2057           && "SSE registers cannot be used when SSE is disabled");
2058
2059    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2060                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2061    InFlag = Chain.getValue(1);
2062  }
2063
2064
2065  // For tail calls lower the arguments to the 'real' stack slot.
2066  if (isTailCall) {
2067    // Force all the incoming stack arguments to be loaded from the stack
2068    // before any new outgoing arguments are stored to the stack, because the
2069    // outgoing stack slots may alias the incoming argument stack slots, and
2070    // the alias isn't otherwise explicit. This is slightly more conservative
2071    // than necessary, because it means that each store effectively depends
2072    // on every argument instead of just those arguments it would clobber.
2073    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2074
2075    SmallVector<SDValue, 8> MemOpChains2;
2076    SDValue FIN;
2077    int FI = 0;
2078    // Do not flag preceeding copytoreg stuff together with the following stuff.
2079    InFlag = SDValue();
2080    if (GuaranteedTailCallOpt) {
2081      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2082        CCValAssign &VA = ArgLocs[i];
2083        if (VA.isRegLoc())
2084          continue;
2085        assert(VA.isMemLoc());
2086        SDValue Arg = OutVals[i];
2087        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2088        // Create frame index.
2089        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2090        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2091        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2092        FIN = DAG.getFrameIndex(FI, getPointerTy());
2093
2094        if (Flags.isByVal()) {
2095          // Copy relative to framepointer.
2096          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2097          if (StackPtr.getNode() == 0)
2098            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2099                                          getPointerTy());
2100          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2101
2102          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2103                                                           ArgChain,
2104                                                           Flags, DAG, dl));
2105        } else {
2106          // Store relative to framepointer.
2107          MemOpChains2.push_back(
2108            DAG.getStore(ArgChain, dl, Arg, FIN,
2109                         MachinePointerInfo::getFixedStack(FI),
2110                         false, false, 0));
2111        }
2112      }
2113    }
2114
2115    if (!MemOpChains2.empty())
2116      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2117                          &MemOpChains2[0], MemOpChains2.size());
2118
2119    // Copy arguments to their registers.
2120    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2121      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2122                               RegsToPass[i].second, InFlag);
2123      InFlag = Chain.getValue(1);
2124    }
2125    InFlag =SDValue();
2126
2127    // Store the return address to the appropriate stack slot.
2128    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2129                                     FPDiff, dl);
2130  }
2131
2132  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2133    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2134    // In the 64-bit large code model, we have to make all calls
2135    // through a register, since the call instruction's 32-bit
2136    // pc-relative offset may not be large enough to hold the whole
2137    // address.
2138  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2139    // If the callee is a GlobalAddress node (quite common, every direct call
2140    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2141    // it.
2142
2143    // We should use extra load for direct calls to dllimported functions in
2144    // non-JIT mode.
2145    const GlobalValue *GV = G->getGlobal();
2146    if (!GV->hasDLLImportLinkage()) {
2147      unsigned char OpFlags = 0;
2148
2149      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2150      // external symbols most go through the PLT in PIC mode.  If the symbol
2151      // has hidden or protected visibility, or if it is static or local, then
2152      // we don't need to use the PLT - we can directly call it.
2153      if (Subtarget->isTargetELF() &&
2154          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2155          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2156        OpFlags = X86II::MO_PLT;
2157      } else if (Subtarget->isPICStyleStubAny() &&
2158                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2159                 Subtarget->getDarwinVers() < 9) {
2160        // PC-relative references to external symbols should go through $stub,
2161        // unless we're building with the leopard linker or later, which
2162        // automatically synthesizes these stubs.
2163        OpFlags = X86II::MO_DARWIN_STUB;
2164      }
2165
2166      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2167                                          G->getOffset(), OpFlags);
2168    }
2169  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2170    unsigned char OpFlags = 0;
2171
2172    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2173    // external symbols should go through the PLT.
2174    if (Subtarget->isTargetELF() &&
2175        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2176      OpFlags = X86II::MO_PLT;
2177    } else if (Subtarget->isPICStyleStubAny() &&
2178               Subtarget->getDarwinVers() < 9) {
2179      // PC-relative references to external symbols should go through $stub,
2180      // unless we're building with the leopard linker or later, which
2181      // automatically synthesizes these stubs.
2182      OpFlags = X86II::MO_DARWIN_STUB;
2183    }
2184
2185    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2186                                         OpFlags);
2187  }
2188
2189  // Returns a chain & a flag for retval copy to use.
2190  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2191  SmallVector<SDValue, 8> Ops;
2192
2193  if (!IsSibcall && isTailCall) {
2194    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2195                           DAG.getIntPtrConstant(0, true), InFlag);
2196    InFlag = Chain.getValue(1);
2197  }
2198
2199  Ops.push_back(Chain);
2200  Ops.push_back(Callee);
2201
2202  if (isTailCall)
2203    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2204
2205  // Add argument registers to the end of the list so that they are known live
2206  // into the call.
2207  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2208    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2209                                  RegsToPass[i].second.getValueType()));
2210
2211  // Add an implicit use GOT pointer in EBX.
2212  if (!isTailCall && Subtarget->isPICStyleGOT())
2213    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2214
2215  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2216  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2217    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2218
2219  if (InFlag.getNode())
2220    Ops.push_back(InFlag);
2221
2222  if (isTailCall) {
2223    // We used to do:
2224    //// If this is the first return lowered for this function, add the regs
2225    //// to the liveout set for the function.
2226    // This isn't right, although it's probably harmless on x86; liveouts
2227    // should be computed from returns not tail calls.  Consider a void
2228    // function making a tail call to a function returning int.
2229    return DAG.getNode(X86ISD::TC_RETURN, dl,
2230                       NodeTys, &Ops[0], Ops.size());
2231  }
2232
2233  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2234  InFlag = Chain.getValue(1);
2235
2236  // Create the CALLSEQ_END node.
2237  unsigned NumBytesForCalleeToPush;
2238  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2239    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2240  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2241    // If this is a call to a struct-return function, the callee
2242    // pops the hidden struct pointer, so we have to push it back.
2243    // This is common for Darwin/X86, Linux & Mingw32 targets.
2244    NumBytesForCalleeToPush = 4;
2245  else
2246    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2247
2248  // Returns a flag for retval copy to use.
2249  if (!IsSibcall) {
2250    Chain = DAG.getCALLSEQ_END(Chain,
2251                               DAG.getIntPtrConstant(NumBytes, true),
2252                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2253                                                     true),
2254                               InFlag);
2255    InFlag = Chain.getValue(1);
2256  }
2257
2258  // Handle result values, copying them out of physregs into vregs that we
2259  // return.
2260  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2261                         Ins, dl, DAG, InVals);
2262}
2263
2264
2265//===----------------------------------------------------------------------===//
2266//                Fast Calling Convention (tail call) implementation
2267//===----------------------------------------------------------------------===//
2268
2269//  Like std call, callee cleans arguments, convention except that ECX is
2270//  reserved for storing the tail called function address. Only 2 registers are
2271//  free for argument passing (inreg). Tail call optimization is performed
2272//  provided:
2273//                * tailcallopt is enabled
2274//                * caller/callee are fastcc
2275//  On X86_64 architecture with GOT-style position independent code only local
2276//  (within module) calls are supported at the moment.
2277//  To keep the stack aligned according to platform abi the function
2278//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2279//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2280//  If a tail called function callee has more arguments than the caller the
2281//  caller needs to make sure that there is room to move the RETADDR to. This is
2282//  achieved by reserving an area the size of the argument delta right after the
2283//  original REtADDR, but before the saved framepointer or the spilled registers
2284//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2285//  stack layout:
2286//    arg1
2287//    arg2
2288//    RETADDR
2289//    [ new RETADDR
2290//      move area ]
2291//    (possible EBP)
2292//    ESI
2293//    EDI
2294//    local1 ..
2295
2296/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2297/// for a 16 byte align requirement.
2298unsigned
2299X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2300                                               SelectionDAG& DAG) const {
2301  MachineFunction &MF = DAG.getMachineFunction();
2302  const TargetMachine &TM = MF.getTarget();
2303  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2304  unsigned StackAlignment = TFI.getStackAlignment();
2305  uint64_t AlignMask = StackAlignment - 1;
2306  int64_t Offset = StackSize;
2307  uint64_t SlotSize = TD->getPointerSize();
2308  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2309    // Number smaller than 12 so just add the difference.
2310    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2311  } else {
2312    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2313    Offset = ((~AlignMask) & Offset) + StackAlignment +
2314      (StackAlignment-SlotSize);
2315  }
2316  return Offset;
2317}
2318
2319/// MatchingStackOffset - Return true if the given stack call argument is
2320/// already available in the same position (relatively) of the caller's
2321/// incoming argument stack.
2322static
2323bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2324                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2325                         const X86InstrInfo *TII) {
2326  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2327  int FI = INT_MAX;
2328  if (Arg.getOpcode() == ISD::CopyFromReg) {
2329    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2330    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2331      return false;
2332    MachineInstr *Def = MRI->getVRegDef(VR);
2333    if (!Def)
2334      return false;
2335    if (!Flags.isByVal()) {
2336      if (!TII->isLoadFromStackSlot(Def, FI))
2337        return false;
2338    } else {
2339      unsigned Opcode = Def->getOpcode();
2340      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2341          Def->getOperand(1).isFI()) {
2342        FI = Def->getOperand(1).getIndex();
2343        Bytes = Flags.getByValSize();
2344      } else
2345        return false;
2346    }
2347  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2348    if (Flags.isByVal())
2349      // ByVal argument is passed in as a pointer but it's now being
2350      // dereferenced. e.g.
2351      // define @foo(%struct.X* %A) {
2352      //   tail call @bar(%struct.X* byval %A)
2353      // }
2354      return false;
2355    SDValue Ptr = Ld->getBasePtr();
2356    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2357    if (!FINode)
2358      return false;
2359    FI = FINode->getIndex();
2360  } else
2361    return false;
2362
2363  assert(FI != INT_MAX);
2364  if (!MFI->isFixedObjectIndex(FI))
2365    return false;
2366  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2367}
2368
2369/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2370/// for tail call optimization. Targets which want to do tail call
2371/// optimization should implement this function.
2372bool
2373X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2374                                                     CallingConv::ID CalleeCC,
2375                                                     bool isVarArg,
2376                                                     bool isCalleeStructRet,
2377                                                     bool isCallerStructRet,
2378                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2379                                    const SmallVectorImpl<SDValue> &OutVals,
2380                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2381                                                     SelectionDAG& DAG) const {
2382  if (!IsTailCallConvention(CalleeCC) &&
2383      CalleeCC != CallingConv::C)
2384    return false;
2385
2386  // If -tailcallopt is specified, make fastcc functions tail-callable.
2387  const MachineFunction &MF = DAG.getMachineFunction();
2388  const Function *CallerF = DAG.getMachineFunction().getFunction();
2389  CallingConv::ID CallerCC = CallerF->getCallingConv();
2390  bool CCMatch = CallerCC == CalleeCC;
2391
2392  if (GuaranteedTailCallOpt) {
2393    if (IsTailCallConvention(CalleeCC) && CCMatch)
2394      return true;
2395    return false;
2396  }
2397
2398  // Look for obvious safe cases to perform tail call optimization that do not
2399  // require ABI changes. This is what gcc calls sibcall.
2400
2401  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2402  // emit a special epilogue.
2403  if (RegInfo->needsStackRealignment(MF))
2404    return false;
2405
2406  // Do not sibcall optimize vararg calls unless the call site is not passing
2407  // any arguments.
2408  if (isVarArg && !Outs.empty())
2409    return false;
2410
2411  // Also avoid sibcall optimization if either caller or callee uses struct
2412  // return semantics.
2413  if (isCalleeStructRet || isCallerStructRet)
2414    return false;
2415
2416  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2417  // Therefore if it's not used by the call it is not safe to optimize this into
2418  // a sibcall.
2419  bool Unused = false;
2420  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2421    if (!Ins[i].Used) {
2422      Unused = true;
2423      break;
2424    }
2425  }
2426  if (Unused) {
2427    SmallVector<CCValAssign, 16> RVLocs;
2428    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2429                   RVLocs, *DAG.getContext());
2430    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2431    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2432      CCValAssign &VA = RVLocs[i];
2433      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2434        return false;
2435    }
2436  }
2437
2438  // If the calling conventions do not match, then we'd better make sure the
2439  // results are returned in the same way as what the caller expects.
2440  if (!CCMatch) {
2441    SmallVector<CCValAssign, 16> RVLocs1;
2442    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2443                    RVLocs1, *DAG.getContext());
2444    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2445
2446    SmallVector<CCValAssign, 16> RVLocs2;
2447    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2448                    RVLocs2, *DAG.getContext());
2449    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2450
2451    if (RVLocs1.size() != RVLocs2.size())
2452      return false;
2453    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2454      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2455        return false;
2456      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2457        return false;
2458      if (RVLocs1[i].isRegLoc()) {
2459        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2460          return false;
2461      } else {
2462        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2463          return false;
2464      }
2465    }
2466  }
2467
2468  // If the callee takes no arguments then go on to check the results of the
2469  // call.
2470  if (!Outs.empty()) {
2471    // Check if stack adjustment is needed. For now, do not do this if any
2472    // argument is passed on the stack.
2473    SmallVector<CCValAssign, 16> ArgLocs;
2474    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2475                   ArgLocs, *DAG.getContext());
2476    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2477    if (CCInfo.getNextStackOffset()) {
2478      MachineFunction &MF = DAG.getMachineFunction();
2479      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2480        return false;
2481      if (Subtarget->isTargetWin64())
2482        // Win64 ABI has additional complications.
2483        return false;
2484
2485      // Check if the arguments are already laid out in the right way as
2486      // the caller's fixed stack objects.
2487      MachineFrameInfo *MFI = MF.getFrameInfo();
2488      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2489      const X86InstrInfo *TII =
2490        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2491      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2492        CCValAssign &VA = ArgLocs[i];
2493        SDValue Arg = OutVals[i];
2494        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2495        if (VA.getLocInfo() == CCValAssign::Indirect)
2496          return false;
2497        if (!VA.isRegLoc()) {
2498          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2499                                   MFI, MRI, TII))
2500            return false;
2501        }
2502      }
2503    }
2504
2505    // If the tailcall address may be in a register, then make sure it's
2506    // possible to register allocate for it. In 32-bit, the call address can
2507    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2508    // callee-saved registers are restored. These happen to be the same
2509    // registers used to pass 'inreg' arguments so watch out for those.
2510    if (!Subtarget->is64Bit() &&
2511        !isa<GlobalAddressSDNode>(Callee) &&
2512        !isa<ExternalSymbolSDNode>(Callee)) {
2513      unsigned NumInRegs = 0;
2514      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2515        CCValAssign &VA = ArgLocs[i];
2516        if (!VA.isRegLoc())
2517          continue;
2518        unsigned Reg = VA.getLocReg();
2519        switch (Reg) {
2520        default: break;
2521        case X86::EAX: case X86::EDX: case X86::ECX:
2522          if (++NumInRegs == 3)
2523            return false;
2524          break;
2525        }
2526      }
2527    }
2528  }
2529
2530  // An stdcall caller is expected to clean up its arguments; the callee
2531  // isn't going to do that.
2532  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2533    return false;
2534
2535  return true;
2536}
2537
2538FastISel *
2539X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2540  return X86::createFastISel(funcInfo);
2541}
2542
2543
2544//===----------------------------------------------------------------------===//
2545//                           Other Lowering Hooks
2546//===----------------------------------------------------------------------===//
2547
2548static bool MayFoldLoad(SDValue Op) {
2549  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2550}
2551
2552static bool MayFoldIntoStore(SDValue Op) {
2553  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2554}
2555
2556static bool isTargetShuffle(unsigned Opcode) {
2557  switch(Opcode) {
2558  default: return false;
2559  case X86ISD::PSHUFD:
2560  case X86ISD::PSHUFHW:
2561  case X86ISD::PSHUFLW:
2562  case X86ISD::SHUFPD:
2563  case X86ISD::PALIGN:
2564  case X86ISD::SHUFPS:
2565  case X86ISD::MOVLHPS:
2566  case X86ISD::MOVLHPD:
2567  case X86ISD::MOVHLPS:
2568  case X86ISD::MOVLPS:
2569  case X86ISD::MOVLPD:
2570  case X86ISD::MOVSHDUP:
2571  case X86ISD::MOVSLDUP:
2572  case X86ISD::MOVDDUP:
2573  case X86ISD::MOVSS:
2574  case X86ISD::MOVSD:
2575  case X86ISD::UNPCKLPS:
2576  case X86ISD::UNPCKLPD:
2577  case X86ISD::PUNPCKLWD:
2578  case X86ISD::PUNPCKLBW:
2579  case X86ISD::PUNPCKLDQ:
2580  case X86ISD::PUNPCKLQDQ:
2581  case X86ISD::UNPCKHPS:
2582  case X86ISD::UNPCKHPD:
2583  case X86ISD::PUNPCKHWD:
2584  case X86ISD::PUNPCKHBW:
2585  case X86ISD::PUNPCKHDQ:
2586  case X86ISD::PUNPCKHQDQ:
2587    return true;
2588  }
2589  return false;
2590}
2591
2592static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2593                                               SDValue V1, SelectionDAG &DAG) {
2594  switch(Opc) {
2595  default: llvm_unreachable("Unknown x86 shuffle node");
2596  case X86ISD::MOVSHDUP:
2597  case X86ISD::MOVSLDUP:
2598  case X86ISD::MOVDDUP:
2599    return DAG.getNode(Opc, dl, VT, V1);
2600  }
2601
2602  return SDValue();
2603}
2604
2605static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2606                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2607  switch(Opc) {
2608  default: llvm_unreachable("Unknown x86 shuffle node");
2609  case X86ISD::PSHUFD:
2610  case X86ISD::PSHUFHW:
2611  case X86ISD::PSHUFLW:
2612    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2613  }
2614
2615  return SDValue();
2616}
2617
2618static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2619               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2620  switch(Opc) {
2621  default: llvm_unreachable("Unknown x86 shuffle node");
2622  case X86ISD::PALIGN:
2623  case X86ISD::SHUFPD:
2624  case X86ISD::SHUFPS:
2625    return DAG.getNode(Opc, dl, VT, V1, V2,
2626                       DAG.getConstant(TargetMask, MVT::i8));
2627  }
2628  return SDValue();
2629}
2630
2631static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2632                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2633  switch(Opc) {
2634  default: llvm_unreachable("Unknown x86 shuffle node");
2635  case X86ISD::MOVLHPS:
2636  case X86ISD::MOVLHPD:
2637  case X86ISD::MOVHLPS:
2638  case X86ISD::MOVLPS:
2639  case X86ISD::MOVLPD:
2640  case X86ISD::MOVSS:
2641  case X86ISD::MOVSD:
2642  case X86ISD::UNPCKLPS:
2643  case X86ISD::UNPCKLPD:
2644  case X86ISD::PUNPCKLWD:
2645  case X86ISD::PUNPCKLBW:
2646  case X86ISD::PUNPCKLDQ:
2647  case X86ISD::PUNPCKLQDQ:
2648  case X86ISD::UNPCKHPS:
2649  case X86ISD::UNPCKHPD:
2650  case X86ISD::PUNPCKHWD:
2651  case X86ISD::PUNPCKHBW:
2652  case X86ISD::PUNPCKHDQ:
2653  case X86ISD::PUNPCKHQDQ:
2654    return DAG.getNode(Opc, dl, VT, V1, V2);
2655  }
2656  return SDValue();
2657}
2658
2659SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2660  MachineFunction &MF = DAG.getMachineFunction();
2661  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2662  int ReturnAddrIndex = FuncInfo->getRAIndex();
2663
2664  if (ReturnAddrIndex == 0) {
2665    // Set up a frame object for the return address.
2666    uint64_t SlotSize = TD->getPointerSize();
2667    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2668                                                           false);
2669    FuncInfo->setRAIndex(ReturnAddrIndex);
2670  }
2671
2672  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2673}
2674
2675
2676bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2677                                       bool hasSymbolicDisplacement) {
2678  // Offset should fit into 32 bit immediate field.
2679  if (!isInt<32>(Offset))
2680    return false;
2681
2682  // If we don't have a symbolic displacement - we don't have any extra
2683  // restrictions.
2684  if (!hasSymbolicDisplacement)
2685    return true;
2686
2687  // FIXME: Some tweaks might be needed for medium code model.
2688  if (M != CodeModel::Small && M != CodeModel::Kernel)
2689    return false;
2690
2691  // For small code model we assume that latest object is 16MB before end of 31
2692  // bits boundary. We may also accept pretty large negative constants knowing
2693  // that all objects are in the positive half of address space.
2694  if (M == CodeModel::Small && Offset < 16*1024*1024)
2695    return true;
2696
2697  // For kernel code model we know that all object resist in the negative half
2698  // of 32bits address space. We may not accept negative offsets, since they may
2699  // be just off and we may accept pretty large positive ones.
2700  if (M == CodeModel::Kernel && Offset > 0)
2701    return true;
2702
2703  return false;
2704}
2705
2706/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2707/// specific condition code, returning the condition code and the LHS/RHS of the
2708/// comparison to make.
2709static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2710                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2711  if (!isFP) {
2712    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2713      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2714        // X > -1   -> X == 0, jump !sign.
2715        RHS = DAG.getConstant(0, RHS.getValueType());
2716        return X86::COND_NS;
2717      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2718        // X < 0   -> X == 0, jump on sign.
2719        return X86::COND_S;
2720      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2721        // X < 1   -> X <= 0
2722        RHS = DAG.getConstant(0, RHS.getValueType());
2723        return X86::COND_LE;
2724      }
2725    }
2726
2727    switch (SetCCOpcode) {
2728    default: llvm_unreachable("Invalid integer condition!");
2729    case ISD::SETEQ:  return X86::COND_E;
2730    case ISD::SETGT:  return X86::COND_G;
2731    case ISD::SETGE:  return X86::COND_GE;
2732    case ISD::SETLT:  return X86::COND_L;
2733    case ISD::SETLE:  return X86::COND_LE;
2734    case ISD::SETNE:  return X86::COND_NE;
2735    case ISD::SETULT: return X86::COND_B;
2736    case ISD::SETUGT: return X86::COND_A;
2737    case ISD::SETULE: return X86::COND_BE;
2738    case ISD::SETUGE: return X86::COND_AE;
2739    }
2740  }
2741
2742  // First determine if it is required or is profitable to flip the operands.
2743
2744  // If LHS is a foldable load, but RHS is not, flip the condition.
2745  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2746      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2747    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2748    std::swap(LHS, RHS);
2749  }
2750
2751  switch (SetCCOpcode) {
2752  default: break;
2753  case ISD::SETOLT:
2754  case ISD::SETOLE:
2755  case ISD::SETUGT:
2756  case ISD::SETUGE:
2757    std::swap(LHS, RHS);
2758    break;
2759  }
2760
2761  // On a floating point condition, the flags are set as follows:
2762  // ZF  PF  CF   op
2763  //  0 | 0 | 0 | X > Y
2764  //  0 | 0 | 1 | X < Y
2765  //  1 | 0 | 0 | X == Y
2766  //  1 | 1 | 1 | unordered
2767  switch (SetCCOpcode) {
2768  default: llvm_unreachable("Condcode should be pre-legalized away");
2769  case ISD::SETUEQ:
2770  case ISD::SETEQ:   return X86::COND_E;
2771  case ISD::SETOLT:              // flipped
2772  case ISD::SETOGT:
2773  case ISD::SETGT:   return X86::COND_A;
2774  case ISD::SETOLE:              // flipped
2775  case ISD::SETOGE:
2776  case ISD::SETGE:   return X86::COND_AE;
2777  case ISD::SETUGT:              // flipped
2778  case ISD::SETULT:
2779  case ISD::SETLT:   return X86::COND_B;
2780  case ISD::SETUGE:              // flipped
2781  case ISD::SETULE:
2782  case ISD::SETLE:   return X86::COND_BE;
2783  case ISD::SETONE:
2784  case ISD::SETNE:   return X86::COND_NE;
2785  case ISD::SETUO:   return X86::COND_P;
2786  case ISD::SETO:    return X86::COND_NP;
2787  case ISD::SETOEQ:
2788  case ISD::SETUNE:  return X86::COND_INVALID;
2789  }
2790}
2791
2792/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2793/// code. Current x86 isa includes the following FP cmov instructions:
2794/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2795static bool hasFPCMov(unsigned X86CC) {
2796  switch (X86CC) {
2797  default:
2798    return false;
2799  case X86::COND_B:
2800  case X86::COND_BE:
2801  case X86::COND_E:
2802  case X86::COND_P:
2803  case X86::COND_A:
2804  case X86::COND_AE:
2805  case X86::COND_NE:
2806  case X86::COND_NP:
2807    return true;
2808  }
2809}
2810
2811/// isFPImmLegal - Returns true if the target can instruction select the
2812/// specified FP immediate natively. If false, the legalizer will
2813/// materialize the FP immediate as a load from a constant pool.
2814bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2815  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2816    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2817      return true;
2818  }
2819  return false;
2820}
2821
2822/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2823/// the specified range (L, H].
2824static bool isUndefOrInRange(int Val, int Low, int Hi) {
2825  return (Val < 0) || (Val >= Low && Val < Hi);
2826}
2827
2828/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2829/// specified value.
2830static bool isUndefOrEqual(int Val, int CmpVal) {
2831  if (Val < 0 || Val == CmpVal)
2832    return true;
2833  return false;
2834}
2835
2836/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2837/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2838/// the second operand.
2839static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2840  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2841    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2842  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2843    return (Mask[0] < 2 && Mask[1] < 2);
2844  return false;
2845}
2846
2847bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2848  SmallVector<int, 8> M;
2849  N->getMask(M);
2850  return ::isPSHUFDMask(M, N->getValueType(0));
2851}
2852
2853/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2854/// is suitable for input to PSHUFHW.
2855static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2856  if (VT != MVT::v8i16)
2857    return false;
2858
2859  // Lower quadword copied in order or undef.
2860  for (int i = 0; i != 4; ++i)
2861    if (Mask[i] >= 0 && Mask[i] != i)
2862      return false;
2863
2864  // Upper quadword shuffled.
2865  for (int i = 4; i != 8; ++i)
2866    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2867      return false;
2868
2869  return true;
2870}
2871
2872bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2873  SmallVector<int, 8> M;
2874  N->getMask(M);
2875  return ::isPSHUFHWMask(M, N->getValueType(0));
2876}
2877
2878/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2879/// is suitable for input to PSHUFLW.
2880static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2881  if (VT != MVT::v8i16)
2882    return false;
2883
2884  // Upper quadword copied in order.
2885  for (int i = 4; i != 8; ++i)
2886    if (Mask[i] >= 0 && Mask[i] != i)
2887      return false;
2888
2889  // Lower quadword shuffled.
2890  for (int i = 0; i != 4; ++i)
2891    if (Mask[i] >= 4)
2892      return false;
2893
2894  return true;
2895}
2896
2897bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2898  SmallVector<int, 8> M;
2899  N->getMask(M);
2900  return ::isPSHUFLWMask(M, N->getValueType(0));
2901}
2902
2903/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2904/// is suitable for input to PALIGNR.
2905static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2906                          bool hasSSSE3) {
2907  int i, e = VT.getVectorNumElements();
2908
2909  // Do not handle v2i64 / v2f64 shuffles with palignr.
2910  if (e < 4 || !hasSSSE3)
2911    return false;
2912
2913  for (i = 0; i != e; ++i)
2914    if (Mask[i] >= 0)
2915      break;
2916
2917  // All undef, not a palignr.
2918  if (i == e)
2919    return false;
2920
2921  // Determine if it's ok to perform a palignr with only the LHS, since we
2922  // don't have access to the actual shuffle elements to see if RHS is undef.
2923  bool Unary = Mask[i] < (int)e;
2924  bool NeedsUnary = false;
2925
2926  int s = Mask[i] - i;
2927
2928  // Check the rest of the elements to see if they are consecutive.
2929  for (++i; i != e; ++i) {
2930    int m = Mask[i];
2931    if (m < 0)
2932      continue;
2933
2934    Unary = Unary && (m < (int)e);
2935    NeedsUnary = NeedsUnary || (m < s);
2936
2937    if (NeedsUnary && !Unary)
2938      return false;
2939    if (Unary && m != ((s+i) & (e-1)))
2940      return false;
2941    if (!Unary && m != (s+i))
2942      return false;
2943  }
2944  return true;
2945}
2946
2947bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2948  SmallVector<int, 8> M;
2949  N->getMask(M);
2950  return ::isPALIGNRMask(M, N->getValueType(0), true);
2951}
2952
2953/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2954/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2955static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2956  int NumElems = VT.getVectorNumElements();
2957  if (NumElems != 2 && NumElems != 4)
2958    return false;
2959
2960  int Half = NumElems / 2;
2961  for (int i = 0; i < Half; ++i)
2962    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2963      return false;
2964  for (int i = Half; i < NumElems; ++i)
2965    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2966      return false;
2967
2968  return true;
2969}
2970
2971bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2972  SmallVector<int, 8> M;
2973  N->getMask(M);
2974  return ::isSHUFPMask(M, N->getValueType(0));
2975}
2976
2977/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2978/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2979/// half elements to come from vector 1 (which would equal the dest.) and
2980/// the upper half to come from vector 2.
2981static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2982  int NumElems = VT.getVectorNumElements();
2983
2984  if (NumElems != 2 && NumElems != 4)
2985    return false;
2986
2987  int Half = NumElems / 2;
2988  for (int i = 0; i < Half; ++i)
2989    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2990      return false;
2991  for (int i = Half; i < NumElems; ++i)
2992    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2993      return false;
2994  return true;
2995}
2996
2997static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2998  SmallVector<int, 8> M;
2999  N->getMask(M);
3000  return isCommutedSHUFPMask(M, N->getValueType(0));
3001}
3002
3003/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3004/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3005bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3006  if (N->getValueType(0).getVectorNumElements() != 4)
3007    return false;
3008
3009  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3010  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3011         isUndefOrEqual(N->getMaskElt(1), 7) &&
3012         isUndefOrEqual(N->getMaskElt(2), 2) &&
3013         isUndefOrEqual(N->getMaskElt(3), 3);
3014}
3015
3016/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3017/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3018/// <2, 3, 2, 3>
3019bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3020  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3021
3022  if (NumElems != 4)
3023    return false;
3024
3025  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3026  isUndefOrEqual(N->getMaskElt(1), 3) &&
3027  isUndefOrEqual(N->getMaskElt(2), 2) &&
3028  isUndefOrEqual(N->getMaskElt(3), 3);
3029}
3030
3031/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3032/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3033bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3034  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3035
3036  if (NumElems != 2 && NumElems != 4)
3037    return false;
3038
3039  for (unsigned i = 0; i < NumElems/2; ++i)
3040    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3041      return false;
3042
3043  for (unsigned i = NumElems/2; i < NumElems; ++i)
3044    if (!isUndefOrEqual(N->getMaskElt(i), i))
3045      return false;
3046
3047  return true;
3048}
3049
3050/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3051/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3052bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3053  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3054
3055  if (NumElems != 2 && NumElems != 4)
3056    return false;
3057
3058  for (unsigned i = 0; i < NumElems/2; ++i)
3059    if (!isUndefOrEqual(N->getMaskElt(i), i))
3060      return false;
3061
3062  for (unsigned i = 0; i < NumElems/2; ++i)
3063    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3064      return false;
3065
3066  return true;
3067}
3068
3069/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3070/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3071static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3072                         bool V2IsSplat = false) {
3073  int NumElts = VT.getVectorNumElements();
3074  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3075    return false;
3076
3077  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3078    int BitI  = Mask[i];
3079    int BitI1 = Mask[i+1];
3080    if (!isUndefOrEqual(BitI, j))
3081      return false;
3082    if (V2IsSplat) {
3083      if (!isUndefOrEqual(BitI1, NumElts))
3084        return false;
3085    } else {
3086      if (!isUndefOrEqual(BitI1, j + NumElts))
3087        return false;
3088    }
3089  }
3090  return true;
3091}
3092
3093bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3094  SmallVector<int, 8> M;
3095  N->getMask(M);
3096  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3097}
3098
3099/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3100/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3101static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3102                         bool V2IsSplat = false) {
3103  int NumElts = VT.getVectorNumElements();
3104  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3105    return false;
3106
3107  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3108    int BitI  = Mask[i];
3109    int BitI1 = Mask[i+1];
3110    if (!isUndefOrEqual(BitI, j + NumElts/2))
3111      return false;
3112    if (V2IsSplat) {
3113      if (isUndefOrEqual(BitI1, NumElts))
3114        return false;
3115    } else {
3116      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3117        return false;
3118    }
3119  }
3120  return true;
3121}
3122
3123bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3124  SmallVector<int, 8> M;
3125  N->getMask(M);
3126  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3127}
3128
3129/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3130/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3131/// <0, 0, 1, 1>
3132static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3133  int NumElems = VT.getVectorNumElements();
3134  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3135    return false;
3136
3137  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3138    int BitI  = Mask[i];
3139    int BitI1 = Mask[i+1];
3140    if (!isUndefOrEqual(BitI, j))
3141      return false;
3142    if (!isUndefOrEqual(BitI1, j))
3143      return false;
3144  }
3145  return true;
3146}
3147
3148bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3149  SmallVector<int, 8> M;
3150  N->getMask(M);
3151  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3152}
3153
3154/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3155/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3156/// <2, 2, 3, 3>
3157static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3158  int NumElems = VT.getVectorNumElements();
3159  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3160    return false;
3161
3162  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3163    int BitI  = Mask[i];
3164    int BitI1 = Mask[i+1];
3165    if (!isUndefOrEqual(BitI, j))
3166      return false;
3167    if (!isUndefOrEqual(BitI1, j))
3168      return false;
3169  }
3170  return true;
3171}
3172
3173bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3174  SmallVector<int, 8> M;
3175  N->getMask(M);
3176  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3177}
3178
3179/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3180/// specifies a shuffle of elements that is suitable for input to MOVSS,
3181/// MOVSD, and MOVD, i.e. setting the lowest element.
3182static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3183  if (VT.getVectorElementType().getSizeInBits() < 32)
3184    return false;
3185
3186  int NumElts = VT.getVectorNumElements();
3187
3188  if (!isUndefOrEqual(Mask[0], NumElts))
3189    return false;
3190
3191  for (int i = 1; i < NumElts; ++i)
3192    if (!isUndefOrEqual(Mask[i], i))
3193      return false;
3194
3195  return true;
3196}
3197
3198bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3199  SmallVector<int, 8> M;
3200  N->getMask(M);
3201  return ::isMOVLMask(M, N->getValueType(0));
3202}
3203
3204/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3205/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3206/// element of vector 2 and the other elements to come from vector 1 in order.
3207static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3208                               bool V2IsSplat = false, bool V2IsUndef = false) {
3209  int NumOps = VT.getVectorNumElements();
3210  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3211    return false;
3212
3213  if (!isUndefOrEqual(Mask[0], 0))
3214    return false;
3215
3216  for (int i = 1; i < NumOps; ++i)
3217    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3218          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3219          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3220      return false;
3221
3222  return true;
3223}
3224
3225static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3226                           bool V2IsUndef = false) {
3227  SmallVector<int, 8> M;
3228  N->getMask(M);
3229  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3230}
3231
3232/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3233/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3234bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3235  if (N->getValueType(0).getVectorNumElements() != 4)
3236    return false;
3237
3238  // Expect 1, 1, 3, 3
3239  for (unsigned i = 0; i < 2; ++i) {
3240    int Elt = N->getMaskElt(i);
3241    if (Elt >= 0 && Elt != 1)
3242      return false;
3243  }
3244
3245  bool HasHi = false;
3246  for (unsigned i = 2; i < 4; ++i) {
3247    int Elt = N->getMaskElt(i);
3248    if (Elt >= 0 && Elt != 3)
3249      return false;
3250    if (Elt == 3)
3251      HasHi = true;
3252  }
3253  // Don't use movshdup if it can be done with a shufps.
3254  // FIXME: verify that matching u, u, 3, 3 is what we want.
3255  return HasHi;
3256}
3257
3258/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3259/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3260bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3261  if (N->getValueType(0).getVectorNumElements() != 4)
3262    return false;
3263
3264  // Expect 0, 0, 2, 2
3265  for (unsigned i = 0; i < 2; ++i)
3266    if (N->getMaskElt(i) > 0)
3267      return false;
3268
3269  bool HasHi = false;
3270  for (unsigned i = 2; i < 4; ++i) {
3271    int Elt = N->getMaskElt(i);
3272    if (Elt >= 0 && Elt != 2)
3273      return false;
3274    if (Elt == 2)
3275      HasHi = true;
3276  }
3277  // Don't use movsldup if it can be done with a shufps.
3278  return HasHi;
3279}
3280
3281/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3282/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3283bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3284  int e = N->getValueType(0).getVectorNumElements() / 2;
3285
3286  for (int i = 0; i < e; ++i)
3287    if (!isUndefOrEqual(N->getMaskElt(i), i))
3288      return false;
3289  for (int i = 0; i < e; ++i)
3290    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3291      return false;
3292  return true;
3293}
3294
3295/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3296/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3297unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3298  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3299  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3300
3301  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3302  unsigned Mask = 0;
3303  for (int i = 0; i < NumOperands; ++i) {
3304    int Val = SVOp->getMaskElt(NumOperands-i-1);
3305    if (Val < 0) Val = 0;
3306    if (Val >= NumOperands) Val -= NumOperands;
3307    Mask |= Val;
3308    if (i != NumOperands - 1)
3309      Mask <<= Shift;
3310  }
3311  return Mask;
3312}
3313
3314/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3315/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3316unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3317  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3318  unsigned Mask = 0;
3319  // 8 nodes, but we only care about the last 4.
3320  for (unsigned i = 7; i >= 4; --i) {
3321    int Val = SVOp->getMaskElt(i);
3322    if (Val >= 0)
3323      Mask |= (Val - 4);
3324    if (i != 4)
3325      Mask <<= 2;
3326  }
3327  return Mask;
3328}
3329
3330/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3331/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3332unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3333  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3334  unsigned Mask = 0;
3335  // 8 nodes, but we only care about the first 4.
3336  for (int i = 3; i >= 0; --i) {
3337    int Val = SVOp->getMaskElt(i);
3338    if (Val >= 0)
3339      Mask |= Val;
3340    if (i != 0)
3341      Mask <<= 2;
3342  }
3343  return Mask;
3344}
3345
3346/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3347/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3348unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3349  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3350  EVT VVT = N->getValueType(0);
3351  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3352  int Val = 0;
3353
3354  unsigned i, e;
3355  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3356    Val = SVOp->getMaskElt(i);
3357    if (Val >= 0)
3358      break;
3359  }
3360  return (Val - i) * EltSize;
3361}
3362
3363/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3364/// constant +0.0.
3365bool X86::isZeroNode(SDValue Elt) {
3366  return ((isa<ConstantSDNode>(Elt) &&
3367           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3368          (isa<ConstantFPSDNode>(Elt) &&
3369           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3370}
3371
3372/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3373/// their permute mask.
3374static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3375                                    SelectionDAG &DAG) {
3376  EVT VT = SVOp->getValueType(0);
3377  unsigned NumElems = VT.getVectorNumElements();
3378  SmallVector<int, 8> MaskVec;
3379
3380  for (unsigned i = 0; i != NumElems; ++i) {
3381    int idx = SVOp->getMaskElt(i);
3382    if (idx < 0)
3383      MaskVec.push_back(idx);
3384    else if (idx < (int)NumElems)
3385      MaskVec.push_back(idx + NumElems);
3386    else
3387      MaskVec.push_back(idx - NumElems);
3388  }
3389  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3390                              SVOp->getOperand(0), &MaskVec[0]);
3391}
3392
3393/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3394/// the two vector operands have swapped position.
3395static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3396  unsigned NumElems = VT.getVectorNumElements();
3397  for (unsigned i = 0; i != NumElems; ++i) {
3398    int idx = Mask[i];
3399    if (idx < 0)
3400      continue;
3401    else if (idx < (int)NumElems)
3402      Mask[i] = idx + NumElems;
3403    else
3404      Mask[i] = idx - NumElems;
3405  }
3406}
3407
3408/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3409/// match movhlps. The lower half elements should come from upper half of
3410/// V1 (and in order), and the upper half elements should come from the upper
3411/// half of V2 (and in order).
3412static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3413  if (Op->getValueType(0).getVectorNumElements() != 4)
3414    return false;
3415  for (unsigned i = 0, e = 2; i != e; ++i)
3416    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3417      return false;
3418  for (unsigned i = 2; i != 4; ++i)
3419    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3420      return false;
3421  return true;
3422}
3423
3424/// isScalarLoadToVector - Returns true if the node is a scalar load that
3425/// is promoted to a vector. It also returns the LoadSDNode by reference if
3426/// required.
3427static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3428  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3429    return false;
3430  N = N->getOperand(0).getNode();
3431  if (!ISD::isNON_EXTLoad(N))
3432    return false;
3433  if (LD)
3434    *LD = cast<LoadSDNode>(N);
3435  return true;
3436}
3437
3438/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3439/// match movlp{s|d}. The lower half elements should come from lower half of
3440/// V1 (and in order), and the upper half elements should come from the upper
3441/// half of V2 (and in order). And since V1 will become the source of the
3442/// MOVLP, it must be either a vector load or a scalar load to vector.
3443static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3444                               ShuffleVectorSDNode *Op) {
3445  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3446    return false;
3447  // Is V2 is a vector load, don't do this transformation. We will try to use
3448  // load folding shufps op.
3449  if (ISD::isNON_EXTLoad(V2))
3450    return false;
3451
3452  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3453
3454  if (NumElems != 2 && NumElems != 4)
3455    return false;
3456  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3457    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3458      return false;
3459  for (unsigned i = NumElems/2; i != NumElems; ++i)
3460    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3461      return false;
3462  return true;
3463}
3464
3465/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3466/// all the same.
3467static bool isSplatVector(SDNode *N) {
3468  if (N->getOpcode() != ISD::BUILD_VECTOR)
3469    return false;
3470
3471  SDValue SplatValue = N->getOperand(0);
3472  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3473    if (N->getOperand(i) != SplatValue)
3474      return false;
3475  return true;
3476}
3477
3478/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3479/// to an zero vector.
3480/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3481static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3482  SDValue V1 = N->getOperand(0);
3483  SDValue V2 = N->getOperand(1);
3484  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3485  for (unsigned i = 0; i != NumElems; ++i) {
3486    int Idx = N->getMaskElt(i);
3487    if (Idx >= (int)NumElems) {
3488      unsigned Opc = V2.getOpcode();
3489      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3490        continue;
3491      if (Opc != ISD::BUILD_VECTOR ||
3492          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3493        return false;
3494    } else if (Idx >= 0) {
3495      unsigned Opc = V1.getOpcode();
3496      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3497        continue;
3498      if (Opc != ISD::BUILD_VECTOR ||
3499          !X86::isZeroNode(V1.getOperand(Idx)))
3500        return false;
3501    }
3502  }
3503  return true;
3504}
3505
3506/// getZeroVector - Returns a vector of specified type with all zero elements.
3507///
3508static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3509                             DebugLoc dl) {
3510  assert(VT.isVector() && "Expected a vector type");
3511
3512  // Always build SSE zero vectors as <4 x i32> bitcasted
3513  // to their dest type. This ensures they get CSE'd.
3514  SDValue Vec;
3515  if (VT.getSizeInBits() == 128) {  // SSE
3516    if (HasSSE2) {  // SSE2
3517      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3518      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3519    } else { // SSE1
3520      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3521      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3522    }
3523  } else if (VT.getSizeInBits() == 256) { // AVX
3524    // 256-bit logic and arithmetic instructions in AVX are
3525    // all floating-point, no support for integer ops. Default
3526    // to emitting fp zeroed vectors then.
3527    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3528    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3529    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3530  }
3531  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3532}
3533
3534/// getOnesVector - Returns a vector of specified type with all bits set.
3535///
3536static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3537  assert(VT.isVector() && "Expected a vector type");
3538
3539  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3540  // type.  This ensures they get CSE'd.
3541  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3542  SDValue Vec;
3543  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3544  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3545}
3546
3547
3548/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3549/// that point to V2 points to its first element.
3550static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3551  EVT VT = SVOp->getValueType(0);
3552  unsigned NumElems = VT.getVectorNumElements();
3553
3554  bool Changed = false;
3555  SmallVector<int, 8> MaskVec;
3556  SVOp->getMask(MaskVec);
3557
3558  for (unsigned i = 0; i != NumElems; ++i) {
3559    if (MaskVec[i] > (int)NumElems) {
3560      MaskVec[i] = NumElems;
3561      Changed = true;
3562    }
3563  }
3564  if (Changed)
3565    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3566                                SVOp->getOperand(1), &MaskVec[0]);
3567  return SDValue(SVOp, 0);
3568}
3569
3570/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3571/// operation of specified width.
3572static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3573                       SDValue V2) {
3574  unsigned NumElems = VT.getVectorNumElements();
3575  SmallVector<int, 8> Mask;
3576  Mask.push_back(NumElems);
3577  for (unsigned i = 1; i != NumElems; ++i)
3578    Mask.push_back(i);
3579  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3580}
3581
3582/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3583static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3584                          SDValue V2) {
3585  unsigned NumElems = VT.getVectorNumElements();
3586  SmallVector<int, 8> Mask;
3587  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3588    Mask.push_back(i);
3589    Mask.push_back(i + NumElems);
3590  }
3591  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3592}
3593
3594/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3595static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3596                          SDValue V2) {
3597  unsigned NumElems = VT.getVectorNumElements();
3598  unsigned Half = NumElems/2;
3599  SmallVector<int, 8> Mask;
3600  for (unsigned i = 0; i != Half; ++i) {
3601    Mask.push_back(i + Half);
3602    Mask.push_back(i + NumElems + Half);
3603  }
3604  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3605}
3606
3607/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3608static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3609  EVT PVT = MVT::v4f32;
3610  EVT VT = SV->getValueType(0);
3611  DebugLoc dl = SV->getDebugLoc();
3612  SDValue V1 = SV->getOperand(0);
3613  int NumElems = VT.getVectorNumElements();
3614  int EltNo = SV->getSplatIndex();
3615
3616  // unpack elements to the correct location
3617  while (NumElems > 4) {
3618    if (EltNo < NumElems/2) {
3619      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3620    } else {
3621      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3622      EltNo -= NumElems/2;
3623    }
3624    NumElems >>= 1;
3625  }
3626
3627  // Perform the splat.
3628  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3629  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3630  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3631  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3632}
3633
3634/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3635/// vector of zero or undef vector.  This produces a shuffle where the low
3636/// element of V2 is swizzled into the zero/undef vector, landing at element
3637/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3638static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3639                                             bool isZero, bool HasSSE2,
3640                                             SelectionDAG &DAG) {
3641  EVT VT = V2.getValueType();
3642  SDValue V1 = isZero
3643    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3644  unsigned NumElems = VT.getVectorNumElements();
3645  SmallVector<int, 16> MaskVec;
3646  for (unsigned i = 0; i != NumElems; ++i)
3647    // If this is the insertion idx, put the low elt of V2 here.
3648    MaskVec.push_back(i == Idx ? NumElems : i);
3649  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3650}
3651
3652/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3653/// element of the result of the vector shuffle.
3654SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3655                            unsigned Depth) {
3656  if (Depth == 6)
3657    return SDValue();  // Limit search depth.
3658
3659  SDValue V = SDValue(N, 0);
3660  EVT VT = V.getValueType();
3661  unsigned Opcode = V.getOpcode();
3662
3663  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3664  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3665    Index = SV->getMaskElt(Index);
3666
3667    if (Index < 0)
3668      return DAG.getUNDEF(VT.getVectorElementType());
3669
3670    int NumElems = VT.getVectorNumElements();
3671    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3672    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3673  }
3674
3675  // Recurse into target specific vector shuffles to find scalars.
3676  if (isTargetShuffle(Opcode)) {
3677    int NumElems = VT.getVectorNumElements();
3678    SmallVector<unsigned, 16> ShuffleMask;
3679    SDValue ImmN;
3680
3681    switch(Opcode) {
3682    case X86ISD::SHUFPS:
3683    case X86ISD::SHUFPD:
3684      ImmN = N->getOperand(N->getNumOperands()-1);
3685      DecodeSHUFPSMask(NumElems,
3686                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3687                       ShuffleMask);
3688      break;
3689    case X86ISD::PUNPCKHBW:
3690    case X86ISD::PUNPCKHWD:
3691    case X86ISD::PUNPCKHDQ:
3692    case X86ISD::PUNPCKHQDQ:
3693      DecodePUNPCKHMask(NumElems, ShuffleMask);
3694      break;
3695    case X86ISD::UNPCKHPS:
3696    case X86ISD::UNPCKHPD:
3697      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3698      break;
3699    case X86ISD::PUNPCKLBW:
3700    case X86ISD::PUNPCKLWD:
3701    case X86ISD::PUNPCKLDQ:
3702    case X86ISD::PUNPCKLQDQ:
3703      DecodePUNPCKLMask(NumElems, ShuffleMask);
3704      break;
3705    case X86ISD::UNPCKLPS:
3706    case X86ISD::UNPCKLPD:
3707      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3708      break;
3709    case X86ISD::MOVHLPS:
3710      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3711      break;
3712    case X86ISD::MOVLHPS:
3713      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3714      break;
3715    case X86ISD::PSHUFD:
3716      ImmN = N->getOperand(N->getNumOperands()-1);
3717      DecodePSHUFMask(NumElems,
3718                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3719                      ShuffleMask);
3720      break;
3721    case X86ISD::PSHUFHW:
3722      ImmN = N->getOperand(N->getNumOperands()-1);
3723      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3724                        ShuffleMask);
3725      break;
3726    case X86ISD::PSHUFLW:
3727      ImmN = N->getOperand(N->getNumOperands()-1);
3728      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3729                        ShuffleMask);
3730      break;
3731    case X86ISD::MOVSS:
3732    case X86ISD::MOVSD: {
3733      // The index 0 always comes from the first element of the second source,
3734      // this is why MOVSS and MOVSD are used in the first place. The other
3735      // elements come from the other positions of the first source vector.
3736      unsigned OpNum = (Index == 0) ? 1 : 0;
3737      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3738                                 Depth+1);
3739    }
3740    default:
3741      assert("not implemented for target shuffle node");
3742      return SDValue();
3743    }
3744
3745    Index = ShuffleMask[Index];
3746    if (Index < 0)
3747      return DAG.getUNDEF(VT.getVectorElementType());
3748
3749    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3750    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3751                               Depth+1);
3752  }
3753
3754  // Actual nodes that may contain scalar elements
3755  if (Opcode == ISD::BITCAST) {
3756    V = V.getOperand(0);
3757    EVT SrcVT = V.getValueType();
3758    unsigned NumElems = VT.getVectorNumElements();
3759
3760    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3761      return SDValue();
3762  }
3763
3764  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3765    return (Index == 0) ? V.getOperand(0)
3766                          : DAG.getUNDEF(VT.getVectorElementType());
3767
3768  if (V.getOpcode() == ISD::BUILD_VECTOR)
3769    return V.getOperand(Index);
3770
3771  return SDValue();
3772}
3773
3774/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3775/// shuffle operation which come from a consecutively from a zero. The
3776/// search can start in two diferent directions, from left or right.
3777static
3778unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3779                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3780  int i = 0;
3781
3782  while (i < NumElems) {
3783    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3784    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3785    if (!(Elt.getNode() &&
3786         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3787      break;
3788    ++i;
3789  }
3790
3791  return i;
3792}
3793
3794/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3795/// MaskE correspond consecutively to elements from one of the vector operands,
3796/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3797static
3798bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3799                              int OpIdx, int NumElems, unsigned &OpNum) {
3800  bool SeenV1 = false;
3801  bool SeenV2 = false;
3802
3803  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3804    int Idx = SVOp->getMaskElt(i);
3805    // Ignore undef indicies
3806    if (Idx < 0)
3807      continue;
3808
3809    if (Idx < NumElems)
3810      SeenV1 = true;
3811    else
3812      SeenV2 = true;
3813
3814    // Only accept consecutive elements from the same vector
3815    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3816      return false;
3817  }
3818
3819  OpNum = SeenV1 ? 0 : 1;
3820  return true;
3821}
3822
3823/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3824/// logical left shift of a vector.
3825static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3826                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3827  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3828  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3829              false /* check zeros from right */, DAG);
3830  unsigned OpSrc;
3831
3832  if (!NumZeros)
3833    return false;
3834
3835  // Considering the elements in the mask that are not consecutive zeros,
3836  // check if they consecutively come from only one of the source vectors.
3837  //
3838  //               V1 = {X, A, B, C}     0
3839  //                         \  \  \    /
3840  //   vector_shuffle V1, V2 <1, 2, 3, X>
3841  //
3842  if (!isShuffleMaskConsecutive(SVOp,
3843            0,                   // Mask Start Index
3844            NumElems-NumZeros-1, // Mask End Index
3845            NumZeros,            // Where to start looking in the src vector
3846            NumElems,            // Number of elements in vector
3847            OpSrc))              // Which source operand ?
3848    return false;
3849
3850  isLeft = false;
3851  ShAmt = NumZeros;
3852  ShVal = SVOp->getOperand(OpSrc);
3853  return true;
3854}
3855
3856/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3857/// logical left shift of a vector.
3858static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3859                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3860  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3861  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3862              true /* check zeros from left */, DAG);
3863  unsigned OpSrc;
3864
3865  if (!NumZeros)
3866    return false;
3867
3868  // Considering the elements in the mask that are not consecutive zeros,
3869  // check if they consecutively come from only one of the source vectors.
3870  //
3871  //                           0    { A, B, X, X } = V2
3872  //                          / \    /  /
3873  //   vector_shuffle V1, V2 <X, X, 4, 5>
3874  //
3875  if (!isShuffleMaskConsecutive(SVOp,
3876            NumZeros,     // Mask Start Index
3877            NumElems-1,   // Mask End Index
3878            0,            // Where to start looking in the src vector
3879            NumElems,     // Number of elements in vector
3880            OpSrc))       // Which source operand ?
3881    return false;
3882
3883  isLeft = true;
3884  ShAmt = NumZeros;
3885  ShVal = SVOp->getOperand(OpSrc);
3886  return true;
3887}
3888
3889/// isVectorShift - Returns true if the shuffle can be implemented as a
3890/// logical left or right shift of a vector.
3891static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3892                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3893  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3894      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3895    return true;
3896
3897  return false;
3898}
3899
3900/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3901///
3902static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3903                                       unsigned NumNonZero, unsigned NumZero,
3904                                       SelectionDAG &DAG,
3905                                       const TargetLowering &TLI) {
3906  if (NumNonZero > 8)
3907    return SDValue();
3908
3909  DebugLoc dl = Op.getDebugLoc();
3910  SDValue V(0, 0);
3911  bool First = true;
3912  for (unsigned i = 0; i < 16; ++i) {
3913    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3914    if (ThisIsNonZero && First) {
3915      if (NumZero)
3916        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3917      else
3918        V = DAG.getUNDEF(MVT::v8i16);
3919      First = false;
3920    }
3921
3922    if ((i & 1) != 0) {
3923      SDValue ThisElt(0, 0), LastElt(0, 0);
3924      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3925      if (LastIsNonZero) {
3926        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3927                              MVT::i16, Op.getOperand(i-1));
3928      }
3929      if (ThisIsNonZero) {
3930        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3931        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3932                              ThisElt, DAG.getConstant(8, MVT::i8));
3933        if (LastIsNonZero)
3934          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3935      } else
3936        ThisElt = LastElt;
3937
3938      if (ThisElt.getNode())
3939        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3940                        DAG.getIntPtrConstant(i/2));
3941    }
3942  }
3943
3944  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
3945}
3946
3947/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3948///
3949static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3950                                     unsigned NumNonZero, unsigned NumZero,
3951                                     SelectionDAG &DAG,
3952                                     const TargetLowering &TLI) {
3953  if (NumNonZero > 4)
3954    return SDValue();
3955
3956  DebugLoc dl = Op.getDebugLoc();
3957  SDValue V(0, 0);
3958  bool First = true;
3959  for (unsigned i = 0; i < 8; ++i) {
3960    bool isNonZero = (NonZeros & (1 << i)) != 0;
3961    if (isNonZero) {
3962      if (First) {
3963        if (NumZero)
3964          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3965        else
3966          V = DAG.getUNDEF(MVT::v8i16);
3967        First = false;
3968      }
3969      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3970                      MVT::v8i16, V, Op.getOperand(i),
3971                      DAG.getIntPtrConstant(i));
3972    }
3973  }
3974
3975  return V;
3976}
3977
3978/// getVShift - Return a vector logical shift node.
3979///
3980static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3981                         unsigned NumBits, SelectionDAG &DAG,
3982                         const TargetLowering &TLI, DebugLoc dl) {
3983  EVT ShVT = MVT::v2i64;
3984  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3985  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
3986  return DAG.getNode(ISD::BITCAST, dl, VT,
3987                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3988                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3989}
3990
3991SDValue
3992X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3993                                          SelectionDAG &DAG) const {
3994
3995  // Check if the scalar load can be widened into a vector load. And if
3996  // the address is "base + cst" see if the cst can be "absorbed" into
3997  // the shuffle mask.
3998  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3999    SDValue Ptr = LD->getBasePtr();
4000    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4001      return SDValue();
4002    EVT PVT = LD->getValueType(0);
4003    if (PVT != MVT::i32 && PVT != MVT::f32)
4004      return SDValue();
4005
4006    int FI = -1;
4007    int64_t Offset = 0;
4008    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4009      FI = FINode->getIndex();
4010      Offset = 0;
4011    } else if (Ptr.getOpcode() == ISD::ADD &&
4012               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4013               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4014      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4015      Offset = Ptr.getConstantOperandVal(1);
4016      Ptr = Ptr.getOperand(0);
4017    } else {
4018      return SDValue();
4019    }
4020
4021    SDValue Chain = LD->getChain();
4022    // Make sure the stack object alignment is at least 16.
4023    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4024    if (DAG.InferPtrAlignment(Ptr) < 16) {
4025      if (MFI->isFixedObjectIndex(FI)) {
4026        // Can't change the alignment. FIXME: It's possible to compute
4027        // the exact stack offset and reference FI + adjust offset instead.
4028        // If someone *really* cares about this. That's the way to implement it.
4029        return SDValue();
4030      } else {
4031        MFI->setObjectAlignment(FI, 16);
4032      }
4033    }
4034
4035    // (Offset % 16) must be multiple of 4. Then address is then
4036    // Ptr + (Offset & ~15).
4037    if (Offset < 0)
4038      return SDValue();
4039    if ((Offset % 16) & 3)
4040      return SDValue();
4041    int64_t StartOffset = Offset & ~15;
4042    if (StartOffset)
4043      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4044                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4045
4046    int EltNo = (Offset - StartOffset) >> 2;
4047    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4048    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4049    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4050                             LD->getPointerInfo().getWithOffset(StartOffset),
4051                             false, false, 0);
4052    // Canonicalize it to a v4i32 shuffle.
4053    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4054    return DAG.getNode(ISD::BITCAST, dl, VT,
4055                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4056                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4057  }
4058
4059  return SDValue();
4060}
4061
4062/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4063/// vector of type 'VT', see if the elements can be replaced by a single large
4064/// load which has the same value as a build_vector whose operands are 'elts'.
4065///
4066/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4067///
4068/// FIXME: we'd also like to handle the case where the last elements are zero
4069/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4070/// There's even a handy isZeroNode for that purpose.
4071static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4072                                        DebugLoc &DL, SelectionDAG &DAG) {
4073  EVT EltVT = VT.getVectorElementType();
4074  unsigned NumElems = Elts.size();
4075
4076  LoadSDNode *LDBase = NULL;
4077  unsigned LastLoadedElt = -1U;
4078
4079  // For each element in the initializer, see if we've found a load or an undef.
4080  // If we don't find an initial load element, or later load elements are
4081  // non-consecutive, bail out.
4082  for (unsigned i = 0; i < NumElems; ++i) {
4083    SDValue Elt = Elts[i];
4084
4085    if (!Elt.getNode() ||
4086        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4087      return SDValue();
4088    if (!LDBase) {
4089      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4090        return SDValue();
4091      LDBase = cast<LoadSDNode>(Elt.getNode());
4092      LastLoadedElt = i;
4093      continue;
4094    }
4095    if (Elt.getOpcode() == ISD::UNDEF)
4096      continue;
4097
4098    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4099    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4100      return SDValue();
4101    LastLoadedElt = i;
4102  }
4103
4104  // If we have found an entire vector of loads and undefs, then return a large
4105  // load of the entire vector width starting at the base pointer.  If we found
4106  // consecutive loads for the low half, generate a vzext_load node.
4107  if (LastLoadedElt == NumElems - 1) {
4108    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4109      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4110                         LDBase->getPointerInfo(),
4111                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4112    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4113                       LDBase->getPointerInfo(),
4114                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4115                       LDBase->getAlignment());
4116  } else if (NumElems == 4 && LastLoadedElt == 1) {
4117    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4118    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4119    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4120                                              Ops, 2, MVT::i32,
4121                                              LDBase->getMemOperand());
4122    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4123  }
4124  return SDValue();
4125}
4126
4127SDValue
4128X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4129  DebugLoc dl = Op.getDebugLoc();
4130  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4131  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4132  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4133  // is present, so AllOnes is ignored.
4134  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4135      (Op.getValueType().getSizeInBits() != 256 &&
4136       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4137    // Canonicalize this to <4 x i32> (SSE) to
4138    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4139    // eliminated on x86-32 hosts.
4140    if (Op.getValueType() == MVT::v4i32)
4141      return Op;
4142
4143    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4144      return getOnesVector(Op.getValueType(), DAG, dl);
4145    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4146  }
4147
4148  EVT VT = Op.getValueType();
4149  EVT ExtVT = VT.getVectorElementType();
4150  unsigned EVTBits = ExtVT.getSizeInBits();
4151
4152  unsigned NumElems = Op.getNumOperands();
4153  unsigned NumZero  = 0;
4154  unsigned NumNonZero = 0;
4155  unsigned NonZeros = 0;
4156  bool IsAllConstants = true;
4157  SmallSet<SDValue, 8> Values;
4158  for (unsigned i = 0; i < NumElems; ++i) {
4159    SDValue Elt = Op.getOperand(i);
4160    if (Elt.getOpcode() == ISD::UNDEF)
4161      continue;
4162    Values.insert(Elt);
4163    if (Elt.getOpcode() != ISD::Constant &&
4164        Elt.getOpcode() != ISD::ConstantFP)
4165      IsAllConstants = false;
4166    if (X86::isZeroNode(Elt))
4167      NumZero++;
4168    else {
4169      NonZeros |= (1 << i);
4170      NumNonZero++;
4171    }
4172  }
4173
4174  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4175  if (NumNonZero == 0)
4176    return DAG.getUNDEF(VT);
4177
4178  // Special case for single non-zero, non-undef, element.
4179  if (NumNonZero == 1) {
4180    unsigned Idx = CountTrailingZeros_32(NonZeros);
4181    SDValue Item = Op.getOperand(Idx);
4182
4183    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4184    // the value are obviously zero, truncate the value to i32 and do the
4185    // insertion that way.  Only do this if the value is non-constant or if the
4186    // value is a constant being inserted into element 0.  It is cheaper to do
4187    // a constant pool load than it is to do a movd + shuffle.
4188    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4189        (!IsAllConstants || Idx == 0)) {
4190      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4191        // Handle SSE only.
4192        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4193        EVT VecVT = MVT::v4i32;
4194        unsigned VecElts = 4;
4195
4196        // Truncate the value (which may itself be a constant) to i32, and
4197        // convert it to a vector with movd (S2V+shuffle to zero extend).
4198        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4199        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4200        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4201                                           Subtarget->hasSSE2(), DAG);
4202
4203        // Now we have our 32-bit value zero extended in the low element of
4204        // a vector.  If Idx != 0, swizzle it into place.
4205        if (Idx != 0) {
4206          SmallVector<int, 4> Mask;
4207          Mask.push_back(Idx);
4208          for (unsigned i = 1; i != VecElts; ++i)
4209            Mask.push_back(i);
4210          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4211                                      DAG.getUNDEF(Item.getValueType()),
4212                                      &Mask[0]);
4213        }
4214        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4215      }
4216    }
4217
4218    // If we have a constant or non-constant insertion into the low element of
4219    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4220    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4221    // depending on what the source datatype is.
4222    if (Idx == 0) {
4223      if (NumZero == 0) {
4224        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4225      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4226          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4227        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4228        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4229        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4230                                           DAG);
4231      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4232        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4233        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4234        EVT MiddleVT = MVT::v4i32;
4235        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4236        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4237                                           Subtarget->hasSSE2(), DAG);
4238        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4239      }
4240    }
4241
4242    // Is it a vector logical left shift?
4243    if (NumElems == 2 && Idx == 1 &&
4244        X86::isZeroNode(Op.getOperand(0)) &&
4245        !X86::isZeroNode(Op.getOperand(1))) {
4246      unsigned NumBits = VT.getSizeInBits();
4247      return getVShift(true, VT,
4248                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4249                                   VT, Op.getOperand(1)),
4250                       NumBits/2, DAG, *this, dl);
4251    }
4252
4253    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4254      return SDValue();
4255
4256    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4257    // is a non-constant being inserted into an element other than the low one,
4258    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4259    // movd/movss) to move this into the low element, then shuffle it into
4260    // place.
4261    if (EVTBits == 32) {
4262      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4263
4264      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4265      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4266                                         Subtarget->hasSSE2(), DAG);
4267      SmallVector<int, 8> MaskVec;
4268      for (unsigned i = 0; i < NumElems; i++)
4269        MaskVec.push_back(i == Idx ? 0 : 1);
4270      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4271    }
4272  }
4273
4274  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4275  if (Values.size() == 1) {
4276    if (EVTBits == 32) {
4277      // Instead of a shuffle like this:
4278      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4279      // Check if it's possible to issue this instead.
4280      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4281      unsigned Idx = CountTrailingZeros_32(NonZeros);
4282      SDValue Item = Op.getOperand(Idx);
4283      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4284        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4285    }
4286    return SDValue();
4287  }
4288
4289  // A vector full of immediates; various special cases are already
4290  // handled, so this is best done with a single constant-pool load.
4291  if (IsAllConstants)
4292    return SDValue();
4293
4294  // Let legalizer expand 2-wide build_vectors.
4295  if (EVTBits == 64) {
4296    if (NumNonZero == 1) {
4297      // One half is zero or undef.
4298      unsigned Idx = CountTrailingZeros_32(NonZeros);
4299      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4300                                 Op.getOperand(Idx));
4301      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4302                                         Subtarget->hasSSE2(), DAG);
4303    }
4304    return SDValue();
4305  }
4306
4307  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4308  if (EVTBits == 8 && NumElems == 16) {
4309    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4310                                        *this);
4311    if (V.getNode()) return V;
4312  }
4313
4314  if (EVTBits == 16 && NumElems == 8) {
4315    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4316                                      *this);
4317    if (V.getNode()) return V;
4318  }
4319
4320  // If element VT is == 32 bits, turn it into a number of shuffles.
4321  SmallVector<SDValue, 8> V;
4322  V.resize(NumElems);
4323  if (NumElems == 4 && NumZero > 0) {
4324    for (unsigned i = 0; i < 4; ++i) {
4325      bool isZero = !(NonZeros & (1 << i));
4326      if (isZero)
4327        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4328      else
4329        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4330    }
4331
4332    for (unsigned i = 0; i < 2; ++i) {
4333      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4334        default: break;
4335        case 0:
4336          V[i] = V[i*2];  // Must be a zero vector.
4337          break;
4338        case 1:
4339          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4340          break;
4341        case 2:
4342          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4343          break;
4344        case 3:
4345          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4346          break;
4347      }
4348    }
4349
4350    SmallVector<int, 8> MaskVec;
4351    bool Reverse = (NonZeros & 0x3) == 2;
4352    for (unsigned i = 0; i < 2; ++i)
4353      MaskVec.push_back(Reverse ? 1-i : i);
4354    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4355    for (unsigned i = 0; i < 2; ++i)
4356      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4357    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4358  }
4359
4360  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4361    // Check for a build vector of consecutive loads.
4362    for (unsigned i = 0; i < NumElems; ++i)
4363      V[i] = Op.getOperand(i);
4364
4365    // Check for elements which are consecutive loads.
4366    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4367    if (LD.getNode())
4368      return LD;
4369
4370    // For SSE 4.1, use insertps to put the high elements into the low element.
4371    if (getSubtarget()->hasSSE41()) {
4372      SDValue Result;
4373      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4374        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4375      else
4376        Result = DAG.getUNDEF(VT);
4377
4378      for (unsigned i = 1; i < NumElems; ++i) {
4379        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4380        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4381                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4382      }
4383      return Result;
4384    }
4385
4386    // Otherwise, expand into a number of unpckl*, start by extending each of
4387    // our (non-undef) elements to the full vector width with the element in the
4388    // bottom slot of the vector (which generates no code for SSE).
4389    for (unsigned i = 0; i < NumElems; ++i) {
4390      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4391        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4392      else
4393        V[i] = DAG.getUNDEF(VT);
4394    }
4395
4396    // Next, we iteratively mix elements, e.g. for v4f32:
4397    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4398    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4399    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4400    unsigned EltStride = NumElems >> 1;
4401    while (EltStride != 0) {
4402      for (unsigned i = 0; i < EltStride; ++i) {
4403        // If V[i+EltStride] is undef and this is the first round of mixing,
4404        // then it is safe to just drop this shuffle: V[i] is already in the
4405        // right place, the one element (since it's the first round) being
4406        // inserted as undef can be dropped.  This isn't safe for successive
4407        // rounds because they will permute elements within both vectors.
4408        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4409            EltStride == NumElems/2)
4410          continue;
4411
4412        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4413      }
4414      EltStride >>= 1;
4415    }
4416    return V[0];
4417  }
4418  return SDValue();
4419}
4420
4421SDValue
4422X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4423  // We support concatenate two MMX registers and place them in a MMX
4424  // register.  This is better than doing a stack convert.
4425  DebugLoc dl = Op.getDebugLoc();
4426  EVT ResVT = Op.getValueType();
4427  assert(Op.getNumOperands() == 2);
4428  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4429         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4430  int Mask[2];
4431  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4432  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4433  InVec = Op.getOperand(1);
4434  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4435    unsigned NumElts = ResVT.getVectorNumElements();
4436    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4437    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4438                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4439  } else {
4440    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4441    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4442    Mask[0] = 0; Mask[1] = 2;
4443    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4444  }
4445  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4446}
4447
4448// v8i16 shuffles - Prefer shuffles in the following order:
4449// 1. [all]   pshuflw, pshufhw, optional move
4450// 2. [ssse3] 1 x pshufb
4451// 3. [ssse3] 2 x pshufb + 1 x por
4452// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4453SDValue
4454X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4455                                            SelectionDAG &DAG) const {
4456  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4457  SDValue V1 = SVOp->getOperand(0);
4458  SDValue V2 = SVOp->getOperand(1);
4459  DebugLoc dl = SVOp->getDebugLoc();
4460  SmallVector<int, 8> MaskVals;
4461
4462  // Determine if more than 1 of the words in each of the low and high quadwords
4463  // of the result come from the same quadword of one of the two inputs.  Undef
4464  // mask values count as coming from any quadword, for better codegen.
4465  SmallVector<unsigned, 4> LoQuad(4);
4466  SmallVector<unsigned, 4> HiQuad(4);
4467  BitVector InputQuads(4);
4468  for (unsigned i = 0; i < 8; ++i) {
4469    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4470    int EltIdx = SVOp->getMaskElt(i);
4471    MaskVals.push_back(EltIdx);
4472    if (EltIdx < 0) {
4473      ++Quad[0];
4474      ++Quad[1];
4475      ++Quad[2];
4476      ++Quad[3];
4477      continue;
4478    }
4479    ++Quad[EltIdx / 4];
4480    InputQuads.set(EltIdx / 4);
4481  }
4482
4483  int BestLoQuad = -1;
4484  unsigned MaxQuad = 1;
4485  for (unsigned i = 0; i < 4; ++i) {
4486    if (LoQuad[i] > MaxQuad) {
4487      BestLoQuad = i;
4488      MaxQuad = LoQuad[i];
4489    }
4490  }
4491
4492  int BestHiQuad = -1;
4493  MaxQuad = 1;
4494  for (unsigned i = 0; i < 4; ++i) {
4495    if (HiQuad[i] > MaxQuad) {
4496      BestHiQuad = i;
4497      MaxQuad = HiQuad[i];
4498    }
4499  }
4500
4501  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4502  // of the two input vectors, shuffle them into one input vector so only a
4503  // single pshufb instruction is necessary. If There are more than 2 input
4504  // quads, disable the next transformation since it does not help SSSE3.
4505  bool V1Used = InputQuads[0] || InputQuads[1];
4506  bool V2Used = InputQuads[2] || InputQuads[3];
4507  if (Subtarget->hasSSSE3()) {
4508    if (InputQuads.count() == 2 && V1Used && V2Used) {
4509      BestLoQuad = InputQuads.find_first();
4510      BestHiQuad = InputQuads.find_next(BestLoQuad);
4511    }
4512    if (InputQuads.count() > 2) {
4513      BestLoQuad = -1;
4514      BestHiQuad = -1;
4515    }
4516  }
4517
4518  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4519  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4520  // words from all 4 input quadwords.
4521  SDValue NewV;
4522  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4523    SmallVector<int, 8> MaskV;
4524    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4525    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4526    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4527                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4528                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4529    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4530
4531    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4532    // source words for the shuffle, to aid later transformations.
4533    bool AllWordsInNewV = true;
4534    bool InOrder[2] = { true, true };
4535    for (unsigned i = 0; i != 8; ++i) {
4536      int idx = MaskVals[i];
4537      if (idx != (int)i)
4538        InOrder[i/4] = false;
4539      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4540        continue;
4541      AllWordsInNewV = false;
4542      break;
4543    }
4544
4545    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4546    if (AllWordsInNewV) {
4547      for (int i = 0; i != 8; ++i) {
4548        int idx = MaskVals[i];
4549        if (idx < 0)
4550          continue;
4551        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4552        if ((idx != i) && idx < 4)
4553          pshufhw = false;
4554        if ((idx != i) && idx > 3)
4555          pshuflw = false;
4556      }
4557      V1 = NewV;
4558      V2Used = false;
4559      BestLoQuad = 0;
4560      BestHiQuad = 1;
4561    }
4562
4563    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4564    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4565    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4566      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4567      unsigned TargetMask = 0;
4568      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4569                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4570      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4571                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4572      V1 = NewV.getOperand(0);
4573      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4574    }
4575  }
4576
4577  // If we have SSSE3, and all words of the result are from 1 input vector,
4578  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4579  // is present, fall back to case 4.
4580  if (Subtarget->hasSSSE3()) {
4581    SmallVector<SDValue,16> pshufbMask;
4582
4583    // If we have elements from both input vectors, set the high bit of the
4584    // shuffle mask element to zero out elements that come from V2 in the V1
4585    // mask, and elements that come from V1 in the V2 mask, so that the two
4586    // results can be OR'd together.
4587    bool TwoInputs = V1Used && V2Used;
4588    for (unsigned i = 0; i != 8; ++i) {
4589      int EltIdx = MaskVals[i] * 2;
4590      if (TwoInputs && (EltIdx >= 16)) {
4591        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4592        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4593        continue;
4594      }
4595      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4596      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4597    }
4598    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4599    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4600                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4601                                 MVT::v16i8, &pshufbMask[0], 16));
4602    if (!TwoInputs)
4603      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4604
4605    // Calculate the shuffle mask for the second input, shuffle it, and
4606    // OR it with the first shuffled input.
4607    pshufbMask.clear();
4608    for (unsigned i = 0; i != 8; ++i) {
4609      int EltIdx = MaskVals[i] * 2;
4610      if (EltIdx < 16) {
4611        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4612        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4613        continue;
4614      }
4615      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4616      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4617    }
4618    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4619    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4620                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4621                                 MVT::v16i8, &pshufbMask[0], 16));
4622    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4623    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4624  }
4625
4626  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4627  // and update MaskVals with new element order.
4628  BitVector InOrder(8);
4629  if (BestLoQuad >= 0) {
4630    SmallVector<int, 8> MaskV;
4631    for (int i = 0; i != 4; ++i) {
4632      int idx = MaskVals[i];
4633      if (idx < 0) {
4634        MaskV.push_back(-1);
4635        InOrder.set(i);
4636      } else if ((idx / 4) == BestLoQuad) {
4637        MaskV.push_back(idx & 3);
4638        InOrder.set(i);
4639      } else {
4640        MaskV.push_back(-1);
4641      }
4642    }
4643    for (unsigned i = 4; i != 8; ++i)
4644      MaskV.push_back(i);
4645    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4646                                &MaskV[0]);
4647
4648    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4649      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4650                               NewV.getOperand(0),
4651                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4652                               DAG);
4653  }
4654
4655  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4656  // and update MaskVals with the new element order.
4657  if (BestHiQuad >= 0) {
4658    SmallVector<int, 8> MaskV;
4659    for (unsigned i = 0; i != 4; ++i)
4660      MaskV.push_back(i);
4661    for (unsigned i = 4; i != 8; ++i) {
4662      int idx = MaskVals[i];
4663      if (idx < 0) {
4664        MaskV.push_back(-1);
4665        InOrder.set(i);
4666      } else if ((idx / 4) == BestHiQuad) {
4667        MaskV.push_back((idx & 3) + 4);
4668        InOrder.set(i);
4669      } else {
4670        MaskV.push_back(-1);
4671      }
4672    }
4673    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4674                                &MaskV[0]);
4675
4676    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4677      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4678                              NewV.getOperand(0),
4679                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4680                              DAG);
4681  }
4682
4683  // In case BestHi & BestLo were both -1, which means each quadword has a word
4684  // from each of the four input quadwords, calculate the InOrder bitvector now
4685  // before falling through to the insert/extract cleanup.
4686  if (BestLoQuad == -1 && BestHiQuad == -1) {
4687    NewV = V1;
4688    for (int i = 0; i != 8; ++i)
4689      if (MaskVals[i] < 0 || MaskVals[i] == i)
4690        InOrder.set(i);
4691  }
4692
4693  // The other elements are put in the right place using pextrw and pinsrw.
4694  for (unsigned i = 0; i != 8; ++i) {
4695    if (InOrder[i])
4696      continue;
4697    int EltIdx = MaskVals[i];
4698    if (EltIdx < 0)
4699      continue;
4700    SDValue ExtOp = (EltIdx < 8)
4701    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4702                  DAG.getIntPtrConstant(EltIdx))
4703    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4704                  DAG.getIntPtrConstant(EltIdx - 8));
4705    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4706                       DAG.getIntPtrConstant(i));
4707  }
4708  return NewV;
4709}
4710
4711// v16i8 shuffles - Prefer shuffles in the following order:
4712// 1. [ssse3] 1 x pshufb
4713// 2. [ssse3] 2 x pshufb + 1 x por
4714// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4715static
4716SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4717                                 SelectionDAG &DAG,
4718                                 const X86TargetLowering &TLI) {
4719  SDValue V1 = SVOp->getOperand(0);
4720  SDValue V2 = SVOp->getOperand(1);
4721  DebugLoc dl = SVOp->getDebugLoc();
4722  SmallVector<int, 16> MaskVals;
4723  SVOp->getMask(MaskVals);
4724
4725  // If we have SSSE3, case 1 is generated when all result bytes come from
4726  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4727  // present, fall back to case 3.
4728  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4729  bool V1Only = true;
4730  bool V2Only = true;
4731  for (unsigned i = 0; i < 16; ++i) {
4732    int EltIdx = MaskVals[i];
4733    if (EltIdx < 0)
4734      continue;
4735    if (EltIdx < 16)
4736      V2Only = false;
4737    else
4738      V1Only = false;
4739  }
4740
4741  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4742  if (TLI.getSubtarget()->hasSSSE3()) {
4743    SmallVector<SDValue,16> pshufbMask;
4744
4745    // If all result elements are from one input vector, then only translate
4746    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4747    //
4748    // Otherwise, we have elements from both input vectors, and must zero out
4749    // elements that come from V2 in the first mask, and V1 in the second mask
4750    // so that we can OR them together.
4751    bool TwoInputs = !(V1Only || V2Only);
4752    for (unsigned i = 0; i != 16; ++i) {
4753      int EltIdx = MaskVals[i];
4754      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4755        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4756        continue;
4757      }
4758      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4759    }
4760    // If all the elements are from V2, assign it to V1 and return after
4761    // building the first pshufb.
4762    if (V2Only)
4763      V1 = V2;
4764    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4765                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4766                                 MVT::v16i8, &pshufbMask[0], 16));
4767    if (!TwoInputs)
4768      return V1;
4769
4770    // Calculate the shuffle mask for the second input, shuffle it, and
4771    // OR it with the first shuffled input.
4772    pshufbMask.clear();
4773    for (unsigned i = 0; i != 16; ++i) {
4774      int EltIdx = MaskVals[i];
4775      if (EltIdx < 16) {
4776        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4777        continue;
4778      }
4779      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4780    }
4781    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4782                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4783                                 MVT::v16i8, &pshufbMask[0], 16));
4784    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4785  }
4786
4787  // No SSSE3 - Calculate in place words and then fix all out of place words
4788  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4789  // the 16 different words that comprise the two doublequadword input vectors.
4790  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4791  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
4792  SDValue NewV = V2Only ? V2 : V1;
4793  for (int i = 0; i != 8; ++i) {
4794    int Elt0 = MaskVals[i*2];
4795    int Elt1 = MaskVals[i*2+1];
4796
4797    // This word of the result is all undef, skip it.
4798    if (Elt0 < 0 && Elt1 < 0)
4799      continue;
4800
4801    // This word of the result is already in the correct place, skip it.
4802    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4803      continue;
4804    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4805      continue;
4806
4807    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4808    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4809    SDValue InsElt;
4810
4811    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4812    // using a single extract together, load it and store it.
4813    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4814      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4815                           DAG.getIntPtrConstant(Elt1 / 2));
4816      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4817                        DAG.getIntPtrConstant(i));
4818      continue;
4819    }
4820
4821    // If Elt1 is defined, extract it from the appropriate source.  If the
4822    // source byte is not also odd, shift the extracted word left 8 bits
4823    // otherwise clear the bottom 8 bits if we need to do an or.
4824    if (Elt1 >= 0) {
4825      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4826                           DAG.getIntPtrConstant(Elt1 / 2));
4827      if ((Elt1 & 1) == 0)
4828        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4829                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4830      else if (Elt0 >= 0)
4831        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4832                             DAG.getConstant(0xFF00, MVT::i16));
4833    }
4834    // If Elt0 is defined, extract it from the appropriate source.  If the
4835    // source byte is not also even, shift the extracted word right 8 bits. If
4836    // Elt1 was also defined, OR the extracted values together before
4837    // inserting them in the result.
4838    if (Elt0 >= 0) {
4839      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4840                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4841      if ((Elt0 & 1) != 0)
4842        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4843                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4844      else if (Elt1 >= 0)
4845        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4846                             DAG.getConstant(0x00FF, MVT::i16));
4847      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4848                         : InsElt0;
4849    }
4850    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4851                       DAG.getIntPtrConstant(i));
4852  }
4853  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
4854}
4855
4856/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4857/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4858/// done when every pair / quad of shuffle mask elements point to elements in
4859/// the right sequence. e.g.
4860/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4861static
4862SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4863                                 SelectionDAG &DAG, DebugLoc dl) {
4864  EVT VT = SVOp->getValueType(0);
4865  SDValue V1 = SVOp->getOperand(0);
4866  SDValue V2 = SVOp->getOperand(1);
4867  unsigned NumElems = VT.getVectorNumElements();
4868  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4869  EVT NewVT;
4870  switch (VT.getSimpleVT().SimpleTy) {
4871  default: assert(false && "Unexpected!");
4872  case MVT::v4f32: NewVT = MVT::v2f64; break;
4873  case MVT::v4i32: NewVT = MVT::v2i64; break;
4874  case MVT::v8i16: NewVT = MVT::v4i32; break;
4875  case MVT::v16i8: NewVT = MVT::v4i32; break;
4876  }
4877
4878  int Scale = NumElems / NewWidth;
4879  SmallVector<int, 8> MaskVec;
4880  for (unsigned i = 0; i < NumElems; i += Scale) {
4881    int StartIdx = -1;
4882    for (int j = 0; j < Scale; ++j) {
4883      int EltIdx = SVOp->getMaskElt(i+j);
4884      if (EltIdx < 0)
4885        continue;
4886      if (StartIdx == -1)
4887        StartIdx = EltIdx - (EltIdx % Scale);
4888      if (EltIdx != StartIdx + j)
4889        return SDValue();
4890    }
4891    if (StartIdx == -1)
4892      MaskVec.push_back(-1);
4893    else
4894      MaskVec.push_back(StartIdx / Scale);
4895  }
4896
4897  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
4898  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
4899  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4900}
4901
4902/// getVZextMovL - Return a zero-extending vector move low node.
4903///
4904static SDValue getVZextMovL(EVT VT, EVT OpVT,
4905                            SDValue SrcOp, SelectionDAG &DAG,
4906                            const X86Subtarget *Subtarget, DebugLoc dl) {
4907  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4908    LoadSDNode *LD = NULL;
4909    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4910      LD = dyn_cast<LoadSDNode>(SrcOp);
4911    if (!LD) {
4912      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4913      // instead.
4914      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4915      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
4916          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4917          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
4918          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4919        // PR2108
4920        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4921        return DAG.getNode(ISD::BITCAST, dl, VT,
4922                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4923                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4924                                                   OpVT,
4925                                                   SrcOp.getOperand(0)
4926                                                          .getOperand(0))));
4927      }
4928    }
4929  }
4930
4931  return DAG.getNode(ISD::BITCAST, dl, VT,
4932                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4933                                 DAG.getNode(ISD::BITCAST, dl,
4934                                             OpVT, SrcOp)));
4935}
4936
4937/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4938/// shuffles.
4939static SDValue
4940LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4941  SDValue V1 = SVOp->getOperand(0);
4942  SDValue V2 = SVOp->getOperand(1);
4943  DebugLoc dl = SVOp->getDebugLoc();
4944  EVT VT = SVOp->getValueType(0);
4945
4946  SmallVector<std::pair<int, int>, 8> Locs;
4947  Locs.resize(4);
4948  SmallVector<int, 8> Mask1(4U, -1);
4949  SmallVector<int, 8> PermMask;
4950  SVOp->getMask(PermMask);
4951
4952  unsigned NumHi = 0;
4953  unsigned NumLo = 0;
4954  for (unsigned i = 0; i != 4; ++i) {
4955    int Idx = PermMask[i];
4956    if (Idx < 0) {
4957      Locs[i] = std::make_pair(-1, -1);
4958    } else {
4959      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4960      if (Idx < 4) {
4961        Locs[i] = std::make_pair(0, NumLo);
4962        Mask1[NumLo] = Idx;
4963        NumLo++;
4964      } else {
4965        Locs[i] = std::make_pair(1, NumHi);
4966        if (2+NumHi < 4)
4967          Mask1[2+NumHi] = Idx;
4968        NumHi++;
4969      }
4970    }
4971  }
4972
4973  if (NumLo <= 2 && NumHi <= 2) {
4974    // If no more than two elements come from either vector. This can be
4975    // implemented with two shuffles. First shuffle gather the elements.
4976    // The second shuffle, which takes the first shuffle as both of its
4977    // vector operands, put the elements into the right order.
4978    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4979
4980    SmallVector<int, 8> Mask2(4U, -1);
4981
4982    for (unsigned i = 0; i != 4; ++i) {
4983      if (Locs[i].first == -1)
4984        continue;
4985      else {
4986        unsigned Idx = (i < 2) ? 0 : 4;
4987        Idx += Locs[i].first * 2 + Locs[i].second;
4988        Mask2[i] = Idx;
4989      }
4990    }
4991
4992    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4993  } else if (NumLo == 3 || NumHi == 3) {
4994    // Otherwise, we must have three elements from one vector, call it X, and
4995    // one element from the other, call it Y.  First, use a shufps to build an
4996    // intermediate vector with the one element from Y and the element from X
4997    // that will be in the same half in the final destination (the indexes don't
4998    // matter). Then, use a shufps to build the final vector, taking the half
4999    // containing the element from Y from the intermediate, and the other half
5000    // from X.
5001    if (NumHi == 3) {
5002      // Normalize it so the 3 elements come from V1.
5003      CommuteVectorShuffleMask(PermMask, VT);
5004      std::swap(V1, V2);
5005    }
5006
5007    // Find the element from V2.
5008    unsigned HiIndex;
5009    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5010      int Val = PermMask[HiIndex];
5011      if (Val < 0)
5012        continue;
5013      if (Val >= 4)
5014        break;
5015    }
5016
5017    Mask1[0] = PermMask[HiIndex];
5018    Mask1[1] = -1;
5019    Mask1[2] = PermMask[HiIndex^1];
5020    Mask1[3] = -1;
5021    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5022
5023    if (HiIndex >= 2) {
5024      Mask1[0] = PermMask[0];
5025      Mask1[1] = PermMask[1];
5026      Mask1[2] = HiIndex & 1 ? 6 : 4;
5027      Mask1[3] = HiIndex & 1 ? 4 : 6;
5028      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5029    } else {
5030      Mask1[0] = HiIndex & 1 ? 2 : 0;
5031      Mask1[1] = HiIndex & 1 ? 0 : 2;
5032      Mask1[2] = PermMask[2];
5033      Mask1[3] = PermMask[3];
5034      if (Mask1[2] >= 0)
5035        Mask1[2] += 4;
5036      if (Mask1[3] >= 0)
5037        Mask1[3] += 4;
5038      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5039    }
5040  }
5041
5042  // Break it into (shuffle shuffle_hi, shuffle_lo).
5043  Locs.clear();
5044  SmallVector<int,8> LoMask(4U, -1);
5045  SmallVector<int,8> HiMask(4U, -1);
5046
5047  SmallVector<int,8> *MaskPtr = &LoMask;
5048  unsigned MaskIdx = 0;
5049  unsigned LoIdx = 0;
5050  unsigned HiIdx = 2;
5051  for (unsigned i = 0; i != 4; ++i) {
5052    if (i == 2) {
5053      MaskPtr = &HiMask;
5054      MaskIdx = 1;
5055      LoIdx = 0;
5056      HiIdx = 2;
5057    }
5058    int Idx = PermMask[i];
5059    if (Idx < 0) {
5060      Locs[i] = std::make_pair(-1, -1);
5061    } else if (Idx < 4) {
5062      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5063      (*MaskPtr)[LoIdx] = Idx;
5064      LoIdx++;
5065    } else {
5066      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5067      (*MaskPtr)[HiIdx] = Idx;
5068      HiIdx++;
5069    }
5070  }
5071
5072  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5073  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5074  SmallVector<int, 8> MaskOps;
5075  for (unsigned i = 0; i != 4; ++i) {
5076    if (Locs[i].first == -1) {
5077      MaskOps.push_back(-1);
5078    } else {
5079      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5080      MaskOps.push_back(Idx);
5081    }
5082  }
5083  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5084}
5085
5086static bool MayFoldVectorLoad(SDValue V) {
5087  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5088    V = V.getOperand(0);
5089  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5090    V = V.getOperand(0);
5091  if (MayFoldLoad(V))
5092    return true;
5093  return false;
5094}
5095
5096// FIXME: the version above should always be used. Since there's
5097// a bug where several vector shuffles can't be folded because the
5098// DAG is not updated during lowering and a node claims to have two
5099// uses while it only has one, use this version, and let isel match
5100// another instruction if the load really happens to have more than
5101// one use. Remove this version after this bug get fixed.
5102// rdar://8434668, PR8156
5103static bool RelaxedMayFoldVectorLoad(SDValue V) {
5104  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5105    V = V.getOperand(0);
5106  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5107    V = V.getOperand(0);
5108  if (ISD::isNormalLoad(V.getNode()))
5109    return true;
5110  return false;
5111}
5112
5113/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5114/// a vector extract, and if both can be later optimized into a single load.
5115/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5116/// here because otherwise a target specific shuffle node is going to be
5117/// emitted for this shuffle, and the optimization not done.
5118/// FIXME: This is probably not the best approach, but fix the problem
5119/// until the right path is decided.
5120static
5121bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5122                                         const TargetLowering &TLI) {
5123  EVT VT = V.getValueType();
5124  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5125
5126  // Be sure that the vector shuffle is present in a pattern like this:
5127  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5128  if (!V.hasOneUse())
5129    return false;
5130
5131  SDNode *N = *V.getNode()->use_begin();
5132  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5133    return false;
5134
5135  SDValue EltNo = N->getOperand(1);
5136  if (!isa<ConstantSDNode>(EltNo))
5137    return false;
5138
5139  // If the bit convert changed the number of elements, it is unsafe
5140  // to examine the mask.
5141  bool HasShuffleIntoBitcast = false;
5142  if (V.getOpcode() == ISD::BITCAST) {
5143    EVT SrcVT = V.getOperand(0).getValueType();
5144    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5145      return false;
5146    V = V.getOperand(0);
5147    HasShuffleIntoBitcast = true;
5148  }
5149
5150  // Select the input vector, guarding against out of range extract vector.
5151  unsigned NumElems = VT.getVectorNumElements();
5152  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5153  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5154  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5155
5156  // Skip one more bit_convert if necessary
5157  if (V.getOpcode() == ISD::BITCAST)
5158    V = V.getOperand(0);
5159
5160  if (ISD::isNormalLoad(V.getNode())) {
5161    // Is the original load suitable?
5162    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5163
5164    // FIXME: avoid the multi-use bug that is preventing lots of
5165    // of foldings to be detected, this is still wrong of course, but
5166    // give the temporary desired behavior, and if it happens that
5167    // the load has real more uses, during isel it will not fold, and
5168    // will generate poor code.
5169    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5170      return false;
5171
5172    if (!HasShuffleIntoBitcast)
5173      return true;
5174
5175    // If there's a bitcast before the shuffle, check if the load type and
5176    // alignment is valid.
5177    unsigned Align = LN0->getAlignment();
5178    unsigned NewAlign =
5179      TLI.getTargetData()->getABITypeAlignment(
5180                                    VT.getTypeForEVT(*DAG.getContext()));
5181
5182    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5183      return false;
5184  }
5185
5186  return true;
5187}
5188
5189static
5190SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5191  EVT VT = Op.getValueType();
5192
5193  // Canonizalize to v2f64.
5194  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5195  return DAG.getNode(ISD::BITCAST, dl, VT,
5196                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5197                                          V1, DAG));
5198}
5199
5200static
5201SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5202                        bool HasSSE2) {
5203  SDValue V1 = Op.getOperand(0);
5204  SDValue V2 = Op.getOperand(1);
5205  EVT VT = Op.getValueType();
5206
5207  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5208
5209  if (HasSSE2 && VT == MVT::v2f64)
5210    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5211
5212  // v4f32 or v4i32
5213  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5214}
5215
5216static
5217SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5218  SDValue V1 = Op.getOperand(0);
5219  SDValue V2 = Op.getOperand(1);
5220  EVT VT = Op.getValueType();
5221
5222  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5223         "unsupported shuffle type");
5224
5225  if (V2.getOpcode() == ISD::UNDEF)
5226    V2 = V1;
5227
5228  // v4i32 or v4f32
5229  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5230}
5231
5232static
5233SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5234  SDValue V1 = Op.getOperand(0);
5235  SDValue V2 = Op.getOperand(1);
5236  EVT VT = Op.getValueType();
5237  unsigned NumElems = VT.getVectorNumElements();
5238
5239  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5240  // operand of these instructions is only memory, so check if there's a
5241  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5242  // same masks.
5243  bool CanFoldLoad = false;
5244
5245  // Trivial case, when V2 comes from a load.
5246  if (MayFoldVectorLoad(V2))
5247    CanFoldLoad = true;
5248
5249  // When V1 is a load, it can be folded later into a store in isel, example:
5250  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5251  //    turns into:
5252  //  (MOVLPSmr addr:$src1, VR128:$src2)
5253  // So, recognize this potential and also use MOVLPS or MOVLPD
5254  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5255    CanFoldLoad = true;
5256
5257  if (CanFoldLoad) {
5258    if (HasSSE2 && NumElems == 2)
5259      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5260
5261    if (NumElems == 4)
5262      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5263  }
5264
5265  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5266  // movl and movlp will both match v2i64, but v2i64 is never matched by
5267  // movl earlier because we make it strict to avoid messing with the movlp load
5268  // folding logic (see the code above getMOVLP call). Match it here then,
5269  // this is horrible, but will stay like this until we move all shuffle
5270  // matching to x86 specific nodes. Note that for the 1st condition all
5271  // types are matched with movsd.
5272  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5273    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5274  else if (HasSSE2)
5275    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5276
5277
5278  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5279
5280  // Invert the operand order and use SHUFPS to match it.
5281  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5282                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5283}
5284
5285static inline unsigned getUNPCKLOpcode(EVT VT) {
5286  switch(VT.getSimpleVT().SimpleTy) {
5287  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5288  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5289  case MVT::v4f32: return X86ISD::UNPCKLPS;
5290  case MVT::v2f64: return X86ISD::UNPCKLPD;
5291  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5292  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5293  default:
5294    llvm_unreachable("Unknow type for unpckl");
5295  }
5296  return 0;
5297}
5298
5299static inline unsigned getUNPCKHOpcode(EVT VT) {
5300  switch(VT.getSimpleVT().SimpleTy) {
5301  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5302  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5303  case MVT::v4f32: return X86ISD::UNPCKHPS;
5304  case MVT::v2f64: return X86ISD::UNPCKHPD;
5305  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5306  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5307  default:
5308    llvm_unreachable("Unknow type for unpckh");
5309  }
5310  return 0;
5311}
5312
5313static
5314SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5315                               const TargetLowering &TLI,
5316                               const X86Subtarget *Subtarget) {
5317  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5318  EVT VT = Op.getValueType();
5319  DebugLoc dl = Op.getDebugLoc();
5320  SDValue V1 = Op.getOperand(0);
5321  SDValue V2 = Op.getOperand(1);
5322
5323  if (isZeroShuffle(SVOp))
5324    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5325
5326  // Handle splat operations
5327  if (SVOp->isSplat()) {
5328    // Special case, this is the only place now where it's
5329    // allowed to return a vector_shuffle operation without
5330    // using a target specific node, because *hopefully* it
5331    // will be optimized away by the dag combiner.
5332    if (VT.getVectorNumElements() <= 4 &&
5333        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5334      return Op;
5335
5336    // Handle splats by matching through known masks
5337    if (VT.getVectorNumElements() <= 4)
5338      return SDValue();
5339
5340    // Canonicalize all of the remaining to v4f32.
5341    return PromoteSplat(SVOp, DAG);
5342  }
5343
5344  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5345  // do it!
5346  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5347    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5348    if (NewOp.getNode())
5349      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5350  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5351    // FIXME: Figure out a cleaner way to do this.
5352    // Try to make use of movq to zero out the top part.
5353    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5354      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5355      if (NewOp.getNode()) {
5356        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5357          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5358                              DAG, Subtarget, dl);
5359      }
5360    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5361      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5362      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5363        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5364                            DAG, Subtarget, dl);
5365    }
5366  }
5367  return SDValue();
5368}
5369
5370SDValue
5371X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5372  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5373  SDValue V1 = Op.getOperand(0);
5374  SDValue V2 = Op.getOperand(1);
5375  EVT VT = Op.getValueType();
5376  DebugLoc dl = Op.getDebugLoc();
5377  unsigned NumElems = VT.getVectorNumElements();
5378  bool isMMX = VT.getSizeInBits() == 64;
5379  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5380  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5381  bool V1IsSplat = false;
5382  bool V2IsSplat = false;
5383  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5384  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5385  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5386  MachineFunction &MF = DAG.getMachineFunction();
5387  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5388
5389  // Shuffle operations on MMX not supported.
5390  if (isMMX)
5391    return Op;
5392
5393  // Vector shuffle lowering takes 3 steps:
5394  //
5395  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5396  //    narrowing and commutation of operands should be handled.
5397  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5398  //    shuffle nodes.
5399  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5400  //    so the shuffle can be broken into other shuffles and the legalizer can
5401  //    try the lowering again.
5402  //
5403  // The general ideia is that no vector_shuffle operation should be left to
5404  // be matched during isel, all of them must be converted to a target specific
5405  // node here.
5406
5407  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5408  // narrowing and commutation of operands should be handled. The actual code
5409  // doesn't include all of those, work in progress...
5410  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5411  if (NewOp.getNode())
5412    return NewOp;
5413
5414  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5415  // unpckh_undef). Only use pshufd if speed is more important than size.
5416  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5417    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5418      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5419  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5420    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5421      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5422
5423  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5424      RelaxedMayFoldVectorLoad(V1))
5425    return getMOVDDup(Op, dl, V1, DAG);
5426
5427  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5428    return getMOVHighToLow(Op, dl, DAG);
5429
5430  // Use to match splats
5431  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5432      (VT == MVT::v2f64 || VT == MVT::v2i64))
5433    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5434
5435  if (X86::isPSHUFDMask(SVOp)) {
5436    // The actual implementation will match the mask in the if above and then
5437    // during isel it can match several different instructions, not only pshufd
5438    // as its name says, sad but true, emulate the behavior for now...
5439    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5440        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5441
5442    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5443
5444    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5445      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5446
5447    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5448      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5449                                  TargetMask, DAG);
5450
5451    if (VT == MVT::v4f32)
5452      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5453                                  TargetMask, DAG);
5454  }
5455
5456  // Check if this can be converted into a logical shift.
5457  bool isLeft = false;
5458  unsigned ShAmt = 0;
5459  SDValue ShVal;
5460  bool isShift = getSubtarget()->hasSSE2() &&
5461    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5462  if (isShift && ShVal.hasOneUse()) {
5463    // If the shifted value has multiple uses, it may be cheaper to use
5464    // v_set0 + movlhps or movhlps, etc.
5465    EVT EltVT = VT.getVectorElementType();
5466    ShAmt *= EltVT.getSizeInBits();
5467    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5468  }
5469
5470  if (X86::isMOVLMask(SVOp)) {
5471    if (V1IsUndef)
5472      return V2;
5473    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5474      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5475    if (!X86::isMOVLPMask(SVOp)) {
5476      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5477        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5478
5479      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5480        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5481    }
5482  }
5483
5484  // FIXME: fold these into legal mask.
5485  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5486    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5487
5488  if (X86::isMOVHLPSMask(SVOp))
5489    return getMOVHighToLow(Op, dl, DAG);
5490
5491  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5492    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5493
5494  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5495    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5496
5497  if (X86::isMOVLPMask(SVOp))
5498    return getMOVLP(Op, dl, DAG, HasSSE2);
5499
5500  if (ShouldXformToMOVHLPS(SVOp) ||
5501      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5502    return CommuteVectorShuffle(SVOp, DAG);
5503
5504  if (isShift) {
5505    // No better options. Use a vshl / vsrl.
5506    EVT EltVT = VT.getVectorElementType();
5507    ShAmt *= EltVT.getSizeInBits();
5508    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5509  }
5510
5511  bool Commuted = false;
5512  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5513  // 1,1,1,1 -> v8i16 though.
5514  V1IsSplat = isSplatVector(V1.getNode());
5515  V2IsSplat = isSplatVector(V2.getNode());
5516
5517  // Canonicalize the splat or undef, if present, to be on the RHS.
5518  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5519    Op = CommuteVectorShuffle(SVOp, DAG);
5520    SVOp = cast<ShuffleVectorSDNode>(Op);
5521    V1 = SVOp->getOperand(0);
5522    V2 = SVOp->getOperand(1);
5523    std::swap(V1IsSplat, V2IsSplat);
5524    std::swap(V1IsUndef, V2IsUndef);
5525    Commuted = true;
5526  }
5527
5528  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5529    // Shuffling low element of v1 into undef, just return v1.
5530    if (V2IsUndef)
5531      return V1;
5532    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5533    // the instruction selector will not match, so get a canonical MOVL with
5534    // swapped operands to undo the commute.
5535    return getMOVL(DAG, dl, VT, V2, V1);
5536  }
5537
5538  if (X86::isUNPCKLMask(SVOp))
5539    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5540
5541  if (X86::isUNPCKHMask(SVOp))
5542    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5543
5544  if (V2IsSplat) {
5545    // Normalize mask so all entries that point to V2 points to its first
5546    // element then try to match unpck{h|l} again. If match, return a
5547    // new vector_shuffle with the corrected mask.
5548    SDValue NewMask = NormalizeMask(SVOp, DAG);
5549    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5550    if (NSVOp != SVOp) {
5551      if (X86::isUNPCKLMask(NSVOp, true)) {
5552        return NewMask;
5553      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5554        return NewMask;
5555      }
5556    }
5557  }
5558
5559  if (Commuted) {
5560    // Commute is back and try unpck* again.
5561    // FIXME: this seems wrong.
5562    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5563    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5564
5565    if (X86::isUNPCKLMask(NewSVOp))
5566      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5567
5568    if (X86::isUNPCKHMask(NewSVOp))
5569      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5570  }
5571
5572  // Normalize the node to match x86 shuffle ops if needed
5573  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5574    return CommuteVectorShuffle(SVOp, DAG);
5575
5576  // The checks below are all present in isShuffleMaskLegal, but they are
5577  // inlined here right now to enable us to directly emit target specific
5578  // nodes, and remove one by one until they don't return Op anymore.
5579  SmallVector<int, 16> M;
5580  SVOp->getMask(M);
5581
5582  if (isPALIGNRMask(M, VT, HasSSSE3))
5583    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5584                                X86::getShufflePALIGNRImmediate(SVOp),
5585                                DAG);
5586
5587  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5588      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5589    if (VT == MVT::v2f64)
5590      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5591    if (VT == MVT::v2i64)
5592      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5593  }
5594
5595  if (isPSHUFHWMask(M, VT))
5596    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5597                                X86::getShufflePSHUFHWImmediate(SVOp),
5598                                DAG);
5599
5600  if (isPSHUFLWMask(M, VT))
5601    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5602                                X86::getShufflePSHUFLWImmediate(SVOp),
5603                                DAG);
5604
5605  if (isSHUFPMask(M, VT)) {
5606    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5607    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5608      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5609                                  TargetMask, DAG);
5610    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5611      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5612                                  TargetMask, DAG);
5613  }
5614
5615  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5616    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5617      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5618  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5619    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5620      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5621
5622  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5623  if (VT == MVT::v8i16) {
5624    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5625    if (NewOp.getNode())
5626      return NewOp;
5627  }
5628
5629  if (VT == MVT::v16i8) {
5630    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5631    if (NewOp.getNode())
5632      return NewOp;
5633  }
5634
5635  // Handle all 4 wide cases with a number of shuffles.
5636  if (NumElems == 4)
5637    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5638
5639  return SDValue();
5640}
5641
5642SDValue
5643X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5644                                                SelectionDAG &DAG) const {
5645  EVT VT = Op.getValueType();
5646  DebugLoc dl = Op.getDebugLoc();
5647  if (VT.getSizeInBits() == 8) {
5648    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5649                                    Op.getOperand(0), Op.getOperand(1));
5650    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5651                                    DAG.getValueType(VT));
5652    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5653  } else if (VT.getSizeInBits() == 16) {
5654    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5655    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5656    if (Idx == 0)
5657      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5658                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5659                                     DAG.getNode(ISD::BITCAST, dl,
5660                                                 MVT::v4i32,
5661                                                 Op.getOperand(0)),
5662                                     Op.getOperand(1)));
5663    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5664                                    Op.getOperand(0), Op.getOperand(1));
5665    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5666                                    DAG.getValueType(VT));
5667    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5668  } else if (VT == MVT::f32) {
5669    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5670    // the result back to FR32 register. It's only worth matching if the
5671    // result has a single use which is a store or a bitcast to i32.  And in
5672    // the case of a store, it's not worth it if the index is a constant 0,
5673    // because a MOVSSmr can be used instead, which is smaller and faster.
5674    if (!Op.hasOneUse())
5675      return SDValue();
5676    SDNode *User = *Op.getNode()->use_begin();
5677    if ((User->getOpcode() != ISD::STORE ||
5678         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5679          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5680        (User->getOpcode() != ISD::BITCAST ||
5681         User->getValueType(0) != MVT::i32))
5682      return SDValue();
5683    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5684                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5685                                              Op.getOperand(0)),
5686                                              Op.getOperand(1));
5687    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5688  } else if (VT == MVT::i32) {
5689    // ExtractPS works with constant index.
5690    if (isa<ConstantSDNode>(Op.getOperand(1)))
5691      return Op;
5692  }
5693  return SDValue();
5694}
5695
5696
5697SDValue
5698X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5699                                           SelectionDAG &DAG) const {
5700  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5701    return SDValue();
5702
5703  if (Subtarget->hasSSE41()) {
5704    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5705    if (Res.getNode())
5706      return Res;
5707  }
5708
5709  EVT VT = Op.getValueType();
5710  DebugLoc dl = Op.getDebugLoc();
5711  // TODO: handle v16i8.
5712  if (VT.getSizeInBits() == 16) {
5713    SDValue Vec = Op.getOperand(0);
5714    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5715    if (Idx == 0)
5716      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5717                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5718                                     DAG.getNode(ISD::BITCAST, dl,
5719                                                 MVT::v4i32, Vec),
5720                                     Op.getOperand(1)));
5721    // Transform it so it match pextrw which produces a 32-bit result.
5722    EVT EltVT = MVT::i32;
5723    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5724                                    Op.getOperand(0), Op.getOperand(1));
5725    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5726                                    DAG.getValueType(VT));
5727    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5728  } else if (VT.getSizeInBits() == 32) {
5729    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5730    if (Idx == 0)
5731      return Op;
5732
5733    // SHUFPS the element to the lowest double word, then movss.
5734    int Mask[4] = { Idx, -1, -1, -1 };
5735    EVT VVT = Op.getOperand(0).getValueType();
5736    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5737                                       DAG.getUNDEF(VVT), Mask);
5738    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5739                       DAG.getIntPtrConstant(0));
5740  } else if (VT.getSizeInBits() == 64) {
5741    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5742    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5743    //        to match extract_elt for f64.
5744    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5745    if (Idx == 0)
5746      return Op;
5747
5748    // UNPCKHPD the element to the lowest double word, then movsd.
5749    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5750    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5751    int Mask[2] = { 1, -1 };
5752    EVT VVT = Op.getOperand(0).getValueType();
5753    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5754                                       DAG.getUNDEF(VVT), Mask);
5755    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5756                       DAG.getIntPtrConstant(0));
5757  }
5758
5759  return SDValue();
5760}
5761
5762SDValue
5763X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5764                                               SelectionDAG &DAG) const {
5765  EVT VT = Op.getValueType();
5766  EVT EltVT = VT.getVectorElementType();
5767  DebugLoc dl = Op.getDebugLoc();
5768
5769  SDValue N0 = Op.getOperand(0);
5770  SDValue N1 = Op.getOperand(1);
5771  SDValue N2 = Op.getOperand(2);
5772
5773  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5774      isa<ConstantSDNode>(N2)) {
5775    unsigned Opc;
5776    if (VT == MVT::v8i16)
5777      Opc = X86ISD::PINSRW;
5778    else if (VT == MVT::v16i8)
5779      Opc = X86ISD::PINSRB;
5780    else
5781      Opc = X86ISD::PINSRB;
5782
5783    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5784    // argument.
5785    if (N1.getValueType() != MVT::i32)
5786      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5787    if (N2.getValueType() != MVT::i32)
5788      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5789    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5790  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5791    // Bits [7:6] of the constant are the source select.  This will always be
5792    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5793    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5794    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5795    // Bits [5:4] of the constant are the destination select.  This is the
5796    //  value of the incoming immediate.
5797    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5798    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5799    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5800    // Create this as a scalar to vector..
5801    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5802    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5803  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5804    // PINSR* works with constant index.
5805    return Op;
5806  }
5807  return SDValue();
5808}
5809
5810SDValue
5811X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5812  EVT VT = Op.getValueType();
5813  EVT EltVT = VT.getVectorElementType();
5814
5815  if (Subtarget->hasSSE41())
5816    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5817
5818  if (EltVT == MVT::i8)
5819    return SDValue();
5820
5821  DebugLoc dl = Op.getDebugLoc();
5822  SDValue N0 = Op.getOperand(0);
5823  SDValue N1 = Op.getOperand(1);
5824  SDValue N2 = Op.getOperand(2);
5825
5826  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5827    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5828    // as its second argument.
5829    if (N1.getValueType() != MVT::i32)
5830      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5831    if (N2.getValueType() != MVT::i32)
5832      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5833    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5834  }
5835  return SDValue();
5836}
5837
5838SDValue
5839X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5840  DebugLoc dl = Op.getDebugLoc();
5841
5842  if (Op.getValueType() == MVT::v1i64 &&
5843      Op.getOperand(0).getValueType() == MVT::i64)
5844    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5845
5846  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5847  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5848         "Expected an SSE type!");
5849  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
5850                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5851}
5852
5853// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5854// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5855// one of the above mentioned nodes. It has to be wrapped because otherwise
5856// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5857// be used to form addressing mode. These wrapped nodes will be selected
5858// into MOV32ri.
5859SDValue
5860X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5861  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5862
5863  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5864  // global base reg.
5865  unsigned char OpFlag = 0;
5866  unsigned WrapperKind = X86ISD::Wrapper;
5867  CodeModel::Model M = getTargetMachine().getCodeModel();
5868
5869  if (Subtarget->isPICStyleRIPRel() &&
5870      (M == CodeModel::Small || M == CodeModel::Kernel))
5871    WrapperKind = X86ISD::WrapperRIP;
5872  else if (Subtarget->isPICStyleGOT())
5873    OpFlag = X86II::MO_GOTOFF;
5874  else if (Subtarget->isPICStyleStubPIC())
5875    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5876
5877  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5878                                             CP->getAlignment(),
5879                                             CP->getOffset(), OpFlag);
5880  DebugLoc DL = CP->getDebugLoc();
5881  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5882  // With PIC, the address is actually $g + Offset.
5883  if (OpFlag) {
5884    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5885                         DAG.getNode(X86ISD::GlobalBaseReg,
5886                                     DebugLoc(), getPointerTy()),
5887                         Result);
5888  }
5889
5890  return Result;
5891}
5892
5893SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5894  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5895
5896  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5897  // global base reg.
5898  unsigned char OpFlag = 0;
5899  unsigned WrapperKind = X86ISD::Wrapper;
5900  CodeModel::Model M = getTargetMachine().getCodeModel();
5901
5902  if (Subtarget->isPICStyleRIPRel() &&
5903      (M == CodeModel::Small || M == CodeModel::Kernel))
5904    WrapperKind = X86ISD::WrapperRIP;
5905  else if (Subtarget->isPICStyleGOT())
5906    OpFlag = X86II::MO_GOTOFF;
5907  else if (Subtarget->isPICStyleStubPIC())
5908    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5909
5910  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5911                                          OpFlag);
5912  DebugLoc DL = JT->getDebugLoc();
5913  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5914
5915  // With PIC, the address is actually $g + Offset.
5916  if (OpFlag)
5917    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5918                         DAG.getNode(X86ISD::GlobalBaseReg,
5919                                     DebugLoc(), getPointerTy()),
5920                         Result);
5921
5922  return Result;
5923}
5924
5925SDValue
5926X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5927  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5928
5929  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5930  // global base reg.
5931  unsigned char OpFlag = 0;
5932  unsigned WrapperKind = X86ISD::Wrapper;
5933  CodeModel::Model M = getTargetMachine().getCodeModel();
5934
5935  if (Subtarget->isPICStyleRIPRel() &&
5936      (M == CodeModel::Small || M == CodeModel::Kernel))
5937    WrapperKind = X86ISD::WrapperRIP;
5938  else if (Subtarget->isPICStyleGOT())
5939    OpFlag = X86II::MO_GOTOFF;
5940  else if (Subtarget->isPICStyleStubPIC())
5941    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5942
5943  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5944
5945  DebugLoc DL = Op.getDebugLoc();
5946  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5947
5948
5949  // With PIC, the address is actually $g + Offset.
5950  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5951      !Subtarget->is64Bit()) {
5952    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5953                         DAG.getNode(X86ISD::GlobalBaseReg,
5954                                     DebugLoc(), getPointerTy()),
5955                         Result);
5956  }
5957
5958  return Result;
5959}
5960
5961SDValue
5962X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5963  // Create the TargetBlockAddressAddress node.
5964  unsigned char OpFlags =
5965    Subtarget->ClassifyBlockAddressReference();
5966  CodeModel::Model M = getTargetMachine().getCodeModel();
5967  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5968  DebugLoc dl = Op.getDebugLoc();
5969  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5970                                       /*isTarget=*/true, OpFlags);
5971
5972  if (Subtarget->isPICStyleRIPRel() &&
5973      (M == CodeModel::Small || M == CodeModel::Kernel))
5974    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5975  else
5976    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5977
5978  // With PIC, the address is actually $g + Offset.
5979  if (isGlobalRelativeToPICBase(OpFlags)) {
5980    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5981                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5982                         Result);
5983  }
5984
5985  return Result;
5986}
5987
5988SDValue
5989X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5990                                      int64_t Offset,
5991                                      SelectionDAG &DAG) const {
5992  // Create the TargetGlobalAddress node, folding in the constant
5993  // offset if it is legal.
5994  unsigned char OpFlags =
5995    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5996  CodeModel::Model M = getTargetMachine().getCodeModel();
5997  SDValue Result;
5998  if (OpFlags == X86II::MO_NO_FLAG &&
5999      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6000    // A direct static reference to a global.
6001    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6002    Offset = 0;
6003  } else {
6004    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6005  }
6006
6007  if (Subtarget->isPICStyleRIPRel() &&
6008      (M == CodeModel::Small || M == CodeModel::Kernel))
6009    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6010  else
6011    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6012
6013  // With PIC, the address is actually $g + Offset.
6014  if (isGlobalRelativeToPICBase(OpFlags)) {
6015    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6016                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6017                         Result);
6018  }
6019
6020  // For globals that require a load from a stub to get the address, emit the
6021  // load.
6022  if (isGlobalStubReference(OpFlags))
6023    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6024                         MachinePointerInfo::getGOT(), false, false, 0);
6025
6026  // If there was a non-zero offset that we didn't fold, create an explicit
6027  // addition for it.
6028  if (Offset != 0)
6029    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6030                         DAG.getConstant(Offset, getPointerTy()));
6031
6032  return Result;
6033}
6034
6035SDValue
6036X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6037  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6038  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6039  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6040}
6041
6042static SDValue
6043GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6044           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6045           unsigned char OperandFlags) {
6046  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6047  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6048  DebugLoc dl = GA->getDebugLoc();
6049  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6050                                           GA->getValueType(0),
6051                                           GA->getOffset(),
6052                                           OperandFlags);
6053  if (InFlag) {
6054    SDValue Ops[] = { Chain,  TGA, *InFlag };
6055    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6056  } else {
6057    SDValue Ops[]  = { Chain, TGA };
6058    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6059  }
6060
6061  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6062  MFI->setAdjustsStack(true);
6063
6064  SDValue Flag = Chain.getValue(1);
6065  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6066}
6067
6068// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6069static SDValue
6070LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6071                                const EVT PtrVT) {
6072  SDValue InFlag;
6073  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6074  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6075                                     DAG.getNode(X86ISD::GlobalBaseReg,
6076                                                 DebugLoc(), PtrVT), InFlag);
6077  InFlag = Chain.getValue(1);
6078
6079  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6080}
6081
6082// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6083static SDValue
6084LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6085                                const EVT PtrVT) {
6086  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6087                    X86::RAX, X86II::MO_TLSGD);
6088}
6089
6090// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6091// "local exec" model.
6092static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6093                                   const EVT PtrVT, TLSModel::Model model,
6094                                   bool is64Bit) {
6095  DebugLoc dl = GA->getDebugLoc();
6096
6097  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6098  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6099                                                         is64Bit ? 257 : 256));
6100
6101  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6102                                      DAG.getIntPtrConstant(0),
6103                                      MachinePointerInfo(Ptr), false, false, 0);
6104
6105  unsigned char OperandFlags = 0;
6106  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6107  // initialexec.
6108  unsigned WrapperKind = X86ISD::Wrapper;
6109  if (model == TLSModel::LocalExec) {
6110    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6111  } else if (is64Bit) {
6112    assert(model == TLSModel::InitialExec);
6113    OperandFlags = X86II::MO_GOTTPOFF;
6114    WrapperKind = X86ISD::WrapperRIP;
6115  } else {
6116    assert(model == TLSModel::InitialExec);
6117    OperandFlags = X86II::MO_INDNTPOFF;
6118  }
6119
6120  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6121  // exec)
6122  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6123                                           GA->getValueType(0),
6124                                           GA->getOffset(), OperandFlags);
6125  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6126
6127  if (model == TLSModel::InitialExec)
6128    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6129                         MachinePointerInfo::getGOT(), false, false, 0);
6130
6131  // The address of the thread local variable is the add of the thread
6132  // pointer with the offset of the variable.
6133  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6134}
6135
6136SDValue
6137X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6138
6139  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6140  const GlobalValue *GV = GA->getGlobal();
6141
6142  if (Subtarget->isTargetELF()) {
6143    // TODO: implement the "local dynamic" model
6144    // TODO: implement the "initial exec"model for pic executables
6145
6146    // If GV is an alias then use the aliasee for determining
6147    // thread-localness.
6148    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6149      GV = GA->resolveAliasedGlobal(false);
6150
6151    TLSModel::Model model
6152      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6153
6154    switch (model) {
6155      case TLSModel::GeneralDynamic:
6156      case TLSModel::LocalDynamic: // not implemented
6157        if (Subtarget->is64Bit())
6158          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6159        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6160
6161      case TLSModel::InitialExec:
6162      case TLSModel::LocalExec:
6163        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6164                                   Subtarget->is64Bit());
6165    }
6166  } else if (Subtarget->isTargetDarwin()) {
6167    // Darwin only has one model of TLS.  Lower to that.
6168    unsigned char OpFlag = 0;
6169    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6170                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6171
6172    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6173    // global base reg.
6174    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6175                  !Subtarget->is64Bit();
6176    if (PIC32)
6177      OpFlag = X86II::MO_TLVP_PIC_BASE;
6178    else
6179      OpFlag = X86II::MO_TLVP;
6180    DebugLoc DL = Op.getDebugLoc();
6181    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6182                                                getPointerTy(),
6183                                                GA->getOffset(), OpFlag);
6184    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6185
6186    // With PIC32, the address is actually $g + Offset.
6187    if (PIC32)
6188      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6189                           DAG.getNode(X86ISD::GlobalBaseReg,
6190                                       DebugLoc(), getPointerTy()),
6191                           Offset);
6192
6193    // Lowering the machine isd will make sure everything is in the right
6194    // location.
6195    SDValue Args[] = { Offset };
6196    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
6197
6198    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6199    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6200    MFI->setAdjustsStack(true);
6201
6202    // And our return value (tls address) is in the standard call return value
6203    // location.
6204    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6205    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6206  }
6207
6208  assert(false &&
6209         "TLS not implemented for this target.");
6210
6211  llvm_unreachable("Unreachable");
6212  return SDValue();
6213}
6214
6215
6216/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6217/// take a 2 x i32 value to shift plus a shift amount.
6218SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6219  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6220  EVT VT = Op.getValueType();
6221  unsigned VTBits = VT.getSizeInBits();
6222  DebugLoc dl = Op.getDebugLoc();
6223  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6224  SDValue ShOpLo = Op.getOperand(0);
6225  SDValue ShOpHi = Op.getOperand(1);
6226  SDValue ShAmt  = Op.getOperand(2);
6227  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6228                                     DAG.getConstant(VTBits - 1, MVT::i8))
6229                       : DAG.getConstant(0, VT);
6230
6231  SDValue Tmp2, Tmp3;
6232  if (Op.getOpcode() == ISD::SHL_PARTS) {
6233    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6234    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6235  } else {
6236    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6237    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6238  }
6239
6240  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6241                                DAG.getConstant(VTBits, MVT::i8));
6242  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6243                             AndNode, DAG.getConstant(0, MVT::i8));
6244
6245  SDValue Hi, Lo;
6246  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6247  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6248  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6249
6250  if (Op.getOpcode() == ISD::SHL_PARTS) {
6251    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6252    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6253  } else {
6254    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6255    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6256  }
6257
6258  SDValue Ops[2] = { Lo, Hi };
6259  return DAG.getMergeValues(Ops, 2, dl);
6260}
6261
6262SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6263                                           SelectionDAG &DAG) const {
6264  EVT SrcVT = Op.getOperand(0).getValueType();
6265
6266  if (SrcVT.isVector())
6267    return SDValue();
6268
6269  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6270         "Unknown SINT_TO_FP to lower!");
6271
6272  // These are really Legal; return the operand so the caller accepts it as
6273  // Legal.
6274  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6275    return Op;
6276  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6277      Subtarget->is64Bit()) {
6278    return Op;
6279  }
6280
6281  DebugLoc dl = Op.getDebugLoc();
6282  unsigned Size = SrcVT.getSizeInBits()/8;
6283  MachineFunction &MF = DAG.getMachineFunction();
6284  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6285  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6286  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6287                               StackSlot,
6288                               MachinePointerInfo::getFixedStack(SSFI),
6289                               false, false, 0);
6290  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6291}
6292
6293SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6294                                     SDValue StackSlot,
6295                                     SelectionDAG &DAG) const {
6296  // Build the FILD
6297  DebugLoc DL = Op.getDebugLoc();
6298  SDVTList Tys;
6299  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6300  if (useSSE)
6301    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6302  else
6303    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6304
6305  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6306
6307  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6308  MachineMemOperand *MMO =
6309    DAG.getMachineFunction()
6310    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6311                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6312
6313  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6314  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6315                                           X86ISD::FILD, DL,
6316                                           Tys, Ops, array_lengthof(Ops),
6317                                           SrcVT, MMO);
6318
6319  if (useSSE) {
6320    Chain = Result.getValue(1);
6321    SDValue InFlag = Result.getValue(2);
6322
6323    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6324    // shouldn't be necessary except that RFP cannot be live across
6325    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6326    MachineFunction &MF = DAG.getMachineFunction();
6327    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6328    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6329    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6330    Tys = DAG.getVTList(MVT::Other);
6331    SDValue Ops[] = {
6332      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6333    };
6334    MachineMemOperand *MMO =
6335      DAG.getMachineFunction()
6336      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6337                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6338
6339    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6340                                    Ops, array_lengthof(Ops),
6341                                    Op.getValueType(), MMO);
6342    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6343                         MachinePointerInfo::getFixedStack(SSFI),
6344                         false, false, 0);
6345  }
6346
6347  return Result;
6348}
6349
6350// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6351SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6352                                               SelectionDAG &DAG) const {
6353  // This algorithm is not obvious. Here it is in C code, more or less:
6354  /*
6355    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6356      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6357      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6358
6359      // Copy ints to xmm registers.
6360      __m128i xh = _mm_cvtsi32_si128( hi );
6361      __m128i xl = _mm_cvtsi32_si128( lo );
6362
6363      // Combine into low half of a single xmm register.
6364      __m128i x = _mm_unpacklo_epi32( xh, xl );
6365      __m128d d;
6366      double sd;
6367
6368      // Merge in appropriate exponents to give the integer bits the right
6369      // magnitude.
6370      x = _mm_unpacklo_epi32( x, exp );
6371
6372      // Subtract away the biases to deal with the IEEE-754 double precision
6373      // implicit 1.
6374      d = _mm_sub_pd( (__m128d) x, bias );
6375
6376      // All conversions up to here are exact. The correctly rounded result is
6377      // calculated using the current rounding mode using the following
6378      // horizontal add.
6379      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6380      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6381                                // store doesn't really need to be here (except
6382                                // maybe to zero the other double)
6383      return sd;
6384    }
6385  */
6386
6387  DebugLoc dl = Op.getDebugLoc();
6388  LLVMContext *Context = DAG.getContext();
6389
6390  // Build some magic constants.
6391  std::vector<Constant*> CV0;
6392  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6393  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6394  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6395  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6396  Constant *C0 = ConstantVector::get(CV0);
6397  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6398
6399  std::vector<Constant*> CV1;
6400  CV1.push_back(
6401    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6402  CV1.push_back(
6403    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6404  Constant *C1 = ConstantVector::get(CV1);
6405  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6406
6407  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6408                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6409                                        Op.getOperand(0),
6410                                        DAG.getIntPtrConstant(1)));
6411  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6412                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6413                                        Op.getOperand(0),
6414                                        DAG.getIntPtrConstant(0)));
6415  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6416  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6417                              MachinePointerInfo::getConstantPool(),
6418                              false, false, 16);
6419  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6420  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6421  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6422                              MachinePointerInfo::getConstantPool(),
6423                              false, false, 16);
6424  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6425
6426  // Add the halves; easiest way is to swap them into another reg first.
6427  int ShufMask[2] = { 1, -1 };
6428  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6429                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6430  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6431  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6432                     DAG.getIntPtrConstant(0));
6433}
6434
6435// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6436SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6437                                               SelectionDAG &DAG) const {
6438  DebugLoc dl = Op.getDebugLoc();
6439  // FP constant to bias correct the final result.
6440  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6441                                   MVT::f64);
6442
6443  // Load the 32-bit value into an XMM register.
6444  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6445                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6446                                         Op.getOperand(0),
6447                                         DAG.getIntPtrConstant(0)));
6448
6449  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6450                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6451                     DAG.getIntPtrConstant(0));
6452
6453  // Or the load with the bias.
6454  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6455                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6456                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6457                                                   MVT::v2f64, Load)),
6458                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6459                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6460                                                   MVT::v2f64, Bias)));
6461  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6462                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6463                   DAG.getIntPtrConstant(0));
6464
6465  // Subtract the bias.
6466  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6467
6468  // Handle final rounding.
6469  EVT DestVT = Op.getValueType();
6470
6471  if (DestVT.bitsLT(MVT::f64)) {
6472    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6473                       DAG.getIntPtrConstant(0));
6474  } else if (DestVT.bitsGT(MVT::f64)) {
6475    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6476  }
6477
6478  // Handle final rounding.
6479  return Sub;
6480}
6481
6482SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6483                                           SelectionDAG &DAG) const {
6484  SDValue N0 = Op.getOperand(0);
6485  DebugLoc dl = Op.getDebugLoc();
6486
6487  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6488  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6489  // the optimization here.
6490  if (DAG.SignBitIsZero(N0))
6491    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6492
6493  EVT SrcVT = N0.getValueType();
6494  EVT DstVT = Op.getValueType();
6495  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6496    return LowerUINT_TO_FP_i64(Op, DAG);
6497  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6498    return LowerUINT_TO_FP_i32(Op, DAG);
6499
6500  // Make a 64-bit buffer, and use it to build an FILD.
6501  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6502  if (SrcVT == MVT::i32) {
6503    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6504    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6505                                     getPointerTy(), StackSlot, WordOff);
6506    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6507                                  StackSlot, MachinePointerInfo(),
6508                                  false, false, 0);
6509    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6510                                  OffsetSlot, MachinePointerInfo(),
6511                                  false, false, 0);
6512    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6513    return Fild;
6514  }
6515
6516  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6517  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6518                                StackSlot, MachinePointerInfo(),
6519                               false, false, 0);
6520  // For i64 source, we need to add the appropriate power of 2 if the input
6521  // was negative.  This is the same as the optimization in
6522  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6523  // we must be careful to do the computation in x87 extended precision, not
6524  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6525  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6526  MachineMemOperand *MMO =
6527    DAG.getMachineFunction()
6528    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6529                          MachineMemOperand::MOLoad, 8, 8);
6530
6531  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6532  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6533  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6534                                         MVT::i64, MMO);
6535
6536  APInt FF(32, 0x5F800000ULL);
6537
6538  // Check whether the sign bit is set.
6539  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6540                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6541                                 ISD::SETLT);
6542
6543  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6544  SDValue FudgePtr = DAG.getConstantPool(
6545                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6546                                         getPointerTy());
6547
6548  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6549  SDValue Zero = DAG.getIntPtrConstant(0);
6550  SDValue Four = DAG.getIntPtrConstant(4);
6551  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6552                               Zero, Four);
6553  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6554
6555  // Load the value out, extending it from f32 to f80.
6556  // FIXME: Avoid the extend by constructing the right constant pool?
6557  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6558                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6559                                 MVT::f32, false, false, 4);
6560  // Extend everything to 80 bits to force it to be done on x87.
6561  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6562  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6563}
6564
6565std::pair<SDValue,SDValue> X86TargetLowering::
6566FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6567  DebugLoc DL = Op.getDebugLoc();
6568
6569  EVT DstTy = Op.getValueType();
6570
6571  if (!IsSigned) {
6572    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6573    DstTy = MVT::i64;
6574  }
6575
6576  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6577         DstTy.getSimpleVT() >= MVT::i16 &&
6578         "Unknown FP_TO_SINT to lower!");
6579
6580  // These are really Legal.
6581  if (DstTy == MVT::i32 &&
6582      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6583    return std::make_pair(SDValue(), SDValue());
6584  if (Subtarget->is64Bit() &&
6585      DstTy == MVT::i64 &&
6586      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6587    return std::make_pair(SDValue(), SDValue());
6588
6589  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6590  // stack slot.
6591  MachineFunction &MF = DAG.getMachineFunction();
6592  unsigned MemSize = DstTy.getSizeInBits()/8;
6593  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6594  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6595
6596
6597
6598  unsigned Opc;
6599  switch (DstTy.getSimpleVT().SimpleTy) {
6600  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6601  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6602  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6603  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6604  }
6605
6606  SDValue Chain = DAG.getEntryNode();
6607  SDValue Value = Op.getOperand(0);
6608  EVT TheVT = Op.getOperand(0).getValueType();
6609  if (isScalarFPTypeInSSEReg(TheVT)) {
6610    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6611    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6612                         MachinePointerInfo::getFixedStack(SSFI),
6613                         false, false, 0);
6614    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6615    SDValue Ops[] = {
6616      Chain, StackSlot, DAG.getValueType(TheVT)
6617    };
6618
6619    MachineMemOperand *MMO =
6620      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6621                              MachineMemOperand::MOLoad, MemSize, MemSize);
6622    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6623                                    DstTy, MMO);
6624    Chain = Value.getValue(1);
6625    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6626    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6627  }
6628
6629  MachineMemOperand *MMO =
6630    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6631                            MachineMemOperand::MOStore, MemSize, MemSize);
6632
6633  // Build the FP_TO_INT*_IN_MEM
6634  SDValue Ops[] = { Chain, Value, StackSlot };
6635  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6636                                         Ops, 3, DstTy, MMO);
6637
6638  return std::make_pair(FIST, StackSlot);
6639}
6640
6641SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6642                                           SelectionDAG &DAG) const {
6643  if (Op.getValueType().isVector())
6644    return SDValue();
6645
6646  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6647  SDValue FIST = Vals.first, StackSlot = Vals.second;
6648  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6649  if (FIST.getNode() == 0) return Op;
6650
6651  // Load the result.
6652  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6653                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6654}
6655
6656SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6657                                           SelectionDAG &DAG) const {
6658  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6659  SDValue FIST = Vals.first, StackSlot = Vals.second;
6660  assert(FIST.getNode() && "Unexpected failure");
6661
6662  // Load the result.
6663  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6664                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6665}
6666
6667SDValue X86TargetLowering::LowerFABS(SDValue Op,
6668                                     SelectionDAG &DAG) const {
6669  LLVMContext *Context = DAG.getContext();
6670  DebugLoc dl = Op.getDebugLoc();
6671  EVT VT = Op.getValueType();
6672  EVT EltVT = VT;
6673  if (VT.isVector())
6674    EltVT = VT.getVectorElementType();
6675  std::vector<Constant*> CV;
6676  if (EltVT == MVT::f64) {
6677    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6678    CV.push_back(C);
6679    CV.push_back(C);
6680  } else {
6681    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6682    CV.push_back(C);
6683    CV.push_back(C);
6684    CV.push_back(C);
6685    CV.push_back(C);
6686  }
6687  Constant *C = ConstantVector::get(CV);
6688  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6689  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6690                             MachinePointerInfo::getConstantPool(),
6691                             false, false, 16);
6692  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6693}
6694
6695SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6696  LLVMContext *Context = DAG.getContext();
6697  DebugLoc dl = Op.getDebugLoc();
6698  EVT VT = Op.getValueType();
6699  EVT EltVT = VT;
6700  if (VT.isVector())
6701    EltVT = VT.getVectorElementType();
6702  std::vector<Constant*> CV;
6703  if (EltVT == MVT::f64) {
6704    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6705    CV.push_back(C);
6706    CV.push_back(C);
6707  } else {
6708    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6709    CV.push_back(C);
6710    CV.push_back(C);
6711    CV.push_back(C);
6712    CV.push_back(C);
6713  }
6714  Constant *C = ConstantVector::get(CV);
6715  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6716  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6717                             MachinePointerInfo::getConstantPool(),
6718                             false, false, 16);
6719  if (VT.isVector()) {
6720    return DAG.getNode(ISD::BITCAST, dl, VT,
6721                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6722                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6723                                Op.getOperand(0)),
6724                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
6725  } else {
6726    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6727  }
6728}
6729
6730SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6731  LLVMContext *Context = DAG.getContext();
6732  SDValue Op0 = Op.getOperand(0);
6733  SDValue Op1 = Op.getOperand(1);
6734  DebugLoc dl = Op.getDebugLoc();
6735  EVT VT = Op.getValueType();
6736  EVT SrcVT = Op1.getValueType();
6737
6738  // If second operand is smaller, extend it first.
6739  if (SrcVT.bitsLT(VT)) {
6740    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6741    SrcVT = VT;
6742  }
6743  // And if it is bigger, shrink it first.
6744  if (SrcVT.bitsGT(VT)) {
6745    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6746    SrcVT = VT;
6747  }
6748
6749  // At this point the operands and the result should have the same
6750  // type, and that won't be f80 since that is not custom lowered.
6751
6752  // First get the sign bit of second operand.
6753  std::vector<Constant*> CV;
6754  if (SrcVT == MVT::f64) {
6755    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6756    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6757  } else {
6758    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6759    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6760    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6761    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6762  }
6763  Constant *C = ConstantVector::get(CV);
6764  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6765  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6766                              MachinePointerInfo::getConstantPool(),
6767                              false, false, 16);
6768  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6769
6770  // Shift sign bit right or left if the two operands have different types.
6771  if (SrcVT.bitsGT(VT)) {
6772    // Op0 is MVT::f32, Op1 is MVT::f64.
6773    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6774    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6775                          DAG.getConstant(32, MVT::i32));
6776    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
6777    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6778                          DAG.getIntPtrConstant(0));
6779  }
6780
6781  // Clear first operand sign bit.
6782  CV.clear();
6783  if (VT == MVT::f64) {
6784    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6785    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6786  } else {
6787    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6788    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6789    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6790    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6791  }
6792  C = ConstantVector::get(CV);
6793  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6794  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6795                              MachinePointerInfo::getConstantPool(),
6796                              false, false, 16);
6797  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6798
6799  // Or the value with the sign bit.
6800  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6801}
6802
6803/// Emit nodes that will be selected as "test Op0,Op0", or something
6804/// equivalent.
6805SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6806                                    SelectionDAG &DAG) const {
6807  DebugLoc dl = Op.getDebugLoc();
6808
6809  // CF and OF aren't always set the way we want. Determine which
6810  // of these we need.
6811  bool NeedCF = false;
6812  bool NeedOF = false;
6813  switch (X86CC) {
6814  default: break;
6815  case X86::COND_A: case X86::COND_AE:
6816  case X86::COND_B: case X86::COND_BE:
6817    NeedCF = true;
6818    break;
6819  case X86::COND_G: case X86::COND_GE:
6820  case X86::COND_L: case X86::COND_LE:
6821  case X86::COND_O: case X86::COND_NO:
6822    NeedOF = true;
6823    break;
6824  }
6825
6826  // See if we can use the EFLAGS value from the operand instead of
6827  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6828  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6829  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6830    // Emit a CMP with 0, which is the TEST pattern.
6831    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6832                       DAG.getConstant(0, Op.getValueType()));
6833
6834  unsigned Opcode = 0;
6835  unsigned NumOperands = 0;
6836  switch (Op.getNode()->getOpcode()) {
6837  case ISD::ADD:
6838    // Due to an isel shortcoming, be conservative if this add is likely to be
6839    // selected as part of a load-modify-store instruction. When the root node
6840    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6841    // uses of other nodes in the match, such as the ADD in this case. This
6842    // leads to the ADD being left around and reselected, with the result being
6843    // two adds in the output.  Alas, even if none our users are stores, that
6844    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6845    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6846    // climbing the DAG back to the root, and it doesn't seem to be worth the
6847    // effort.
6848    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6849           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6850      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6851        goto default_case;
6852
6853    if (ConstantSDNode *C =
6854        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6855      // An add of one will be selected as an INC.
6856      if (C->getAPIntValue() == 1) {
6857        Opcode = X86ISD::INC;
6858        NumOperands = 1;
6859        break;
6860      }
6861
6862      // An add of negative one (subtract of one) will be selected as a DEC.
6863      if (C->getAPIntValue().isAllOnesValue()) {
6864        Opcode = X86ISD::DEC;
6865        NumOperands = 1;
6866        break;
6867      }
6868    }
6869
6870    // Otherwise use a regular EFLAGS-setting add.
6871    Opcode = X86ISD::ADD;
6872    NumOperands = 2;
6873    break;
6874  case ISD::AND: {
6875    // If the primary and result isn't used, don't bother using X86ISD::AND,
6876    // because a TEST instruction will be better.
6877    bool NonFlagUse = false;
6878    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6879           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6880      SDNode *User = *UI;
6881      unsigned UOpNo = UI.getOperandNo();
6882      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6883        // Look pass truncate.
6884        UOpNo = User->use_begin().getOperandNo();
6885        User = *User->use_begin();
6886      }
6887
6888      if (User->getOpcode() != ISD::BRCOND &&
6889          User->getOpcode() != ISD::SETCC &&
6890          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6891        NonFlagUse = true;
6892        break;
6893      }
6894    }
6895
6896    if (!NonFlagUse)
6897      break;
6898  }
6899    // FALL THROUGH
6900  case ISD::SUB:
6901  case ISD::OR:
6902  case ISD::XOR:
6903    // Due to the ISEL shortcoming noted above, be conservative if this op is
6904    // likely to be selected as part of a load-modify-store instruction.
6905    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6906           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6907      if (UI->getOpcode() == ISD::STORE)
6908        goto default_case;
6909
6910    // Otherwise use a regular EFLAGS-setting instruction.
6911    switch (Op.getNode()->getOpcode()) {
6912    default: llvm_unreachable("unexpected operator!");
6913    case ISD::SUB: Opcode = X86ISD::SUB; break;
6914    case ISD::OR:  Opcode = X86ISD::OR;  break;
6915    case ISD::XOR: Opcode = X86ISD::XOR; break;
6916    case ISD::AND: Opcode = X86ISD::AND; break;
6917    }
6918
6919    NumOperands = 2;
6920    break;
6921  case X86ISD::ADD:
6922  case X86ISD::SUB:
6923  case X86ISD::INC:
6924  case X86ISD::DEC:
6925  case X86ISD::OR:
6926  case X86ISD::XOR:
6927  case X86ISD::AND:
6928    return SDValue(Op.getNode(), 1);
6929  default:
6930  default_case:
6931    break;
6932  }
6933
6934  if (Opcode == 0)
6935    // Emit a CMP with 0, which is the TEST pattern.
6936    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6937                       DAG.getConstant(0, Op.getValueType()));
6938
6939  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6940  SmallVector<SDValue, 4> Ops;
6941  for (unsigned i = 0; i != NumOperands; ++i)
6942    Ops.push_back(Op.getOperand(i));
6943
6944  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6945  DAG.ReplaceAllUsesWith(Op, New);
6946  return SDValue(New.getNode(), 1);
6947}
6948
6949/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6950/// equivalent.
6951SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6952                                   SelectionDAG &DAG) const {
6953  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6954    if (C->getAPIntValue() == 0)
6955      return EmitTest(Op0, X86CC, DAG);
6956
6957  DebugLoc dl = Op0.getDebugLoc();
6958  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6959}
6960
6961/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6962/// if it's possible.
6963SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6964                                     DebugLoc dl, SelectionDAG &DAG) const {
6965  SDValue Op0 = And.getOperand(0);
6966  SDValue Op1 = And.getOperand(1);
6967  if (Op0.getOpcode() == ISD::TRUNCATE)
6968    Op0 = Op0.getOperand(0);
6969  if (Op1.getOpcode() == ISD::TRUNCATE)
6970    Op1 = Op1.getOperand(0);
6971
6972  SDValue LHS, RHS;
6973  if (Op1.getOpcode() == ISD::SHL)
6974    std::swap(Op0, Op1);
6975  if (Op0.getOpcode() == ISD::SHL) {
6976    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6977      if (And00C->getZExtValue() == 1) {
6978        // If we looked past a truncate, check that it's only truncating away
6979        // known zeros.
6980        unsigned BitWidth = Op0.getValueSizeInBits();
6981        unsigned AndBitWidth = And.getValueSizeInBits();
6982        if (BitWidth > AndBitWidth) {
6983          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6984          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6985          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6986            return SDValue();
6987        }
6988        LHS = Op1;
6989        RHS = Op0.getOperand(1);
6990      }
6991  } else if (Op1.getOpcode() == ISD::Constant) {
6992    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6993    SDValue AndLHS = Op0;
6994    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6995      LHS = AndLHS.getOperand(0);
6996      RHS = AndLHS.getOperand(1);
6997    }
6998  }
6999
7000  if (LHS.getNode()) {
7001    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7002    // instruction.  Since the shift amount is in-range-or-undefined, we know
7003    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7004    // the encoding for the i16 version is larger than the i32 version.
7005    // Also promote i16 to i32 for performance / code size reason.
7006    if (LHS.getValueType() == MVT::i8 ||
7007        LHS.getValueType() == MVT::i16)
7008      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7009
7010    // If the operand types disagree, extend the shift amount to match.  Since
7011    // BT ignores high bits (like shifts) we can use anyextend.
7012    if (LHS.getValueType() != RHS.getValueType())
7013      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7014
7015    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7016    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7017    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7018                       DAG.getConstant(Cond, MVT::i8), BT);
7019  }
7020
7021  return SDValue();
7022}
7023
7024SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7025  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7026  SDValue Op0 = Op.getOperand(0);
7027  SDValue Op1 = Op.getOperand(1);
7028  DebugLoc dl = Op.getDebugLoc();
7029  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7030
7031  // Optimize to BT if possible.
7032  // Lower (X & (1 << N)) == 0 to BT(X, N).
7033  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7034  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7035  if (Op0.getOpcode() == ISD::AND &&
7036      Op0.hasOneUse() &&
7037      Op1.getOpcode() == ISD::Constant &&
7038      cast<ConstantSDNode>(Op1)->isNullValue() &&
7039      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7040    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7041    if (NewSetCC.getNode())
7042      return NewSetCC;
7043  }
7044
7045  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
7046  if (Op0.getOpcode() == X86ISD::SETCC &&
7047      Op1.getOpcode() == ISD::Constant &&
7048      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7049       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7050      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7051    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7052    bool Invert = (CC == ISD::SETNE) ^
7053      cast<ConstantSDNode>(Op1)->isNullValue();
7054    if (Invert)
7055      CCode = X86::GetOppositeBranchCondition(CCode);
7056    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7057                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7058  }
7059
7060  bool isFP = Op1.getValueType().isFloatingPoint();
7061  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7062  if (X86CC == X86::COND_INVALID)
7063    return SDValue();
7064
7065  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
7066
7067  // Use sbb x, x to materialize carry bit into a GPR.
7068  if (X86CC == X86::COND_B)
7069    return DAG.getNode(ISD::AND, dl, MVT::i8,
7070                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
7071                                   DAG.getConstant(X86CC, MVT::i8), Cond),
7072                       DAG.getConstant(1, MVT::i8));
7073
7074  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7075                     DAG.getConstant(X86CC, MVT::i8), Cond);
7076}
7077
7078SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7079  SDValue Cond;
7080  SDValue Op0 = Op.getOperand(0);
7081  SDValue Op1 = Op.getOperand(1);
7082  SDValue CC = Op.getOperand(2);
7083  EVT VT = Op.getValueType();
7084  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7085  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7086  DebugLoc dl = Op.getDebugLoc();
7087
7088  if (isFP) {
7089    unsigned SSECC = 8;
7090    EVT VT0 = Op0.getValueType();
7091    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7092    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7093    bool Swap = false;
7094
7095    switch (SetCCOpcode) {
7096    default: break;
7097    case ISD::SETOEQ:
7098    case ISD::SETEQ:  SSECC = 0; break;
7099    case ISD::SETOGT:
7100    case ISD::SETGT: Swap = true; // Fallthrough
7101    case ISD::SETLT:
7102    case ISD::SETOLT: SSECC = 1; break;
7103    case ISD::SETOGE:
7104    case ISD::SETGE: Swap = true; // Fallthrough
7105    case ISD::SETLE:
7106    case ISD::SETOLE: SSECC = 2; break;
7107    case ISD::SETUO:  SSECC = 3; break;
7108    case ISD::SETUNE:
7109    case ISD::SETNE:  SSECC = 4; break;
7110    case ISD::SETULE: Swap = true;
7111    case ISD::SETUGE: SSECC = 5; break;
7112    case ISD::SETULT: Swap = true;
7113    case ISD::SETUGT: SSECC = 6; break;
7114    case ISD::SETO:   SSECC = 7; break;
7115    }
7116    if (Swap)
7117      std::swap(Op0, Op1);
7118
7119    // In the two special cases we can't handle, emit two comparisons.
7120    if (SSECC == 8) {
7121      if (SetCCOpcode == ISD::SETUEQ) {
7122        SDValue UNORD, EQ;
7123        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7124        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7125        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7126      }
7127      else if (SetCCOpcode == ISD::SETONE) {
7128        SDValue ORD, NEQ;
7129        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7130        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7131        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7132      }
7133      llvm_unreachable("Illegal FP comparison");
7134    }
7135    // Handle all other FP comparisons here.
7136    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7137  }
7138
7139  // We are handling one of the integer comparisons here.  Since SSE only has
7140  // GT and EQ comparisons for integer, swapping operands and multiple
7141  // operations may be required for some comparisons.
7142  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7143  bool Swap = false, Invert = false, FlipSigns = false;
7144
7145  switch (VT.getSimpleVT().SimpleTy) {
7146  default: break;
7147  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7148  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7149  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7150  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7151  }
7152
7153  switch (SetCCOpcode) {
7154  default: break;
7155  case ISD::SETNE:  Invert = true;
7156  case ISD::SETEQ:  Opc = EQOpc; break;
7157  case ISD::SETLT:  Swap = true;
7158  case ISD::SETGT:  Opc = GTOpc; break;
7159  case ISD::SETGE:  Swap = true;
7160  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7161  case ISD::SETULT: Swap = true;
7162  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7163  case ISD::SETUGE: Swap = true;
7164  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7165  }
7166  if (Swap)
7167    std::swap(Op0, Op1);
7168
7169  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7170  // bits of the inputs before performing those operations.
7171  if (FlipSigns) {
7172    EVT EltVT = VT.getVectorElementType();
7173    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7174                                      EltVT);
7175    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7176    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7177                                    SignBits.size());
7178    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7179    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7180  }
7181
7182  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7183
7184  // If the logical-not of the result is required, perform that now.
7185  if (Invert)
7186    Result = DAG.getNOT(dl, Result, VT);
7187
7188  return Result;
7189}
7190
7191// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7192static bool isX86LogicalCmp(SDValue Op) {
7193  unsigned Opc = Op.getNode()->getOpcode();
7194  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7195    return true;
7196  if (Op.getResNo() == 1 &&
7197      (Opc == X86ISD::ADD ||
7198       Opc == X86ISD::SUB ||
7199       Opc == X86ISD::SMUL ||
7200       Opc == X86ISD::UMUL ||
7201       Opc == X86ISD::INC ||
7202       Opc == X86ISD::DEC ||
7203       Opc == X86ISD::OR ||
7204       Opc == X86ISD::XOR ||
7205       Opc == X86ISD::AND))
7206    return true;
7207
7208  return false;
7209}
7210
7211static bool isZero(SDValue V) {
7212  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7213  return C && C->isNullValue();
7214}
7215
7216static bool isAllOnes(SDValue V) {
7217  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7218  return C && C->isAllOnesValue();
7219}
7220
7221SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7222  bool addTest = true;
7223  SDValue Cond  = Op.getOperand(0);
7224  SDValue Op1 = Op.getOperand(1);
7225  SDValue Op2 = Op.getOperand(2);
7226  DebugLoc DL = Op.getDebugLoc();
7227  SDValue CC;
7228
7229  if (Cond.getOpcode() == ISD::SETCC) {
7230    SDValue NewCond = LowerSETCC(Cond, DAG);
7231    if (NewCond.getNode())
7232      Cond = NewCond;
7233  }
7234
7235  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7236  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7237  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7238  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7239  if (Cond.getOpcode() == X86ISD::SETCC &&
7240      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7241      isZero(Cond.getOperand(1).getOperand(1))) {
7242    SDValue Cmp = Cond.getOperand(1);
7243
7244    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7245
7246    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7247        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7248      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7249
7250      SDValue CmpOp0 = Cmp.getOperand(0);
7251      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7252                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7253
7254      SDValue Res =   // Res = 0 or -1.
7255        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7256                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7257
7258      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7259        Res = DAG.getNOT(DL, Res, Res.getValueType());
7260
7261      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7262      if (N2C == 0 || !N2C->isNullValue())
7263        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7264      return Res;
7265    }
7266  }
7267
7268  // Look past (and (setcc_carry (cmp ...)), 1).
7269  if (Cond.getOpcode() == ISD::AND &&
7270      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7271    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7272    if (C && C->getAPIntValue() == 1)
7273      Cond = Cond.getOperand(0);
7274  }
7275
7276  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7277  // setting operand in place of the X86ISD::SETCC.
7278  if (Cond.getOpcode() == X86ISD::SETCC ||
7279      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7280    CC = Cond.getOperand(0);
7281
7282    SDValue Cmp = Cond.getOperand(1);
7283    unsigned Opc = Cmp.getOpcode();
7284    EVT VT = Op.getValueType();
7285
7286    bool IllegalFPCMov = false;
7287    if (VT.isFloatingPoint() && !VT.isVector() &&
7288        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7289      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7290
7291    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7292        Opc == X86ISD::BT) { // FIXME
7293      Cond = Cmp;
7294      addTest = false;
7295    }
7296  }
7297
7298  if (addTest) {
7299    // Look pass the truncate.
7300    if (Cond.getOpcode() == ISD::TRUNCATE)
7301      Cond = Cond.getOperand(0);
7302
7303    // We know the result of AND is compared against zero. Try to match
7304    // it to BT.
7305    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7306      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7307      if (NewSetCC.getNode()) {
7308        CC = NewSetCC.getOperand(0);
7309        Cond = NewSetCC.getOperand(1);
7310        addTest = false;
7311      }
7312    }
7313  }
7314
7315  if (addTest) {
7316    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7317    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7318  }
7319
7320  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7321  // condition is true.
7322  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7323  SDValue Ops[] = { Op2, Op1, CC, Cond };
7324  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7325}
7326
7327// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7328// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7329// from the AND / OR.
7330static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7331  Opc = Op.getOpcode();
7332  if (Opc != ISD::OR && Opc != ISD::AND)
7333    return false;
7334  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7335          Op.getOperand(0).hasOneUse() &&
7336          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7337          Op.getOperand(1).hasOneUse());
7338}
7339
7340// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7341// 1 and that the SETCC node has a single use.
7342static bool isXor1OfSetCC(SDValue Op) {
7343  if (Op.getOpcode() != ISD::XOR)
7344    return false;
7345  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7346  if (N1C && N1C->getAPIntValue() == 1) {
7347    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7348      Op.getOperand(0).hasOneUse();
7349  }
7350  return false;
7351}
7352
7353SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7354  bool addTest = true;
7355  SDValue Chain = Op.getOperand(0);
7356  SDValue Cond  = Op.getOperand(1);
7357  SDValue Dest  = Op.getOperand(2);
7358  DebugLoc dl = Op.getDebugLoc();
7359  SDValue CC;
7360
7361  if (Cond.getOpcode() == ISD::SETCC) {
7362    SDValue NewCond = LowerSETCC(Cond, DAG);
7363    if (NewCond.getNode())
7364      Cond = NewCond;
7365  }
7366#if 0
7367  // FIXME: LowerXALUO doesn't handle these!!
7368  else if (Cond.getOpcode() == X86ISD::ADD  ||
7369           Cond.getOpcode() == X86ISD::SUB  ||
7370           Cond.getOpcode() == X86ISD::SMUL ||
7371           Cond.getOpcode() == X86ISD::UMUL)
7372    Cond = LowerXALUO(Cond, DAG);
7373#endif
7374
7375  // Look pass (and (setcc_carry (cmp ...)), 1).
7376  if (Cond.getOpcode() == ISD::AND &&
7377      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7378    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7379    if (C && C->getAPIntValue() == 1)
7380      Cond = Cond.getOperand(0);
7381  }
7382
7383  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7384  // setting operand in place of the X86ISD::SETCC.
7385  if (Cond.getOpcode() == X86ISD::SETCC ||
7386      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7387    CC = Cond.getOperand(0);
7388
7389    SDValue Cmp = Cond.getOperand(1);
7390    unsigned Opc = Cmp.getOpcode();
7391    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7392    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7393      Cond = Cmp;
7394      addTest = false;
7395    } else {
7396      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7397      default: break;
7398      case X86::COND_O:
7399      case X86::COND_B:
7400        // These can only come from an arithmetic instruction with overflow,
7401        // e.g. SADDO, UADDO.
7402        Cond = Cond.getNode()->getOperand(1);
7403        addTest = false;
7404        break;
7405      }
7406    }
7407  } else {
7408    unsigned CondOpc;
7409    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7410      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7411      if (CondOpc == ISD::OR) {
7412        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7413        // two branches instead of an explicit OR instruction with a
7414        // separate test.
7415        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7416            isX86LogicalCmp(Cmp)) {
7417          CC = Cond.getOperand(0).getOperand(0);
7418          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7419                              Chain, Dest, CC, Cmp);
7420          CC = Cond.getOperand(1).getOperand(0);
7421          Cond = Cmp;
7422          addTest = false;
7423        }
7424      } else { // ISD::AND
7425        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7426        // two branches instead of an explicit AND instruction with a
7427        // separate test. However, we only do this if this block doesn't
7428        // have a fall-through edge, because this requires an explicit
7429        // jmp when the condition is false.
7430        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7431            isX86LogicalCmp(Cmp) &&
7432            Op.getNode()->hasOneUse()) {
7433          X86::CondCode CCode =
7434            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7435          CCode = X86::GetOppositeBranchCondition(CCode);
7436          CC = DAG.getConstant(CCode, MVT::i8);
7437          SDNode *User = *Op.getNode()->use_begin();
7438          // Look for an unconditional branch following this conditional branch.
7439          // We need this because we need to reverse the successors in order
7440          // to implement FCMP_OEQ.
7441          if (User->getOpcode() == ISD::BR) {
7442            SDValue FalseBB = User->getOperand(1);
7443            SDNode *NewBR =
7444              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7445            assert(NewBR == User);
7446            (void)NewBR;
7447            Dest = FalseBB;
7448
7449            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7450                                Chain, Dest, CC, Cmp);
7451            X86::CondCode CCode =
7452              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7453            CCode = X86::GetOppositeBranchCondition(CCode);
7454            CC = DAG.getConstant(CCode, MVT::i8);
7455            Cond = Cmp;
7456            addTest = false;
7457          }
7458        }
7459      }
7460    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7461      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7462      // It should be transformed during dag combiner except when the condition
7463      // is set by a arithmetics with overflow node.
7464      X86::CondCode CCode =
7465        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7466      CCode = X86::GetOppositeBranchCondition(CCode);
7467      CC = DAG.getConstant(CCode, MVT::i8);
7468      Cond = Cond.getOperand(0).getOperand(1);
7469      addTest = false;
7470    }
7471  }
7472
7473  if (addTest) {
7474    // Look pass the truncate.
7475    if (Cond.getOpcode() == ISD::TRUNCATE)
7476      Cond = Cond.getOperand(0);
7477
7478    // We know the result of AND is compared against zero. Try to match
7479    // it to BT.
7480    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7481      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7482      if (NewSetCC.getNode()) {
7483        CC = NewSetCC.getOperand(0);
7484        Cond = NewSetCC.getOperand(1);
7485        addTest = false;
7486      }
7487    }
7488  }
7489
7490  if (addTest) {
7491    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7492    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7493  }
7494  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7495                     Chain, Dest, CC, Cond);
7496}
7497
7498
7499// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7500// Calls to _alloca is needed to probe the stack when allocating more than 4k
7501// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7502// that the guard pages used by the OS virtual memory manager are allocated in
7503// correct sequence.
7504SDValue
7505X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7506                                           SelectionDAG &DAG) const {
7507  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7508         "This should be used only on Windows targets");
7509  DebugLoc dl = Op.getDebugLoc();
7510
7511  // Get the inputs.
7512  SDValue Chain = Op.getOperand(0);
7513  SDValue Size  = Op.getOperand(1);
7514  // FIXME: Ensure alignment here
7515
7516  SDValue Flag;
7517
7518  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7519
7520  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7521  Flag = Chain.getValue(1);
7522
7523  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7524
7525  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7526  Flag = Chain.getValue(1);
7527
7528  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7529
7530  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7531  return DAG.getMergeValues(Ops1, 2, dl);
7532}
7533
7534SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7535  MachineFunction &MF = DAG.getMachineFunction();
7536  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7537
7538  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7539  DebugLoc DL = Op.getDebugLoc();
7540
7541  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7542    // vastart just stores the address of the VarArgsFrameIndex slot into the
7543    // memory location argument.
7544    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7545                                   getPointerTy());
7546    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7547                        MachinePointerInfo(SV), false, false, 0);
7548  }
7549
7550  // __va_list_tag:
7551  //   gp_offset         (0 - 6 * 8)
7552  //   fp_offset         (48 - 48 + 8 * 16)
7553  //   overflow_arg_area (point to parameters coming in memory).
7554  //   reg_save_area
7555  SmallVector<SDValue, 8> MemOps;
7556  SDValue FIN = Op.getOperand(1);
7557  // Store gp_offset
7558  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7559                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7560                                               MVT::i32),
7561                               FIN, MachinePointerInfo(SV), false, false, 0);
7562  MemOps.push_back(Store);
7563
7564  // Store fp_offset
7565  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7566                    FIN, DAG.getIntPtrConstant(4));
7567  Store = DAG.getStore(Op.getOperand(0), DL,
7568                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7569                                       MVT::i32),
7570                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7571  MemOps.push_back(Store);
7572
7573  // Store ptr to overflow_arg_area
7574  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7575                    FIN, DAG.getIntPtrConstant(4));
7576  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7577                                    getPointerTy());
7578  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7579                       MachinePointerInfo(SV, 8),
7580                       false, false, 0);
7581  MemOps.push_back(Store);
7582
7583  // Store ptr to reg_save_area.
7584  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7585                    FIN, DAG.getIntPtrConstant(8));
7586  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7587                                    getPointerTy());
7588  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7589                       MachinePointerInfo(SV, 16), false, false, 0);
7590  MemOps.push_back(Store);
7591  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7592                     &MemOps[0], MemOps.size());
7593}
7594
7595SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7596  assert(Subtarget->is64Bit() &&
7597         "LowerVAARG only handles 64-bit va_arg!");
7598  assert((Subtarget->isTargetLinux() ||
7599          Subtarget->isTargetDarwin()) &&
7600          "Unhandled target in LowerVAARG");
7601  assert(Op.getNode()->getNumOperands() == 4);
7602  SDValue Chain = Op.getOperand(0);
7603  SDValue SrcPtr = Op.getOperand(1);
7604  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7605  unsigned Align = Op.getConstantOperandVal(3);
7606  DebugLoc dl = Op.getDebugLoc();
7607
7608  EVT ArgVT = Op.getNode()->getValueType(0);
7609  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7610  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7611  uint8_t ArgMode;
7612
7613  // Decide which area this value should be read from.
7614  // TODO: Implement the AMD64 ABI in its entirety. This simple
7615  // selection mechanism works only for the basic types.
7616  if (ArgVT == MVT::f80) {
7617    llvm_unreachable("va_arg for f80 not yet implemented");
7618  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7619    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
7620  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7621    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
7622  } else {
7623    llvm_unreachable("Unhandled argument type in LowerVAARG");
7624  }
7625
7626  if (ArgMode == 2) {
7627    // Sanity Check: Make sure using fp_offset makes sense.
7628    assert(!UseSoftFloat &&
7629           !(DAG.getMachineFunction()
7630                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7631           Subtarget->hasSSE1());
7632  }
7633
7634  // Insert VAARG_64 node into the DAG
7635  // VAARG_64 returns two values: Variable Argument Address, Chain
7636  SmallVector<SDValue, 11> InstOps;
7637  InstOps.push_back(Chain);
7638  InstOps.push_back(SrcPtr);
7639  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7640  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7641  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7642  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7643  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7644                                          VTs, &InstOps[0], InstOps.size(),
7645                                          MVT::i64,
7646                                          MachinePointerInfo(SV),
7647                                          /*Align=*/0,
7648                                          /*Volatile=*/false,
7649                                          /*ReadMem=*/true,
7650                                          /*WriteMem=*/true);
7651  Chain = VAARG.getValue(1);
7652
7653  // Load the next argument and return it
7654  return DAG.getLoad(ArgVT, dl,
7655                     Chain,
7656                     VAARG,
7657                     MachinePointerInfo(),
7658                     false, false, 0);
7659}
7660
7661SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7662  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7663  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7664  SDValue Chain = Op.getOperand(0);
7665  SDValue DstPtr = Op.getOperand(1);
7666  SDValue SrcPtr = Op.getOperand(2);
7667  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7668  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7669  DebugLoc DL = Op.getDebugLoc();
7670
7671  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7672                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7673                       false,
7674                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7675}
7676
7677SDValue
7678X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7679  DebugLoc dl = Op.getDebugLoc();
7680  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7681  switch (IntNo) {
7682  default: return SDValue();    // Don't custom lower most intrinsics.
7683  // Comparison intrinsics.
7684  case Intrinsic::x86_sse_comieq_ss:
7685  case Intrinsic::x86_sse_comilt_ss:
7686  case Intrinsic::x86_sse_comile_ss:
7687  case Intrinsic::x86_sse_comigt_ss:
7688  case Intrinsic::x86_sse_comige_ss:
7689  case Intrinsic::x86_sse_comineq_ss:
7690  case Intrinsic::x86_sse_ucomieq_ss:
7691  case Intrinsic::x86_sse_ucomilt_ss:
7692  case Intrinsic::x86_sse_ucomile_ss:
7693  case Intrinsic::x86_sse_ucomigt_ss:
7694  case Intrinsic::x86_sse_ucomige_ss:
7695  case Intrinsic::x86_sse_ucomineq_ss:
7696  case Intrinsic::x86_sse2_comieq_sd:
7697  case Intrinsic::x86_sse2_comilt_sd:
7698  case Intrinsic::x86_sse2_comile_sd:
7699  case Intrinsic::x86_sse2_comigt_sd:
7700  case Intrinsic::x86_sse2_comige_sd:
7701  case Intrinsic::x86_sse2_comineq_sd:
7702  case Intrinsic::x86_sse2_ucomieq_sd:
7703  case Intrinsic::x86_sse2_ucomilt_sd:
7704  case Intrinsic::x86_sse2_ucomile_sd:
7705  case Intrinsic::x86_sse2_ucomigt_sd:
7706  case Intrinsic::x86_sse2_ucomige_sd:
7707  case Intrinsic::x86_sse2_ucomineq_sd: {
7708    unsigned Opc = 0;
7709    ISD::CondCode CC = ISD::SETCC_INVALID;
7710    switch (IntNo) {
7711    default: break;
7712    case Intrinsic::x86_sse_comieq_ss:
7713    case Intrinsic::x86_sse2_comieq_sd:
7714      Opc = X86ISD::COMI;
7715      CC = ISD::SETEQ;
7716      break;
7717    case Intrinsic::x86_sse_comilt_ss:
7718    case Intrinsic::x86_sse2_comilt_sd:
7719      Opc = X86ISD::COMI;
7720      CC = ISD::SETLT;
7721      break;
7722    case Intrinsic::x86_sse_comile_ss:
7723    case Intrinsic::x86_sse2_comile_sd:
7724      Opc = X86ISD::COMI;
7725      CC = ISD::SETLE;
7726      break;
7727    case Intrinsic::x86_sse_comigt_ss:
7728    case Intrinsic::x86_sse2_comigt_sd:
7729      Opc = X86ISD::COMI;
7730      CC = ISD::SETGT;
7731      break;
7732    case Intrinsic::x86_sse_comige_ss:
7733    case Intrinsic::x86_sse2_comige_sd:
7734      Opc = X86ISD::COMI;
7735      CC = ISD::SETGE;
7736      break;
7737    case Intrinsic::x86_sse_comineq_ss:
7738    case Intrinsic::x86_sse2_comineq_sd:
7739      Opc = X86ISD::COMI;
7740      CC = ISD::SETNE;
7741      break;
7742    case Intrinsic::x86_sse_ucomieq_ss:
7743    case Intrinsic::x86_sse2_ucomieq_sd:
7744      Opc = X86ISD::UCOMI;
7745      CC = ISD::SETEQ;
7746      break;
7747    case Intrinsic::x86_sse_ucomilt_ss:
7748    case Intrinsic::x86_sse2_ucomilt_sd:
7749      Opc = X86ISD::UCOMI;
7750      CC = ISD::SETLT;
7751      break;
7752    case Intrinsic::x86_sse_ucomile_ss:
7753    case Intrinsic::x86_sse2_ucomile_sd:
7754      Opc = X86ISD::UCOMI;
7755      CC = ISD::SETLE;
7756      break;
7757    case Intrinsic::x86_sse_ucomigt_ss:
7758    case Intrinsic::x86_sse2_ucomigt_sd:
7759      Opc = X86ISD::UCOMI;
7760      CC = ISD::SETGT;
7761      break;
7762    case Intrinsic::x86_sse_ucomige_ss:
7763    case Intrinsic::x86_sse2_ucomige_sd:
7764      Opc = X86ISD::UCOMI;
7765      CC = ISD::SETGE;
7766      break;
7767    case Intrinsic::x86_sse_ucomineq_ss:
7768    case Intrinsic::x86_sse2_ucomineq_sd:
7769      Opc = X86ISD::UCOMI;
7770      CC = ISD::SETNE;
7771      break;
7772    }
7773
7774    SDValue LHS = Op.getOperand(1);
7775    SDValue RHS = Op.getOperand(2);
7776    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7777    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7778    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7779    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7780                                DAG.getConstant(X86CC, MVT::i8), Cond);
7781    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7782  }
7783  // ptest and testp intrinsics. The intrinsic these come from are designed to
7784  // return an integer value, not just an instruction so lower it to the ptest
7785  // or testp pattern and a setcc for the result.
7786  case Intrinsic::x86_sse41_ptestz:
7787  case Intrinsic::x86_sse41_ptestc:
7788  case Intrinsic::x86_sse41_ptestnzc:
7789  case Intrinsic::x86_avx_ptestz_256:
7790  case Intrinsic::x86_avx_ptestc_256:
7791  case Intrinsic::x86_avx_ptestnzc_256:
7792  case Intrinsic::x86_avx_vtestz_ps:
7793  case Intrinsic::x86_avx_vtestc_ps:
7794  case Intrinsic::x86_avx_vtestnzc_ps:
7795  case Intrinsic::x86_avx_vtestz_pd:
7796  case Intrinsic::x86_avx_vtestc_pd:
7797  case Intrinsic::x86_avx_vtestnzc_pd:
7798  case Intrinsic::x86_avx_vtestz_ps_256:
7799  case Intrinsic::x86_avx_vtestc_ps_256:
7800  case Intrinsic::x86_avx_vtestnzc_ps_256:
7801  case Intrinsic::x86_avx_vtestz_pd_256:
7802  case Intrinsic::x86_avx_vtestc_pd_256:
7803  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7804    bool IsTestPacked = false;
7805    unsigned X86CC = 0;
7806    switch (IntNo) {
7807    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7808    case Intrinsic::x86_avx_vtestz_ps:
7809    case Intrinsic::x86_avx_vtestz_pd:
7810    case Intrinsic::x86_avx_vtestz_ps_256:
7811    case Intrinsic::x86_avx_vtestz_pd_256:
7812      IsTestPacked = true; // Fallthrough
7813    case Intrinsic::x86_sse41_ptestz:
7814    case Intrinsic::x86_avx_ptestz_256:
7815      // ZF = 1
7816      X86CC = X86::COND_E;
7817      break;
7818    case Intrinsic::x86_avx_vtestc_ps:
7819    case Intrinsic::x86_avx_vtestc_pd:
7820    case Intrinsic::x86_avx_vtestc_ps_256:
7821    case Intrinsic::x86_avx_vtestc_pd_256:
7822      IsTestPacked = true; // Fallthrough
7823    case Intrinsic::x86_sse41_ptestc:
7824    case Intrinsic::x86_avx_ptestc_256:
7825      // CF = 1
7826      X86CC = X86::COND_B;
7827      break;
7828    case Intrinsic::x86_avx_vtestnzc_ps:
7829    case Intrinsic::x86_avx_vtestnzc_pd:
7830    case Intrinsic::x86_avx_vtestnzc_ps_256:
7831    case Intrinsic::x86_avx_vtestnzc_pd_256:
7832      IsTestPacked = true; // Fallthrough
7833    case Intrinsic::x86_sse41_ptestnzc:
7834    case Intrinsic::x86_avx_ptestnzc_256:
7835      // ZF and CF = 0
7836      X86CC = X86::COND_A;
7837      break;
7838    }
7839
7840    SDValue LHS = Op.getOperand(1);
7841    SDValue RHS = Op.getOperand(2);
7842    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7843    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7844    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7845    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7846    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7847  }
7848
7849  // Fix vector shift instructions where the last operand is a non-immediate
7850  // i32 value.
7851  case Intrinsic::x86_sse2_pslli_w:
7852  case Intrinsic::x86_sse2_pslli_d:
7853  case Intrinsic::x86_sse2_pslli_q:
7854  case Intrinsic::x86_sse2_psrli_w:
7855  case Intrinsic::x86_sse2_psrli_d:
7856  case Intrinsic::x86_sse2_psrli_q:
7857  case Intrinsic::x86_sse2_psrai_w:
7858  case Intrinsic::x86_sse2_psrai_d:
7859  case Intrinsic::x86_mmx_pslli_w:
7860  case Intrinsic::x86_mmx_pslli_d:
7861  case Intrinsic::x86_mmx_pslli_q:
7862  case Intrinsic::x86_mmx_psrli_w:
7863  case Intrinsic::x86_mmx_psrli_d:
7864  case Intrinsic::x86_mmx_psrli_q:
7865  case Intrinsic::x86_mmx_psrai_w:
7866  case Intrinsic::x86_mmx_psrai_d: {
7867    SDValue ShAmt = Op.getOperand(2);
7868    if (isa<ConstantSDNode>(ShAmt))
7869      return SDValue();
7870
7871    unsigned NewIntNo = 0;
7872    EVT ShAmtVT = MVT::v4i32;
7873    switch (IntNo) {
7874    case Intrinsic::x86_sse2_pslli_w:
7875      NewIntNo = Intrinsic::x86_sse2_psll_w;
7876      break;
7877    case Intrinsic::x86_sse2_pslli_d:
7878      NewIntNo = Intrinsic::x86_sse2_psll_d;
7879      break;
7880    case Intrinsic::x86_sse2_pslli_q:
7881      NewIntNo = Intrinsic::x86_sse2_psll_q;
7882      break;
7883    case Intrinsic::x86_sse2_psrli_w:
7884      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7885      break;
7886    case Intrinsic::x86_sse2_psrli_d:
7887      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7888      break;
7889    case Intrinsic::x86_sse2_psrli_q:
7890      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7891      break;
7892    case Intrinsic::x86_sse2_psrai_w:
7893      NewIntNo = Intrinsic::x86_sse2_psra_w;
7894      break;
7895    case Intrinsic::x86_sse2_psrai_d:
7896      NewIntNo = Intrinsic::x86_sse2_psra_d;
7897      break;
7898    default: {
7899      ShAmtVT = MVT::v2i32;
7900      switch (IntNo) {
7901      case Intrinsic::x86_mmx_pslli_w:
7902        NewIntNo = Intrinsic::x86_mmx_psll_w;
7903        break;
7904      case Intrinsic::x86_mmx_pslli_d:
7905        NewIntNo = Intrinsic::x86_mmx_psll_d;
7906        break;
7907      case Intrinsic::x86_mmx_pslli_q:
7908        NewIntNo = Intrinsic::x86_mmx_psll_q;
7909        break;
7910      case Intrinsic::x86_mmx_psrli_w:
7911        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7912        break;
7913      case Intrinsic::x86_mmx_psrli_d:
7914        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7915        break;
7916      case Intrinsic::x86_mmx_psrli_q:
7917        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7918        break;
7919      case Intrinsic::x86_mmx_psrai_w:
7920        NewIntNo = Intrinsic::x86_mmx_psra_w;
7921        break;
7922      case Intrinsic::x86_mmx_psrai_d:
7923        NewIntNo = Intrinsic::x86_mmx_psra_d;
7924        break;
7925      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7926      }
7927      break;
7928    }
7929    }
7930
7931    // The vector shift intrinsics with scalars uses 32b shift amounts but
7932    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7933    // to be zero.
7934    SDValue ShOps[4];
7935    ShOps[0] = ShAmt;
7936    ShOps[1] = DAG.getConstant(0, MVT::i32);
7937    if (ShAmtVT == MVT::v4i32) {
7938      ShOps[2] = DAG.getUNDEF(MVT::i32);
7939      ShOps[3] = DAG.getUNDEF(MVT::i32);
7940      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7941    } else {
7942      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7943// FIXME this must be lowered to get rid of the invalid type.
7944    }
7945
7946    EVT VT = Op.getValueType();
7947    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
7948    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7949                       DAG.getConstant(NewIntNo, MVT::i32),
7950                       Op.getOperand(1), ShAmt);
7951  }
7952  }
7953}
7954
7955SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7956                                           SelectionDAG &DAG) const {
7957  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7958  MFI->setReturnAddressIsTaken(true);
7959
7960  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7961  DebugLoc dl = Op.getDebugLoc();
7962
7963  if (Depth > 0) {
7964    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7965    SDValue Offset =
7966      DAG.getConstant(TD->getPointerSize(),
7967                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7968    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7969                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7970                                   FrameAddr, Offset),
7971                       MachinePointerInfo(), false, false, 0);
7972  }
7973
7974  // Just load the return address.
7975  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7976  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7977                     RetAddrFI, MachinePointerInfo(), false, false, 0);
7978}
7979
7980SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7981  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7982  MFI->setFrameAddressIsTaken(true);
7983
7984  EVT VT = Op.getValueType();
7985  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7986  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7987  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7988  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7989  while (Depth--)
7990    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
7991                            MachinePointerInfo(),
7992                            false, false, 0);
7993  return FrameAddr;
7994}
7995
7996SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7997                                                     SelectionDAG &DAG) const {
7998  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7999}
8000
8001SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8002  MachineFunction &MF = DAG.getMachineFunction();
8003  SDValue Chain     = Op.getOperand(0);
8004  SDValue Offset    = Op.getOperand(1);
8005  SDValue Handler   = Op.getOperand(2);
8006  DebugLoc dl       = Op.getDebugLoc();
8007
8008  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8009                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8010                                     getPointerTy());
8011  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8012
8013  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8014                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8015  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8016  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8017                       false, false, 0);
8018  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8019  MF.getRegInfo().addLiveOut(StoreAddrReg);
8020
8021  return DAG.getNode(X86ISD::EH_RETURN, dl,
8022                     MVT::Other,
8023                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8024}
8025
8026SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8027                                             SelectionDAG &DAG) const {
8028  SDValue Root = Op.getOperand(0);
8029  SDValue Trmp = Op.getOperand(1); // trampoline
8030  SDValue FPtr = Op.getOperand(2); // nested function
8031  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8032  DebugLoc dl  = Op.getDebugLoc();
8033
8034  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8035
8036  if (Subtarget->is64Bit()) {
8037    SDValue OutChains[6];
8038
8039    // Large code-model.
8040    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8041    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8042
8043    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8044    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8045
8046    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8047
8048    // Load the pointer to the nested function into R11.
8049    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8050    SDValue Addr = Trmp;
8051    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8052                                Addr, MachinePointerInfo(TrmpAddr),
8053                                false, false, 0);
8054
8055    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8056                       DAG.getConstant(2, MVT::i64));
8057    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8058                                MachinePointerInfo(TrmpAddr, 2),
8059                                false, false, 2);
8060
8061    // Load the 'nest' parameter value into R10.
8062    // R10 is specified in X86CallingConv.td
8063    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8064    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8065                       DAG.getConstant(10, MVT::i64));
8066    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8067                                Addr, MachinePointerInfo(TrmpAddr, 10),
8068                                false, false, 0);
8069
8070    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8071                       DAG.getConstant(12, MVT::i64));
8072    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8073                                MachinePointerInfo(TrmpAddr, 12),
8074                                false, false, 2);
8075
8076    // Jump to the nested function.
8077    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8078    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8079                       DAG.getConstant(20, MVT::i64));
8080    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8081                                Addr, MachinePointerInfo(TrmpAddr, 20),
8082                                false, false, 0);
8083
8084    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8085    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8086                       DAG.getConstant(22, MVT::i64));
8087    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8088                                MachinePointerInfo(TrmpAddr, 22),
8089                                false, false, 0);
8090
8091    SDValue Ops[] =
8092      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8093    return DAG.getMergeValues(Ops, 2, dl);
8094  } else {
8095    const Function *Func =
8096      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8097    CallingConv::ID CC = Func->getCallingConv();
8098    unsigned NestReg;
8099
8100    switch (CC) {
8101    default:
8102      llvm_unreachable("Unsupported calling convention");
8103    case CallingConv::C:
8104    case CallingConv::X86_StdCall: {
8105      // Pass 'nest' parameter in ECX.
8106      // Must be kept in sync with X86CallingConv.td
8107      NestReg = X86::ECX;
8108
8109      // Check that ECX wasn't needed by an 'inreg' parameter.
8110      const FunctionType *FTy = Func->getFunctionType();
8111      const AttrListPtr &Attrs = Func->getAttributes();
8112
8113      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8114        unsigned InRegCount = 0;
8115        unsigned Idx = 1;
8116
8117        for (FunctionType::param_iterator I = FTy->param_begin(),
8118             E = FTy->param_end(); I != E; ++I, ++Idx)
8119          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8120            // FIXME: should only count parameters that are lowered to integers.
8121            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8122
8123        if (InRegCount > 2) {
8124          report_fatal_error("Nest register in use - reduce number of inreg"
8125                             " parameters!");
8126        }
8127      }
8128      break;
8129    }
8130    case CallingConv::X86_FastCall:
8131    case CallingConv::X86_ThisCall:
8132    case CallingConv::Fast:
8133      // Pass 'nest' parameter in EAX.
8134      // Must be kept in sync with X86CallingConv.td
8135      NestReg = X86::EAX;
8136      break;
8137    }
8138
8139    SDValue OutChains[4];
8140    SDValue Addr, Disp;
8141
8142    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8143                       DAG.getConstant(10, MVT::i32));
8144    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8145
8146    // This is storing the opcode for MOV32ri.
8147    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8148    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8149    OutChains[0] = DAG.getStore(Root, dl,
8150                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8151                                Trmp, MachinePointerInfo(TrmpAddr),
8152                                false, false, 0);
8153
8154    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8155                       DAG.getConstant(1, MVT::i32));
8156    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8157                                MachinePointerInfo(TrmpAddr, 1),
8158                                false, false, 1);
8159
8160    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8161    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8162                       DAG.getConstant(5, MVT::i32));
8163    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8164                                MachinePointerInfo(TrmpAddr, 5),
8165                                false, false, 1);
8166
8167    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8168                       DAG.getConstant(6, MVT::i32));
8169    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8170                                MachinePointerInfo(TrmpAddr, 6),
8171                                false, false, 1);
8172
8173    SDValue Ops[] =
8174      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8175    return DAG.getMergeValues(Ops, 2, dl);
8176  }
8177}
8178
8179SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8180                                            SelectionDAG &DAG) const {
8181  /*
8182   The rounding mode is in bits 11:10 of FPSR, and has the following
8183   settings:
8184     00 Round to nearest
8185     01 Round to -inf
8186     10 Round to +inf
8187     11 Round to 0
8188
8189  FLT_ROUNDS, on the other hand, expects the following:
8190    -1 Undefined
8191     0 Round to 0
8192     1 Round to nearest
8193     2 Round to +inf
8194     3 Round to -inf
8195
8196  To perform the conversion, we do:
8197    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8198  */
8199
8200  MachineFunction &MF = DAG.getMachineFunction();
8201  const TargetMachine &TM = MF.getTarget();
8202  const TargetFrameInfo &TFI = *TM.getFrameInfo();
8203  unsigned StackAlignment = TFI.getStackAlignment();
8204  EVT VT = Op.getValueType();
8205  DebugLoc DL = Op.getDebugLoc();
8206
8207  // Save FP Control Word to stack slot
8208  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8209  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8210
8211
8212  MachineMemOperand *MMO =
8213   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8214                           MachineMemOperand::MOStore, 2, 2);
8215
8216  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8217  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8218                                          DAG.getVTList(MVT::Other),
8219                                          Ops, 2, MVT::i16, MMO);
8220
8221  // Load FP Control Word from stack slot
8222  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8223                            MachinePointerInfo(), false, false, 0);
8224
8225  // Transform as necessary
8226  SDValue CWD1 =
8227    DAG.getNode(ISD::SRL, DL, MVT::i16,
8228                DAG.getNode(ISD::AND, DL, MVT::i16,
8229                            CWD, DAG.getConstant(0x800, MVT::i16)),
8230                DAG.getConstant(11, MVT::i8));
8231  SDValue CWD2 =
8232    DAG.getNode(ISD::SRL, DL, MVT::i16,
8233                DAG.getNode(ISD::AND, DL, MVT::i16,
8234                            CWD, DAG.getConstant(0x400, MVT::i16)),
8235                DAG.getConstant(9, MVT::i8));
8236
8237  SDValue RetVal =
8238    DAG.getNode(ISD::AND, DL, MVT::i16,
8239                DAG.getNode(ISD::ADD, DL, MVT::i16,
8240                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8241                            DAG.getConstant(1, MVT::i16)),
8242                DAG.getConstant(3, MVT::i16));
8243
8244
8245  return DAG.getNode((VT.getSizeInBits() < 16 ?
8246                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8247}
8248
8249SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8250  EVT VT = Op.getValueType();
8251  EVT OpVT = VT;
8252  unsigned NumBits = VT.getSizeInBits();
8253  DebugLoc dl = Op.getDebugLoc();
8254
8255  Op = Op.getOperand(0);
8256  if (VT == MVT::i8) {
8257    // Zero extend to i32 since there is not an i8 bsr.
8258    OpVT = MVT::i32;
8259    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8260  }
8261
8262  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8263  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8264  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8265
8266  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8267  SDValue Ops[] = {
8268    Op,
8269    DAG.getConstant(NumBits+NumBits-1, OpVT),
8270    DAG.getConstant(X86::COND_E, MVT::i8),
8271    Op.getValue(1)
8272  };
8273  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8274
8275  // Finally xor with NumBits-1.
8276  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8277
8278  if (VT == MVT::i8)
8279    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8280  return Op;
8281}
8282
8283SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8284  EVT VT = Op.getValueType();
8285  EVT OpVT = VT;
8286  unsigned NumBits = VT.getSizeInBits();
8287  DebugLoc dl = Op.getDebugLoc();
8288
8289  Op = Op.getOperand(0);
8290  if (VT == MVT::i8) {
8291    OpVT = MVT::i32;
8292    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8293  }
8294
8295  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8296  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8297  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8298
8299  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8300  SDValue Ops[] = {
8301    Op,
8302    DAG.getConstant(NumBits, OpVT),
8303    DAG.getConstant(X86::COND_E, MVT::i8),
8304    Op.getValue(1)
8305  };
8306  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8307
8308  if (VT == MVT::i8)
8309    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8310  return Op;
8311}
8312
8313SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8314  EVT VT = Op.getValueType();
8315  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8316  DebugLoc dl = Op.getDebugLoc();
8317
8318  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8319  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8320  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8321  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8322  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8323  //
8324  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8325  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8326  //  return AloBlo + AloBhi + AhiBlo;
8327
8328  SDValue A = Op.getOperand(0);
8329  SDValue B = Op.getOperand(1);
8330
8331  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8332                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8333                       A, DAG.getConstant(32, MVT::i32));
8334  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8335                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8336                       B, DAG.getConstant(32, MVT::i32));
8337  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8338                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8339                       A, B);
8340  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8341                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8342                       A, Bhi);
8343  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8344                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8345                       Ahi, B);
8346  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8347                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8348                       AloBhi, DAG.getConstant(32, MVT::i32));
8349  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8350                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8351                       AhiBlo, DAG.getConstant(32, MVT::i32));
8352  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8353  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8354  return Res;
8355}
8356
8357SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8358  EVT VT = Op.getValueType();
8359  DebugLoc dl = Op.getDebugLoc();
8360  SDValue R = Op.getOperand(0);
8361
8362  LLVMContext *Context = DAG.getContext();
8363
8364  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8365
8366  if (VT == MVT::v4i32) {
8367    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8368                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8369                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8370
8371    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8372
8373    std::vector<Constant*> CV(4, CI);
8374    Constant *C = ConstantVector::get(CV);
8375    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8376    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8377                                 MachinePointerInfo::getConstantPool(),
8378                                 false, false, 16);
8379
8380    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8381    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8382    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8383    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8384  }
8385  if (VT == MVT::v16i8) {
8386    // a = a << 5;
8387    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8388                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8389                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8390
8391    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8392    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8393
8394    std::vector<Constant*> CVM1(16, CM1);
8395    std::vector<Constant*> CVM2(16, CM2);
8396    Constant *C = ConstantVector::get(CVM1);
8397    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8398    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8399                            MachinePointerInfo::getConstantPool(),
8400                            false, false, 16);
8401
8402    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8403    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8404    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8405                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8406                    DAG.getConstant(4, MVT::i32));
8407    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8408                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8409                    R, M, Op);
8410    // a += a
8411    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8412
8413    C = ConstantVector::get(CVM2);
8414    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8415    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8416                    MachinePointerInfo::getConstantPool(),
8417                    false, false, 16);
8418
8419    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8420    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8421    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8422                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8423                    DAG.getConstant(2, MVT::i32));
8424    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8425                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8426                    R, M, Op);
8427    // a += a
8428    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8429
8430    // return pblendv(r, r+r, a);
8431    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8432                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8433                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8434    return R;
8435  }
8436  return SDValue();
8437}
8438
8439SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8440  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8441  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8442  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8443  // has only one use.
8444  SDNode *N = Op.getNode();
8445  SDValue LHS = N->getOperand(0);
8446  SDValue RHS = N->getOperand(1);
8447  unsigned BaseOp = 0;
8448  unsigned Cond = 0;
8449  DebugLoc dl = Op.getDebugLoc();
8450
8451  switch (Op.getOpcode()) {
8452  default: llvm_unreachable("Unknown ovf instruction!");
8453  case ISD::SADDO:
8454    // A subtract of one will be selected as a INC. Note that INC doesn't
8455    // set CF, so we can't do this for UADDO.
8456    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8457      if (C->getAPIntValue() == 1) {
8458        BaseOp = X86ISD::INC;
8459        Cond = X86::COND_O;
8460        break;
8461      }
8462    BaseOp = X86ISD::ADD;
8463    Cond = X86::COND_O;
8464    break;
8465  case ISD::UADDO:
8466    BaseOp = X86ISD::ADD;
8467    Cond = X86::COND_B;
8468    break;
8469  case ISD::SSUBO:
8470    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8471    // set CF, so we can't do this for USUBO.
8472    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8473      if (C->getAPIntValue() == 1) {
8474        BaseOp = X86ISD::DEC;
8475        Cond = X86::COND_O;
8476        break;
8477      }
8478    BaseOp = X86ISD::SUB;
8479    Cond = X86::COND_O;
8480    break;
8481  case ISD::USUBO:
8482    BaseOp = X86ISD::SUB;
8483    Cond = X86::COND_B;
8484    break;
8485  case ISD::SMULO:
8486    BaseOp = X86ISD::SMUL;
8487    Cond = X86::COND_O;
8488    break;
8489  case ISD::UMULO:
8490    BaseOp = X86ISD::UMUL;
8491    Cond = X86::COND_B;
8492    break;
8493  }
8494
8495  // Also sets EFLAGS.
8496  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8497  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8498
8499  SDValue SetCC =
8500    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8501                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8502
8503  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8504  return Sum;
8505}
8506
8507SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8508  DebugLoc dl = Op.getDebugLoc();
8509
8510  if (!Subtarget->hasSSE2()) {
8511    SDValue Chain = Op.getOperand(0);
8512    SDValue Zero = DAG.getConstant(0,
8513                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8514    SDValue Ops[] = {
8515      DAG.getRegister(X86::ESP, MVT::i32), // Base
8516      DAG.getTargetConstant(1, MVT::i8),   // Scale
8517      DAG.getRegister(0, MVT::i32),        // Index
8518      DAG.getTargetConstant(0, MVT::i32),  // Disp
8519      DAG.getRegister(0, MVT::i32),        // Segment.
8520      Zero,
8521      Chain
8522    };
8523    SDNode *Res =
8524      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8525                          array_lengthof(Ops));
8526    return SDValue(Res, 0);
8527  }
8528
8529  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8530  if (!isDev)
8531    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8532
8533  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8534  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8535  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8536  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8537
8538  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8539  if (!Op1 && !Op2 && !Op3 && Op4)
8540    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8541
8542  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8543  if (Op1 && !Op2 && !Op3 && !Op4)
8544    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8545
8546  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8547  //           (MFENCE)>;
8548  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8549}
8550
8551SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8552  EVT T = Op.getValueType();
8553  DebugLoc DL = Op.getDebugLoc();
8554  unsigned Reg = 0;
8555  unsigned size = 0;
8556  switch(T.getSimpleVT().SimpleTy) {
8557  default:
8558    assert(false && "Invalid value type!");
8559  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8560  case MVT::i16: Reg = X86::AX;  size = 2; break;
8561  case MVT::i32: Reg = X86::EAX; size = 4; break;
8562  case MVT::i64:
8563    assert(Subtarget->is64Bit() && "Node not type legal!");
8564    Reg = X86::RAX; size = 8;
8565    break;
8566  }
8567  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8568                                    Op.getOperand(2), SDValue());
8569  SDValue Ops[] = { cpIn.getValue(0),
8570                    Op.getOperand(1),
8571                    Op.getOperand(3),
8572                    DAG.getTargetConstant(size, MVT::i8),
8573                    cpIn.getValue(1) };
8574  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8575  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8576  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8577                                           Ops, 5, T, MMO);
8578  SDValue cpOut =
8579    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8580  return cpOut;
8581}
8582
8583SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8584                                                 SelectionDAG &DAG) const {
8585  assert(Subtarget->is64Bit() && "Result not type legalized?");
8586  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8587  SDValue TheChain = Op.getOperand(0);
8588  DebugLoc dl = Op.getDebugLoc();
8589  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8590  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8591  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8592                                   rax.getValue(2));
8593  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8594                            DAG.getConstant(32, MVT::i8));
8595  SDValue Ops[] = {
8596    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8597    rdx.getValue(1)
8598  };
8599  return DAG.getMergeValues(Ops, 2, dl);
8600}
8601
8602SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
8603                                            SelectionDAG &DAG) const {
8604  EVT SrcVT = Op.getOperand(0).getValueType();
8605  EVT DstVT = Op.getValueType();
8606  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8607          Subtarget->hasMMX() && !DisableMMX) &&
8608         "Unexpected custom BITCAST");
8609  assert((DstVT == MVT::i64 ||
8610          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8611         "Unexpected custom BITCAST");
8612  // i64 <=> MMX conversions are Legal.
8613  if (SrcVT==MVT::i64 && DstVT.isVector())
8614    return Op;
8615  if (DstVT==MVT::i64 && SrcVT.isVector())
8616    return Op;
8617  // MMX <=> MMX conversions are Legal.
8618  if (SrcVT.isVector() && DstVT.isVector())
8619    return Op;
8620  // All other conversions need to be expanded.
8621  return SDValue();
8622}
8623SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8624  SDNode *Node = Op.getNode();
8625  DebugLoc dl = Node->getDebugLoc();
8626  EVT T = Node->getValueType(0);
8627  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8628                              DAG.getConstant(0, T), Node->getOperand(2));
8629  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8630                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8631                       Node->getOperand(0),
8632                       Node->getOperand(1), negOp,
8633                       cast<AtomicSDNode>(Node)->getSrcValue(),
8634                       cast<AtomicSDNode>(Node)->getAlignment());
8635}
8636
8637/// LowerOperation - Provide custom lowering hooks for some operations.
8638///
8639SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8640  switch (Op.getOpcode()) {
8641  default: llvm_unreachable("Should not custom lower this!");
8642  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8643  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8644  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8645  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8646  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8647  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8648  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8649  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8650  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8651  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8652  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8653  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8654  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8655  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8656  case ISD::SHL_PARTS:
8657  case ISD::SRA_PARTS:
8658  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8659  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8660  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8661  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8662  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8663  case ISD::FABS:               return LowerFABS(Op, DAG);
8664  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8665  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8666  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8667  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8668  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8669  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8670  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8671  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8672  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8673  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8674  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8675  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8676  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8677  case ISD::FRAME_TO_ARGS_OFFSET:
8678                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8679  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8680  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8681  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8682  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8683  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8684  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8685  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8686  case ISD::SHL:                return LowerSHL(Op, DAG);
8687  case ISD::SADDO:
8688  case ISD::UADDO:
8689  case ISD::SSUBO:
8690  case ISD::USUBO:
8691  case ISD::SMULO:
8692  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8693  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8694  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
8695  }
8696}
8697
8698void X86TargetLowering::
8699ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8700                        SelectionDAG &DAG, unsigned NewOp) const {
8701  EVT T = Node->getValueType(0);
8702  DebugLoc dl = Node->getDebugLoc();
8703  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8704
8705  SDValue Chain = Node->getOperand(0);
8706  SDValue In1 = Node->getOperand(1);
8707  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8708                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8709  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8710                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8711  SDValue Ops[] = { Chain, In1, In2L, In2H };
8712  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8713  SDValue Result =
8714    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8715                            cast<MemSDNode>(Node)->getMemOperand());
8716  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8717  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8718  Results.push_back(Result.getValue(2));
8719}
8720
8721/// ReplaceNodeResults - Replace a node with an illegal result type
8722/// with a new node built out of custom code.
8723void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8724                                           SmallVectorImpl<SDValue>&Results,
8725                                           SelectionDAG &DAG) const {
8726  DebugLoc dl = N->getDebugLoc();
8727  switch (N->getOpcode()) {
8728  default:
8729    assert(false && "Do not know how to custom type legalize this operation!");
8730    return;
8731  case ISD::FP_TO_SINT: {
8732    std::pair<SDValue,SDValue> Vals =
8733        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8734    SDValue FIST = Vals.first, StackSlot = Vals.second;
8735    if (FIST.getNode() != 0) {
8736      EVT VT = N->getValueType(0);
8737      // Return a load from the stack slot.
8738      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8739                                    MachinePointerInfo(), false, false, 0));
8740    }
8741    return;
8742  }
8743  case ISD::READCYCLECOUNTER: {
8744    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8745    SDValue TheChain = N->getOperand(0);
8746    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8747    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8748                                     rd.getValue(1));
8749    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8750                                     eax.getValue(2));
8751    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8752    SDValue Ops[] = { eax, edx };
8753    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8754    Results.push_back(edx.getValue(1));
8755    return;
8756  }
8757  case ISD::ATOMIC_CMP_SWAP: {
8758    EVT T = N->getValueType(0);
8759    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8760    SDValue cpInL, cpInH;
8761    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8762                        DAG.getConstant(0, MVT::i32));
8763    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8764                        DAG.getConstant(1, MVT::i32));
8765    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8766    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8767                             cpInL.getValue(1));
8768    SDValue swapInL, swapInH;
8769    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8770                          DAG.getConstant(0, MVT::i32));
8771    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8772                          DAG.getConstant(1, MVT::i32));
8773    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8774                               cpInH.getValue(1));
8775    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8776                               swapInL.getValue(1));
8777    SDValue Ops[] = { swapInH.getValue(0),
8778                      N->getOperand(1),
8779                      swapInH.getValue(1) };
8780    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8781    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8782    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8783                                             Ops, 3, T, MMO);
8784    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8785                                        MVT::i32, Result.getValue(1));
8786    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8787                                        MVT::i32, cpOutL.getValue(2));
8788    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8789    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8790    Results.push_back(cpOutH.getValue(1));
8791    return;
8792  }
8793  case ISD::ATOMIC_LOAD_ADD:
8794    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8795    return;
8796  case ISD::ATOMIC_LOAD_AND:
8797    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8798    return;
8799  case ISD::ATOMIC_LOAD_NAND:
8800    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8801    return;
8802  case ISD::ATOMIC_LOAD_OR:
8803    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8804    return;
8805  case ISD::ATOMIC_LOAD_SUB:
8806    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8807    return;
8808  case ISD::ATOMIC_LOAD_XOR:
8809    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8810    return;
8811  case ISD::ATOMIC_SWAP:
8812    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8813    return;
8814  }
8815}
8816
8817const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8818  switch (Opcode) {
8819  default: return NULL;
8820  case X86ISD::BSF:                return "X86ISD::BSF";
8821  case X86ISD::BSR:                return "X86ISD::BSR";
8822  case X86ISD::SHLD:               return "X86ISD::SHLD";
8823  case X86ISD::SHRD:               return "X86ISD::SHRD";
8824  case X86ISD::FAND:               return "X86ISD::FAND";
8825  case X86ISD::FOR:                return "X86ISD::FOR";
8826  case X86ISD::FXOR:               return "X86ISD::FXOR";
8827  case X86ISD::FSRL:               return "X86ISD::FSRL";
8828  case X86ISD::FILD:               return "X86ISD::FILD";
8829  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8830  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8831  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8832  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8833  case X86ISD::FLD:                return "X86ISD::FLD";
8834  case X86ISD::FST:                return "X86ISD::FST";
8835  case X86ISD::CALL:               return "X86ISD::CALL";
8836  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8837  case X86ISD::BT:                 return "X86ISD::BT";
8838  case X86ISD::CMP:                return "X86ISD::CMP";
8839  case X86ISD::COMI:               return "X86ISD::COMI";
8840  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8841  case X86ISD::SETCC:              return "X86ISD::SETCC";
8842  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8843  case X86ISD::CMOV:               return "X86ISD::CMOV";
8844  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8845  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8846  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8847  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8848  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8849  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8850  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8851  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8852  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8853  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8854  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8855  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8856  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8857  case X86ISD::FMAX:               return "X86ISD::FMAX";
8858  case X86ISD::FMIN:               return "X86ISD::FMIN";
8859  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8860  case X86ISD::FRCP:               return "X86ISD::FRCP";
8861  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8862  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8863  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8864  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8865  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8866  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8867  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8868  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8869  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8870  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8871  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8872  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8873  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8874  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8875  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8876  case X86ISD::VSHL:               return "X86ISD::VSHL";
8877  case X86ISD::VSRL:               return "X86ISD::VSRL";
8878  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8879  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8880  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8881  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8882  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8883  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8884  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8885  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8886  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8887  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8888  case X86ISD::ADD:                return "X86ISD::ADD";
8889  case X86ISD::SUB:                return "X86ISD::SUB";
8890  case X86ISD::SMUL:               return "X86ISD::SMUL";
8891  case X86ISD::UMUL:               return "X86ISD::UMUL";
8892  case X86ISD::INC:                return "X86ISD::INC";
8893  case X86ISD::DEC:                return "X86ISD::DEC";
8894  case X86ISD::OR:                 return "X86ISD::OR";
8895  case X86ISD::XOR:                return "X86ISD::XOR";
8896  case X86ISD::AND:                return "X86ISD::AND";
8897  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8898  case X86ISD::PTEST:              return "X86ISD::PTEST";
8899  case X86ISD::TESTP:              return "X86ISD::TESTP";
8900  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8901  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8902  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8903  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8904  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8905  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8906  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8907  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8908  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8909  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8910  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8911  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8912  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8913  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8914  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8915  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8916  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8917  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8918  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8919  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8920  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8921  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8922  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8923  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8924  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8925  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8926  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8927  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8928  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8929  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8930  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8931  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8932  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8933  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8934  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
8935  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
8936  }
8937}
8938
8939// isLegalAddressingMode - Return true if the addressing mode represented
8940// by AM is legal for this target, for a load/store of the specified type.
8941bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8942                                              const Type *Ty) const {
8943  // X86 supports extremely general addressing modes.
8944  CodeModel::Model M = getTargetMachine().getCodeModel();
8945  Reloc::Model R = getTargetMachine().getRelocationModel();
8946
8947  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8948  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8949    return false;
8950
8951  if (AM.BaseGV) {
8952    unsigned GVFlags =
8953      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8954
8955    // If a reference to this global requires an extra load, we can't fold it.
8956    if (isGlobalStubReference(GVFlags))
8957      return false;
8958
8959    // If BaseGV requires a register for the PIC base, we cannot also have a
8960    // BaseReg specified.
8961    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8962      return false;
8963
8964    // If lower 4G is not available, then we must use rip-relative addressing.
8965    if ((M != CodeModel::Small || R != Reloc::Static) &&
8966        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8967      return false;
8968  }
8969
8970  switch (AM.Scale) {
8971  case 0:
8972  case 1:
8973  case 2:
8974  case 4:
8975  case 8:
8976    // These scales always work.
8977    break;
8978  case 3:
8979  case 5:
8980  case 9:
8981    // These scales are formed with basereg+scalereg.  Only accept if there is
8982    // no basereg yet.
8983    if (AM.HasBaseReg)
8984      return false;
8985    break;
8986  default:  // Other stuff never works.
8987    return false;
8988  }
8989
8990  return true;
8991}
8992
8993
8994bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8995  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8996    return false;
8997  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8998  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8999  if (NumBits1 <= NumBits2)
9000    return false;
9001  return true;
9002}
9003
9004bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9005  if (!VT1.isInteger() || !VT2.isInteger())
9006    return false;
9007  unsigned NumBits1 = VT1.getSizeInBits();
9008  unsigned NumBits2 = VT2.getSizeInBits();
9009  if (NumBits1 <= NumBits2)
9010    return false;
9011  return true;
9012}
9013
9014bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9015  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9016  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9017}
9018
9019bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9020  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9021  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9022}
9023
9024bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9025  // i16 instructions are longer (0x66 prefix) and potentially slower.
9026  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9027}
9028
9029/// isShuffleMaskLegal - Targets can use this to indicate that they only
9030/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9031/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9032/// are assumed to be legal.
9033bool
9034X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9035                                      EVT VT) const {
9036  // Very little shuffling can be done for 64-bit vectors right now.
9037  if (VT.getSizeInBits() == 64)
9038    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9039
9040  // FIXME: pshufb, blends, shifts.
9041  return (VT.getVectorNumElements() == 2 ||
9042          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9043          isMOVLMask(M, VT) ||
9044          isSHUFPMask(M, VT) ||
9045          isPSHUFDMask(M, VT) ||
9046          isPSHUFHWMask(M, VT) ||
9047          isPSHUFLWMask(M, VT) ||
9048          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9049          isUNPCKLMask(M, VT) ||
9050          isUNPCKHMask(M, VT) ||
9051          isUNPCKL_v_undef_Mask(M, VT) ||
9052          isUNPCKH_v_undef_Mask(M, VT));
9053}
9054
9055bool
9056X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9057                                          EVT VT) const {
9058  unsigned NumElts = VT.getVectorNumElements();
9059  // FIXME: This collection of masks seems suspect.
9060  if (NumElts == 2)
9061    return true;
9062  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9063    return (isMOVLMask(Mask, VT)  ||
9064            isCommutedMOVLMask(Mask, VT, true) ||
9065            isSHUFPMask(Mask, VT) ||
9066            isCommutedSHUFPMask(Mask, VT));
9067  }
9068  return false;
9069}
9070
9071//===----------------------------------------------------------------------===//
9072//                           X86 Scheduler Hooks
9073//===----------------------------------------------------------------------===//
9074
9075// private utility function
9076MachineBasicBlock *
9077X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9078                                                       MachineBasicBlock *MBB,
9079                                                       unsigned regOpc,
9080                                                       unsigned immOpc,
9081                                                       unsigned LoadOpc,
9082                                                       unsigned CXchgOpc,
9083                                                       unsigned notOpc,
9084                                                       unsigned EAXreg,
9085                                                       TargetRegisterClass *RC,
9086                                                       bool invSrc) const {
9087  // For the atomic bitwise operator, we generate
9088  //   thisMBB:
9089  //   newMBB:
9090  //     ld  t1 = [bitinstr.addr]
9091  //     op  t2 = t1, [bitinstr.val]
9092  //     mov EAX = t1
9093  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9094  //     bz  newMBB
9095  //     fallthrough -->nextMBB
9096  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9097  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9098  MachineFunction::iterator MBBIter = MBB;
9099  ++MBBIter;
9100
9101  /// First build the CFG
9102  MachineFunction *F = MBB->getParent();
9103  MachineBasicBlock *thisMBB = MBB;
9104  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9105  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9106  F->insert(MBBIter, newMBB);
9107  F->insert(MBBIter, nextMBB);
9108
9109  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9110  nextMBB->splice(nextMBB->begin(), thisMBB,
9111                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9112                  thisMBB->end());
9113  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9114
9115  // Update thisMBB to fall through to newMBB
9116  thisMBB->addSuccessor(newMBB);
9117
9118  // newMBB jumps to itself and fall through to nextMBB
9119  newMBB->addSuccessor(nextMBB);
9120  newMBB->addSuccessor(newMBB);
9121
9122  // Insert instructions into newMBB based on incoming instruction
9123  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9124         "unexpected number of operands");
9125  DebugLoc dl = bInstr->getDebugLoc();
9126  MachineOperand& destOper = bInstr->getOperand(0);
9127  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9128  int numArgs = bInstr->getNumOperands() - 1;
9129  for (int i=0; i < numArgs; ++i)
9130    argOpers[i] = &bInstr->getOperand(i+1);
9131
9132  // x86 address has 4 operands: base, index, scale, and displacement
9133  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9134  int valArgIndx = lastAddrIndx + 1;
9135
9136  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9137  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9138  for (int i=0; i <= lastAddrIndx; ++i)
9139    (*MIB).addOperand(*argOpers[i]);
9140
9141  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9142  if (invSrc) {
9143    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9144  }
9145  else
9146    tt = t1;
9147
9148  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9149  assert((argOpers[valArgIndx]->isReg() ||
9150          argOpers[valArgIndx]->isImm()) &&
9151         "invalid operand");
9152  if (argOpers[valArgIndx]->isReg())
9153    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9154  else
9155    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9156  MIB.addReg(tt);
9157  (*MIB).addOperand(*argOpers[valArgIndx]);
9158
9159  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9160  MIB.addReg(t1);
9161
9162  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9163  for (int i=0; i <= lastAddrIndx; ++i)
9164    (*MIB).addOperand(*argOpers[i]);
9165  MIB.addReg(t2);
9166  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9167  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9168                    bInstr->memoperands_end());
9169
9170  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9171  MIB.addReg(EAXreg);
9172
9173  // insert branch
9174  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9175
9176  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9177  return nextMBB;
9178}
9179
9180// private utility function:  64 bit atomics on 32 bit host.
9181MachineBasicBlock *
9182X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9183                                                       MachineBasicBlock *MBB,
9184                                                       unsigned regOpcL,
9185                                                       unsigned regOpcH,
9186                                                       unsigned immOpcL,
9187                                                       unsigned immOpcH,
9188                                                       bool invSrc) const {
9189  // For the atomic bitwise operator, we generate
9190  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9191  //     ld t1,t2 = [bitinstr.addr]
9192  //   newMBB:
9193  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9194  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9195  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9196  //     mov ECX, EBX <- t5, t6
9197  //     mov EAX, EDX <- t1, t2
9198  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9199  //     mov t3, t4 <- EAX, EDX
9200  //     bz  newMBB
9201  //     result in out1, out2
9202  //     fallthrough -->nextMBB
9203
9204  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9205  const unsigned LoadOpc = X86::MOV32rm;
9206  const unsigned NotOpc = X86::NOT32r;
9207  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9208  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9209  MachineFunction::iterator MBBIter = MBB;
9210  ++MBBIter;
9211
9212  /// First build the CFG
9213  MachineFunction *F = MBB->getParent();
9214  MachineBasicBlock *thisMBB = MBB;
9215  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9216  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9217  F->insert(MBBIter, newMBB);
9218  F->insert(MBBIter, nextMBB);
9219
9220  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9221  nextMBB->splice(nextMBB->begin(), thisMBB,
9222                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9223                  thisMBB->end());
9224  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9225
9226  // Update thisMBB to fall through to newMBB
9227  thisMBB->addSuccessor(newMBB);
9228
9229  // newMBB jumps to itself and fall through to nextMBB
9230  newMBB->addSuccessor(nextMBB);
9231  newMBB->addSuccessor(newMBB);
9232
9233  DebugLoc dl = bInstr->getDebugLoc();
9234  // Insert instructions into newMBB based on incoming instruction
9235  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9236  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9237         "unexpected number of operands");
9238  MachineOperand& dest1Oper = bInstr->getOperand(0);
9239  MachineOperand& dest2Oper = bInstr->getOperand(1);
9240  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9241  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9242    argOpers[i] = &bInstr->getOperand(i+2);
9243
9244    // We use some of the operands multiple times, so conservatively just
9245    // clear any kill flags that might be present.
9246    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9247      argOpers[i]->setIsKill(false);
9248  }
9249
9250  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9251  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9252
9253  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9254  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9255  for (int i=0; i <= lastAddrIndx; ++i)
9256    (*MIB).addOperand(*argOpers[i]);
9257  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9258  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9259  // add 4 to displacement.
9260  for (int i=0; i <= lastAddrIndx-2; ++i)
9261    (*MIB).addOperand(*argOpers[i]);
9262  MachineOperand newOp3 = *(argOpers[3]);
9263  if (newOp3.isImm())
9264    newOp3.setImm(newOp3.getImm()+4);
9265  else
9266    newOp3.setOffset(newOp3.getOffset()+4);
9267  (*MIB).addOperand(newOp3);
9268  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9269
9270  // t3/4 are defined later, at the bottom of the loop
9271  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9272  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9273  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9274    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9275  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9276    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9277
9278  // The subsequent operations should be using the destination registers of
9279  //the PHI instructions.
9280  if (invSrc) {
9281    t1 = F->getRegInfo().createVirtualRegister(RC);
9282    t2 = F->getRegInfo().createVirtualRegister(RC);
9283    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9284    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9285  } else {
9286    t1 = dest1Oper.getReg();
9287    t2 = dest2Oper.getReg();
9288  }
9289
9290  int valArgIndx = lastAddrIndx + 1;
9291  assert((argOpers[valArgIndx]->isReg() ||
9292          argOpers[valArgIndx]->isImm()) &&
9293         "invalid operand");
9294  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9295  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9296  if (argOpers[valArgIndx]->isReg())
9297    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9298  else
9299    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9300  if (regOpcL != X86::MOV32rr)
9301    MIB.addReg(t1);
9302  (*MIB).addOperand(*argOpers[valArgIndx]);
9303  assert(argOpers[valArgIndx + 1]->isReg() ==
9304         argOpers[valArgIndx]->isReg());
9305  assert(argOpers[valArgIndx + 1]->isImm() ==
9306         argOpers[valArgIndx]->isImm());
9307  if (argOpers[valArgIndx + 1]->isReg())
9308    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9309  else
9310    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9311  if (regOpcH != X86::MOV32rr)
9312    MIB.addReg(t2);
9313  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9314
9315  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9316  MIB.addReg(t1);
9317  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9318  MIB.addReg(t2);
9319
9320  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9321  MIB.addReg(t5);
9322  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9323  MIB.addReg(t6);
9324
9325  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9326  for (int i=0; i <= lastAddrIndx; ++i)
9327    (*MIB).addOperand(*argOpers[i]);
9328
9329  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9330  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9331                    bInstr->memoperands_end());
9332
9333  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9334  MIB.addReg(X86::EAX);
9335  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9336  MIB.addReg(X86::EDX);
9337
9338  // insert branch
9339  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9340
9341  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9342  return nextMBB;
9343}
9344
9345// private utility function
9346MachineBasicBlock *
9347X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9348                                                      MachineBasicBlock *MBB,
9349                                                      unsigned cmovOpc) const {
9350  // For the atomic min/max operator, we generate
9351  //   thisMBB:
9352  //   newMBB:
9353  //     ld t1 = [min/max.addr]
9354  //     mov t2 = [min/max.val]
9355  //     cmp  t1, t2
9356  //     cmov[cond] t2 = t1
9357  //     mov EAX = t1
9358  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9359  //     bz   newMBB
9360  //     fallthrough -->nextMBB
9361  //
9362  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9363  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9364  MachineFunction::iterator MBBIter = MBB;
9365  ++MBBIter;
9366
9367  /// First build the CFG
9368  MachineFunction *F = MBB->getParent();
9369  MachineBasicBlock *thisMBB = MBB;
9370  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9371  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9372  F->insert(MBBIter, newMBB);
9373  F->insert(MBBIter, nextMBB);
9374
9375  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9376  nextMBB->splice(nextMBB->begin(), thisMBB,
9377                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9378                  thisMBB->end());
9379  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9380
9381  // Update thisMBB to fall through to newMBB
9382  thisMBB->addSuccessor(newMBB);
9383
9384  // newMBB jumps to newMBB and fall through to nextMBB
9385  newMBB->addSuccessor(nextMBB);
9386  newMBB->addSuccessor(newMBB);
9387
9388  DebugLoc dl = mInstr->getDebugLoc();
9389  // Insert instructions into newMBB based on incoming instruction
9390  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9391         "unexpected number of operands");
9392  MachineOperand& destOper = mInstr->getOperand(0);
9393  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9394  int numArgs = mInstr->getNumOperands() - 1;
9395  for (int i=0; i < numArgs; ++i)
9396    argOpers[i] = &mInstr->getOperand(i+1);
9397
9398  // x86 address has 4 operands: base, index, scale, and displacement
9399  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9400  int valArgIndx = lastAddrIndx + 1;
9401
9402  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9403  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9404  for (int i=0; i <= lastAddrIndx; ++i)
9405    (*MIB).addOperand(*argOpers[i]);
9406
9407  // We only support register and immediate values
9408  assert((argOpers[valArgIndx]->isReg() ||
9409          argOpers[valArgIndx]->isImm()) &&
9410         "invalid operand");
9411
9412  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9413  if (argOpers[valArgIndx]->isReg())
9414    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9415  else
9416    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9417  (*MIB).addOperand(*argOpers[valArgIndx]);
9418
9419  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9420  MIB.addReg(t1);
9421
9422  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9423  MIB.addReg(t1);
9424  MIB.addReg(t2);
9425
9426  // Generate movc
9427  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9428  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9429  MIB.addReg(t2);
9430  MIB.addReg(t1);
9431
9432  // Cmp and exchange if none has modified the memory location
9433  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9434  for (int i=0; i <= lastAddrIndx; ++i)
9435    (*MIB).addOperand(*argOpers[i]);
9436  MIB.addReg(t3);
9437  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9438  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9439                    mInstr->memoperands_end());
9440
9441  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9442  MIB.addReg(X86::EAX);
9443
9444  // insert branch
9445  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9446
9447  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9448  return nextMBB;
9449}
9450
9451// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9452// or XMM0_V32I8 in AVX all of this code can be replaced with that
9453// in the .td file.
9454MachineBasicBlock *
9455X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9456                            unsigned numArgs, bool memArg) const {
9457  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9458         "Target must have SSE4.2 or AVX features enabled");
9459
9460  DebugLoc dl = MI->getDebugLoc();
9461  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9462  unsigned Opc;
9463  if (!Subtarget->hasAVX()) {
9464    if (memArg)
9465      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9466    else
9467      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9468  } else {
9469    if (memArg)
9470      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9471    else
9472      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9473  }
9474
9475  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
9476  for (unsigned i = 0; i < numArgs; ++i) {
9477    MachineOperand &Op = MI->getOperand(i+1);
9478    if (!(Op.isReg() && Op.isImplicit()))
9479      MIB.addOperand(Op);
9480  }
9481  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9482    .addReg(X86::XMM0);
9483
9484  MI->eraseFromParent();
9485  return BB;
9486}
9487
9488MachineBasicBlock *
9489X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
9490  DebugLoc dl = MI->getDebugLoc();
9491  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9492
9493  // Address into RAX/EAX, other two args into ECX, EDX.
9494  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
9495  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
9496  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
9497  for (int i = 0; i < X86::AddrNumOperands; ++i)
9498    MIB.addOperand(MI->getOperand(i));
9499
9500  unsigned ValOps = X86::AddrNumOperands;
9501  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9502    .addReg(MI->getOperand(ValOps).getReg());
9503  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
9504    .addReg(MI->getOperand(ValOps+1).getReg());
9505
9506  // The instruction doesn't actually take any operands though.
9507  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
9508
9509  MI->eraseFromParent(); // The pseudo is gone now.
9510  return BB;
9511}
9512
9513MachineBasicBlock *
9514X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
9515  DebugLoc dl = MI->getDebugLoc();
9516  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9517
9518  // First arg in ECX, the second in EAX.
9519  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9520    .addReg(MI->getOperand(0).getReg());
9521  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
9522    .addReg(MI->getOperand(1).getReg());
9523
9524  // The instruction doesn't actually take any operands though.
9525  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
9526
9527  MI->eraseFromParent(); // The pseudo is gone now.
9528  return BB;
9529}
9530
9531MachineBasicBlock *
9532X86TargetLowering::EmitVAARG64WithCustomInserter(
9533                   MachineInstr *MI,
9534                   MachineBasicBlock *MBB) const {
9535  // Emit va_arg instruction on X86-64.
9536
9537  // Operands to this pseudo-instruction:
9538  // 0  ) Output        : destination address (reg)
9539  // 1-5) Input         : va_list address (addr, i64mem)
9540  // 6  ) ArgSize       : Size (in bytes) of vararg type
9541  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9542  // 8  ) Align         : Alignment of type
9543  // 9  ) EFLAGS (implicit-def)
9544
9545  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9546  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9547
9548  unsigned DestReg = MI->getOperand(0).getReg();
9549  MachineOperand &Base = MI->getOperand(1);
9550  MachineOperand &Scale = MI->getOperand(2);
9551  MachineOperand &Index = MI->getOperand(3);
9552  MachineOperand &Disp = MI->getOperand(4);
9553  MachineOperand &Segment = MI->getOperand(5);
9554  unsigned ArgSize = MI->getOperand(6).getImm();
9555  unsigned ArgMode = MI->getOperand(7).getImm();
9556  unsigned Align = MI->getOperand(8).getImm();
9557
9558  // Memory Reference
9559  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9560  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9561  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9562
9563  // Machine Information
9564  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9565  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9566  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9567  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9568  DebugLoc DL = MI->getDebugLoc();
9569
9570  // struct va_list {
9571  //   i32   gp_offset
9572  //   i32   fp_offset
9573  //   i64   overflow_area (address)
9574  //   i64   reg_save_area (address)
9575  // }
9576  // sizeof(va_list) = 24
9577  // alignment(va_list) = 8
9578
9579  unsigned TotalNumIntRegs = 6;
9580  unsigned TotalNumXMMRegs = 8;
9581  bool UseGPOffset = (ArgMode == 1);
9582  bool UseFPOffset = (ArgMode == 2);
9583  unsigned MaxOffset = TotalNumIntRegs * 8 +
9584                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9585
9586  /* Align ArgSize to a multiple of 8 */
9587  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9588  bool NeedsAlign = (Align > 8);
9589
9590  MachineBasicBlock *thisMBB = MBB;
9591  MachineBasicBlock *overflowMBB;
9592  MachineBasicBlock *offsetMBB;
9593  MachineBasicBlock *endMBB;
9594
9595  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
9596  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
9597  unsigned OffsetReg = 0;
9598
9599  if (!UseGPOffset && !UseFPOffset) {
9600    // If we only pull from the overflow region, we don't create a branch.
9601    // We don't need to alter control flow.
9602    OffsetDestReg = 0; // unused
9603    OverflowDestReg = DestReg;
9604
9605    offsetMBB = NULL;
9606    overflowMBB = thisMBB;
9607    endMBB = thisMBB;
9608  } else {
9609    // First emit code to check if gp_offset (or fp_offset) is below the bound.
9610    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9611    // If not, pull from overflow_area. (branch to overflowMBB)
9612    //
9613    //       thisMBB
9614    //         |     .
9615    //         |        .
9616    //     offsetMBB   overflowMBB
9617    //         |        .
9618    //         |     .
9619    //        endMBB
9620
9621    // Registers for the PHI in endMBB
9622    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9623    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9624
9625    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9626    MachineFunction *MF = MBB->getParent();
9627    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9628    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9629    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9630
9631    MachineFunction::iterator MBBIter = MBB;
9632    ++MBBIter;
9633
9634    // Insert the new basic blocks
9635    MF->insert(MBBIter, offsetMBB);
9636    MF->insert(MBBIter, overflowMBB);
9637    MF->insert(MBBIter, endMBB);
9638
9639    // Transfer the remainder of MBB and its successor edges to endMBB.
9640    endMBB->splice(endMBB->begin(), thisMBB,
9641                    llvm::next(MachineBasicBlock::iterator(MI)),
9642                    thisMBB->end());
9643    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9644
9645    // Make offsetMBB and overflowMBB successors of thisMBB
9646    thisMBB->addSuccessor(offsetMBB);
9647    thisMBB->addSuccessor(overflowMBB);
9648
9649    // endMBB is a successor of both offsetMBB and overflowMBB
9650    offsetMBB->addSuccessor(endMBB);
9651    overflowMBB->addSuccessor(endMBB);
9652
9653    // Load the offset value into a register
9654    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9655    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9656      .addOperand(Base)
9657      .addOperand(Scale)
9658      .addOperand(Index)
9659      .addDisp(Disp, UseFPOffset ? 4 : 0)
9660      .addOperand(Segment)
9661      .setMemRefs(MMOBegin, MMOEnd);
9662
9663    // Check if there is enough room left to pull this argument.
9664    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9665      .addReg(OffsetReg)
9666      .addImm(MaxOffset + 8 - ArgSizeA8);
9667
9668    // Branch to "overflowMBB" if offset >= max
9669    // Fall through to "offsetMBB" otherwise
9670    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9671      .addMBB(overflowMBB);
9672  }
9673
9674  // In offsetMBB, emit code to use the reg_save_area.
9675  if (offsetMBB) {
9676    assert(OffsetReg != 0);
9677
9678    // Read the reg_save_area address.
9679    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9680    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9681      .addOperand(Base)
9682      .addOperand(Scale)
9683      .addOperand(Index)
9684      .addDisp(Disp, 16)
9685      .addOperand(Segment)
9686      .setMemRefs(MMOBegin, MMOEnd);
9687
9688    // Zero-extend the offset
9689    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9690      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9691        .addImm(0)
9692        .addReg(OffsetReg)
9693        .addImm(X86::sub_32bit);
9694
9695    // Add the offset to the reg_save_area to get the final address.
9696    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9697      .addReg(OffsetReg64)
9698      .addReg(RegSaveReg);
9699
9700    // Compute the offset for the next argument
9701    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9702    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9703      .addReg(OffsetReg)
9704      .addImm(UseFPOffset ? 16 : 8);
9705
9706    // Store it back into the va_list.
9707    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9708      .addOperand(Base)
9709      .addOperand(Scale)
9710      .addOperand(Index)
9711      .addDisp(Disp, UseFPOffset ? 4 : 0)
9712      .addOperand(Segment)
9713      .addReg(NextOffsetReg)
9714      .setMemRefs(MMOBegin, MMOEnd);
9715
9716    // Jump to endMBB
9717    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9718      .addMBB(endMBB);
9719  }
9720
9721  //
9722  // Emit code to use overflow area
9723  //
9724
9725  // Load the overflow_area address into a register.
9726  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9727  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9728    .addOperand(Base)
9729    .addOperand(Scale)
9730    .addOperand(Index)
9731    .addDisp(Disp, 8)
9732    .addOperand(Segment)
9733    .setMemRefs(MMOBegin, MMOEnd);
9734
9735  // If we need to align it, do so. Otherwise, just copy the address
9736  // to OverflowDestReg.
9737  if (NeedsAlign) {
9738    // Align the overflow address
9739    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9740    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9741
9742    // aligned_addr = (addr + (align-1)) & ~(align-1)
9743    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9744      .addReg(OverflowAddrReg)
9745      .addImm(Align-1);
9746
9747    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9748      .addReg(TmpReg)
9749      .addImm(~(uint64_t)(Align-1));
9750  } else {
9751    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9752      .addReg(OverflowAddrReg);
9753  }
9754
9755  // Compute the next overflow address after this argument.
9756  // (the overflow address should be kept 8-byte aligned)
9757  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9758  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9759    .addReg(OverflowDestReg)
9760    .addImm(ArgSizeA8);
9761
9762  // Store the new overflow address.
9763  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9764    .addOperand(Base)
9765    .addOperand(Scale)
9766    .addOperand(Index)
9767    .addDisp(Disp, 8)
9768    .addOperand(Segment)
9769    .addReg(NextAddrReg)
9770    .setMemRefs(MMOBegin, MMOEnd);
9771
9772  // If we branched, emit the PHI to the front of endMBB.
9773  if (offsetMBB) {
9774    BuildMI(*endMBB, endMBB->begin(), DL,
9775            TII->get(X86::PHI), DestReg)
9776      .addReg(OffsetDestReg).addMBB(offsetMBB)
9777      .addReg(OverflowDestReg).addMBB(overflowMBB);
9778  }
9779
9780  // Erase the pseudo instruction
9781  MI->eraseFromParent();
9782
9783  return endMBB;
9784}
9785
9786MachineBasicBlock *
9787X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9788                                                 MachineInstr *MI,
9789                                                 MachineBasicBlock *MBB) const {
9790  // Emit code to save XMM registers to the stack. The ABI says that the
9791  // number of registers to save is given in %al, so it's theoretically
9792  // possible to do an indirect jump trick to avoid saving all of them,
9793  // however this code takes a simpler approach and just executes all
9794  // of the stores if %al is non-zero. It's less code, and it's probably
9795  // easier on the hardware branch predictor, and stores aren't all that
9796  // expensive anyway.
9797
9798  // Create the new basic blocks. One block contains all the XMM stores,
9799  // and one block is the final destination regardless of whether any
9800  // stores were performed.
9801  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9802  MachineFunction *F = MBB->getParent();
9803  MachineFunction::iterator MBBIter = MBB;
9804  ++MBBIter;
9805  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9806  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9807  F->insert(MBBIter, XMMSaveMBB);
9808  F->insert(MBBIter, EndMBB);
9809
9810  // Transfer the remainder of MBB and its successor edges to EndMBB.
9811  EndMBB->splice(EndMBB->begin(), MBB,
9812                 llvm::next(MachineBasicBlock::iterator(MI)),
9813                 MBB->end());
9814  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9815
9816  // The original block will now fall through to the XMM save block.
9817  MBB->addSuccessor(XMMSaveMBB);
9818  // The XMMSaveMBB will fall through to the end block.
9819  XMMSaveMBB->addSuccessor(EndMBB);
9820
9821  // Now add the instructions.
9822  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9823  DebugLoc DL = MI->getDebugLoc();
9824
9825  unsigned CountReg = MI->getOperand(0).getReg();
9826  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9827  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9828
9829  if (!Subtarget->isTargetWin64()) {
9830    // If %al is 0, branch around the XMM save block.
9831    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9832    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9833    MBB->addSuccessor(EndMBB);
9834  }
9835
9836  // In the XMM save block, save all the XMM argument registers.
9837  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9838    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9839    MachineMemOperand *MMO =
9840      F->getMachineMemOperand(
9841          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9842        MachineMemOperand::MOStore,
9843        /*Size=*/16, /*Align=*/16);
9844    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9845      .addFrameIndex(RegSaveFrameIndex)
9846      .addImm(/*Scale=*/1)
9847      .addReg(/*IndexReg=*/0)
9848      .addImm(/*Disp=*/Offset)
9849      .addReg(/*Segment=*/0)
9850      .addReg(MI->getOperand(i).getReg())
9851      .addMemOperand(MMO);
9852  }
9853
9854  MI->eraseFromParent();   // The pseudo instruction is gone now.
9855
9856  return EndMBB;
9857}
9858
9859MachineBasicBlock *
9860X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9861                                     MachineBasicBlock *BB) const {
9862  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9863  DebugLoc DL = MI->getDebugLoc();
9864
9865  // To "insert" a SELECT_CC instruction, we actually have to insert the
9866  // diamond control-flow pattern.  The incoming instruction knows the
9867  // destination vreg to set, the condition code register to branch on, the
9868  // true/false values to select between, and a branch opcode to use.
9869  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9870  MachineFunction::iterator It = BB;
9871  ++It;
9872
9873  //  thisMBB:
9874  //  ...
9875  //   TrueVal = ...
9876  //   cmpTY ccX, r1, r2
9877  //   bCC copy1MBB
9878  //   fallthrough --> copy0MBB
9879  MachineBasicBlock *thisMBB = BB;
9880  MachineFunction *F = BB->getParent();
9881  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9882  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9883  F->insert(It, copy0MBB);
9884  F->insert(It, sinkMBB);
9885
9886  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9887  // live into the sink and copy blocks.
9888  const MachineFunction *MF = BB->getParent();
9889  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9890  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9891
9892  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9893    const MachineOperand &MO = MI->getOperand(I);
9894    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9895    unsigned Reg = MO.getReg();
9896    if (Reg != X86::EFLAGS) continue;
9897    copy0MBB->addLiveIn(Reg);
9898    sinkMBB->addLiveIn(Reg);
9899  }
9900
9901  // Transfer the remainder of BB and its successor edges to sinkMBB.
9902  sinkMBB->splice(sinkMBB->begin(), BB,
9903                  llvm::next(MachineBasicBlock::iterator(MI)),
9904                  BB->end());
9905  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9906
9907  // Add the true and fallthrough blocks as its successors.
9908  BB->addSuccessor(copy0MBB);
9909  BB->addSuccessor(sinkMBB);
9910
9911  // Create the conditional branch instruction.
9912  unsigned Opc =
9913    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9914  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9915
9916  //  copy0MBB:
9917  //   %FalseValue = ...
9918  //   # fallthrough to sinkMBB
9919  copy0MBB->addSuccessor(sinkMBB);
9920
9921  //  sinkMBB:
9922  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9923  //  ...
9924  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9925          TII->get(X86::PHI), MI->getOperand(0).getReg())
9926    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9927    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9928
9929  MI->eraseFromParent();   // The pseudo instruction is gone now.
9930  return sinkMBB;
9931}
9932
9933MachineBasicBlock *
9934X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
9935                                          MachineBasicBlock *BB) const {
9936  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9937  DebugLoc DL = MI->getDebugLoc();
9938
9939  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9940  // non-trivial part is impdef of ESP.
9941  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9942  // mingw-w64.
9943
9944  const char *StackProbeSymbol =
9945      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
9946
9947  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9948    .addExternalSymbol(StackProbeSymbol)
9949    .addReg(X86::EAX, RegState::Implicit)
9950    .addReg(X86::ESP, RegState::Implicit)
9951    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9952    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9953    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9954
9955  MI->eraseFromParent();   // The pseudo instruction is gone now.
9956  return BB;
9957}
9958
9959MachineBasicBlock *
9960X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9961                                      MachineBasicBlock *BB) const {
9962  // This is pretty easy.  We're taking the value that we received from
9963  // our load from the relocation, sticking it in either RDI (x86-64)
9964  // or EAX and doing an indirect call.  The return value will then
9965  // be in the normal return register.
9966  const X86InstrInfo *TII
9967    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9968  DebugLoc DL = MI->getDebugLoc();
9969  MachineFunction *F = BB->getParent();
9970
9971  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
9972  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9973
9974  if (Subtarget->is64Bit()) {
9975    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9976                                      TII->get(X86::MOV64rm), X86::RDI)
9977    .addReg(X86::RIP)
9978    .addImm(0).addReg(0)
9979    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9980                      MI->getOperand(3).getTargetFlags())
9981    .addReg(0);
9982    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
9983    addDirectMem(MIB, X86::RDI);
9984  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9985    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9986                                      TII->get(X86::MOV32rm), X86::EAX)
9987    .addReg(0)
9988    .addImm(0).addReg(0)
9989    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9990                      MI->getOperand(3).getTargetFlags())
9991    .addReg(0);
9992    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9993    addDirectMem(MIB, X86::EAX);
9994  } else {
9995    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9996                                      TII->get(X86::MOV32rm), X86::EAX)
9997    .addReg(TII->getGlobalBaseReg(F))
9998    .addImm(0).addReg(0)
9999    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10000                      MI->getOperand(3).getTargetFlags())
10001    .addReg(0);
10002    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10003    addDirectMem(MIB, X86::EAX);
10004  }
10005
10006  MI->eraseFromParent(); // The pseudo instruction is gone now.
10007  return BB;
10008}
10009
10010MachineBasicBlock *
10011X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10012                                               MachineBasicBlock *BB) const {
10013  switch (MI->getOpcode()) {
10014  default: assert(false && "Unexpected instr type to insert");
10015  case X86::WIN_ALLOCA:
10016    return EmitLoweredWinAlloca(MI, BB);
10017  case X86::TLSCall_32:
10018  case X86::TLSCall_64:
10019    return EmitLoweredTLSCall(MI, BB);
10020  case X86::CMOV_GR8:
10021  case X86::CMOV_FR32:
10022  case X86::CMOV_FR64:
10023  case X86::CMOV_V4F32:
10024  case X86::CMOV_V2F64:
10025  case X86::CMOV_V2I64:
10026  case X86::CMOV_GR16:
10027  case X86::CMOV_GR32:
10028  case X86::CMOV_RFP32:
10029  case X86::CMOV_RFP64:
10030  case X86::CMOV_RFP80:
10031    return EmitLoweredSelect(MI, BB);
10032
10033  case X86::FP32_TO_INT16_IN_MEM:
10034  case X86::FP32_TO_INT32_IN_MEM:
10035  case X86::FP32_TO_INT64_IN_MEM:
10036  case X86::FP64_TO_INT16_IN_MEM:
10037  case X86::FP64_TO_INT32_IN_MEM:
10038  case X86::FP64_TO_INT64_IN_MEM:
10039  case X86::FP80_TO_INT16_IN_MEM:
10040  case X86::FP80_TO_INT32_IN_MEM:
10041  case X86::FP80_TO_INT64_IN_MEM: {
10042    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10043    DebugLoc DL = MI->getDebugLoc();
10044
10045    // Change the floating point control register to use "round towards zero"
10046    // mode when truncating to an integer value.
10047    MachineFunction *F = BB->getParent();
10048    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10049    addFrameReference(BuildMI(*BB, MI, DL,
10050                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10051
10052    // Load the old value of the high byte of the control word...
10053    unsigned OldCW =
10054      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10055    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10056                      CWFrameIdx);
10057
10058    // Set the high part to be round to zero...
10059    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10060      .addImm(0xC7F);
10061
10062    // Reload the modified control word now...
10063    addFrameReference(BuildMI(*BB, MI, DL,
10064                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10065
10066    // Restore the memory image of control word to original value
10067    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10068      .addReg(OldCW);
10069
10070    // Get the X86 opcode to use.
10071    unsigned Opc;
10072    switch (MI->getOpcode()) {
10073    default: llvm_unreachable("illegal opcode!");
10074    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10075    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10076    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10077    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10078    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10079    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10080    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10081    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10082    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10083    }
10084
10085    X86AddressMode AM;
10086    MachineOperand &Op = MI->getOperand(0);
10087    if (Op.isReg()) {
10088      AM.BaseType = X86AddressMode::RegBase;
10089      AM.Base.Reg = Op.getReg();
10090    } else {
10091      AM.BaseType = X86AddressMode::FrameIndexBase;
10092      AM.Base.FrameIndex = Op.getIndex();
10093    }
10094    Op = MI->getOperand(1);
10095    if (Op.isImm())
10096      AM.Scale = Op.getImm();
10097    Op = MI->getOperand(2);
10098    if (Op.isImm())
10099      AM.IndexReg = Op.getImm();
10100    Op = MI->getOperand(3);
10101    if (Op.isGlobal()) {
10102      AM.GV = Op.getGlobal();
10103    } else {
10104      AM.Disp = Op.getImm();
10105    }
10106    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10107                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10108
10109    // Reload the original control word now.
10110    addFrameReference(BuildMI(*BB, MI, DL,
10111                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10112
10113    MI->eraseFromParent();   // The pseudo instruction is gone now.
10114    return BB;
10115  }
10116    // String/text processing lowering.
10117  case X86::PCMPISTRM128REG:
10118  case X86::VPCMPISTRM128REG:
10119    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10120  case X86::PCMPISTRM128MEM:
10121  case X86::VPCMPISTRM128MEM:
10122    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10123  case X86::PCMPESTRM128REG:
10124  case X86::VPCMPESTRM128REG:
10125    return EmitPCMP(MI, BB, 5, false /* in mem */);
10126  case X86::PCMPESTRM128MEM:
10127  case X86::VPCMPESTRM128MEM:
10128    return EmitPCMP(MI, BB, 5, true /* in mem */);
10129
10130    // Thread synchronization.
10131  case X86::MONITOR:
10132    return EmitMonitor(MI, BB);
10133  case X86::MWAIT:
10134    return EmitMwait(MI, BB);
10135
10136    // Atomic Lowering.
10137  case X86::ATOMAND32:
10138    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10139                                               X86::AND32ri, X86::MOV32rm,
10140                                               X86::LCMPXCHG32,
10141                                               X86::NOT32r, X86::EAX,
10142                                               X86::GR32RegisterClass);
10143  case X86::ATOMOR32:
10144    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10145                                               X86::OR32ri, X86::MOV32rm,
10146                                               X86::LCMPXCHG32,
10147                                               X86::NOT32r, X86::EAX,
10148                                               X86::GR32RegisterClass);
10149  case X86::ATOMXOR32:
10150    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10151                                               X86::XOR32ri, X86::MOV32rm,
10152                                               X86::LCMPXCHG32,
10153                                               X86::NOT32r, X86::EAX,
10154                                               X86::GR32RegisterClass);
10155  case X86::ATOMNAND32:
10156    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10157                                               X86::AND32ri, X86::MOV32rm,
10158                                               X86::LCMPXCHG32,
10159                                               X86::NOT32r, X86::EAX,
10160                                               X86::GR32RegisterClass, true);
10161  case X86::ATOMMIN32:
10162    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10163  case X86::ATOMMAX32:
10164    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10165  case X86::ATOMUMIN32:
10166    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10167  case X86::ATOMUMAX32:
10168    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10169
10170  case X86::ATOMAND16:
10171    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10172                                               X86::AND16ri, X86::MOV16rm,
10173                                               X86::LCMPXCHG16,
10174                                               X86::NOT16r, X86::AX,
10175                                               X86::GR16RegisterClass);
10176  case X86::ATOMOR16:
10177    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10178                                               X86::OR16ri, X86::MOV16rm,
10179                                               X86::LCMPXCHG16,
10180                                               X86::NOT16r, X86::AX,
10181                                               X86::GR16RegisterClass);
10182  case X86::ATOMXOR16:
10183    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10184                                               X86::XOR16ri, X86::MOV16rm,
10185                                               X86::LCMPXCHG16,
10186                                               X86::NOT16r, X86::AX,
10187                                               X86::GR16RegisterClass);
10188  case X86::ATOMNAND16:
10189    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10190                                               X86::AND16ri, X86::MOV16rm,
10191                                               X86::LCMPXCHG16,
10192                                               X86::NOT16r, X86::AX,
10193                                               X86::GR16RegisterClass, true);
10194  case X86::ATOMMIN16:
10195    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10196  case X86::ATOMMAX16:
10197    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10198  case X86::ATOMUMIN16:
10199    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10200  case X86::ATOMUMAX16:
10201    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10202
10203  case X86::ATOMAND8:
10204    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10205                                               X86::AND8ri, X86::MOV8rm,
10206                                               X86::LCMPXCHG8,
10207                                               X86::NOT8r, X86::AL,
10208                                               X86::GR8RegisterClass);
10209  case X86::ATOMOR8:
10210    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10211                                               X86::OR8ri, X86::MOV8rm,
10212                                               X86::LCMPXCHG8,
10213                                               X86::NOT8r, X86::AL,
10214                                               X86::GR8RegisterClass);
10215  case X86::ATOMXOR8:
10216    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10217                                               X86::XOR8ri, X86::MOV8rm,
10218                                               X86::LCMPXCHG8,
10219                                               X86::NOT8r, X86::AL,
10220                                               X86::GR8RegisterClass);
10221  case X86::ATOMNAND8:
10222    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10223                                               X86::AND8ri, X86::MOV8rm,
10224                                               X86::LCMPXCHG8,
10225                                               X86::NOT8r, X86::AL,
10226                                               X86::GR8RegisterClass, true);
10227  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10228  // This group is for 64-bit host.
10229  case X86::ATOMAND64:
10230    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10231                                               X86::AND64ri32, X86::MOV64rm,
10232                                               X86::LCMPXCHG64,
10233                                               X86::NOT64r, X86::RAX,
10234                                               X86::GR64RegisterClass);
10235  case X86::ATOMOR64:
10236    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10237                                               X86::OR64ri32, X86::MOV64rm,
10238                                               X86::LCMPXCHG64,
10239                                               X86::NOT64r, X86::RAX,
10240                                               X86::GR64RegisterClass);
10241  case X86::ATOMXOR64:
10242    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10243                                               X86::XOR64ri32, X86::MOV64rm,
10244                                               X86::LCMPXCHG64,
10245                                               X86::NOT64r, X86::RAX,
10246                                               X86::GR64RegisterClass);
10247  case X86::ATOMNAND64:
10248    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10249                                               X86::AND64ri32, X86::MOV64rm,
10250                                               X86::LCMPXCHG64,
10251                                               X86::NOT64r, X86::RAX,
10252                                               X86::GR64RegisterClass, true);
10253  case X86::ATOMMIN64:
10254    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10255  case X86::ATOMMAX64:
10256    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10257  case X86::ATOMUMIN64:
10258    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10259  case X86::ATOMUMAX64:
10260    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10261
10262  // This group does 64-bit operations on a 32-bit host.
10263  case X86::ATOMAND6432:
10264    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10265                                               X86::AND32rr, X86::AND32rr,
10266                                               X86::AND32ri, X86::AND32ri,
10267                                               false);
10268  case X86::ATOMOR6432:
10269    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10270                                               X86::OR32rr, X86::OR32rr,
10271                                               X86::OR32ri, X86::OR32ri,
10272                                               false);
10273  case X86::ATOMXOR6432:
10274    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10275                                               X86::XOR32rr, X86::XOR32rr,
10276                                               X86::XOR32ri, X86::XOR32ri,
10277                                               false);
10278  case X86::ATOMNAND6432:
10279    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10280                                               X86::AND32rr, X86::AND32rr,
10281                                               X86::AND32ri, X86::AND32ri,
10282                                               true);
10283  case X86::ATOMADD6432:
10284    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10285                                               X86::ADD32rr, X86::ADC32rr,
10286                                               X86::ADD32ri, X86::ADC32ri,
10287                                               false);
10288  case X86::ATOMSUB6432:
10289    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10290                                               X86::SUB32rr, X86::SBB32rr,
10291                                               X86::SUB32ri, X86::SBB32ri,
10292                                               false);
10293  case X86::ATOMSWAP6432:
10294    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10295                                               X86::MOV32rr, X86::MOV32rr,
10296                                               X86::MOV32ri, X86::MOV32ri,
10297                                               false);
10298  case X86::VASTART_SAVE_XMM_REGS:
10299    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10300
10301  case X86::VAARG_64:
10302    return EmitVAARG64WithCustomInserter(MI, BB);
10303  }
10304}
10305
10306//===----------------------------------------------------------------------===//
10307//                           X86 Optimization Hooks
10308//===----------------------------------------------------------------------===//
10309
10310void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10311                                                       const APInt &Mask,
10312                                                       APInt &KnownZero,
10313                                                       APInt &KnownOne,
10314                                                       const SelectionDAG &DAG,
10315                                                       unsigned Depth) const {
10316  unsigned Opc = Op.getOpcode();
10317  assert((Opc >= ISD::BUILTIN_OP_END ||
10318          Opc == ISD::INTRINSIC_WO_CHAIN ||
10319          Opc == ISD::INTRINSIC_W_CHAIN ||
10320          Opc == ISD::INTRINSIC_VOID) &&
10321         "Should use MaskedValueIsZero if you don't know whether Op"
10322         " is a target node!");
10323
10324  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10325  switch (Opc) {
10326  default: break;
10327  case X86ISD::ADD:
10328  case X86ISD::SUB:
10329  case X86ISD::SMUL:
10330  case X86ISD::UMUL:
10331  case X86ISD::INC:
10332  case X86ISD::DEC:
10333  case X86ISD::OR:
10334  case X86ISD::XOR:
10335  case X86ISD::AND:
10336    // These nodes' second result is a boolean.
10337    if (Op.getResNo() == 0)
10338      break;
10339    // Fallthrough
10340  case X86ISD::SETCC:
10341    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10342                                       Mask.getBitWidth() - 1);
10343    break;
10344  }
10345}
10346
10347unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10348                                                         unsigned Depth) const {
10349  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10350  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10351    return Op.getValueType().getScalarType().getSizeInBits();
10352
10353  // Fallback case.
10354  return 1;
10355}
10356
10357/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10358/// node is a GlobalAddress + offset.
10359bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10360                                       const GlobalValue* &GA,
10361                                       int64_t &Offset) const {
10362  if (N->getOpcode() == X86ISD::Wrapper) {
10363    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10364      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10365      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10366      return true;
10367    }
10368  }
10369  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10370}
10371
10372/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10373/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10374/// if the load addresses are consecutive, non-overlapping, and in the right
10375/// order.
10376static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10377                                     const TargetLowering &TLI) {
10378  DebugLoc dl = N->getDebugLoc();
10379  EVT VT = N->getValueType(0);
10380
10381  if (VT.getSizeInBits() != 128)
10382    return SDValue();
10383
10384  SmallVector<SDValue, 16> Elts;
10385  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10386    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10387
10388  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10389}
10390
10391/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10392/// generation and convert it from being a bunch of shuffles and extracts
10393/// to a simple store and scalar loads to extract the elements.
10394static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10395                                                const TargetLowering &TLI) {
10396  SDValue InputVector = N->getOperand(0);
10397
10398  // Only operate on vectors of 4 elements, where the alternative shuffling
10399  // gets to be more expensive.
10400  if (InputVector.getValueType() != MVT::v4i32)
10401    return SDValue();
10402
10403  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10404  // single use which is a sign-extend or zero-extend, and all elements are
10405  // used.
10406  SmallVector<SDNode *, 4> Uses;
10407  unsigned ExtractedElements = 0;
10408  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10409       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10410    if (UI.getUse().getResNo() != InputVector.getResNo())
10411      return SDValue();
10412
10413    SDNode *Extract = *UI;
10414    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10415      return SDValue();
10416
10417    if (Extract->getValueType(0) != MVT::i32)
10418      return SDValue();
10419    if (!Extract->hasOneUse())
10420      return SDValue();
10421    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10422        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10423      return SDValue();
10424    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10425      return SDValue();
10426
10427    // Record which element was extracted.
10428    ExtractedElements |=
10429      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10430
10431    Uses.push_back(Extract);
10432  }
10433
10434  // If not all the elements were used, this may not be worthwhile.
10435  if (ExtractedElements != 15)
10436    return SDValue();
10437
10438  // Ok, we've now decided to do the transformation.
10439  DebugLoc dl = InputVector.getDebugLoc();
10440
10441  // Store the value to a temporary stack slot.
10442  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10443  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10444                            MachinePointerInfo(), false, false, 0);
10445
10446  // Replace each use (extract) with a load of the appropriate element.
10447  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10448       UE = Uses.end(); UI != UE; ++UI) {
10449    SDNode *Extract = *UI;
10450
10451    // Compute the element's address.
10452    SDValue Idx = Extract->getOperand(1);
10453    unsigned EltSize =
10454        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10455    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10456    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10457
10458    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10459                                     StackPtr, OffsetVal);
10460
10461    // Load the scalar.
10462    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10463                                     ScalarAddr, MachinePointerInfo(),
10464                                     false, false, 0);
10465
10466    // Replace the exact with the load.
10467    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10468  }
10469
10470  // The replacement was made in place; don't return anything.
10471  return SDValue();
10472}
10473
10474/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10475static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10476                                    const X86Subtarget *Subtarget) {
10477  DebugLoc DL = N->getDebugLoc();
10478  SDValue Cond = N->getOperand(0);
10479  // Get the LHS/RHS of the select.
10480  SDValue LHS = N->getOperand(1);
10481  SDValue RHS = N->getOperand(2);
10482
10483  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10484  // instructions match the semantics of the common C idiom x<y?x:y but not
10485  // x<=y?x:y, because of how they handle negative zero (which can be
10486  // ignored in unsafe-math mode).
10487  if (Subtarget->hasSSE2() &&
10488      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10489      Cond.getOpcode() == ISD::SETCC) {
10490    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10491
10492    unsigned Opcode = 0;
10493    // Check for x CC y ? x : y.
10494    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10495        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10496      switch (CC) {
10497      default: break;
10498      case ISD::SETULT:
10499        // Converting this to a min would handle NaNs incorrectly, and swapping
10500        // the operands would cause it to handle comparisons between positive
10501        // and negative zero incorrectly.
10502        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10503          if (!UnsafeFPMath &&
10504              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10505            break;
10506          std::swap(LHS, RHS);
10507        }
10508        Opcode = X86ISD::FMIN;
10509        break;
10510      case ISD::SETOLE:
10511        // Converting this to a min would handle comparisons between positive
10512        // and negative zero incorrectly.
10513        if (!UnsafeFPMath &&
10514            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10515          break;
10516        Opcode = X86ISD::FMIN;
10517        break;
10518      case ISD::SETULE:
10519        // Converting this to a min would handle both negative zeros and NaNs
10520        // incorrectly, but we can swap the operands to fix both.
10521        std::swap(LHS, RHS);
10522      case ISD::SETOLT:
10523      case ISD::SETLT:
10524      case ISD::SETLE:
10525        Opcode = X86ISD::FMIN;
10526        break;
10527
10528      case ISD::SETOGE:
10529        // Converting this to a max would handle comparisons between positive
10530        // and negative zero incorrectly.
10531        if (!UnsafeFPMath &&
10532            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10533          break;
10534        Opcode = X86ISD::FMAX;
10535        break;
10536      case ISD::SETUGT:
10537        // Converting this to a max would handle NaNs incorrectly, and swapping
10538        // the operands would cause it to handle comparisons between positive
10539        // and negative zero incorrectly.
10540        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10541          if (!UnsafeFPMath &&
10542              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10543            break;
10544          std::swap(LHS, RHS);
10545        }
10546        Opcode = X86ISD::FMAX;
10547        break;
10548      case ISD::SETUGE:
10549        // Converting this to a max would handle both negative zeros and NaNs
10550        // incorrectly, but we can swap the operands to fix both.
10551        std::swap(LHS, RHS);
10552      case ISD::SETOGT:
10553      case ISD::SETGT:
10554      case ISD::SETGE:
10555        Opcode = X86ISD::FMAX;
10556        break;
10557      }
10558    // Check for x CC y ? y : x -- a min/max with reversed arms.
10559    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10560               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10561      switch (CC) {
10562      default: break;
10563      case ISD::SETOGE:
10564        // Converting this to a min would handle comparisons between positive
10565        // and negative zero incorrectly, and swapping the operands would
10566        // cause it to handle NaNs incorrectly.
10567        if (!UnsafeFPMath &&
10568            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10569          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10570            break;
10571          std::swap(LHS, RHS);
10572        }
10573        Opcode = X86ISD::FMIN;
10574        break;
10575      case ISD::SETUGT:
10576        // Converting this to a min would handle NaNs incorrectly.
10577        if (!UnsafeFPMath &&
10578            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10579          break;
10580        Opcode = X86ISD::FMIN;
10581        break;
10582      case ISD::SETUGE:
10583        // Converting this to a min would handle both negative zeros and NaNs
10584        // incorrectly, but we can swap the operands to fix both.
10585        std::swap(LHS, RHS);
10586      case ISD::SETOGT:
10587      case ISD::SETGT:
10588      case ISD::SETGE:
10589        Opcode = X86ISD::FMIN;
10590        break;
10591
10592      case ISD::SETULT:
10593        // Converting this to a max would handle NaNs incorrectly.
10594        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10595          break;
10596        Opcode = X86ISD::FMAX;
10597        break;
10598      case ISD::SETOLE:
10599        // Converting this to a max would handle comparisons between positive
10600        // and negative zero incorrectly, and swapping the operands would
10601        // cause it to handle NaNs incorrectly.
10602        if (!UnsafeFPMath &&
10603            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10604          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10605            break;
10606          std::swap(LHS, RHS);
10607        }
10608        Opcode = X86ISD::FMAX;
10609        break;
10610      case ISD::SETULE:
10611        // Converting this to a max would handle both negative zeros and NaNs
10612        // incorrectly, but we can swap the operands to fix both.
10613        std::swap(LHS, RHS);
10614      case ISD::SETOLT:
10615      case ISD::SETLT:
10616      case ISD::SETLE:
10617        Opcode = X86ISD::FMAX;
10618        break;
10619      }
10620    }
10621
10622    if (Opcode)
10623      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10624  }
10625
10626  // If this is a select between two integer constants, try to do some
10627  // optimizations.
10628  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10629    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10630      // Don't do this for crazy integer types.
10631      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10632        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10633        // so that TrueC (the true value) is larger than FalseC.
10634        bool NeedsCondInvert = false;
10635
10636        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10637            // Efficiently invertible.
10638            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10639             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10640              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10641          NeedsCondInvert = true;
10642          std::swap(TrueC, FalseC);
10643        }
10644
10645        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10646        if (FalseC->getAPIntValue() == 0 &&
10647            TrueC->getAPIntValue().isPowerOf2()) {
10648          if (NeedsCondInvert) // Invert the condition if needed.
10649            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10650                               DAG.getConstant(1, Cond.getValueType()));
10651
10652          // Zero extend the condition if needed.
10653          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10654
10655          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10656          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10657                             DAG.getConstant(ShAmt, MVT::i8));
10658        }
10659
10660        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10661        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10662          if (NeedsCondInvert) // Invert the condition if needed.
10663            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10664                               DAG.getConstant(1, Cond.getValueType()));
10665
10666          // Zero extend the condition if needed.
10667          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10668                             FalseC->getValueType(0), Cond);
10669          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10670                             SDValue(FalseC, 0));
10671        }
10672
10673        // Optimize cases that will turn into an LEA instruction.  This requires
10674        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10675        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10676          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10677          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10678
10679          bool isFastMultiplier = false;
10680          if (Diff < 10) {
10681            switch ((unsigned char)Diff) {
10682              default: break;
10683              case 1:  // result = add base, cond
10684              case 2:  // result = lea base(    , cond*2)
10685              case 3:  // result = lea base(cond, cond*2)
10686              case 4:  // result = lea base(    , cond*4)
10687              case 5:  // result = lea base(cond, cond*4)
10688              case 8:  // result = lea base(    , cond*8)
10689              case 9:  // result = lea base(cond, cond*8)
10690                isFastMultiplier = true;
10691                break;
10692            }
10693          }
10694
10695          if (isFastMultiplier) {
10696            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10697            if (NeedsCondInvert) // Invert the condition if needed.
10698              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10699                                 DAG.getConstant(1, Cond.getValueType()));
10700
10701            // Zero extend the condition if needed.
10702            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10703                               Cond);
10704            // Scale the condition by the difference.
10705            if (Diff != 1)
10706              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10707                                 DAG.getConstant(Diff, Cond.getValueType()));
10708
10709            // Add the base if non-zero.
10710            if (FalseC->getAPIntValue() != 0)
10711              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10712                                 SDValue(FalseC, 0));
10713            return Cond;
10714          }
10715        }
10716      }
10717  }
10718
10719  return SDValue();
10720}
10721
10722/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10723static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10724                                  TargetLowering::DAGCombinerInfo &DCI) {
10725  DebugLoc DL = N->getDebugLoc();
10726
10727  // If the flag operand isn't dead, don't touch this CMOV.
10728  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10729    return SDValue();
10730
10731  // If this is a select between two integer constants, try to do some
10732  // optimizations.  Note that the operands are ordered the opposite of SELECT
10733  // operands.
10734  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10735    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10736      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10737      // larger than FalseC (the false value).
10738      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10739
10740      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10741        CC = X86::GetOppositeBranchCondition(CC);
10742        std::swap(TrueC, FalseC);
10743      }
10744
10745      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10746      // This is efficient for any integer data type (including i8/i16) and
10747      // shift amount.
10748      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10749        SDValue Cond = N->getOperand(3);
10750        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10751                           DAG.getConstant(CC, MVT::i8), Cond);
10752
10753        // Zero extend the condition if needed.
10754        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10755
10756        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10757        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10758                           DAG.getConstant(ShAmt, MVT::i8));
10759        if (N->getNumValues() == 2)  // Dead flag value?
10760          return DCI.CombineTo(N, Cond, SDValue());
10761        return Cond;
10762      }
10763
10764      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10765      // for any integer data type, including i8/i16.
10766      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10767        SDValue Cond = N->getOperand(3);
10768        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10769                           DAG.getConstant(CC, MVT::i8), Cond);
10770
10771        // Zero extend the condition if needed.
10772        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10773                           FalseC->getValueType(0), Cond);
10774        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10775                           SDValue(FalseC, 0));
10776
10777        if (N->getNumValues() == 2)  // Dead flag value?
10778          return DCI.CombineTo(N, Cond, SDValue());
10779        return Cond;
10780      }
10781
10782      // Optimize cases that will turn into an LEA instruction.  This requires
10783      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10784      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10785        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10786        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10787
10788        bool isFastMultiplier = false;
10789        if (Diff < 10) {
10790          switch ((unsigned char)Diff) {
10791          default: break;
10792          case 1:  // result = add base, cond
10793          case 2:  // result = lea base(    , cond*2)
10794          case 3:  // result = lea base(cond, cond*2)
10795          case 4:  // result = lea base(    , cond*4)
10796          case 5:  // result = lea base(cond, cond*4)
10797          case 8:  // result = lea base(    , cond*8)
10798          case 9:  // result = lea base(cond, cond*8)
10799            isFastMultiplier = true;
10800            break;
10801          }
10802        }
10803
10804        if (isFastMultiplier) {
10805          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10806          SDValue Cond = N->getOperand(3);
10807          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10808                             DAG.getConstant(CC, MVT::i8), Cond);
10809          // Zero extend the condition if needed.
10810          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10811                             Cond);
10812          // Scale the condition by the difference.
10813          if (Diff != 1)
10814            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10815                               DAG.getConstant(Diff, Cond.getValueType()));
10816
10817          // Add the base if non-zero.
10818          if (FalseC->getAPIntValue() != 0)
10819            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10820                               SDValue(FalseC, 0));
10821          if (N->getNumValues() == 2)  // Dead flag value?
10822            return DCI.CombineTo(N, Cond, SDValue());
10823          return Cond;
10824        }
10825      }
10826    }
10827  }
10828  return SDValue();
10829}
10830
10831
10832/// PerformMulCombine - Optimize a single multiply with constant into two
10833/// in order to implement it with two cheaper instructions, e.g.
10834/// LEA + SHL, LEA + LEA.
10835static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10836                                 TargetLowering::DAGCombinerInfo &DCI) {
10837  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10838    return SDValue();
10839
10840  EVT VT = N->getValueType(0);
10841  if (VT != MVT::i64)
10842    return SDValue();
10843
10844  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10845  if (!C)
10846    return SDValue();
10847  uint64_t MulAmt = C->getZExtValue();
10848  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10849    return SDValue();
10850
10851  uint64_t MulAmt1 = 0;
10852  uint64_t MulAmt2 = 0;
10853  if ((MulAmt % 9) == 0) {
10854    MulAmt1 = 9;
10855    MulAmt2 = MulAmt / 9;
10856  } else if ((MulAmt % 5) == 0) {
10857    MulAmt1 = 5;
10858    MulAmt2 = MulAmt / 5;
10859  } else if ((MulAmt % 3) == 0) {
10860    MulAmt1 = 3;
10861    MulAmt2 = MulAmt / 3;
10862  }
10863  if (MulAmt2 &&
10864      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10865    DebugLoc DL = N->getDebugLoc();
10866
10867    if (isPowerOf2_64(MulAmt2) &&
10868        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10869      // If second multiplifer is pow2, issue it first. We want the multiply by
10870      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10871      // is an add.
10872      std::swap(MulAmt1, MulAmt2);
10873
10874    SDValue NewMul;
10875    if (isPowerOf2_64(MulAmt1))
10876      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10877                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10878    else
10879      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10880                           DAG.getConstant(MulAmt1, VT));
10881
10882    if (isPowerOf2_64(MulAmt2))
10883      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10884                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10885    else
10886      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10887                           DAG.getConstant(MulAmt2, VT));
10888
10889    // Do not add new nodes to DAG combiner worklist.
10890    DCI.CombineTo(N, NewMul, false);
10891  }
10892  return SDValue();
10893}
10894
10895static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10896  SDValue N0 = N->getOperand(0);
10897  SDValue N1 = N->getOperand(1);
10898  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10899  EVT VT = N0.getValueType();
10900
10901  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10902  // since the result of setcc_c is all zero's or all ones.
10903  if (N1C && N0.getOpcode() == ISD::AND &&
10904      N0.getOperand(1).getOpcode() == ISD::Constant) {
10905    SDValue N00 = N0.getOperand(0);
10906    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10907        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10908          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10909         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10910      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10911      APInt ShAmt = N1C->getAPIntValue();
10912      Mask = Mask.shl(ShAmt);
10913      if (Mask != 0)
10914        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10915                           N00, DAG.getConstant(Mask, VT));
10916    }
10917  }
10918
10919  return SDValue();
10920}
10921
10922/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10923///                       when possible.
10924static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10925                                   const X86Subtarget *Subtarget) {
10926  EVT VT = N->getValueType(0);
10927  if (!VT.isVector() && VT.isInteger() &&
10928      N->getOpcode() == ISD::SHL)
10929    return PerformSHLCombine(N, DAG);
10930
10931  // On X86 with SSE2 support, we can transform this to a vector shift if
10932  // all elements are shifted by the same amount.  We can't do this in legalize
10933  // because the a constant vector is typically transformed to a constant pool
10934  // so we have no knowledge of the shift amount.
10935  if (!Subtarget->hasSSE2())
10936    return SDValue();
10937
10938  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10939    return SDValue();
10940
10941  SDValue ShAmtOp = N->getOperand(1);
10942  EVT EltVT = VT.getVectorElementType();
10943  DebugLoc DL = N->getDebugLoc();
10944  SDValue BaseShAmt = SDValue();
10945  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10946    unsigned NumElts = VT.getVectorNumElements();
10947    unsigned i = 0;
10948    for (; i != NumElts; ++i) {
10949      SDValue Arg = ShAmtOp.getOperand(i);
10950      if (Arg.getOpcode() == ISD::UNDEF) continue;
10951      BaseShAmt = Arg;
10952      break;
10953    }
10954    for (; i != NumElts; ++i) {
10955      SDValue Arg = ShAmtOp.getOperand(i);
10956      if (Arg.getOpcode() == ISD::UNDEF) continue;
10957      if (Arg != BaseShAmt) {
10958        return SDValue();
10959      }
10960    }
10961  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10962             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10963    SDValue InVec = ShAmtOp.getOperand(0);
10964    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10965      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10966      unsigned i = 0;
10967      for (; i != NumElts; ++i) {
10968        SDValue Arg = InVec.getOperand(i);
10969        if (Arg.getOpcode() == ISD::UNDEF) continue;
10970        BaseShAmt = Arg;
10971        break;
10972      }
10973    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10974       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10975         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10976         if (C->getZExtValue() == SplatIdx)
10977           BaseShAmt = InVec.getOperand(1);
10978       }
10979    }
10980    if (BaseShAmt.getNode() == 0)
10981      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10982                              DAG.getIntPtrConstant(0));
10983  } else
10984    return SDValue();
10985
10986  // The shift amount is an i32.
10987  if (EltVT.bitsGT(MVT::i32))
10988    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10989  else if (EltVT.bitsLT(MVT::i32))
10990    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10991
10992  // The shift amount is identical so we can do a vector shift.
10993  SDValue  ValOp = N->getOperand(0);
10994  switch (N->getOpcode()) {
10995  default:
10996    llvm_unreachable("Unknown shift opcode!");
10997    break;
10998  case ISD::SHL:
10999    if (VT == MVT::v2i64)
11000      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11001                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11002                         ValOp, BaseShAmt);
11003    if (VT == MVT::v4i32)
11004      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11005                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11006                         ValOp, BaseShAmt);
11007    if (VT == MVT::v8i16)
11008      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11009                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11010                         ValOp, BaseShAmt);
11011    break;
11012  case ISD::SRA:
11013    if (VT == MVT::v4i32)
11014      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11015                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11016                         ValOp, BaseShAmt);
11017    if (VT == MVT::v8i16)
11018      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11019                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11020                         ValOp, BaseShAmt);
11021    break;
11022  case ISD::SRL:
11023    if (VT == MVT::v2i64)
11024      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11025                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11026                         ValOp, BaseShAmt);
11027    if (VT == MVT::v4i32)
11028      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11029                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11030                         ValOp, BaseShAmt);
11031    if (VT ==  MVT::v8i16)
11032      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11033                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11034                         ValOp, BaseShAmt);
11035    break;
11036  }
11037  return SDValue();
11038}
11039
11040static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11041                                TargetLowering::DAGCombinerInfo &DCI,
11042                                const X86Subtarget *Subtarget) {
11043  if (DCI.isBeforeLegalizeOps())
11044    return SDValue();
11045
11046  EVT VT = N->getValueType(0);
11047  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
11048    return SDValue();
11049
11050  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11051  SDValue N0 = N->getOperand(0);
11052  SDValue N1 = N->getOperand(1);
11053  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11054    std::swap(N0, N1);
11055  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11056    return SDValue();
11057  if (!N0.hasOneUse() || !N1.hasOneUse())
11058    return SDValue();
11059
11060  SDValue ShAmt0 = N0.getOperand(1);
11061  if (ShAmt0.getValueType() != MVT::i8)
11062    return SDValue();
11063  SDValue ShAmt1 = N1.getOperand(1);
11064  if (ShAmt1.getValueType() != MVT::i8)
11065    return SDValue();
11066  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11067    ShAmt0 = ShAmt0.getOperand(0);
11068  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11069    ShAmt1 = ShAmt1.getOperand(0);
11070
11071  DebugLoc DL = N->getDebugLoc();
11072  unsigned Opc = X86ISD::SHLD;
11073  SDValue Op0 = N0.getOperand(0);
11074  SDValue Op1 = N1.getOperand(0);
11075  if (ShAmt0.getOpcode() == ISD::SUB) {
11076    Opc = X86ISD::SHRD;
11077    std::swap(Op0, Op1);
11078    std::swap(ShAmt0, ShAmt1);
11079  }
11080
11081  unsigned Bits = VT.getSizeInBits();
11082  if (ShAmt1.getOpcode() == ISD::SUB) {
11083    SDValue Sum = ShAmt1.getOperand(0);
11084    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11085      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11086      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11087        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11088      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11089        return DAG.getNode(Opc, DL, VT,
11090                           Op0, Op1,
11091                           DAG.getNode(ISD::TRUNCATE, DL,
11092                                       MVT::i8, ShAmt0));
11093    }
11094  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11095    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11096    if (ShAmt0C &&
11097        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11098      return DAG.getNode(Opc, DL, VT,
11099                         N0.getOperand(0), N1.getOperand(0),
11100                         DAG.getNode(ISD::TRUNCATE, DL,
11101                                       MVT::i8, ShAmt0));
11102  }
11103
11104  return SDValue();
11105}
11106
11107/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11108static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11109                                   const X86Subtarget *Subtarget) {
11110  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11111  // the FP state in cases where an emms may be missing.
11112  // A preferable solution to the general problem is to figure out the right
11113  // places to insert EMMS.  This qualifies as a quick hack.
11114
11115  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11116  StoreSDNode *St = cast<StoreSDNode>(N);
11117  EVT VT = St->getValue().getValueType();
11118  if (VT.getSizeInBits() != 64)
11119    return SDValue();
11120
11121  const Function *F = DAG.getMachineFunction().getFunction();
11122  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11123  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11124    && Subtarget->hasSSE2();
11125  if ((VT.isVector() ||
11126       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11127      isa<LoadSDNode>(St->getValue()) &&
11128      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11129      St->getChain().hasOneUse() && !St->isVolatile()) {
11130    SDNode* LdVal = St->getValue().getNode();
11131    LoadSDNode *Ld = 0;
11132    int TokenFactorIndex = -1;
11133    SmallVector<SDValue, 8> Ops;
11134    SDNode* ChainVal = St->getChain().getNode();
11135    // Must be a store of a load.  We currently handle two cases:  the load
11136    // is a direct child, and it's under an intervening TokenFactor.  It is
11137    // possible to dig deeper under nested TokenFactors.
11138    if (ChainVal == LdVal)
11139      Ld = cast<LoadSDNode>(St->getChain());
11140    else if (St->getValue().hasOneUse() &&
11141             ChainVal->getOpcode() == ISD::TokenFactor) {
11142      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11143        if (ChainVal->getOperand(i).getNode() == LdVal) {
11144          TokenFactorIndex = i;
11145          Ld = cast<LoadSDNode>(St->getValue());
11146        } else
11147          Ops.push_back(ChainVal->getOperand(i));
11148      }
11149    }
11150
11151    if (!Ld || !ISD::isNormalLoad(Ld))
11152      return SDValue();
11153
11154    // If this is not the MMX case, i.e. we are just turning i64 load/store
11155    // into f64 load/store, avoid the transformation if there are multiple
11156    // uses of the loaded value.
11157    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11158      return SDValue();
11159
11160    DebugLoc LdDL = Ld->getDebugLoc();
11161    DebugLoc StDL = N->getDebugLoc();
11162    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11163    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11164    // pair instead.
11165    if (Subtarget->is64Bit() || F64IsLegal) {
11166      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11167      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11168                                  Ld->getPointerInfo(), Ld->isVolatile(),
11169                                  Ld->isNonTemporal(), Ld->getAlignment());
11170      SDValue NewChain = NewLd.getValue(1);
11171      if (TokenFactorIndex != -1) {
11172        Ops.push_back(NewChain);
11173        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11174                               Ops.size());
11175      }
11176      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11177                          St->getPointerInfo(),
11178                          St->isVolatile(), St->isNonTemporal(),
11179                          St->getAlignment());
11180    }
11181
11182    // Otherwise, lower to two pairs of 32-bit loads / stores.
11183    SDValue LoAddr = Ld->getBasePtr();
11184    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11185                                 DAG.getConstant(4, MVT::i32));
11186
11187    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11188                               Ld->getPointerInfo(),
11189                               Ld->isVolatile(), Ld->isNonTemporal(),
11190                               Ld->getAlignment());
11191    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11192                               Ld->getPointerInfo().getWithOffset(4),
11193                               Ld->isVolatile(), Ld->isNonTemporal(),
11194                               MinAlign(Ld->getAlignment(), 4));
11195
11196    SDValue NewChain = LoLd.getValue(1);
11197    if (TokenFactorIndex != -1) {
11198      Ops.push_back(LoLd);
11199      Ops.push_back(HiLd);
11200      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11201                             Ops.size());
11202    }
11203
11204    LoAddr = St->getBasePtr();
11205    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11206                         DAG.getConstant(4, MVT::i32));
11207
11208    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11209                                St->getPointerInfo(),
11210                                St->isVolatile(), St->isNonTemporal(),
11211                                St->getAlignment());
11212    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11213                                St->getPointerInfo().getWithOffset(4),
11214                                St->isVolatile(),
11215                                St->isNonTemporal(),
11216                                MinAlign(St->getAlignment(), 4));
11217    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11218  }
11219  return SDValue();
11220}
11221
11222/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11223/// X86ISD::FXOR nodes.
11224static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11225  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11226  // F[X]OR(0.0, x) -> x
11227  // F[X]OR(x, 0.0) -> x
11228  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11229    if (C->getValueAPF().isPosZero())
11230      return N->getOperand(1);
11231  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11232    if (C->getValueAPF().isPosZero())
11233      return N->getOperand(0);
11234  return SDValue();
11235}
11236
11237/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11238static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11239  // FAND(0.0, x) -> 0.0
11240  // FAND(x, 0.0) -> 0.0
11241  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11242    if (C->getValueAPF().isPosZero())
11243      return N->getOperand(0);
11244  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11245    if (C->getValueAPF().isPosZero())
11246      return N->getOperand(1);
11247  return SDValue();
11248}
11249
11250static SDValue PerformBTCombine(SDNode *N,
11251                                SelectionDAG &DAG,
11252                                TargetLowering::DAGCombinerInfo &DCI) {
11253  // BT ignores high bits in the bit index operand.
11254  SDValue Op1 = N->getOperand(1);
11255  if (Op1.hasOneUse()) {
11256    unsigned BitWidth = Op1.getValueSizeInBits();
11257    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11258    APInt KnownZero, KnownOne;
11259    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11260                                          !DCI.isBeforeLegalizeOps());
11261    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11262    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11263        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11264      DCI.CommitTargetLoweringOpt(TLO);
11265  }
11266  return SDValue();
11267}
11268
11269static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11270  SDValue Op = N->getOperand(0);
11271  if (Op.getOpcode() == ISD::BITCAST)
11272    Op = Op.getOperand(0);
11273  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11274  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11275      VT.getVectorElementType().getSizeInBits() ==
11276      OpVT.getVectorElementType().getSizeInBits()) {
11277    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11278  }
11279  return SDValue();
11280}
11281
11282static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11283  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11284  //           (and (i32 x86isd::setcc_carry), 1)
11285  // This eliminates the zext. This transformation is necessary because
11286  // ISD::SETCC is always legalized to i8.
11287  DebugLoc dl = N->getDebugLoc();
11288  SDValue N0 = N->getOperand(0);
11289  EVT VT = N->getValueType(0);
11290  if (N0.getOpcode() == ISD::AND &&
11291      N0.hasOneUse() &&
11292      N0.getOperand(0).hasOneUse()) {
11293    SDValue N00 = N0.getOperand(0);
11294    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11295      return SDValue();
11296    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11297    if (!C || C->getZExtValue() != 1)
11298      return SDValue();
11299    return DAG.getNode(ISD::AND, dl, VT,
11300                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11301                                   N00.getOperand(0), N00.getOperand(1)),
11302                       DAG.getConstant(1, VT));
11303  }
11304
11305  return SDValue();
11306}
11307
11308SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11309                                             DAGCombinerInfo &DCI) const {
11310  SelectionDAG &DAG = DCI.DAG;
11311  switch (N->getOpcode()) {
11312  default: break;
11313  case ISD::EXTRACT_VECTOR_ELT:
11314                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11315  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
11316  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
11317  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
11318  case ISD::SHL:
11319  case ISD::SRA:
11320  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
11321  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
11322  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
11323  case X86ISD::FXOR:
11324  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
11325  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
11326  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
11327  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
11328  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
11329  case X86ISD::SHUFPS:      // Handle all target specific shuffles
11330  case X86ISD::SHUFPD:
11331  case X86ISD::PALIGN:
11332  case X86ISD::PUNPCKHBW:
11333  case X86ISD::PUNPCKHWD:
11334  case X86ISD::PUNPCKHDQ:
11335  case X86ISD::PUNPCKHQDQ:
11336  case X86ISD::UNPCKHPS:
11337  case X86ISD::UNPCKHPD:
11338  case X86ISD::PUNPCKLBW:
11339  case X86ISD::PUNPCKLWD:
11340  case X86ISD::PUNPCKLDQ:
11341  case X86ISD::PUNPCKLQDQ:
11342  case X86ISD::UNPCKLPS:
11343  case X86ISD::UNPCKLPD:
11344  case X86ISD::MOVHLPS:
11345  case X86ISD::MOVLHPS:
11346  case X86ISD::PSHUFD:
11347  case X86ISD::PSHUFHW:
11348  case X86ISD::PSHUFLW:
11349  case X86ISD::MOVSS:
11350  case X86ISD::MOVSD:
11351  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
11352  }
11353
11354  return SDValue();
11355}
11356
11357/// isTypeDesirableForOp - Return true if the target has native support for
11358/// the specified value type and it is 'desirable' to use the type for the
11359/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11360/// instruction encodings are longer and some i16 instructions are slow.
11361bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11362  if (!isTypeLegal(VT))
11363    return false;
11364  if (VT != MVT::i16)
11365    return true;
11366
11367  switch (Opc) {
11368  default:
11369    return true;
11370  case ISD::LOAD:
11371  case ISD::SIGN_EXTEND:
11372  case ISD::ZERO_EXTEND:
11373  case ISD::ANY_EXTEND:
11374  case ISD::SHL:
11375  case ISD::SRL:
11376  case ISD::SUB:
11377  case ISD::ADD:
11378  case ISD::MUL:
11379  case ISD::AND:
11380  case ISD::OR:
11381  case ISD::XOR:
11382    return false;
11383  }
11384}
11385
11386/// IsDesirableToPromoteOp - This method query the target whether it is
11387/// beneficial for dag combiner to promote the specified node. If true, it
11388/// should return the desired promotion type by reference.
11389bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11390  EVT VT = Op.getValueType();
11391  if (VT != MVT::i16)
11392    return false;
11393
11394  bool Promote = false;
11395  bool Commute = false;
11396  switch (Op.getOpcode()) {
11397  default: break;
11398  case ISD::LOAD: {
11399    LoadSDNode *LD = cast<LoadSDNode>(Op);
11400    // If the non-extending load has a single use and it's not live out, then it
11401    // might be folded.
11402    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11403                                                     Op.hasOneUse()*/) {
11404      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11405             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11406        // The only case where we'd want to promote LOAD (rather then it being
11407        // promoted as an operand is when it's only use is liveout.
11408        if (UI->getOpcode() != ISD::CopyToReg)
11409          return false;
11410      }
11411    }
11412    Promote = true;
11413    break;
11414  }
11415  case ISD::SIGN_EXTEND:
11416  case ISD::ZERO_EXTEND:
11417  case ISD::ANY_EXTEND:
11418    Promote = true;
11419    break;
11420  case ISD::SHL:
11421  case ISD::SRL: {
11422    SDValue N0 = Op.getOperand(0);
11423    // Look out for (store (shl (load), x)).
11424    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11425      return false;
11426    Promote = true;
11427    break;
11428  }
11429  case ISD::ADD:
11430  case ISD::MUL:
11431  case ISD::AND:
11432  case ISD::OR:
11433  case ISD::XOR:
11434    Commute = true;
11435    // fallthrough
11436  case ISD::SUB: {
11437    SDValue N0 = Op.getOperand(0);
11438    SDValue N1 = Op.getOperand(1);
11439    if (!Commute && MayFoldLoad(N1))
11440      return false;
11441    // Avoid disabling potential load folding opportunities.
11442    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11443      return false;
11444    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11445      return false;
11446    Promote = true;
11447  }
11448  }
11449
11450  PVT = MVT::i32;
11451  return Promote;
11452}
11453
11454//===----------------------------------------------------------------------===//
11455//                           X86 Inline Assembly Support
11456//===----------------------------------------------------------------------===//
11457
11458static bool LowerToBSwap(CallInst *CI) {
11459  // FIXME: this should verify that we are targetting a 486 or better.  If not,
11460  // we will turn this bswap into something that will be lowered to logical ops
11461  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
11462  // so don't worry about this.
11463
11464  // Verify this is a simple bswap.
11465  if (CI->getNumArgOperands() != 1 ||
11466      CI->getType() != CI->getArgOperand(0)->getType() ||
11467      !CI->getType()->isIntegerTy())
11468    return false;
11469
11470  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11471  if (!Ty || Ty->getBitWidth() % 16 != 0)
11472    return false;
11473
11474  // Okay, we can do this xform, do so now.
11475  const Type *Tys[] = { Ty };
11476  Module *M = CI->getParent()->getParent()->getParent();
11477  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11478
11479  Value *Op = CI->getArgOperand(0);
11480  Op = CallInst::Create(Int, Op, CI->getName(), CI);
11481
11482  CI->replaceAllUsesWith(Op);
11483  CI->eraseFromParent();
11484  return true;
11485}
11486
11487bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11488  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11489  InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
11490
11491  std::string AsmStr = IA->getAsmString();
11492
11493  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11494  SmallVector<StringRef, 4> AsmPieces;
11495  SplitString(AsmStr, AsmPieces, ";\n");
11496
11497  switch (AsmPieces.size()) {
11498  default: return false;
11499  case 1:
11500    AsmStr = AsmPieces[0];
11501    AsmPieces.clear();
11502    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
11503
11504    // bswap $0
11505    if (AsmPieces.size() == 2 &&
11506        (AsmPieces[0] == "bswap" ||
11507         AsmPieces[0] == "bswapq" ||
11508         AsmPieces[0] == "bswapl") &&
11509        (AsmPieces[1] == "$0" ||
11510         AsmPieces[1] == "${0:q}")) {
11511      // No need to check constraints, nothing other than the equivalent of
11512      // "=r,0" would be valid here.
11513      return LowerToBSwap(CI);
11514    }
11515    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
11516    if (CI->getType()->isIntegerTy(16) &&
11517        AsmPieces.size() == 3 &&
11518        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11519        AsmPieces[1] == "$$8," &&
11520        AsmPieces[2] == "${0:w}" &&
11521        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11522      AsmPieces.clear();
11523      const std::string &Constraints = IA->getConstraintString();
11524      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11525      std::sort(AsmPieces.begin(), AsmPieces.end());
11526      if (AsmPieces.size() == 4 &&
11527          AsmPieces[0] == "~{cc}" &&
11528          AsmPieces[1] == "~{dirflag}" &&
11529          AsmPieces[2] == "~{flags}" &&
11530          AsmPieces[3] == "~{fpsr}") {
11531        return LowerToBSwap(CI);
11532      }
11533    }
11534    break;
11535  case 3:
11536    if (CI->getType()->isIntegerTy(32) &&
11537        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11538      SmallVector<StringRef, 4> Words;
11539      SplitString(AsmPieces[0], Words, " \t,");
11540      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11541          Words[2] == "${0:w}") {
11542        Words.clear();
11543        SplitString(AsmPieces[1], Words, " \t,");
11544        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
11545            Words[2] == "$0") {
11546          Words.clear();
11547          SplitString(AsmPieces[2], Words, " \t,");
11548          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11549              Words[2] == "${0:w}") {
11550            AsmPieces.clear();
11551            const std::string &Constraints = IA->getConstraintString();
11552            SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11553            std::sort(AsmPieces.begin(), AsmPieces.end());
11554            if (AsmPieces.size() == 4 &&
11555                AsmPieces[0] == "~{cc}" &&
11556                AsmPieces[1] == "~{dirflag}" &&
11557                AsmPieces[2] == "~{flags}" &&
11558                AsmPieces[3] == "~{fpsr}") {
11559              return LowerToBSwap(CI);
11560            }
11561          }
11562        }
11563      }
11564    }
11565    if (CI->getType()->isIntegerTy(64) &&
11566        Constraints.size() >= 2 &&
11567        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11568        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11569      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11570      SmallVector<StringRef, 4> Words;
11571      SplitString(AsmPieces[0], Words, " \t");
11572      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11573        Words.clear();
11574        SplitString(AsmPieces[1], Words, " \t");
11575        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11576          Words.clear();
11577          SplitString(AsmPieces[2], Words, " \t,");
11578          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11579              Words[2] == "%edx") {
11580            return LowerToBSwap(CI);
11581          }
11582        }
11583      }
11584    }
11585    break;
11586  }
11587  return false;
11588}
11589
11590
11591
11592/// getConstraintType - Given a constraint letter, return the type of
11593/// constraint it is for this target.
11594X86TargetLowering::ConstraintType
11595X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11596  if (Constraint.size() == 1) {
11597    switch (Constraint[0]) {
11598    case 'R':
11599    case 'q':
11600    case 'Q':
11601    case 'f':
11602    case 't':
11603    case 'u':
11604    case 'y':
11605    case 'x':
11606    case 'Y':
11607      return C_RegisterClass;
11608    case 'a':
11609    case 'b':
11610    case 'c':
11611    case 'd':
11612    case 'S':
11613    case 'D':
11614    case 'A':
11615      return C_Register;
11616    case 'I':
11617    case 'J':
11618    case 'K':
11619    case 'L':
11620    case 'M':
11621    case 'N':
11622    case 'G':
11623    case 'C':
11624    case 'e':
11625    case 'Z':
11626      return C_Other;
11627    default:
11628      break;
11629    }
11630  }
11631  return TargetLowering::getConstraintType(Constraint);
11632}
11633
11634/// Examine constraint type and operand type and determine a weight value.
11635/// This object must already have been set up with the operand type
11636/// and the current alternative constraint selected.
11637TargetLowering::ConstraintWeight
11638  X86TargetLowering::getSingleConstraintMatchWeight(
11639    AsmOperandInfo &info, const char *constraint) const {
11640  ConstraintWeight weight = CW_Invalid;
11641  Value *CallOperandVal = info.CallOperandVal;
11642    // If we don't have a value, we can't do a match,
11643    // but allow it at the lowest weight.
11644  if (CallOperandVal == NULL)
11645    return CW_Default;
11646  const Type *type = CallOperandVal->getType();
11647  // Look at the constraint type.
11648  switch (*constraint) {
11649  default:
11650    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11651  case 'R':
11652  case 'q':
11653  case 'Q':
11654  case 'a':
11655  case 'b':
11656  case 'c':
11657  case 'd':
11658  case 'S':
11659  case 'D':
11660  case 'A':
11661    if (CallOperandVal->getType()->isIntegerTy())
11662      weight = CW_SpecificReg;
11663    break;
11664  case 'f':
11665  case 't':
11666  case 'u':
11667      if (type->isFloatingPointTy())
11668        weight = CW_SpecificReg;
11669      break;
11670  case 'y':
11671      if (type->isX86_MMXTy() && !DisableMMX && Subtarget->hasMMX())
11672        weight = CW_SpecificReg;
11673      break;
11674  case 'x':
11675  case 'Y':
11676    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1())
11677      weight = CW_Register;
11678    break;
11679  case 'I':
11680    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11681      if (C->getZExtValue() <= 31)
11682        weight = CW_Constant;
11683    }
11684    break;
11685  case 'J':
11686    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11687      if (C->getZExtValue() <= 63)
11688        weight = CW_Constant;
11689    }
11690    break;
11691  case 'K':
11692    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11693      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
11694        weight = CW_Constant;
11695    }
11696    break;
11697  case 'L':
11698    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11699      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
11700        weight = CW_Constant;
11701    }
11702    break;
11703  case 'M':
11704    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11705      if (C->getZExtValue() <= 3)
11706        weight = CW_Constant;
11707    }
11708    break;
11709  case 'N':
11710    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11711      if (C->getZExtValue() <= 0xff)
11712        weight = CW_Constant;
11713    }
11714    break;
11715  case 'G':
11716  case 'C':
11717    if (dyn_cast<ConstantFP>(CallOperandVal)) {
11718      weight = CW_Constant;
11719    }
11720    break;
11721  case 'e':
11722    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11723      if ((C->getSExtValue() >= -0x80000000LL) &&
11724          (C->getSExtValue() <= 0x7fffffffLL))
11725        weight = CW_Constant;
11726    }
11727    break;
11728  case 'Z':
11729    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11730      if (C->getZExtValue() <= 0xffffffff)
11731        weight = CW_Constant;
11732    }
11733    break;
11734  }
11735  return weight;
11736}
11737
11738/// LowerXConstraint - try to replace an X constraint, which matches anything,
11739/// with another that has more specific requirements based on the type of the
11740/// corresponding operand.
11741const char *X86TargetLowering::
11742LowerXConstraint(EVT ConstraintVT) const {
11743  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11744  // 'f' like normal targets.
11745  if (ConstraintVT.isFloatingPoint()) {
11746    if (Subtarget->hasSSE2())
11747      return "Y";
11748    if (Subtarget->hasSSE1())
11749      return "x";
11750  }
11751
11752  return TargetLowering::LowerXConstraint(ConstraintVT);
11753}
11754
11755/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11756/// vector.  If it is invalid, don't add anything to Ops.
11757void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11758                                                     char Constraint,
11759                                                     std::vector<SDValue>&Ops,
11760                                                     SelectionDAG &DAG) const {
11761  SDValue Result(0, 0);
11762
11763  switch (Constraint) {
11764  default: break;
11765  case 'I':
11766    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11767      if (C->getZExtValue() <= 31) {
11768        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11769        break;
11770      }
11771    }
11772    return;
11773  case 'J':
11774    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11775      if (C->getZExtValue() <= 63) {
11776        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11777        break;
11778      }
11779    }
11780    return;
11781  case 'K':
11782    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11783      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11784        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11785        break;
11786      }
11787    }
11788    return;
11789  case 'N':
11790    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11791      if (C->getZExtValue() <= 255) {
11792        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11793        break;
11794      }
11795    }
11796    return;
11797  case 'e': {
11798    // 32-bit signed value
11799    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11800      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11801                                           C->getSExtValue())) {
11802        // Widen to 64 bits here to get it sign extended.
11803        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11804        break;
11805      }
11806    // FIXME gcc accepts some relocatable values here too, but only in certain
11807    // memory models; it's complicated.
11808    }
11809    return;
11810  }
11811  case 'Z': {
11812    // 32-bit unsigned value
11813    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11814      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11815                                           C->getZExtValue())) {
11816        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11817        break;
11818      }
11819    }
11820    // FIXME gcc accepts some relocatable values here too, but only in certain
11821    // memory models; it's complicated.
11822    return;
11823  }
11824  case 'i': {
11825    // Literal immediates are always ok.
11826    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11827      // Widen to 64 bits here to get it sign extended.
11828      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11829      break;
11830    }
11831
11832    // In any sort of PIC mode addresses need to be computed at runtime by
11833    // adding in a register or some sort of table lookup.  These can't
11834    // be used as immediates.
11835    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11836      return;
11837
11838    // If we are in non-pic codegen mode, we allow the address of a global (with
11839    // an optional displacement) to be used with 'i'.
11840    GlobalAddressSDNode *GA = 0;
11841    int64_t Offset = 0;
11842
11843    // Match either (GA), (GA+C), (GA+C1+C2), etc.
11844    while (1) {
11845      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11846        Offset += GA->getOffset();
11847        break;
11848      } else if (Op.getOpcode() == ISD::ADD) {
11849        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11850          Offset += C->getZExtValue();
11851          Op = Op.getOperand(0);
11852          continue;
11853        }
11854      } else if (Op.getOpcode() == ISD::SUB) {
11855        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11856          Offset += -C->getZExtValue();
11857          Op = Op.getOperand(0);
11858          continue;
11859        }
11860      }
11861
11862      // Otherwise, this isn't something we can handle, reject it.
11863      return;
11864    }
11865
11866    const GlobalValue *GV = GA->getGlobal();
11867    // If we require an extra load to get this address, as in PIC mode, we
11868    // can't accept it.
11869    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11870                                                        getTargetMachine())))
11871      return;
11872
11873    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11874                                        GA->getValueType(0), Offset);
11875    break;
11876  }
11877  }
11878
11879  if (Result.getNode()) {
11880    Ops.push_back(Result);
11881    return;
11882  }
11883  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11884}
11885
11886std::vector<unsigned> X86TargetLowering::
11887getRegClassForInlineAsmConstraint(const std::string &Constraint,
11888                                  EVT VT) const {
11889  if (Constraint.size() == 1) {
11890    // FIXME: not handling fp-stack yet!
11891    switch (Constraint[0]) {      // GCC X86 Constraint Letters
11892    default: break;  // Unknown constraint letter
11893    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11894      if (Subtarget->is64Bit()) {
11895        if (VT == MVT::i32)
11896          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11897                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11898                                       X86::R10D,X86::R11D,X86::R12D,
11899                                       X86::R13D,X86::R14D,X86::R15D,
11900                                       X86::EBP, X86::ESP, 0);
11901        else if (VT == MVT::i16)
11902          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
11903                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
11904                                       X86::R10W,X86::R11W,X86::R12W,
11905                                       X86::R13W,X86::R14W,X86::R15W,
11906                                       X86::BP,  X86::SP, 0);
11907        else if (VT == MVT::i8)
11908          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
11909                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11910                                       X86::R10B,X86::R11B,X86::R12B,
11911                                       X86::R13B,X86::R14B,X86::R15B,
11912                                       X86::BPL, X86::SPL, 0);
11913
11914        else if (VT == MVT::i64)
11915          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11916                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
11917                                       X86::R10, X86::R11, X86::R12,
11918                                       X86::R13, X86::R14, X86::R15,
11919                                       X86::RBP, X86::RSP, 0);
11920
11921        break;
11922      }
11923      // 32-bit fallthrough
11924    case 'Q':   // Q_REGS
11925      if (VT == MVT::i32)
11926        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11927      else if (VT == MVT::i16)
11928        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11929      else if (VT == MVT::i8)
11930        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11931      else if (VT == MVT::i64)
11932        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11933      break;
11934    }
11935  }
11936
11937  return std::vector<unsigned>();
11938}
11939
11940std::pair<unsigned, const TargetRegisterClass*>
11941X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11942                                                EVT VT) const {
11943  // First, see if this is a constraint that directly corresponds to an LLVM
11944  // register class.
11945  if (Constraint.size() == 1) {
11946    // GCC Constraint Letters
11947    switch (Constraint[0]) {
11948    default: break;
11949    case 'r':   // GENERAL_REGS
11950    case 'l':   // INDEX_REGS
11951      if (VT == MVT::i8)
11952        return std::make_pair(0U, X86::GR8RegisterClass);
11953      if (VT == MVT::i16)
11954        return std::make_pair(0U, X86::GR16RegisterClass);
11955      if (VT == MVT::i32 || !Subtarget->is64Bit())
11956        return std::make_pair(0U, X86::GR32RegisterClass);
11957      return std::make_pair(0U, X86::GR64RegisterClass);
11958    case 'R':   // LEGACY_REGS
11959      if (VT == MVT::i8)
11960        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11961      if (VT == MVT::i16)
11962        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11963      if (VT == MVT::i32 || !Subtarget->is64Bit())
11964        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11965      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11966    case 'f':  // FP Stack registers.
11967      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11968      // value to the correct fpstack register class.
11969      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11970        return std::make_pair(0U, X86::RFP32RegisterClass);
11971      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11972        return std::make_pair(0U, X86::RFP64RegisterClass);
11973      return std::make_pair(0U, X86::RFP80RegisterClass);
11974    case 'y':   // MMX_REGS if MMX allowed.
11975      if (!Subtarget->hasMMX()) break;
11976      return std::make_pair(0U, X86::VR64RegisterClass);
11977    case 'Y':   // SSE_REGS if SSE2 allowed
11978      if (!Subtarget->hasSSE2()) break;
11979      // FALL THROUGH.
11980    case 'x':   // SSE_REGS if SSE1 allowed
11981      if (!Subtarget->hasSSE1()) break;
11982
11983      switch (VT.getSimpleVT().SimpleTy) {
11984      default: break;
11985      // Scalar SSE types.
11986      case MVT::f32:
11987      case MVT::i32:
11988        return std::make_pair(0U, X86::FR32RegisterClass);
11989      case MVT::f64:
11990      case MVT::i64:
11991        return std::make_pair(0U, X86::FR64RegisterClass);
11992      // Vector types.
11993      case MVT::v16i8:
11994      case MVT::v8i16:
11995      case MVT::v4i32:
11996      case MVT::v2i64:
11997      case MVT::v4f32:
11998      case MVT::v2f64:
11999        return std::make_pair(0U, X86::VR128RegisterClass);
12000      }
12001      break;
12002    }
12003  }
12004
12005  // Use the default implementation in TargetLowering to convert the register
12006  // constraint into a member of a register class.
12007  std::pair<unsigned, const TargetRegisterClass*> Res;
12008  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12009
12010  // Not found as a standard register?
12011  if (Res.second == 0) {
12012    // Map st(0) -> st(7) -> ST0
12013    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12014        tolower(Constraint[1]) == 's' &&
12015        tolower(Constraint[2]) == 't' &&
12016        Constraint[3] == '(' &&
12017        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12018        Constraint[5] == ')' &&
12019        Constraint[6] == '}') {
12020
12021      Res.first = X86::ST0+Constraint[4]-'0';
12022      Res.second = X86::RFP80RegisterClass;
12023      return Res;
12024    }
12025
12026    // GCC allows "st(0)" to be called just plain "st".
12027    if (StringRef("{st}").equals_lower(Constraint)) {
12028      Res.first = X86::ST0;
12029      Res.second = X86::RFP80RegisterClass;
12030      return Res;
12031    }
12032
12033    // flags -> EFLAGS
12034    if (StringRef("{flags}").equals_lower(Constraint)) {
12035      Res.first = X86::EFLAGS;
12036      Res.second = X86::CCRRegisterClass;
12037      return Res;
12038    }
12039
12040    // 'A' means EAX + EDX.
12041    if (Constraint == "A") {
12042      Res.first = X86::EAX;
12043      Res.second = X86::GR32_ADRegisterClass;
12044      return Res;
12045    }
12046    return Res;
12047  }
12048
12049  // Otherwise, check to see if this is a register class of the wrong value
12050  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12051  // turn into {ax},{dx}.
12052  if (Res.second->hasType(VT))
12053    return Res;   // Correct type already, nothing to do.
12054
12055  // All of the single-register GCC register classes map their values onto
12056  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12057  // really want an 8-bit or 32-bit register, map to the appropriate register
12058  // class and return the appropriate register.
12059  if (Res.second == X86::GR16RegisterClass) {
12060    if (VT == MVT::i8) {
12061      unsigned DestReg = 0;
12062      switch (Res.first) {
12063      default: break;
12064      case X86::AX: DestReg = X86::AL; break;
12065      case X86::DX: DestReg = X86::DL; break;
12066      case X86::CX: DestReg = X86::CL; break;
12067      case X86::BX: DestReg = X86::BL; break;
12068      }
12069      if (DestReg) {
12070        Res.first = DestReg;
12071        Res.second = X86::GR8RegisterClass;
12072      }
12073    } else if (VT == MVT::i32) {
12074      unsigned DestReg = 0;
12075      switch (Res.first) {
12076      default: break;
12077      case X86::AX: DestReg = X86::EAX; break;
12078      case X86::DX: DestReg = X86::EDX; break;
12079      case X86::CX: DestReg = X86::ECX; break;
12080      case X86::BX: DestReg = X86::EBX; break;
12081      case X86::SI: DestReg = X86::ESI; break;
12082      case X86::DI: DestReg = X86::EDI; break;
12083      case X86::BP: DestReg = X86::EBP; break;
12084      case X86::SP: DestReg = X86::ESP; break;
12085      }
12086      if (DestReg) {
12087        Res.first = DestReg;
12088        Res.second = X86::GR32RegisterClass;
12089      }
12090    } else if (VT == MVT::i64) {
12091      unsigned DestReg = 0;
12092      switch (Res.first) {
12093      default: break;
12094      case X86::AX: DestReg = X86::RAX; break;
12095      case X86::DX: DestReg = X86::RDX; break;
12096      case X86::CX: DestReg = X86::RCX; break;
12097      case X86::BX: DestReg = X86::RBX; break;
12098      case X86::SI: DestReg = X86::RSI; break;
12099      case X86::DI: DestReg = X86::RDI; break;
12100      case X86::BP: DestReg = X86::RBP; break;
12101      case X86::SP: DestReg = X86::RSP; break;
12102      }
12103      if (DestReg) {
12104        Res.first = DestReg;
12105        Res.second = X86::GR64RegisterClass;
12106      }
12107    }
12108  } else if (Res.second == X86::FR32RegisterClass ||
12109             Res.second == X86::FR64RegisterClass ||
12110             Res.second == X86::VR128RegisterClass) {
12111    // Handle references to XMM physical registers that got mapped into the
12112    // wrong class.  This can happen with constraints like {xmm0} where the
12113    // target independent register mapper will just pick the first match it can
12114    // find, ignoring the required type.
12115    if (VT == MVT::f32)
12116      Res.second = X86::FR32RegisterClass;
12117    else if (VT == MVT::f64)
12118      Res.second = X86::FR64RegisterClass;
12119    else if (X86::VR128RegisterClass->hasType(VT))
12120      Res.second = X86::VR128RegisterClass;
12121  }
12122
12123  return Res;
12124}
12125