X86ISelLowering.cpp revision 96df437a03d840fc0eff509b3b79b4cace64a915
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getDataLayout();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  // Bypass i32 with i8 on Atom when compiling with O2
186  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
187    addBypassSlowDiv(32, 8);
188
189  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
190    // Setup Windows compiler runtime calls.
191    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
192    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
193    setLibcallName(RTLIB::SREM_I64, "_allrem");
194    setLibcallName(RTLIB::UREM_I64, "_aullrem");
195    setLibcallName(RTLIB::MUL_I64, "_allmul");
196    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
201
202    // The _ftol2 runtime function has an unusual calling conv, which
203    // is modeled by a special pseudo-instruction.
204    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
206    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
207    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, &X86::GR8RegClass);
225  addRegisterClass(MVT::i16, &X86::GR16RegClass);
226  addRegisterClass(MVT::i32, &X86::GR32RegClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, &X86::GR64RegClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257  } else if (!TM.Options.UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!TM.Options.UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!TM.Options.UseSoftFloat) {
315    // Since AVX is a superset of SSE3, only check for SSE here.
316    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
317      // Expand FP_TO_UINT into a select.
318      // FIXME: We would like to use a Custom expander here eventually to do
319      // the optimal thing for SSE vs. the default expansion in the legalizer.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
321    else
322      // With SSE3 we can use fisttpll to convert to a signed i64; without
323      // SSE, we're stuck with a fistpll.
324      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
325  }
326
327  if (isTargetFTOL()) {
328    // Use the _ftol2 runtime function, which has a pseudo-instruction
329    // to handle its weird calling convention.
330    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
461  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
462  // support continuation, user-level threading, and etc.. As a result, no
463  // other SjLj exception interfaces are implemented and please don't build
464  // your own exception handling based on them.
465  // LLVM/Clang supports zero-cost DWARF exception handling.
466  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
467  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
468
469  // Darwin ABI issue.
470  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
471  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
472  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
473  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
474  if (Subtarget->is64Bit())
475    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
476  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
477  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
478  if (Subtarget->is64Bit()) {
479    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
480    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
481    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
482    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
483    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
484  }
485  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
486  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
487  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
488  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
489  if (Subtarget->is64Bit()) {
490    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
491    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
492    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
493  }
494
495  if (Subtarget->hasSSE1())
496    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
497
498  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
499  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
500
501  // On X86 and X86-64, atomic operations are lowered to locked instructions.
502  // Locked instructions, in turn, have implicit fence semantics (all memory
503  // operations are flushed before issuing the locked instruction, and they
504  // are not buffered), so we can fold away the common pattern of
505  // fence-atomic-fence.
506  setShouldFoldAtomicFences(true);
507
508  // Expand certain atomics
509  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
510    MVT VT = IntVTs[i];
511    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
513    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
514  }
515
516  if (!Subtarget->is64Bit()) {
517    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
521    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
522    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
523    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
524    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
526    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
527    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
528    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
529  }
530
531  if (Subtarget->hasCmpxchg16b()) {
532    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
533  }
534
535  // FIXME - use subtarget debug flags
536  if (!Subtarget->isTargetDarwin() &&
537      !Subtarget->isTargetELF() &&
538      !Subtarget->isTargetCygMing()) {
539    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
540  }
541
542  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
543  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
544  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
545  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
546  if (Subtarget->is64Bit()) {
547    setExceptionPointerRegister(X86::RAX);
548    setExceptionSelectorRegister(X86::RDX);
549  } else {
550    setExceptionPointerRegister(X86::EAX);
551    setExceptionSelectorRegister(X86::EDX);
552  }
553  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
554  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
555
556  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
557  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
558
559  setOperationAction(ISD::TRAP, MVT::Other, Legal);
560  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
561
562  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
563  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
564  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
565  if (Subtarget->is64Bit()) {
566    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
567    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
568  } else {
569    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
570    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
571  }
572
573  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
574  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
575
576  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
577    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
578                       MVT::i64 : MVT::i32, Custom);
579  else if (TM.Options.EnableSegmentedStacks)
580    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
581                       MVT::i64 : MVT::i32, Custom);
582  else
583    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
584                       MVT::i64 : MVT::i32, Expand);
585
586  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
587    // f32 and f64 use SSE.
588    // Set up the FP register classes.
589    addRegisterClass(MVT::f32, &X86::FR32RegClass);
590    addRegisterClass(MVT::f64, &X86::FR64RegClass);
591
592    // Use ANDPD to simulate FABS.
593    setOperationAction(ISD::FABS , MVT::f64, Custom);
594    setOperationAction(ISD::FABS , MVT::f32, Custom);
595
596    // Use XORP to simulate FNEG.
597    setOperationAction(ISD::FNEG , MVT::f64, Custom);
598    setOperationAction(ISD::FNEG , MVT::f32, Custom);
599
600    // Use ANDPD and ORPD to simulate FCOPYSIGN.
601    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
602    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
603
604    // Lower this to FGETSIGNx86 plus an AND.
605    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
606    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
607
608    // We don't support sin/cos/fmod
609    setOperationAction(ISD::FSIN , MVT::f64, Expand);
610    setOperationAction(ISD::FCOS , MVT::f64, Expand);
611    setOperationAction(ISD::FSIN , MVT::f32, Expand);
612    setOperationAction(ISD::FCOS , MVT::f32, Expand);
613
614    // Expand FP immediates into loads from the stack, except for the special
615    // cases we handle.
616    addLegalFPImmediate(APFloat(+0.0)); // xorpd
617    addLegalFPImmediate(APFloat(+0.0f)); // xorps
618  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
619    // Use SSE for f32, x87 for f64.
620    // Set up the FP register classes.
621    addRegisterClass(MVT::f32, &X86::FR32RegClass);
622    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
623
624    // Use ANDPS to simulate FABS.
625    setOperationAction(ISD::FABS , MVT::f32, Custom);
626
627    // Use XORP to simulate FNEG.
628    setOperationAction(ISD::FNEG , MVT::f32, Custom);
629
630    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
631
632    // Use ANDPS and ORPS to simulate FCOPYSIGN.
633    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
634    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
635
636    // We don't support sin/cos/fmod
637    setOperationAction(ISD::FSIN , MVT::f32, Expand);
638    setOperationAction(ISD::FCOS , MVT::f32, Expand);
639
640    // Special cases we handle for FP constants.
641    addLegalFPImmediate(APFloat(+0.0f)); // xorps
642    addLegalFPImmediate(APFloat(+0.0)); // FLD0
643    addLegalFPImmediate(APFloat(+1.0)); // FLD1
644    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
645    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
646
647    if (!TM.Options.UnsafeFPMath) {
648      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
649      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
650    }
651  } else if (!TM.Options.UseSoftFloat) {
652    // f32 and f64 in x87.
653    // Set up the FP register classes.
654    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
655    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
656
657    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
658    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
660    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
661
662    if (!TM.Options.UnsafeFPMath) {
663      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
664      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
665      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
666      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
667    }
668    addLegalFPImmediate(APFloat(+0.0)); // FLD0
669    addLegalFPImmediate(APFloat(+1.0)); // FLD1
670    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
671    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
672    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
673    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
674    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
675    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
676  }
677
678  // We don't support FMA.
679  setOperationAction(ISD::FMA, MVT::f64, Expand);
680  setOperationAction(ISD::FMA, MVT::f32, Expand);
681
682  // Long double always uses X87.
683  if (!TM.Options.UseSoftFloat) {
684    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
685    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
686    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
687    {
688      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
689      addLegalFPImmediate(TmpFlt);  // FLD0
690      TmpFlt.changeSign();
691      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
692
693      bool ignored;
694      APFloat TmpFlt2(+1.0);
695      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
696                      &ignored);
697      addLegalFPImmediate(TmpFlt2);  // FLD1
698      TmpFlt2.changeSign();
699      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
700    }
701
702    if (!TM.Options.UnsafeFPMath) {
703      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
704      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
705    }
706
707    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
708    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
709    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
710    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
711    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
712    setOperationAction(ISD::FMA, MVT::f80, Expand);
713  }
714
715  // Always use a library call for pow.
716  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
717  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
718  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
719
720  setOperationAction(ISD::FLOG, MVT::f80, Expand);
721  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
722  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
723  setOperationAction(ISD::FEXP, MVT::f80, Expand);
724  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
725
726  // First set operation action for all vector types to either promote
727  // (for widening) or expand (for scalarization). Then we will selectively
728  // turn on ones that can be effectively codegen'd.
729  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
730           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
731    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
746    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
748    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
749    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
770    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
772    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
773    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
774    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
775    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
776    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
777    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
778    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
779    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
780    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
781    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
782    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
783    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
784    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
785    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
786    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
787    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
788    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
789    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
790    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
791             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
792      setTruncStoreAction((MVT::SimpleValueType)VT,
793                          (MVT::SimpleValueType)InnerVT, Expand);
794    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
795    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
796    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
797  }
798
799  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
800  // with -msoft-float, disable use of MMX as well.
801  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
802    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
803    // No operations on x86mmx supported, everything uses intrinsics.
804  }
805
806  // MMX-sized vectors (other than x86mmx) are expected to be expanded
807  // into smaller operations.
808  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
809  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
810  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
811  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
812  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
813  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
814  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
815  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
816  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
817  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
818  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
819  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
820  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
821  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
822  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
823  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
824  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
825  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
826  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
827  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
828  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
829  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
830  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
831  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
832  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
833  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
834  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
835  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
836  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
837
838  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
839    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
840
841    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
842    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
843    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
844    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
845    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
846    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
847    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
848    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
849    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
850    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
851    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
852    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
853  }
854
855  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
856    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
857
858    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
859    // registers cannot be used even for integer operations.
860    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
861    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
862    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
863    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
864
865    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
866    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
867    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
868    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
869    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
870    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
871    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
872    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
873    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
874    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
875    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
876    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
877    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
878    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
879    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
880    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
881    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
882
883    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
884    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
885    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
886    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
887
888    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
889    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
890    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
891    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
892    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
893
894    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
895    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
896      MVT VT = (MVT::SimpleValueType)i;
897      // Do not attempt to custom lower non-power-of-2 vectors
898      if (!isPowerOf2_32(VT.getVectorNumElements()))
899        continue;
900      // Do not attempt to custom lower non-128-bit vectors
901      if (!VT.is128BitVector())
902        continue;
903      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
904      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
906    }
907
908    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
909    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
910    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
911    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
913    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
914
915    if (Subtarget->is64Bit()) {
916      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
917      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
918    }
919
920    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
921    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
922      MVT VT = (MVT::SimpleValueType)i;
923
924      // Do not attempt to promote non-128-bit vectors
925      if (!VT.is128BitVector())
926        continue;
927
928      setOperationAction(ISD::AND,    VT, Promote);
929      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
930      setOperationAction(ISD::OR,     VT, Promote);
931      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
932      setOperationAction(ISD::XOR,    VT, Promote);
933      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
934      setOperationAction(ISD::LOAD,   VT, Promote);
935      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
936      setOperationAction(ISD::SELECT, VT, Promote);
937      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
938    }
939
940    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
941
942    // Custom lower v2i64 and v2f64 selects.
943    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
944    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
945    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
946    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
947
948    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
949    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
950
951    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
952    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
953    // As there is no 64-bit GPR available, we need build a special custom
954    // sequence to convert from v2i32 to v2f32.
955    if (!Subtarget->is64Bit())
956      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
957
958    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
959    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
960
961    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
962  }
963
964  if (Subtarget->hasSSE41()) {
965    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
966    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
967    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
968    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
969    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
970    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
971    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
972    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
973    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
974    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
975
976    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
977    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
978
979    // FIXME: Do we need to handle scalar-to-vector here?
980    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
981
982    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
983    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
984    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
985    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
986    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
987
988    // i8 and i16 vectors are custom , because the source register and source
989    // source memory operand types are not the same width.  f32 vectors are
990    // custom since the immediate controlling the insert encodes additional
991    // information.
992    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
993    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
994    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
995    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
996
997    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
998    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
999    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1000    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1001
1002    // FIXME: these should be Legal but thats only for the case where
1003    // the index is constant.  For now custom expand to deal with that.
1004    if (Subtarget->is64Bit()) {
1005      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1006      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE2()) {
1011    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1012    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1013
1014    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1015    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1016
1017    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1018    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1019
1020    if (Subtarget->hasAVX2()) {
1021      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1022      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1023
1024      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1025      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1026
1027      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1028    } else {
1029      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1030      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1031
1032      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1033      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1034
1035      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1036    }
1037  }
1038
1039  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1040    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1041    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1042    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1043    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1044    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1045    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1046
1047    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1048    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1049    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1050
1051    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1052    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1053    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1054    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1055    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1056    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1057    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1058    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1059
1060    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1061    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1062    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1063    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1064    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1065    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1066    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1067    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1068
1069    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1070
1071    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1072
1073    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1074    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1075    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1076
1077    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1078    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1079    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1080
1081    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1082
1083    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1084    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1085
1086    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1087    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1088
1089    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1090    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1091
1092    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1093    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1094    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1095    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1096
1097    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1098    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1099    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1100
1101    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1102    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1103    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1104    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1105
1106    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1107      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1108      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1109      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1110      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1111      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1112      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1113    }
1114
1115    if (Subtarget->hasAVX2()) {
1116      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1117      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1118      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1119      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1120
1121      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1122      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1123      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1124      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1125
1126      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1127      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1128      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1129      // Don't lower v32i8 because there is no 128-bit byte mul
1130
1131      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1132
1133      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1134      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1135
1136      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1137      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1138
1139      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1140    } else {
1141      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1142      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1143      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1144      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1145
1146      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1147      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1148      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1149      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1150
1151      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1152      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1153      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1154      // Don't lower v32i8 because there is no 128-bit byte mul
1155
1156      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1157      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1158
1159      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1160      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1161
1162      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1163    }
1164
1165    // Custom lower several nodes for 256-bit types.
1166    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1167             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1168      MVT VT = (MVT::SimpleValueType)i;
1169
1170      // Extract subvector is special because the value type
1171      // (result) is 128-bit but the source is 256-bit wide.
1172      if (VT.is128BitVector())
1173        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1174
1175      // Do not attempt to custom lower other non-256-bit vectors
1176      if (!VT.is256BitVector())
1177        continue;
1178
1179      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1180      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1181      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1182      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1183      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1184      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1185      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1186    }
1187
1188    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1189    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1190      MVT VT = (MVT::SimpleValueType)i;
1191
1192      // Do not attempt to promote non-256-bit vectors
1193      if (!VT.is256BitVector())
1194        continue;
1195
1196      setOperationAction(ISD::AND,    VT, Promote);
1197      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1198      setOperationAction(ISD::OR,     VT, Promote);
1199      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1200      setOperationAction(ISD::XOR,    VT, Promote);
1201      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1202      setOperationAction(ISD::LOAD,   VT, Promote);
1203      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1204      setOperationAction(ISD::SELECT, VT, Promote);
1205      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1206    }
1207  }
1208
1209  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1210  // of this type with custom code.
1211  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1212           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1213    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1214                       Custom);
1215  }
1216
1217  // We want to custom lower some of our intrinsics.
1218  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1219  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1220
1221
1222  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1223  // handle type legalization for these operations here.
1224  //
1225  // FIXME: We really should do custom legalization for addition and
1226  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1227  // than generic legalization for 64-bit multiplication-with-overflow, though.
1228  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1229    // Add/Sub/Mul with overflow operations are custom lowered.
1230    MVT VT = IntVTs[i];
1231    setOperationAction(ISD::SADDO, VT, Custom);
1232    setOperationAction(ISD::UADDO, VT, Custom);
1233    setOperationAction(ISD::SSUBO, VT, Custom);
1234    setOperationAction(ISD::USUBO, VT, Custom);
1235    setOperationAction(ISD::SMULO, VT, Custom);
1236    setOperationAction(ISD::UMULO, VT, Custom);
1237  }
1238
1239  // There are no 8-bit 3-address imul/mul instructions
1240  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1241  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1242
1243  if (!Subtarget->is64Bit()) {
1244    // These libcalls are not available in 32-bit.
1245    setLibcallName(RTLIB::SHL_I128, 0);
1246    setLibcallName(RTLIB::SRL_I128, 0);
1247    setLibcallName(RTLIB::SRA_I128, 0);
1248  }
1249
1250  // We have target-specific dag combine patterns for the following nodes:
1251  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1252  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1253  setTargetDAGCombine(ISD::VSELECT);
1254  setTargetDAGCombine(ISD::SELECT);
1255  setTargetDAGCombine(ISD::SHL);
1256  setTargetDAGCombine(ISD::SRA);
1257  setTargetDAGCombine(ISD::SRL);
1258  setTargetDAGCombine(ISD::OR);
1259  setTargetDAGCombine(ISD::AND);
1260  setTargetDAGCombine(ISD::ADD);
1261  setTargetDAGCombine(ISD::FADD);
1262  setTargetDAGCombine(ISD::FSUB);
1263  setTargetDAGCombine(ISD::FMA);
1264  setTargetDAGCombine(ISD::SUB);
1265  setTargetDAGCombine(ISD::LOAD);
1266  setTargetDAGCombine(ISD::STORE);
1267  setTargetDAGCombine(ISD::ZERO_EXTEND);
1268  setTargetDAGCombine(ISD::ANY_EXTEND);
1269  setTargetDAGCombine(ISD::SIGN_EXTEND);
1270  setTargetDAGCombine(ISD::TRUNCATE);
1271  setTargetDAGCombine(ISD::SINT_TO_FP);
1272  setTargetDAGCombine(ISD::SETCC);
1273  if (Subtarget->is64Bit())
1274    setTargetDAGCombine(ISD::MUL);
1275  setTargetDAGCombine(ISD::XOR);
1276
1277  computeRegisterProperties();
1278
1279  // On Darwin, -Os means optimize for size without hurting performance,
1280  // do not reduce the limit.
1281  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1282  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1283  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1284  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1285  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1286  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1287  setPrefLoopAlignment(4); // 2^4 bytes.
1288  benefitFromCodePlacementOpt = true;
1289
1290  // Predictable cmov don't hurt on atom because it's in-order.
1291  predictableSelectIsExpensive = !Subtarget->isAtom();
1292
1293  setPrefFunctionAlignment(4); // 2^4 bytes.
1294}
1295
1296
1297EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1298  if (!VT.isVector()) return MVT::i8;
1299  return VT.changeVectorElementTypeToInteger();
1300}
1301
1302
1303/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1304/// the desired ByVal argument alignment.
1305static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1306  if (MaxAlign == 16)
1307    return;
1308  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1309    if (VTy->getBitWidth() == 128)
1310      MaxAlign = 16;
1311  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1312    unsigned EltAlign = 0;
1313    getMaxByValAlign(ATy->getElementType(), EltAlign);
1314    if (EltAlign > MaxAlign)
1315      MaxAlign = EltAlign;
1316  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1317    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1318      unsigned EltAlign = 0;
1319      getMaxByValAlign(STy->getElementType(i), EltAlign);
1320      if (EltAlign > MaxAlign)
1321        MaxAlign = EltAlign;
1322      if (MaxAlign == 16)
1323        break;
1324    }
1325  }
1326}
1327
1328/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1329/// function arguments in the caller parameter area. For X86, aggregates
1330/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1331/// are at 4-byte boundaries.
1332unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1333  if (Subtarget->is64Bit()) {
1334    // Max of 8 and alignment of type.
1335    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1336    if (TyAlign > 8)
1337      return TyAlign;
1338    return 8;
1339  }
1340
1341  unsigned Align = 4;
1342  if (Subtarget->hasSSE1())
1343    getMaxByValAlign(Ty, Align);
1344  return Align;
1345}
1346
1347/// getOptimalMemOpType - Returns the target specific optimal type for load
1348/// and store operations as a result of memset, memcpy, and memmove
1349/// lowering. If DstAlign is zero that means it's safe to destination
1350/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1351/// means there isn't a need to check it against alignment requirement,
1352/// probably because the source does not need to be loaded. If
1353/// 'IsZeroVal' is true, that means it's safe to return a
1354/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1355/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1356/// constant so it does not need to be loaded.
1357/// It returns EVT::Other if the type should be determined using generic
1358/// target-independent logic.
1359EVT
1360X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1361                                       unsigned DstAlign, unsigned SrcAlign,
1362                                       bool IsZeroVal,
1363                                       bool MemcpyStrSrc,
1364                                       MachineFunction &MF) const {
1365  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1366  // linux.  This is because the stack realignment code can't handle certain
1367  // cases like PR2962.  This should be removed when PR2962 is fixed.
1368  const Function *F = MF.getFunction();
1369  if (IsZeroVal &&
1370      !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) {
1371    if (Size >= 16 &&
1372        (Subtarget->isUnalignedMemAccessFast() ||
1373         ((DstAlign == 0 || DstAlign >= 16) &&
1374          (SrcAlign == 0 || SrcAlign >= 16))) &&
1375        Subtarget->getStackAlignment() >= 16) {
1376      if (Subtarget->getStackAlignment() >= 32) {
1377        if (Subtarget->hasAVX2())
1378          return MVT::v8i32;
1379        if (Subtarget->hasAVX())
1380          return MVT::v8f32;
1381      }
1382      if (Subtarget->hasSSE2())
1383        return MVT::v4i32;
1384      if (Subtarget->hasSSE1())
1385        return MVT::v4f32;
1386    } else if (!MemcpyStrSrc && Size >= 8 &&
1387               !Subtarget->is64Bit() &&
1388               Subtarget->getStackAlignment() >= 8 &&
1389               Subtarget->hasSSE2()) {
1390      // Do not use f64 to lower memcpy if source is string constant. It's
1391      // better to use i32 to avoid the loads.
1392      return MVT::f64;
1393    }
1394  }
1395  if (Subtarget->is64Bit() && Size >= 8)
1396    return MVT::i64;
1397  return MVT::i32;
1398}
1399
1400/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1401/// current function.  The returned value is a member of the
1402/// MachineJumpTableInfo::JTEntryKind enum.
1403unsigned X86TargetLowering::getJumpTableEncoding() const {
1404  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1405  // symbol.
1406  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1407      Subtarget->isPICStyleGOT())
1408    return MachineJumpTableInfo::EK_Custom32;
1409
1410  // Otherwise, use the normal jump table encoding heuristics.
1411  return TargetLowering::getJumpTableEncoding();
1412}
1413
1414const MCExpr *
1415X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1416                                             const MachineBasicBlock *MBB,
1417                                             unsigned uid,MCContext &Ctx) const{
1418  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1419         Subtarget->isPICStyleGOT());
1420  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1421  // entries.
1422  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1423                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1424}
1425
1426/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1427/// jumptable.
1428SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1429                                                    SelectionDAG &DAG) const {
1430  if (!Subtarget->is64Bit())
1431    // This doesn't have DebugLoc associated with it, but is not really the
1432    // same as a Register.
1433    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1434  return Table;
1435}
1436
1437/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1438/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1439/// MCExpr.
1440const MCExpr *X86TargetLowering::
1441getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1442                             MCContext &Ctx) const {
1443  // X86-64 uses RIP relative addressing based on the jump table label.
1444  if (Subtarget->isPICStyleRIPRel())
1445    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1446
1447  // Otherwise, the reference is relative to the PIC base.
1448  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1449}
1450
1451// FIXME: Why this routine is here? Move to RegInfo!
1452std::pair<const TargetRegisterClass*, uint8_t>
1453X86TargetLowering::findRepresentativeClass(EVT VT) const{
1454  const TargetRegisterClass *RRC = 0;
1455  uint8_t Cost = 1;
1456  switch (VT.getSimpleVT().SimpleTy) {
1457  default:
1458    return TargetLowering::findRepresentativeClass(VT);
1459  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1460    RRC = Subtarget->is64Bit() ?
1461      (const TargetRegisterClass*)&X86::GR64RegClass :
1462      (const TargetRegisterClass*)&X86::GR32RegClass;
1463    break;
1464  case MVT::x86mmx:
1465    RRC = &X86::VR64RegClass;
1466    break;
1467  case MVT::f32: case MVT::f64:
1468  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1469  case MVT::v4f32: case MVT::v2f64:
1470  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1471  case MVT::v4f64:
1472    RRC = &X86::VR128RegClass;
1473    break;
1474  }
1475  return std::make_pair(RRC, Cost);
1476}
1477
1478bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1479                                               unsigned &Offset) const {
1480  if (!Subtarget->isTargetLinux())
1481    return false;
1482
1483  if (Subtarget->is64Bit()) {
1484    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1485    Offset = 0x28;
1486    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1487      AddressSpace = 256;
1488    else
1489      AddressSpace = 257;
1490  } else {
1491    // %gs:0x14 on i386
1492    Offset = 0x14;
1493    AddressSpace = 256;
1494  }
1495  return true;
1496}
1497
1498
1499//===----------------------------------------------------------------------===//
1500//               Return Value Calling Convention Implementation
1501//===----------------------------------------------------------------------===//
1502
1503#include "X86GenCallingConv.inc"
1504
1505bool
1506X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1507                                  MachineFunction &MF, bool isVarArg,
1508                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1509                        LLVMContext &Context) const {
1510  SmallVector<CCValAssign, 16> RVLocs;
1511  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1512                 RVLocs, Context);
1513  return CCInfo.CheckReturn(Outs, RetCC_X86);
1514}
1515
1516SDValue
1517X86TargetLowering::LowerReturn(SDValue Chain,
1518                               CallingConv::ID CallConv, bool isVarArg,
1519                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1520                               const SmallVectorImpl<SDValue> &OutVals,
1521                               DebugLoc dl, SelectionDAG &DAG) const {
1522  MachineFunction &MF = DAG.getMachineFunction();
1523  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1524
1525  SmallVector<CCValAssign, 16> RVLocs;
1526  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1527                 RVLocs, *DAG.getContext());
1528  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1529
1530  // Add the regs to the liveout set for the function.
1531  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1532  for (unsigned i = 0; i != RVLocs.size(); ++i)
1533    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1534      MRI.addLiveOut(RVLocs[i].getLocReg());
1535
1536  SDValue Flag;
1537
1538  SmallVector<SDValue, 6> RetOps;
1539  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1540  // Operand #1 = Bytes To Pop
1541  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1542                   MVT::i16));
1543
1544  // Copy the result values into the output registers.
1545  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1546    CCValAssign &VA = RVLocs[i];
1547    assert(VA.isRegLoc() && "Can only return in registers!");
1548    SDValue ValToCopy = OutVals[i];
1549    EVT ValVT = ValToCopy.getValueType();
1550
1551    // Promote values to the appropriate types
1552    if (VA.getLocInfo() == CCValAssign::SExt)
1553      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1554    else if (VA.getLocInfo() == CCValAssign::ZExt)
1555      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1556    else if (VA.getLocInfo() == CCValAssign::AExt)
1557      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1558    else if (VA.getLocInfo() == CCValAssign::BCvt)
1559      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1560
1561    // If this is x86-64, and we disabled SSE, we can't return FP values,
1562    // or SSE or MMX vectors.
1563    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1564         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1565          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1566      report_fatal_error("SSE register return with SSE disabled");
1567    }
1568    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1569    // llvm-gcc has never done it right and no one has noticed, so this
1570    // should be OK for now.
1571    if (ValVT == MVT::f64 &&
1572        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1573      report_fatal_error("SSE2 register return with SSE2 disabled");
1574
1575    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1576    // the RET instruction and handled by the FP Stackifier.
1577    if (VA.getLocReg() == X86::ST0 ||
1578        VA.getLocReg() == X86::ST1) {
1579      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1580      // change the value to the FP stack register class.
1581      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1582        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1583      RetOps.push_back(ValToCopy);
1584      // Don't emit a copytoreg.
1585      continue;
1586    }
1587
1588    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1589    // which is returned in RAX / RDX.
1590    if (Subtarget->is64Bit()) {
1591      if (ValVT == MVT::x86mmx) {
1592        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1593          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1594          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1595                                  ValToCopy);
1596          // If we don't have SSE2 available, convert to v4f32 so the generated
1597          // register is legal.
1598          if (!Subtarget->hasSSE2())
1599            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1600        }
1601      }
1602    }
1603
1604    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1605    Flag = Chain.getValue(1);
1606  }
1607
1608  // The x86-64 ABI for returning structs by value requires that we copy
1609  // the sret argument into %rax for the return. We saved the argument into
1610  // a virtual register in the entry block, so now we copy the value out
1611  // and into %rax.
1612  if (Subtarget->is64Bit() &&
1613      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1614    MachineFunction &MF = DAG.getMachineFunction();
1615    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1616    unsigned Reg = FuncInfo->getSRetReturnReg();
1617    assert(Reg &&
1618           "SRetReturnReg should have been set in LowerFormalArguments().");
1619    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1620
1621    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1622    Flag = Chain.getValue(1);
1623
1624    // RAX now acts like a return value.
1625    MRI.addLiveOut(X86::RAX);
1626  }
1627
1628  RetOps[0] = Chain;  // Update chain.
1629
1630  // Add the flag if we have it.
1631  if (Flag.getNode())
1632    RetOps.push_back(Flag);
1633
1634  return DAG.getNode(X86ISD::RET_FLAG, dl,
1635                     MVT::Other, &RetOps[0], RetOps.size());
1636}
1637
1638bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1639  if (N->getNumValues() != 1)
1640    return false;
1641  if (!N->hasNUsesOfValue(1, 0))
1642    return false;
1643
1644  SDValue TCChain = Chain;
1645  SDNode *Copy = *N->use_begin();
1646  if (Copy->getOpcode() == ISD::CopyToReg) {
1647    // If the copy has a glue operand, we conservatively assume it isn't safe to
1648    // perform a tail call.
1649    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1650      return false;
1651    TCChain = Copy->getOperand(0);
1652  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1653    return false;
1654
1655  bool HasRet = false;
1656  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1657       UI != UE; ++UI) {
1658    if (UI->getOpcode() != X86ISD::RET_FLAG)
1659      return false;
1660    HasRet = true;
1661  }
1662
1663  if (!HasRet)
1664    return false;
1665
1666  Chain = TCChain;
1667  return true;
1668}
1669
1670EVT
1671X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1672                                            ISD::NodeType ExtendKind) const {
1673  MVT ReturnMVT;
1674  // TODO: Is this also valid on 32-bit?
1675  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1676    ReturnMVT = MVT::i8;
1677  else
1678    ReturnMVT = MVT::i32;
1679
1680  EVT MinVT = getRegisterType(Context, ReturnMVT);
1681  return VT.bitsLT(MinVT) ? MinVT : VT;
1682}
1683
1684/// LowerCallResult - Lower the result values of a call into the
1685/// appropriate copies out of appropriate physical registers.
1686///
1687SDValue
1688X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1689                                   CallingConv::ID CallConv, bool isVarArg,
1690                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1691                                   DebugLoc dl, SelectionDAG &DAG,
1692                                   SmallVectorImpl<SDValue> &InVals) const {
1693
1694  // Assign locations to each value returned by this call.
1695  SmallVector<CCValAssign, 16> RVLocs;
1696  bool Is64Bit = Subtarget->is64Bit();
1697  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1698                 getTargetMachine(), RVLocs, *DAG.getContext());
1699  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1700
1701  // Copy all of the result registers out of their specified physreg.
1702  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1703    CCValAssign &VA = RVLocs[i];
1704    EVT CopyVT = VA.getValVT();
1705
1706    // If this is x86-64, and we disabled SSE, we can't return FP values
1707    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1708        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1709      report_fatal_error("SSE register return with SSE disabled");
1710    }
1711
1712    SDValue Val;
1713
1714    // If this is a call to a function that returns an fp value on the floating
1715    // point stack, we must guarantee the value is popped from the stack, so
1716    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1717    // if the return value is not used. We use the FpPOP_RETVAL instruction
1718    // instead.
1719    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1720      // If we prefer to use the value in xmm registers, copy it out as f80 and
1721      // use a truncate to move it from fp stack reg to xmm reg.
1722      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1723      SDValue Ops[] = { Chain, InFlag };
1724      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1725                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1726      Val = Chain.getValue(0);
1727
1728      // Round the f80 to the right size, which also moves it to the appropriate
1729      // xmm register.
1730      if (CopyVT != VA.getValVT())
1731        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1732                          // This truncation won't change the value.
1733                          DAG.getIntPtrConstant(1));
1734    } else {
1735      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1736                                 CopyVT, InFlag).getValue(1);
1737      Val = Chain.getValue(0);
1738    }
1739    InFlag = Chain.getValue(2);
1740    InVals.push_back(Val);
1741  }
1742
1743  return Chain;
1744}
1745
1746
1747//===----------------------------------------------------------------------===//
1748//                C & StdCall & Fast Calling Convention implementation
1749//===----------------------------------------------------------------------===//
1750//  StdCall calling convention seems to be standard for many Windows' API
1751//  routines and around. It differs from C calling convention just a little:
1752//  callee should clean up the stack, not caller. Symbols should be also
1753//  decorated in some fancy way :) It doesn't support any vector arguments.
1754//  For info on fast calling convention see Fast Calling Convention (tail call)
1755//  implementation LowerX86_32FastCCCallTo.
1756
1757/// CallIsStructReturn - Determines whether a call uses struct return
1758/// semantics.
1759enum StructReturnType {
1760  NotStructReturn,
1761  RegStructReturn,
1762  StackStructReturn
1763};
1764static StructReturnType
1765callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1766  if (Outs.empty())
1767    return NotStructReturn;
1768
1769  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1770  if (!Flags.isSRet())
1771    return NotStructReturn;
1772  if (Flags.isInReg())
1773    return RegStructReturn;
1774  return StackStructReturn;
1775}
1776
1777/// ArgsAreStructReturn - Determines whether a function uses struct
1778/// return semantics.
1779static StructReturnType
1780argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1781  if (Ins.empty())
1782    return NotStructReturn;
1783
1784  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1785  if (!Flags.isSRet())
1786    return NotStructReturn;
1787  if (Flags.isInReg())
1788    return RegStructReturn;
1789  return StackStructReturn;
1790}
1791
1792/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1793/// by "Src" to address "Dst" with size and alignment information specified by
1794/// the specific parameter attribute. The copy will be passed as a byval
1795/// function parameter.
1796static SDValue
1797CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1798                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1799                          DebugLoc dl) {
1800  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1801
1802  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1803                       /*isVolatile*/false, /*AlwaysInline=*/true,
1804                       MachinePointerInfo(), MachinePointerInfo());
1805}
1806
1807/// IsTailCallConvention - Return true if the calling convention is one that
1808/// supports tail call optimization.
1809static bool IsTailCallConvention(CallingConv::ID CC) {
1810  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1811}
1812
1813bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1814  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1815    return false;
1816
1817  CallSite CS(CI);
1818  CallingConv::ID CalleeCC = CS.getCallingConv();
1819  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1820    return false;
1821
1822  return true;
1823}
1824
1825/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1826/// a tailcall target by changing its ABI.
1827static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1828                                   bool GuaranteedTailCallOpt) {
1829  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1830}
1831
1832SDValue
1833X86TargetLowering::LowerMemArgument(SDValue Chain,
1834                                    CallingConv::ID CallConv,
1835                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1836                                    DebugLoc dl, SelectionDAG &DAG,
1837                                    const CCValAssign &VA,
1838                                    MachineFrameInfo *MFI,
1839                                    unsigned i) const {
1840  // Create the nodes corresponding to a load from this parameter slot.
1841  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1842  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1843                              getTargetMachine().Options.GuaranteedTailCallOpt);
1844  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1845  EVT ValVT;
1846
1847  // If value is passed by pointer we have address passed instead of the value
1848  // itself.
1849  if (VA.getLocInfo() == CCValAssign::Indirect)
1850    ValVT = VA.getLocVT();
1851  else
1852    ValVT = VA.getValVT();
1853
1854  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1855  // changed with more analysis.
1856  // In case of tail call optimization mark all arguments mutable. Since they
1857  // could be overwritten by lowering of arguments in case of a tail call.
1858  if (Flags.isByVal()) {
1859    unsigned Bytes = Flags.getByValSize();
1860    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1861    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1862    return DAG.getFrameIndex(FI, getPointerTy());
1863  } else {
1864    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1865                                    VA.getLocMemOffset(), isImmutable);
1866    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1867    return DAG.getLoad(ValVT, dl, Chain, FIN,
1868                       MachinePointerInfo::getFixedStack(FI),
1869                       false, false, false, 0);
1870  }
1871}
1872
1873SDValue
1874X86TargetLowering::LowerFormalArguments(SDValue Chain,
1875                                        CallingConv::ID CallConv,
1876                                        bool isVarArg,
1877                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1878                                        DebugLoc dl,
1879                                        SelectionDAG &DAG,
1880                                        SmallVectorImpl<SDValue> &InVals)
1881                                          const {
1882  MachineFunction &MF = DAG.getMachineFunction();
1883  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1884
1885  const Function* Fn = MF.getFunction();
1886  if (Fn->hasExternalLinkage() &&
1887      Subtarget->isTargetCygMing() &&
1888      Fn->getName() == "main")
1889    FuncInfo->setForceFramePointer(true);
1890
1891  MachineFrameInfo *MFI = MF.getFrameInfo();
1892  bool Is64Bit = Subtarget->is64Bit();
1893  bool IsWindows = Subtarget->isTargetWindows();
1894  bool IsWin64 = Subtarget->isTargetWin64();
1895
1896  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1897         "Var args not supported with calling convention fastcc or ghc");
1898
1899  // Assign locations to all of the incoming arguments.
1900  SmallVector<CCValAssign, 16> ArgLocs;
1901  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1902                 ArgLocs, *DAG.getContext());
1903
1904  // Allocate shadow area for Win64
1905  if (IsWin64) {
1906    CCInfo.AllocateStack(32, 8);
1907  }
1908
1909  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1910
1911  unsigned LastVal = ~0U;
1912  SDValue ArgValue;
1913  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1914    CCValAssign &VA = ArgLocs[i];
1915    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1916    // places.
1917    assert(VA.getValNo() != LastVal &&
1918           "Don't support value assigned to multiple locs yet");
1919    (void)LastVal;
1920    LastVal = VA.getValNo();
1921
1922    if (VA.isRegLoc()) {
1923      EVT RegVT = VA.getLocVT();
1924      const TargetRegisterClass *RC;
1925      if (RegVT == MVT::i32)
1926        RC = &X86::GR32RegClass;
1927      else if (Is64Bit && RegVT == MVT::i64)
1928        RC = &X86::GR64RegClass;
1929      else if (RegVT == MVT::f32)
1930        RC = &X86::FR32RegClass;
1931      else if (RegVT == MVT::f64)
1932        RC = &X86::FR64RegClass;
1933      else if (RegVT.is256BitVector())
1934        RC = &X86::VR256RegClass;
1935      else if (RegVT.is128BitVector())
1936        RC = &X86::VR128RegClass;
1937      else if (RegVT == MVT::x86mmx)
1938        RC = &X86::VR64RegClass;
1939      else
1940        llvm_unreachable("Unknown argument type!");
1941
1942      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1943      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1944
1945      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1946      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1947      // right size.
1948      if (VA.getLocInfo() == CCValAssign::SExt)
1949        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1950                               DAG.getValueType(VA.getValVT()));
1951      else if (VA.getLocInfo() == CCValAssign::ZExt)
1952        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1953                               DAG.getValueType(VA.getValVT()));
1954      else if (VA.getLocInfo() == CCValAssign::BCvt)
1955        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1956
1957      if (VA.isExtInLoc()) {
1958        // Handle MMX values passed in XMM regs.
1959        if (RegVT.isVector()) {
1960          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1961                                 ArgValue);
1962        } else
1963          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1964      }
1965    } else {
1966      assert(VA.isMemLoc());
1967      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1968    }
1969
1970    // If value is passed via pointer - do a load.
1971    if (VA.getLocInfo() == CCValAssign::Indirect)
1972      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1973                             MachinePointerInfo(), false, false, false, 0);
1974
1975    InVals.push_back(ArgValue);
1976  }
1977
1978  // The x86-64 ABI for returning structs by value requires that we copy
1979  // the sret argument into %rax for the return. Save the argument into
1980  // a virtual register so that we can access it from the return points.
1981  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1982    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1983    unsigned Reg = FuncInfo->getSRetReturnReg();
1984    if (!Reg) {
1985      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1986      FuncInfo->setSRetReturnReg(Reg);
1987    }
1988    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1989    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1990  }
1991
1992  unsigned StackSize = CCInfo.getNextStackOffset();
1993  // Align stack specially for tail calls.
1994  if (FuncIsMadeTailCallSafe(CallConv,
1995                             MF.getTarget().Options.GuaranteedTailCallOpt))
1996    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1997
1998  // If the function takes variable number of arguments, make a frame index for
1999  // the start of the first vararg value... for expansion of llvm.va_start.
2000  if (isVarArg) {
2001    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2002                    CallConv != CallingConv::X86_ThisCall)) {
2003      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2004    }
2005    if (Is64Bit) {
2006      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2007
2008      // FIXME: We should really autogenerate these arrays
2009      static const uint16_t GPR64ArgRegsWin64[] = {
2010        X86::RCX, X86::RDX, X86::R8,  X86::R9
2011      };
2012      static const uint16_t GPR64ArgRegs64Bit[] = {
2013        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2014      };
2015      static const uint16_t XMMArgRegs64Bit[] = {
2016        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2017        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2018      };
2019      const uint16_t *GPR64ArgRegs;
2020      unsigned NumXMMRegs = 0;
2021
2022      if (IsWin64) {
2023        // The XMM registers which might contain var arg parameters are shadowed
2024        // in their paired GPR.  So we only need to save the GPR to their home
2025        // slots.
2026        TotalNumIntRegs = 4;
2027        GPR64ArgRegs = GPR64ArgRegsWin64;
2028      } else {
2029        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2030        GPR64ArgRegs = GPR64ArgRegs64Bit;
2031
2032        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2033                                                TotalNumXMMRegs);
2034      }
2035      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2036                                                       TotalNumIntRegs);
2037
2038      bool NoImplicitFloatOps = Fn->getFnAttributes().
2039        hasAttribute(Attributes::NoImplicitFloat);
2040      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2041             "SSE register cannot be used when SSE is disabled!");
2042      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2043               NoImplicitFloatOps) &&
2044             "SSE register cannot be used when SSE is disabled!");
2045      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2046          !Subtarget->hasSSE1())
2047        // Kernel mode asks for SSE to be disabled, so don't push them
2048        // on the stack.
2049        TotalNumXMMRegs = 0;
2050
2051      if (IsWin64) {
2052        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2053        // Get to the caller-allocated home save location.  Add 8 to account
2054        // for the return address.
2055        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2056        FuncInfo->setRegSaveFrameIndex(
2057          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2058        // Fixup to set vararg frame on shadow area (4 x i64).
2059        if (NumIntRegs < 4)
2060          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2061      } else {
2062        // For X86-64, if there are vararg parameters that are passed via
2063        // registers, then we must store them to their spots on the stack so
2064        // they may be loaded by deferencing the result of va_next.
2065        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2066        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2067        FuncInfo->setRegSaveFrameIndex(
2068          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2069                               false));
2070      }
2071
2072      // Store the integer parameter registers.
2073      SmallVector<SDValue, 8> MemOps;
2074      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2075                                        getPointerTy());
2076      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2077      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2078        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2079                                  DAG.getIntPtrConstant(Offset));
2080        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2081                                     &X86::GR64RegClass);
2082        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2083        SDValue Store =
2084          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2085                       MachinePointerInfo::getFixedStack(
2086                         FuncInfo->getRegSaveFrameIndex(), Offset),
2087                       false, false, 0);
2088        MemOps.push_back(Store);
2089        Offset += 8;
2090      }
2091
2092      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2093        // Now store the XMM (fp + vector) parameter registers.
2094        SmallVector<SDValue, 11> SaveXMMOps;
2095        SaveXMMOps.push_back(Chain);
2096
2097        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2098        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2099        SaveXMMOps.push_back(ALVal);
2100
2101        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2102                               FuncInfo->getRegSaveFrameIndex()));
2103        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2104                               FuncInfo->getVarArgsFPOffset()));
2105
2106        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2107          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2108                                       &X86::VR128RegClass);
2109          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2110          SaveXMMOps.push_back(Val);
2111        }
2112        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2113                                     MVT::Other,
2114                                     &SaveXMMOps[0], SaveXMMOps.size()));
2115      }
2116
2117      if (!MemOps.empty())
2118        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2119                            &MemOps[0], MemOps.size());
2120    }
2121  }
2122
2123  // Some CCs need callee pop.
2124  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2125                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2126    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2127  } else {
2128    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2129    // If this is an sret function, the return should pop the hidden pointer.
2130    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2131        argsAreStructReturn(Ins) == StackStructReturn)
2132      FuncInfo->setBytesToPopOnReturn(4);
2133  }
2134
2135  if (!Is64Bit) {
2136    // RegSaveFrameIndex is X86-64 only.
2137    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2138    if (CallConv == CallingConv::X86_FastCall ||
2139        CallConv == CallingConv::X86_ThisCall)
2140      // fastcc functions can't have varargs.
2141      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2142  }
2143
2144  FuncInfo->setArgumentStackSize(StackSize);
2145
2146  return Chain;
2147}
2148
2149SDValue
2150X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2151                                    SDValue StackPtr, SDValue Arg,
2152                                    DebugLoc dl, SelectionDAG &DAG,
2153                                    const CCValAssign &VA,
2154                                    ISD::ArgFlagsTy Flags) const {
2155  unsigned LocMemOffset = VA.getLocMemOffset();
2156  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2157  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2158  if (Flags.isByVal())
2159    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2160
2161  return DAG.getStore(Chain, dl, Arg, PtrOff,
2162                      MachinePointerInfo::getStack(LocMemOffset),
2163                      false, false, 0);
2164}
2165
2166/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2167/// optimization is performed and it is required.
2168SDValue
2169X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2170                                           SDValue &OutRetAddr, SDValue Chain,
2171                                           bool IsTailCall, bool Is64Bit,
2172                                           int FPDiff, DebugLoc dl) const {
2173  // Adjust the Return address stack slot.
2174  EVT VT = getPointerTy();
2175  OutRetAddr = getReturnAddressFrameIndex(DAG);
2176
2177  // Load the "old" Return address.
2178  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2179                           false, false, false, 0);
2180  return SDValue(OutRetAddr.getNode(), 1);
2181}
2182
2183/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2184/// optimization is performed and it is required (FPDiff!=0).
2185static SDValue
2186EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2187                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2188                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2189  // Store the return address to the appropriate stack slot.
2190  if (!FPDiff) return Chain;
2191  // Calculate the new stack slot for the return address.
2192  int NewReturnAddrFI =
2193    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2194  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2195  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2196                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2197                       false, false, 0);
2198  return Chain;
2199}
2200
2201SDValue
2202X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2203                             SmallVectorImpl<SDValue> &InVals) const {
2204  SelectionDAG &DAG                     = CLI.DAG;
2205  DebugLoc &dl                          = CLI.DL;
2206  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2207  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2208  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2209  SDValue Chain                         = CLI.Chain;
2210  SDValue Callee                        = CLI.Callee;
2211  CallingConv::ID CallConv              = CLI.CallConv;
2212  bool &isTailCall                      = CLI.IsTailCall;
2213  bool isVarArg                         = CLI.IsVarArg;
2214
2215  MachineFunction &MF = DAG.getMachineFunction();
2216  bool Is64Bit        = Subtarget->is64Bit();
2217  bool IsWin64        = Subtarget->isTargetWin64();
2218  bool IsWindows      = Subtarget->isTargetWindows();
2219  StructReturnType SR = callIsStructReturn(Outs);
2220  bool IsSibcall      = false;
2221
2222  if (MF.getTarget().Options.DisableTailCalls)
2223    isTailCall = false;
2224
2225  if (isTailCall) {
2226    // Check if it's really possible to do a tail call.
2227    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2228                    isVarArg, SR != NotStructReturn,
2229                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2230                    Outs, OutVals, Ins, DAG);
2231
2232    // Sibcalls are automatically detected tailcalls which do not require
2233    // ABI changes.
2234    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2235      IsSibcall = true;
2236
2237    if (isTailCall)
2238      ++NumTailCalls;
2239  }
2240
2241  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2242         "Var args not supported with calling convention fastcc or ghc");
2243
2244  // Analyze operands of the call, assigning locations to each operand.
2245  SmallVector<CCValAssign, 16> ArgLocs;
2246  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2247                 ArgLocs, *DAG.getContext());
2248
2249  // Allocate shadow area for Win64
2250  if (IsWin64) {
2251    CCInfo.AllocateStack(32, 8);
2252  }
2253
2254  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2255
2256  // Get a count of how many bytes are to be pushed on the stack.
2257  unsigned NumBytes = CCInfo.getNextStackOffset();
2258  if (IsSibcall)
2259    // This is a sibcall. The memory operands are available in caller's
2260    // own caller's stack.
2261    NumBytes = 0;
2262  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2263           IsTailCallConvention(CallConv))
2264    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2265
2266  int FPDiff = 0;
2267  if (isTailCall && !IsSibcall) {
2268    // Lower arguments at fp - stackoffset + fpdiff.
2269    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2270    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2271
2272    FPDiff = NumBytesCallerPushed - NumBytes;
2273
2274    // Set the delta of movement of the returnaddr stackslot.
2275    // But only set if delta is greater than previous delta.
2276    if (FPDiff < X86Info->getTCReturnAddrDelta())
2277      X86Info->setTCReturnAddrDelta(FPDiff);
2278  }
2279
2280  if (!IsSibcall)
2281    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2282
2283  SDValue RetAddrFrIdx;
2284  // Load return address for tail calls.
2285  if (isTailCall && FPDiff)
2286    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2287                                    Is64Bit, FPDiff, dl);
2288
2289  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2290  SmallVector<SDValue, 8> MemOpChains;
2291  SDValue StackPtr;
2292
2293  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2294  // of tail call optimization arguments are handle later.
2295  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2296    CCValAssign &VA = ArgLocs[i];
2297    EVT RegVT = VA.getLocVT();
2298    SDValue Arg = OutVals[i];
2299    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2300    bool isByVal = Flags.isByVal();
2301
2302    // Promote the value if needed.
2303    switch (VA.getLocInfo()) {
2304    default: llvm_unreachable("Unknown loc info!");
2305    case CCValAssign::Full: break;
2306    case CCValAssign::SExt:
2307      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2308      break;
2309    case CCValAssign::ZExt:
2310      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2311      break;
2312    case CCValAssign::AExt:
2313      if (RegVT.is128BitVector()) {
2314        // Special case: passing MMX values in XMM registers.
2315        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2316        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2317        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2318      } else
2319        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2320      break;
2321    case CCValAssign::BCvt:
2322      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2323      break;
2324    case CCValAssign::Indirect: {
2325      // Store the argument.
2326      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2327      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2328      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2329                           MachinePointerInfo::getFixedStack(FI),
2330                           false, false, 0);
2331      Arg = SpillSlot;
2332      break;
2333    }
2334    }
2335
2336    if (VA.isRegLoc()) {
2337      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2338      if (isVarArg && IsWin64) {
2339        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2340        // shadow reg if callee is a varargs function.
2341        unsigned ShadowReg = 0;
2342        switch (VA.getLocReg()) {
2343        case X86::XMM0: ShadowReg = X86::RCX; break;
2344        case X86::XMM1: ShadowReg = X86::RDX; break;
2345        case X86::XMM2: ShadowReg = X86::R8; break;
2346        case X86::XMM3: ShadowReg = X86::R9; break;
2347        }
2348        if (ShadowReg)
2349          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2350      }
2351    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2352      assert(VA.isMemLoc());
2353      if (StackPtr.getNode() == 0)
2354        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2355      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2356                                             dl, DAG, VA, Flags));
2357    }
2358  }
2359
2360  if (!MemOpChains.empty())
2361    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2362                        &MemOpChains[0], MemOpChains.size());
2363
2364  if (Subtarget->isPICStyleGOT()) {
2365    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2366    // GOT pointer.
2367    if (!isTailCall) {
2368      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2369               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2370    } else {
2371      // If we are tail calling and generating PIC/GOT style code load the
2372      // address of the callee into ECX. The value in ecx is used as target of
2373      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2374      // for tail calls on PIC/GOT architectures. Normally we would just put the
2375      // address of GOT into ebx and then call target@PLT. But for tail calls
2376      // ebx would be restored (since ebx is callee saved) before jumping to the
2377      // target@PLT.
2378
2379      // Note: The actual moving to ECX is done further down.
2380      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2381      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2382          !G->getGlobal()->hasProtectedVisibility())
2383        Callee = LowerGlobalAddress(Callee, DAG);
2384      else if (isa<ExternalSymbolSDNode>(Callee))
2385        Callee = LowerExternalSymbol(Callee, DAG);
2386    }
2387  }
2388
2389  if (Is64Bit && isVarArg && !IsWin64) {
2390    // From AMD64 ABI document:
2391    // For calls that may call functions that use varargs or stdargs
2392    // (prototype-less calls or calls to functions containing ellipsis (...) in
2393    // the declaration) %al is used as hidden argument to specify the number
2394    // of SSE registers used. The contents of %al do not need to match exactly
2395    // the number of registers, but must be an ubound on the number of SSE
2396    // registers used and is in the range 0 - 8 inclusive.
2397
2398    // Count the number of XMM registers allocated.
2399    static const uint16_t XMMArgRegs[] = {
2400      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2401      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2402    };
2403    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2404    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2405           && "SSE registers cannot be used when SSE is disabled");
2406
2407    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2408                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2409  }
2410
2411  // For tail calls lower the arguments to the 'real' stack slot.
2412  if (isTailCall) {
2413    // Force all the incoming stack arguments to be loaded from the stack
2414    // before any new outgoing arguments are stored to the stack, because the
2415    // outgoing stack slots may alias the incoming argument stack slots, and
2416    // the alias isn't otherwise explicit. This is slightly more conservative
2417    // than necessary, because it means that each store effectively depends
2418    // on every argument instead of just those arguments it would clobber.
2419    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2420
2421    SmallVector<SDValue, 8> MemOpChains2;
2422    SDValue FIN;
2423    int FI = 0;
2424    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2425      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2426        CCValAssign &VA = ArgLocs[i];
2427        if (VA.isRegLoc())
2428          continue;
2429        assert(VA.isMemLoc());
2430        SDValue Arg = OutVals[i];
2431        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2432        // Create frame index.
2433        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2434        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2435        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2436        FIN = DAG.getFrameIndex(FI, getPointerTy());
2437
2438        if (Flags.isByVal()) {
2439          // Copy relative to framepointer.
2440          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2441          if (StackPtr.getNode() == 0)
2442            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2443                                          getPointerTy());
2444          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2445
2446          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2447                                                           ArgChain,
2448                                                           Flags, DAG, dl));
2449        } else {
2450          // Store relative to framepointer.
2451          MemOpChains2.push_back(
2452            DAG.getStore(ArgChain, dl, Arg, FIN,
2453                         MachinePointerInfo::getFixedStack(FI),
2454                         false, false, 0));
2455        }
2456      }
2457    }
2458
2459    if (!MemOpChains2.empty())
2460      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2461                          &MemOpChains2[0], MemOpChains2.size());
2462
2463    // Store the return address to the appropriate stack slot.
2464    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2465                                     getPointerTy(), RegInfo->getSlotSize(),
2466                                     FPDiff, dl);
2467  }
2468
2469  // Build a sequence of copy-to-reg nodes chained together with token chain
2470  // and flag operands which copy the outgoing args into registers.
2471  SDValue InFlag;
2472  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2473    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2474                             RegsToPass[i].second, InFlag);
2475    InFlag = Chain.getValue(1);
2476  }
2477
2478  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2479    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2480    // In the 64-bit large code model, we have to make all calls
2481    // through a register, since the call instruction's 32-bit
2482    // pc-relative offset may not be large enough to hold the whole
2483    // address.
2484  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2485    // If the callee is a GlobalAddress node (quite common, every direct call
2486    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2487    // it.
2488
2489    // We should use extra load for direct calls to dllimported functions in
2490    // non-JIT mode.
2491    const GlobalValue *GV = G->getGlobal();
2492    if (!GV->hasDLLImportLinkage()) {
2493      unsigned char OpFlags = 0;
2494      bool ExtraLoad = false;
2495      unsigned WrapperKind = ISD::DELETED_NODE;
2496
2497      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2498      // external symbols most go through the PLT in PIC mode.  If the symbol
2499      // has hidden or protected visibility, or if it is static or local, then
2500      // we don't need to use the PLT - we can directly call it.
2501      if (Subtarget->isTargetELF() &&
2502          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2503          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2504        OpFlags = X86II::MO_PLT;
2505      } else if (Subtarget->isPICStyleStubAny() &&
2506                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2507                 (!Subtarget->getTargetTriple().isMacOSX() ||
2508                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2509        // PC-relative references to external symbols should go through $stub,
2510        // unless we're building with the leopard linker or later, which
2511        // automatically synthesizes these stubs.
2512        OpFlags = X86II::MO_DARWIN_STUB;
2513      } else if (Subtarget->isPICStyleRIPRel() &&
2514                 isa<Function>(GV) &&
2515                 cast<Function>(GV)->getFnAttributes().
2516                   hasAttribute(Attributes::NonLazyBind)) {
2517        // If the function is marked as non-lazy, generate an indirect call
2518        // which loads from the GOT directly. This avoids runtime overhead
2519        // at the cost of eager binding (and one extra byte of encoding).
2520        OpFlags = X86II::MO_GOTPCREL;
2521        WrapperKind = X86ISD::WrapperRIP;
2522        ExtraLoad = true;
2523      }
2524
2525      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2526                                          G->getOffset(), OpFlags);
2527
2528      // Add a wrapper if needed.
2529      if (WrapperKind != ISD::DELETED_NODE)
2530        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2531      // Add extra indirection if needed.
2532      if (ExtraLoad)
2533        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2534                             MachinePointerInfo::getGOT(),
2535                             false, false, false, 0);
2536    }
2537  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2538    unsigned char OpFlags = 0;
2539
2540    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2541    // external symbols should go through the PLT.
2542    if (Subtarget->isTargetELF() &&
2543        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2544      OpFlags = X86II::MO_PLT;
2545    } else if (Subtarget->isPICStyleStubAny() &&
2546               (!Subtarget->getTargetTriple().isMacOSX() ||
2547                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2548      // PC-relative references to external symbols should go through $stub,
2549      // unless we're building with the leopard linker or later, which
2550      // automatically synthesizes these stubs.
2551      OpFlags = X86II::MO_DARWIN_STUB;
2552    }
2553
2554    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2555                                         OpFlags);
2556  }
2557
2558  // Returns a chain & a flag for retval copy to use.
2559  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2560  SmallVector<SDValue, 8> Ops;
2561
2562  if (!IsSibcall && isTailCall) {
2563    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2564                           DAG.getIntPtrConstant(0, true), InFlag);
2565    InFlag = Chain.getValue(1);
2566  }
2567
2568  Ops.push_back(Chain);
2569  Ops.push_back(Callee);
2570
2571  if (isTailCall)
2572    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2573
2574  // Add argument registers to the end of the list so that they are known live
2575  // into the call.
2576  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2577    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2578                                  RegsToPass[i].second.getValueType()));
2579
2580  // Add a register mask operand representing the call-preserved registers.
2581  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2582  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2583  assert(Mask && "Missing call preserved mask for calling convention");
2584  Ops.push_back(DAG.getRegisterMask(Mask));
2585
2586  if (InFlag.getNode())
2587    Ops.push_back(InFlag);
2588
2589  if (isTailCall) {
2590    // We used to do:
2591    //// If this is the first return lowered for this function, add the regs
2592    //// to the liveout set for the function.
2593    // This isn't right, although it's probably harmless on x86; liveouts
2594    // should be computed from returns not tail calls.  Consider a void
2595    // function making a tail call to a function returning int.
2596    return DAG.getNode(X86ISD::TC_RETURN, dl,
2597                       NodeTys, &Ops[0], Ops.size());
2598  }
2599
2600  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2601  InFlag = Chain.getValue(1);
2602
2603  // Create the CALLSEQ_END node.
2604  unsigned NumBytesForCalleeToPush;
2605  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2606                       getTargetMachine().Options.GuaranteedTailCallOpt))
2607    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2608  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2609           SR == StackStructReturn)
2610    // If this is a call to a struct-return function, the callee
2611    // pops the hidden struct pointer, so we have to push it back.
2612    // This is common for Darwin/X86, Linux & Mingw32 targets.
2613    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2614    NumBytesForCalleeToPush = 4;
2615  else
2616    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2617
2618  // Returns a flag for retval copy to use.
2619  if (!IsSibcall) {
2620    Chain = DAG.getCALLSEQ_END(Chain,
2621                               DAG.getIntPtrConstant(NumBytes, true),
2622                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2623                                                     true),
2624                               InFlag);
2625    InFlag = Chain.getValue(1);
2626  }
2627
2628  // Handle result values, copying them out of physregs into vregs that we
2629  // return.
2630  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2631                         Ins, dl, DAG, InVals);
2632}
2633
2634
2635//===----------------------------------------------------------------------===//
2636//                Fast Calling Convention (tail call) implementation
2637//===----------------------------------------------------------------------===//
2638
2639//  Like std call, callee cleans arguments, convention except that ECX is
2640//  reserved for storing the tail called function address. Only 2 registers are
2641//  free for argument passing (inreg). Tail call optimization is performed
2642//  provided:
2643//                * tailcallopt is enabled
2644//                * caller/callee are fastcc
2645//  On X86_64 architecture with GOT-style position independent code only local
2646//  (within module) calls are supported at the moment.
2647//  To keep the stack aligned according to platform abi the function
2648//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2649//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2650//  If a tail called function callee has more arguments than the caller the
2651//  caller needs to make sure that there is room to move the RETADDR to. This is
2652//  achieved by reserving an area the size of the argument delta right after the
2653//  original REtADDR, but before the saved framepointer or the spilled registers
2654//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2655//  stack layout:
2656//    arg1
2657//    arg2
2658//    RETADDR
2659//    [ new RETADDR
2660//      move area ]
2661//    (possible EBP)
2662//    ESI
2663//    EDI
2664//    local1 ..
2665
2666/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2667/// for a 16 byte align requirement.
2668unsigned
2669X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2670                                               SelectionDAG& DAG) const {
2671  MachineFunction &MF = DAG.getMachineFunction();
2672  const TargetMachine &TM = MF.getTarget();
2673  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2674  unsigned StackAlignment = TFI.getStackAlignment();
2675  uint64_t AlignMask = StackAlignment - 1;
2676  int64_t Offset = StackSize;
2677  unsigned SlotSize = RegInfo->getSlotSize();
2678  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2679    // Number smaller than 12 so just add the difference.
2680    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2681  } else {
2682    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2683    Offset = ((~AlignMask) & Offset) + StackAlignment +
2684      (StackAlignment-SlotSize);
2685  }
2686  return Offset;
2687}
2688
2689/// MatchingStackOffset - Return true if the given stack call argument is
2690/// already available in the same position (relatively) of the caller's
2691/// incoming argument stack.
2692static
2693bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2694                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2695                         const X86InstrInfo *TII) {
2696  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2697  int FI = INT_MAX;
2698  if (Arg.getOpcode() == ISD::CopyFromReg) {
2699    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2700    if (!TargetRegisterInfo::isVirtualRegister(VR))
2701      return false;
2702    MachineInstr *Def = MRI->getVRegDef(VR);
2703    if (!Def)
2704      return false;
2705    if (!Flags.isByVal()) {
2706      if (!TII->isLoadFromStackSlot(Def, FI))
2707        return false;
2708    } else {
2709      unsigned Opcode = Def->getOpcode();
2710      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2711          Def->getOperand(1).isFI()) {
2712        FI = Def->getOperand(1).getIndex();
2713        Bytes = Flags.getByValSize();
2714      } else
2715        return false;
2716    }
2717  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2718    if (Flags.isByVal())
2719      // ByVal argument is passed in as a pointer but it's now being
2720      // dereferenced. e.g.
2721      // define @foo(%struct.X* %A) {
2722      //   tail call @bar(%struct.X* byval %A)
2723      // }
2724      return false;
2725    SDValue Ptr = Ld->getBasePtr();
2726    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2727    if (!FINode)
2728      return false;
2729    FI = FINode->getIndex();
2730  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2731    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2732    FI = FINode->getIndex();
2733    Bytes = Flags.getByValSize();
2734  } else
2735    return false;
2736
2737  assert(FI != INT_MAX);
2738  if (!MFI->isFixedObjectIndex(FI))
2739    return false;
2740  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2741}
2742
2743/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2744/// for tail call optimization. Targets which want to do tail call
2745/// optimization should implement this function.
2746bool
2747X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2748                                                     CallingConv::ID CalleeCC,
2749                                                     bool isVarArg,
2750                                                     bool isCalleeStructRet,
2751                                                     bool isCallerStructRet,
2752                                                     Type *RetTy,
2753                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2754                                    const SmallVectorImpl<SDValue> &OutVals,
2755                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2756                                                     SelectionDAG& DAG) const {
2757  if (!IsTailCallConvention(CalleeCC) &&
2758      CalleeCC != CallingConv::C)
2759    return false;
2760
2761  // If -tailcallopt is specified, make fastcc functions tail-callable.
2762  const MachineFunction &MF = DAG.getMachineFunction();
2763  const Function *CallerF = DAG.getMachineFunction().getFunction();
2764
2765  // If the function return type is x86_fp80 and the callee return type is not,
2766  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2767  // perform a tailcall optimization here.
2768  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2769    return false;
2770
2771  CallingConv::ID CallerCC = CallerF->getCallingConv();
2772  bool CCMatch = CallerCC == CalleeCC;
2773
2774  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2775    if (IsTailCallConvention(CalleeCC) && CCMatch)
2776      return true;
2777    return false;
2778  }
2779
2780  // Look for obvious safe cases to perform tail call optimization that do not
2781  // require ABI changes. This is what gcc calls sibcall.
2782
2783  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2784  // emit a special epilogue.
2785  if (RegInfo->needsStackRealignment(MF))
2786    return false;
2787
2788  // Also avoid sibcall optimization if either caller or callee uses struct
2789  // return semantics.
2790  if (isCalleeStructRet || isCallerStructRet)
2791    return false;
2792
2793  // An stdcall caller is expected to clean up its arguments; the callee
2794  // isn't going to do that.
2795  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2796    return false;
2797
2798  // Do not sibcall optimize vararg calls unless all arguments are passed via
2799  // registers.
2800  if (isVarArg && !Outs.empty()) {
2801
2802    // Optimizing for varargs on Win64 is unlikely to be safe without
2803    // additional testing.
2804    if (Subtarget->isTargetWin64())
2805      return false;
2806
2807    SmallVector<CCValAssign, 16> ArgLocs;
2808    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2809                   getTargetMachine(), ArgLocs, *DAG.getContext());
2810
2811    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2812    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2813      if (!ArgLocs[i].isRegLoc())
2814        return false;
2815  }
2816
2817  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2818  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2819  // this into a sibcall.
2820  bool Unused = false;
2821  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2822    if (!Ins[i].Used) {
2823      Unused = true;
2824      break;
2825    }
2826  }
2827  if (Unused) {
2828    SmallVector<CCValAssign, 16> RVLocs;
2829    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2830                   getTargetMachine(), RVLocs, *DAG.getContext());
2831    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2832    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2833      CCValAssign &VA = RVLocs[i];
2834      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2835        return false;
2836    }
2837  }
2838
2839  // If the calling conventions do not match, then we'd better make sure the
2840  // results are returned in the same way as what the caller expects.
2841  if (!CCMatch) {
2842    SmallVector<CCValAssign, 16> RVLocs1;
2843    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2844                    getTargetMachine(), RVLocs1, *DAG.getContext());
2845    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2846
2847    SmallVector<CCValAssign, 16> RVLocs2;
2848    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2849                    getTargetMachine(), RVLocs2, *DAG.getContext());
2850    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2851
2852    if (RVLocs1.size() != RVLocs2.size())
2853      return false;
2854    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2855      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2856        return false;
2857      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2858        return false;
2859      if (RVLocs1[i].isRegLoc()) {
2860        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2861          return false;
2862      } else {
2863        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2864          return false;
2865      }
2866    }
2867  }
2868
2869  // If the callee takes no arguments then go on to check the results of the
2870  // call.
2871  if (!Outs.empty()) {
2872    // Check if stack adjustment is needed. For now, do not do this if any
2873    // argument is passed on the stack.
2874    SmallVector<CCValAssign, 16> ArgLocs;
2875    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2876                   getTargetMachine(), ArgLocs, *DAG.getContext());
2877
2878    // Allocate shadow area for Win64
2879    if (Subtarget->isTargetWin64()) {
2880      CCInfo.AllocateStack(32, 8);
2881    }
2882
2883    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2884    if (CCInfo.getNextStackOffset()) {
2885      MachineFunction &MF = DAG.getMachineFunction();
2886      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2887        return false;
2888
2889      // Check if the arguments are already laid out in the right way as
2890      // the caller's fixed stack objects.
2891      MachineFrameInfo *MFI = MF.getFrameInfo();
2892      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2893      const X86InstrInfo *TII =
2894        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2895      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2896        CCValAssign &VA = ArgLocs[i];
2897        SDValue Arg = OutVals[i];
2898        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2899        if (VA.getLocInfo() == CCValAssign::Indirect)
2900          return false;
2901        if (!VA.isRegLoc()) {
2902          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2903                                   MFI, MRI, TII))
2904            return false;
2905        }
2906      }
2907    }
2908
2909    // If the tailcall address may be in a register, then make sure it's
2910    // possible to register allocate for it. In 32-bit, the call address can
2911    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2912    // callee-saved registers are restored. These happen to be the same
2913    // registers used to pass 'inreg' arguments so watch out for those.
2914    if (!Subtarget->is64Bit() &&
2915        !isa<GlobalAddressSDNode>(Callee) &&
2916        !isa<ExternalSymbolSDNode>(Callee)) {
2917      unsigned NumInRegs = 0;
2918      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2919        CCValAssign &VA = ArgLocs[i];
2920        if (!VA.isRegLoc())
2921          continue;
2922        unsigned Reg = VA.getLocReg();
2923        switch (Reg) {
2924        default: break;
2925        case X86::EAX: case X86::EDX: case X86::ECX:
2926          if (++NumInRegs == 3)
2927            return false;
2928          break;
2929        }
2930      }
2931    }
2932  }
2933
2934  return true;
2935}
2936
2937FastISel *
2938X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2939                                  const TargetLibraryInfo *libInfo) const {
2940  return X86::createFastISel(funcInfo, libInfo);
2941}
2942
2943
2944//===----------------------------------------------------------------------===//
2945//                           Other Lowering Hooks
2946//===----------------------------------------------------------------------===//
2947
2948static bool MayFoldLoad(SDValue Op) {
2949  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2950}
2951
2952static bool MayFoldIntoStore(SDValue Op) {
2953  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2954}
2955
2956static bool isTargetShuffle(unsigned Opcode) {
2957  switch(Opcode) {
2958  default: return false;
2959  case X86ISD::PSHUFD:
2960  case X86ISD::PSHUFHW:
2961  case X86ISD::PSHUFLW:
2962  case X86ISD::SHUFP:
2963  case X86ISD::PALIGN:
2964  case X86ISD::MOVLHPS:
2965  case X86ISD::MOVLHPD:
2966  case X86ISD::MOVHLPS:
2967  case X86ISD::MOVLPS:
2968  case X86ISD::MOVLPD:
2969  case X86ISD::MOVSHDUP:
2970  case X86ISD::MOVSLDUP:
2971  case X86ISD::MOVDDUP:
2972  case X86ISD::MOVSS:
2973  case X86ISD::MOVSD:
2974  case X86ISD::UNPCKL:
2975  case X86ISD::UNPCKH:
2976  case X86ISD::VPERMILP:
2977  case X86ISD::VPERM2X128:
2978  case X86ISD::VPERMI:
2979    return true;
2980  }
2981}
2982
2983static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2984                                    SDValue V1, SelectionDAG &DAG) {
2985  switch(Opc) {
2986  default: llvm_unreachable("Unknown x86 shuffle node");
2987  case X86ISD::MOVSHDUP:
2988  case X86ISD::MOVSLDUP:
2989  case X86ISD::MOVDDUP:
2990    return DAG.getNode(Opc, dl, VT, V1);
2991  }
2992}
2993
2994static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2995                                    SDValue V1, unsigned TargetMask,
2996                                    SelectionDAG &DAG) {
2997  switch(Opc) {
2998  default: llvm_unreachable("Unknown x86 shuffle node");
2999  case X86ISD::PSHUFD:
3000  case X86ISD::PSHUFHW:
3001  case X86ISD::PSHUFLW:
3002  case X86ISD::VPERMILP:
3003  case X86ISD::VPERMI:
3004    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3005  }
3006}
3007
3008static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3009                                    SDValue V1, SDValue V2, unsigned TargetMask,
3010                                    SelectionDAG &DAG) {
3011  switch(Opc) {
3012  default: llvm_unreachable("Unknown x86 shuffle node");
3013  case X86ISD::PALIGN:
3014  case X86ISD::SHUFP:
3015  case X86ISD::VPERM2X128:
3016    return DAG.getNode(Opc, dl, VT, V1, V2,
3017                       DAG.getConstant(TargetMask, MVT::i8));
3018  }
3019}
3020
3021static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3022                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3023  switch(Opc) {
3024  default: llvm_unreachable("Unknown x86 shuffle node");
3025  case X86ISD::MOVLHPS:
3026  case X86ISD::MOVLHPD:
3027  case X86ISD::MOVHLPS:
3028  case X86ISD::MOVLPS:
3029  case X86ISD::MOVLPD:
3030  case X86ISD::MOVSS:
3031  case X86ISD::MOVSD:
3032  case X86ISD::UNPCKL:
3033  case X86ISD::UNPCKH:
3034    return DAG.getNode(Opc, dl, VT, V1, V2);
3035  }
3036}
3037
3038SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3039  MachineFunction &MF = DAG.getMachineFunction();
3040  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3041  int ReturnAddrIndex = FuncInfo->getRAIndex();
3042
3043  if (ReturnAddrIndex == 0) {
3044    // Set up a frame object for the return address.
3045    unsigned SlotSize = RegInfo->getSlotSize();
3046    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3047                                                           false);
3048    FuncInfo->setRAIndex(ReturnAddrIndex);
3049  }
3050
3051  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3052}
3053
3054
3055bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3056                                       bool hasSymbolicDisplacement) {
3057  // Offset should fit into 32 bit immediate field.
3058  if (!isInt<32>(Offset))
3059    return false;
3060
3061  // If we don't have a symbolic displacement - we don't have any extra
3062  // restrictions.
3063  if (!hasSymbolicDisplacement)
3064    return true;
3065
3066  // FIXME: Some tweaks might be needed for medium code model.
3067  if (M != CodeModel::Small && M != CodeModel::Kernel)
3068    return false;
3069
3070  // For small code model we assume that latest object is 16MB before end of 31
3071  // bits boundary. We may also accept pretty large negative constants knowing
3072  // that all objects are in the positive half of address space.
3073  if (M == CodeModel::Small && Offset < 16*1024*1024)
3074    return true;
3075
3076  // For kernel code model we know that all object resist in the negative half
3077  // of 32bits address space. We may not accept negative offsets, since they may
3078  // be just off and we may accept pretty large positive ones.
3079  if (M == CodeModel::Kernel && Offset > 0)
3080    return true;
3081
3082  return false;
3083}
3084
3085/// isCalleePop - Determines whether the callee is required to pop its
3086/// own arguments. Callee pop is necessary to support tail calls.
3087bool X86::isCalleePop(CallingConv::ID CallingConv,
3088                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3089  if (IsVarArg)
3090    return false;
3091
3092  switch (CallingConv) {
3093  default:
3094    return false;
3095  case CallingConv::X86_StdCall:
3096    return !is64Bit;
3097  case CallingConv::X86_FastCall:
3098    return !is64Bit;
3099  case CallingConv::X86_ThisCall:
3100    return !is64Bit;
3101  case CallingConv::Fast:
3102    return TailCallOpt;
3103  case CallingConv::GHC:
3104    return TailCallOpt;
3105  }
3106}
3107
3108/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3109/// specific condition code, returning the condition code and the LHS/RHS of the
3110/// comparison to make.
3111static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3112                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3113  if (!isFP) {
3114    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3115      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3116        // X > -1   -> X == 0, jump !sign.
3117        RHS = DAG.getConstant(0, RHS.getValueType());
3118        return X86::COND_NS;
3119      }
3120      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3121        // X < 0   -> X == 0, jump on sign.
3122        return X86::COND_S;
3123      }
3124      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3125        // X < 1   -> X <= 0
3126        RHS = DAG.getConstant(0, RHS.getValueType());
3127        return X86::COND_LE;
3128      }
3129    }
3130
3131    switch (SetCCOpcode) {
3132    default: llvm_unreachable("Invalid integer condition!");
3133    case ISD::SETEQ:  return X86::COND_E;
3134    case ISD::SETGT:  return X86::COND_G;
3135    case ISD::SETGE:  return X86::COND_GE;
3136    case ISD::SETLT:  return X86::COND_L;
3137    case ISD::SETLE:  return X86::COND_LE;
3138    case ISD::SETNE:  return X86::COND_NE;
3139    case ISD::SETULT: return X86::COND_B;
3140    case ISD::SETUGT: return X86::COND_A;
3141    case ISD::SETULE: return X86::COND_BE;
3142    case ISD::SETUGE: return X86::COND_AE;
3143    }
3144  }
3145
3146  // First determine if it is required or is profitable to flip the operands.
3147
3148  // If LHS is a foldable load, but RHS is not, flip the condition.
3149  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3150      !ISD::isNON_EXTLoad(RHS.getNode())) {
3151    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3152    std::swap(LHS, RHS);
3153  }
3154
3155  switch (SetCCOpcode) {
3156  default: break;
3157  case ISD::SETOLT:
3158  case ISD::SETOLE:
3159  case ISD::SETUGT:
3160  case ISD::SETUGE:
3161    std::swap(LHS, RHS);
3162    break;
3163  }
3164
3165  // On a floating point condition, the flags are set as follows:
3166  // ZF  PF  CF   op
3167  //  0 | 0 | 0 | X > Y
3168  //  0 | 0 | 1 | X < Y
3169  //  1 | 0 | 0 | X == Y
3170  //  1 | 1 | 1 | unordered
3171  switch (SetCCOpcode) {
3172  default: llvm_unreachable("Condcode should be pre-legalized away");
3173  case ISD::SETUEQ:
3174  case ISD::SETEQ:   return X86::COND_E;
3175  case ISD::SETOLT:              // flipped
3176  case ISD::SETOGT:
3177  case ISD::SETGT:   return X86::COND_A;
3178  case ISD::SETOLE:              // flipped
3179  case ISD::SETOGE:
3180  case ISD::SETGE:   return X86::COND_AE;
3181  case ISD::SETUGT:              // flipped
3182  case ISD::SETULT:
3183  case ISD::SETLT:   return X86::COND_B;
3184  case ISD::SETUGE:              // flipped
3185  case ISD::SETULE:
3186  case ISD::SETLE:   return X86::COND_BE;
3187  case ISD::SETONE:
3188  case ISD::SETNE:   return X86::COND_NE;
3189  case ISD::SETUO:   return X86::COND_P;
3190  case ISD::SETO:    return X86::COND_NP;
3191  case ISD::SETOEQ:
3192  case ISD::SETUNE:  return X86::COND_INVALID;
3193  }
3194}
3195
3196/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3197/// code. Current x86 isa includes the following FP cmov instructions:
3198/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3199static bool hasFPCMov(unsigned X86CC) {
3200  switch (X86CC) {
3201  default:
3202    return false;
3203  case X86::COND_B:
3204  case X86::COND_BE:
3205  case X86::COND_E:
3206  case X86::COND_P:
3207  case X86::COND_A:
3208  case X86::COND_AE:
3209  case X86::COND_NE:
3210  case X86::COND_NP:
3211    return true;
3212  }
3213}
3214
3215/// isFPImmLegal - Returns true if the target can instruction select the
3216/// specified FP immediate natively. If false, the legalizer will
3217/// materialize the FP immediate as a load from a constant pool.
3218bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3219  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3220    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3221      return true;
3222  }
3223  return false;
3224}
3225
3226/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3227/// the specified range (L, H].
3228static bool isUndefOrInRange(int Val, int Low, int Hi) {
3229  return (Val < 0) || (Val >= Low && Val < Hi);
3230}
3231
3232/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3233/// specified value.
3234static bool isUndefOrEqual(int Val, int CmpVal) {
3235  if (Val < 0 || Val == CmpVal)
3236    return true;
3237  return false;
3238}
3239
3240/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3241/// from position Pos and ending in Pos+Size, falls within the specified
3242/// sequential range (L, L+Pos]. or is undef.
3243static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3244                                       unsigned Pos, unsigned Size, int Low) {
3245  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3246    if (!isUndefOrEqual(Mask[i], Low))
3247      return false;
3248  return true;
3249}
3250
3251/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3252/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3253/// the second operand.
3254static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3255  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3256    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3257  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3258    return (Mask[0] < 2 && Mask[1] < 2);
3259  return false;
3260}
3261
3262/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3263/// is suitable for input to PSHUFHW.
3264static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3265  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3266    return false;
3267
3268  // Lower quadword copied in order or undef.
3269  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3270    return false;
3271
3272  // Upper quadword shuffled.
3273  for (unsigned i = 4; i != 8; ++i)
3274    if (!isUndefOrInRange(Mask[i], 4, 8))
3275      return false;
3276
3277  if (VT == MVT::v16i16) {
3278    // Lower quadword copied in order or undef.
3279    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3280      return false;
3281
3282    // Upper quadword shuffled.
3283    for (unsigned i = 12; i != 16; ++i)
3284      if (!isUndefOrInRange(Mask[i], 12, 16))
3285        return false;
3286  }
3287
3288  return true;
3289}
3290
3291/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3292/// is suitable for input to PSHUFLW.
3293static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3294  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3295    return false;
3296
3297  // Upper quadword copied in order.
3298  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3299    return false;
3300
3301  // Lower quadword shuffled.
3302  for (unsigned i = 0; i != 4; ++i)
3303    if (!isUndefOrInRange(Mask[i], 0, 4))
3304      return false;
3305
3306  if (VT == MVT::v16i16) {
3307    // Upper quadword copied in order.
3308    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3309      return false;
3310
3311    // Lower quadword shuffled.
3312    for (unsigned i = 8; i != 12; ++i)
3313      if (!isUndefOrInRange(Mask[i], 8, 12))
3314        return false;
3315  }
3316
3317  return true;
3318}
3319
3320/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3321/// is suitable for input to PALIGNR.
3322static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3323                          const X86Subtarget *Subtarget) {
3324  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3325      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3326    return false;
3327
3328  unsigned NumElts = VT.getVectorNumElements();
3329  unsigned NumLanes = VT.getSizeInBits()/128;
3330  unsigned NumLaneElts = NumElts/NumLanes;
3331
3332  // Do not handle 64-bit element shuffles with palignr.
3333  if (NumLaneElts == 2)
3334    return false;
3335
3336  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3337    unsigned i;
3338    for (i = 0; i != NumLaneElts; ++i) {
3339      if (Mask[i+l] >= 0)
3340        break;
3341    }
3342
3343    // Lane is all undef, go to next lane
3344    if (i == NumLaneElts)
3345      continue;
3346
3347    int Start = Mask[i+l];
3348
3349    // Make sure its in this lane in one of the sources
3350    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3351        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3352      return false;
3353
3354    // If not lane 0, then we must match lane 0
3355    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3356      return false;
3357
3358    // Correct second source to be contiguous with first source
3359    if (Start >= (int)NumElts)
3360      Start -= NumElts - NumLaneElts;
3361
3362    // Make sure we're shifting in the right direction.
3363    if (Start <= (int)(i+l))
3364      return false;
3365
3366    Start -= i;
3367
3368    // Check the rest of the elements to see if they are consecutive.
3369    for (++i; i != NumLaneElts; ++i) {
3370      int Idx = Mask[i+l];
3371
3372      // Make sure its in this lane
3373      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3374          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3375        return false;
3376
3377      // If not lane 0, then we must match lane 0
3378      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3379        return false;
3380
3381      if (Idx >= (int)NumElts)
3382        Idx -= NumElts - NumLaneElts;
3383
3384      if (!isUndefOrEqual(Idx, Start+i))
3385        return false;
3386
3387    }
3388  }
3389
3390  return true;
3391}
3392
3393/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3394/// the two vector operands have swapped position.
3395static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3396                                     unsigned NumElems) {
3397  for (unsigned i = 0; i != NumElems; ++i) {
3398    int idx = Mask[i];
3399    if (idx < 0)
3400      continue;
3401    else if (idx < (int)NumElems)
3402      Mask[i] = idx + NumElems;
3403    else
3404      Mask[i] = idx - NumElems;
3405  }
3406}
3407
3408/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3409/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3410/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3411/// reverse of what x86 shuffles want.
3412static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3413                        bool Commuted = false) {
3414  if (!HasAVX && VT.getSizeInBits() == 256)
3415    return false;
3416
3417  unsigned NumElems = VT.getVectorNumElements();
3418  unsigned NumLanes = VT.getSizeInBits()/128;
3419  unsigned NumLaneElems = NumElems/NumLanes;
3420
3421  if (NumLaneElems != 2 && NumLaneElems != 4)
3422    return false;
3423
3424  // VSHUFPSY divides the resulting vector into 4 chunks.
3425  // The sources are also splitted into 4 chunks, and each destination
3426  // chunk must come from a different source chunk.
3427  //
3428  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3429  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3430  //
3431  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3432  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3433  //
3434  // VSHUFPDY divides the resulting vector into 4 chunks.
3435  // The sources are also splitted into 4 chunks, and each destination
3436  // chunk must come from a different source chunk.
3437  //
3438  //  SRC1 =>      X3       X2       X1       X0
3439  //  SRC2 =>      Y3       Y2       Y1       Y0
3440  //
3441  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3442  //
3443  unsigned HalfLaneElems = NumLaneElems/2;
3444  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3445    for (unsigned i = 0; i != NumLaneElems; ++i) {
3446      int Idx = Mask[i+l];
3447      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3448      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3449        return false;
3450      // For VSHUFPSY, the mask of the second half must be the same as the
3451      // first but with the appropriate offsets. This works in the same way as
3452      // VPERMILPS works with masks.
3453      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3454        continue;
3455      if (!isUndefOrEqual(Idx, Mask[i]+l))
3456        return false;
3457    }
3458  }
3459
3460  return true;
3461}
3462
3463/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3464/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3465static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3466  if (!VT.is128BitVector())
3467    return false;
3468
3469  unsigned NumElems = VT.getVectorNumElements();
3470
3471  if (NumElems != 4)
3472    return false;
3473
3474  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3475  return isUndefOrEqual(Mask[0], 6) &&
3476         isUndefOrEqual(Mask[1], 7) &&
3477         isUndefOrEqual(Mask[2], 2) &&
3478         isUndefOrEqual(Mask[3], 3);
3479}
3480
3481/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3482/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3483/// <2, 3, 2, 3>
3484static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3485  if (!VT.is128BitVector())
3486    return false;
3487
3488  unsigned NumElems = VT.getVectorNumElements();
3489
3490  if (NumElems != 4)
3491    return false;
3492
3493  return isUndefOrEqual(Mask[0], 2) &&
3494         isUndefOrEqual(Mask[1], 3) &&
3495         isUndefOrEqual(Mask[2], 2) &&
3496         isUndefOrEqual(Mask[3], 3);
3497}
3498
3499/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3500/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3501static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3502  if (!VT.is128BitVector())
3503    return false;
3504
3505  unsigned NumElems = VT.getVectorNumElements();
3506
3507  if (NumElems != 2 && NumElems != 4)
3508    return false;
3509
3510  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3511    if (!isUndefOrEqual(Mask[i], i + NumElems))
3512      return false;
3513
3514  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3515    if (!isUndefOrEqual(Mask[i], i))
3516      return false;
3517
3518  return true;
3519}
3520
3521/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3522/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3523static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3524  if (!VT.is128BitVector())
3525    return false;
3526
3527  unsigned NumElems = VT.getVectorNumElements();
3528
3529  if (NumElems != 2 && NumElems != 4)
3530    return false;
3531
3532  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3533    if (!isUndefOrEqual(Mask[i], i))
3534      return false;
3535
3536  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3537    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3538      return false;
3539
3540  return true;
3541}
3542
3543//
3544// Some special combinations that can be optimized.
3545//
3546static
3547SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3548                               SelectionDAG &DAG) {
3549  EVT VT = SVOp->getValueType(0);
3550  DebugLoc dl = SVOp->getDebugLoc();
3551
3552  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3553    return SDValue();
3554
3555  ArrayRef<int> Mask = SVOp->getMask();
3556
3557  // These are the special masks that may be optimized.
3558  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3559  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3560  bool MatchEvenMask = true;
3561  bool MatchOddMask  = true;
3562  for (int i=0; i<8; ++i) {
3563    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3564      MatchEvenMask = false;
3565    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3566      MatchOddMask = false;
3567  }
3568
3569  if (!MatchEvenMask && !MatchOddMask)
3570    return SDValue();
3571
3572  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3573
3574  SDValue Op0 = SVOp->getOperand(0);
3575  SDValue Op1 = SVOp->getOperand(1);
3576
3577  if (MatchEvenMask) {
3578    // Shift the second operand right to 32 bits.
3579    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3580    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3581  } else {
3582    // Shift the first operand left to 32 bits.
3583    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3584    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3585  }
3586  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3587  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3588}
3589
3590/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3591/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3592static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3593                         bool HasAVX2, bool V2IsSplat = false) {
3594  unsigned NumElts = VT.getVectorNumElements();
3595
3596  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3597         "Unsupported vector type for unpckh");
3598
3599  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3600      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3601    return false;
3602
3603  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3604  // independently on 128-bit lanes.
3605  unsigned NumLanes = VT.getSizeInBits()/128;
3606  unsigned NumLaneElts = NumElts/NumLanes;
3607
3608  for (unsigned l = 0; l != NumLanes; ++l) {
3609    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3610         i != (l+1)*NumLaneElts;
3611         i += 2, ++j) {
3612      int BitI  = Mask[i];
3613      int BitI1 = Mask[i+1];
3614      if (!isUndefOrEqual(BitI, j))
3615        return false;
3616      if (V2IsSplat) {
3617        if (!isUndefOrEqual(BitI1, NumElts))
3618          return false;
3619      } else {
3620        if (!isUndefOrEqual(BitI1, j + NumElts))
3621          return false;
3622      }
3623    }
3624  }
3625
3626  return true;
3627}
3628
3629/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3630/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3631static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3632                         bool HasAVX2, bool V2IsSplat = false) {
3633  unsigned NumElts = VT.getVectorNumElements();
3634
3635  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3636         "Unsupported vector type for unpckh");
3637
3638  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3639      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3640    return false;
3641
3642  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3643  // independently on 128-bit lanes.
3644  unsigned NumLanes = VT.getSizeInBits()/128;
3645  unsigned NumLaneElts = NumElts/NumLanes;
3646
3647  for (unsigned l = 0; l != NumLanes; ++l) {
3648    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3649         i != (l+1)*NumLaneElts; i += 2, ++j) {
3650      int BitI  = Mask[i];
3651      int BitI1 = Mask[i+1];
3652      if (!isUndefOrEqual(BitI, j))
3653        return false;
3654      if (V2IsSplat) {
3655        if (isUndefOrEqual(BitI1, NumElts))
3656          return false;
3657      } else {
3658        if (!isUndefOrEqual(BitI1, j+NumElts))
3659          return false;
3660      }
3661    }
3662  }
3663  return true;
3664}
3665
3666/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3667/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3668/// <0, 0, 1, 1>
3669static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3670                                  bool HasAVX2) {
3671  unsigned NumElts = VT.getVectorNumElements();
3672
3673  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3674         "Unsupported vector type for unpckh");
3675
3676  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3677      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3678    return false;
3679
3680  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3681  // FIXME: Need a better way to get rid of this, there's no latency difference
3682  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3683  // the former later. We should also remove the "_undef" special mask.
3684  if (NumElts == 4 && VT.getSizeInBits() == 256)
3685    return false;
3686
3687  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3688  // independently on 128-bit lanes.
3689  unsigned NumLanes = VT.getSizeInBits()/128;
3690  unsigned NumLaneElts = NumElts/NumLanes;
3691
3692  for (unsigned l = 0; l != NumLanes; ++l) {
3693    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3694         i != (l+1)*NumLaneElts;
3695         i += 2, ++j) {
3696      int BitI  = Mask[i];
3697      int BitI1 = Mask[i+1];
3698
3699      if (!isUndefOrEqual(BitI, j))
3700        return false;
3701      if (!isUndefOrEqual(BitI1, j))
3702        return false;
3703    }
3704  }
3705
3706  return true;
3707}
3708
3709/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3710/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3711/// <2, 2, 3, 3>
3712static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3713  unsigned NumElts = VT.getVectorNumElements();
3714
3715  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3716         "Unsupported vector type for unpckh");
3717
3718  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3719      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3720    return false;
3721
3722  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3723  // independently on 128-bit lanes.
3724  unsigned NumLanes = VT.getSizeInBits()/128;
3725  unsigned NumLaneElts = NumElts/NumLanes;
3726
3727  for (unsigned l = 0; l != NumLanes; ++l) {
3728    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3729         i != (l+1)*NumLaneElts; i += 2, ++j) {
3730      int BitI  = Mask[i];
3731      int BitI1 = Mask[i+1];
3732      if (!isUndefOrEqual(BitI, j))
3733        return false;
3734      if (!isUndefOrEqual(BitI1, j))
3735        return false;
3736    }
3737  }
3738  return true;
3739}
3740
3741/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3742/// specifies a shuffle of elements that is suitable for input to MOVSS,
3743/// MOVSD, and MOVD, i.e. setting the lowest element.
3744static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3745  if (VT.getVectorElementType().getSizeInBits() < 32)
3746    return false;
3747  if (!VT.is128BitVector())
3748    return false;
3749
3750  unsigned NumElts = VT.getVectorNumElements();
3751
3752  if (!isUndefOrEqual(Mask[0], NumElts))
3753    return false;
3754
3755  for (unsigned i = 1; i != NumElts; ++i)
3756    if (!isUndefOrEqual(Mask[i], i))
3757      return false;
3758
3759  return true;
3760}
3761
3762/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3763/// as permutations between 128-bit chunks or halves. As an example: this
3764/// shuffle bellow:
3765///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3766/// The first half comes from the second half of V1 and the second half from the
3767/// the second half of V2.
3768static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3769  if (!HasAVX || !VT.is256BitVector())
3770    return false;
3771
3772  // The shuffle result is divided into half A and half B. In total the two
3773  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3774  // B must come from C, D, E or F.
3775  unsigned HalfSize = VT.getVectorNumElements()/2;
3776  bool MatchA = false, MatchB = false;
3777
3778  // Check if A comes from one of C, D, E, F.
3779  for (unsigned Half = 0; Half != 4; ++Half) {
3780    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3781      MatchA = true;
3782      break;
3783    }
3784  }
3785
3786  // Check if B comes from one of C, D, E, F.
3787  for (unsigned Half = 0; Half != 4; ++Half) {
3788    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3789      MatchB = true;
3790      break;
3791    }
3792  }
3793
3794  return MatchA && MatchB;
3795}
3796
3797/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3798/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3799static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3800  EVT VT = SVOp->getValueType(0);
3801
3802  unsigned HalfSize = VT.getVectorNumElements()/2;
3803
3804  unsigned FstHalf = 0, SndHalf = 0;
3805  for (unsigned i = 0; i < HalfSize; ++i) {
3806    if (SVOp->getMaskElt(i) > 0) {
3807      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3808      break;
3809    }
3810  }
3811  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3812    if (SVOp->getMaskElt(i) > 0) {
3813      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3814      break;
3815    }
3816  }
3817
3818  return (FstHalf | (SndHalf << 4));
3819}
3820
3821/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3822/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3823/// Note that VPERMIL mask matching is different depending whether theunderlying
3824/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3825/// to the same elements of the low, but to the higher half of the source.
3826/// In VPERMILPD the two lanes could be shuffled independently of each other
3827/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3828static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3829  if (!HasAVX)
3830    return false;
3831
3832  unsigned NumElts = VT.getVectorNumElements();
3833  // Only match 256-bit with 32/64-bit types
3834  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3835    return false;
3836
3837  unsigned NumLanes = VT.getSizeInBits()/128;
3838  unsigned LaneSize = NumElts/NumLanes;
3839  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3840    for (unsigned i = 0; i != LaneSize; ++i) {
3841      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3842        return false;
3843      if (NumElts != 8 || l == 0)
3844        continue;
3845      // VPERMILPS handling
3846      if (Mask[i] < 0)
3847        continue;
3848      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3849        return false;
3850    }
3851  }
3852
3853  return true;
3854}
3855
3856/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3857/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3858/// element of vector 2 and the other elements to come from vector 1 in order.
3859static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3860                               bool V2IsSplat = false, bool V2IsUndef = false) {
3861  if (!VT.is128BitVector())
3862    return false;
3863
3864  unsigned NumOps = VT.getVectorNumElements();
3865  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3866    return false;
3867
3868  if (!isUndefOrEqual(Mask[0], 0))
3869    return false;
3870
3871  for (unsigned i = 1; i != NumOps; ++i)
3872    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3873          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3874          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3875      return false;
3876
3877  return true;
3878}
3879
3880/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3881/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3882/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3883static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3884                           const X86Subtarget *Subtarget) {
3885  if (!Subtarget->hasSSE3())
3886    return false;
3887
3888  unsigned NumElems = VT.getVectorNumElements();
3889
3890  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3891      (VT.getSizeInBits() == 256 && NumElems != 8))
3892    return false;
3893
3894  // "i+1" is the value the indexed mask element must have
3895  for (unsigned i = 0; i != NumElems; i += 2)
3896    if (!isUndefOrEqual(Mask[i], i+1) ||
3897        !isUndefOrEqual(Mask[i+1], i+1))
3898      return false;
3899
3900  return true;
3901}
3902
3903/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3904/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3905/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3906static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3907                           const X86Subtarget *Subtarget) {
3908  if (!Subtarget->hasSSE3())
3909    return false;
3910
3911  unsigned NumElems = VT.getVectorNumElements();
3912
3913  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3914      (VT.getSizeInBits() == 256 && NumElems != 8))
3915    return false;
3916
3917  // "i" is the value the indexed mask element must have
3918  for (unsigned i = 0; i != NumElems; i += 2)
3919    if (!isUndefOrEqual(Mask[i], i) ||
3920        !isUndefOrEqual(Mask[i+1], i))
3921      return false;
3922
3923  return true;
3924}
3925
3926/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3927/// specifies a shuffle of elements that is suitable for input to 256-bit
3928/// version of MOVDDUP.
3929static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3930  if (!HasAVX || !VT.is256BitVector())
3931    return false;
3932
3933  unsigned NumElts = VT.getVectorNumElements();
3934  if (NumElts != 4)
3935    return false;
3936
3937  for (unsigned i = 0; i != NumElts/2; ++i)
3938    if (!isUndefOrEqual(Mask[i], 0))
3939      return false;
3940  for (unsigned i = NumElts/2; i != NumElts; ++i)
3941    if (!isUndefOrEqual(Mask[i], NumElts/2))
3942      return false;
3943  return true;
3944}
3945
3946/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3947/// specifies a shuffle of elements that is suitable for input to 128-bit
3948/// version of MOVDDUP.
3949static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3950  if (!VT.is128BitVector())
3951    return false;
3952
3953  unsigned e = VT.getVectorNumElements() / 2;
3954  for (unsigned i = 0; i != e; ++i)
3955    if (!isUndefOrEqual(Mask[i], i))
3956      return false;
3957  for (unsigned i = 0; i != e; ++i)
3958    if (!isUndefOrEqual(Mask[e+i], i))
3959      return false;
3960  return true;
3961}
3962
3963/// isVEXTRACTF128Index - Return true if the specified
3964/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3965/// suitable for input to VEXTRACTF128.
3966bool X86::isVEXTRACTF128Index(SDNode *N) {
3967  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3968    return false;
3969
3970  // The index should be aligned on a 128-bit boundary.
3971  uint64_t Index =
3972    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3973
3974  unsigned VL = N->getValueType(0).getVectorNumElements();
3975  unsigned VBits = N->getValueType(0).getSizeInBits();
3976  unsigned ElSize = VBits / VL;
3977  bool Result = (Index * ElSize) % 128 == 0;
3978
3979  return Result;
3980}
3981
3982/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3983/// operand specifies a subvector insert that is suitable for input to
3984/// VINSERTF128.
3985bool X86::isVINSERTF128Index(SDNode *N) {
3986  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3987    return false;
3988
3989  // The index should be aligned on a 128-bit boundary.
3990  uint64_t Index =
3991    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3992
3993  unsigned VL = N->getValueType(0).getVectorNumElements();
3994  unsigned VBits = N->getValueType(0).getSizeInBits();
3995  unsigned ElSize = VBits / VL;
3996  bool Result = (Index * ElSize) % 128 == 0;
3997
3998  return Result;
3999}
4000
4001/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4002/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4003/// Handles 128-bit and 256-bit.
4004static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4005  EVT VT = N->getValueType(0);
4006
4007  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4008         "Unsupported vector type for PSHUF/SHUFP");
4009
4010  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4011  // independently on 128-bit lanes.
4012  unsigned NumElts = VT.getVectorNumElements();
4013  unsigned NumLanes = VT.getSizeInBits()/128;
4014  unsigned NumLaneElts = NumElts/NumLanes;
4015
4016  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4017         "Only supports 2 or 4 elements per lane");
4018
4019  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4020  unsigned Mask = 0;
4021  for (unsigned i = 0; i != NumElts; ++i) {
4022    int Elt = N->getMaskElt(i);
4023    if (Elt < 0) continue;
4024    Elt &= NumLaneElts - 1;
4025    unsigned ShAmt = (i << Shift) % 8;
4026    Mask |= Elt << ShAmt;
4027  }
4028
4029  return Mask;
4030}
4031
4032/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4033/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4034static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4035  EVT VT = N->getValueType(0);
4036
4037  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4038         "Unsupported vector type for PSHUFHW");
4039
4040  unsigned NumElts = VT.getVectorNumElements();
4041
4042  unsigned Mask = 0;
4043  for (unsigned l = 0; l != NumElts; l += 8) {
4044    // 8 nodes per lane, but we only care about the last 4.
4045    for (unsigned i = 0; i < 4; ++i) {
4046      int Elt = N->getMaskElt(l+i+4);
4047      if (Elt < 0) continue;
4048      Elt &= 0x3; // only 2-bits.
4049      Mask |= Elt << (i * 2);
4050    }
4051  }
4052
4053  return Mask;
4054}
4055
4056/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4057/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4058static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4059  EVT VT = N->getValueType(0);
4060
4061  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4062         "Unsupported vector type for PSHUFHW");
4063
4064  unsigned NumElts = VT.getVectorNumElements();
4065
4066  unsigned Mask = 0;
4067  for (unsigned l = 0; l != NumElts; l += 8) {
4068    // 8 nodes per lane, but we only care about the first 4.
4069    for (unsigned i = 0; i < 4; ++i) {
4070      int Elt = N->getMaskElt(l+i);
4071      if (Elt < 0) continue;
4072      Elt &= 0x3; // only 2-bits
4073      Mask |= Elt << (i * 2);
4074    }
4075  }
4076
4077  return Mask;
4078}
4079
4080/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4081/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4082static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4083  EVT VT = SVOp->getValueType(0);
4084  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4085
4086  unsigned NumElts = VT.getVectorNumElements();
4087  unsigned NumLanes = VT.getSizeInBits()/128;
4088  unsigned NumLaneElts = NumElts/NumLanes;
4089
4090  int Val = 0;
4091  unsigned i;
4092  for (i = 0; i != NumElts; ++i) {
4093    Val = SVOp->getMaskElt(i);
4094    if (Val >= 0)
4095      break;
4096  }
4097  if (Val >= (int)NumElts)
4098    Val -= NumElts - NumLaneElts;
4099
4100  assert(Val - i > 0 && "PALIGNR imm should be positive");
4101  return (Val - i) * EltSize;
4102}
4103
4104/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4105/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4106/// instructions.
4107unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4108  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4109    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4110
4111  uint64_t Index =
4112    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4113
4114  EVT VecVT = N->getOperand(0).getValueType();
4115  EVT ElVT = VecVT.getVectorElementType();
4116
4117  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4118  return Index / NumElemsPerChunk;
4119}
4120
4121/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4122/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4123/// instructions.
4124unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4125  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4126    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4127
4128  uint64_t Index =
4129    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4130
4131  EVT VecVT = N->getValueType(0);
4132  EVT ElVT = VecVT.getVectorElementType();
4133
4134  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4135  return Index / NumElemsPerChunk;
4136}
4137
4138/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4139/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4140/// Handles 256-bit.
4141static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4142  EVT VT = N->getValueType(0);
4143
4144  unsigned NumElts = VT.getVectorNumElements();
4145
4146  assert((VT.is256BitVector() && NumElts == 4) &&
4147         "Unsupported vector type for VPERMQ/VPERMPD");
4148
4149  unsigned Mask = 0;
4150  for (unsigned i = 0; i != NumElts; ++i) {
4151    int Elt = N->getMaskElt(i);
4152    if (Elt < 0)
4153      continue;
4154    Mask |= Elt << (i*2);
4155  }
4156
4157  return Mask;
4158}
4159/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4160/// constant +0.0.
4161bool X86::isZeroNode(SDValue Elt) {
4162  return ((isa<ConstantSDNode>(Elt) &&
4163           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4164          (isa<ConstantFPSDNode>(Elt) &&
4165           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4166}
4167
4168/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4169/// their permute mask.
4170static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4171                                    SelectionDAG &DAG) {
4172  EVT VT = SVOp->getValueType(0);
4173  unsigned NumElems = VT.getVectorNumElements();
4174  SmallVector<int, 8> MaskVec;
4175
4176  for (unsigned i = 0; i != NumElems; ++i) {
4177    int Idx = SVOp->getMaskElt(i);
4178    if (Idx >= 0) {
4179      if (Idx < (int)NumElems)
4180        Idx += NumElems;
4181      else
4182        Idx -= NumElems;
4183    }
4184    MaskVec.push_back(Idx);
4185  }
4186  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4187                              SVOp->getOperand(0), &MaskVec[0]);
4188}
4189
4190/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4191/// match movhlps. The lower half elements should come from upper half of
4192/// V1 (and in order), and the upper half elements should come from the upper
4193/// half of V2 (and in order).
4194static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4195  if (!VT.is128BitVector())
4196    return false;
4197  if (VT.getVectorNumElements() != 4)
4198    return false;
4199  for (unsigned i = 0, e = 2; i != e; ++i)
4200    if (!isUndefOrEqual(Mask[i], i+2))
4201      return false;
4202  for (unsigned i = 2; i != 4; ++i)
4203    if (!isUndefOrEqual(Mask[i], i+4))
4204      return false;
4205  return true;
4206}
4207
4208/// isScalarLoadToVector - Returns true if the node is a scalar load that
4209/// is promoted to a vector. It also returns the LoadSDNode by reference if
4210/// required.
4211static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4212  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4213    return false;
4214  N = N->getOperand(0).getNode();
4215  if (!ISD::isNON_EXTLoad(N))
4216    return false;
4217  if (LD)
4218    *LD = cast<LoadSDNode>(N);
4219  return true;
4220}
4221
4222// Test whether the given value is a vector value which will be legalized
4223// into a load.
4224static bool WillBeConstantPoolLoad(SDNode *N) {
4225  if (N->getOpcode() != ISD::BUILD_VECTOR)
4226    return false;
4227
4228  // Check for any non-constant elements.
4229  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4230    switch (N->getOperand(i).getNode()->getOpcode()) {
4231    case ISD::UNDEF:
4232    case ISD::ConstantFP:
4233    case ISD::Constant:
4234      break;
4235    default:
4236      return false;
4237    }
4238
4239  // Vectors of all-zeros and all-ones are materialized with special
4240  // instructions rather than being loaded.
4241  return !ISD::isBuildVectorAllZeros(N) &&
4242         !ISD::isBuildVectorAllOnes(N);
4243}
4244
4245/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4246/// match movlp{s|d}. The lower half elements should come from lower half of
4247/// V1 (and in order), and the upper half elements should come from the upper
4248/// half of V2 (and in order). And since V1 will become the source of the
4249/// MOVLP, it must be either a vector load or a scalar load to vector.
4250static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4251                               ArrayRef<int> Mask, EVT VT) {
4252  if (!VT.is128BitVector())
4253    return false;
4254
4255  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4256    return false;
4257  // Is V2 is a vector load, don't do this transformation. We will try to use
4258  // load folding shufps op.
4259  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4260    return false;
4261
4262  unsigned NumElems = VT.getVectorNumElements();
4263
4264  if (NumElems != 2 && NumElems != 4)
4265    return false;
4266  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4267    if (!isUndefOrEqual(Mask[i], i))
4268      return false;
4269  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4270    if (!isUndefOrEqual(Mask[i], i+NumElems))
4271      return false;
4272  return true;
4273}
4274
4275/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4276/// all the same.
4277static bool isSplatVector(SDNode *N) {
4278  if (N->getOpcode() != ISD::BUILD_VECTOR)
4279    return false;
4280
4281  SDValue SplatValue = N->getOperand(0);
4282  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4283    if (N->getOperand(i) != SplatValue)
4284      return false;
4285  return true;
4286}
4287
4288/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4289/// to an zero vector.
4290/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4291static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4292  SDValue V1 = N->getOperand(0);
4293  SDValue V2 = N->getOperand(1);
4294  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4295  for (unsigned i = 0; i != NumElems; ++i) {
4296    int Idx = N->getMaskElt(i);
4297    if (Idx >= (int)NumElems) {
4298      unsigned Opc = V2.getOpcode();
4299      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4300        continue;
4301      if (Opc != ISD::BUILD_VECTOR ||
4302          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4303        return false;
4304    } else if (Idx >= 0) {
4305      unsigned Opc = V1.getOpcode();
4306      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4307        continue;
4308      if (Opc != ISD::BUILD_VECTOR ||
4309          !X86::isZeroNode(V1.getOperand(Idx)))
4310        return false;
4311    }
4312  }
4313  return true;
4314}
4315
4316/// getZeroVector - Returns a vector of specified type with all zero elements.
4317///
4318static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4319                             SelectionDAG &DAG, DebugLoc dl) {
4320  assert(VT.isVector() && "Expected a vector type");
4321  unsigned Size = VT.getSizeInBits();
4322
4323  // Always build SSE zero vectors as <4 x i32> bitcasted
4324  // to their dest type. This ensures they get CSE'd.
4325  SDValue Vec;
4326  if (Size == 128) {  // SSE
4327    if (Subtarget->hasSSE2()) {  // SSE2
4328      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4329      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4330    } else { // SSE1
4331      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4332      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4333    }
4334  } else if (Size == 256) { // AVX
4335    if (Subtarget->hasAVX2()) { // AVX2
4336      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4337      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4338      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4339    } else {
4340      // 256-bit logic and arithmetic instructions in AVX are all
4341      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4342      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4343      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4344      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4345    }
4346  } else
4347    llvm_unreachable("Unexpected vector type");
4348
4349  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4350}
4351
4352/// getOnesVector - Returns a vector of specified type with all bits set.
4353/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4354/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4355/// Then bitcast to their original type, ensuring they get CSE'd.
4356static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4357                             DebugLoc dl) {
4358  assert(VT.isVector() && "Expected a vector type");
4359  unsigned Size = VT.getSizeInBits();
4360
4361  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4362  SDValue Vec;
4363  if (Size == 256) {
4364    if (HasAVX2) { // AVX2
4365      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4366      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4367    } else { // AVX
4368      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4369      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4370    }
4371  } else if (Size == 128) {
4372    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4373  } else
4374    llvm_unreachable("Unexpected vector type");
4375
4376  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4377}
4378
4379/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4380/// that point to V2 points to its first element.
4381static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4382  for (unsigned i = 0; i != NumElems; ++i) {
4383    if (Mask[i] > (int)NumElems) {
4384      Mask[i] = NumElems;
4385    }
4386  }
4387}
4388
4389/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4390/// operation of specified width.
4391static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4392                       SDValue V2) {
4393  unsigned NumElems = VT.getVectorNumElements();
4394  SmallVector<int, 8> Mask;
4395  Mask.push_back(NumElems);
4396  for (unsigned i = 1; i != NumElems; ++i)
4397    Mask.push_back(i);
4398  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4399}
4400
4401/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4402static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4403                          SDValue V2) {
4404  unsigned NumElems = VT.getVectorNumElements();
4405  SmallVector<int, 8> Mask;
4406  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4407    Mask.push_back(i);
4408    Mask.push_back(i + NumElems);
4409  }
4410  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4411}
4412
4413/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4414static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4415                          SDValue V2) {
4416  unsigned NumElems = VT.getVectorNumElements();
4417  SmallVector<int, 8> Mask;
4418  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4419    Mask.push_back(i + Half);
4420    Mask.push_back(i + NumElems + Half);
4421  }
4422  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4423}
4424
4425// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4426// a generic shuffle instruction because the target has no such instructions.
4427// Generate shuffles which repeat i16 and i8 several times until they can be
4428// represented by v4f32 and then be manipulated by target suported shuffles.
4429static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4430  EVT VT = V.getValueType();
4431  int NumElems = VT.getVectorNumElements();
4432  DebugLoc dl = V.getDebugLoc();
4433
4434  while (NumElems > 4) {
4435    if (EltNo < NumElems/2) {
4436      V = getUnpackl(DAG, dl, VT, V, V);
4437    } else {
4438      V = getUnpackh(DAG, dl, VT, V, V);
4439      EltNo -= NumElems/2;
4440    }
4441    NumElems >>= 1;
4442  }
4443  return V;
4444}
4445
4446/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4447static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4448  EVT VT = V.getValueType();
4449  DebugLoc dl = V.getDebugLoc();
4450  unsigned Size = VT.getSizeInBits();
4451
4452  if (Size == 128) {
4453    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4454    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4455    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4456                             &SplatMask[0]);
4457  } else if (Size == 256) {
4458    // To use VPERMILPS to splat scalars, the second half of indicies must
4459    // refer to the higher part, which is a duplication of the lower one,
4460    // because VPERMILPS can only handle in-lane permutations.
4461    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4462                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4463
4464    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4465    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4466                             &SplatMask[0]);
4467  } else
4468    llvm_unreachable("Vector size not supported");
4469
4470  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4471}
4472
4473/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4474static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4475  EVT SrcVT = SV->getValueType(0);
4476  SDValue V1 = SV->getOperand(0);
4477  DebugLoc dl = SV->getDebugLoc();
4478
4479  int EltNo = SV->getSplatIndex();
4480  int NumElems = SrcVT.getVectorNumElements();
4481  unsigned Size = SrcVT.getSizeInBits();
4482
4483  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4484          "Unknown how to promote splat for type");
4485
4486  // Extract the 128-bit part containing the splat element and update
4487  // the splat element index when it refers to the higher register.
4488  if (Size == 256) {
4489    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4490    if (EltNo >= NumElems/2)
4491      EltNo -= NumElems/2;
4492  }
4493
4494  // All i16 and i8 vector types can't be used directly by a generic shuffle
4495  // instruction because the target has no such instruction. Generate shuffles
4496  // which repeat i16 and i8 several times until they fit in i32, and then can
4497  // be manipulated by target suported shuffles.
4498  EVT EltVT = SrcVT.getVectorElementType();
4499  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4500    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4501
4502  // Recreate the 256-bit vector and place the same 128-bit vector
4503  // into the low and high part. This is necessary because we want
4504  // to use VPERM* to shuffle the vectors
4505  if (Size == 256) {
4506    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4507  }
4508
4509  return getLegalSplat(DAG, V1, EltNo);
4510}
4511
4512/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4513/// vector of zero or undef vector.  This produces a shuffle where the low
4514/// element of V2 is swizzled into the zero/undef vector, landing at element
4515/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4516static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4517                                           bool IsZero,
4518                                           const X86Subtarget *Subtarget,
4519                                           SelectionDAG &DAG) {
4520  EVT VT = V2.getValueType();
4521  SDValue V1 = IsZero
4522    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4523  unsigned NumElems = VT.getVectorNumElements();
4524  SmallVector<int, 16> MaskVec;
4525  for (unsigned i = 0; i != NumElems; ++i)
4526    // If this is the insertion idx, put the low elt of V2 here.
4527    MaskVec.push_back(i == Idx ? NumElems : i);
4528  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4529}
4530
4531/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4532/// target specific opcode. Returns true if the Mask could be calculated.
4533/// Sets IsUnary to true if only uses one source.
4534static bool getTargetShuffleMask(SDNode *N, MVT VT,
4535                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4536  unsigned NumElems = VT.getVectorNumElements();
4537  SDValue ImmN;
4538
4539  IsUnary = false;
4540  switch(N->getOpcode()) {
4541  case X86ISD::SHUFP:
4542    ImmN = N->getOperand(N->getNumOperands()-1);
4543    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4544    break;
4545  case X86ISD::UNPCKH:
4546    DecodeUNPCKHMask(VT, Mask);
4547    break;
4548  case X86ISD::UNPCKL:
4549    DecodeUNPCKLMask(VT, Mask);
4550    break;
4551  case X86ISD::MOVHLPS:
4552    DecodeMOVHLPSMask(NumElems, Mask);
4553    break;
4554  case X86ISD::MOVLHPS:
4555    DecodeMOVLHPSMask(NumElems, Mask);
4556    break;
4557  case X86ISD::PSHUFD:
4558  case X86ISD::VPERMILP:
4559    ImmN = N->getOperand(N->getNumOperands()-1);
4560    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4561    IsUnary = true;
4562    break;
4563  case X86ISD::PSHUFHW:
4564    ImmN = N->getOperand(N->getNumOperands()-1);
4565    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4566    IsUnary = true;
4567    break;
4568  case X86ISD::PSHUFLW:
4569    ImmN = N->getOperand(N->getNumOperands()-1);
4570    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4571    IsUnary = true;
4572    break;
4573  case X86ISD::VPERMI:
4574    ImmN = N->getOperand(N->getNumOperands()-1);
4575    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4576    IsUnary = true;
4577    break;
4578  case X86ISD::MOVSS:
4579  case X86ISD::MOVSD: {
4580    // The index 0 always comes from the first element of the second source,
4581    // this is why MOVSS and MOVSD are used in the first place. The other
4582    // elements come from the other positions of the first source vector
4583    Mask.push_back(NumElems);
4584    for (unsigned i = 1; i != NumElems; ++i) {
4585      Mask.push_back(i);
4586    }
4587    break;
4588  }
4589  case X86ISD::VPERM2X128:
4590    ImmN = N->getOperand(N->getNumOperands()-1);
4591    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4592    if (Mask.empty()) return false;
4593    break;
4594  case X86ISD::MOVDDUP:
4595  case X86ISD::MOVLHPD:
4596  case X86ISD::MOVLPD:
4597  case X86ISD::MOVLPS:
4598  case X86ISD::MOVSHDUP:
4599  case X86ISD::MOVSLDUP:
4600  case X86ISD::PALIGN:
4601    // Not yet implemented
4602    return false;
4603  default: llvm_unreachable("unknown target shuffle node");
4604  }
4605
4606  return true;
4607}
4608
4609/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4610/// element of the result of the vector shuffle.
4611static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4612                                   unsigned Depth) {
4613  if (Depth == 6)
4614    return SDValue();  // Limit search depth.
4615
4616  SDValue V = SDValue(N, 0);
4617  EVT VT = V.getValueType();
4618  unsigned Opcode = V.getOpcode();
4619
4620  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4621  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4622    int Elt = SV->getMaskElt(Index);
4623
4624    if (Elt < 0)
4625      return DAG.getUNDEF(VT.getVectorElementType());
4626
4627    unsigned NumElems = VT.getVectorNumElements();
4628    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4629                                         : SV->getOperand(1);
4630    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4631  }
4632
4633  // Recurse into target specific vector shuffles to find scalars.
4634  if (isTargetShuffle(Opcode)) {
4635    MVT ShufVT = V.getValueType().getSimpleVT();
4636    unsigned NumElems = ShufVT.getVectorNumElements();
4637    SmallVector<int, 16> ShuffleMask;
4638    SDValue ImmN;
4639    bool IsUnary;
4640
4641    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4642      return SDValue();
4643
4644    int Elt = ShuffleMask[Index];
4645    if (Elt < 0)
4646      return DAG.getUNDEF(ShufVT.getVectorElementType());
4647
4648    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4649                                         : N->getOperand(1);
4650    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4651                               Depth+1);
4652  }
4653
4654  // Actual nodes that may contain scalar elements
4655  if (Opcode == ISD::BITCAST) {
4656    V = V.getOperand(0);
4657    EVT SrcVT = V.getValueType();
4658    unsigned NumElems = VT.getVectorNumElements();
4659
4660    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4661      return SDValue();
4662  }
4663
4664  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4665    return (Index == 0) ? V.getOperand(0)
4666                        : DAG.getUNDEF(VT.getVectorElementType());
4667
4668  if (V.getOpcode() == ISD::BUILD_VECTOR)
4669    return V.getOperand(Index);
4670
4671  return SDValue();
4672}
4673
4674/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4675/// shuffle operation which come from a consecutively from a zero. The
4676/// search can start in two different directions, from left or right.
4677static
4678unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4679                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4680  unsigned i;
4681  for (i = 0; i != NumElems; ++i) {
4682    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4683    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4684    if (!(Elt.getNode() &&
4685         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4686      break;
4687  }
4688
4689  return i;
4690}
4691
4692/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4693/// correspond consecutively to elements from one of the vector operands,
4694/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4695static
4696bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4697                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4698                              unsigned NumElems, unsigned &OpNum) {
4699  bool SeenV1 = false;
4700  bool SeenV2 = false;
4701
4702  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4703    int Idx = SVOp->getMaskElt(i);
4704    // Ignore undef indicies
4705    if (Idx < 0)
4706      continue;
4707
4708    if (Idx < (int)NumElems)
4709      SeenV1 = true;
4710    else
4711      SeenV2 = true;
4712
4713    // Only accept consecutive elements from the same vector
4714    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4715      return false;
4716  }
4717
4718  OpNum = SeenV1 ? 0 : 1;
4719  return true;
4720}
4721
4722/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4723/// logical left shift of a vector.
4724static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4725                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4726  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4727  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4728              false /* check zeros from right */, DAG);
4729  unsigned OpSrc;
4730
4731  if (!NumZeros)
4732    return false;
4733
4734  // Considering the elements in the mask that are not consecutive zeros,
4735  // check if they consecutively come from only one of the source vectors.
4736  //
4737  //               V1 = {X, A, B, C}     0
4738  //                         \  \  \    /
4739  //   vector_shuffle V1, V2 <1, 2, 3, X>
4740  //
4741  if (!isShuffleMaskConsecutive(SVOp,
4742            0,                   // Mask Start Index
4743            NumElems-NumZeros,   // Mask End Index(exclusive)
4744            NumZeros,            // Where to start looking in the src vector
4745            NumElems,            // Number of elements in vector
4746            OpSrc))              // Which source operand ?
4747    return false;
4748
4749  isLeft = false;
4750  ShAmt = NumZeros;
4751  ShVal = SVOp->getOperand(OpSrc);
4752  return true;
4753}
4754
4755/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4756/// logical left shift of a vector.
4757static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4758                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4759  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4760  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4761              true /* check zeros from left */, DAG);
4762  unsigned OpSrc;
4763
4764  if (!NumZeros)
4765    return false;
4766
4767  // Considering the elements in the mask that are not consecutive zeros,
4768  // check if they consecutively come from only one of the source vectors.
4769  //
4770  //                           0    { A, B, X, X } = V2
4771  //                          / \    /  /
4772  //   vector_shuffle V1, V2 <X, X, 4, 5>
4773  //
4774  if (!isShuffleMaskConsecutive(SVOp,
4775            NumZeros,     // Mask Start Index
4776            NumElems,     // Mask End Index(exclusive)
4777            0,            // Where to start looking in the src vector
4778            NumElems,     // Number of elements in vector
4779            OpSrc))       // Which source operand ?
4780    return false;
4781
4782  isLeft = true;
4783  ShAmt = NumZeros;
4784  ShVal = SVOp->getOperand(OpSrc);
4785  return true;
4786}
4787
4788/// isVectorShift - Returns true if the shuffle can be implemented as a
4789/// logical left or right shift of a vector.
4790static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4791                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4792  // Although the logic below support any bitwidth size, there are no
4793  // shift instructions which handle more than 128-bit vectors.
4794  if (!SVOp->getValueType(0).is128BitVector())
4795    return false;
4796
4797  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4798      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4799    return true;
4800
4801  return false;
4802}
4803
4804/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4805///
4806static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4807                                       unsigned NumNonZero, unsigned NumZero,
4808                                       SelectionDAG &DAG,
4809                                       const X86Subtarget* Subtarget,
4810                                       const TargetLowering &TLI) {
4811  if (NumNonZero > 8)
4812    return SDValue();
4813
4814  DebugLoc dl = Op.getDebugLoc();
4815  SDValue V(0, 0);
4816  bool First = true;
4817  for (unsigned i = 0; i < 16; ++i) {
4818    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4819    if (ThisIsNonZero && First) {
4820      if (NumZero)
4821        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4822      else
4823        V = DAG.getUNDEF(MVT::v8i16);
4824      First = false;
4825    }
4826
4827    if ((i & 1) != 0) {
4828      SDValue ThisElt(0, 0), LastElt(0, 0);
4829      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4830      if (LastIsNonZero) {
4831        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4832                              MVT::i16, Op.getOperand(i-1));
4833      }
4834      if (ThisIsNonZero) {
4835        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4836        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4837                              ThisElt, DAG.getConstant(8, MVT::i8));
4838        if (LastIsNonZero)
4839          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4840      } else
4841        ThisElt = LastElt;
4842
4843      if (ThisElt.getNode())
4844        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4845                        DAG.getIntPtrConstant(i/2));
4846    }
4847  }
4848
4849  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4850}
4851
4852/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4853///
4854static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4855                                     unsigned NumNonZero, unsigned NumZero,
4856                                     SelectionDAG &DAG,
4857                                     const X86Subtarget* Subtarget,
4858                                     const TargetLowering &TLI) {
4859  if (NumNonZero > 4)
4860    return SDValue();
4861
4862  DebugLoc dl = Op.getDebugLoc();
4863  SDValue V(0, 0);
4864  bool First = true;
4865  for (unsigned i = 0; i < 8; ++i) {
4866    bool isNonZero = (NonZeros & (1 << i)) != 0;
4867    if (isNonZero) {
4868      if (First) {
4869        if (NumZero)
4870          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4871        else
4872          V = DAG.getUNDEF(MVT::v8i16);
4873        First = false;
4874      }
4875      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4876                      MVT::v8i16, V, Op.getOperand(i),
4877                      DAG.getIntPtrConstant(i));
4878    }
4879  }
4880
4881  return V;
4882}
4883
4884/// getVShift - Return a vector logical shift node.
4885///
4886static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4887                         unsigned NumBits, SelectionDAG &DAG,
4888                         const TargetLowering &TLI, DebugLoc dl) {
4889  assert(VT.is128BitVector() && "Unknown type for VShift");
4890  EVT ShVT = MVT::v2i64;
4891  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4892  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4893  return DAG.getNode(ISD::BITCAST, dl, VT,
4894                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4895                             DAG.getConstant(NumBits,
4896                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4897}
4898
4899SDValue
4900X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4901                                          SelectionDAG &DAG) const {
4902
4903  // Check if the scalar load can be widened into a vector load. And if
4904  // the address is "base + cst" see if the cst can be "absorbed" into
4905  // the shuffle mask.
4906  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4907    SDValue Ptr = LD->getBasePtr();
4908    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4909      return SDValue();
4910    EVT PVT = LD->getValueType(0);
4911    if (PVT != MVT::i32 && PVT != MVT::f32)
4912      return SDValue();
4913
4914    int FI = -1;
4915    int64_t Offset = 0;
4916    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4917      FI = FINode->getIndex();
4918      Offset = 0;
4919    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4920               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4921      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4922      Offset = Ptr.getConstantOperandVal(1);
4923      Ptr = Ptr.getOperand(0);
4924    } else {
4925      return SDValue();
4926    }
4927
4928    // FIXME: 256-bit vector instructions don't require a strict alignment,
4929    // improve this code to support it better.
4930    unsigned RequiredAlign = VT.getSizeInBits()/8;
4931    SDValue Chain = LD->getChain();
4932    // Make sure the stack object alignment is at least 16 or 32.
4933    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4934    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4935      if (MFI->isFixedObjectIndex(FI)) {
4936        // Can't change the alignment. FIXME: It's possible to compute
4937        // the exact stack offset and reference FI + adjust offset instead.
4938        // If someone *really* cares about this. That's the way to implement it.
4939        return SDValue();
4940      } else {
4941        MFI->setObjectAlignment(FI, RequiredAlign);
4942      }
4943    }
4944
4945    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4946    // Ptr + (Offset & ~15).
4947    if (Offset < 0)
4948      return SDValue();
4949    if ((Offset % RequiredAlign) & 3)
4950      return SDValue();
4951    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4952    if (StartOffset)
4953      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4954                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4955
4956    int EltNo = (Offset - StartOffset) >> 2;
4957    unsigned NumElems = VT.getVectorNumElements();
4958
4959    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4960    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4961                             LD->getPointerInfo().getWithOffset(StartOffset),
4962                             false, false, false, 0);
4963
4964    SmallVector<int, 8> Mask;
4965    for (unsigned i = 0; i != NumElems; ++i)
4966      Mask.push_back(EltNo);
4967
4968    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4969  }
4970
4971  return SDValue();
4972}
4973
4974/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4975/// vector of type 'VT', see if the elements can be replaced by a single large
4976/// load which has the same value as a build_vector whose operands are 'elts'.
4977///
4978/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4979///
4980/// FIXME: we'd also like to handle the case where the last elements are zero
4981/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4982/// There's even a handy isZeroNode for that purpose.
4983static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4984                                        DebugLoc &DL, SelectionDAG &DAG) {
4985  EVT EltVT = VT.getVectorElementType();
4986  unsigned NumElems = Elts.size();
4987
4988  LoadSDNode *LDBase = NULL;
4989  unsigned LastLoadedElt = -1U;
4990
4991  // For each element in the initializer, see if we've found a load or an undef.
4992  // If we don't find an initial load element, or later load elements are
4993  // non-consecutive, bail out.
4994  for (unsigned i = 0; i < NumElems; ++i) {
4995    SDValue Elt = Elts[i];
4996
4997    if (!Elt.getNode() ||
4998        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4999      return SDValue();
5000    if (!LDBase) {
5001      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5002        return SDValue();
5003      LDBase = cast<LoadSDNode>(Elt.getNode());
5004      LastLoadedElt = i;
5005      continue;
5006    }
5007    if (Elt.getOpcode() == ISD::UNDEF)
5008      continue;
5009
5010    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5011    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5012      return SDValue();
5013    LastLoadedElt = i;
5014  }
5015
5016  // If we have found an entire vector of loads and undefs, then return a large
5017  // load of the entire vector width starting at the base pointer.  If we found
5018  // consecutive loads for the low half, generate a vzext_load node.
5019  if (LastLoadedElt == NumElems - 1) {
5020    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5021      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5022                         LDBase->getPointerInfo(),
5023                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5024                         LDBase->isInvariant(), 0);
5025    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5026                       LDBase->getPointerInfo(),
5027                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5028                       LDBase->isInvariant(), LDBase->getAlignment());
5029  }
5030  if (NumElems == 4 && LastLoadedElt == 1 &&
5031      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5032    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5033    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5034    SDValue ResNode =
5035        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5036                                LDBase->getPointerInfo(),
5037                                LDBase->getAlignment(),
5038                                false/*isVolatile*/, true/*ReadMem*/,
5039                                false/*WriteMem*/);
5040
5041    // Make sure the newly-created LOAD is in the same position as LDBase in
5042    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5043    // update uses of LDBase's output chain to use the TokenFactor.
5044    if (LDBase->hasAnyUseOfValue(1)) {
5045      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5046                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5047      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5048      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5049                             SDValue(ResNode.getNode(), 1));
5050    }
5051
5052    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5053  }
5054  return SDValue();
5055}
5056
5057/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5058/// to generate a splat value for the following cases:
5059/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5060/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5061/// a scalar load, or a constant.
5062/// The VBROADCAST node is returned when a pattern is found,
5063/// or SDValue() otherwise.
5064SDValue
5065X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5066  if (!Subtarget->hasAVX())
5067    return SDValue();
5068
5069  EVT VT = Op.getValueType();
5070  DebugLoc dl = Op.getDebugLoc();
5071
5072  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5073         "Unsupported vector type for broadcast.");
5074
5075  SDValue Ld;
5076  bool ConstSplatVal;
5077
5078  switch (Op.getOpcode()) {
5079    default:
5080      // Unknown pattern found.
5081      return SDValue();
5082
5083    case ISD::BUILD_VECTOR: {
5084      // The BUILD_VECTOR node must be a splat.
5085      if (!isSplatVector(Op.getNode()))
5086        return SDValue();
5087
5088      Ld = Op.getOperand(0);
5089      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5090                     Ld.getOpcode() == ISD::ConstantFP);
5091
5092      // The suspected load node has several users. Make sure that all
5093      // of its users are from the BUILD_VECTOR node.
5094      // Constants may have multiple users.
5095      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5096        return SDValue();
5097      break;
5098    }
5099
5100    case ISD::VECTOR_SHUFFLE: {
5101      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5102
5103      // Shuffles must have a splat mask where the first element is
5104      // broadcasted.
5105      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5106        return SDValue();
5107
5108      SDValue Sc = Op.getOperand(0);
5109      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5110          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5111
5112        if (!Subtarget->hasAVX2())
5113          return SDValue();
5114
5115        // Use the register form of the broadcast instruction available on AVX2.
5116        if (VT.is256BitVector())
5117          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5118        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5119      }
5120
5121      Ld = Sc.getOperand(0);
5122      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5123                       Ld.getOpcode() == ISD::ConstantFP);
5124
5125      // The scalar_to_vector node and the suspected
5126      // load node must have exactly one user.
5127      // Constants may have multiple users.
5128      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5129        return SDValue();
5130      break;
5131    }
5132  }
5133
5134  bool Is256 = VT.is256BitVector();
5135
5136  // Handle the broadcasting a single constant scalar from the constant pool
5137  // into a vector. On Sandybridge it is still better to load a constant vector
5138  // from the constant pool and not to broadcast it from a scalar.
5139  if (ConstSplatVal && Subtarget->hasAVX2()) {
5140    EVT CVT = Ld.getValueType();
5141    assert(!CVT.isVector() && "Must not broadcast a vector type");
5142    unsigned ScalarSize = CVT.getSizeInBits();
5143
5144    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5145      const Constant *C = 0;
5146      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5147        C = CI->getConstantIntValue();
5148      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5149        C = CF->getConstantFPValue();
5150
5151      assert(C && "Invalid constant type");
5152
5153      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5154      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5155      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5156                       MachinePointerInfo::getConstantPool(),
5157                       false, false, false, Alignment);
5158
5159      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5160    }
5161  }
5162
5163  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5164  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5165
5166  // Handle AVX2 in-register broadcasts.
5167  if (!IsLoad && Subtarget->hasAVX2() &&
5168      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5169    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5170
5171  // The scalar source must be a normal load.
5172  if (!IsLoad)
5173    return SDValue();
5174
5175  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5176    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5177
5178  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5179  // double since there is no vbroadcastsd xmm
5180  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5181    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5182      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5183  }
5184
5185  // Unsupported broadcast.
5186  return SDValue();
5187}
5188
5189SDValue
5190X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5191  EVT VT = Op.getValueType();
5192
5193  // Skip if insert_vec_elt is not supported.
5194  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5195    return SDValue();
5196
5197  DebugLoc DL = Op.getDebugLoc();
5198  unsigned NumElems = Op.getNumOperands();
5199
5200  SDValue VecIn1;
5201  SDValue VecIn2;
5202  SmallVector<unsigned, 4> InsertIndices;
5203  SmallVector<int, 8> Mask(NumElems, -1);
5204
5205  for (unsigned i = 0; i != NumElems; ++i) {
5206    unsigned Opc = Op.getOperand(i).getOpcode();
5207
5208    if (Opc == ISD::UNDEF)
5209      continue;
5210
5211    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5212      // Quit if more than 1 elements need inserting.
5213      if (InsertIndices.size() > 1)
5214        return SDValue();
5215
5216      InsertIndices.push_back(i);
5217      continue;
5218    }
5219
5220    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5221    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5222
5223    // Quit if extracted from vector of different type.
5224    if (ExtractedFromVec.getValueType() != VT)
5225      return SDValue();
5226
5227    // Quit if non-constant index.
5228    if (!isa<ConstantSDNode>(ExtIdx))
5229      return SDValue();
5230
5231    if (VecIn1.getNode() == 0)
5232      VecIn1 = ExtractedFromVec;
5233    else if (VecIn1 != ExtractedFromVec) {
5234      if (VecIn2.getNode() == 0)
5235        VecIn2 = ExtractedFromVec;
5236      else if (VecIn2 != ExtractedFromVec)
5237        // Quit if more than 2 vectors to shuffle
5238        return SDValue();
5239    }
5240
5241    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5242
5243    if (ExtractedFromVec == VecIn1)
5244      Mask[i] = Idx;
5245    else if (ExtractedFromVec == VecIn2)
5246      Mask[i] = Idx + NumElems;
5247  }
5248
5249  if (VecIn1.getNode() == 0)
5250    return SDValue();
5251
5252  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5253  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5254  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5255    unsigned Idx = InsertIndices[i];
5256    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5257                     DAG.getIntPtrConstant(Idx));
5258  }
5259
5260  return NV;
5261}
5262
5263SDValue
5264X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5265  DebugLoc dl = Op.getDebugLoc();
5266
5267  EVT VT = Op.getValueType();
5268  EVT ExtVT = VT.getVectorElementType();
5269  unsigned NumElems = Op.getNumOperands();
5270
5271  // Vectors containing all zeros can be matched by pxor and xorps later
5272  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5273    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5274    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5275    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5276      return Op;
5277
5278    return getZeroVector(VT, Subtarget, DAG, dl);
5279  }
5280
5281  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5282  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5283  // vpcmpeqd on 256-bit vectors.
5284  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5285    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5286      return Op;
5287
5288    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5289  }
5290
5291  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5292  if (Broadcast.getNode())
5293    return Broadcast;
5294
5295  unsigned EVTBits = ExtVT.getSizeInBits();
5296
5297  unsigned NumZero  = 0;
5298  unsigned NumNonZero = 0;
5299  unsigned NonZeros = 0;
5300  bool IsAllConstants = true;
5301  SmallSet<SDValue, 8> Values;
5302  for (unsigned i = 0; i < NumElems; ++i) {
5303    SDValue Elt = Op.getOperand(i);
5304    if (Elt.getOpcode() == ISD::UNDEF)
5305      continue;
5306    Values.insert(Elt);
5307    if (Elt.getOpcode() != ISD::Constant &&
5308        Elt.getOpcode() != ISD::ConstantFP)
5309      IsAllConstants = false;
5310    if (X86::isZeroNode(Elt))
5311      NumZero++;
5312    else {
5313      NonZeros |= (1 << i);
5314      NumNonZero++;
5315    }
5316  }
5317
5318  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5319  if (NumNonZero == 0)
5320    return DAG.getUNDEF(VT);
5321
5322  // Special case for single non-zero, non-undef, element.
5323  if (NumNonZero == 1) {
5324    unsigned Idx = CountTrailingZeros_32(NonZeros);
5325    SDValue Item = Op.getOperand(Idx);
5326
5327    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5328    // the value are obviously zero, truncate the value to i32 and do the
5329    // insertion that way.  Only do this if the value is non-constant or if the
5330    // value is a constant being inserted into element 0.  It is cheaper to do
5331    // a constant pool load than it is to do a movd + shuffle.
5332    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5333        (!IsAllConstants || Idx == 0)) {
5334      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5335        // Handle SSE only.
5336        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5337        EVT VecVT = MVT::v4i32;
5338        unsigned VecElts = 4;
5339
5340        // Truncate the value (which may itself be a constant) to i32, and
5341        // convert it to a vector with movd (S2V+shuffle to zero extend).
5342        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5343        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5344        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5345
5346        // Now we have our 32-bit value zero extended in the low element of
5347        // a vector.  If Idx != 0, swizzle it into place.
5348        if (Idx != 0) {
5349          SmallVector<int, 4> Mask;
5350          Mask.push_back(Idx);
5351          for (unsigned i = 1; i != VecElts; ++i)
5352            Mask.push_back(i);
5353          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5354                                      &Mask[0]);
5355        }
5356        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5357      }
5358    }
5359
5360    // If we have a constant or non-constant insertion into the low element of
5361    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5362    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5363    // depending on what the source datatype is.
5364    if (Idx == 0) {
5365      if (NumZero == 0)
5366        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5367
5368      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5369          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5370        if (VT.is256BitVector()) {
5371          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5372          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5373                             Item, DAG.getIntPtrConstant(0));
5374        }
5375        assert(VT.is128BitVector() && "Expected an SSE value type!");
5376        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5377        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5378        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5379      }
5380
5381      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5382        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5383        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5384        if (VT.is256BitVector()) {
5385          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5386          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5387        } else {
5388          assert(VT.is128BitVector() && "Expected an SSE value type!");
5389          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5390        }
5391        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5392      }
5393    }
5394
5395    // Is it a vector logical left shift?
5396    if (NumElems == 2 && Idx == 1 &&
5397        X86::isZeroNode(Op.getOperand(0)) &&
5398        !X86::isZeroNode(Op.getOperand(1))) {
5399      unsigned NumBits = VT.getSizeInBits();
5400      return getVShift(true, VT,
5401                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5402                                   VT, Op.getOperand(1)),
5403                       NumBits/2, DAG, *this, dl);
5404    }
5405
5406    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5407      return SDValue();
5408
5409    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5410    // is a non-constant being inserted into an element other than the low one,
5411    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5412    // movd/movss) to move this into the low element, then shuffle it into
5413    // place.
5414    if (EVTBits == 32) {
5415      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5416
5417      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5418      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5419      SmallVector<int, 8> MaskVec;
5420      for (unsigned i = 0; i != NumElems; ++i)
5421        MaskVec.push_back(i == Idx ? 0 : 1);
5422      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5423    }
5424  }
5425
5426  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5427  if (Values.size() == 1) {
5428    if (EVTBits == 32) {
5429      // Instead of a shuffle like this:
5430      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5431      // Check if it's possible to issue this instead.
5432      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5433      unsigned Idx = CountTrailingZeros_32(NonZeros);
5434      SDValue Item = Op.getOperand(Idx);
5435      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5436        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5437    }
5438    return SDValue();
5439  }
5440
5441  // A vector full of immediates; various special cases are already
5442  // handled, so this is best done with a single constant-pool load.
5443  if (IsAllConstants)
5444    return SDValue();
5445
5446  // For AVX-length vectors, build the individual 128-bit pieces and use
5447  // shuffles to put them in place.
5448  if (VT.is256BitVector()) {
5449    SmallVector<SDValue, 32> V;
5450    for (unsigned i = 0; i != NumElems; ++i)
5451      V.push_back(Op.getOperand(i));
5452
5453    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5454
5455    // Build both the lower and upper subvector.
5456    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5457    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5458                                NumElems/2);
5459
5460    // Recreate the wider vector with the lower and upper part.
5461    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5462  }
5463
5464  // Let legalizer expand 2-wide build_vectors.
5465  if (EVTBits == 64) {
5466    if (NumNonZero == 1) {
5467      // One half is zero or undef.
5468      unsigned Idx = CountTrailingZeros_32(NonZeros);
5469      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5470                                 Op.getOperand(Idx));
5471      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5472    }
5473    return SDValue();
5474  }
5475
5476  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5477  if (EVTBits == 8 && NumElems == 16) {
5478    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5479                                        Subtarget, *this);
5480    if (V.getNode()) return V;
5481  }
5482
5483  if (EVTBits == 16 && NumElems == 8) {
5484    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5485                                      Subtarget, *this);
5486    if (V.getNode()) return V;
5487  }
5488
5489  // If element VT is == 32 bits, turn it into a number of shuffles.
5490  SmallVector<SDValue, 8> V(NumElems);
5491  if (NumElems == 4 && NumZero > 0) {
5492    for (unsigned i = 0; i < 4; ++i) {
5493      bool isZero = !(NonZeros & (1 << i));
5494      if (isZero)
5495        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5496      else
5497        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5498    }
5499
5500    for (unsigned i = 0; i < 2; ++i) {
5501      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5502        default: break;
5503        case 0:
5504          V[i] = V[i*2];  // Must be a zero vector.
5505          break;
5506        case 1:
5507          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5508          break;
5509        case 2:
5510          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5511          break;
5512        case 3:
5513          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5514          break;
5515      }
5516    }
5517
5518    bool Reverse1 = (NonZeros & 0x3) == 2;
5519    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5520    int MaskVec[] = {
5521      Reverse1 ? 1 : 0,
5522      Reverse1 ? 0 : 1,
5523      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5524      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5525    };
5526    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5527  }
5528
5529  if (Values.size() > 1 && VT.is128BitVector()) {
5530    // Check for a build vector of consecutive loads.
5531    for (unsigned i = 0; i < NumElems; ++i)
5532      V[i] = Op.getOperand(i);
5533
5534    // Check for elements which are consecutive loads.
5535    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5536    if (LD.getNode())
5537      return LD;
5538
5539    // Check for a build vector from mostly shuffle plus few inserting.
5540    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5541    if (Sh.getNode())
5542      return Sh;
5543
5544    // For SSE 4.1, use insertps to put the high elements into the low element.
5545    if (getSubtarget()->hasSSE41()) {
5546      SDValue Result;
5547      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5548        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5549      else
5550        Result = DAG.getUNDEF(VT);
5551
5552      for (unsigned i = 1; i < NumElems; ++i) {
5553        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5554        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5555                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5556      }
5557      return Result;
5558    }
5559
5560    // Otherwise, expand into a number of unpckl*, start by extending each of
5561    // our (non-undef) elements to the full vector width with the element in the
5562    // bottom slot of the vector (which generates no code for SSE).
5563    for (unsigned i = 0; i < NumElems; ++i) {
5564      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5565        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5566      else
5567        V[i] = DAG.getUNDEF(VT);
5568    }
5569
5570    // Next, we iteratively mix elements, e.g. for v4f32:
5571    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5572    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5573    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5574    unsigned EltStride = NumElems >> 1;
5575    while (EltStride != 0) {
5576      for (unsigned i = 0; i < EltStride; ++i) {
5577        // If V[i+EltStride] is undef and this is the first round of mixing,
5578        // then it is safe to just drop this shuffle: V[i] is already in the
5579        // right place, the one element (since it's the first round) being
5580        // inserted as undef can be dropped.  This isn't safe for successive
5581        // rounds because they will permute elements within both vectors.
5582        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5583            EltStride == NumElems/2)
5584          continue;
5585
5586        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5587      }
5588      EltStride >>= 1;
5589    }
5590    return V[0];
5591  }
5592  return SDValue();
5593}
5594
5595// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5596// to create 256-bit vectors from two other 128-bit ones.
5597static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5598  DebugLoc dl = Op.getDebugLoc();
5599  EVT ResVT = Op.getValueType();
5600
5601  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5602
5603  SDValue V1 = Op.getOperand(0);
5604  SDValue V2 = Op.getOperand(1);
5605  unsigned NumElems = ResVT.getVectorNumElements();
5606
5607  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5608}
5609
5610static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5611  assert(Op.getNumOperands() == 2);
5612
5613  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5614  // from two other 128-bit ones.
5615  return LowerAVXCONCAT_VECTORS(Op, DAG);
5616}
5617
5618// Try to lower a shuffle node into a simple blend instruction.
5619static SDValue
5620LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5621                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5622  SDValue V1 = SVOp->getOperand(0);
5623  SDValue V2 = SVOp->getOperand(1);
5624  DebugLoc dl = SVOp->getDebugLoc();
5625  MVT VT = SVOp->getValueType(0).getSimpleVT();
5626  unsigned NumElems = VT.getVectorNumElements();
5627
5628  if (!Subtarget->hasSSE41())
5629    return SDValue();
5630
5631  unsigned ISDNo = 0;
5632  MVT OpTy;
5633
5634  switch (VT.SimpleTy) {
5635  default: return SDValue();
5636  case MVT::v8i16:
5637    ISDNo = X86ISD::BLENDPW;
5638    OpTy = MVT::v8i16;
5639    break;
5640  case MVT::v4i32:
5641  case MVT::v4f32:
5642    ISDNo = X86ISD::BLENDPS;
5643    OpTy = MVT::v4f32;
5644    break;
5645  case MVT::v2i64:
5646  case MVT::v2f64:
5647    ISDNo = X86ISD::BLENDPD;
5648    OpTy = MVT::v2f64;
5649    break;
5650  case MVT::v8i32:
5651  case MVT::v8f32:
5652    if (!Subtarget->hasAVX())
5653      return SDValue();
5654    ISDNo = X86ISD::BLENDPS;
5655    OpTy = MVT::v8f32;
5656    break;
5657  case MVT::v4i64:
5658  case MVT::v4f64:
5659    if (!Subtarget->hasAVX())
5660      return SDValue();
5661    ISDNo = X86ISD::BLENDPD;
5662    OpTy = MVT::v4f64;
5663    break;
5664  }
5665  assert(ISDNo && "Invalid Op Number");
5666
5667  unsigned MaskVals = 0;
5668
5669  for (unsigned i = 0; i != NumElems; ++i) {
5670    int EltIdx = SVOp->getMaskElt(i);
5671    if (EltIdx == (int)i || EltIdx < 0)
5672      MaskVals |= (1<<i);
5673    else if (EltIdx == (int)(i + NumElems))
5674      continue; // Bit is set to zero;
5675    else
5676      return SDValue();
5677  }
5678
5679  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5680  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5681  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5682                             DAG.getConstant(MaskVals, MVT::i32));
5683  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5684}
5685
5686// v8i16 shuffles - Prefer shuffles in the following order:
5687// 1. [all]   pshuflw, pshufhw, optional move
5688// 2. [ssse3] 1 x pshufb
5689// 3. [ssse3] 2 x pshufb + 1 x por
5690// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5691static SDValue
5692LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5693                         SelectionDAG &DAG) {
5694  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5695  SDValue V1 = SVOp->getOperand(0);
5696  SDValue V2 = SVOp->getOperand(1);
5697  DebugLoc dl = SVOp->getDebugLoc();
5698  SmallVector<int, 8> MaskVals;
5699
5700  // Determine if more than 1 of the words in each of the low and high quadwords
5701  // of the result come from the same quadword of one of the two inputs.  Undef
5702  // mask values count as coming from any quadword, for better codegen.
5703  unsigned LoQuad[] = { 0, 0, 0, 0 };
5704  unsigned HiQuad[] = { 0, 0, 0, 0 };
5705  std::bitset<4> InputQuads;
5706  for (unsigned i = 0; i < 8; ++i) {
5707    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5708    int EltIdx = SVOp->getMaskElt(i);
5709    MaskVals.push_back(EltIdx);
5710    if (EltIdx < 0) {
5711      ++Quad[0];
5712      ++Quad[1];
5713      ++Quad[2];
5714      ++Quad[3];
5715      continue;
5716    }
5717    ++Quad[EltIdx / 4];
5718    InputQuads.set(EltIdx / 4);
5719  }
5720
5721  int BestLoQuad = -1;
5722  unsigned MaxQuad = 1;
5723  for (unsigned i = 0; i < 4; ++i) {
5724    if (LoQuad[i] > MaxQuad) {
5725      BestLoQuad = i;
5726      MaxQuad = LoQuad[i];
5727    }
5728  }
5729
5730  int BestHiQuad = -1;
5731  MaxQuad = 1;
5732  for (unsigned i = 0; i < 4; ++i) {
5733    if (HiQuad[i] > MaxQuad) {
5734      BestHiQuad = i;
5735      MaxQuad = HiQuad[i];
5736    }
5737  }
5738
5739  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5740  // of the two input vectors, shuffle them into one input vector so only a
5741  // single pshufb instruction is necessary. If There are more than 2 input
5742  // quads, disable the next transformation since it does not help SSSE3.
5743  bool V1Used = InputQuads[0] || InputQuads[1];
5744  bool V2Used = InputQuads[2] || InputQuads[3];
5745  if (Subtarget->hasSSSE3()) {
5746    if (InputQuads.count() == 2 && V1Used && V2Used) {
5747      BestLoQuad = InputQuads[0] ? 0 : 1;
5748      BestHiQuad = InputQuads[2] ? 2 : 3;
5749    }
5750    if (InputQuads.count() > 2) {
5751      BestLoQuad = -1;
5752      BestHiQuad = -1;
5753    }
5754  }
5755
5756  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5757  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5758  // words from all 4 input quadwords.
5759  SDValue NewV;
5760  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5761    int MaskV[] = {
5762      BestLoQuad < 0 ? 0 : BestLoQuad,
5763      BestHiQuad < 0 ? 1 : BestHiQuad
5764    };
5765    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5766                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5767                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5768    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5769
5770    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5771    // source words for the shuffle, to aid later transformations.
5772    bool AllWordsInNewV = true;
5773    bool InOrder[2] = { true, true };
5774    for (unsigned i = 0; i != 8; ++i) {
5775      int idx = MaskVals[i];
5776      if (idx != (int)i)
5777        InOrder[i/4] = false;
5778      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5779        continue;
5780      AllWordsInNewV = false;
5781      break;
5782    }
5783
5784    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5785    if (AllWordsInNewV) {
5786      for (int i = 0; i != 8; ++i) {
5787        int idx = MaskVals[i];
5788        if (idx < 0)
5789          continue;
5790        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5791        if ((idx != i) && idx < 4)
5792          pshufhw = false;
5793        if ((idx != i) && idx > 3)
5794          pshuflw = false;
5795      }
5796      V1 = NewV;
5797      V2Used = false;
5798      BestLoQuad = 0;
5799      BestHiQuad = 1;
5800    }
5801
5802    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5803    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5804    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5805      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5806      unsigned TargetMask = 0;
5807      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5808                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5809      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5810      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5811                             getShufflePSHUFLWImmediate(SVOp);
5812      V1 = NewV.getOperand(0);
5813      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5814    }
5815  }
5816
5817  // If we have SSSE3, and all words of the result are from 1 input vector,
5818  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5819  // is present, fall back to case 4.
5820  if (Subtarget->hasSSSE3()) {
5821    SmallVector<SDValue,16> pshufbMask;
5822
5823    // If we have elements from both input vectors, set the high bit of the
5824    // shuffle mask element to zero out elements that come from V2 in the V1
5825    // mask, and elements that come from V1 in the V2 mask, so that the two
5826    // results can be OR'd together.
5827    bool TwoInputs = V1Used && V2Used;
5828    for (unsigned i = 0; i != 8; ++i) {
5829      int EltIdx = MaskVals[i] * 2;
5830      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5831      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5832      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5833      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5834    }
5835    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5836    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5837                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5838                                 MVT::v16i8, &pshufbMask[0], 16));
5839    if (!TwoInputs)
5840      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5841
5842    // Calculate the shuffle mask for the second input, shuffle it, and
5843    // OR it with the first shuffled input.
5844    pshufbMask.clear();
5845    for (unsigned i = 0; i != 8; ++i) {
5846      int EltIdx = MaskVals[i] * 2;
5847      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5848      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5849      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5850      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5851    }
5852    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5853    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5854                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5855                                 MVT::v16i8, &pshufbMask[0], 16));
5856    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5857    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5858  }
5859
5860  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5861  // and update MaskVals with new element order.
5862  std::bitset<8> InOrder;
5863  if (BestLoQuad >= 0) {
5864    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5865    for (int i = 0; i != 4; ++i) {
5866      int idx = MaskVals[i];
5867      if (idx < 0) {
5868        InOrder.set(i);
5869      } else if ((idx / 4) == BestLoQuad) {
5870        MaskV[i] = idx & 3;
5871        InOrder.set(i);
5872      }
5873    }
5874    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5875                                &MaskV[0]);
5876
5877    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5878      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5879      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5880                                  NewV.getOperand(0),
5881                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5882    }
5883  }
5884
5885  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5886  // and update MaskVals with the new element order.
5887  if (BestHiQuad >= 0) {
5888    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5889    for (unsigned i = 4; i != 8; ++i) {
5890      int idx = MaskVals[i];
5891      if (idx < 0) {
5892        InOrder.set(i);
5893      } else if ((idx / 4) == BestHiQuad) {
5894        MaskV[i] = (idx & 3) + 4;
5895        InOrder.set(i);
5896      }
5897    }
5898    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5899                                &MaskV[0]);
5900
5901    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5902      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5903      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5904                                  NewV.getOperand(0),
5905                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5906    }
5907  }
5908
5909  // In case BestHi & BestLo were both -1, which means each quadword has a word
5910  // from each of the four input quadwords, calculate the InOrder bitvector now
5911  // before falling through to the insert/extract cleanup.
5912  if (BestLoQuad == -1 && BestHiQuad == -1) {
5913    NewV = V1;
5914    for (int i = 0; i != 8; ++i)
5915      if (MaskVals[i] < 0 || MaskVals[i] == i)
5916        InOrder.set(i);
5917  }
5918
5919  // The other elements are put in the right place using pextrw and pinsrw.
5920  for (unsigned i = 0; i != 8; ++i) {
5921    if (InOrder[i])
5922      continue;
5923    int EltIdx = MaskVals[i];
5924    if (EltIdx < 0)
5925      continue;
5926    SDValue ExtOp = (EltIdx < 8) ?
5927      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5928                  DAG.getIntPtrConstant(EltIdx)) :
5929      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5930                  DAG.getIntPtrConstant(EltIdx - 8));
5931    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5932                       DAG.getIntPtrConstant(i));
5933  }
5934  return NewV;
5935}
5936
5937// v16i8 shuffles - Prefer shuffles in the following order:
5938// 1. [ssse3] 1 x pshufb
5939// 2. [ssse3] 2 x pshufb + 1 x por
5940// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5941static
5942SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5943                                 SelectionDAG &DAG,
5944                                 const X86TargetLowering &TLI) {
5945  SDValue V1 = SVOp->getOperand(0);
5946  SDValue V2 = SVOp->getOperand(1);
5947  DebugLoc dl = SVOp->getDebugLoc();
5948  ArrayRef<int> MaskVals = SVOp->getMask();
5949
5950  // If we have SSSE3, case 1 is generated when all result bytes come from
5951  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5952  // present, fall back to case 3.
5953
5954  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5955  if (TLI.getSubtarget()->hasSSSE3()) {
5956    SmallVector<SDValue,16> pshufbMask;
5957
5958    // If all result elements are from one input vector, then only translate
5959    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5960    //
5961    // Otherwise, we have elements from both input vectors, and must zero out
5962    // elements that come from V2 in the first mask, and V1 in the second mask
5963    // so that we can OR them together.
5964    for (unsigned i = 0; i != 16; ++i) {
5965      int EltIdx = MaskVals[i];
5966      if (EltIdx < 0 || EltIdx >= 16)
5967        EltIdx = 0x80;
5968      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5969    }
5970    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5971                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5972                                 MVT::v16i8, &pshufbMask[0], 16));
5973
5974    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5975    // the 2nd operand if it's undefined or zero.
5976    if (V2.getOpcode() == ISD::UNDEF ||
5977        ISD::isBuildVectorAllZeros(V2.getNode()))
5978      return V1;
5979
5980    // Calculate the shuffle mask for the second input, shuffle it, and
5981    // OR it with the first shuffled input.
5982    pshufbMask.clear();
5983    for (unsigned i = 0; i != 16; ++i) {
5984      int EltIdx = MaskVals[i];
5985      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5986      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5987    }
5988    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5989                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5990                                 MVT::v16i8, &pshufbMask[0], 16));
5991    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5992  }
5993
5994  // No SSSE3 - Calculate in place words and then fix all out of place words
5995  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5996  // the 16 different words that comprise the two doublequadword input vectors.
5997  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5998  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5999  SDValue NewV = V1;
6000  for (int i = 0; i != 8; ++i) {
6001    int Elt0 = MaskVals[i*2];
6002    int Elt1 = MaskVals[i*2+1];
6003
6004    // This word of the result is all undef, skip it.
6005    if (Elt0 < 0 && Elt1 < 0)
6006      continue;
6007
6008    // This word of the result is already in the correct place, skip it.
6009    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6010      continue;
6011
6012    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6013    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6014    SDValue InsElt;
6015
6016    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6017    // using a single extract together, load it and store it.
6018    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6019      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6020                           DAG.getIntPtrConstant(Elt1 / 2));
6021      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6022                        DAG.getIntPtrConstant(i));
6023      continue;
6024    }
6025
6026    // If Elt1 is defined, extract it from the appropriate source.  If the
6027    // source byte is not also odd, shift the extracted word left 8 bits
6028    // otherwise clear the bottom 8 bits if we need to do an or.
6029    if (Elt1 >= 0) {
6030      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6031                           DAG.getIntPtrConstant(Elt1 / 2));
6032      if ((Elt1 & 1) == 0)
6033        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6034                             DAG.getConstant(8,
6035                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6036      else if (Elt0 >= 0)
6037        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6038                             DAG.getConstant(0xFF00, MVT::i16));
6039    }
6040    // If Elt0 is defined, extract it from the appropriate source.  If the
6041    // source byte is not also even, shift the extracted word right 8 bits. If
6042    // Elt1 was also defined, OR the extracted values together before
6043    // inserting them in the result.
6044    if (Elt0 >= 0) {
6045      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6046                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6047      if ((Elt0 & 1) != 0)
6048        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6049                              DAG.getConstant(8,
6050                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6051      else if (Elt1 >= 0)
6052        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6053                             DAG.getConstant(0x00FF, MVT::i16));
6054      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6055                         : InsElt0;
6056    }
6057    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6058                       DAG.getIntPtrConstant(i));
6059  }
6060  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6061}
6062
6063// v32i8 shuffles - Translate to VPSHUFB if possible.
6064static
6065SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6066                                 const X86Subtarget *Subtarget,
6067                                 SelectionDAG &DAG) {
6068  EVT VT = SVOp->getValueType(0);
6069  SDValue V1 = SVOp->getOperand(0);
6070  SDValue V2 = SVOp->getOperand(1);
6071  DebugLoc dl = SVOp->getDebugLoc();
6072  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6073
6074  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6075  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6076  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6077
6078  // VPSHUFB may be generated if
6079  // (1) one of input vector is undefined or zeroinitializer.
6080  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6081  // And (2) the mask indexes don't cross the 128-bit lane.
6082  if (VT != MVT::v32i8 || !Subtarget->hasAVX2() ||
6083      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6084    return SDValue();
6085
6086  if (V1IsAllZero && !V2IsAllZero) {
6087    CommuteVectorShuffleMask(MaskVals, 32);
6088    V1 = V2;
6089  }
6090  SmallVector<SDValue, 32> pshufbMask;
6091  for (unsigned i = 0; i != 32; i++) {
6092    int EltIdx = MaskVals[i];
6093    if (EltIdx < 0 || EltIdx >= 32)
6094      EltIdx = 0x80;
6095    else {
6096      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6097        // Cross lane is not allowed.
6098        return SDValue();
6099      EltIdx &= 0xf;
6100    }
6101    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6102  }
6103  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6104                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6105                                  MVT::v32i8, &pshufbMask[0], 32));
6106}
6107
6108/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6109/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6110/// done when every pair / quad of shuffle mask elements point to elements in
6111/// the right sequence. e.g.
6112/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6113static
6114SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6115                                 SelectionDAG &DAG, DebugLoc dl) {
6116  MVT VT = SVOp->getValueType(0).getSimpleVT();
6117  unsigned NumElems = VT.getVectorNumElements();
6118  MVT NewVT;
6119  unsigned Scale;
6120  switch (VT.SimpleTy) {
6121  default: llvm_unreachable("Unexpected!");
6122  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6123  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6124  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6125  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6126  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6127  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6128  }
6129
6130  SmallVector<int, 8> MaskVec;
6131  for (unsigned i = 0; i != NumElems; i += Scale) {
6132    int StartIdx = -1;
6133    for (unsigned j = 0; j != Scale; ++j) {
6134      int EltIdx = SVOp->getMaskElt(i+j);
6135      if (EltIdx < 0)
6136        continue;
6137      if (StartIdx < 0)
6138        StartIdx = (EltIdx / Scale);
6139      if (EltIdx != (int)(StartIdx*Scale + j))
6140        return SDValue();
6141    }
6142    MaskVec.push_back(StartIdx);
6143  }
6144
6145  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6146  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6147  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6148}
6149
6150/// getVZextMovL - Return a zero-extending vector move low node.
6151///
6152static SDValue getVZextMovL(EVT VT, EVT OpVT,
6153                            SDValue SrcOp, SelectionDAG &DAG,
6154                            const X86Subtarget *Subtarget, DebugLoc dl) {
6155  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6156    LoadSDNode *LD = NULL;
6157    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6158      LD = dyn_cast<LoadSDNode>(SrcOp);
6159    if (!LD) {
6160      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6161      // instead.
6162      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6163      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6164          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6165          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6166          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6167        // PR2108
6168        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6169        return DAG.getNode(ISD::BITCAST, dl, VT,
6170                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6171                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6172                                                   OpVT,
6173                                                   SrcOp.getOperand(0)
6174                                                          .getOperand(0))));
6175      }
6176    }
6177  }
6178
6179  return DAG.getNode(ISD::BITCAST, dl, VT,
6180                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6181                                 DAG.getNode(ISD::BITCAST, dl,
6182                                             OpVT, SrcOp)));
6183}
6184
6185/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6186/// which could not be matched by any known target speficic shuffle
6187static SDValue
6188LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6189
6190  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6191  if (NewOp.getNode())
6192    return NewOp;
6193
6194  EVT VT = SVOp->getValueType(0);
6195
6196  unsigned NumElems = VT.getVectorNumElements();
6197  unsigned NumLaneElems = NumElems / 2;
6198
6199  DebugLoc dl = SVOp->getDebugLoc();
6200  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6201  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6202  SDValue Output[2];
6203
6204  SmallVector<int, 16> Mask;
6205  for (unsigned l = 0; l < 2; ++l) {
6206    // Build a shuffle mask for the output, discovering on the fly which
6207    // input vectors to use as shuffle operands (recorded in InputUsed).
6208    // If building a suitable shuffle vector proves too hard, then bail
6209    // out with UseBuildVector set.
6210    bool UseBuildVector = false;
6211    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6212    unsigned LaneStart = l * NumLaneElems;
6213    for (unsigned i = 0; i != NumLaneElems; ++i) {
6214      // The mask element.  This indexes into the input.
6215      int Idx = SVOp->getMaskElt(i+LaneStart);
6216      if (Idx < 0) {
6217        // the mask element does not index into any input vector.
6218        Mask.push_back(-1);
6219        continue;
6220      }
6221
6222      // The input vector this mask element indexes into.
6223      int Input = Idx / NumLaneElems;
6224
6225      // Turn the index into an offset from the start of the input vector.
6226      Idx -= Input * NumLaneElems;
6227
6228      // Find or create a shuffle vector operand to hold this input.
6229      unsigned OpNo;
6230      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6231        if (InputUsed[OpNo] == Input)
6232          // This input vector is already an operand.
6233          break;
6234        if (InputUsed[OpNo] < 0) {
6235          // Create a new operand for this input vector.
6236          InputUsed[OpNo] = Input;
6237          break;
6238        }
6239      }
6240
6241      if (OpNo >= array_lengthof(InputUsed)) {
6242        // More than two input vectors used!  Give up on trying to create a
6243        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6244        UseBuildVector = true;
6245        break;
6246      }
6247
6248      // Add the mask index for the new shuffle vector.
6249      Mask.push_back(Idx + OpNo * NumLaneElems);
6250    }
6251
6252    if (UseBuildVector) {
6253      SmallVector<SDValue, 16> SVOps;
6254      for (unsigned i = 0; i != NumLaneElems; ++i) {
6255        // The mask element.  This indexes into the input.
6256        int Idx = SVOp->getMaskElt(i+LaneStart);
6257        if (Idx < 0) {
6258          SVOps.push_back(DAG.getUNDEF(EltVT));
6259          continue;
6260        }
6261
6262        // The input vector this mask element indexes into.
6263        int Input = Idx / NumElems;
6264
6265        // Turn the index into an offset from the start of the input vector.
6266        Idx -= Input * NumElems;
6267
6268        // Extract the vector element by hand.
6269        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6270                                    SVOp->getOperand(Input),
6271                                    DAG.getIntPtrConstant(Idx)));
6272      }
6273
6274      // Construct the output using a BUILD_VECTOR.
6275      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6276                              SVOps.size());
6277    } else if (InputUsed[0] < 0) {
6278      // No input vectors were used! The result is undefined.
6279      Output[l] = DAG.getUNDEF(NVT);
6280    } else {
6281      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6282                                        (InputUsed[0] % 2) * NumLaneElems,
6283                                        DAG, dl);
6284      // If only one input was used, use an undefined vector for the other.
6285      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6286        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6287                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6288      // At least one input vector was used. Create a new shuffle vector.
6289      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6290    }
6291
6292    Mask.clear();
6293  }
6294
6295  // Concatenate the result back
6296  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6297}
6298
6299/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6300/// 4 elements, and match them with several different shuffle types.
6301static SDValue
6302LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6303  SDValue V1 = SVOp->getOperand(0);
6304  SDValue V2 = SVOp->getOperand(1);
6305  DebugLoc dl = SVOp->getDebugLoc();
6306  EVT VT = SVOp->getValueType(0);
6307
6308  assert(VT.is128BitVector() && "Unsupported vector size");
6309
6310  std::pair<int, int> Locs[4];
6311  int Mask1[] = { -1, -1, -1, -1 };
6312  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6313
6314  unsigned NumHi = 0;
6315  unsigned NumLo = 0;
6316  for (unsigned i = 0; i != 4; ++i) {
6317    int Idx = PermMask[i];
6318    if (Idx < 0) {
6319      Locs[i] = std::make_pair(-1, -1);
6320    } else {
6321      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6322      if (Idx < 4) {
6323        Locs[i] = std::make_pair(0, NumLo);
6324        Mask1[NumLo] = Idx;
6325        NumLo++;
6326      } else {
6327        Locs[i] = std::make_pair(1, NumHi);
6328        if (2+NumHi < 4)
6329          Mask1[2+NumHi] = Idx;
6330        NumHi++;
6331      }
6332    }
6333  }
6334
6335  if (NumLo <= 2 && NumHi <= 2) {
6336    // If no more than two elements come from either vector. This can be
6337    // implemented with two shuffles. First shuffle gather the elements.
6338    // The second shuffle, which takes the first shuffle as both of its
6339    // vector operands, put the elements into the right order.
6340    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6341
6342    int Mask2[] = { -1, -1, -1, -1 };
6343
6344    for (unsigned i = 0; i != 4; ++i)
6345      if (Locs[i].first != -1) {
6346        unsigned Idx = (i < 2) ? 0 : 4;
6347        Idx += Locs[i].first * 2 + Locs[i].second;
6348        Mask2[i] = Idx;
6349      }
6350
6351    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6352  }
6353
6354  if (NumLo == 3 || NumHi == 3) {
6355    // Otherwise, we must have three elements from one vector, call it X, and
6356    // one element from the other, call it Y.  First, use a shufps to build an
6357    // intermediate vector with the one element from Y and the element from X
6358    // that will be in the same half in the final destination (the indexes don't
6359    // matter). Then, use a shufps to build the final vector, taking the half
6360    // containing the element from Y from the intermediate, and the other half
6361    // from X.
6362    if (NumHi == 3) {
6363      // Normalize it so the 3 elements come from V1.
6364      CommuteVectorShuffleMask(PermMask, 4);
6365      std::swap(V1, V2);
6366    }
6367
6368    // Find the element from V2.
6369    unsigned HiIndex;
6370    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6371      int Val = PermMask[HiIndex];
6372      if (Val < 0)
6373        continue;
6374      if (Val >= 4)
6375        break;
6376    }
6377
6378    Mask1[0] = PermMask[HiIndex];
6379    Mask1[1] = -1;
6380    Mask1[2] = PermMask[HiIndex^1];
6381    Mask1[3] = -1;
6382    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6383
6384    if (HiIndex >= 2) {
6385      Mask1[0] = PermMask[0];
6386      Mask1[1] = PermMask[1];
6387      Mask1[2] = HiIndex & 1 ? 6 : 4;
6388      Mask1[3] = HiIndex & 1 ? 4 : 6;
6389      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6390    }
6391
6392    Mask1[0] = HiIndex & 1 ? 2 : 0;
6393    Mask1[1] = HiIndex & 1 ? 0 : 2;
6394    Mask1[2] = PermMask[2];
6395    Mask1[3] = PermMask[3];
6396    if (Mask1[2] >= 0)
6397      Mask1[2] += 4;
6398    if (Mask1[3] >= 0)
6399      Mask1[3] += 4;
6400    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6401  }
6402
6403  // Break it into (shuffle shuffle_hi, shuffle_lo).
6404  int LoMask[] = { -1, -1, -1, -1 };
6405  int HiMask[] = { -1, -1, -1, -1 };
6406
6407  int *MaskPtr = LoMask;
6408  unsigned MaskIdx = 0;
6409  unsigned LoIdx = 0;
6410  unsigned HiIdx = 2;
6411  for (unsigned i = 0; i != 4; ++i) {
6412    if (i == 2) {
6413      MaskPtr = HiMask;
6414      MaskIdx = 1;
6415      LoIdx = 0;
6416      HiIdx = 2;
6417    }
6418    int Idx = PermMask[i];
6419    if (Idx < 0) {
6420      Locs[i] = std::make_pair(-1, -1);
6421    } else if (Idx < 4) {
6422      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6423      MaskPtr[LoIdx] = Idx;
6424      LoIdx++;
6425    } else {
6426      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6427      MaskPtr[HiIdx] = Idx;
6428      HiIdx++;
6429    }
6430  }
6431
6432  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6433  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6434  int MaskOps[] = { -1, -1, -1, -1 };
6435  for (unsigned i = 0; i != 4; ++i)
6436    if (Locs[i].first != -1)
6437      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6438  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6439}
6440
6441static bool MayFoldVectorLoad(SDValue V) {
6442  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6443    V = V.getOperand(0);
6444
6445  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6446    V = V.getOperand(0);
6447  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6448      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6449    // BUILD_VECTOR (load), undef
6450    V = V.getOperand(0);
6451
6452  return MayFoldLoad(V);
6453}
6454
6455// FIXME: the version above should always be used. Since there's
6456// a bug where several vector shuffles can't be folded because the
6457// DAG is not updated during lowering and a node claims to have two
6458// uses while it only has one, use this version, and let isel match
6459// another instruction if the load really happens to have more than
6460// one use. Remove this version after this bug get fixed.
6461// rdar://8434668, PR8156
6462static bool RelaxedMayFoldVectorLoad(SDValue V) {
6463  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6464    V = V.getOperand(0);
6465  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6466    V = V.getOperand(0);
6467  if (ISD::isNormalLoad(V.getNode()))
6468    return true;
6469  return false;
6470}
6471
6472static
6473SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6474  EVT VT = Op.getValueType();
6475
6476  // Canonizalize to v2f64.
6477  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6478  return DAG.getNode(ISD::BITCAST, dl, VT,
6479                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6480                                          V1, DAG));
6481}
6482
6483static
6484SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6485                        bool HasSSE2) {
6486  SDValue V1 = Op.getOperand(0);
6487  SDValue V2 = Op.getOperand(1);
6488  EVT VT = Op.getValueType();
6489
6490  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6491
6492  if (HasSSE2 && VT == MVT::v2f64)
6493    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6494
6495  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6496  return DAG.getNode(ISD::BITCAST, dl, VT,
6497                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6498                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6499                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6500}
6501
6502static
6503SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6504  SDValue V1 = Op.getOperand(0);
6505  SDValue V2 = Op.getOperand(1);
6506  EVT VT = Op.getValueType();
6507
6508  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6509         "unsupported shuffle type");
6510
6511  if (V2.getOpcode() == ISD::UNDEF)
6512    V2 = V1;
6513
6514  // v4i32 or v4f32
6515  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6516}
6517
6518static
6519SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6520  SDValue V1 = Op.getOperand(0);
6521  SDValue V2 = Op.getOperand(1);
6522  EVT VT = Op.getValueType();
6523  unsigned NumElems = VT.getVectorNumElements();
6524
6525  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6526  // operand of these instructions is only memory, so check if there's a
6527  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6528  // same masks.
6529  bool CanFoldLoad = false;
6530
6531  // Trivial case, when V2 comes from a load.
6532  if (MayFoldVectorLoad(V2))
6533    CanFoldLoad = true;
6534
6535  // When V1 is a load, it can be folded later into a store in isel, example:
6536  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6537  //    turns into:
6538  //  (MOVLPSmr addr:$src1, VR128:$src2)
6539  // So, recognize this potential and also use MOVLPS or MOVLPD
6540  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6541    CanFoldLoad = true;
6542
6543  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6544  if (CanFoldLoad) {
6545    if (HasSSE2 && NumElems == 2)
6546      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6547
6548    if (NumElems == 4)
6549      // If we don't care about the second element, proceed to use movss.
6550      if (SVOp->getMaskElt(1) != -1)
6551        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6552  }
6553
6554  // movl and movlp will both match v2i64, but v2i64 is never matched by
6555  // movl earlier because we make it strict to avoid messing with the movlp load
6556  // folding logic (see the code above getMOVLP call). Match it here then,
6557  // this is horrible, but will stay like this until we move all shuffle
6558  // matching to x86 specific nodes. Note that for the 1st condition all
6559  // types are matched with movsd.
6560  if (HasSSE2) {
6561    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6562    // as to remove this logic from here, as much as possible
6563    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6564      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6565    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6566  }
6567
6568  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6569
6570  // Invert the operand order and use SHUFPS to match it.
6571  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6572                              getShuffleSHUFImmediate(SVOp), DAG);
6573}
6574
6575// Reduce a vector shuffle to zext.
6576SDValue
6577X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6578  // PMOVZX is only available from SSE41.
6579  if (!Subtarget->hasSSE41())
6580    return SDValue();
6581
6582  EVT VT = Op.getValueType();
6583
6584  // Only AVX2 support 256-bit vector integer extending.
6585  if (!Subtarget->hasAVX2() && VT.is256BitVector())
6586    return SDValue();
6587
6588  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6589  DebugLoc DL = Op.getDebugLoc();
6590  SDValue V1 = Op.getOperand(0);
6591  SDValue V2 = Op.getOperand(1);
6592  unsigned NumElems = VT.getVectorNumElements();
6593
6594  // Extending is an unary operation and the element type of the source vector
6595  // won't be equal to or larger than i64.
6596  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6597      VT.getVectorElementType() == MVT::i64)
6598    return SDValue();
6599
6600  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6601  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6602  while ((1U << Shift) < NumElems) {
6603    if (SVOp->getMaskElt(1U << Shift) == 1)
6604      break;
6605    Shift += 1;
6606    // The maximal ratio is 8, i.e. from i8 to i64.
6607    if (Shift > 3)
6608      return SDValue();
6609  }
6610
6611  // Check the shuffle mask.
6612  unsigned Mask = (1U << Shift) - 1;
6613  for (unsigned i = 0; i != NumElems; ++i) {
6614    int EltIdx = SVOp->getMaskElt(i);
6615    if ((i & Mask) != 0 && EltIdx != -1)
6616      return SDValue();
6617    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6618      return SDValue();
6619  }
6620
6621  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6622  EVT NeVT = EVT::getIntegerVT(*DAG.getContext(), NBits);
6623  EVT NVT = EVT::getVectorVT(*DAG.getContext(), NeVT, NumElems >> Shift);
6624
6625  if (!isTypeLegal(NVT))
6626    return SDValue();
6627
6628  // Simplify the operand as it's prepared to be fed into shuffle.
6629  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6630  if (V1.getOpcode() == ISD::BITCAST &&
6631      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6632      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6633      V1.getOperand(0)
6634        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6635    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6636    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6637    ConstantSDNode *CIdx =
6638      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6639    // If it's foldable, i.e. normal load with single use, we will let code
6640    // selection to fold it. Otherwise, we will short the conversion sequence.
6641    if (CIdx && CIdx->getZExtValue() == 0 &&
6642        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse()))
6643      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6644  }
6645
6646  return DAG.getNode(ISD::BITCAST, DL, VT,
6647                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6648}
6649
6650SDValue
6651X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6652  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6653  EVT VT = Op.getValueType();
6654  DebugLoc dl = Op.getDebugLoc();
6655  SDValue V1 = Op.getOperand(0);
6656  SDValue V2 = Op.getOperand(1);
6657
6658  if (isZeroShuffle(SVOp))
6659    return getZeroVector(VT, Subtarget, DAG, dl);
6660
6661  // Handle splat operations
6662  if (SVOp->isSplat()) {
6663    unsigned NumElem = VT.getVectorNumElements();
6664    int Size = VT.getSizeInBits();
6665
6666    // Use vbroadcast whenever the splat comes from a foldable load
6667    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6668    if (Broadcast.getNode())
6669      return Broadcast;
6670
6671    // Handle splats by matching through known shuffle masks
6672    if ((Size == 128 && NumElem <= 4) ||
6673        (Size == 256 && NumElem < 8))
6674      return SDValue();
6675
6676    // All remaning splats are promoted to target supported vector shuffles.
6677    return PromoteSplat(SVOp, DAG);
6678  }
6679
6680  // Check integer expanding shuffles.
6681  SDValue NewOp = lowerVectorIntExtend(Op, DAG);
6682  if (NewOp.getNode())
6683    return NewOp;
6684
6685  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6686  // do it!
6687  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6688      VT == MVT::v16i16 || VT == MVT::v32i8) {
6689    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6690    if (NewOp.getNode())
6691      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6692  } else if ((VT == MVT::v4i32 ||
6693             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6694    // FIXME: Figure out a cleaner way to do this.
6695    // Try to make use of movq to zero out the top part.
6696    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6697      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6698      if (NewOp.getNode()) {
6699        EVT NewVT = NewOp.getValueType();
6700        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6701                               NewVT, true, false))
6702          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6703                              DAG, Subtarget, dl);
6704      }
6705    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6706      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6707      if (NewOp.getNode()) {
6708        EVT NewVT = NewOp.getValueType();
6709        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6710          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6711                              DAG, Subtarget, dl);
6712      }
6713    }
6714  }
6715  return SDValue();
6716}
6717
6718SDValue
6719X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6720  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6721  SDValue V1 = Op.getOperand(0);
6722  SDValue V2 = Op.getOperand(1);
6723  EVT VT = Op.getValueType();
6724  DebugLoc dl = Op.getDebugLoc();
6725  unsigned NumElems = VT.getVectorNumElements();
6726  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6727  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6728  bool V1IsSplat = false;
6729  bool V2IsSplat = false;
6730  bool HasSSE2 = Subtarget->hasSSE2();
6731  bool HasAVX    = Subtarget->hasAVX();
6732  bool HasAVX2   = Subtarget->hasAVX2();
6733  MachineFunction &MF = DAG.getMachineFunction();
6734  bool OptForSize = MF.getFunction()->getFnAttributes().
6735    hasAttribute(Attributes::OptimizeForSize);
6736
6737  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6738
6739  if (V1IsUndef && V2IsUndef)
6740    return DAG.getUNDEF(VT);
6741
6742  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6743
6744  // Vector shuffle lowering takes 3 steps:
6745  //
6746  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6747  //    narrowing and commutation of operands should be handled.
6748  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6749  //    shuffle nodes.
6750  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6751  //    so the shuffle can be broken into other shuffles and the legalizer can
6752  //    try the lowering again.
6753  //
6754  // The general idea is that no vector_shuffle operation should be left to
6755  // be matched during isel, all of them must be converted to a target specific
6756  // node here.
6757
6758  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6759  // narrowing and commutation of operands should be handled. The actual code
6760  // doesn't include all of those, work in progress...
6761  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6762  if (NewOp.getNode())
6763    return NewOp;
6764
6765  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6766
6767  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6768  // unpckh_undef). Only use pshufd if speed is more important than size.
6769  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6770    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6771  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6772    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6773
6774  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6775      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6776    return getMOVDDup(Op, dl, V1, DAG);
6777
6778  if (isMOVHLPS_v_undef_Mask(M, VT))
6779    return getMOVHighToLow(Op, dl, DAG);
6780
6781  // Use to match splats
6782  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6783      (VT == MVT::v2f64 || VT == MVT::v2i64))
6784    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6785
6786  if (isPSHUFDMask(M, VT)) {
6787    // The actual implementation will match the mask in the if above and then
6788    // during isel it can match several different instructions, not only pshufd
6789    // as its name says, sad but true, emulate the behavior for now...
6790    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6791      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6792
6793    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6794
6795    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6796      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6797
6798    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6799      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6800
6801    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6802                                TargetMask, DAG);
6803  }
6804
6805  // Check if this can be converted into a logical shift.
6806  bool isLeft = false;
6807  unsigned ShAmt = 0;
6808  SDValue ShVal;
6809  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6810  if (isShift && ShVal.hasOneUse()) {
6811    // If the shifted value has multiple uses, it may be cheaper to use
6812    // v_set0 + movlhps or movhlps, etc.
6813    EVT EltVT = VT.getVectorElementType();
6814    ShAmt *= EltVT.getSizeInBits();
6815    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6816  }
6817
6818  if (isMOVLMask(M, VT)) {
6819    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6820      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6821    if (!isMOVLPMask(M, VT)) {
6822      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6823        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6824
6825      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6826        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6827    }
6828  }
6829
6830  // FIXME: fold these into legal mask.
6831  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6832    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6833
6834  if (isMOVHLPSMask(M, VT))
6835    return getMOVHighToLow(Op, dl, DAG);
6836
6837  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6838    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6839
6840  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6841    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6842
6843  if (isMOVLPMask(M, VT))
6844    return getMOVLP(Op, dl, DAG, HasSSE2);
6845
6846  if (ShouldXformToMOVHLPS(M, VT) ||
6847      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6848    return CommuteVectorShuffle(SVOp, DAG);
6849
6850  if (isShift) {
6851    // No better options. Use a vshldq / vsrldq.
6852    EVT EltVT = VT.getVectorElementType();
6853    ShAmt *= EltVT.getSizeInBits();
6854    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6855  }
6856
6857  bool Commuted = false;
6858  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6859  // 1,1,1,1 -> v8i16 though.
6860  V1IsSplat = isSplatVector(V1.getNode());
6861  V2IsSplat = isSplatVector(V2.getNode());
6862
6863  // Canonicalize the splat or undef, if present, to be on the RHS.
6864  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6865    CommuteVectorShuffleMask(M, NumElems);
6866    std::swap(V1, V2);
6867    std::swap(V1IsSplat, V2IsSplat);
6868    Commuted = true;
6869  }
6870
6871  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6872    // Shuffling low element of v1 into undef, just return v1.
6873    if (V2IsUndef)
6874      return V1;
6875    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6876    // the instruction selector will not match, so get a canonical MOVL with
6877    // swapped operands to undo the commute.
6878    return getMOVL(DAG, dl, VT, V2, V1);
6879  }
6880
6881  if (isUNPCKLMask(M, VT, HasAVX2))
6882    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6883
6884  if (isUNPCKHMask(M, VT, HasAVX2))
6885    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6886
6887  if (V2IsSplat) {
6888    // Normalize mask so all entries that point to V2 points to its first
6889    // element then try to match unpck{h|l} again. If match, return a
6890    // new vector_shuffle with the corrected mask.p
6891    SmallVector<int, 8> NewMask(M.begin(), M.end());
6892    NormalizeMask(NewMask, NumElems);
6893    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6894      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6895    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6896      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6897  }
6898
6899  if (Commuted) {
6900    // Commute is back and try unpck* again.
6901    // FIXME: this seems wrong.
6902    CommuteVectorShuffleMask(M, NumElems);
6903    std::swap(V1, V2);
6904    std::swap(V1IsSplat, V2IsSplat);
6905    Commuted = false;
6906
6907    if (isUNPCKLMask(M, VT, HasAVX2))
6908      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6909
6910    if (isUNPCKHMask(M, VT, HasAVX2))
6911      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6912  }
6913
6914  // Normalize the node to match x86 shuffle ops if needed
6915  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6916    return CommuteVectorShuffle(SVOp, DAG);
6917
6918  // The checks below are all present in isShuffleMaskLegal, but they are
6919  // inlined here right now to enable us to directly emit target specific
6920  // nodes, and remove one by one until they don't return Op anymore.
6921
6922  if (isPALIGNRMask(M, VT, Subtarget))
6923    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6924                                getShufflePALIGNRImmediate(SVOp),
6925                                DAG);
6926
6927  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6928      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6929    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6930      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6931  }
6932
6933  if (isPSHUFHWMask(M, VT, HasAVX2))
6934    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6935                                getShufflePSHUFHWImmediate(SVOp),
6936                                DAG);
6937
6938  if (isPSHUFLWMask(M, VT, HasAVX2))
6939    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6940                                getShufflePSHUFLWImmediate(SVOp),
6941                                DAG);
6942
6943  if (isSHUFPMask(M, VT, HasAVX))
6944    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6945                                getShuffleSHUFImmediate(SVOp), DAG);
6946
6947  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6948    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6949  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6950    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6951
6952  //===--------------------------------------------------------------------===//
6953  // Generate target specific nodes for 128 or 256-bit shuffles only
6954  // supported in the AVX instruction set.
6955  //
6956
6957  // Handle VMOVDDUPY permutations
6958  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6959    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6960
6961  // Handle VPERMILPS/D* permutations
6962  if (isVPERMILPMask(M, VT, HasAVX)) {
6963    if (HasAVX2 && VT == MVT::v8i32)
6964      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6965                                  getShuffleSHUFImmediate(SVOp), DAG);
6966    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6967                                getShuffleSHUFImmediate(SVOp), DAG);
6968  }
6969
6970  // Handle VPERM2F128/VPERM2I128 permutations
6971  if (isVPERM2X128Mask(M, VT, HasAVX))
6972    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6973                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6974
6975  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6976  if (BlendOp.getNode())
6977    return BlendOp;
6978
6979  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6980    SmallVector<SDValue, 8> permclMask;
6981    for (unsigned i = 0; i != 8; ++i) {
6982      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6983    }
6984    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6985                               &permclMask[0], 8);
6986    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6987    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6988                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6989  }
6990
6991  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6992    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6993                                getShuffleCLImmediate(SVOp), DAG);
6994
6995
6996  //===--------------------------------------------------------------------===//
6997  // Since no target specific shuffle was selected for this generic one,
6998  // lower it into other known shuffles. FIXME: this isn't true yet, but
6999  // this is the plan.
7000  //
7001
7002  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7003  if (VT == MVT::v8i16) {
7004    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7005    if (NewOp.getNode())
7006      return NewOp;
7007  }
7008
7009  if (VT == MVT::v16i8) {
7010    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7011    if (NewOp.getNode())
7012      return NewOp;
7013  }
7014
7015  if (VT == MVT::v32i8) {
7016    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7017    if (NewOp.getNode())
7018      return NewOp;
7019  }
7020
7021  // Handle all 128-bit wide vectors with 4 elements, and match them with
7022  // several different shuffle types.
7023  if (NumElems == 4 && VT.is128BitVector())
7024    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7025
7026  // Handle general 256-bit shuffles
7027  if (VT.is256BitVector())
7028    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7029
7030  return SDValue();
7031}
7032
7033SDValue
7034X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
7035                                                SelectionDAG &DAG) const {
7036  EVT VT = Op.getValueType();
7037  DebugLoc dl = Op.getDebugLoc();
7038
7039  if (!Op.getOperand(0).getValueType().is128BitVector())
7040    return SDValue();
7041
7042  if (VT.getSizeInBits() == 8) {
7043    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7044                                  Op.getOperand(0), Op.getOperand(1));
7045    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7046                                  DAG.getValueType(VT));
7047    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7048  }
7049
7050  if (VT.getSizeInBits() == 16) {
7051    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7052    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7053    if (Idx == 0)
7054      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7055                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7056                                     DAG.getNode(ISD::BITCAST, dl,
7057                                                 MVT::v4i32,
7058                                                 Op.getOperand(0)),
7059                                     Op.getOperand(1)));
7060    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7061                                  Op.getOperand(0), Op.getOperand(1));
7062    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7063                                  DAG.getValueType(VT));
7064    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7065  }
7066
7067  if (VT == MVT::f32) {
7068    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7069    // the result back to FR32 register. It's only worth matching if the
7070    // result has a single use which is a store or a bitcast to i32.  And in
7071    // the case of a store, it's not worth it if the index is a constant 0,
7072    // because a MOVSSmr can be used instead, which is smaller and faster.
7073    if (!Op.hasOneUse())
7074      return SDValue();
7075    SDNode *User = *Op.getNode()->use_begin();
7076    if ((User->getOpcode() != ISD::STORE ||
7077         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7078          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7079        (User->getOpcode() != ISD::BITCAST ||
7080         User->getValueType(0) != MVT::i32))
7081      return SDValue();
7082    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7083                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7084                                              Op.getOperand(0)),
7085                                              Op.getOperand(1));
7086    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7087  }
7088
7089  if (VT == MVT::i32 || VT == MVT::i64) {
7090    // ExtractPS/pextrq works with constant index.
7091    if (isa<ConstantSDNode>(Op.getOperand(1)))
7092      return Op;
7093  }
7094  return SDValue();
7095}
7096
7097
7098SDValue
7099X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7100                                           SelectionDAG &DAG) const {
7101  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7102    return SDValue();
7103
7104  SDValue Vec = Op.getOperand(0);
7105  EVT VecVT = Vec.getValueType();
7106
7107  // If this is a 256-bit vector result, first extract the 128-bit vector and
7108  // then extract the element from the 128-bit vector.
7109  if (VecVT.is256BitVector()) {
7110    DebugLoc dl = Op.getNode()->getDebugLoc();
7111    unsigned NumElems = VecVT.getVectorNumElements();
7112    SDValue Idx = Op.getOperand(1);
7113    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7114
7115    // Get the 128-bit vector.
7116    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7117
7118    if (IdxVal >= NumElems/2)
7119      IdxVal -= NumElems/2;
7120    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7121                       DAG.getConstant(IdxVal, MVT::i32));
7122  }
7123
7124  assert(VecVT.is128BitVector() && "Unexpected vector length");
7125
7126  if (Subtarget->hasSSE41()) {
7127    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7128    if (Res.getNode())
7129      return Res;
7130  }
7131
7132  EVT VT = Op.getValueType();
7133  DebugLoc dl = Op.getDebugLoc();
7134  // TODO: handle v16i8.
7135  if (VT.getSizeInBits() == 16) {
7136    SDValue Vec = Op.getOperand(0);
7137    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7138    if (Idx == 0)
7139      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7140                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7141                                     DAG.getNode(ISD::BITCAST, dl,
7142                                                 MVT::v4i32, Vec),
7143                                     Op.getOperand(1)));
7144    // Transform it so it match pextrw which produces a 32-bit result.
7145    EVT EltVT = MVT::i32;
7146    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7147                                  Op.getOperand(0), Op.getOperand(1));
7148    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7149                                  DAG.getValueType(VT));
7150    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7151  }
7152
7153  if (VT.getSizeInBits() == 32) {
7154    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7155    if (Idx == 0)
7156      return Op;
7157
7158    // SHUFPS the element to the lowest double word, then movss.
7159    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7160    EVT VVT = Op.getOperand(0).getValueType();
7161    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7162                                       DAG.getUNDEF(VVT), Mask);
7163    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7164                       DAG.getIntPtrConstant(0));
7165  }
7166
7167  if (VT.getSizeInBits() == 64) {
7168    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7169    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7170    //        to match extract_elt for f64.
7171    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7172    if (Idx == 0)
7173      return Op;
7174
7175    // UNPCKHPD the element to the lowest double word, then movsd.
7176    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7177    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7178    int Mask[2] = { 1, -1 };
7179    EVT VVT = Op.getOperand(0).getValueType();
7180    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7181                                       DAG.getUNDEF(VVT), Mask);
7182    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7183                       DAG.getIntPtrConstant(0));
7184  }
7185
7186  return SDValue();
7187}
7188
7189SDValue
7190X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7191                                               SelectionDAG &DAG) const {
7192  EVT VT = Op.getValueType();
7193  EVT EltVT = VT.getVectorElementType();
7194  DebugLoc dl = Op.getDebugLoc();
7195
7196  SDValue N0 = Op.getOperand(0);
7197  SDValue N1 = Op.getOperand(1);
7198  SDValue N2 = Op.getOperand(2);
7199
7200  if (!VT.is128BitVector())
7201    return SDValue();
7202
7203  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7204      isa<ConstantSDNode>(N2)) {
7205    unsigned Opc;
7206    if (VT == MVT::v8i16)
7207      Opc = X86ISD::PINSRW;
7208    else if (VT == MVT::v16i8)
7209      Opc = X86ISD::PINSRB;
7210    else
7211      Opc = X86ISD::PINSRB;
7212
7213    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7214    // argument.
7215    if (N1.getValueType() != MVT::i32)
7216      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7217    if (N2.getValueType() != MVT::i32)
7218      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7219    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7220  }
7221
7222  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7223    // Bits [7:6] of the constant are the source select.  This will always be
7224    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7225    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7226    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7227    // Bits [5:4] of the constant are the destination select.  This is the
7228    //  value of the incoming immediate.
7229    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7230    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7231    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7232    // Create this as a scalar to vector..
7233    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7234    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7235  }
7236
7237  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7238    // PINSR* works with constant index.
7239    return Op;
7240  }
7241  return SDValue();
7242}
7243
7244SDValue
7245X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7246  EVT VT = Op.getValueType();
7247  EVT EltVT = VT.getVectorElementType();
7248
7249  DebugLoc dl = Op.getDebugLoc();
7250  SDValue N0 = Op.getOperand(0);
7251  SDValue N1 = Op.getOperand(1);
7252  SDValue N2 = Op.getOperand(2);
7253
7254  // If this is a 256-bit vector result, first extract the 128-bit vector,
7255  // insert the element into the extracted half and then place it back.
7256  if (VT.is256BitVector()) {
7257    if (!isa<ConstantSDNode>(N2))
7258      return SDValue();
7259
7260    // Get the desired 128-bit vector half.
7261    unsigned NumElems = VT.getVectorNumElements();
7262    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7263    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7264
7265    // Insert the element into the desired half.
7266    bool Upper = IdxVal >= NumElems/2;
7267    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7268                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7269
7270    // Insert the changed part back to the 256-bit vector
7271    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7272  }
7273
7274  if (Subtarget->hasSSE41())
7275    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7276
7277  if (EltVT == MVT::i8)
7278    return SDValue();
7279
7280  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7281    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7282    // as its second argument.
7283    if (N1.getValueType() != MVT::i32)
7284      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7285    if (N2.getValueType() != MVT::i32)
7286      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7287    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7288  }
7289  return SDValue();
7290}
7291
7292static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7293  LLVMContext *Context = DAG.getContext();
7294  DebugLoc dl = Op.getDebugLoc();
7295  EVT OpVT = Op.getValueType();
7296
7297  // If this is a 256-bit vector result, first insert into a 128-bit
7298  // vector and then insert into the 256-bit vector.
7299  if (!OpVT.is128BitVector()) {
7300    // Insert into a 128-bit vector.
7301    EVT VT128 = EVT::getVectorVT(*Context,
7302                                 OpVT.getVectorElementType(),
7303                                 OpVT.getVectorNumElements() / 2);
7304
7305    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7306
7307    // Insert the 128-bit vector.
7308    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7309  }
7310
7311  if (OpVT == MVT::v1i64 &&
7312      Op.getOperand(0).getValueType() == MVT::i64)
7313    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7314
7315  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7316  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7317  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7318                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7319}
7320
7321// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7322// a simple subregister reference or explicit instructions to grab
7323// upper bits of a vector.
7324static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7325                                      SelectionDAG &DAG) {
7326  if (Subtarget->hasAVX()) {
7327    DebugLoc dl = Op.getNode()->getDebugLoc();
7328    SDValue Vec = Op.getNode()->getOperand(0);
7329    SDValue Idx = Op.getNode()->getOperand(1);
7330
7331    if (Op.getNode()->getValueType(0).is128BitVector() &&
7332        Vec.getNode()->getValueType(0).is256BitVector() &&
7333        isa<ConstantSDNode>(Idx)) {
7334      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7335      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7336    }
7337  }
7338  return SDValue();
7339}
7340
7341// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7342// simple superregister reference or explicit instructions to insert
7343// the upper bits of a vector.
7344static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7345                                     SelectionDAG &DAG) {
7346  if (Subtarget->hasAVX()) {
7347    DebugLoc dl = Op.getNode()->getDebugLoc();
7348    SDValue Vec = Op.getNode()->getOperand(0);
7349    SDValue SubVec = Op.getNode()->getOperand(1);
7350    SDValue Idx = Op.getNode()->getOperand(2);
7351
7352    if (Op.getNode()->getValueType(0).is256BitVector() &&
7353        SubVec.getNode()->getValueType(0).is128BitVector() &&
7354        isa<ConstantSDNode>(Idx)) {
7355      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7356      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7357    }
7358  }
7359  return SDValue();
7360}
7361
7362// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7363// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7364// one of the above mentioned nodes. It has to be wrapped because otherwise
7365// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7366// be used to form addressing mode. These wrapped nodes will be selected
7367// into MOV32ri.
7368SDValue
7369X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7370  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7371
7372  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7373  // global base reg.
7374  unsigned char OpFlag = 0;
7375  unsigned WrapperKind = X86ISD::Wrapper;
7376  CodeModel::Model M = getTargetMachine().getCodeModel();
7377
7378  if (Subtarget->isPICStyleRIPRel() &&
7379      (M == CodeModel::Small || M == CodeModel::Kernel))
7380    WrapperKind = X86ISD::WrapperRIP;
7381  else if (Subtarget->isPICStyleGOT())
7382    OpFlag = X86II::MO_GOTOFF;
7383  else if (Subtarget->isPICStyleStubPIC())
7384    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7385
7386  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7387                                             CP->getAlignment(),
7388                                             CP->getOffset(), OpFlag);
7389  DebugLoc DL = CP->getDebugLoc();
7390  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7391  // With PIC, the address is actually $g + Offset.
7392  if (OpFlag) {
7393    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7394                         DAG.getNode(X86ISD::GlobalBaseReg,
7395                                     DebugLoc(), getPointerTy()),
7396                         Result);
7397  }
7398
7399  return Result;
7400}
7401
7402SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7403  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7404
7405  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7406  // global base reg.
7407  unsigned char OpFlag = 0;
7408  unsigned WrapperKind = X86ISD::Wrapper;
7409  CodeModel::Model M = getTargetMachine().getCodeModel();
7410
7411  if (Subtarget->isPICStyleRIPRel() &&
7412      (M == CodeModel::Small || M == CodeModel::Kernel))
7413    WrapperKind = X86ISD::WrapperRIP;
7414  else if (Subtarget->isPICStyleGOT())
7415    OpFlag = X86II::MO_GOTOFF;
7416  else if (Subtarget->isPICStyleStubPIC())
7417    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7418
7419  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7420                                          OpFlag);
7421  DebugLoc DL = JT->getDebugLoc();
7422  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7423
7424  // With PIC, the address is actually $g + Offset.
7425  if (OpFlag)
7426    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7427                         DAG.getNode(X86ISD::GlobalBaseReg,
7428                                     DebugLoc(), getPointerTy()),
7429                         Result);
7430
7431  return Result;
7432}
7433
7434SDValue
7435X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7436  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7437
7438  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7439  // global base reg.
7440  unsigned char OpFlag = 0;
7441  unsigned WrapperKind = X86ISD::Wrapper;
7442  CodeModel::Model M = getTargetMachine().getCodeModel();
7443
7444  if (Subtarget->isPICStyleRIPRel() &&
7445      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7446    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7447      OpFlag = X86II::MO_GOTPCREL;
7448    WrapperKind = X86ISD::WrapperRIP;
7449  } else if (Subtarget->isPICStyleGOT()) {
7450    OpFlag = X86II::MO_GOT;
7451  } else if (Subtarget->isPICStyleStubPIC()) {
7452    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7453  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7454    OpFlag = X86II::MO_DARWIN_NONLAZY;
7455  }
7456
7457  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7458
7459  DebugLoc DL = Op.getDebugLoc();
7460  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7461
7462
7463  // With PIC, the address is actually $g + Offset.
7464  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7465      !Subtarget->is64Bit()) {
7466    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7467                         DAG.getNode(X86ISD::GlobalBaseReg,
7468                                     DebugLoc(), getPointerTy()),
7469                         Result);
7470  }
7471
7472  // For symbols that require a load from a stub to get the address, emit the
7473  // load.
7474  if (isGlobalStubReference(OpFlag))
7475    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7476                         MachinePointerInfo::getGOT(), false, false, false, 0);
7477
7478  return Result;
7479}
7480
7481SDValue
7482X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7483  // Create the TargetBlockAddressAddress node.
7484  unsigned char OpFlags =
7485    Subtarget->ClassifyBlockAddressReference();
7486  CodeModel::Model M = getTargetMachine().getCodeModel();
7487  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7488  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7489  DebugLoc dl = Op.getDebugLoc();
7490  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7491                                             OpFlags);
7492
7493  if (Subtarget->isPICStyleRIPRel() &&
7494      (M == CodeModel::Small || M == CodeModel::Kernel))
7495    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7496  else
7497    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7498
7499  // With PIC, the address is actually $g + Offset.
7500  if (isGlobalRelativeToPICBase(OpFlags)) {
7501    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7502                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7503                         Result);
7504  }
7505
7506  return Result;
7507}
7508
7509SDValue
7510X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7511                                      int64_t Offset,
7512                                      SelectionDAG &DAG) const {
7513  // Create the TargetGlobalAddress node, folding in the constant
7514  // offset if it is legal.
7515  unsigned char OpFlags =
7516    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7517  CodeModel::Model M = getTargetMachine().getCodeModel();
7518  SDValue Result;
7519  if (OpFlags == X86II::MO_NO_FLAG &&
7520      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7521    // A direct static reference to a global.
7522    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7523    Offset = 0;
7524  } else {
7525    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7526  }
7527
7528  if (Subtarget->isPICStyleRIPRel() &&
7529      (M == CodeModel::Small || M == CodeModel::Kernel))
7530    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7531  else
7532    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7533
7534  // With PIC, the address is actually $g + Offset.
7535  if (isGlobalRelativeToPICBase(OpFlags)) {
7536    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7537                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7538                         Result);
7539  }
7540
7541  // For globals that require a load from a stub to get the address, emit the
7542  // load.
7543  if (isGlobalStubReference(OpFlags))
7544    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7545                         MachinePointerInfo::getGOT(), false, false, false, 0);
7546
7547  // If there was a non-zero offset that we didn't fold, create an explicit
7548  // addition for it.
7549  if (Offset != 0)
7550    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7551                         DAG.getConstant(Offset, getPointerTy()));
7552
7553  return Result;
7554}
7555
7556SDValue
7557X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7558  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7559  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7560  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7561}
7562
7563static SDValue
7564GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7565           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7566           unsigned char OperandFlags, bool LocalDynamic = false) {
7567  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7568  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7569  DebugLoc dl = GA->getDebugLoc();
7570  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7571                                           GA->getValueType(0),
7572                                           GA->getOffset(),
7573                                           OperandFlags);
7574
7575  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7576                                           : X86ISD::TLSADDR;
7577
7578  if (InFlag) {
7579    SDValue Ops[] = { Chain,  TGA, *InFlag };
7580    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7581  } else {
7582    SDValue Ops[]  = { Chain, TGA };
7583    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7584  }
7585
7586  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7587  MFI->setAdjustsStack(true);
7588
7589  SDValue Flag = Chain.getValue(1);
7590  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7591}
7592
7593// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7594static SDValue
7595LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7596                                const EVT PtrVT) {
7597  SDValue InFlag;
7598  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7599  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7600                                   DAG.getNode(X86ISD::GlobalBaseReg,
7601                                               DebugLoc(), PtrVT), InFlag);
7602  InFlag = Chain.getValue(1);
7603
7604  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7605}
7606
7607// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7608static SDValue
7609LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7610                                const EVT PtrVT) {
7611  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7612                    X86::RAX, X86II::MO_TLSGD);
7613}
7614
7615static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7616                                           SelectionDAG &DAG,
7617                                           const EVT PtrVT,
7618                                           bool is64Bit) {
7619  DebugLoc dl = GA->getDebugLoc();
7620
7621  // Get the start address of the TLS block for this module.
7622  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7623      .getInfo<X86MachineFunctionInfo>();
7624  MFI->incNumLocalDynamicTLSAccesses();
7625
7626  SDValue Base;
7627  if (is64Bit) {
7628    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7629                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7630  } else {
7631    SDValue InFlag;
7632    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7633        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7634    InFlag = Chain.getValue(1);
7635    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7636                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7637  }
7638
7639  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7640  // of Base.
7641
7642  // Build x@dtpoff.
7643  unsigned char OperandFlags = X86II::MO_DTPOFF;
7644  unsigned WrapperKind = X86ISD::Wrapper;
7645  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7646                                           GA->getValueType(0),
7647                                           GA->getOffset(), OperandFlags);
7648  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7649
7650  // Add x@dtpoff with the base.
7651  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7652}
7653
7654// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7655static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7656                                   const EVT PtrVT, TLSModel::Model model,
7657                                   bool is64Bit, bool isPIC) {
7658  DebugLoc dl = GA->getDebugLoc();
7659
7660  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7661  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7662                                                         is64Bit ? 257 : 256));
7663
7664  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7665                                      DAG.getIntPtrConstant(0),
7666                                      MachinePointerInfo(Ptr),
7667                                      false, false, false, 0);
7668
7669  unsigned char OperandFlags = 0;
7670  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7671  // initialexec.
7672  unsigned WrapperKind = X86ISD::Wrapper;
7673  if (model == TLSModel::LocalExec) {
7674    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7675  } else if (model == TLSModel::InitialExec) {
7676    if (is64Bit) {
7677      OperandFlags = X86II::MO_GOTTPOFF;
7678      WrapperKind = X86ISD::WrapperRIP;
7679    } else {
7680      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7681    }
7682  } else {
7683    llvm_unreachable("Unexpected model");
7684  }
7685
7686  // emit "addl x@ntpoff,%eax" (local exec)
7687  // or "addl x@indntpoff,%eax" (initial exec)
7688  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7689  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7690                                           GA->getValueType(0),
7691                                           GA->getOffset(), OperandFlags);
7692  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7693
7694  if (model == TLSModel::InitialExec) {
7695    if (isPIC && !is64Bit) {
7696      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7697                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7698                           Offset);
7699    }
7700
7701    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7702                         MachinePointerInfo::getGOT(), false, false, false,
7703                         0);
7704  }
7705
7706  // The address of the thread local variable is the add of the thread
7707  // pointer with the offset of the variable.
7708  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7709}
7710
7711SDValue
7712X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7713
7714  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7715  const GlobalValue *GV = GA->getGlobal();
7716
7717  if (Subtarget->isTargetELF()) {
7718    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7719
7720    switch (model) {
7721      case TLSModel::GeneralDynamic:
7722        if (Subtarget->is64Bit())
7723          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7724        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7725      case TLSModel::LocalDynamic:
7726        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7727                                           Subtarget->is64Bit());
7728      case TLSModel::InitialExec:
7729      case TLSModel::LocalExec:
7730        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7731                                   Subtarget->is64Bit(),
7732                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7733    }
7734    llvm_unreachable("Unknown TLS model.");
7735  }
7736
7737  if (Subtarget->isTargetDarwin()) {
7738    // Darwin only has one model of TLS.  Lower to that.
7739    unsigned char OpFlag = 0;
7740    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7741                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7742
7743    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7744    // global base reg.
7745    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7746                  !Subtarget->is64Bit();
7747    if (PIC32)
7748      OpFlag = X86II::MO_TLVP_PIC_BASE;
7749    else
7750      OpFlag = X86II::MO_TLVP;
7751    DebugLoc DL = Op.getDebugLoc();
7752    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7753                                                GA->getValueType(0),
7754                                                GA->getOffset(), OpFlag);
7755    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7756
7757    // With PIC32, the address is actually $g + Offset.
7758    if (PIC32)
7759      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7760                           DAG.getNode(X86ISD::GlobalBaseReg,
7761                                       DebugLoc(), getPointerTy()),
7762                           Offset);
7763
7764    // Lowering the machine isd will make sure everything is in the right
7765    // location.
7766    SDValue Chain = DAG.getEntryNode();
7767    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7768    SDValue Args[] = { Chain, Offset };
7769    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7770
7771    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7772    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7773    MFI->setAdjustsStack(true);
7774
7775    // And our return value (tls address) is in the standard call return value
7776    // location.
7777    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7778    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7779                              Chain.getValue(1));
7780  }
7781
7782  if (Subtarget->isTargetWindows()) {
7783    // Just use the implicit TLS architecture
7784    // Need to generate someting similar to:
7785    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7786    //                                  ; from TEB
7787    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7788    //   mov     rcx, qword [rdx+rcx*8]
7789    //   mov     eax, .tls$:tlsvar
7790    //   [rax+rcx] contains the address
7791    // Windows 64bit: gs:0x58
7792    // Windows 32bit: fs:__tls_array
7793
7794    // If GV is an alias then use the aliasee for determining
7795    // thread-localness.
7796    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7797      GV = GA->resolveAliasedGlobal(false);
7798    DebugLoc dl = GA->getDebugLoc();
7799    SDValue Chain = DAG.getEntryNode();
7800
7801    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7802    // %gs:0x58 (64-bit).
7803    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7804                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7805                                                             256)
7806                                        : Type::getInt32PtrTy(*DAG.getContext(),
7807                                                              257));
7808
7809    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7810                                        Subtarget->is64Bit()
7811                                        ? DAG.getIntPtrConstant(0x58)
7812                                        : DAG.getExternalSymbol("_tls_array",
7813                                                                getPointerTy()),
7814                                        MachinePointerInfo(Ptr),
7815                                        false, false, false, 0);
7816
7817    // Load the _tls_index variable
7818    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7819    if (Subtarget->is64Bit())
7820      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7821                           IDX, MachinePointerInfo(), MVT::i32,
7822                           false, false, 0);
7823    else
7824      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7825                        false, false, false, 0);
7826
7827    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize(0)),
7828                                    getPointerTy());
7829    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7830
7831    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7832    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7833                      false, false, false, 0);
7834
7835    // Get the offset of start of .tls section
7836    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7837                                             GA->getValueType(0),
7838                                             GA->getOffset(), X86II::MO_SECREL);
7839    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7840
7841    // The address of the thread local variable is the add of the thread
7842    // pointer with the offset of the variable.
7843    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7844  }
7845
7846  llvm_unreachable("TLS not implemented for this target.");
7847}
7848
7849
7850/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7851/// and take a 2 x i32 value to shift plus a shift amount.
7852SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7853  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7854  EVT VT = Op.getValueType();
7855  unsigned VTBits = VT.getSizeInBits();
7856  DebugLoc dl = Op.getDebugLoc();
7857  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7858  SDValue ShOpLo = Op.getOperand(0);
7859  SDValue ShOpHi = Op.getOperand(1);
7860  SDValue ShAmt  = Op.getOperand(2);
7861  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7862                                     DAG.getConstant(VTBits - 1, MVT::i8))
7863                       : DAG.getConstant(0, VT);
7864
7865  SDValue Tmp2, Tmp3;
7866  if (Op.getOpcode() == ISD::SHL_PARTS) {
7867    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7868    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7869  } else {
7870    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7871    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7872  }
7873
7874  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7875                                DAG.getConstant(VTBits, MVT::i8));
7876  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7877                             AndNode, DAG.getConstant(0, MVT::i8));
7878
7879  SDValue Hi, Lo;
7880  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7881  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7882  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7883
7884  if (Op.getOpcode() == ISD::SHL_PARTS) {
7885    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7886    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7887  } else {
7888    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7889    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7890  }
7891
7892  SDValue Ops[2] = { Lo, Hi };
7893  return DAG.getMergeValues(Ops, 2, dl);
7894}
7895
7896SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7897                                           SelectionDAG &DAG) const {
7898  EVT SrcVT = Op.getOperand(0).getValueType();
7899
7900  if (SrcVT.isVector())
7901    return SDValue();
7902
7903  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7904         "Unknown SINT_TO_FP to lower!");
7905
7906  // These are really Legal; return the operand so the caller accepts it as
7907  // Legal.
7908  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7909    return Op;
7910  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7911      Subtarget->is64Bit()) {
7912    return Op;
7913  }
7914
7915  DebugLoc dl = Op.getDebugLoc();
7916  unsigned Size = SrcVT.getSizeInBits()/8;
7917  MachineFunction &MF = DAG.getMachineFunction();
7918  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7919  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7920  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7921                               StackSlot,
7922                               MachinePointerInfo::getFixedStack(SSFI),
7923                               false, false, 0);
7924  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7925}
7926
7927SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7928                                     SDValue StackSlot,
7929                                     SelectionDAG &DAG) const {
7930  // Build the FILD
7931  DebugLoc DL = Op.getDebugLoc();
7932  SDVTList Tys;
7933  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7934  if (useSSE)
7935    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7936  else
7937    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7938
7939  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7940
7941  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7942  MachineMemOperand *MMO;
7943  if (FI) {
7944    int SSFI = FI->getIndex();
7945    MMO =
7946      DAG.getMachineFunction()
7947      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7948                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7949  } else {
7950    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7951    StackSlot = StackSlot.getOperand(1);
7952  }
7953  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7954  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7955                                           X86ISD::FILD, DL,
7956                                           Tys, Ops, array_lengthof(Ops),
7957                                           SrcVT, MMO);
7958
7959  if (useSSE) {
7960    Chain = Result.getValue(1);
7961    SDValue InFlag = Result.getValue(2);
7962
7963    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7964    // shouldn't be necessary except that RFP cannot be live across
7965    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7966    MachineFunction &MF = DAG.getMachineFunction();
7967    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7968    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7969    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7970    Tys = DAG.getVTList(MVT::Other);
7971    SDValue Ops[] = {
7972      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7973    };
7974    MachineMemOperand *MMO =
7975      DAG.getMachineFunction()
7976      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7977                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7978
7979    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7980                                    Ops, array_lengthof(Ops),
7981                                    Op.getValueType(), MMO);
7982    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7983                         MachinePointerInfo::getFixedStack(SSFI),
7984                         false, false, false, 0);
7985  }
7986
7987  return Result;
7988}
7989
7990// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7991SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7992                                               SelectionDAG &DAG) const {
7993  // This algorithm is not obvious. Here it is what we're trying to output:
7994  /*
7995     movq       %rax,  %xmm0
7996     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7997     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7998     #ifdef __SSE3__
7999       haddpd   %xmm0, %xmm0
8000     #else
8001       pshufd   $0x4e, %xmm0, %xmm1
8002       addpd    %xmm1, %xmm0
8003     #endif
8004  */
8005
8006  DebugLoc dl = Op.getDebugLoc();
8007  LLVMContext *Context = DAG.getContext();
8008
8009  // Build some magic constants.
8010  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8011  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8012  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8013
8014  SmallVector<Constant*,2> CV1;
8015  CV1.push_back(
8016        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
8017  CV1.push_back(
8018        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
8019  Constant *C1 = ConstantVector::get(CV1);
8020  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8021
8022  // Load the 64-bit value into an XMM register.
8023  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8024                            Op.getOperand(0));
8025  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8026                              MachinePointerInfo::getConstantPool(),
8027                              false, false, false, 16);
8028  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8029                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8030                              CLod0);
8031
8032  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8033                              MachinePointerInfo::getConstantPool(),
8034                              false, false, false, 16);
8035  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8036  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8037  SDValue Result;
8038
8039  if (Subtarget->hasSSE3()) {
8040    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8041    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8042  } else {
8043    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8044    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8045                                           S2F, 0x4E, DAG);
8046    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8047                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8048                         Sub);
8049  }
8050
8051  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8052                     DAG.getIntPtrConstant(0));
8053}
8054
8055// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8056SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8057                                               SelectionDAG &DAG) const {
8058  DebugLoc dl = Op.getDebugLoc();
8059  // FP constant to bias correct the final result.
8060  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8061                                   MVT::f64);
8062
8063  // Load the 32-bit value into an XMM register.
8064  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8065                             Op.getOperand(0));
8066
8067  // Zero out the upper parts of the register.
8068  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8069
8070  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8071                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8072                     DAG.getIntPtrConstant(0));
8073
8074  // Or the load with the bias.
8075  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8076                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8077                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8078                                                   MVT::v2f64, Load)),
8079                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8080                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8081                                                   MVT::v2f64, Bias)));
8082  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8083                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8084                   DAG.getIntPtrConstant(0));
8085
8086  // Subtract the bias.
8087  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8088
8089  // Handle final rounding.
8090  EVT DestVT = Op.getValueType();
8091
8092  if (DestVT.bitsLT(MVT::f64))
8093    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8094                       DAG.getIntPtrConstant(0));
8095  if (DestVT.bitsGT(MVT::f64))
8096    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8097
8098  // Handle final rounding.
8099  return Sub;
8100}
8101
8102SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8103                                               SelectionDAG &DAG) const {
8104  SDValue N0 = Op.getOperand(0);
8105  EVT SVT = N0.getValueType();
8106  DebugLoc dl = Op.getDebugLoc();
8107
8108  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8109          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8110         "Custom UINT_TO_FP is not supported!");
8111
8112  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, SVT.getVectorNumElements());
8113  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8114                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8115}
8116
8117SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8118                                           SelectionDAG &DAG) const {
8119  SDValue N0 = Op.getOperand(0);
8120  DebugLoc dl = Op.getDebugLoc();
8121
8122  if (Op.getValueType().isVector())
8123    return lowerUINT_TO_FP_vec(Op, DAG);
8124
8125  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8126  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8127  // the optimization here.
8128  if (DAG.SignBitIsZero(N0))
8129    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8130
8131  EVT SrcVT = N0.getValueType();
8132  EVT DstVT = Op.getValueType();
8133  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8134    return LowerUINT_TO_FP_i64(Op, DAG);
8135  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8136    return LowerUINT_TO_FP_i32(Op, DAG);
8137  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8138    return SDValue();
8139
8140  // Make a 64-bit buffer, and use it to build an FILD.
8141  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8142  if (SrcVT == MVT::i32) {
8143    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8144    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8145                                     getPointerTy(), StackSlot, WordOff);
8146    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8147                                  StackSlot, MachinePointerInfo(),
8148                                  false, false, 0);
8149    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8150                                  OffsetSlot, MachinePointerInfo(),
8151                                  false, false, 0);
8152    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8153    return Fild;
8154  }
8155
8156  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8157  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8158                               StackSlot, MachinePointerInfo(),
8159                               false, false, 0);
8160  // For i64 source, we need to add the appropriate power of 2 if the input
8161  // was negative.  This is the same as the optimization in
8162  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8163  // we must be careful to do the computation in x87 extended precision, not
8164  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8165  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8166  MachineMemOperand *MMO =
8167    DAG.getMachineFunction()
8168    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8169                          MachineMemOperand::MOLoad, 8, 8);
8170
8171  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8172  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8173  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8174                                         MVT::i64, MMO);
8175
8176  APInt FF(32, 0x5F800000ULL);
8177
8178  // Check whether the sign bit is set.
8179  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8180                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8181                                 ISD::SETLT);
8182
8183  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8184  SDValue FudgePtr = DAG.getConstantPool(
8185                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8186                                         getPointerTy());
8187
8188  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8189  SDValue Zero = DAG.getIntPtrConstant(0);
8190  SDValue Four = DAG.getIntPtrConstant(4);
8191  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8192                               Zero, Four);
8193  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8194
8195  // Load the value out, extending it from f32 to f80.
8196  // FIXME: Avoid the extend by constructing the right constant pool?
8197  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8198                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8199                                 MVT::f32, false, false, 4);
8200  // Extend everything to 80 bits to force it to be done on x87.
8201  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8202  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8203}
8204
8205std::pair<SDValue,SDValue> X86TargetLowering::
8206FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8207  DebugLoc DL = Op.getDebugLoc();
8208
8209  EVT DstTy = Op.getValueType();
8210
8211  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8212    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8213    DstTy = MVT::i64;
8214  }
8215
8216  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8217         DstTy.getSimpleVT() >= MVT::i16 &&
8218         "Unknown FP_TO_INT to lower!");
8219
8220  // These are really Legal.
8221  if (DstTy == MVT::i32 &&
8222      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8223    return std::make_pair(SDValue(), SDValue());
8224  if (Subtarget->is64Bit() &&
8225      DstTy == MVT::i64 &&
8226      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8227    return std::make_pair(SDValue(), SDValue());
8228
8229  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8230  // stack slot, or into the FTOL runtime function.
8231  MachineFunction &MF = DAG.getMachineFunction();
8232  unsigned MemSize = DstTy.getSizeInBits()/8;
8233  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8234  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8235
8236  unsigned Opc;
8237  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8238    Opc = X86ISD::WIN_FTOL;
8239  else
8240    switch (DstTy.getSimpleVT().SimpleTy) {
8241    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8242    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8243    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8244    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8245    }
8246
8247  SDValue Chain = DAG.getEntryNode();
8248  SDValue Value = Op.getOperand(0);
8249  EVT TheVT = Op.getOperand(0).getValueType();
8250  // FIXME This causes a redundant load/store if the SSE-class value is already
8251  // in memory, such as if it is on the callstack.
8252  if (isScalarFPTypeInSSEReg(TheVT)) {
8253    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8254    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8255                         MachinePointerInfo::getFixedStack(SSFI),
8256                         false, false, 0);
8257    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8258    SDValue Ops[] = {
8259      Chain, StackSlot, DAG.getValueType(TheVT)
8260    };
8261
8262    MachineMemOperand *MMO =
8263      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8264                              MachineMemOperand::MOLoad, MemSize, MemSize);
8265    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8266                                    DstTy, MMO);
8267    Chain = Value.getValue(1);
8268    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8269    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8270  }
8271
8272  MachineMemOperand *MMO =
8273    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8274                            MachineMemOperand::MOStore, MemSize, MemSize);
8275
8276  if (Opc != X86ISD::WIN_FTOL) {
8277    // Build the FP_TO_INT*_IN_MEM
8278    SDValue Ops[] = { Chain, Value, StackSlot };
8279    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8280                                           Ops, 3, DstTy, MMO);
8281    return std::make_pair(FIST, StackSlot);
8282  } else {
8283    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8284      DAG.getVTList(MVT::Other, MVT::Glue),
8285      Chain, Value);
8286    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8287      MVT::i32, ftol.getValue(1));
8288    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8289      MVT::i32, eax.getValue(2));
8290    SDValue Ops[] = { eax, edx };
8291    SDValue pair = IsReplace
8292      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8293      : DAG.getMergeValues(Ops, 2, DL);
8294    return std::make_pair(pair, SDValue());
8295  }
8296}
8297
8298SDValue X86TargetLowering::lowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const {
8299  DebugLoc DL = Op.getDebugLoc();
8300  EVT VT = Op.getValueType();
8301  SDValue In = Op.getOperand(0);
8302  EVT SVT = In.getValueType();
8303
8304  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8305      VT.getVectorNumElements() != SVT.getVectorNumElements())
8306    return SDValue();
8307
8308  assert(Subtarget->hasAVX() && "256-bit vector is observed without AVX!");
8309
8310  // AVX2 has better support of integer extending.
8311  if (Subtarget->hasAVX2())
8312    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8313
8314  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8315  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8316  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8317                           DAG.getVectorShuffle(MVT::v8i16, DL, In, DAG.getUNDEF(MVT::v8i16), &Mask[0]));
8318
8319  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8320}
8321
8322SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8323  DebugLoc DL = Op.getDebugLoc();
8324  EVT VT = Op.getValueType();
8325  EVT SVT = Op.getOperand(0).getValueType();
8326
8327  if (!VT.is128BitVector() || !SVT.is256BitVector() ||
8328      VT.getVectorNumElements() != SVT.getVectorNumElements())
8329    return SDValue();
8330
8331  assert(Subtarget->hasAVX() && "256-bit vector is observed without AVX!");
8332
8333  unsigned NumElems = VT.getVectorNumElements();
8334  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8335                             NumElems * 2);
8336
8337  SDValue In = Op.getOperand(0);
8338  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8339  // Prepare truncation shuffle mask
8340  for (unsigned i = 0; i != NumElems; ++i)
8341    MaskVec[i] = i * 2;
8342  SDValue V = DAG.getVectorShuffle(NVT, DL,
8343                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8344                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8345  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8346                     DAG.getIntPtrConstant(0));
8347}
8348
8349SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8350                                           SelectionDAG &DAG) const {
8351  if (Op.getValueType().isVector()) {
8352    if (Op.getValueType() == MVT::v8i16)
8353      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), Op.getValueType(),
8354                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8355                                     MVT::v8i32, Op.getOperand(0)));
8356    return SDValue();
8357  }
8358
8359  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8360    /*IsSigned=*/ true, /*IsReplace=*/ false);
8361  SDValue FIST = Vals.first, StackSlot = Vals.second;
8362  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8363  if (FIST.getNode() == 0) return Op;
8364
8365  if (StackSlot.getNode())
8366    // Load the result.
8367    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8368                       FIST, StackSlot, MachinePointerInfo(),
8369                       false, false, false, 0);
8370
8371  // The node is the result.
8372  return FIST;
8373}
8374
8375SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8376                                           SelectionDAG &DAG) const {
8377  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8378    /*IsSigned=*/ false, /*IsReplace=*/ false);
8379  SDValue FIST = Vals.first, StackSlot = Vals.second;
8380  assert(FIST.getNode() && "Unexpected failure");
8381
8382  if (StackSlot.getNode())
8383    // Load the result.
8384    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8385                       FIST, StackSlot, MachinePointerInfo(),
8386                       false, false, false, 0);
8387
8388  // The node is the result.
8389  return FIST;
8390}
8391
8392SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op,
8393                                          SelectionDAG &DAG) const {
8394  DebugLoc DL = Op.getDebugLoc();
8395  EVT VT = Op.getValueType();
8396  SDValue In = Op.getOperand(0);
8397  EVT SVT = In.getValueType();
8398
8399  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8400
8401  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8402                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8403                                 In, DAG.getUNDEF(SVT)));
8404}
8405
8406SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8407  LLVMContext *Context = DAG.getContext();
8408  DebugLoc dl = Op.getDebugLoc();
8409  EVT VT = Op.getValueType();
8410  EVT EltVT = VT;
8411  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8412  if (VT.isVector()) {
8413    EltVT = VT.getVectorElementType();
8414    NumElts = VT.getVectorNumElements();
8415  }
8416  Constant *C;
8417  if (EltVT == MVT::f64)
8418    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8419  else
8420    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8421  C = ConstantVector::getSplat(NumElts, C);
8422  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8423  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8424  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8425                             MachinePointerInfo::getConstantPool(),
8426                             false, false, false, Alignment);
8427  if (VT.isVector()) {
8428    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8429    return DAG.getNode(ISD::BITCAST, dl, VT,
8430                       DAG.getNode(ISD::AND, dl, ANDVT,
8431                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8432                                               Op.getOperand(0)),
8433                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8434  }
8435  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8436}
8437
8438SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8439  LLVMContext *Context = DAG.getContext();
8440  DebugLoc dl = Op.getDebugLoc();
8441  EVT VT = Op.getValueType();
8442  EVT EltVT = VT;
8443  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8444  if (VT.isVector()) {
8445    EltVT = VT.getVectorElementType();
8446    NumElts = VT.getVectorNumElements();
8447  }
8448  Constant *C;
8449  if (EltVT == MVT::f64)
8450    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8451  else
8452    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8453  C = ConstantVector::getSplat(NumElts, C);
8454  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8455  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8456  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8457                             MachinePointerInfo::getConstantPool(),
8458                             false, false, false, Alignment);
8459  if (VT.isVector()) {
8460    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8461    return DAG.getNode(ISD::BITCAST, dl, VT,
8462                       DAG.getNode(ISD::XOR, dl, XORVT,
8463                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8464                                               Op.getOperand(0)),
8465                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8466  }
8467
8468  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8469}
8470
8471SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8472  LLVMContext *Context = DAG.getContext();
8473  SDValue Op0 = Op.getOperand(0);
8474  SDValue Op1 = Op.getOperand(1);
8475  DebugLoc dl = Op.getDebugLoc();
8476  EVT VT = Op.getValueType();
8477  EVT SrcVT = Op1.getValueType();
8478
8479  // If second operand is smaller, extend it first.
8480  if (SrcVT.bitsLT(VT)) {
8481    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8482    SrcVT = VT;
8483  }
8484  // And if it is bigger, shrink it first.
8485  if (SrcVT.bitsGT(VT)) {
8486    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8487    SrcVT = VT;
8488  }
8489
8490  // At this point the operands and the result should have the same
8491  // type, and that won't be f80 since that is not custom lowered.
8492
8493  // First get the sign bit of second operand.
8494  SmallVector<Constant*,4> CV;
8495  if (SrcVT == MVT::f64) {
8496    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8497    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8498  } else {
8499    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8500    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8501    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8502    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8503  }
8504  Constant *C = ConstantVector::get(CV);
8505  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8506  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8507                              MachinePointerInfo::getConstantPool(),
8508                              false, false, false, 16);
8509  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8510
8511  // Shift sign bit right or left if the two operands have different types.
8512  if (SrcVT.bitsGT(VT)) {
8513    // Op0 is MVT::f32, Op1 is MVT::f64.
8514    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8515    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8516                          DAG.getConstant(32, MVT::i32));
8517    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8518    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8519                          DAG.getIntPtrConstant(0));
8520  }
8521
8522  // Clear first operand sign bit.
8523  CV.clear();
8524  if (VT == MVT::f64) {
8525    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8526    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8527  } else {
8528    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8529    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8530    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8531    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8532  }
8533  C = ConstantVector::get(CV);
8534  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8535  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8536                              MachinePointerInfo::getConstantPool(),
8537                              false, false, false, 16);
8538  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8539
8540  // Or the value with the sign bit.
8541  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8542}
8543
8544static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8545  SDValue N0 = Op.getOperand(0);
8546  DebugLoc dl = Op.getDebugLoc();
8547  EVT VT = Op.getValueType();
8548
8549  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8550  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8551                                  DAG.getConstant(1, VT));
8552  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8553}
8554
8555// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8556//
8557SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8558  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8559
8560  if (!Subtarget->hasSSE41())
8561    return SDValue();
8562
8563  if (!Op->hasOneUse())
8564    return SDValue();
8565
8566  SDNode *N = Op.getNode();
8567  DebugLoc DL = N->getDebugLoc();
8568
8569  SmallVector<SDValue, 8> Opnds;
8570  DenseMap<SDValue, unsigned> VecInMap;
8571  EVT VT = MVT::Other;
8572
8573  // Recognize a special case where a vector is casted into wide integer to
8574  // test all 0s.
8575  Opnds.push_back(N->getOperand(0));
8576  Opnds.push_back(N->getOperand(1));
8577
8578  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8579    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8580    // BFS traverse all OR'd operands.
8581    if (I->getOpcode() == ISD::OR) {
8582      Opnds.push_back(I->getOperand(0));
8583      Opnds.push_back(I->getOperand(1));
8584      // Re-evaluate the number of nodes to be traversed.
8585      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8586      continue;
8587    }
8588
8589    // Quit if a non-EXTRACT_VECTOR_ELT
8590    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8591      return SDValue();
8592
8593    // Quit if without a constant index.
8594    SDValue Idx = I->getOperand(1);
8595    if (!isa<ConstantSDNode>(Idx))
8596      return SDValue();
8597
8598    SDValue ExtractedFromVec = I->getOperand(0);
8599    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8600    if (M == VecInMap.end()) {
8601      VT = ExtractedFromVec.getValueType();
8602      // Quit if not 128/256-bit vector.
8603      if (!VT.is128BitVector() && !VT.is256BitVector())
8604        return SDValue();
8605      // Quit if not the same type.
8606      if (VecInMap.begin() != VecInMap.end() &&
8607          VT != VecInMap.begin()->first.getValueType())
8608        return SDValue();
8609      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8610    }
8611    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8612  }
8613
8614  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8615         "Not extracted from 128-/256-bit vector.");
8616
8617  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8618  SmallVector<SDValue, 8> VecIns;
8619
8620  for (DenseMap<SDValue, unsigned>::const_iterator
8621        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8622    // Quit if not all elements are used.
8623    if (I->second != FullMask)
8624      return SDValue();
8625    VecIns.push_back(I->first);
8626  }
8627
8628  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8629
8630  // Cast all vectors into TestVT for PTEST.
8631  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8632    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8633
8634  // If more than one full vectors are evaluated, OR them first before PTEST.
8635  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8636    // Each iteration will OR 2 nodes and append the result until there is only
8637    // 1 node left, i.e. the final OR'd value of all vectors.
8638    SDValue LHS = VecIns[Slot];
8639    SDValue RHS = VecIns[Slot + 1];
8640    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8641  }
8642
8643  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8644                     VecIns.back(), VecIns.back());
8645}
8646
8647/// Emit nodes that will be selected as "test Op0,Op0", or something
8648/// equivalent.
8649SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8650                                    SelectionDAG &DAG) const {
8651  DebugLoc dl = Op.getDebugLoc();
8652
8653  // CF and OF aren't always set the way we want. Determine which
8654  // of these we need.
8655  bool NeedCF = false;
8656  bool NeedOF = false;
8657  switch (X86CC) {
8658  default: break;
8659  case X86::COND_A: case X86::COND_AE:
8660  case X86::COND_B: case X86::COND_BE:
8661    NeedCF = true;
8662    break;
8663  case X86::COND_G: case X86::COND_GE:
8664  case X86::COND_L: case X86::COND_LE:
8665  case X86::COND_O: case X86::COND_NO:
8666    NeedOF = true;
8667    break;
8668  }
8669
8670  // See if we can use the EFLAGS value from the operand instead of
8671  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8672  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8673  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8674    // Emit a CMP with 0, which is the TEST pattern.
8675    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8676                       DAG.getConstant(0, Op.getValueType()));
8677
8678  unsigned Opcode = 0;
8679  unsigned NumOperands = 0;
8680
8681  // Truncate operations may prevent the merge of the SETCC instruction
8682  // and the arithmetic intruction before it. Attempt to truncate the operands
8683  // of the arithmetic instruction and use a reduced bit-width instruction.
8684  bool NeedTruncation = false;
8685  SDValue ArithOp = Op;
8686  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8687    SDValue Arith = Op->getOperand(0);
8688    // Both the trunc and the arithmetic op need to have one user each.
8689    if (Arith->hasOneUse())
8690      switch (Arith.getOpcode()) {
8691        default: break;
8692        case ISD::ADD:
8693        case ISD::SUB:
8694        case ISD::AND:
8695        case ISD::OR:
8696        case ISD::XOR: {
8697          NeedTruncation = true;
8698          ArithOp = Arith;
8699        }
8700      }
8701  }
8702
8703  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8704  // which may be the result of a CAST.  We use the variable 'Op', which is the
8705  // non-casted variable when we check for possible users.
8706  switch (ArithOp.getOpcode()) {
8707  case ISD::ADD:
8708    // Due to an isel shortcoming, be conservative if this add is likely to be
8709    // selected as part of a load-modify-store instruction. When the root node
8710    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8711    // uses of other nodes in the match, such as the ADD in this case. This
8712    // leads to the ADD being left around and reselected, with the result being
8713    // two adds in the output.  Alas, even if none our users are stores, that
8714    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8715    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8716    // climbing the DAG back to the root, and it doesn't seem to be worth the
8717    // effort.
8718    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8719         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8720      if (UI->getOpcode() != ISD::CopyToReg &&
8721          UI->getOpcode() != ISD::SETCC &&
8722          UI->getOpcode() != ISD::STORE)
8723        goto default_case;
8724
8725    if (ConstantSDNode *C =
8726        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8727      // An add of one will be selected as an INC.
8728      if (C->getAPIntValue() == 1) {
8729        Opcode = X86ISD::INC;
8730        NumOperands = 1;
8731        break;
8732      }
8733
8734      // An add of negative one (subtract of one) will be selected as a DEC.
8735      if (C->getAPIntValue().isAllOnesValue()) {
8736        Opcode = X86ISD::DEC;
8737        NumOperands = 1;
8738        break;
8739      }
8740    }
8741
8742    // Otherwise use a regular EFLAGS-setting add.
8743    Opcode = X86ISD::ADD;
8744    NumOperands = 2;
8745    break;
8746  case ISD::AND: {
8747    // If the primary and result isn't used, don't bother using X86ISD::AND,
8748    // because a TEST instruction will be better.
8749    bool NonFlagUse = false;
8750    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8751           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8752      SDNode *User = *UI;
8753      unsigned UOpNo = UI.getOperandNo();
8754      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8755        // Look pass truncate.
8756        UOpNo = User->use_begin().getOperandNo();
8757        User = *User->use_begin();
8758      }
8759
8760      if (User->getOpcode() != ISD::BRCOND &&
8761          User->getOpcode() != ISD::SETCC &&
8762          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8763        NonFlagUse = true;
8764        break;
8765      }
8766    }
8767
8768    if (!NonFlagUse)
8769      break;
8770  }
8771    // FALL THROUGH
8772  case ISD::SUB:
8773  case ISD::OR:
8774  case ISD::XOR:
8775    // Due to the ISEL shortcoming noted above, be conservative if this op is
8776    // likely to be selected as part of a load-modify-store instruction.
8777    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8778           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8779      if (UI->getOpcode() == ISD::STORE)
8780        goto default_case;
8781
8782    // Otherwise use a regular EFLAGS-setting instruction.
8783    switch (ArithOp.getOpcode()) {
8784    default: llvm_unreachable("unexpected operator!");
8785    case ISD::SUB: Opcode = X86ISD::SUB; break;
8786    case ISD::XOR: Opcode = X86ISD::XOR; break;
8787    case ISD::AND: Opcode = X86ISD::AND; break;
8788    case ISD::OR: {
8789      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8790        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8791        if (EFLAGS.getNode())
8792          return EFLAGS;
8793      }
8794      Opcode = X86ISD::OR;
8795      break;
8796    }
8797    }
8798
8799    NumOperands = 2;
8800    break;
8801  case X86ISD::ADD:
8802  case X86ISD::SUB:
8803  case X86ISD::INC:
8804  case X86ISD::DEC:
8805  case X86ISD::OR:
8806  case X86ISD::XOR:
8807  case X86ISD::AND:
8808    return SDValue(Op.getNode(), 1);
8809  default:
8810  default_case:
8811    break;
8812  }
8813
8814  // If we found that truncation is beneficial, perform the truncation and
8815  // update 'Op'.
8816  if (NeedTruncation) {
8817    EVT VT = Op.getValueType();
8818    SDValue WideVal = Op->getOperand(0);
8819    EVT WideVT = WideVal.getValueType();
8820    unsigned ConvertedOp = 0;
8821    // Use a target machine opcode to prevent further DAGCombine
8822    // optimizations that may separate the arithmetic operations
8823    // from the setcc node.
8824    switch (WideVal.getOpcode()) {
8825      default: break;
8826      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8827      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8828      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8829      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8830      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8831    }
8832
8833    if (ConvertedOp) {
8834      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8835      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8836        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8837        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8838        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8839      }
8840    }
8841  }
8842
8843  if (Opcode == 0)
8844    // Emit a CMP with 0, which is the TEST pattern.
8845    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8846                       DAG.getConstant(0, Op.getValueType()));
8847
8848  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8849  SmallVector<SDValue, 4> Ops;
8850  for (unsigned i = 0; i != NumOperands; ++i)
8851    Ops.push_back(Op.getOperand(i));
8852
8853  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8854  DAG.ReplaceAllUsesWith(Op, New);
8855  return SDValue(New.getNode(), 1);
8856}
8857
8858/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8859/// equivalent.
8860SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8861                                   SelectionDAG &DAG) const {
8862  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8863    if (C->getAPIntValue() == 0)
8864      return EmitTest(Op0, X86CC, DAG);
8865
8866  DebugLoc dl = Op0.getDebugLoc();
8867  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8868       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8869    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8870    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8871    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8872                              Op0, Op1);
8873    return SDValue(Sub.getNode(), 1);
8874  }
8875  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8876}
8877
8878/// Convert a comparison if required by the subtarget.
8879SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8880                                                 SelectionDAG &DAG) const {
8881  // If the subtarget does not support the FUCOMI instruction, floating-point
8882  // comparisons have to be converted.
8883  if (Subtarget->hasCMov() ||
8884      Cmp.getOpcode() != X86ISD::CMP ||
8885      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8886      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8887    return Cmp;
8888
8889  // The instruction selector will select an FUCOM instruction instead of
8890  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8891  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8892  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8893  DebugLoc dl = Cmp.getDebugLoc();
8894  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8895  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8896  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8897                            DAG.getConstant(8, MVT::i8));
8898  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8899  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8900}
8901
8902/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8903/// if it's possible.
8904SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8905                                     DebugLoc dl, SelectionDAG &DAG) const {
8906  SDValue Op0 = And.getOperand(0);
8907  SDValue Op1 = And.getOperand(1);
8908  if (Op0.getOpcode() == ISD::TRUNCATE)
8909    Op0 = Op0.getOperand(0);
8910  if (Op1.getOpcode() == ISD::TRUNCATE)
8911    Op1 = Op1.getOperand(0);
8912
8913  SDValue LHS, RHS;
8914  if (Op1.getOpcode() == ISD::SHL)
8915    std::swap(Op0, Op1);
8916  if (Op0.getOpcode() == ISD::SHL) {
8917    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8918      if (And00C->getZExtValue() == 1) {
8919        // If we looked past a truncate, check that it's only truncating away
8920        // known zeros.
8921        unsigned BitWidth = Op0.getValueSizeInBits();
8922        unsigned AndBitWidth = And.getValueSizeInBits();
8923        if (BitWidth > AndBitWidth) {
8924          APInt Zeros, Ones;
8925          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8926          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8927            return SDValue();
8928        }
8929        LHS = Op1;
8930        RHS = Op0.getOperand(1);
8931      }
8932  } else if (Op1.getOpcode() == ISD::Constant) {
8933    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8934    uint64_t AndRHSVal = AndRHS->getZExtValue();
8935    SDValue AndLHS = Op0;
8936
8937    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8938      LHS = AndLHS.getOperand(0);
8939      RHS = AndLHS.getOperand(1);
8940    }
8941
8942    // Use BT if the immediate can't be encoded in a TEST instruction.
8943    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8944      LHS = AndLHS;
8945      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8946    }
8947  }
8948
8949  if (LHS.getNode()) {
8950    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8951    // instruction.  Since the shift amount is in-range-or-undefined, we know
8952    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8953    // the encoding for the i16 version is larger than the i32 version.
8954    // Also promote i16 to i32 for performance / code size reason.
8955    if (LHS.getValueType() == MVT::i8 ||
8956        LHS.getValueType() == MVT::i16)
8957      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8958
8959    // If the operand types disagree, extend the shift amount to match.  Since
8960    // BT ignores high bits (like shifts) we can use anyextend.
8961    if (LHS.getValueType() != RHS.getValueType())
8962      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8963
8964    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8965    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8966    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8967                       DAG.getConstant(Cond, MVT::i8), BT);
8968  }
8969
8970  return SDValue();
8971}
8972
8973SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8974
8975  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8976
8977  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8978  SDValue Op0 = Op.getOperand(0);
8979  SDValue Op1 = Op.getOperand(1);
8980  DebugLoc dl = Op.getDebugLoc();
8981  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8982
8983  // Optimize to BT if possible.
8984  // Lower (X & (1 << N)) == 0 to BT(X, N).
8985  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8986  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8987  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8988      Op1.getOpcode() == ISD::Constant &&
8989      cast<ConstantSDNode>(Op1)->isNullValue() &&
8990      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8991    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8992    if (NewSetCC.getNode())
8993      return NewSetCC;
8994  }
8995
8996  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8997  // these.
8998  if (Op1.getOpcode() == ISD::Constant &&
8999      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9000       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9001      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9002
9003    // If the input is a setcc, then reuse the input setcc or use a new one with
9004    // the inverted condition.
9005    if (Op0.getOpcode() == X86ISD::SETCC) {
9006      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9007      bool Invert = (CC == ISD::SETNE) ^
9008        cast<ConstantSDNode>(Op1)->isNullValue();
9009      if (!Invert) return Op0;
9010
9011      CCode = X86::GetOppositeBranchCondition(CCode);
9012      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9013                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9014    }
9015  }
9016
9017  bool isFP = Op1.getValueType().isFloatingPoint();
9018  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9019  if (X86CC == X86::COND_INVALID)
9020    return SDValue();
9021
9022  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9023  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9024  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9025                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9026}
9027
9028// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9029// ones, and then concatenate the result back.
9030static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9031  EVT VT = Op.getValueType();
9032
9033  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9034         "Unsupported value type for operation");
9035
9036  unsigned NumElems = VT.getVectorNumElements();
9037  DebugLoc dl = Op.getDebugLoc();
9038  SDValue CC = Op.getOperand(2);
9039
9040  // Extract the LHS vectors
9041  SDValue LHS = Op.getOperand(0);
9042  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9043  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9044
9045  // Extract the RHS vectors
9046  SDValue RHS = Op.getOperand(1);
9047  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9048  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9049
9050  // Issue the operation on the smaller types and concatenate the result back
9051  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9052  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9053  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9054                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9055                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9056}
9057
9058
9059SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
9060  SDValue Cond;
9061  SDValue Op0 = Op.getOperand(0);
9062  SDValue Op1 = Op.getOperand(1);
9063  SDValue CC = Op.getOperand(2);
9064  EVT VT = Op.getValueType();
9065  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9066  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
9067  DebugLoc dl = Op.getDebugLoc();
9068
9069  if (isFP) {
9070#ifndef NDEBUG
9071    EVT EltVT = Op0.getValueType().getVectorElementType();
9072    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9073#endif
9074
9075    unsigned SSECC;
9076    bool Swap = false;
9077
9078    // SSE Condition code mapping:
9079    //  0 - EQ
9080    //  1 - LT
9081    //  2 - LE
9082    //  3 - UNORD
9083    //  4 - NEQ
9084    //  5 - NLT
9085    //  6 - NLE
9086    //  7 - ORD
9087    switch (SetCCOpcode) {
9088    default: llvm_unreachable("Unexpected SETCC condition");
9089    case ISD::SETOEQ:
9090    case ISD::SETEQ:  SSECC = 0; break;
9091    case ISD::SETOGT:
9092    case ISD::SETGT: Swap = true; // Fallthrough
9093    case ISD::SETLT:
9094    case ISD::SETOLT: SSECC = 1; break;
9095    case ISD::SETOGE:
9096    case ISD::SETGE: Swap = true; // Fallthrough
9097    case ISD::SETLE:
9098    case ISD::SETOLE: SSECC = 2; break;
9099    case ISD::SETUO:  SSECC = 3; break;
9100    case ISD::SETUNE:
9101    case ISD::SETNE:  SSECC = 4; break;
9102    case ISD::SETULE: Swap = true; // Fallthrough
9103    case ISD::SETUGE: SSECC = 5; break;
9104    case ISD::SETULT: Swap = true; // Fallthrough
9105    case ISD::SETUGT: SSECC = 6; break;
9106    case ISD::SETO:   SSECC = 7; break;
9107    case ISD::SETUEQ:
9108    case ISD::SETONE: SSECC = 8; break;
9109    }
9110    if (Swap)
9111      std::swap(Op0, Op1);
9112
9113    // In the two special cases we can't handle, emit two comparisons.
9114    if (SSECC == 8) {
9115      unsigned CC0, CC1;
9116      unsigned CombineOpc;
9117      if (SetCCOpcode == ISD::SETUEQ) {
9118        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9119      } else {
9120        assert(SetCCOpcode == ISD::SETONE);
9121        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9122      }
9123
9124      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9125                                 DAG.getConstant(CC0, MVT::i8));
9126      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9127                                 DAG.getConstant(CC1, MVT::i8));
9128      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9129    }
9130    // Handle all other FP comparisons here.
9131    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9132                       DAG.getConstant(SSECC, MVT::i8));
9133  }
9134
9135  // Break 256-bit integer vector compare into smaller ones.
9136  if (VT.is256BitVector() && !Subtarget->hasAVX2())
9137    return Lower256IntVSETCC(Op, DAG);
9138
9139  // We are handling one of the integer comparisons here.  Since SSE only has
9140  // GT and EQ comparisons for integer, swapping operands and multiple
9141  // operations may be required for some comparisons.
9142  unsigned Opc;
9143  bool Swap = false, Invert = false, FlipSigns = false;
9144
9145  switch (SetCCOpcode) {
9146  default: llvm_unreachable("Unexpected SETCC condition");
9147  case ISD::SETNE:  Invert = true;
9148  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9149  case ISD::SETLT:  Swap = true;
9150  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9151  case ISD::SETGE:  Swap = true;
9152  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9153  case ISD::SETULT: Swap = true;
9154  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9155  case ISD::SETUGE: Swap = true;
9156  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9157  }
9158  if (Swap)
9159    std::swap(Op0, Op1);
9160
9161  // Check that the operation in question is available (most are plain SSE2,
9162  // but PCMPGTQ and PCMPEQQ have different requirements).
9163  if (VT == MVT::v2i64) {
9164    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9165      return SDValue();
9166    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
9167      return SDValue();
9168  }
9169
9170  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9171  // bits of the inputs before performing those operations.
9172  if (FlipSigns) {
9173    EVT EltVT = VT.getVectorElementType();
9174    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9175                                      EltVT);
9176    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9177    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9178                                    SignBits.size());
9179    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9180    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9181  }
9182
9183  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9184
9185  // If the logical-not of the result is required, perform that now.
9186  if (Invert)
9187    Result = DAG.getNOT(dl, Result, VT);
9188
9189  return Result;
9190}
9191
9192// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9193static bool isX86LogicalCmp(SDValue Op) {
9194  unsigned Opc = Op.getNode()->getOpcode();
9195  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9196      Opc == X86ISD::SAHF)
9197    return true;
9198  if (Op.getResNo() == 1 &&
9199      (Opc == X86ISD::ADD ||
9200       Opc == X86ISD::SUB ||
9201       Opc == X86ISD::ADC ||
9202       Opc == X86ISD::SBB ||
9203       Opc == X86ISD::SMUL ||
9204       Opc == X86ISD::UMUL ||
9205       Opc == X86ISD::INC ||
9206       Opc == X86ISD::DEC ||
9207       Opc == X86ISD::OR ||
9208       Opc == X86ISD::XOR ||
9209       Opc == X86ISD::AND))
9210    return true;
9211
9212  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9213    return true;
9214
9215  return false;
9216}
9217
9218static bool isZero(SDValue V) {
9219  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9220  return C && C->isNullValue();
9221}
9222
9223static bool isAllOnes(SDValue V) {
9224  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9225  return C && C->isAllOnesValue();
9226}
9227
9228static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9229  if (V.getOpcode() != ISD::TRUNCATE)
9230    return false;
9231
9232  SDValue VOp0 = V.getOperand(0);
9233  unsigned InBits = VOp0.getValueSizeInBits();
9234  unsigned Bits = V.getValueSizeInBits();
9235  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9236}
9237
9238SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9239  bool addTest = true;
9240  SDValue Cond  = Op.getOperand(0);
9241  SDValue Op1 = Op.getOperand(1);
9242  SDValue Op2 = Op.getOperand(2);
9243  DebugLoc DL = Op.getDebugLoc();
9244  SDValue CC;
9245
9246  if (Cond.getOpcode() == ISD::SETCC) {
9247    SDValue NewCond = LowerSETCC(Cond, DAG);
9248    if (NewCond.getNode())
9249      Cond = NewCond;
9250  }
9251
9252  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9253  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9254  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9255  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9256  if (Cond.getOpcode() == X86ISD::SETCC &&
9257      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9258      isZero(Cond.getOperand(1).getOperand(1))) {
9259    SDValue Cmp = Cond.getOperand(1);
9260
9261    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9262
9263    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9264        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9265      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9266
9267      SDValue CmpOp0 = Cmp.getOperand(0);
9268      // Apply further optimizations for special cases
9269      // (select (x != 0), -1, 0) -> neg & sbb
9270      // (select (x == 0), 0, -1) -> neg & sbb
9271      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9272        if (YC->isNullValue() &&
9273            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9274          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9275          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9276                                    DAG.getConstant(0, CmpOp0.getValueType()),
9277                                    CmpOp0);
9278          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9279                                    DAG.getConstant(X86::COND_B, MVT::i8),
9280                                    SDValue(Neg.getNode(), 1));
9281          return Res;
9282        }
9283
9284      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9285                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9286      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9287
9288      SDValue Res =   // Res = 0 or -1.
9289        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9290                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9291
9292      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9293        Res = DAG.getNOT(DL, Res, Res.getValueType());
9294
9295      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9296      if (N2C == 0 || !N2C->isNullValue())
9297        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9298      return Res;
9299    }
9300  }
9301
9302  // Look past (and (setcc_carry (cmp ...)), 1).
9303  if (Cond.getOpcode() == ISD::AND &&
9304      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9305    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9306    if (C && C->getAPIntValue() == 1)
9307      Cond = Cond.getOperand(0);
9308  }
9309
9310  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9311  // setting operand in place of the X86ISD::SETCC.
9312  unsigned CondOpcode = Cond.getOpcode();
9313  if (CondOpcode == X86ISD::SETCC ||
9314      CondOpcode == X86ISD::SETCC_CARRY) {
9315    CC = Cond.getOperand(0);
9316
9317    SDValue Cmp = Cond.getOperand(1);
9318    unsigned Opc = Cmp.getOpcode();
9319    EVT VT = Op.getValueType();
9320
9321    bool IllegalFPCMov = false;
9322    if (VT.isFloatingPoint() && !VT.isVector() &&
9323        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9324      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9325
9326    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9327        Opc == X86ISD::BT) { // FIXME
9328      Cond = Cmp;
9329      addTest = false;
9330    }
9331  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9332             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9333             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9334              Cond.getOperand(0).getValueType() != MVT::i8)) {
9335    SDValue LHS = Cond.getOperand(0);
9336    SDValue RHS = Cond.getOperand(1);
9337    unsigned X86Opcode;
9338    unsigned X86Cond;
9339    SDVTList VTs;
9340    switch (CondOpcode) {
9341    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9342    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9343    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9344    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9345    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9346    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9347    default: llvm_unreachable("unexpected overflowing operator");
9348    }
9349    if (CondOpcode == ISD::UMULO)
9350      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9351                          MVT::i32);
9352    else
9353      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9354
9355    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9356
9357    if (CondOpcode == ISD::UMULO)
9358      Cond = X86Op.getValue(2);
9359    else
9360      Cond = X86Op.getValue(1);
9361
9362    CC = DAG.getConstant(X86Cond, MVT::i8);
9363    addTest = false;
9364  }
9365
9366  if (addTest) {
9367    // Look pass the truncate if the high bits are known zero.
9368    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9369        Cond = Cond.getOperand(0);
9370
9371    // We know the result of AND is compared against zero. Try to match
9372    // it to BT.
9373    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9374      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9375      if (NewSetCC.getNode()) {
9376        CC = NewSetCC.getOperand(0);
9377        Cond = NewSetCC.getOperand(1);
9378        addTest = false;
9379      }
9380    }
9381  }
9382
9383  if (addTest) {
9384    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9385    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9386  }
9387
9388  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9389  // a <  b ?  0 : -1 -> RES = setcc_carry
9390  // a >= b ? -1 :  0 -> RES = setcc_carry
9391  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9392  if (Cond.getOpcode() == X86ISD::SUB) {
9393    Cond = ConvertCmpIfNecessary(Cond, DAG);
9394    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9395
9396    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9397        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9398      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9399                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9400      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9401        return DAG.getNOT(DL, Res, Res.getValueType());
9402      return Res;
9403    }
9404  }
9405
9406  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9407  // widen the cmov and push the truncate through. This avoids introducing a new
9408  // branch during isel and doesn't add any extensions.
9409  if (Op.getValueType() == MVT::i8 &&
9410      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9411    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9412    if (T1.getValueType() == T2.getValueType() &&
9413        // Blacklist CopyFromReg to avoid partial register stalls.
9414        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9415      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9416      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9417      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9418    }
9419  }
9420
9421  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9422  // condition is true.
9423  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9424  SDValue Ops[] = { Op2, Op1, CC, Cond };
9425  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9426}
9427
9428// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9429// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9430// from the AND / OR.
9431static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9432  Opc = Op.getOpcode();
9433  if (Opc != ISD::OR && Opc != ISD::AND)
9434    return false;
9435  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9436          Op.getOperand(0).hasOneUse() &&
9437          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9438          Op.getOperand(1).hasOneUse());
9439}
9440
9441// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9442// 1 and that the SETCC node has a single use.
9443static bool isXor1OfSetCC(SDValue Op) {
9444  if (Op.getOpcode() != ISD::XOR)
9445    return false;
9446  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9447  if (N1C && N1C->getAPIntValue() == 1) {
9448    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9449      Op.getOperand(0).hasOneUse();
9450  }
9451  return false;
9452}
9453
9454SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9455  bool addTest = true;
9456  SDValue Chain = Op.getOperand(0);
9457  SDValue Cond  = Op.getOperand(1);
9458  SDValue Dest  = Op.getOperand(2);
9459  DebugLoc dl = Op.getDebugLoc();
9460  SDValue CC;
9461  bool Inverted = false;
9462
9463  if (Cond.getOpcode() == ISD::SETCC) {
9464    // Check for setcc([su]{add,sub,mul}o == 0).
9465    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9466        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9467        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9468        Cond.getOperand(0).getResNo() == 1 &&
9469        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9470         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9471         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9472         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9473         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9474         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9475      Inverted = true;
9476      Cond = Cond.getOperand(0);
9477    } else {
9478      SDValue NewCond = LowerSETCC(Cond, DAG);
9479      if (NewCond.getNode())
9480        Cond = NewCond;
9481    }
9482  }
9483#if 0
9484  // FIXME: LowerXALUO doesn't handle these!!
9485  else if (Cond.getOpcode() == X86ISD::ADD  ||
9486           Cond.getOpcode() == X86ISD::SUB  ||
9487           Cond.getOpcode() == X86ISD::SMUL ||
9488           Cond.getOpcode() == X86ISD::UMUL)
9489    Cond = LowerXALUO(Cond, DAG);
9490#endif
9491
9492  // Look pass (and (setcc_carry (cmp ...)), 1).
9493  if (Cond.getOpcode() == ISD::AND &&
9494      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9495    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9496    if (C && C->getAPIntValue() == 1)
9497      Cond = Cond.getOperand(0);
9498  }
9499
9500  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9501  // setting operand in place of the X86ISD::SETCC.
9502  unsigned CondOpcode = Cond.getOpcode();
9503  if (CondOpcode == X86ISD::SETCC ||
9504      CondOpcode == X86ISD::SETCC_CARRY) {
9505    CC = Cond.getOperand(0);
9506
9507    SDValue Cmp = Cond.getOperand(1);
9508    unsigned Opc = Cmp.getOpcode();
9509    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9510    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9511      Cond = Cmp;
9512      addTest = false;
9513    } else {
9514      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9515      default: break;
9516      case X86::COND_O:
9517      case X86::COND_B:
9518        // These can only come from an arithmetic instruction with overflow,
9519        // e.g. SADDO, UADDO.
9520        Cond = Cond.getNode()->getOperand(1);
9521        addTest = false;
9522        break;
9523      }
9524    }
9525  }
9526  CondOpcode = Cond.getOpcode();
9527  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9528      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9529      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9530       Cond.getOperand(0).getValueType() != MVT::i8)) {
9531    SDValue LHS = Cond.getOperand(0);
9532    SDValue RHS = Cond.getOperand(1);
9533    unsigned X86Opcode;
9534    unsigned X86Cond;
9535    SDVTList VTs;
9536    switch (CondOpcode) {
9537    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9538    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9539    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9540    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9541    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9542    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9543    default: llvm_unreachable("unexpected overflowing operator");
9544    }
9545    if (Inverted)
9546      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9547    if (CondOpcode == ISD::UMULO)
9548      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9549                          MVT::i32);
9550    else
9551      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9552
9553    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9554
9555    if (CondOpcode == ISD::UMULO)
9556      Cond = X86Op.getValue(2);
9557    else
9558      Cond = X86Op.getValue(1);
9559
9560    CC = DAG.getConstant(X86Cond, MVT::i8);
9561    addTest = false;
9562  } else {
9563    unsigned CondOpc;
9564    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9565      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9566      if (CondOpc == ISD::OR) {
9567        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9568        // two branches instead of an explicit OR instruction with a
9569        // separate test.
9570        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9571            isX86LogicalCmp(Cmp)) {
9572          CC = Cond.getOperand(0).getOperand(0);
9573          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9574                              Chain, Dest, CC, Cmp);
9575          CC = Cond.getOperand(1).getOperand(0);
9576          Cond = Cmp;
9577          addTest = false;
9578        }
9579      } else { // ISD::AND
9580        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9581        // two branches instead of an explicit AND instruction with a
9582        // separate test. However, we only do this if this block doesn't
9583        // have a fall-through edge, because this requires an explicit
9584        // jmp when the condition is false.
9585        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9586            isX86LogicalCmp(Cmp) &&
9587            Op.getNode()->hasOneUse()) {
9588          X86::CondCode CCode =
9589            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9590          CCode = X86::GetOppositeBranchCondition(CCode);
9591          CC = DAG.getConstant(CCode, MVT::i8);
9592          SDNode *User = *Op.getNode()->use_begin();
9593          // Look for an unconditional branch following this conditional branch.
9594          // We need this because we need to reverse the successors in order
9595          // to implement FCMP_OEQ.
9596          if (User->getOpcode() == ISD::BR) {
9597            SDValue FalseBB = User->getOperand(1);
9598            SDNode *NewBR =
9599              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9600            assert(NewBR == User);
9601            (void)NewBR;
9602            Dest = FalseBB;
9603
9604            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9605                                Chain, Dest, CC, Cmp);
9606            X86::CondCode CCode =
9607              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9608            CCode = X86::GetOppositeBranchCondition(CCode);
9609            CC = DAG.getConstant(CCode, MVT::i8);
9610            Cond = Cmp;
9611            addTest = false;
9612          }
9613        }
9614      }
9615    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9616      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9617      // It should be transformed during dag combiner except when the condition
9618      // is set by a arithmetics with overflow node.
9619      X86::CondCode CCode =
9620        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9621      CCode = X86::GetOppositeBranchCondition(CCode);
9622      CC = DAG.getConstant(CCode, MVT::i8);
9623      Cond = Cond.getOperand(0).getOperand(1);
9624      addTest = false;
9625    } else if (Cond.getOpcode() == ISD::SETCC &&
9626               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9627      // For FCMP_OEQ, we can emit
9628      // two branches instead of an explicit AND instruction with a
9629      // separate test. However, we only do this if this block doesn't
9630      // have a fall-through edge, because this requires an explicit
9631      // jmp when the condition is false.
9632      if (Op.getNode()->hasOneUse()) {
9633        SDNode *User = *Op.getNode()->use_begin();
9634        // Look for an unconditional branch following this conditional branch.
9635        // We need this because we need to reverse the successors in order
9636        // to implement FCMP_OEQ.
9637        if (User->getOpcode() == ISD::BR) {
9638          SDValue FalseBB = User->getOperand(1);
9639          SDNode *NewBR =
9640            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9641          assert(NewBR == User);
9642          (void)NewBR;
9643          Dest = FalseBB;
9644
9645          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9646                                    Cond.getOperand(0), Cond.getOperand(1));
9647          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9648          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9649          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9650                              Chain, Dest, CC, Cmp);
9651          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9652          Cond = Cmp;
9653          addTest = false;
9654        }
9655      }
9656    } else if (Cond.getOpcode() == ISD::SETCC &&
9657               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9658      // For FCMP_UNE, we can emit
9659      // two branches instead of an explicit AND instruction with a
9660      // separate test. However, we only do this if this block doesn't
9661      // have a fall-through edge, because this requires an explicit
9662      // jmp when the condition is false.
9663      if (Op.getNode()->hasOneUse()) {
9664        SDNode *User = *Op.getNode()->use_begin();
9665        // Look for an unconditional branch following this conditional branch.
9666        // We need this because we need to reverse the successors in order
9667        // to implement FCMP_UNE.
9668        if (User->getOpcode() == ISD::BR) {
9669          SDValue FalseBB = User->getOperand(1);
9670          SDNode *NewBR =
9671            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9672          assert(NewBR == User);
9673          (void)NewBR;
9674
9675          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9676                                    Cond.getOperand(0), Cond.getOperand(1));
9677          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9678          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9679          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9680                              Chain, Dest, CC, Cmp);
9681          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9682          Cond = Cmp;
9683          addTest = false;
9684          Dest = FalseBB;
9685        }
9686      }
9687    }
9688  }
9689
9690  if (addTest) {
9691    // Look pass the truncate if the high bits are known zero.
9692    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9693        Cond = Cond.getOperand(0);
9694
9695    // We know the result of AND is compared against zero. Try to match
9696    // it to BT.
9697    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9698      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9699      if (NewSetCC.getNode()) {
9700        CC = NewSetCC.getOperand(0);
9701        Cond = NewSetCC.getOperand(1);
9702        addTest = false;
9703      }
9704    }
9705  }
9706
9707  if (addTest) {
9708    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9709    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9710  }
9711  Cond = ConvertCmpIfNecessary(Cond, DAG);
9712  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9713                     Chain, Dest, CC, Cond);
9714}
9715
9716
9717// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9718// Calls to _alloca is needed to probe the stack when allocating more than 4k
9719// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9720// that the guard pages used by the OS virtual memory manager are allocated in
9721// correct sequence.
9722SDValue
9723X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9724                                           SelectionDAG &DAG) const {
9725  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9726          getTargetMachine().Options.EnableSegmentedStacks) &&
9727         "This should be used only on Windows targets or when segmented stacks "
9728         "are being used");
9729  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9730  DebugLoc dl = Op.getDebugLoc();
9731
9732  // Get the inputs.
9733  SDValue Chain = Op.getOperand(0);
9734  SDValue Size  = Op.getOperand(1);
9735  // FIXME: Ensure alignment here
9736
9737  bool Is64Bit = Subtarget->is64Bit();
9738  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9739
9740  if (getTargetMachine().Options.EnableSegmentedStacks) {
9741    MachineFunction &MF = DAG.getMachineFunction();
9742    MachineRegisterInfo &MRI = MF.getRegInfo();
9743
9744    if (Is64Bit) {
9745      // The 64 bit implementation of segmented stacks needs to clobber both r10
9746      // r11. This makes it impossible to use it along with nested parameters.
9747      const Function *F = MF.getFunction();
9748
9749      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9750           I != E; ++I)
9751        if (I->hasNestAttr())
9752          report_fatal_error("Cannot use segmented stacks with functions that "
9753                             "have nested arguments.");
9754    }
9755
9756    const TargetRegisterClass *AddrRegClass =
9757      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9758    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9759    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9760    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9761                                DAG.getRegister(Vreg, SPTy));
9762    SDValue Ops1[2] = { Value, Chain };
9763    return DAG.getMergeValues(Ops1, 2, dl);
9764  } else {
9765    SDValue Flag;
9766    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9767
9768    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9769    Flag = Chain.getValue(1);
9770    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9771
9772    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9773    Flag = Chain.getValue(1);
9774
9775    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9776
9777    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9778    return DAG.getMergeValues(Ops1, 2, dl);
9779  }
9780}
9781
9782SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9783  MachineFunction &MF = DAG.getMachineFunction();
9784  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9785
9786  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9787  DebugLoc DL = Op.getDebugLoc();
9788
9789  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9790    // vastart just stores the address of the VarArgsFrameIndex slot into the
9791    // memory location argument.
9792    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9793                                   getPointerTy());
9794    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9795                        MachinePointerInfo(SV), false, false, 0);
9796  }
9797
9798  // __va_list_tag:
9799  //   gp_offset         (0 - 6 * 8)
9800  //   fp_offset         (48 - 48 + 8 * 16)
9801  //   overflow_arg_area (point to parameters coming in memory).
9802  //   reg_save_area
9803  SmallVector<SDValue, 8> MemOps;
9804  SDValue FIN = Op.getOperand(1);
9805  // Store gp_offset
9806  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9807                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9808                                               MVT::i32),
9809                               FIN, MachinePointerInfo(SV), false, false, 0);
9810  MemOps.push_back(Store);
9811
9812  // Store fp_offset
9813  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9814                    FIN, DAG.getIntPtrConstant(4));
9815  Store = DAG.getStore(Op.getOperand(0), DL,
9816                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9817                                       MVT::i32),
9818                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9819  MemOps.push_back(Store);
9820
9821  // Store ptr to overflow_arg_area
9822  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9823                    FIN, DAG.getIntPtrConstant(4));
9824  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9825                                    getPointerTy());
9826  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9827                       MachinePointerInfo(SV, 8),
9828                       false, false, 0);
9829  MemOps.push_back(Store);
9830
9831  // Store ptr to reg_save_area.
9832  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9833                    FIN, DAG.getIntPtrConstant(8));
9834  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9835                                    getPointerTy());
9836  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9837                       MachinePointerInfo(SV, 16), false, false, 0);
9838  MemOps.push_back(Store);
9839  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9840                     &MemOps[0], MemOps.size());
9841}
9842
9843SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9844  assert(Subtarget->is64Bit() &&
9845         "LowerVAARG only handles 64-bit va_arg!");
9846  assert((Subtarget->isTargetLinux() ||
9847          Subtarget->isTargetDarwin()) &&
9848          "Unhandled target in LowerVAARG");
9849  assert(Op.getNode()->getNumOperands() == 4);
9850  SDValue Chain = Op.getOperand(0);
9851  SDValue SrcPtr = Op.getOperand(1);
9852  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9853  unsigned Align = Op.getConstantOperandVal(3);
9854  DebugLoc dl = Op.getDebugLoc();
9855
9856  EVT ArgVT = Op.getNode()->getValueType(0);
9857  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9858  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
9859  uint8_t ArgMode;
9860
9861  // Decide which area this value should be read from.
9862  // TODO: Implement the AMD64 ABI in its entirety. This simple
9863  // selection mechanism works only for the basic types.
9864  if (ArgVT == MVT::f80) {
9865    llvm_unreachable("va_arg for f80 not yet implemented");
9866  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9867    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9868  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9869    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9870  } else {
9871    llvm_unreachable("Unhandled argument type in LowerVAARG");
9872  }
9873
9874  if (ArgMode == 2) {
9875    // Sanity Check: Make sure using fp_offset makes sense.
9876    assert(!getTargetMachine().Options.UseSoftFloat &&
9877           !(DAG.getMachineFunction()
9878                .getFunction()->getFnAttributes()
9879                .hasAttribute(Attributes::NoImplicitFloat)) &&
9880           Subtarget->hasSSE1());
9881  }
9882
9883  // Insert VAARG_64 node into the DAG
9884  // VAARG_64 returns two values: Variable Argument Address, Chain
9885  SmallVector<SDValue, 11> InstOps;
9886  InstOps.push_back(Chain);
9887  InstOps.push_back(SrcPtr);
9888  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9889  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9890  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9891  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9892  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9893                                          VTs, &InstOps[0], InstOps.size(),
9894                                          MVT::i64,
9895                                          MachinePointerInfo(SV),
9896                                          /*Align=*/0,
9897                                          /*Volatile=*/false,
9898                                          /*ReadMem=*/true,
9899                                          /*WriteMem=*/true);
9900  Chain = VAARG.getValue(1);
9901
9902  // Load the next argument and return it
9903  return DAG.getLoad(ArgVT, dl,
9904                     Chain,
9905                     VAARG,
9906                     MachinePointerInfo(),
9907                     false, false, false, 0);
9908}
9909
9910static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
9911                           SelectionDAG &DAG) {
9912  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9913  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9914  SDValue Chain = Op.getOperand(0);
9915  SDValue DstPtr = Op.getOperand(1);
9916  SDValue SrcPtr = Op.getOperand(2);
9917  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9918  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9919  DebugLoc DL = Op.getDebugLoc();
9920
9921  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9922                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9923                       false,
9924                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9925}
9926
9927// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9928// may or may not be a constant. Takes immediate version of shift as input.
9929static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9930                                   SDValue SrcOp, SDValue ShAmt,
9931                                   SelectionDAG &DAG) {
9932  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9933
9934  if (isa<ConstantSDNode>(ShAmt)) {
9935    // Constant may be a TargetConstant. Use a regular constant.
9936    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9937    switch (Opc) {
9938      default: llvm_unreachable("Unknown target vector shift node");
9939      case X86ISD::VSHLI:
9940      case X86ISD::VSRLI:
9941      case X86ISD::VSRAI:
9942        return DAG.getNode(Opc, dl, VT, SrcOp,
9943                           DAG.getConstant(ShiftAmt, MVT::i32));
9944    }
9945  }
9946
9947  // Change opcode to non-immediate version
9948  switch (Opc) {
9949    default: llvm_unreachable("Unknown target vector shift node");
9950    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9951    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9952    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9953  }
9954
9955  // Need to build a vector containing shift amount
9956  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9957  SDValue ShOps[4];
9958  ShOps[0] = ShAmt;
9959  ShOps[1] = DAG.getConstant(0, MVT::i32);
9960  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9961  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9962
9963  // The return type has to be a 128-bit type with the same element
9964  // type as the input type.
9965  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9966  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9967
9968  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9969  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9970}
9971
9972static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
9973  DebugLoc dl = Op.getDebugLoc();
9974  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9975  switch (IntNo) {
9976  default: return SDValue();    // Don't custom lower most intrinsics.
9977  // Comparison intrinsics.
9978  case Intrinsic::x86_sse_comieq_ss:
9979  case Intrinsic::x86_sse_comilt_ss:
9980  case Intrinsic::x86_sse_comile_ss:
9981  case Intrinsic::x86_sse_comigt_ss:
9982  case Intrinsic::x86_sse_comige_ss:
9983  case Intrinsic::x86_sse_comineq_ss:
9984  case Intrinsic::x86_sse_ucomieq_ss:
9985  case Intrinsic::x86_sse_ucomilt_ss:
9986  case Intrinsic::x86_sse_ucomile_ss:
9987  case Intrinsic::x86_sse_ucomigt_ss:
9988  case Intrinsic::x86_sse_ucomige_ss:
9989  case Intrinsic::x86_sse_ucomineq_ss:
9990  case Intrinsic::x86_sse2_comieq_sd:
9991  case Intrinsic::x86_sse2_comilt_sd:
9992  case Intrinsic::x86_sse2_comile_sd:
9993  case Intrinsic::x86_sse2_comigt_sd:
9994  case Intrinsic::x86_sse2_comige_sd:
9995  case Intrinsic::x86_sse2_comineq_sd:
9996  case Intrinsic::x86_sse2_ucomieq_sd:
9997  case Intrinsic::x86_sse2_ucomilt_sd:
9998  case Intrinsic::x86_sse2_ucomile_sd:
9999  case Intrinsic::x86_sse2_ucomigt_sd:
10000  case Intrinsic::x86_sse2_ucomige_sd:
10001  case Intrinsic::x86_sse2_ucomineq_sd: {
10002    unsigned Opc;
10003    ISD::CondCode CC;
10004    switch (IntNo) {
10005    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10006    case Intrinsic::x86_sse_comieq_ss:
10007    case Intrinsic::x86_sse2_comieq_sd:
10008      Opc = X86ISD::COMI;
10009      CC = ISD::SETEQ;
10010      break;
10011    case Intrinsic::x86_sse_comilt_ss:
10012    case Intrinsic::x86_sse2_comilt_sd:
10013      Opc = X86ISD::COMI;
10014      CC = ISD::SETLT;
10015      break;
10016    case Intrinsic::x86_sse_comile_ss:
10017    case Intrinsic::x86_sse2_comile_sd:
10018      Opc = X86ISD::COMI;
10019      CC = ISD::SETLE;
10020      break;
10021    case Intrinsic::x86_sse_comigt_ss:
10022    case Intrinsic::x86_sse2_comigt_sd:
10023      Opc = X86ISD::COMI;
10024      CC = ISD::SETGT;
10025      break;
10026    case Intrinsic::x86_sse_comige_ss:
10027    case Intrinsic::x86_sse2_comige_sd:
10028      Opc = X86ISD::COMI;
10029      CC = ISD::SETGE;
10030      break;
10031    case Intrinsic::x86_sse_comineq_ss:
10032    case Intrinsic::x86_sse2_comineq_sd:
10033      Opc = X86ISD::COMI;
10034      CC = ISD::SETNE;
10035      break;
10036    case Intrinsic::x86_sse_ucomieq_ss:
10037    case Intrinsic::x86_sse2_ucomieq_sd:
10038      Opc = X86ISD::UCOMI;
10039      CC = ISD::SETEQ;
10040      break;
10041    case Intrinsic::x86_sse_ucomilt_ss:
10042    case Intrinsic::x86_sse2_ucomilt_sd:
10043      Opc = X86ISD::UCOMI;
10044      CC = ISD::SETLT;
10045      break;
10046    case Intrinsic::x86_sse_ucomile_ss:
10047    case Intrinsic::x86_sse2_ucomile_sd:
10048      Opc = X86ISD::UCOMI;
10049      CC = ISD::SETLE;
10050      break;
10051    case Intrinsic::x86_sse_ucomigt_ss:
10052    case Intrinsic::x86_sse2_ucomigt_sd:
10053      Opc = X86ISD::UCOMI;
10054      CC = ISD::SETGT;
10055      break;
10056    case Intrinsic::x86_sse_ucomige_ss:
10057    case Intrinsic::x86_sse2_ucomige_sd:
10058      Opc = X86ISD::UCOMI;
10059      CC = ISD::SETGE;
10060      break;
10061    case Intrinsic::x86_sse_ucomineq_ss:
10062    case Intrinsic::x86_sse2_ucomineq_sd:
10063      Opc = X86ISD::UCOMI;
10064      CC = ISD::SETNE;
10065      break;
10066    }
10067
10068    SDValue LHS = Op.getOperand(1);
10069    SDValue RHS = Op.getOperand(2);
10070    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10071    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10072    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10073    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10074                                DAG.getConstant(X86CC, MVT::i8), Cond);
10075    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10076  }
10077
10078  // Arithmetic intrinsics.
10079  case Intrinsic::x86_sse2_pmulu_dq:
10080  case Intrinsic::x86_avx2_pmulu_dq:
10081    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10082                       Op.getOperand(1), Op.getOperand(2));
10083
10084  // SSE3/AVX horizontal add/sub intrinsics
10085  case Intrinsic::x86_sse3_hadd_ps:
10086  case Intrinsic::x86_sse3_hadd_pd:
10087  case Intrinsic::x86_avx_hadd_ps_256:
10088  case Intrinsic::x86_avx_hadd_pd_256:
10089  case Intrinsic::x86_sse3_hsub_ps:
10090  case Intrinsic::x86_sse3_hsub_pd:
10091  case Intrinsic::x86_avx_hsub_ps_256:
10092  case Intrinsic::x86_avx_hsub_pd_256:
10093  case Intrinsic::x86_ssse3_phadd_w_128:
10094  case Intrinsic::x86_ssse3_phadd_d_128:
10095  case Intrinsic::x86_avx2_phadd_w:
10096  case Intrinsic::x86_avx2_phadd_d:
10097  case Intrinsic::x86_ssse3_phsub_w_128:
10098  case Intrinsic::x86_ssse3_phsub_d_128:
10099  case Intrinsic::x86_avx2_phsub_w:
10100  case Intrinsic::x86_avx2_phsub_d: {
10101    unsigned Opcode;
10102    switch (IntNo) {
10103    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10104    case Intrinsic::x86_sse3_hadd_ps:
10105    case Intrinsic::x86_sse3_hadd_pd:
10106    case Intrinsic::x86_avx_hadd_ps_256:
10107    case Intrinsic::x86_avx_hadd_pd_256:
10108      Opcode = X86ISD::FHADD;
10109      break;
10110    case Intrinsic::x86_sse3_hsub_ps:
10111    case Intrinsic::x86_sse3_hsub_pd:
10112    case Intrinsic::x86_avx_hsub_ps_256:
10113    case Intrinsic::x86_avx_hsub_pd_256:
10114      Opcode = X86ISD::FHSUB;
10115      break;
10116    case Intrinsic::x86_ssse3_phadd_w_128:
10117    case Intrinsic::x86_ssse3_phadd_d_128:
10118    case Intrinsic::x86_avx2_phadd_w:
10119    case Intrinsic::x86_avx2_phadd_d:
10120      Opcode = X86ISD::HADD;
10121      break;
10122    case Intrinsic::x86_ssse3_phsub_w_128:
10123    case Intrinsic::x86_ssse3_phsub_d_128:
10124    case Intrinsic::x86_avx2_phsub_w:
10125    case Intrinsic::x86_avx2_phsub_d:
10126      Opcode = X86ISD::HSUB;
10127      break;
10128    }
10129    return DAG.getNode(Opcode, dl, Op.getValueType(),
10130                       Op.getOperand(1), Op.getOperand(2));
10131  }
10132
10133  // AVX2 variable shift intrinsics
10134  case Intrinsic::x86_avx2_psllv_d:
10135  case Intrinsic::x86_avx2_psllv_q:
10136  case Intrinsic::x86_avx2_psllv_d_256:
10137  case Intrinsic::x86_avx2_psllv_q_256:
10138  case Intrinsic::x86_avx2_psrlv_d:
10139  case Intrinsic::x86_avx2_psrlv_q:
10140  case Intrinsic::x86_avx2_psrlv_d_256:
10141  case Intrinsic::x86_avx2_psrlv_q_256:
10142  case Intrinsic::x86_avx2_psrav_d:
10143  case Intrinsic::x86_avx2_psrav_d_256: {
10144    unsigned Opcode;
10145    switch (IntNo) {
10146    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10147    case Intrinsic::x86_avx2_psllv_d:
10148    case Intrinsic::x86_avx2_psllv_q:
10149    case Intrinsic::x86_avx2_psllv_d_256:
10150    case Intrinsic::x86_avx2_psllv_q_256:
10151      Opcode = ISD::SHL;
10152      break;
10153    case Intrinsic::x86_avx2_psrlv_d:
10154    case Intrinsic::x86_avx2_psrlv_q:
10155    case Intrinsic::x86_avx2_psrlv_d_256:
10156    case Intrinsic::x86_avx2_psrlv_q_256:
10157      Opcode = ISD::SRL;
10158      break;
10159    case Intrinsic::x86_avx2_psrav_d:
10160    case Intrinsic::x86_avx2_psrav_d_256:
10161      Opcode = ISD::SRA;
10162      break;
10163    }
10164    return DAG.getNode(Opcode, dl, Op.getValueType(),
10165                       Op.getOperand(1), Op.getOperand(2));
10166  }
10167
10168  case Intrinsic::x86_ssse3_pshuf_b_128:
10169  case Intrinsic::x86_avx2_pshuf_b:
10170    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10171                       Op.getOperand(1), Op.getOperand(2));
10172
10173  case Intrinsic::x86_ssse3_psign_b_128:
10174  case Intrinsic::x86_ssse3_psign_w_128:
10175  case Intrinsic::x86_ssse3_psign_d_128:
10176  case Intrinsic::x86_avx2_psign_b:
10177  case Intrinsic::x86_avx2_psign_w:
10178  case Intrinsic::x86_avx2_psign_d:
10179    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10180                       Op.getOperand(1), Op.getOperand(2));
10181
10182  case Intrinsic::x86_sse41_insertps:
10183    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10184                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10185
10186  case Intrinsic::x86_avx_vperm2f128_ps_256:
10187  case Intrinsic::x86_avx_vperm2f128_pd_256:
10188  case Intrinsic::x86_avx_vperm2f128_si_256:
10189  case Intrinsic::x86_avx2_vperm2i128:
10190    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10191                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10192
10193  case Intrinsic::x86_avx2_permd:
10194  case Intrinsic::x86_avx2_permps:
10195    // Operands intentionally swapped. Mask is last operand to intrinsic,
10196    // but second operand for node/intruction.
10197    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10198                       Op.getOperand(2), Op.getOperand(1));
10199
10200  // ptest and testp intrinsics. The intrinsic these come from are designed to
10201  // return an integer value, not just an instruction so lower it to the ptest
10202  // or testp pattern and a setcc for the result.
10203  case Intrinsic::x86_sse41_ptestz:
10204  case Intrinsic::x86_sse41_ptestc:
10205  case Intrinsic::x86_sse41_ptestnzc:
10206  case Intrinsic::x86_avx_ptestz_256:
10207  case Intrinsic::x86_avx_ptestc_256:
10208  case Intrinsic::x86_avx_ptestnzc_256:
10209  case Intrinsic::x86_avx_vtestz_ps:
10210  case Intrinsic::x86_avx_vtestc_ps:
10211  case Intrinsic::x86_avx_vtestnzc_ps:
10212  case Intrinsic::x86_avx_vtestz_pd:
10213  case Intrinsic::x86_avx_vtestc_pd:
10214  case Intrinsic::x86_avx_vtestnzc_pd:
10215  case Intrinsic::x86_avx_vtestz_ps_256:
10216  case Intrinsic::x86_avx_vtestc_ps_256:
10217  case Intrinsic::x86_avx_vtestnzc_ps_256:
10218  case Intrinsic::x86_avx_vtestz_pd_256:
10219  case Intrinsic::x86_avx_vtestc_pd_256:
10220  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10221    bool IsTestPacked = false;
10222    unsigned X86CC;
10223    switch (IntNo) {
10224    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10225    case Intrinsic::x86_avx_vtestz_ps:
10226    case Intrinsic::x86_avx_vtestz_pd:
10227    case Intrinsic::x86_avx_vtestz_ps_256:
10228    case Intrinsic::x86_avx_vtestz_pd_256:
10229      IsTestPacked = true; // Fallthrough
10230    case Intrinsic::x86_sse41_ptestz:
10231    case Intrinsic::x86_avx_ptestz_256:
10232      // ZF = 1
10233      X86CC = X86::COND_E;
10234      break;
10235    case Intrinsic::x86_avx_vtestc_ps:
10236    case Intrinsic::x86_avx_vtestc_pd:
10237    case Intrinsic::x86_avx_vtestc_ps_256:
10238    case Intrinsic::x86_avx_vtestc_pd_256:
10239      IsTestPacked = true; // Fallthrough
10240    case Intrinsic::x86_sse41_ptestc:
10241    case Intrinsic::x86_avx_ptestc_256:
10242      // CF = 1
10243      X86CC = X86::COND_B;
10244      break;
10245    case Intrinsic::x86_avx_vtestnzc_ps:
10246    case Intrinsic::x86_avx_vtestnzc_pd:
10247    case Intrinsic::x86_avx_vtestnzc_ps_256:
10248    case Intrinsic::x86_avx_vtestnzc_pd_256:
10249      IsTestPacked = true; // Fallthrough
10250    case Intrinsic::x86_sse41_ptestnzc:
10251    case Intrinsic::x86_avx_ptestnzc_256:
10252      // ZF and CF = 0
10253      X86CC = X86::COND_A;
10254      break;
10255    }
10256
10257    SDValue LHS = Op.getOperand(1);
10258    SDValue RHS = Op.getOperand(2);
10259    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10260    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10261    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10262    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10263    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10264  }
10265
10266  // SSE/AVX shift intrinsics
10267  case Intrinsic::x86_sse2_psll_w:
10268  case Intrinsic::x86_sse2_psll_d:
10269  case Intrinsic::x86_sse2_psll_q:
10270  case Intrinsic::x86_avx2_psll_w:
10271  case Intrinsic::x86_avx2_psll_d:
10272  case Intrinsic::x86_avx2_psll_q:
10273  case Intrinsic::x86_sse2_psrl_w:
10274  case Intrinsic::x86_sse2_psrl_d:
10275  case Intrinsic::x86_sse2_psrl_q:
10276  case Intrinsic::x86_avx2_psrl_w:
10277  case Intrinsic::x86_avx2_psrl_d:
10278  case Intrinsic::x86_avx2_psrl_q:
10279  case Intrinsic::x86_sse2_psra_w:
10280  case Intrinsic::x86_sse2_psra_d:
10281  case Intrinsic::x86_avx2_psra_w:
10282  case Intrinsic::x86_avx2_psra_d: {
10283    unsigned Opcode;
10284    switch (IntNo) {
10285    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10286    case Intrinsic::x86_sse2_psll_w:
10287    case Intrinsic::x86_sse2_psll_d:
10288    case Intrinsic::x86_sse2_psll_q:
10289    case Intrinsic::x86_avx2_psll_w:
10290    case Intrinsic::x86_avx2_psll_d:
10291    case Intrinsic::x86_avx2_psll_q:
10292      Opcode = X86ISD::VSHL;
10293      break;
10294    case Intrinsic::x86_sse2_psrl_w:
10295    case Intrinsic::x86_sse2_psrl_d:
10296    case Intrinsic::x86_sse2_psrl_q:
10297    case Intrinsic::x86_avx2_psrl_w:
10298    case Intrinsic::x86_avx2_psrl_d:
10299    case Intrinsic::x86_avx2_psrl_q:
10300      Opcode = X86ISD::VSRL;
10301      break;
10302    case Intrinsic::x86_sse2_psra_w:
10303    case Intrinsic::x86_sse2_psra_d:
10304    case Intrinsic::x86_avx2_psra_w:
10305    case Intrinsic::x86_avx2_psra_d:
10306      Opcode = X86ISD::VSRA;
10307      break;
10308    }
10309    return DAG.getNode(Opcode, dl, Op.getValueType(),
10310                       Op.getOperand(1), Op.getOperand(2));
10311  }
10312
10313  // SSE/AVX immediate shift intrinsics
10314  case Intrinsic::x86_sse2_pslli_w:
10315  case Intrinsic::x86_sse2_pslli_d:
10316  case Intrinsic::x86_sse2_pslli_q:
10317  case Intrinsic::x86_avx2_pslli_w:
10318  case Intrinsic::x86_avx2_pslli_d:
10319  case Intrinsic::x86_avx2_pslli_q:
10320  case Intrinsic::x86_sse2_psrli_w:
10321  case Intrinsic::x86_sse2_psrli_d:
10322  case Intrinsic::x86_sse2_psrli_q:
10323  case Intrinsic::x86_avx2_psrli_w:
10324  case Intrinsic::x86_avx2_psrli_d:
10325  case Intrinsic::x86_avx2_psrli_q:
10326  case Intrinsic::x86_sse2_psrai_w:
10327  case Intrinsic::x86_sse2_psrai_d:
10328  case Intrinsic::x86_avx2_psrai_w:
10329  case Intrinsic::x86_avx2_psrai_d: {
10330    unsigned Opcode;
10331    switch (IntNo) {
10332    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10333    case Intrinsic::x86_sse2_pslli_w:
10334    case Intrinsic::x86_sse2_pslli_d:
10335    case Intrinsic::x86_sse2_pslli_q:
10336    case Intrinsic::x86_avx2_pslli_w:
10337    case Intrinsic::x86_avx2_pslli_d:
10338    case Intrinsic::x86_avx2_pslli_q:
10339      Opcode = X86ISD::VSHLI;
10340      break;
10341    case Intrinsic::x86_sse2_psrli_w:
10342    case Intrinsic::x86_sse2_psrli_d:
10343    case Intrinsic::x86_sse2_psrli_q:
10344    case Intrinsic::x86_avx2_psrli_w:
10345    case Intrinsic::x86_avx2_psrli_d:
10346    case Intrinsic::x86_avx2_psrli_q:
10347      Opcode = X86ISD::VSRLI;
10348      break;
10349    case Intrinsic::x86_sse2_psrai_w:
10350    case Intrinsic::x86_sse2_psrai_d:
10351    case Intrinsic::x86_avx2_psrai_w:
10352    case Intrinsic::x86_avx2_psrai_d:
10353      Opcode = X86ISD::VSRAI;
10354      break;
10355    }
10356    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10357                               Op.getOperand(1), Op.getOperand(2), DAG);
10358  }
10359
10360  case Intrinsic::x86_sse42_pcmpistria128:
10361  case Intrinsic::x86_sse42_pcmpestria128:
10362  case Intrinsic::x86_sse42_pcmpistric128:
10363  case Intrinsic::x86_sse42_pcmpestric128:
10364  case Intrinsic::x86_sse42_pcmpistrio128:
10365  case Intrinsic::x86_sse42_pcmpestrio128:
10366  case Intrinsic::x86_sse42_pcmpistris128:
10367  case Intrinsic::x86_sse42_pcmpestris128:
10368  case Intrinsic::x86_sse42_pcmpistriz128:
10369  case Intrinsic::x86_sse42_pcmpestriz128: {
10370    unsigned Opcode;
10371    unsigned X86CC;
10372    switch (IntNo) {
10373    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10374    case Intrinsic::x86_sse42_pcmpistria128:
10375      Opcode = X86ISD::PCMPISTRI;
10376      X86CC = X86::COND_A;
10377      break;
10378    case Intrinsic::x86_sse42_pcmpestria128:
10379      Opcode = X86ISD::PCMPESTRI;
10380      X86CC = X86::COND_A;
10381      break;
10382    case Intrinsic::x86_sse42_pcmpistric128:
10383      Opcode = X86ISD::PCMPISTRI;
10384      X86CC = X86::COND_B;
10385      break;
10386    case Intrinsic::x86_sse42_pcmpestric128:
10387      Opcode = X86ISD::PCMPESTRI;
10388      X86CC = X86::COND_B;
10389      break;
10390    case Intrinsic::x86_sse42_pcmpistrio128:
10391      Opcode = X86ISD::PCMPISTRI;
10392      X86CC = X86::COND_O;
10393      break;
10394    case Intrinsic::x86_sse42_pcmpestrio128:
10395      Opcode = X86ISD::PCMPESTRI;
10396      X86CC = X86::COND_O;
10397      break;
10398    case Intrinsic::x86_sse42_pcmpistris128:
10399      Opcode = X86ISD::PCMPISTRI;
10400      X86CC = X86::COND_S;
10401      break;
10402    case Intrinsic::x86_sse42_pcmpestris128:
10403      Opcode = X86ISD::PCMPESTRI;
10404      X86CC = X86::COND_S;
10405      break;
10406    case Intrinsic::x86_sse42_pcmpistriz128:
10407      Opcode = X86ISD::PCMPISTRI;
10408      X86CC = X86::COND_E;
10409      break;
10410    case Intrinsic::x86_sse42_pcmpestriz128:
10411      Opcode = X86ISD::PCMPESTRI;
10412      X86CC = X86::COND_E;
10413      break;
10414    }
10415    SmallVector<SDValue, 5> NewOps;
10416    NewOps.append(Op->op_begin()+1, Op->op_end());
10417    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10418    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10419    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10420                                DAG.getConstant(X86CC, MVT::i8),
10421                                SDValue(PCMP.getNode(), 1));
10422    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10423  }
10424
10425  case Intrinsic::x86_sse42_pcmpistri128:
10426  case Intrinsic::x86_sse42_pcmpestri128: {
10427    unsigned Opcode;
10428    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10429      Opcode = X86ISD::PCMPISTRI;
10430    else
10431      Opcode = X86ISD::PCMPESTRI;
10432
10433    SmallVector<SDValue, 5> NewOps;
10434    NewOps.append(Op->op_begin()+1, Op->op_end());
10435    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10436    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10437  }
10438  case Intrinsic::x86_fma_vfmadd_ps:
10439  case Intrinsic::x86_fma_vfmadd_pd:
10440  case Intrinsic::x86_fma_vfmsub_ps:
10441  case Intrinsic::x86_fma_vfmsub_pd:
10442  case Intrinsic::x86_fma_vfnmadd_ps:
10443  case Intrinsic::x86_fma_vfnmadd_pd:
10444  case Intrinsic::x86_fma_vfnmsub_ps:
10445  case Intrinsic::x86_fma_vfnmsub_pd:
10446  case Intrinsic::x86_fma_vfmaddsub_ps:
10447  case Intrinsic::x86_fma_vfmaddsub_pd:
10448  case Intrinsic::x86_fma_vfmsubadd_ps:
10449  case Intrinsic::x86_fma_vfmsubadd_pd:
10450  case Intrinsic::x86_fma_vfmadd_ps_256:
10451  case Intrinsic::x86_fma_vfmadd_pd_256:
10452  case Intrinsic::x86_fma_vfmsub_ps_256:
10453  case Intrinsic::x86_fma_vfmsub_pd_256:
10454  case Intrinsic::x86_fma_vfnmadd_ps_256:
10455  case Intrinsic::x86_fma_vfnmadd_pd_256:
10456  case Intrinsic::x86_fma_vfnmsub_ps_256:
10457  case Intrinsic::x86_fma_vfnmsub_pd_256:
10458  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10459  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10460  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10461  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10462    unsigned Opc;
10463    switch (IntNo) {
10464    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10465    case Intrinsic::x86_fma_vfmadd_ps:
10466    case Intrinsic::x86_fma_vfmadd_pd:
10467    case Intrinsic::x86_fma_vfmadd_ps_256:
10468    case Intrinsic::x86_fma_vfmadd_pd_256:
10469      Opc = X86ISD::FMADD;
10470      break;
10471    case Intrinsic::x86_fma_vfmsub_ps:
10472    case Intrinsic::x86_fma_vfmsub_pd:
10473    case Intrinsic::x86_fma_vfmsub_ps_256:
10474    case Intrinsic::x86_fma_vfmsub_pd_256:
10475      Opc = X86ISD::FMSUB;
10476      break;
10477    case Intrinsic::x86_fma_vfnmadd_ps:
10478    case Intrinsic::x86_fma_vfnmadd_pd:
10479    case Intrinsic::x86_fma_vfnmadd_ps_256:
10480    case Intrinsic::x86_fma_vfnmadd_pd_256:
10481      Opc = X86ISD::FNMADD;
10482      break;
10483    case Intrinsic::x86_fma_vfnmsub_ps:
10484    case Intrinsic::x86_fma_vfnmsub_pd:
10485    case Intrinsic::x86_fma_vfnmsub_ps_256:
10486    case Intrinsic::x86_fma_vfnmsub_pd_256:
10487      Opc = X86ISD::FNMSUB;
10488      break;
10489    case Intrinsic::x86_fma_vfmaddsub_ps:
10490    case Intrinsic::x86_fma_vfmaddsub_pd:
10491    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10492    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10493      Opc = X86ISD::FMADDSUB;
10494      break;
10495    case Intrinsic::x86_fma_vfmsubadd_ps:
10496    case Intrinsic::x86_fma_vfmsubadd_pd:
10497    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10498    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10499      Opc = X86ISD::FMSUBADD;
10500      break;
10501    }
10502
10503    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10504                       Op.getOperand(2), Op.getOperand(3));
10505  }
10506  }
10507}
10508
10509static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10510  DebugLoc dl = Op.getDebugLoc();
10511  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10512  switch (IntNo) {
10513  default: return SDValue();    // Don't custom lower most intrinsics.
10514
10515  // RDRAND intrinsics.
10516  case Intrinsic::x86_rdrand_16:
10517  case Intrinsic::x86_rdrand_32:
10518  case Intrinsic::x86_rdrand_64: {
10519    // Emit the node with the right value type.
10520    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10521    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10522
10523    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10524    // return the value from Rand, which is always 0, casted to i32.
10525    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10526                      DAG.getConstant(1, Op->getValueType(1)),
10527                      DAG.getConstant(X86::COND_B, MVT::i32),
10528                      SDValue(Result.getNode(), 1) };
10529    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10530                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10531                                  Ops, 4);
10532
10533    // Return { result, isValid, chain }.
10534    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10535                       SDValue(Result.getNode(), 2));
10536  }
10537  }
10538}
10539
10540SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10541                                           SelectionDAG &DAG) const {
10542  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10543  MFI->setReturnAddressIsTaken(true);
10544
10545  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10546  DebugLoc dl = Op.getDebugLoc();
10547  EVT PtrVT = getPointerTy();
10548
10549  if (Depth > 0) {
10550    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10551    SDValue Offset =
10552      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10553    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10554                       DAG.getNode(ISD::ADD, dl, PtrVT,
10555                                   FrameAddr, Offset),
10556                       MachinePointerInfo(), false, false, false, 0);
10557  }
10558
10559  // Just load the return address.
10560  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10561  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10562                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10563}
10564
10565SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10566  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10567  MFI->setFrameAddressIsTaken(true);
10568
10569  EVT VT = Op.getValueType();
10570  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10571  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10572  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10573  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10574  while (Depth--)
10575    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10576                            MachinePointerInfo(),
10577                            false, false, false, 0);
10578  return FrameAddr;
10579}
10580
10581SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10582                                                     SelectionDAG &DAG) const {
10583  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10584}
10585
10586SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10587  SDValue Chain     = Op.getOperand(0);
10588  SDValue Offset    = Op.getOperand(1);
10589  SDValue Handler   = Op.getOperand(2);
10590  DebugLoc dl       = Op.getDebugLoc();
10591
10592  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10593                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10594                                     getPointerTy());
10595  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10596
10597  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10598                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
10599  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10600  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10601                       false, false, 0);
10602  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10603
10604  return DAG.getNode(X86ISD::EH_RETURN, dl,
10605                     MVT::Other,
10606                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10607}
10608
10609SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
10610                                               SelectionDAG &DAG) const {
10611  DebugLoc DL = Op.getDebugLoc();
10612  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
10613                     DAG.getVTList(MVT::i32, MVT::Other),
10614                     Op.getOperand(0), Op.getOperand(1));
10615}
10616
10617SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
10618                                                SelectionDAG &DAG) const {
10619  DebugLoc DL = Op.getDebugLoc();
10620  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
10621                     Op.getOperand(0), Op.getOperand(1));
10622}
10623
10624static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10625  return Op.getOperand(0);
10626}
10627
10628SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10629                                                SelectionDAG &DAG) const {
10630  SDValue Root = Op.getOperand(0);
10631  SDValue Trmp = Op.getOperand(1); // trampoline
10632  SDValue FPtr = Op.getOperand(2); // nested function
10633  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10634  DebugLoc dl  = Op.getDebugLoc();
10635
10636  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10637  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
10638
10639  if (Subtarget->is64Bit()) {
10640    SDValue OutChains[6];
10641
10642    // Large code-model.
10643    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10644    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10645
10646    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
10647    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
10648
10649    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10650
10651    // Load the pointer to the nested function into R11.
10652    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10653    SDValue Addr = Trmp;
10654    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10655                                Addr, MachinePointerInfo(TrmpAddr),
10656                                false, false, 0);
10657
10658    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10659                       DAG.getConstant(2, MVT::i64));
10660    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10661                                MachinePointerInfo(TrmpAddr, 2),
10662                                false, false, 2);
10663
10664    // Load the 'nest' parameter value into R10.
10665    // R10 is specified in X86CallingConv.td
10666    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10667    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10668                       DAG.getConstant(10, MVT::i64));
10669    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10670                                Addr, MachinePointerInfo(TrmpAddr, 10),
10671                                false, false, 0);
10672
10673    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10674                       DAG.getConstant(12, MVT::i64));
10675    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10676                                MachinePointerInfo(TrmpAddr, 12),
10677                                false, false, 2);
10678
10679    // Jump to the nested function.
10680    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10681    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10682                       DAG.getConstant(20, MVT::i64));
10683    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10684                                Addr, MachinePointerInfo(TrmpAddr, 20),
10685                                false, false, 0);
10686
10687    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10688    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10689                       DAG.getConstant(22, MVT::i64));
10690    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10691                                MachinePointerInfo(TrmpAddr, 22),
10692                                false, false, 0);
10693
10694    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10695  } else {
10696    const Function *Func =
10697      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10698    CallingConv::ID CC = Func->getCallingConv();
10699    unsigned NestReg;
10700
10701    switch (CC) {
10702    default:
10703      llvm_unreachable("Unsupported calling convention");
10704    case CallingConv::C:
10705    case CallingConv::X86_StdCall: {
10706      // Pass 'nest' parameter in ECX.
10707      // Must be kept in sync with X86CallingConv.td
10708      NestReg = X86::ECX;
10709
10710      // Check that ECX wasn't needed by an 'inreg' parameter.
10711      FunctionType *FTy = Func->getFunctionType();
10712      const AttrListPtr &Attrs = Func->getAttributes();
10713
10714      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10715        unsigned InRegCount = 0;
10716        unsigned Idx = 1;
10717
10718        for (FunctionType::param_iterator I = FTy->param_begin(),
10719             E = FTy->param_end(); I != E; ++I, ++Idx)
10720          if (Attrs.getParamAttributes(Idx).hasAttribute(Attributes::InReg))
10721            // FIXME: should only count parameters that are lowered to integers.
10722            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10723
10724        if (InRegCount > 2) {
10725          report_fatal_error("Nest register in use - reduce number of inreg"
10726                             " parameters!");
10727        }
10728      }
10729      break;
10730    }
10731    case CallingConv::X86_FastCall:
10732    case CallingConv::X86_ThisCall:
10733    case CallingConv::Fast:
10734      // Pass 'nest' parameter in EAX.
10735      // Must be kept in sync with X86CallingConv.td
10736      NestReg = X86::EAX;
10737      break;
10738    }
10739
10740    SDValue OutChains[4];
10741    SDValue Addr, Disp;
10742
10743    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10744                       DAG.getConstant(10, MVT::i32));
10745    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10746
10747    // This is storing the opcode for MOV32ri.
10748    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10749    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
10750    OutChains[0] = DAG.getStore(Root, dl,
10751                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10752                                Trmp, MachinePointerInfo(TrmpAddr),
10753                                false, false, 0);
10754
10755    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10756                       DAG.getConstant(1, MVT::i32));
10757    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10758                                MachinePointerInfo(TrmpAddr, 1),
10759                                false, false, 1);
10760
10761    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10762    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10763                       DAG.getConstant(5, MVT::i32));
10764    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10765                                MachinePointerInfo(TrmpAddr, 5),
10766                                false, false, 1);
10767
10768    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10769                       DAG.getConstant(6, MVT::i32));
10770    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10771                                MachinePointerInfo(TrmpAddr, 6),
10772                                false, false, 1);
10773
10774    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10775  }
10776}
10777
10778SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10779                                            SelectionDAG &DAG) const {
10780  /*
10781   The rounding mode is in bits 11:10 of FPSR, and has the following
10782   settings:
10783     00 Round to nearest
10784     01 Round to -inf
10785     10 Round to +inf
10786     11 Round to 0
10787
10788  FLT_ROUNDS, on the other hand, expects the following:
10789    -1 Undefined
10790     0 Round to 0
10791     1 Round to nearest
10792     2 Round to +inf
10793     3 Round to -inf
10794
10795  To perform the conversion, we do:
10796    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10797  */
10798
10799  MachineFunction &MF = DAG.getMachineFunction();
10800  const TargetMachine &TM = MF.getTarget();
10801  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10802  unsigned StackAlignment = TFI.getStackAlignment();
10803  EVT VT = Op.getValueType();
10804  DebugLoc DL = Op.getDebugLoc();
10805
10806  // Save FP Control Word to stack slot
10807  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10808  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10809
10810
10811  MachineMemOperand *MMO =
10812   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10813                           MachineMemOperand::MOStore, 2, 2);
10814
10815  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10816  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10817                                          DAG.getVTList(MVT::Other),
10818                                          Ops, 2, MVT::i16, MMO);
10819
10820  // Load FP Control Word from stack slot
10821  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10822                            MachinePointerInfo(), false, false, false, 0);
10823
10824  // Transform as necessary
10825  SDValue CWD1 =
10826    DAG.getNode(ISD::SRL, DL, MVT::i16,
10827                DAG.getNode(ISD::AND, DL, MVT::i16,
10828                            CWD, DAG.getConstant(0x800, MVT::i16)),
10829                DAG.getConstant(11, MVT::i8));
10830  SDValue CWD2 =
10831    DAG.getNode(ISD::SRL, DL, MVT::i16,
10832                DAG.getNode(ISD::AND, DL, MVT::i16,
10833                            CWD, DAG.getConstant(0x400, MVT::i16)),
10834                DAG.getConstant(9, MVT::i8));
10835
10836  SDValue RetVal =
10837    DAG.getNode(ISD::AND, DL, MVT::i16,
10838                DAG.getNode(ISD::ADD, DL, MVT::i16,
10839                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10840                            DAG.getConstant(1, MVT::i16)),
10841                DAG.getConstant(3, MVT::i16));
10842
10843
10844  return DAG.getNode((VT.getSizeInBits() < 16 ?
10845                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10846}
10847
10848static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
10849  EVT VT = Op.getValueType();
10850  EVT OpVT = VT;
10851  unsigned NumBits = VT.getSizeInBits();
10852  DebugLoc dl = Op.getDebugLoc();
10853
10854  Op = Op.getOperand(0);
10855  if (VT == MVT::i8) {
10856    // Zero extend to i32 since there is not an i8 bsr.
10857    OpVT = MVT::i32;
10858    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10859  }
10860
10861  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10862  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10863  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10864
10865  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10866  SDValue Ops[] = {
10867    Op,
10868    DAG.getConstant(NumBits+NumBits-1, OpVT),
10869    DAG.getConstant(X86::COND_E, MVT::i8),
10870    Op.getValue(1)
10871  };
10872  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10873
10874  // Finally xor with NumBits-1.
10875  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10876
10877  if (VT == MVT::i8)
10878    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10879  return Op;
10880}
10881
10882static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
10883  EVT VT = Op.getValueType();
10884  EVT OpVT = VT;
10885  unsigned NumBits = VT.getSizeInBits();
10886  DebugLoc dl = Op.getDebugLoc();
10887
10888  Op = Op.getOperand(0);
10889  if (VT == MVT::i8) {
10890    // Zero extend to i32 since there is not an i8 bsr.
10891    OpVT = MVT::i32;
10892    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10893  }
10894
10895  // Issue a bsr (scan bits in reverse).
10896  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10897  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10898
10899  // And xor with NumBits-1.
10900  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10901
10902  if (VT == MVT::i8)
10903    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10904  return Op;
10905}
10906
10907static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
10908  EVT VT = Op.getValueType();
10909  unsigned NumBits = VT.getSizeInBits();
10910  DebugLoc dl = Op.getDebugLoc();
10911  Op = Op.getOperand(0);
10912
10913  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10914  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10915  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10916
10917  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10918  SDValue Ops[] = {
10919    Op,
10920    DAG.getConstant(NumBits, VT),
10921    DAG.getConstant(X86::COND_E, MVT::i8),
10922    Op.getValue(1)
10923  };
10924  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10925}
10926
10927// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10928// ones, and then concatenate the result back.
10929static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10930  EVT VT = Op.getValueType();
10931
10932  assert(VT.is256BitVector() && VT.isInteger() &&
10933         "Unsupported value type for operation");
10934
10935  unsigned NumElems = VT.getVectorNumElements();
10936  DebugLoc dl = Op.getDebugLoc();
10937
10938  // Extract the LHS vectors
10939  SDValue LHS = Op.getOperand(0);
10940  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10941  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10942
10943  // Extract the RHS vectors
10944  SDValue RHS = Op.getOperand(1);
10945  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10946  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10947
10948  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10949  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10950
10951  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10952                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10953                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10954}
10955
10956static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
10957  assert(Op.getValueType().is256BitVector() &&
10958         Op.getValueType().isInteger() &&
10959         "Only handle AVX 256-bit vector integer operation");
10960  return Lower256IntArith(Op, DAG);
10961}
10962
10963static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
10964  assert(Op.getValueType().is256BitVector() &&
10965         Op.getValueType().isInteger() &&
10966         "Only handle AVX 256-bit vector integer operation");
10967  return Lower256IntArith(Op, DAG);
10968}
10969
10970static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
10971                        SelectionDAG &DAG) {
10972  EVT VT = Op.getValueType();
10973
10974  // Decompose 256-bit ops into smaller 128-bit ops.
10975  if (VT.is256BitVector() && !Subtarget->hasAVX2())
10976    return Lower256IntArith(Op, DAG);
10977
10978  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10979         "Only know how to lower V2I64/V4I64 multiply");
10980
10981  DebugLoc dl = Op.getDebugLoc();
10982
10983  //  Ahi = psrlqi(a, 32);
10984  //  Bhi = psrlqi(b, 32);
10985  //
10986  //  AloBlo = pmuludq(a, b);
10987  //  AloBhi = pmuludq(a, Bhi);
10988  //  AhiBlo = pmuludq(Ahi, b);
10989
10990  //  AloBhi = psllqi(AloBhi, 32);
10991  //  AhiBlo = psllqi(AhiBlo, 32);
10992  //  return AloBlo + AloBhi + AhiBlo;
10993
10994  SDValue A = Op.getOperand(0);
10995  SDValue B = Op.getOperand(1);
10996
10997  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10998
10999  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11000  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11001
11002  // Bit cast to 32-bit vectors for MULUDQ
11003  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11004  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11005  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11006  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11007  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11008
11009  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11010  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11011  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11012
11013  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11014  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11015
11016  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11017  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11018}
11019
11020SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11021
11022  EVT VT = Op.getValueType();
11023  DebugLoc dl = Op.getDebugLoc();
11024  SDValue R = Op.getOperand(0);
11025  SDValue Amt = Op.getOperand(1);
11026  LLVMContext *Context = DAG.getContext();
11027
11028  if (!Subtarget->hasSSE2())
11029    return SDValue();
11030
11031  // Optimize shl/srl/sra with constant shift amount.
11032  if (isSplatVector(Amt.getNode())) {
11033    SDValue SclrAmt = Amt->getOperand(0);
11034    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11035      uint64_t ShiftAmt = C->getZExtValue();
11036
11037      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11038          (Subtarget->hasAVX2() &&
11039           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11040        if (Op.getOpcode() == ISD::SHL)
11041          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11042                             DAG.getConstant(ShiftAmt, MVT::i32));
11043        if (Op.getOpcode() == ISD::SRL)
11044          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11045                             DAG.getConstant(ShiftAmt, MVT::i32));
11046        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11047          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11048                             DAG.getConstant(ShiftAmt, MVT::i32));
11049      }
11050
11051      if (VT == MVT::v16i8) {
11052        if (Op.getOpcode() == ISD::SHL) {
11053          // Make a large shift.
11054          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11055                                    DAG.getConstant(ShiftAmt, MVT::i32));
11056          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11057          // Zero out the rightmost bits.
11058          SmallVector<SDValue, 16> V(16,
11059                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11060                                                     MVT::i8));
11061          return DAG.getNode(ISD::AND, dl, VT, SHL,
11062                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11063        }
11064        if (Op.getOpcode() == ISD::SRL) {
11065          // Make a large shift.
11066          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11067                                    DAG.getConstant(ShiftAmt, MVT::i32));
11068          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11069          // Zero out the leftmost bits.
11070          SmallVector<SDValue, 16> V(16,
11071                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11072                                                     MVT::i8));
11073          return DAG.getNode(ISD::AND, dl, VT, SRL,
11074                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11075        }
11076        if (Op.getOpcode() == ISD::SRA) {
11077          if (ShiftAmt == 7) {
11078            // R s>> 7  ===  R s< 0
11079            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11080            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11081          }
11082
11083          // R s>> a === ((R u>> a) ^ m) - m
11084          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11085          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11086                                                         MVT::i8));
11087          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11088          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11089          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11090          return Res;
11091        }
11092        llvm_unreachable("Unknown shift opcode.");
11093      }
11094
11095      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
11096        if (Op.getOpcode() == ISD::SHL) {
11097          // Make a large shift.
11098          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11099                                    DAG.getConstant(ShiftAmt, MVT::i32));
11100          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11101          // Zero out the rightmost bits.
11102          SmallVector<SDValue, 32> V(32,
11103                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11104                                                     MVT::i8));
11105          return DAG.getNode(ISD::AND, dl, VT, SHL,
11106                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11107        }
11108        if (Op.getOpcode() == ISD::SRL) {
11109          // Make a large shift.
11110          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11111                                    DAG.getConstant(ShiftAmt, MVT::i32));
11112          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11113          // Zero out the leftmost bits.
11114          SmallVector<SDValue, 32> V(32,
11115                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11116                                                     MVT::i8));
11117          return DAG.getNode(ISD::AND, dl, VT, SRL,
11118                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11119        }
11120        if (Op.getOpcode() == ISD::SRA) {
11121          if (ShiftAmt == 7) {
11122            // R s>> 7  ===  R s< 0
11123            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11124            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11125          }
11126
11127          // R s>> a === ((R u>> a) ^ m) - m
11128          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11129          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11130                                                         MVT::i8));
11131          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11132          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11133          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11134          return Res;
11135        }
11136        llvm_unreachable("Unknown shift opcode.");
11137      }
11138    }
11139  }
11140
11141  // Lower SHL with variable shift amount.
11142  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11143    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
11144                     DAG.getConstant(23, MVT::i32));
11145
11146    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
11147    Constant *C = ConstantDataVector::get(*Context, CV);
11148    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
11149    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11150                                 MachinePointerInfo::getConstantPool(),
11151                                 false, false, false, 16);
11152
11153    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
11154    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11155    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11156    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11157  }
11158  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11159    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11160
11161    // a = a << 5;
11162    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
11163                     DAG.getConstant(5, MVT::i32));
11164    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11165
11166    // Turn 'a' into a mask suitable for VSELECT
11167    SDValue VSelM = DAG.getConstant(0x80, VT);
11168    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11169    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11170
11171    SDValue CM1 = DAG.getConstant(0x0f, VT);
11172    SDValue CM2 = DAG.getConstant(0x3f, VT);
11173
11174    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11175    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11176    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11177                            DAG.getConstant(4, MVT::i32), DAG);
11178    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11179    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11180
11181    // a += a
11182    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11183    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11184    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11185
11186    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11187    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11188    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11189                            DAG.getConstant(2, MVT::i32), DAG);
11190    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11191    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11192
11193    // a += a
11194    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11195    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11196    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11197
11198    // return VSELECT(r, r+r, a);
11199    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11200                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11201    return R;
11202  }
11203
11204  // Decompose 256-bit shifts into smaller 128-bit shifts.
11205  if (VT.is256BitVector()) {
11206    unsigned NumElems = VT.getVectorNumElements();
11207    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11208    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11209
11210    // Extract the two vectors
11211    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11212    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11213
11214    // Recreate the shift amount vectors
11215    SDValue Amt1, Amt2;
11216    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11217      // Constant shift amount
11218      SmallVector<SDValue, 4> Amt1Csts;
11219      SmallVector<SDValue, 4> Amt2Csts;
11220      for (unsigned i = 0; i != NumElems/2; ++i)
11221        Amt1Csts.push_back(Amt->getOperand(i));
11222      for (unsigned i = NumElems/2; i != NumElems; ++i)
11223        Amt2Csts.push_back(Amt->getOperand(i));
11224
11225      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11226                                 &Amt1Csts[0], NumElems/2);
11227      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11228                                 &Amt2Csts[0], NumElems/2);
11229    } else {
11230      // Variable shift amount
11231      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11232      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11233    }
11234
11235    // Issue new vector shifts for the smaller types
11236    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11237    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11238
11239    // Concatenate the result back
11240    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11241  }
11242
11243  return SDValue();
11244}
11245
11246static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11247  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11248  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11249  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11250  // has only one use.
11251  SDNode *N = Op.getNode();
11252  SDValue LHS = N->getOperand(0);
11253  SDValue RHS = N->getOperand(1);
11254  unsigned BaseOp = 0;
11255  unsigned Cond = 0;
11256  DebugLoc DL = Op.getDebugLoc();
11257  switch (Op.getOpcode()) {
11258  default: llvm_unreachable("Unknown ovf instruction!");
11259  case ISD::SADDO:
11260    // A subtract of one will be selected as a INC. Note that INC doesn't
11261    // set CF, so we can't do this for UADDO.
11262    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11263      if (C->isOne()) {
11264        BaseOp = X86ISD::INC;
11265        Cond = X86::COND_O;
11266        break;
11267      }
11268    BaseOp = X86ISD::ADD;
11269    Cond = X86::COND_O;
11270    break;
11271  case ISD::UADDO:
11272    BaseOp = X86ISD::ADD;
11273    Cond = X86::COND_B;
11274    break;
11275  case ISD::SSUBO:
11276    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11277    // set CF, so we can't do this for USUBO.
11278    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11279      if (C->isOne()) {
11280        BaseOp = X86ISD::DEC;
11281        Cond = X86::COND_O;
11282        break;
11283      }
11284    BaseOp = X86ISD::SUB;
11285    Cond = X86::COND_O;
11286    break;
11287  case ISD::USUBO:
11288    BaseOp = X86ISD::SUB;
11289    Cond = X86::COND_B;
11290    break;
11291  case ISD::SMULO:
11292    BaseOp = X86ISD::SMUL;
11293    Cond = X86::COND_O;
11294    break;
11295  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11296    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11297                                 MVT::i32);
11298    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11299
11300    SDValue SetCC =
11301      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11302                  DAG.getConstant(X86::COND_O, MVT::i32),
11303                  SDValue(Sum.getNode(), 2));
11304
11305    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11306  }
11307  }
11308
11309  // Also sets EFLAGS.
11310  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11311  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11312
11313  SDValue SetCC =
11314    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11315                DAG.getConstant(Cond, MVT::i32),
11316                SDValue(Sum.getNode(), 1));
11317
11318  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11319}
11320
11321SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11322                                                  SelectionDAG &DAG) const {
11323  DebugLoc dl = Op.getDebugLoc();
11324  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11325  EVT VT = Op.getValueType();
11326
11327  if (!Subtarget->hasSSE2() || !VT.isVector())
11328    return SDValue();
11329
11330  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11331                      ExtraVT.getScalarType().getSizeInBits();
11332  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11333
11334  switch (VT.getSimpleVT().SimpleTy) {
11335    default: return SDValue();
11336    case MVT::v8i32:
11337    case MVT::v16i16:
11338      if (!Subtarget->hasAVX())
11339        return SDValue();
11340      if (!Subtarget->hasAVX2()) {
11341        // needs to be split
11342        unsigned NumElems = VT.getVectorNumElements();
11343
11344        // Extract the LHS vectors
11345        SDValue LHS = Op.getOperand(0);
11346        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11347        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11348
11349        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11350        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11351
11352        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11353        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11354        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11355                                   ExtraNumElems/2);
11356        SDValue Extra = DAG.getValueType(ExtraVT);
11357
11358        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11359        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11360
11361        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11362      }
11363      // fall through
11364    case MVT::v4i32:
11365    case MVT::v8i16: {
11366      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11367                                         Op.getOperand(0), ShAmt, DAG);
11368      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11369    }
11370  }
11371}
11372
11373
11374static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11375                              SelectionDAG &DAG) {
11376  DebugLoc dl = Op.getDebugLoc();
11377
11378  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11379  // There isn't any reason to disable it if the target processor supports it.
11380  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11381    SDValue Chain = Op.getOperand(0);
11382    SDValue Zero = DAG.getConstant(0, MVT::i32);
11383    SDValue Ops[] = {
11384      DAG.getRegister(X86::ESP, MVT::i32), // Base
11385      DAG.getTargetConstant(1, MVT::i8),   // Scale
11386      DAG.getRegister(0, MVT::i32),        // Index
11387      DAG.getTargetConstant(0, MVT::i32),  // Disp
11388      DAG.getRegister(0, MVT::i32),        // Segment.
11389      Zero,
11390      Chain
11391    };
11392    SDNode *Res =
11393      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11394                          array_lengthof(Ops));
11395    return SDValue(Res, 0);
11396  }
11397
11398  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11399  if (!isDev)
11400    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11401
11402  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11403  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11404  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11405  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11406
11407  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11408  if (!Op1 && !Op2 && !Op3 && Op4)
11409    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11410
11411  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11412  if (Op1 && !Op2 && !Op3 && !Op4)
11413    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11414
11415  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11416  //           (MFENCE)>;
11417  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11418}
11419
11420static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11421                                 SelectionDAG &DAG) {
11422  DebugLoc dl = Op.getDebugLoc();
11423  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11424    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11425  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11426    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11427
11428  // The only fence that needs an instruction is a sequentially-consistent
11429  // cross-thread fence.
11430  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11431    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11432    // no-sse2). There isn't any reason to disable it if the target processor
11433    // supports it.
11434    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11435      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11436
11437    SDValue Chain = Op.getOperand(0);
11438    SDValue Zero = DAG.getConstant(0, MVT::i32);
11439    SDValue Ops[] = {
11440      DAG.getRegister(X86::ESP, MVT::i32), // Base
11441      DAG.getTargetConstant(1, MVT::i8),   // Scale
11442      DAG.getRegister(0, MVT::i32),        // Index
11443      DAG.getTargetConstant(0, MVT::i32),  // Disp
11444      DAG.getRegister(0, MVT::i32),        // Segment.
11445      Zero,
11446      Chain
11447    };
11448    SDNode *Res =
11449      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11450                         array_lengthof(Ops));
11451    return SDValue(Res, 0);
11452  }
11453
11454  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11455  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11456}
11457
11458
11459static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11460                             SelectionDAG &DAG) {
11461  EVT T = Op.getValueType();
11462  DebugLoc DL = Op.getDebugLoc();
11463  unsigned Reg = 0;
11464  unsigned size = 0;
11465  switch(T.getSimpleVT().SimpleTy) {
11466  default: llvm_unreachable("Invalid value type!");
11467  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11468  case MVT::i16: Reg = X86::AX;  size = 2; break;
11469  case MVT::i32: Reg = X86::EAX; size = 4; break;
11470  case MVT::i64:
11471    assert(Subtarget->is64Bit() && "Node not type legal!");
11472    Reg = X86::RAX; size = 8;
11473    break;
11474  }
11475  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11476                                    Op.getOperand(2), SDValue());
11477  SDValue Ops[] = { cpIn.getValue(0),
11478                    Op.getOperand(1),
11479                    Op.getOperand(3),
11480                    DAG.getTargetConstant(size, MVT::i8),
11481                    cpIn.getValue(1) };
11482  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11483  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11484  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11485                                           Ops, 5, T, MMO);
11486  SDValue cpOut =
11487    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11488  return cpOut;
11489}
11490
11491static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11492                                     SelectionDAG &DAG) {
11493  assert(Subtarget->is64Bit() && "Result not type legalized?");
11494  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11495  SDValue TheChain = Op.getOperand(0);
11496  DebugLoc dl = Op.getDebugLoc();
11497  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11498  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11499  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11500                                   rax.getValue(2));
11501  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11502                            DAG.getConstant(32, MVT::i8));
11503  SDValue Ops[] = {
11504    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11505    rdx.getValue(1)
11506  };
11507  return DAG.getMergeValues(Ops, 2, dl);
11508}
11509
11510SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11511  EVT SrcVT = Op.getOperand(0).getValueType();
11512  EVT DstVT = Op.getValueType();
11513  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11514         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11515  assert((DstVT == MVT::i64 ||
11516          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11517         "Unexpected custom BITCAST");
11518  // i64 <=> MMX conversions are Legal.
11519  if (SrcVT==MVT::i64 && DstVT.isVector())
11520    return Op;
11521  if (DstVT==MVT::i64 && SrcVT.isVector())
11522    return Op;
11523  // MMX <=> MMX conversions are Legal.
11524  if (SrcVT.isVector() && DstVT.isVector())
11525    return Op;
11526  // All other conversions need to be expanded.
11527  return SDValue();
11528}
11529
11530static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11531  SDNode *Node = Op.getNode();
11532  DebugLoc dl = Node->getDebugLoc();
11533  EVT T = Node->getValueType(0);
11534  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11535                              DAG.getConstant(0, T), Node->getOperand(2));
11536  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11537                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11538                       Node->getOperand(0),
11539                       Node->getOperand(1), negOp,
11540                       cast<AtomicSDNode>(Node)->getSrcValue(),
11541                       cast<AtomicSDNode>(Node)->getAlignment(),
11542                       cast<AtomicSDNode>(Node)->getOrdering(),
11543                       cast<AtomicSDNode>(Node)->getSynchScope());
11544}
11545
11546static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11547  SDNode *Node = Op.getNode();
11548  DebugLoc dl = Node->getDebugLoc();
11549  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11550
11551  // Convert seq_cst store -> xchg
11552  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11553  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11554  //        (The only way to get a 16-byte store is cmpxchg16b)
11555  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11556  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11557      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11558    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11559                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11560                                 Node->getOperand(0),
11561                                 Node->getOperand(1), Node->getOperand(2),
11562                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11563                                 cast<AtomicSDNode>(Node)->getOrdering(),
11564                                 cast<AtomicSDNode>(Node)->getSynchScope());
11565    return Swap.getValue(1);
11566  }
11567  // Other atomic stores have a simple pattern.
11568  return Op;
11569}
11570
11571static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11572  EVT VT = Op.getNode()->getValueType(0);
11573
11574  // Let legalize expand this if it isn't a legal type yet.
11575  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11576    return SDValue();
11577
11578  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11579
11580  unsigned Opc;
11581  bool ExtraOp = false;
11582  switch (Op.getOpcode()) {
11583  default: llvm_unreachable("Invalid code");
11584  case ISD::ADDC: Opc = X86ISD::ADD; break;
11585  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11586  case ISD::SUBC: Opc = X86ISD::SUB; break;
11587  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11588  }
11589
11590  if (!ExtraOp)
11591    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11592                       Op.getOperand(1));
11593  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11594                     Op.getOperand(1), Op.getOperand(2));
11595}
11596
11597/// LowerOperation - Provide custom lowering hooks for some operations.
11598///
11599SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11600  switch (Op.getOpcode()) {
11601  default: llvm_unreachable("Should not custom lower this!");
11602  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11603  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
11604  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
11605  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
11606  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11607  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11608  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11609  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11610  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11611  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11612  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11613  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
11614  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
11615  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11616  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11617  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11618  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11619  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11620  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11621  case ISD::SHL_PARTS:
11622  case ISD::SRA_PARTS:
11623  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11624  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11625  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11626  case ISD::TRUNCATE:           return lowerTRUNCATE(Op, DAG);
11627  case ISD::ZERO_EXTEND:        return lowerZERO_EXTEND(Op, DAG);
11628  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11629  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11630  case ISD::FP_EXTEND:          return lowerFP_EXTEND(Op, DAG);
11631  case ISD::FABS:               return LowerFABS(Op, DAG);
11632  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11633  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11634  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11635  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11636  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11637  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11638  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11639  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11640  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11641  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
11642  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11643  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11644  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11645  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11646  case ISD::FRAME_TO_ARGS_OFFSET:
11647                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11648  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11649  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11650  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11651  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11652  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11653  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11654  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11655  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11656  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11657  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11658  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
11659  case ISD::SRA:
11660  case ISD::SRL:
11661  case ISD::SHL:                return LowerShift(Op, DAG);
11662  case ISD::SADDO:
11663  case ISD::UADDO:
11664  case ISD::SSUBO:
11665  case ISD::USUBO:
11666  case ISD::SMULO:
11667  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11668  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
11669  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11670  case ISD::ADDC:
11671  case ISD::ADDE:
11672  case ISD::SUBC:
11673  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11674  case ISD::ADD:                return LowerADD(Op, DAG);
11675  case ISD::SUB:                return LowerSUB(Op, DAG);
11676  }
11677}
11678
11679static void ReplaceATOMIC_LOAD(SDNode *Node,
11680                                  SmallVectorImpl<SDValue> &Results,
11681                                  SelectionDAG &DAG) {
11682  DebugLoc dl = Node->getDebugLoc();
11683  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11684
11685  // Convert wide load -> cmpxchg8b/cmpxchg16b
11686  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11687  //        (The only way to get a 16-byte load is cmpxchg16b)
11688  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11689  SDValue Zero = DAG.getConstant(0, VT);
11690  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11691                               Node->getOperand(0),
11692                               Node->getOperand(1), Zero, Zero,
11693                               cast<AtomicSDNode>(Node)->getMemOperand(),
11694                               cast<AtomicSDNode>(Node)->getOrdering(),
11695                               cast<AtomicSDNode>(Node)->getSynchScope());
11696  Results.push_back(Swap.getValue(0));
11697  Results.push_back(Swap.getValue(1));
11698}
11699
11700static void
11701ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11702                        SelectionDAG &DAG, unsigned NewOp) {
11703  DebugLoc dl = Node->getDebugLoc();
11704  assert (Node->getValueType(0) == MVT::i64 &&
11705          "Only know how to expand i64 atomics");
11706
11707  SDValue Chain = Node->getOperand(0);
11708  SDValue In1 = Node->getOperand(1);
11709  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11710                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11711  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11712                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11713  SDValue Ops[] = { Chain, In1, In2L, In2H };
11714  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11715  SDValue Result =
11716    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11717                            cast<MemSDNode>(Node)->getMemOperand());
11718  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11719  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11720  Results.push_back(Result.getValue(2));
11721}
11722
11723/// ReplaceNodeResults - Replace a node with an illegal result type
11724/// with a new node built out of custom code.
11725void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11726                                           SmallVectorImpl<SDValue>&Results,
11727                                           SelectionDAG &DAG) const {
11728  DebugLoc dl = N->getDebugLoc();
11729  switch (N->getOpcode()) {
11730  default:
11731    llvm_unreachable("Do not know how to custom type legalize this operation!");
11732  case ISD::SIGN_EXTEND_INREG:
11733  case ISD::ADDC:
11734  case ISD::ADDE:
11735  case ISD::SUBC:
11736  case ISD::SUBE:
11737    // We don't want to expand or promote these.
11738    return;
11739  case ISD::FP_TO_SINT:
11740  case ISD::FP_TO_UINT: {
11741    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11742
11743    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11744      return;
11745
11746    std::pair<SDValue,SDValue> Vals =
11747        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11748    SDValue FIST = Vals.first, StackSlot = Vals.second;
11749    if (FIST.getNode() != 0) {
11750      EVT VT = N->getValueType(0);
11751      // Return a load from the stack slot.
11752      if (StackSlot.getNode() != 0)
11753        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11754                                      MachinePointerInfo(),
11755                                      false, false, false, 0));
11756      else
11757        Results.push_back(FIST);
11758    }
11759    return;
11760  }
11761  case ISD::UINT_TO_FP: {
11762    if (N->getOperand(0).getValueType() != MVT::v2i32 &&
11763        N->getValueType(0) != MVT::v2f32)
11764      return;
11765    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
11766                                 N->getOperand(0));
11767    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
11768                                     MVT::f64);
11769    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
11770    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
11771                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
11772    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
11773    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
11774    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
11775    return;
11776  }
11777  case ISD::FP_ROUND: {
11778    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
11779    Results.push_back(V);
11780    return;
11781  }
11782  case ISD::READCYCLECOUNTER: {
11783    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11784    SDValue TheChain = N->getOperand(0);
11785    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11786    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11787                                     rd.getValue(1));
11788    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11789                                     eax.getValue(2));
11790    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11791    SDValue Ops[] = { eax, edx };
11792    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11793    Results.push_back(edx.getValue(1));
11794    return;
11795  }
11796  case ISD::ATOMIC_CMP_SWAP: {
11797    EVT T = N->getValueType(0);
11798    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11799    bool Regs64bit = T == MVT::i128;
11800    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11801    SDValue cpInL, cpInH;
11802    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11803                        DAG.getConstant(0, HalfT));
11804    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11805                        DAG.getConstant(1, HalfT));
11806    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11807                             Regs64bit ? X86::RAX : X86::EAX,
11808                             cpInL, SDValue());
11809    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11810                             Regs64bit ? X86::RDX : X86::EDX,
11811                             cpInH, cpInL.getValue(1));
11812    SDValue swapInL, swapInH;
11813    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11814                          DAG.getConstant(0, HalfT));
11815    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11816                          DAG.getConstant(1, HalfT));
11817    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11818                               Regs64bit ? X86::RBX : X86::EBX,
11819                               swapInL, cpInH.getValue(1));
11820    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11821                               Regs64bit ? X86::RCX : X86::ECX,
11822                               swapInH, swapInL.getValue(1));
11823    SDValue Ops[] = { swapInH.getValue(0),
11824                      N->getOperand(1),
11825                      swapInH.getValue(1) };
11826    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11827    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11828    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11829                                  X86ISD::LCMPXCHG8_DAG;
11830    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11831                                             Ops, 3, T, MMO);
11832    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11833                                        Regs64bit ? X86::RAX : X86::EAX,
11834                                        HalfT, Result.getValue(1));
11835    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11836                                        Regs64bit ? X86::RDX : X86::EDX,
11837                                        HalfT, cpOutL.getValue(2));
11838    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11839    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11840    Results.push_back(cpOutH.getValue(1));
11841    return;
11842  }
11843  case ISD::ATOMIC_LOAD_ADD:
11844  case ISD::ATOMIC_LOAD_AND:
11845  case ISD::ATOMIC_LOAD_NAND:
11846  case ISD::ATOMIC_LOAD_OR:
11847  case ISD::ATOMIC_LOAD_SUB:
11848  case ISD::ATOMIC_LOAD_XOR:
11849  case ISD::ATOMIC_LOAD_MAX:
11850  case ISD::ATOMIC_LOAD_MIN:
11851  case ISD::ATOMIC_LOAD_UMAX:
11852  case ISD::ATOMIC_LOAD_UMIN:
11853  case ISD::ATOMIC_SWAP: {
11854    unsigned Opc;
11855    switch (N->getOpcode()) {
11856    default: llvm_unreachable("Unexpected opcode");
11857    case ISD::ATOMIC_LOAD_ADD:
11858      Opc = X86ISD::ATOMADD64_DAG;
11859      break;
11860    case ISD::ATOMIC_LOAD_AND:
11861      Opc = X86ISD::ATOMAND64_DAG;
11862      break;
11863    case ISD::ATOMIC_LOAD_NAND:
11864      Opc = X86ISD::ATOMNAND64_DAG;
11865      break;
11866    case ISD::ATOMIC_LOAD_OR:
11867      Opc = X86ISD::ATOMOR64_DAG;
11868      break;
11869    case ISD::ATOMIC_LOAD_SUB:
11870      Opc = X86ISD::ATOMSUB64_DAG;
11871      break;
11872    case ISD::ATOMIC_LOAD_XOR:
11873      Opc = X86ISD::ATOMXOR64_DAG;
11874      break;
11875    case ISD::ATOMIC_LOAD_MAX:
11876      Opc = X86ISD::ATOMMAX64_DAG;
11877      break;
11878    case ISD::ATOMIC_LOAD_MIN:
11879      Opc = X86ISD::ATOMMIN64_DAG;
11880      break;
11881    case ISD::ATOMIC_LOAD_UMAX:
11882      Opc = X86ISD::ATOMUMAX64_DAG;
11883      break;
11884    case ISD::ATOMIC_LOAD_UMIN:
11885      Opc = X86ISD::ATOMUMIN64_DAG;
11886      break;
11887    case ISD::ATOMIC_SWAP:
11888      Opc = X86ISD::ATOMSWAP64_DAG;
11889      break;
11890    }
11891    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11892    return;
11893  }
11894  case ISD::ATOMIC_LOAD:
11895    ReplaceATOMIC_LOAD(N, Results, DAG);
11896  }
11897}
11898
11899const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11900  switch (Opcode) {
11901  default: return NULL;
11902  case X86ISD::BSF:                return "X86ISD::BSF";
11903  case X86ISD::BSR:                return "X86ISD::BSR";
11904  case X86ISD::SHLD:               return "X86ISD::SHLD";
11905  case X86ISD::SHRD:               return "X86ISD::SHRD";
11906  case X86ISD::FAND:               return "X86ISD::FAND";
11907  case X86ISD::FOR:                return "X86ISD::FOR";
11908  case X86ISD::FXOR:               return "X86ISD::FXOR";
11909  case X86ISD::FSRL:               return "X86ISD::FSRL";
11910  case X86ISD::FILD:               return "X86ISD::FILD";
11911  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11912  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11913  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11914  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11915  case X86ISD::FLD:                return "X86ISD::FLD";
11916  case X86ISD::FST:                return "X86ISD::FST";
11917  case X86ISD::CALL:               return "X86ISD::CALL";
11918  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11919  case X86ISD::BT:                 return "X86ISD::BT";
11920  case X86ISD::CMP:                return "X86ISD::CMP";
11921  case X86ISD::COMI:               return "X86ISD::COMI";
11922  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11923  case X86ISD::SETCC:              return "X86ISD::SETCC";
11924  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11925  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11926  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11927  case X86ISD::CMOV:               return "X86ISD::CMOV";
11928  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11929  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11930  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11931  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11932  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11933  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11934  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11935  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11936  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11937  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11938  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11939  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11940  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11941  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11942  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11943  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11944  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11945  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11946  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11947  case X86ISD::HADD:               return "X86ISD::HADD";
11948  case X86ISD::HSUB:               return "X86ISD::HSUB";
11949  case X86ISD::FHADD:              return "X86ISD::FHADD";
11950  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11951  case X86ISD::FMAX:               return "X86ISD::FMAX";
11952  case X86ISD::FMIN:               return "X86ISD::FMIN";
11953  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11954  case X86ISD::FMINC:              return "X86ISD::FMINC";
11955  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11956  case X86ISD::FRCP:               return "X86ISD::FRCP";
11957  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11958  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11959  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11960  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
11961  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
11962  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11963  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11964  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11965  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11966  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11967  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11968  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11969  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11970  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11971  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11972  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11973  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11974  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11975  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11976  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11977  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
11978  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
11979  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11980  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
11981  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11982  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11983  case X86ISD::VSHL:               return "X86ISD::VSHL";
11984  case X86ISD::VSRL:               return "X86ISD::VSRL";
11985  case X86ISD::VSRA:               return "X86ISD::VSRA";
11986  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11987  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11988  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11989  case X86ISD::CMPP:               return "X86ISD::CMPP";
11990  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11991  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11992  case X86ISD::ADD:                return "X86ISD::ADD";
11993  case X86ISD::SUB:                return "X86ISD::SUB";
11994  case X86ISD::ADC:                return "X86ISD::ADC";
11995  case X86ISD::SBB:                return "X86ISD::SBB";
11996  case X86ISD::SMUL:               return "X86ISD::SMUL";
11997  case X86ISD::UMUL:               return "X86ISD::UMUL";
11998  case X86ISD::INC:                return "X86ISD::INC";
11999  case X86ISD::DEC:                return "X86ISD::DEC";
12000  case X86ISD::OR:                 return "X86ISD::OR";
12001  case X86ISD::XOR:                return "X86ISD::XOR";
12002  case X86ISD::AND:                return "X86ISD::AND";
12003  case X86ISD::ANDN:               return "X86ISD::ANDN";
12004  case X86ISD::BLSI:               return "X86ISD::BLSI";
12005  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12006  case X86ISD::BLSR:               return "X86ISD::BLSR";
12007  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12008  case X86ISD::PTEST:              return "X86ISD::PTEST";
12009  case X86ISD::TESTP:              return "X86ISD::TESTP";
12010  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
12011  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12012  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12013  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12014  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12015  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12016  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12017  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12018  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12019  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12020  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12021  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12022  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12023  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12024  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12025  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12026  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12027  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12028  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12029  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12030  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12031  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12032  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12033  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12034  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12035  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12036  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12037  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12038  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12039  case X86ISD::SAHF:               return "X86ISD::SAHF";
12040  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12041  case X86ISD::FMADD:              return "X86ISD::FMADD";
12042  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12043  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12044  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12045  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12046  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12047  }
12048}
12049
12050// isLegalAddressingMode - Return true if the addressing mode represented
12051// by AM is legal for this target, for a load/store of the specified type.
12052bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12053                                              Type *Ty) const {
12054  // X86 supports extremely general addressing modes.
12055  CodeModel::Model M = getTargetMachine().getCodeModel();
12056  Reloc::Model R = getTargetMachine().getRelocationModel();
12057
12058  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12059  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12060    return false;
12061
12062  if (AM.BaseGV) {
12063    unsigned GVFlags =
12064      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12065
12066    // If a reference to this global requires an extra load, we can't fold it.
12067    if (isGlobalStubReference(GVFlags))
12068      return false;
12069
12070    // If BaseGV requires a register for the PIC base, we cannot also have a
12071    // BaseReg specified.
12072    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12073      return false;
12074
12075    // If lower 4G is not available, then we must use rip-relative addressing.
12076    if ((M != CodeModel::Small || R != Reloc::Static) &&
12077        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12078      return false;
12079  }
12080
12081  switch (AM.Scale) {
12082  case 0:
12083  case 1:
12084  case 2:
12085  case 4:
12086  case 8:
12087    // These scales always work.
12088    break;
12089  case 3:
12090  case 5:
12091  case 9:
12092    // These scales are formed with basereg+scalereg.  Only accept if there is
12093    // no basereg yet.
12094    if (AM.HasBaseReg)
12095      return false;
12096    break;
12097  default:  // Other stuff never works.
12098    return false;
12099  }
12100
12101  return true;
12102}
12103
12104
12105bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12106  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12107    return false;
12108  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12109  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12110  if (NumBits1 <= NumBits2)
12111    return false;
12112  return true;
12113}
12114
12115bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12116  return Imm == (int32_t)Imm;
12117}
12118
12119bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12120  // Can also use sub to handle negated immediates.
12121  return Imm == (int32_t)Imm;
12122}
12123
12124bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12125  if (!VT1.isInteger() || !VT2.isInteger())
12126    return false;
12127  unsigned NumBits1 = VT1.getSizeInBits();
12128  unsigned NumBits2 = VT2.getSizeInBits();
12129  if (NumBits1 <= NumBits2)
12130    return false;
12131  return true;
12132}
12133
12134bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12135  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12136  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12137}
12138
12139bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12140  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12141  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12142}
12143
12144bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12145  // i16 instructions are longer (0x66 prefix) and potentially slower.
12146  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12147}
12148
12149/// isShuffleMaskLegal - Targets can use this to indicate that they only
12150/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12151/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12152/// are assumed to be legal.
12153bool
12154X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12155                                      EVT VT) const {
12156  // Very little shuffling can be done for 64-bit vectors right now.
12157  if (VT.getSizeInBits() == 64)
12158    return false;
12159
12160  // FIXME: pshufb, blends, shifts.
12161  return (VT.getVectorNumElements() == 2 ||
12162          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12163          isMOVLMask(M, VT) ||
12164          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
12165          isPSHUFDMask(M, VT) ||
12166          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
12167          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
12168          isPALIGNRMask(M, VT, Subtarget) ||
12169          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
12170          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
12171          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
12172          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
12173}
12174
12175bool
12176X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12177                                          EVT VT) const {
12178  unsigned NumElts = VT.getVectorNumElements();
12179  // FIXME: This collection of masks seems suspect.
12180  if (NumElts == 2)
12181    return true;
12182  if (NumElts == 4 && VT.is128BitVector()) {
12183    return (isMOVLMask(Mask, VT)  ||
12184            isCommutedMOVLMask(Mask, VT, true) ||
12185            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
12186            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
12187  }
12188  return false;
12189}
12190
12191//===----------------------------------------------------------------------===//
12192//                           X86 Scheduler Hooks
12193//===----------------------------------------------------------------------===//
12194
12195// private utility function
12196
12197// Get CMPXCHG opcode for the specified data type.
12198static unsigned getCmpXChgOpcode(EVT VT) {
12199  switch (VT.getSimpleVT().SimpleTy) {
12200  case MVT::i8:  return X86::LCMPXCHG8;
12201  case MVT::i16: return X86::LCMPXCHG16;
12202  case MVT::i32: return X86::LCMPXCHG32;
12203  case MVT::i64: return X86::LCMPXCHG64;
12204  default:
12205    break;
12206  }
12207  llvm_unreachable("Invalid operand size!");
12208}
12209
12210// Get LOAD opcode for the specified data type.
12211static unsigned getLoadOpcode(EVT VT) {
12212  switch (VT.getSimpleVT().SimpleTy) {
12213  case MVT::i8:  return X86::MOV8rm;
12214  case MVT::i16: return X86::MOV16rm;
12215  case MVT::i32: return X86::MOV32rm;
12216  case MVT::i64: return X86::MOV64rm;
12217  default:
12218    break;
12219  }
12220  llvm_unreachable("Invalid operand size!");
12221}
12222
12223// Get opcode of the non-atomic one from the specified atomic instruction.
12224static unsigned getNonAtomicOpcode(unsigned Opc) {
12225  switch (Opc) {
12226  case X86::ATOMAND8:  return X86::AND8rr;
12227  case X86::ATOMAND16: return X86::AND16rr;
12228  case X86::ATOMAND32: return X86::AND32rr;
12229  case X86::ATOMAND64: return X86::AND64rr;
12230  case X86::ATOMOR8:   return X86::OR8rr;
12231  case X86::ATOMOR16:  return X86::OR16rr;
12232  case X86::ATOMOR32:  return X86::OR32rr;
12233  case X86::ATOMOR64:  return X86::OR64rr;
12234  case X86::ATOMXOR8:  return X86::XOR8rr;
12235  case X86::ATOMXOR16: return X86::XOR16rr;
12236  case X86::ATOMXOR32: return X86::XOR32rr;
12237  case X86::ATOMXOR64: return X86::XOR64rr;
12238  }
12239  llvm_unreachable("Unhandled atomic-load-op opcode!");
12240}
12241
12242// Get opcode of the non-atomic one from the specified atomic instruction with
12243// extra opcode.
12244static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12245                                               unsigned &ExtraOpc) {
12246  switch (Opc) {
12247  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12248  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12249  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12250  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12251  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12252  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12253  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12254  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12255  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12256  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12257  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12258  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12259  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12260  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12261  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12262  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12263  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12264  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12265  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12266  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12267  }
12268  llvm_unreachable("Unhandled atomic-load-op opcode!");
12269}
12270
12271// Get opcode of the non-atomic one from the specified atomic instruction for
12272// 64-bit data type on 32-bit target.
12273static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12274  switch (Opc) {
12275  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12276  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12277  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12278  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12279  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12280  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12281  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12282  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12283  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12284  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12285  }
12286  llvm_unreachable("Unhandled atomic-load-op opcode!");
12287}
12288
12289// Get opcode of the non-atomic one from the specified atomic instruction for
12290// 64-bit data type on 32-bit target with extra opcode.
12291static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12292                                                   unsigned &HiOpc,
12293                                                   unsigned &ExtraOpc) {
12294  switch (Opc) {
12295  case X86::ATOMNAND6432:
12296    ExtraOpc = X86::NOT32r;
12297    HiOpc = X86::AND32rr;
12298    return X86::AND32rr;
12299  }
12300  llvm_unreachable("Unhandled atomic-load-op opcode!");
12301}
12302
12303// Get pseudo CMOV opcode from the specified data type.
12304static unsigned getPseudoCMOVOpc(EVT VT) {
12305  switch (VT.getSimpleVT().SimpleTy) {
12306  case MVT::i8:  return X86::CMOV_GR8;
12307  case MVT::i16: return X86::CMOV_GR16;
12308  case MVT::i32: return X86::CMOV_GR32;
12309  default:
12310    break;
12311  }
12312  llvm_unreachable("Unknown CMOV opcode!");
12313}
12314
12315// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12316// They will be translated into a spin-loop or compare-exchange loop from
12317//
12318//    ...
12319//    dst = atomic-fetch-op MI.addr, MI.val
12320//    ...
12321//
12322// to
12323//
12324//    ...
12325//    EAX = LOAD MI.addr
12326// loop:
12327//    t1 = OP MI.val, EAX
12328//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12329//    JNE loop
12330// sink:
12331//    dst = EAX
12332//    ...
12333MachineBasicBlock *
12334X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12335                                       MachineBasicBlock *MBB) const {
12336  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12337  DebugLoc DL = MI->getDebugLoc();
12338
12339  MachineFunction *MF = MBB->getParent();
12340  MachineRegisterInfo &MRI = MF->getRegInfo();
12341
12342  const BasicBlock *BB = MBB->getBasicBlock();
12343  MachineFunction::iterator I = MBB;
12344  ++I;
12345
12346  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12347         "Unexpected number of operands");
12348
12349  assert(MI->hasOneMemOperand() &&
12350         "Expected atomic-load-op to have one memoperand");
12351
12352  // Memory Reference
12353  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12354  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12355
12356  unsigned DstReg, SrcReg;
12357  unsigned MemOpndSlot;
12358
12359  unsigned CurOp = 0;
12360
12361  DstReg = MI->getOperand(CurOp++).getReg();
12362  MemOpndSlot = CurOp;
12363  CurOp += X86::AddrNumOperands;
12364  SrcReg = MI->getOperand(CurOp++).getReg();
12365
12366  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12367  MVT::SimpleValueType VT = *RC->vt_begin();
12368  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12369
12370  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12371  unsigned LOADOpc = getLoadOpcode(VT);
12372
12373  // For the atomic load-arith operator, we generate
12374  //
12375  //  thisMBB:
12376  //    EAX = LOAD [MI.addr]
12377  //  mainMBB:
12378  //    t1 = OP MI.val, EAX
12379  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12380  //    JNE mainMBB
12381  //  sinkMBB:
12382
12383  MachineBasicBlock *thisMBB = MBB;
12384  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12385  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12386  MF->insert(I, mainMBB);
12387  MF->insert(I, sinkMBB);
12388
12389  MachineInstrBuilder MIB;
12390
12391  // Transfer the remainder of BB and its successor edges to sinkMBB.
12392  sinkMBB->splice(sinkMBB->begin(), MBB,
12393                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12394  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12395
12396  // thisMBB:
12397  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12398  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12399    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12400  MIB.setMemRefs(MMOBegin, MMOEnd);
12401
12402  thisMBB->addSuccessor(mainMBB);
12403
12404  // mainMBB:
12405  MachineBasicBlock *origMainMBB = mainMBB;
12406  mainMBB->addLiveIn(AccPhyReg);
12407
12408  // Copy AccPhyReg as it is used more than once.
12409  unsigned AccReg = MRI.createVirtualRegister(RC);
12410  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12411    .addReg(AccPhyReg);
12412
12413  unsigned t1 = MRI.createVirtualRegister(RC);
12414  unsigned Opc = MI->getOpcode();
12415  switch (Opc) {
12416  default:
12417    llvm_unreachable("Unhandled atomic-load-op opcode!");
12418  case X86::ATOMAND8:
12419  case X86::ATOMAND16:
12420  case X86::ATOMAND32:
12421  case X86::ATOMAND64:
12422  case X86::ATOMOR8:
12423  case X86::ATOMOR16:
12424  case X86::ATOMOR32:
12425  case X86::ATOMOR64:
12426  case X86::ATOMXOR8:
12427  case X86::ATOMXOR16:
12428  case X86::ATOMXOR32:
12429  case X86::ATOMXOR64: {
12430    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12431    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12432      .addReg(AccReg);
12433    break;
12434  }
12435  case X86::ATOMNAND8:
12436  case X86::ATOMNAND16:
12437  case X86::ATOMNAND32:
12438  case X86::ATOMNAND64: {
12439    unsigned t2 = MRI.createVirtualRegister(RC);
12440    unsigned NOTOpc;
12441    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12442    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12443      .addReg(AccReg);
12444    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12445    break;
12446  }
12447  case X86::ATOMMAX8:
12448  case X86::ATOMMAX16:
12449  case X86::ATOMMAX32:
12450  case X86::ATOMMAX64:
12451  case X86::ATOMMIN8:
12452  case X86::ATOMMIN16:
12453  case X86::ATOMMIN32:
12454  case X86::ATOMMIN64:
12455  case X86::ATOMUMAX8:
12456  case X86::ATOMUMAX16:
12457  case X86::ATOMUMAX32:
12458  case X86::ATOMUMAX64:
12459  case X86::ATOMUMIN8:
12460  case X86::ATOMUMIN16:
12461  case X86::ATOMUMIN32:
12462  case X86::ATOMUMIN64: {
12463    unsigned CMPOpc;
12464    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12465
12466    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12467      .addReg(SrcReg)
12468      .addReg(AccReg);
12469
12470    if (Subtarget->hasCMov()) {
12471      if (VT != MVT::i8) {
12472        // Native support
12473        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12474          .addReg(SrcReg)
12475          .addReg(AccReg);
12476      } else {
12477        // Promote i8 to i32 to use CMOV32
12478        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12479        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12480        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12481        unsigned t2 = MRI.createVirtualRegister(RC32);
12482
12483        unsigned Undef = MRI.createVirtualRegister(RC32);
12484        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12485
12486        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12487          .addReg(Undef)
12488          .addReg(SrcReg)
12489          .addImm(X86::sub_8bit);
12490        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12491          .addReg(Undef)
12492          .addReg(AccReg)
12493          .addImm(X86::sub_8bit);
12494
12495        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12496          .addReg(SrcReg32)
12497          .addReg(AccReg32);
12498
12499        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12500          .addReg(t2, 0, X86::sub_8bit);
12501      }
12502    } else {
12503      // Use pseudo select and lower them.
12504      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12505             "Invalid atomic-load-op transformation!");
12506      unsigned SelOpc = getPseudoCMOVOpc(VT);
12507      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12508      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12509      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12510              .addReg(SrcReg).addReg(AccReg)
12511              .addImm(CC);
12512      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12513    }
12514    break;
12515  }
12516  }
12517
12518  // Copy AccPhyReg back from virtual register.
12519  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
12520    .addReg(AccReg);
12521
12522  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12523  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12524    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12525  MIB.addReg(t1);
12526  MIB.setMemRefs(MMOBegin, MMOEnd);
12527
12528  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12529
12530  mainMBB->addSuccessor(origMainMBB);
12531  mainMBB->addSuccessor(sinkMBB);
12532
12533  // sinkMBB:
12534  sinkMBB->addLiveIn(AccPhyReg);
12535
12536  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12537          TII->get(TargetOpcode::COPY), DstReg)
12538    .addReg(AccPhyReg);
12539
12540  MI->eraseFromParent();
12541  return sinkMBB;
12542}
12543
12544// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
12545// instructions. They will be translated into a spin-loop or compare-exchange
12546// loop from
12547//
12548//    ...
12549//    dst = atomic-fetch-op MI.addr, MI.val
12550//    ...
12551//
12552// to
12553//
12554//    ...
12555//    EAX = LOAD [MI.addr + 0]
12556//    EDX = LOAD [MI.addr + 4]
12557// loop:
12558//    EBX = OP MI.val.lo, EAX
12559//    ECX = OP MI.val.hi, EDX
12560//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12561//    JNE loop
12562// sink:
12563//    dst = EDX:EAX
12564//    ...
12565MachineBasicBlock *
12566X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
12567                                           MachineBasicBlock *MBB) const {
12568  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12569  DebugLoc DL = MI->getDebugLoc();
12570
12571  MachineFunction *MF = MBB->getParent();
12572  MachineRegisterInfo &MRI = MF->getRegInfo();
12573
12574  const BasicBlock *BB = MBB->getBasicBlock();
12575  MachineFunction::iterator I = MBB;
12576  ++I;
12577
12578  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12579         "Unexpected number of operands");
12580
12581  assert(MI->hasOneMemOperand() &&
12582         "Expected atomic-load-op32 to have one memoperand");
12583
12584  // Memory Reference
12585  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12586  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12587
12588  unsigned DstLoReg, DstHiReg;
12589  unsigned SrcLoReg, SrcHiReg;
12590  unsigned MemOpndSlot;
12591
12592  unsigned CurOp = 0;
12593
12594  DstLoReg = MI->getOperand(CurOp++).getReg();
12595  DstHiReg = MI->getOperand(CurOp++).getReg();
12596  MemOpndSlot = CurOp;
12597  CurOp += X86::AddrNumOperands;
12598  SrcLoReg = MI->getOperand(CurOp++).getReg();
12599  SrcHiReg = MI->getOperand(CurOp++).getReg();
12600
12601  const TargetRegisterClass *RC = &X86::GR32RegClass;
12602  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
12603
12604  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
12605  unsigned LOADOpc = X86::MOV32rm;
12606
12607  // For the atomic load-arith operator, we generate
12608  //
12609  //  thisMBB:
12610  //    EAX = LOAD [MI.addr + 0]
12611  //    EDX = LOAD [MI.addr + 4]
12612  //  mainMBB:
12613  //    EBX = OP MI.vallo, EAX
12614  //    ECX = OP MI.valhi, EDX
12615  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12616  //    JNE mainMBB
12617  //  sinkMBB:
12618
12619  MachineBasicBlock *thisMBB = MBB;
12620  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12621  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12622  MF->insert(I, mainMBB);
12623  MF->insert(I, sinkMBB);
12624
12625  MachineInstrBuilder MIB;
12626
12627  // Transfer the remainder of BB and its successor edges to sinkMBB.
12628  sinkMBB->splice(sinkMBB->begin(), MBB,
12629                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12630  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12631
12632  // thisMBB:
12633  // Lo
12634  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
12635  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12636    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12637  MIB.setMemRefs(MMOBegin, MMOEnd);
12638  // Hi
12639  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
12640  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
12641    if (i == X86::AddrDisp)
12642      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
12643    else
12644      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12645  }
12646  MIB.setMemRefs(MMOBegin, MMOEnd);
12647
12648  thisMBB->addSuccessor(mainMBB);
12649
12650  // mainMBB:
12651  MachineBasicBlock *origMainMBB = mainMBB;
12652  mainMBB->addLiveIn(X86::EAX);
12653  mainMBB->addLiveIn(X86::EDX);
12654
12655  // Copy EDX:EAX as they are used more than once.
12656  unsigned LoReg = MRI.createVirtualRegister(RC);
12657  unsigned HiReg = MRI.createVirtualRegister(RC);
12658  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
12659  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
12660
12661  unsigned t1L = MRI.createVirtualRegister(RC);
12662  unsigned t1H = MRI.createVirtualRegister(RC);
12663
12664  unsigned Opc = MI->getOpcode();
12665  switch (Opc) {
12666  default:
12667    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
12668  case X86::ATOMAND6432:
12669  case X86::ATOMOR6432:
12670  case X86::ATOMXOR6432:
12671  case X86::ATOMADD6432:
12672  case X86::ATOMSUB6432: {
12673    unsigned HiOpc;
12674    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12675    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg).addReg(LoReg);
12676    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg).addReg(HiReg);
12677    break;
12678  }
12679  case X86::ATOMNAND6432: {
12680    unsigned HiOpc, NOTOpc;
12681    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
12682    unsigned t2L = MRI.createVirtualRegister(RC);
12683    unsigned t2H = MRI.createVirtualRegister(RC);
12684    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
12685    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
12686    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
12687    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
12688    break;
12689  }
12690  case X86::ATOMMAX6432:
12691  case X86::ATOMMIN6432:
12692  case X86::ATOMUMAX6432:
12693  case X86::ATOMUMIN6432: {
12694    unsigned HiOpc;
12695    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12696    unsigned cL = MRI.createVirtualRegister(RC8);
12697    unsigned cH = MRI.createVirtualRegister(RC8);
12698    unsigned cL32 = MRI.createVirtualRegister(RC);
12699    unsigned cH32 = MRI.createVirtualRegister(RC);
12700    unsigned cc = MRI.createVirtualRegister(RC);
12701    // cl := cmp src_lo, lo
12702    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12703      .addReg(SrcLoReg).addReg(LoReg);
12704    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
12705    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
12706    // ch := cmp src_hi, hi
12707    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12708      .addReg(SrcHiReg).addReg(HiReg);
12709    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
12710    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
12711    // cc := if (src_hi == hi) ? cl : ch;
12712    if (Subtarget->hasCMov()) {
12713      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
12714        .addReg(cH32).addReg(cL32);
12715    } else {
12716      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
12717              .addReg(cH32).addReg(cL32)
12718              .addImm(X86::COND_E);
12719      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12720    }
12721    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
12722    if (Subtarget->hasCMov()) {
12723      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
12724        .addReg(SrcLoReg).addReg(LoReg);
12725      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
12726        .addReg(SrcHiReg).addReg(HiReg);
12727    } else {
12728      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
12729              .addReg(SrcLoReg).addReg(LoReg)
12730              .addImm(X86::COND_NE);
12731      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12732      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
12733              .addReg(SrcHiReg).addReg(HiReg)
12734              .addImm(X86::COND_NE);
12735      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12736    }
12737    break;
12738  }
12739  case X86::ATOMSWAP6432: {
12740    unsigned HiOpc;
12741    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12742    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
12743    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
12744    break;
12745  }
12746  }
12747
12748  // Copy EDX:EAX back from HiReg:LoReg
12749  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
12750  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
12751  // Copy ECX:EBX from t1H:t1L
12752  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
12753  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
12754
12755  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12756  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12757    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12758  MIB.setMemRefs(MMOBegin, MMOEnd);
12759
12760  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12761
12762  mainMBB->addSuccessor(origMainMBB);
12763  mainMBB->addSuccessor(sinkMBB);
12764
12765  // sinkMBB:
12766  sinkMBB->addLiveIn(X86::EAX);
12767  sinkMBB->addLiveIn(X86::EDX);
12768
12769  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12770          TII->get(TargetOpcode::COPY), DstLoReg)
12771    .addReg(X86::EAX);
12772  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12773          TII->get(TargetOpcode::COPY), DstHiReg)
12774    .addReg(X86::EDX);
12775
12776  MI->eraseFromParent();
12777  return sinkMBB;
12778}
12779
12780// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12781// or XMM0_V32I8 in AVX all of this code can be replaced with that
12782// in the .td file.
12783MachineBasicBlock *
12784X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
12785                            unsigned numArgs, bool memArg) const {
12786  assert(Subtarget->hasSSE42() &&
12787         "Target must have SSE4.2 or AVX features enabled");
12788
12789  DebugLoc dl = MI->getDebugLoc();
12790  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12791  unsigned Opc;
12792  if (!Subtarget->hasAVX()) {
12793    if (memArg)
12794      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
12795    else
12796      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
12797  } else {
12798    if (memArg)
12799      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
12800    else
12801      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
12802  }
12803
12804  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12805  for (unsigned i = 0; i < numArgs; ++i) {
12806    MachineOperand &Op = MI->getOperand(i+1);
12807    if (!(Op.isReg() && Op.isImplicit()))
12808      MIB.addOperand(Op);
12809  }
12810  BuildMI(*BB, MI, dl,
12811    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12812    .addReg(X86::XMM0);
12813
12814  MI->eraseFromParent();
12815  return BB;
12816}
12817
12818MachineBasicBlock *
12819X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
12820  DebugLoc dl = MI->getDebugLoc();
12821  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12822
12823  // Address into RAX/EAX, other two args into ECX, EDX.
12824  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12825  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12826  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12827  for (int i = 0; i < X86::AddrNumOperands; ++i)
12828    MIB.addOperand(MI->getOperand(i));
12829
12830  unsigned ValOps = X86::AddrNumOperands;
12831  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12832    .addReg(MI->getOperand(ValOps).getReg());
12833  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12834    .addReg(MI->getOperand(ValOps+1).getReg());
12835
12836  // The instruction doesn't actually take any operands though.
12837  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12838
12839  MI->eraseFromParent(); // The pseudo is gone now.
12840  return BB;
12841}
12842
12843MachineBasicBlock *
12844X86TargetLowering::EmitVAARG64WithCustomInserter(
12845                   MachineInstr *MI,
12846                   MachineBasicBlock *MBB) const {
12847  // Emit va_arg instruction on X86-64.
12848
12849  // Operands to this pseudo-instruction:
12850  // 0  ) Output        : destination address (reg)
12851  // 1-5) Input         : va_list address (addr, i64mem)
12852  // 6  ) ArgSize       : Size (in bytes) of vararg type
12853  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12854  // 8  ) Align         : Alignment of type
12855  // 9  ) EFLAGS (implicit-def)
12856
12857  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12858  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12859
12860  unsigned DestReg = MI->getOperand(0).getReg();
12861  MachineOperand &Base = MI->getOperand(1);
12862  MachineOperand &Scale = MI->getOperand(2);
12863  MachineOperand &Index = MI->getOperand(3);
12864  MachineOperand &Disp = MI->getOperand(4);
12865  MachineOperand &Segment = MI->getOperand(5);
12866  unsigned ArgSize = MI->getOperand(6).getImm();
12867  unsigned ArgMode = MI->getOperand(7).getImm();
12868  unsigned Align = MI->getOperand(8).getImm();
12869
12870  // Memory Reference
12871  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12872  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12873  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12874
12875  // Machine Information
12876  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12877  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12878  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12879  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12880  DebugLoc DL = MI->getDebugLoc();
12881
12882  // struct va_list {
12883  //   i32   gp_offset
12884  //   i32   fp_offset
12885  //   i64   overflow_area (address)
12886  //   i64   reg_save_area (address)
12887  // }
12888  // sizeof(va_list) = 24
12889  // alignment(va_list) = 8
12890
12891  unsigned TotalNumIntRegs = 6;
12892  unsigned TotalNumXMMRegs = 8;
12893  bool UseGPOffset = (ArgMode == 1);
12894  bool UseFPOffset = (ArgMode == 2);
12895  unsigned MaxOffset = TotalNumIntRegs * 8 +
12896                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12897
12898  /* Align ArgSize to a multiple of 8 */
12899  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12900  bool NeedsAlign = (Align > 8);
12901
12902  MachineBasicBlock *thisMBB = MBB;
12903  MachineBasicBlock *overflowMBB;
12904  MachineBasicBlock *offsetMBB;
12905  MachineBasicBlock *endMBB;
12906
12907  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12908  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12909  unsigned OffsetReg = 0;
12910
12911  if (!UseGPOffset && !UseFPOffset) {
12912    // If we only pull from the overflow region, we don't create a branch.
12913    // We don't need to alter control flow.
12914    OffsetDestReg = 0; // unused
12915    OverflowDestReg = DestReg;
12916
12917    offsetMBB = NULL;
12918    overflowMBB = thisMBB;
12919    endMBB = thisMBB;
12920  } else {
12921    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12922    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12923    // If not, pull from overflow_area. (branch to overflowMBB)
12924    //
12925    //       thisMBB
12926    //         |     .
12927    //         |        .
12928    //     offsetMBB   overflowMBB
12929    //         |        .
12930    //         |     .
12931    //        endMBB
12932
12933    // Registers for the PHI in endMBB
12934    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12935    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12936
12937    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12938    MachineFunction *MF = MBB->getParent();
12939    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12940    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12941    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12942
12943    MachineFunction::iterator MBBIter = MBB;
12944    ++MBBIter;
12945
12946    // Insert the new basic blocks
12947    MF->insert(MBBIter, offsetMBB);
12948    MF->insert(MBBIter, overflowMBB);
12949    MF->insert(MBBIter, endMBB);
12950
12951    // Transfer the remainder of MBB and its successor edges to endMBB.
12952    endMBB->splice(endMBB->begin(), thisMBB,
12953                    llvm::next(MachineBasicBlock::iterator(MI)),
12954                    thisMBB->end());
12955    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12956
12957    // Make offsetMBB and overflowMBB successors of thisMBB
12958    thisMBB->addSuccessor(offsetMBB);
12959    thisMBB->addSuccessor(overflowMBB);
12960
12961    // endMBB is a successor of both offsetMBB and overflowMBB
12962    offsetMBB->addSuccessor(endMBB);
12963    overflowMBB->addSuccessor(endMBB);
12964
12965    // Load the offset value into a register
12966    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12967    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12968      .addOperand(Base)
12969      .addOperand(Scale)
12970      .addOperand(Index)
12971      .addDisp(Disp, UseFPOffset ? 4 : 0)
12972      .addOperand(Segment)
12973      .setMemRefs(MMOBegin, MMOEnd);
12974
12975    // Check if there is enough room left to pull this argument.
12976    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12977      .addReg(OffsetReg)
12978      .addImm(MaxOffset + 8 - ArgSizeA8);
12979
12980    // Branch to "overflowMBB" if offset >= max
12981    // Fall through to "offsetMBB" otherwise
12982    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12983      .addMBB(overflowMBB);
12984  }
12985
12986  // In offsetMBB, emit code to use the reg_save_area.
12987  if (offsetMBB) {
12988    assert(OffsetReg != 0);
12989
12990    // Read the reg_save_area address.
12991    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12992    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12993      .addOperand(Base)
12994      .addOperand(Scale)
12995      .addOperand(Index)
12996      .addDisp(Disp, 16)
12997      .addOperand(Segment)
12998      .setMemRefs(MMOBegin, MMOEnd);
12999
13000    // Zero-extend the offset
13001    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13002      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13003        .addImm(0)
13004        .addReg(OffsetReg)
13005        .addImm(X86::sub_32bit);
13006
13007    // Add the offset to the reg_save_area to get the final address.
13008    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13009      .addReg(OffsetReg64)
13010      .addReg(RegSaveReg);
13011
13012    // Compute the offset for the next argument
13013    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13014    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13015      .addReg(OffsetReg)
13016      .addImm(UseFPOffset ? 16 : 8);
13017
13018    // Store it back into the va_list.
13019    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13020      .addOperand(Base)
13021      .addOperand(Scale)
13022      .addOperand(Index)
13023      .addDisp(Disp, UseFPOffset ? 4 : 0)
13024      .addOperand(Segment)
13025      .addReg(NextOffsetReg)
13026      .setMemRefs(MMOBegin, MMOEnd);
13027
13028    // Jump to endMBB
13029    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13030      .addMBB(endMBB);
13031  }
13032
13033  //
13034  // Emit code to use overflow area
13035  //
13036
13037  // Load the overflow_area address into a register.
13038  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13039  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13040    .addOperand(Base)
13041    .addOperand(Scale)
13042    .addOperand(Index)
13043    .addDisp(Disp, 8)
13044    .addOperand(Segment)
13045    .setMemRefs(MMOBegin, MMOEnd);
13046
13047  // If we need to align it, do so. Otherwise, just copy the address
13048  // to OverflowDestReg.
13049  if (NeedsAlign) {
13050    // Align the overflow address
13051    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13052    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
13053
13054    // aligned_addr = (addr + (align-1)) & ~(align-1)
13055    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
13056      .addReg(OverflowAddrReg)
13057      .addImm(Align-1);
13058
13059    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
13060      .addReg(TmpReg)
13061      .addImm(~(uint64_t)(Align-1));
13062  } else {
13063    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
13064      .addReg(OverflowAddrReg);
13065  }
13066
13067  // Compute the next overflow address after this argument.
13068  // (the overflow address should be kept 8-byte aligned)
13069  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
13070  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
13071    .addReg(OverflowDestReg)
13072    .addImm(ArgSizeA8);
13073
13074  // Store the new overflow address.
13075  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
13076    .addOperand(Base)
13077    .addOperand(Scale)
13078    .addOperand(Index)
13079    .addDisp(Disp, 8)
13080    .addOperand(Segment)
13081    .addReg(NextAddrReg)
13082    .setMemRefs(MMOBegin, MMOEnd);
13083
13084  // If we branched, emit the PHI to the front of endMBB.
13085  if (offsetMBB) {
13086    BuildMI(*endMBB, endMBB->begin(), DL,
13087            TII->get(X86::PHI), DestReg)
13088      .addReg(OffsetDestReg).addMBB(offsetMBB)
13089      .addReg(OverflowDestReg).addMBB(overflowMBB);
13090  }
13091
13092  // Erase the pseudo instruction
13093  MI->eraseFromParent();
13094
13095  return endMBB;
13096}
13097
13098MachineBasicBlock *
13099X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
13100                                                 MachineInstr *MI,
13101                                                 MachineBasicBlock *MBB) const {
13102  // Emit code to save XMM registers to the stack. The ABI says that the
13103  // number of registers to save is given in %al, so it's theoretically
13104  // possible to do an indirect jump trick to avoid saving all of them,
13105  // however this code takes a simpler approach and just executes all
13106  // of the stores if %al is non-zero. It's less code, and it's probably
13107  // easier on the hardware branch predictor, and stores aren't all that
13108  // expensive anyway.
13109
13110  // Create the new basic blocks. One block contains all the XMM stores,
13111  // and one block is the final destination regardless of whether any
13112  // stores were performed.
13113  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13114  MachineFunction *F = MBB->getParent();
13115  MachineFunction::iterator MBBIter = MBB;
13116  ++MBBIter;
13117  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
13118  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
13119  F->insert(MBBIter, XMMSaveMBB);
13120  F->insert(MBBIter, EndMBB);
13121
13122  // Transfer the remainder of MBB and its successor edges to EndMBB.
13123  EndMBB->splice(EndMBB->begin(), MBB,
13124                 llvm::next(MachineBasicBlock::iterator(MI)),
13125                 MBB->end());
13126  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
13127
13128  // The original block will now fall through to the XMM save block.
13129  MBB->addSuccessor(XMMSaveMBB);
13130  // The XMMSaveMBB will fall through to the end block.
13131  XMMSaveMBB->addSuccessor(EndMBB);
13132
13133  // Now add the instructions.
13134  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13135  DebugLoc DL = MI->getDebugLoc();
13136
13137  unsigned CountReg = MI->getOperand(0).getReg();
13138  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
13139  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
13140
13141  if (!Subtarget->isTargetWin64()) {
13142    // If %al is 0, branch around the XMM save block.
13143    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
13144    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
13145    MBB->addSuccessor(EndMBB);
13146  }
13147
13148  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
13149  // In the XMM save block, save all the XMM argument registers.
13150  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
13151    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
13152    MachineMemOperand *MMO =
13153      F->getMachineMemOperand(
13154          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
13155        MachineMemOperand::MOStore,
13156        /*Size=*/16, /*Align=*/16);
13157    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
13158      .addFrameIndex(RegSaveFrameIndex)
13159      .addImm(/*Scale=*/1)
13160      .addReg(/*IndexReg=*/0)
13161      .addImm(/*Disp=*/Offset)
13162      .addReg(/*Segment=*/0)
13163      .addReg(MI->getOperand(i).getReg())
13164      .addMemOperand(MMO);
13165  }
13166
13167  MI->eraseFromParent();   // The pseudo instruction is gone now.
13168
13169  return EndMBB;
13170}
13171
13172// The EFLAGS operand of SelectItr might be missing a kill marker
13173// because there were multiple uses of EFLAGS, and ISel didn't know
13174// which to mark. Figure out whether SelectItr should have had a
13175// kill marker, and set it if it should. Returns the correct kill
13176// marker value.
13177static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
13178                                     MachineBasicBlock* BB,
13179                                     const TargetRegisterInfo* TRI) {
13180  // Scan forward through BB for a use/def of EFLAGS.
13181  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
13182  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
13183    const MachineInstr& mi = *miI;
13184    if (mi.readsRegister(X86::EFLAGS))
13185      return false;
13186    if (mi.definesRegister(X86::EFLAGS))
13187      break; // Should have kill-flag - update below.
13188  }
13189
13190  // If we hit the end of the block, check whether EFLAGS is live into a
13191  // successor.
13192  if (miI == BB->end()) {
13193    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
13194                                          sEnd = BB->succ_end();
13195         sItr != sEnd; ++sItr) {
13196      MachineBasicBlock* succ = *sItr;
13197      if (succ->isLiveIn(X86::EFLAGS))
13198        return false;
13199    }
13200  }
13201
13202  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
13203  // out. SelectMI should have a kill flag on EFLAGS.
13204  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
13205  return true;
13206}
13207
13208MachineBasicBlock *
13209X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
13210                                     MachineBasicBlock *BB) const {
13211  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13212  DebugLoc DL = MI->getDebugLoc();
13213
13214  // To "insert" a SELECT_CC instruction, we actually have to insert the
13215  // diamond control-flow pattern.  The incoming instruction knows the
13216  // destination vreg to set, the condition code register to branch on, the
13217  // true/false values to select between, and a branch opcode to use.
13218  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13219  MachineFunction::iterator It = BB;
13220  ++It;
13221
13222  //  thisMBB:
13223  //  ...
13224  //   TrueVal = ...
13225  //   cmpTY ccX, r1, r2
13226  //   bCC copy1MBB
13227  //   fallthrough --> copy0MBB
13228  MachineBasicBlock *thisMBB = BB;
13229  MachineFunction *F = BB->getParent();
13230  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13231  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13232  F->insert(It, copy0MBB);
13233  F->insert(It, sinkMBB);
13234
13235  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13236  // live into the sink and copy blocks.
13237  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13238  if (!MI->killsRegister(X86::EFLAGS) &&
13239      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13240    copy0MBB->addLiveIn(X86::EFLAGS);
13241    sinkMBB->addLiveIn(X86::EFLAGS);
13242  }
13243
13244  // Transfer the remainder of BB and its successor edges to sinkMBB.
13245  sinkMBB->splice(sinkMBB->begin(), BB,
13246                  llvm::next(MachineBasicBlock::iterator(MI)),
13247                  BB->end());
13248  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13249
13250  // Add the true and fallthrough blocks as its successors.
13251  BB->addSuccessor(copy0MBB);
13252  BB->addSuccessor(sinkMBB);
13253
13254  // Create the conditional branch instruction.
13255  unsigned Opc =
13256    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13257  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13258
13259  //  copy0MBB:
13260  //   %FalseValue = ...
13261  //   # fallthrough to sinkMBB
13262  copy0MBB->addSuccessor(sinkMBB);
13263
13264  //  sinkMBB:
13265  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13266  //  ...
13267  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13268          TII->get(X86::PHI), MI->getOperand(0).getReg())
13269    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13270    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13271
13272  MI->eraseFromParent();   // The pseudo instruction is gone now.
13273  return sinkMBB;
13274}
13275
13276MachineBasicBlock *
13277X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13278                                        bool Is64Bit) const {
13279  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13280  DebugLoc DL = MI->getDebugLoc();
13281  MachineFunction *MF = BB->getParent();
13282  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13283
13284  assert(getTargetMachine().Options.EnableSegmentedStacks);
13285
13286  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13287  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13288
13289  // BB:
13290  //  ... [Till the alloca]
13291  // If stacklet is not large enough, jump to mallocMBB
13292  //
13293  // bumpMBB:
13294  //  Allocate by subtracting from RSP
13295  //  Jump to continueMBB
13296  //
13297  // mallocMBB:
13298  //  Allocate by call to runtime
13299  //
13300  // continueMBB:
13301  //  ...
13302  //  [rest of original BB]
13303  //
13304
13305  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13306  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13307  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13308
13309  MachineRegisterInfo &MRI = MF->getRegInfo();
13310  const TargetRegisterClass *AddrRegClass =
13311    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13312
13313  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13314    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13315    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13316    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13317    sizeVReg = MI->getOperand(1).getReg(),
13318    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13319
13320  MachineFunction::iterator MBBIter = BB;
13321  ++MBBIter;
13322
13323  MF->insert(MBBIter, bumpMBB);
13324  MF->insert(MBBIter, mallocMBB);
13325  MF->insert(MBBIter, continueMBB);
13326
13327  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13328                      (MachineBasicBlock::iterator(MI)), BB->end());
13329  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13330
13331  // Add code to the main basic block to check if the stack limit has been hit,
13332  // and if so, jump to mallocMBB otherwise to bumpMBB.
13333  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13334  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13335    .addReg(tmpSPVReg).addReg(sizeVReg);
13336  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13337    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13338    .addReg(SPLimitVReg);
13339  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13340
13341  // bumpMBB simply decreases the stack pointer, since we know the current
13342  // stacklet has enough space.
13343  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13344    .addReg(SPLimitVReg);
13345  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13346    .addReg(SPLimitVReg);
13347  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13348
13349  // Calls into a routine in libgcc to allocate more space from the heap.
13350  const uint32_t *RegMask =
13351    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13352  if (Is64Bit) {
13353    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13354      .addReg(sizeVReg);
13355    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13356      .addExternalSymbol("__morestack_allocate_stack_space")
13357      .addRegMask(RegMask)
13358      .addReg(X86::RDI, RegState::Implicit)
13359      .addReg(X86::RAX, RegState::ImplicitDefine);
13360  } else {
13361    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13362      .addImm(12);
13363    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13364    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13365      .addExternalSymbol("__morestack_allocate_stack_space")
13366      .addRegMask(RegMask)
13367      .addReg(X86::EAX, RegState::ImplicitDefine);
13368  }
13369
13370  if (!Is64Bit)
13371    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13372      .addImm(16);
13373
13374  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13375    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13376  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13377
13378  // Set up the CFG correctly.
13379  BB->addSuccessor(bumpMBB);
13380  BB->addSuccessor(mallocMBB);
13381  mallocMBB->addSuccessor(continueMBB);
13382  bumpMBB->addSuccessor(continueMBB);
13383
13384  // Take care of the PHI nodes.
13385  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13386          MI->getOperand(0).getReg())
13387    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13388    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13389
13390  // Delete the original pseudo instruction.
13391  MI->eraseFromParent();
13392
13393  // And we're done.
13394  return continueMBB;
13395}
13396
13397MachineBasicBlock *
13398X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13399                                          MachineBasicBlock *BB) const {
13400  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13401  DebugLoc DL = MI->getDebugLoc();
13402
13403  assert(!Subtarget->isTargetEnvMacho());
13404
13405  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13406  // non-trivial part is impdef of ESP.
13407
13408  if (Subtarget->isTargetWin64()) {
13409    if (Subtarget->isTargetCygMing()) {
13410      // ___chkstk(Mingw64):
13411      // Clobbers R10, R11, RAX and EFLAGS.
13412      // Updates RSP.
13413      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13414        .addExternalSymbol("___chkstk")
13415        .addReg(X86::RAX, RegState::Implicit)
13416        .addReg(X86::RSP, RegState::Implicit)
13417        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13418        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13419        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13420    } else {
13421      // __chkstk(MSVCRT): does not update stack pointer.
13422      // Clobbers R10, R11 and EFLAGS.
13423      // FIXME: RAX(allocated size) might be reused and not killed.
13424      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13425        .addExternalSymbol("__chkstk")
13426        .addReg(X86::RAX, RegState::Implicit)
13427        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13428      // RAX has the offset to subtracted from RSP.
13429      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13430        .addReg(X86::RSP)
13431        .addReg(X86::RAX);
13432    }
13433  } else {
13434    const char *StackProbeSymbol =
13435      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13436
13437    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13438      .addExternalSymbol(StackProbeSymbol)
13439      .addReg(X86::EAX, RegState::Implicit)
13440      .addReg(X86::ESP, RegState::Implicit)
13441      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13442      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13443      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13444  }
13445
13446  MI->eraseFromParent();   // The pseudo instruction is gone now.
13447  return BB;
13448}
13449
13450MachineBasicBlock *
13451X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13452                                      MachineBasicBlock *BB) const {
13453  // This is pretty easy.  We're taking the value that we received from
13454  // our load from the relocation, sticking it in either RDI (x86-64)
13455  // or EAX and doing an indirect call.  The return value will then
13456  // be in the normal return register.
13457  const X86InstrInfo *TII
13458    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13459  DebugLoc DL = MI->getDebugLoc();
13460  MachineFunction *F = BB->getParent();
13461
13462  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13463  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13464
13465  // Get a register mask for the lowered call.
13466  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13467  // proper register mask.
13468  const uint32_t *RegMask =
13469    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13470  if (Subtarget->is64Bit()) {
13471    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13472                                      TII->get(X86::MOV64rm), X86::RDI)
13473    .addReg(X86::RIP)
13474    .addImm(0).addReg(0)
13475    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13476                      MI->getOperand(3).getTargetFlags())
13477    .addReg(0);
13478    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
13479    addDirectMem(MIB, X86::RDI);
13480    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
13481  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
13482    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13483                                      TII->get(X86::MOV32rm), X86::EAX)
13484    .addReg(0)
13485    .addImm(0).addReg(0)
13486    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13487                      MI->getOperand(3).getTargetFlags())
13488    .addReg(0);
13489    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13490    addDirectMem(MIB, X86::EAX);
13491    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13492  } else {
13493    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13494                                      TII->get(X86::MOV32rm), X86::EAX)
13495    .addReg(TII->getGlobalBaseReg(F))
13496    .addImm(0).addReg(0)
13497    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13498                      MI->getOperand(3).getTargetFlags())
13499    .addReg(0);
13500    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13501    addDirectMem(MIB, X86::EAX);
13502    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13503  }
13504
13505  MI->eraseFromParent(); // The pseudo instruction is gone now.
13506  return BB;
13507}
13508
13509MachineBasicBlock *
13510X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
13511                                    MachineBasicBlock *MBB) const {
13512  DebugLoc DL = MI->getDebugLoc();
13513  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13514
13515  MachineFunction *MF = MBB->getParent();
13516  MachineRegisterInfo &MRI = MF->getRegInfo();
13517
13518  const BasicBlock *BB = MBB->getBasicBlock();
13519  MachineFunction::iterator I = MBB;
13520  ++I;
13521
13522  // Memory Reference
13523  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13524  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13525
13526  unsigned DstReg;
13527  unsigned MemOpndSlot = 0;
13528
13529  unsigned CurOp = 0;
13530
13531  DstReg = MI->getOperand(CurOp++).getReg();
13532  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13533  assert(RC->hasType(MVT::i32) && "Invalid destination!");
13534  unsigned mainDstReg = MRI.createVirtualRegister(RC);
13535  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
13536
13537  MemOpndSlot = CurOp;
13538
13539  MVT PVT = getPointerTy();
13540  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13541         "Invalid Pointer Size!");
13542
13543  // For v = setjmp(buf), we generate
13544  //
13545  // thisMBB:
13546  //  buf[LabelOffset] = restoreMBB
13547  //  SjLjSetup restoreMBB
13548  //
13549  // mainMBB:
13550  //  v_main = 0
13551  //
13552  // sinkMBB:
13553  //  v = phi(main, restore)
13554  //
13555  // restoreMBB:
13556  //  v_restore = 1
13557
13558  MachineBasicBlock *thisMBB = MBB;
13559  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13560  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13561  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
13562  MF->insert(I, mainMBB);
13563  MF->insert(I, sinkMBB);
13564  MF->push_back(restoreMBB);
13565
13566  MachineInstrBuilder MIB;
13567
13568  // Transfer the remainder of BB and its successor edges to sinkMBB.
13569  sinkMBB->splice(sinkMBB->begin(), MBB,
13570                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13571  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13572
13573  // thisMBB:
13574  unsigned PtrStoreOpc = 0;
13575  unsigned LabelReg = 0;
13576  const int64_t LabelOffset = 1 * PVT.getStoreSize();
13577  Reloc::Model RM = getTargetMachine().getRelocationModel();
13578  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
13579                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
13580
13581  // Prepare IP either in reg or imm.
13582  if (!UseImmLabel) {
13583    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
13584    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
13585    LabelReg = MRI.createVirtualRegister(PtrRC);
13586    if (Subtarget->is64Bit()) {
13587      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
13588              .addReg(X86::RIP)
13589              .addImm(0)
13590              .addReg(0)
13591              .addMBB(restoreMBB)
13592              .addReg(0);
13593    } else {
13594      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
13595      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
13596              .addReg(XII->getGlobalBaseReg(MF))
13597              .addImm(0)
13598              .addReg(0)
13599              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
13600              .addReg(0);
13601    }
13602  } else
13603    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
13604  // Store IP
13605  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
13606  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13607    if (i == X86::AddrDisp)
13608      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
13609    else
13610      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13611  }
13612  if (!UseImmLabel)
13613    MIB.addReg(LabelReg);
13614  else
13615    MIB.addMBB(restoreMBB);
13616  MIB.setMemRefs(MMOBegin, MMOEnd);
13617  // Setup
13618  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
13619          .addMBB(restoreMBB);
13620  MIB.addRegMask(RegInfo->getNoPreservedMask());
13621  thisMBB->addSuccessor(mainMBB);
13622  thisMBB->addSuccessor(restoreMBB);
13623
13624  // mainMBB:
13625  //  EAX = 0
13626  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
13627  mainMBB->addSuccessor(sinkMBB);
13628
13629  // sinkMBB:
13630  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13631          TII->get(X86::PHI), DstReg)
13632    .addReg(mainDstReg).addMBB(mainMBB)
13633    .addReg(restoreDstReg).addMBB(restoreMBB);
13634
13635  // restoreMBB:
13636  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
13637  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
13638  restoreMBB->addSuccessor(sinkMBB);
13639
13640  MI->eraseFromParent();
13641  return sinkMBB;
13642}
13643
13644MachineBasicBlock *
13645X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
13646                                     MachineBasicBlock *MBB) const {
13647  DebugLoc DL = MI->getDebugLoc();
13648  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13649
13650  MachineFunction *MF = MBB->getParent();
13651  MachineRegisterInfo &MRI = MF->getRegInfo();
13652
13653  // Memory Reference
13654  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13655  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13656
13657  MVT PVT = getPointerTy();
13658  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13659         "Invalid Pointer Size!");
13660
13661  const TargetRegisterClass *RC =
13662    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
13663  unsigned Tmp = MRI.createVirtualRegister(RC);
13664  // Since FP is only updated here but NOT referenced, it's treated as GPR.
13665  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
13666  unsigned SP = RegInfo->getStackRegister();
13667
13668  MachineInstrBuilder MIB;
13669
13670  const int64_t LabelOffset = 1 * PVT.getStoreSize();
13671  const int64_t SPOffset = 2 * PVT.getStoreSize();
13672
13673  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
13674  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
13675
13676  // Reload FP
13677  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
13678  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13679    MIB.addOperand(MI->getOperand(i));
13680  MIB.setMemRefs(MMOBegin, MMOEnd);
13681  // Reload IP
13682  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
13683  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13684    if (i == X86::AddrDisp)
13685      MIB.addDisp(MI->getOperand(i), LabelOffset);
13686    else
13687      MIB.addOperand(MI->getOperand(i));
13688  }
13689  MIB.setMemRefs(MMOBegin, MMOEnd);
13690  // Reload SP
13691  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
13692  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13693    if (i == X86::AddrDisp)
13694      MIB.addDisp(MI->getOperand(i), SPOffset);
13695    else
13696      MIB.addOperand(MI->getOperand(i));
13697  }
13698  MIB.setMemRefs(MMOBegin, MMOEnd);
13699  // Jump
13700  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
13701
13702  MI->eraseFromParent();
13703  return MBB;
13704}
13705
13706MachineBasicBlock *
13707X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
13708                                               MachineBasicBlock *BB) const {
13709  switch (MI->getOpcode()) {
13710  default: llvm_unreachable("Unexpected instr type to insert");
13711  case X86::TAILJMPd64:
13712  case X86::TAILJMPr64:
13713  case X86::TAILJMPm64:
13714    llvm_unreachable("TAILJMP64 would not be touched here.");
13715  case X86::TCRETURNdi64:
13716  case X86::TCRETURNri64:
13717  case X86::TCRETURNmi64:
13718    return BB;
13719  case X86::WIN_ALLOCA:
13720    return EmitLoweredWinAlloca(MI, BB);
13721  case X86::SEG_ALLOCA_32:
13722    return EmitLoweredSegAlloca(MI, BB, false);
13723  case X86::SEG_ALLOCA_64:
13724    return EmitLoweredSegAlloca(MI, BB, true);
13725  case X86::TLSCall_32:
13726  case X86::TLSCall_64:
13727    return EmitLoweredTLSCall(MI, BB);
13728  case X86::CMOV_GR8:
13729  case X86::CMOV_FR32:
13730  case X86::CMOV_FR64:
13731  case X86::CMOV_V4F32:
13732  case X86::CMOV_V2F64:
13733  case X86::CMOV_V2I64:
13734  case X86::CMOV_V8F32:
13735  case X86::CMOV_V4F64:
13736  case X86::CMOV_V4I64:
13737  case X86::CMOV_GR16:
13738  case X86::CMOV_GR32:
13739  case X86::CMOV_RFP32:
13740  case X86::CMOV_RFP64:
13741  case X86::CMOV_RFP80:
13742    return EmitLoweredSelect(MI, BB);
13743
13744  case X86::FP32_TO_INT16_IN_MEM:
13745  case X86::FP32_TO_INT32_IN_MEM:
13746  case X86::FP32_TO_INT64_IN_MEM:
13747  case X86::FP64_TO_INT16_IN_MEM:
13748  case X86::FP64_TO_INT32_IN_MEM:
13749  case X86::FP64_TO_INT64_IN_MEM:
13750  case X86::FP80_TO_INT16_IN_MEM:
13751  case X86::FP80_TO_INT32_IN_MEM:
13752  case X86::FP80_TO_INT64_IN_MEM: {
13753    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13754    DebugLoc DL = MI->getDebugLoc();
13755
13756    // Change the floating point control register to use "round towards zero"
13757    // mode when truncating to an integer value.
13758    MachineFunction *F = BB->getParent();
13759    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
13760    addFrameReference(BuildMI(*BB, MI, DL,
13761                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
13762
13763    // Load the old value of the high byte of the control word...
13764    unsigned OldCW =
13765      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
13766    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
13767                      CWFrameIdx);
13768
13769    // Set the high part to be round to zero...
13770    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
13771      .addImm(0xC7F);
13772
13773    // Reload the modified control word now...
13774    addFrameReference(BuildMI(*BB, MI, DL,
13775                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13776
13777    // Restore the memory image of control word to original value
13778    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
13779      .addReg(OldCW);
13780
13781    // Get the X86 opcode to use.
13782    unsigned Opc;
13783    switch (MI->getOpcode()) {
13784    default: llvm_unreachable("illegal opcode!");
13785    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
13786    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
13787    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
13788    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
13789    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
13790    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
13791    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
13792    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
13793    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
13794    }
13795
13796    X86AddressMode AM;
13797    MachineOperand &Op = MI->getOperand(0);
13798    if (Op.isReg()) {
13799      AM.BaseType = X86AddressMode::RegBase;
13800      AM.Base.Reg = Op.getReg();
13801    } else {
13802      AM.BaseType = X86AddressMode::FrameIndexBase;
13803      AM.Base.FrameIndex = Op.getIndex();
13804    }
13805    Op = MI->getOperand(1);
13806    if (Op.isImm())
13807      AM.Scale = Op.getImm();
13808    Op = MI->getOperand(2);
13809    if (Op.isImm())
13810      AM.IndexReg = Op.getImm();
13811    Op = MI->getOperand(3);
13812    if (Op.isGlobal()) {
13813      AM.GV = Op.getGlobal();
13814    } else {
13815      AM.Disp = Op.getImm();
13816    }
13817    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
13818                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
13819
13820    // Reload the original control word now.
13821    addFrameReference(BuildMI(*BB, MI, DL,
13822                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13823
13824    MI->eraseFromParent();   // The pseudo instruction is gone now.
13825    return BB;
13826  }
13827    // String/text processing lowering.
13828  case X86::PCMPISTRM128REG:
13829  case X86::VPCMPISTRM128REG:
13830  case X86::PCMPISTRM128MEM:
13831  case X86::VPCMPISTRM128MEM:
13832  case X86::PCMPESTRM128REG:
13833  case X86::VPCMPESTRM128REG:
13834  case X86::PCMPESTRM128MEM:
13835  case X86::VPCMPESTRM128MEM: {
13836    unsigned NumArgs;
13837    bool MemArg;
13838    switch (MI->getOpcode()) {
13839    default: llvm_unreachable("illegal opcode!");
13840    case X86::PCMPISTRM128REG:
13841    case X86::VPCMPISTRM128REG:
13842      NumArgs = 3; MemArg = false; break;
13843    case X86::PCMPISTRM128MEM:
13844    case X86::VPCMPISTRM128MEM:
13845      NumArgs = 3; MemArg = true; break;
13846    case X86::PCMPESTRM128REG:
13847    case X86::VPCMPESTRM128REG:
13848      NumArgs = 5; MemArg = false; break;
13849    case X86::PCMPESTRM128MEM:
13850    case X86::VPCMPESTRM128MEM:
13851      NumArgs = 5; MemArg = true; break;
13852    }
13853    return EmitPCMP(MI, BB, NumArgs, MemArg);
13854  }
13855
13856    // Thread synchronization.
13857  case X86::MONITOR:
13858    return EmitMonitor(MI, BB);
13859
13860    // Atomic Lowering.
13861  case X86::ATOMAND8:
13862  case X86::ATOMAND16:
13863  case X86::ATOMAND32:
13864  case X86::ATOMAND64:
13865    // Fall through
13866  case X86::ATOMOR8:
13867  case X86::ATOMOR16:
13868  case X86::ATOMOR32:
13869  case X86::ATOMOR64:
13870    // Fall through
13871  case X86::ATOMXOR16:
13872  case X86::ATOMXOR8:
13873  case X86::ATOMXOR32:
13874  case X86::ATOMXOR64:
13875    // Fall through
13876  case X86::ATOMNAND8:
13877  case X86::ATOMNAND16:
13878  case X86::ATOMNAND32:
13879  case X86::ATOMNAND64:
13880    // Fall through
13881  case X86::ATOMMAX8:
13882  case X86::ATOMMAX16:
13883  case X86::ATOMMAX32:
13884  case X86::ATOMMAX64:
13885    // Fall through
13886  case X86::ATOMMIN8:
13887  case X86::ATOMMIN16:
13888  case X86::ATOMMIN32:
13889  case X86::ATOMMIN64:
13890    // Fall through
13891  case X86::ATOMUMAX8:
13892  case X86::ATOMUMAX16:
13893  case X86::ATOMUMAX32:
13894  case X86::ATOMUMAX64:
13895    // Fall through
13896  case X86::ATOMUMIN8:
13897  case X86::ATOMUMIN16:
13898  case X86::ATOMUMIN32:
13899  case X86::ATOMUMIN64:
13900    return EmitAtomicLoadArith(MI, BB);
13901
13902  // This group does 64-bit operations on a 32-bit host.
13903  case X86::ATOMAND6432:
13904  case X86::ATOMOR6432:
13905  case X86::ATOMXOR6432:
13906  case X86::ATOMNAND6432:
13907  case X86::ATOMADD6432:
13908  case X86::ATOMSUB6432:
13909  case X86::ATOMMAX6432:
13910  case X86::ATOMMIN6432:
13911  case X86::ATOMUMAX6432:
13912  case X86::ATOMUMIN6432:
13913  case X86::ATOMSWAP6432:
13914    return EmitAtomicLoadArith6432(MI, BB);
13915
13916  case X86::VASTART_SAVE_XMM_REGS:
13917    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
13918
13919  case X86::VAARG_64:
13920    return EmitVAARG64WithCustomInserter(MI, BB);
13921
13922  case X86::EH_SjLj_SetJmp32:
13923  case X86::EH_SjLj_SetJmp64:
13924    return emitEHSjLjSetJmp(MI, BB);
13925
13926  case X86::EH_SjLj_LongJmp32:
13927  case X86::EH_SjLj_LongJmp64:
13928    return emitEHSjLjLongJmp(MI, BB);
13929  }
13930}
13931
13932//===----------------------------------------------------------------------===//
13933//                           X86 Optimization Hooks
13934//===----------------------------------------------------------------------===//
13935
13936void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
13937                                                       APInt &KnownZero,
13938                                                       APInt &KnownOne,
13939                                                       const SelectionDAG &DAG,
13940                                                       unsigned Depth) const {
13941  unsigned BitWidth = KnownZero.getBitWidth();
13942  unsigned Opc = Op.getOpcode();
13943  assert((Opc >= ISD::BUILTIN_OP_END ||
13944          Opc == ISD::INTRINSIC_WO_CHAIN ||
13945          Opc == ISD::INTRINSIC_W_CHAIN ||
13946          Opc == ISD::INTRINSIC_VOID) &&
13947         "Should use MaskedValueIsZero if you don't know whether Op"
13948         " is a target node!");
13949
13950  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
13951  switch (Opc) {
13952  default: break;
13953  case X86ISD::ADD:
13954  case X86ISD::SUB:
13955  case X86ISD::ADC:
13956  case X86ISD::SBB:
13957  case X86ISD::SMUL:
13958  case X86ISD::UMUL:
13959  case X86ISD::INC:
13960  case X86ISD::DEC:
13961  case X86ISD::OR:
13962  case X86ISD::XOR:
13963  case X86ISD::AND:
13964    // These nodes' second result is a boolean.
13965    if (Op.getResNo() == 0)
13966      break;
13967    // Fallthrough
13968  case X86ISD::SETCC:
13969    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13970    break;
13971  case ISD::INTRINSIC_WO_CHAIN: {
13972    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13973    unsigned NumLoBits = 0;
13974    switch (IntId) {
13975    default: break;
13976    case Intrinsic::x86_sse_movmsk_ps:
13977    case Intrinsic::x86_avx_movmsk_ps_256:
13978    case Intrinsic::x86_sse2_movmsk_pd:
13979    case Intrinsic::x86_avx_movmsk_pd_256:
13980    case Intrinsic::x86_mmx_pmovmskb:
13981    case Intrinsic::x86_sse2_pmovmskb_128:
13982    case Intrinsic::x86_avx2_pmovmskb: {
13983      // High bits of movmskp{s|d}, pmovmskb are known zero.
13984      switch (IntId) {
13985        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13986        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
13987        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
13988        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
13989        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
13990        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
13991        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
13992        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
13993      }
13994      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
13995      break;
13996    }
13997    }
13998    break;
13999  }
14000  }
14001}
14002
14003unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14004                                                         unsigned Depth) const {
14005  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14006  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14007    return Op.getValueType().getScalarType().getSizeInBits();
14008
14009  // Fallback case.
14010  return 1;
14011}
14012
14013/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14014/// node is a GlobalAddress + offset.
14015bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14016                                       const GlobalValue* &GA,
14017                                       int64_t &Offset) const {
14018  if (N->getOpcode() == X86ISD::Wrapper) {
14019    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14020      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14021      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14022      return true;
14023    }
14024  }
14025  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14026}
14027
14028/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14029/// same as extracting the high 128-bit part of 256-bit vector and then
14030/// inserting the result into the low part of a new 256-bit vector
14031static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14032  EVT VT = SVOp->getValueType(0);
14033  unsigned NumElems = VT.getVectorNumElements();
14034
14035  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14036  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14037    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14038        SVOp->getMaskElt(j) >= 0)
14039      return false;
14040
14041  return true;
14042}
14043
14044/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14045/// same as extracting the low 128-bit part of 256-bit vector and then
14046/// inserting the result into the high part of a new 256-bit vector
14047static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14048  EVT VT = SVOp->getValueType(0);
14049  unsigned NumElems = VT.getVectorNumElements();
14050
14051  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14052  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
14053    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14054        SVOp->getMaskElt(j) >= 0)
14055      return false;
14056
14057  return true;
14058}
14059
14060/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
14061static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
14062                                        TargetLowering::DAGCombinerInfo &DCI,
14063                                        const X86Subtarget* Subtarget) {
14064  DebugLoc dl = N->getDebugLoc();
14065  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
14066  SDValue V1 = SVOp->getOperand(0);
14067  SDValue V2 = SVOp->getOperand(1);
14068  EVT VT = SVOp->getValueType(0);
14069  unsigned NumElems = VT.getVectorNumElements();
14070
14071  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
14072      V2.getOpcode() == ISD::CONCAT_VECTORS) {
14073    //
14074    //                   0,0,0,...
14075    //                      |
14076    //    V      UNDEF    BUILD_VECTOR    UNDEF
14077    //     \      /           \           /
14078    //  CONCAT_VECTOR         CONCAT_VECTOR
14079    //         \                  /
14080    //          \                /
14081    //          RESULT: V + zero extended
14082    //
14083    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
14084        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
14085        V1.getOperand(1).getOpcode() != ISD::UNDEF)
14086      return SDValue();
14087
14088    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
14089      return SDValue();
14090
14091    // To match the shuffle mask, the first half of the mask should
14092    // be exactly the first vector, and all the rest a splat with the
14093    // first element of the second one.
14094    for (unsigned i = 0; i != NumElems/2; ++i)
14095      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
14096          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
14097        return SDValue();
14098
14099    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
14100    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
14101      if (Ld->hasNUsesOfValue(1, 0)) {
14102        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
14103        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
14104        SDValue ResNode =
14105          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
14106                                  Ld->getMemoryVT(),
14107                                  Ld->getPointerInfo(),
14108                                  Ld->getAlignment(),
14109                                  false/*isVolatile*/, true/*ReadMem*/,
14110                                  false/*WriteMem*/);
14111        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
14112      }
14113    }
14114
14115    // Emit a zeroed vector and insert the desired subvector on its
14116    // first half.
14117    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
14118    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
14119    return DCI.CombineTo(N, InsV);
14120  }
14121
14122  //===--------------------------------------------------------------------===//
14123  // Combine some shuffles into subvector extracts and inserts:
14124  //
14125
14126  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14127  if (isShuffleHigh128VectorInsertLow(SVOp)) {
14128    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
14129    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
14130    return DCI.CombineTo(N, InsV);
14131  }
14132
14133  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14134  if (isShuffleLow128VectorInsertHigh(SVOp)) {
14135    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
14136    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
14137    return DCI.CombineTo(N, InsV);
14138  }
14139
14140  return SDValue();
14141}
14142
14143/// PerformShuffleCombine - Performs several different shuffle combines.
14144static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
14145                                     TargetLowering::DAGCombinerInfo &DCI,
14146                                     const X86Subtarget *Subtarget) {
14147  DebugLoc dl = N->getDebugLoc();
14148  EVT VT = N->getValueType(0);
14149
14150  // Don't create instructions with illegal types after legalize types has run.
14151  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14152  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
14153    return SDValue();
14154
14155  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
14156  if (Subtarget->hasAVX() && VT.is256BitVector() &&
14157      N->getOpcode() == ISD::VECTOR_SHUFFLE)
14158    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
14159
14160  // Only handle 128 wide vector from here on.
14161  if (!VT.is128BitVector())
14162    return SDValue();
14163
14164  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
14165  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
14166  // consecutive, non-overlapping, and in the right order.
14167  SmallVector<SDValue, 16> Elts;
14168  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
14169    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
14170
14171  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
14172}
14173
14174
14175/// PerformTruncateCombine - Converts truncate operation to
14176/// a sequence of vector shuffle operations.
14177/// It is possible when we truncate 256-bit vector to 128-bit vector
14178static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
14179                                      TargetLowering::DAGCombinerInfo &DCI,
14180                                      const X86Subtarget *Subtarget)  {
14181  if (!DCI.isBeforeLegalizeOps())
14182    return SDValue();
14183
14184  if (!Subtarget->hasAVX())
14185    return SDValue();
14186
14187  EVT VT = N->getValueType(0);
14188  SDValue Op = N->getOperand(0);
14189  EVT OpVT = Op.getValueType();
14190  DebugLoc dl = N->getDebugLoc();
14191
14192  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
14193
14194    if (Subtarget->hasAVX2()) {
14195      // AVX2: v4i64 -> v4i32
14196
14197      // VPERMD
14198      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
14199
14200      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
14201      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
14202                                ShufMask);
14203
14204      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
14205                         DAG.getIntPtrConstant(0));
14206    }
14207
14208    // AVX: v4i64 -> v4i32
14209    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14210                               DAG.getIntPtrConstant(0));
14211
14212    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14213                               DAG.getIntPtrConstant(2));
14214
14215    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
14216    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
14217
14218    // PSHUFD
14219    static const int ShufMask1[] = {0, 2, 0, 0};
14220
14221    SDValue Undef = DAG.getUNDEF(VT);
14222    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
14223    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
14224
14225    // MOVLHPS
14226    static const int ShufMask2[] = {0, 1, 4, 5};
14227
14228    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
14229  }
14230
14231  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
14232
14233    if (Subtarget->hasAVX2()) {
14234      // AVX2: v8i32 -> v8i16
14235
14236      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
14237
14238      // PSHUFB
14239      SmallVector<SDValue,32> pshufbMask;
14240      for (unsigned i = 0; i < 2; ++i) {
14241        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
14242        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
14243        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
14244        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
14245        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
14246        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
14247        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
14248        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
14249        for (unsigned j = 0; j < 8; ++j)
14250          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
14251      }
14252      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
14253                               &pshufbMask[0], 32);
14254      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
14255
14256      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
14257
14258      static const int ShufMask[] = {0,  2,  -1,  -1};
14259      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
14260                                &ShufMask[0]);
14261
14262      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14263                       DAG.getIntPtrConstant(0));
14264
14265      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
14266    }
14267
14268    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
14269                               DAG.getIntPtrConstant(0));
14270
14271    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
14272                               DAG.getIntPtrConstant(4));
14273
14274    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
14275    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
14276
14277    // PSHUFB
14278    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
14279                                   -1, -1, -1, -1, -1, -1, -1, -1};
14280
14281    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
14282    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
14283    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
14284
14285    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
14286    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
14287
14288    // MOVLHPS
14289    static const int ShufMask2[] = {0, 1, 4, 5};
14290
14291    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
14292    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
14293  }
14294
14295  return SDValue();
14296}
14297
14298/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14299/// specific shuffle of a load can be folded into a single element load.
14300/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14301/// shuffles have been customed lowered so we need to handle those here.
14302static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14303                                         TargetLowering::DAGCombinerInfo &DCI) {
14304  if (DCI.isBeforeLegalizeOps())
14305    return SDValue();
14306
14307  SDValue InVec = N->getOperand(0);
14308  SDValue EltNo = N->getOperand(1);
14309
14310  if (!isa<ConstantSDNode>(EltNo))
14311    return SDValue();
14312
14313  EVT VT = InVec.getValueType();
14314
14315  bool HasShuffleIntoBitcast = false;
14316  if (InVec.getOpcode() == ISD::BITCAST) {
14317    // Don't duplicate a load with other uses.
14318    if (!InVec.hasOneUse())
14319      return SDValue();
14320    EVT BCVT = InVec.getOperand(0).getValueType();
14321    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14322      return SDValue();
14323    InVec = InVec.getOperand(0);
14324    HasShuffleIntoBitcast = true;
14325  }
14326
14327  if (!isTargetShuffle(InVec.getOpcode()))
14328    return SDValue();
14329
14330  // Don't duplicate a load with other uses.
14331  if (!InVec.hasOneUse())
14332    return SDValue();
14333
14334  SmallVector<int, 16> ShuffleMask;
14335  bool UnaryShuffle;
14336  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14337                            UnaryShuffle))
14338    return SDValue();
14339
14340  // Select the input vector, guarding against out of range extract vector.
14341  unsigned NumElems = VT.getVectorNumElements();
14342  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14343  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14344  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14345                                         : InVec.getOperand(1);
14346
14347  // If inputs to shuffle are the same for both ops, then allow 2 uses
14348  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14349
14350  if (LdNode.getOpcode() == ISD::BITCAST) {
14351    // Don't duplicate a load with other uses.
14352    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14353      return SDValue();
14354
14355    AllowedUses = 1; // only allow 1 load use if we have a bitcast
14356    LdNode = LdNode.getOperand(0);
14357  }
14358
14359  if (!ISD::isNormalLoad(LdNode.getNode()))
14360    return SDValue();
14361
14362  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
14363
14364  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
14365    return SDValue();
14366
14367  if (HasShuffleIntoBitcast) {
14368    // If there's a bitcast before the shuffle, check if the load type and
14369    // alignment is valid.
14370    unsigned Align = LN0->getAlignment();
14371    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14372    unsigned NewAlign = TLI.getDataLayout()->
14373      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
14374
14375    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
14376      return SDValue();
14377  }
14378
14379  // All checks match so transform back to vector_shuffle so that DAG combiner
14380  // can finish the job
14381  DebugLoc dl = N->getDebugLoc();
14382
14383  // Create shuffle node taking into account the case that its a unary shuffle
14384  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
14385  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
14386                                 InVec.getOperand(0), Shuffle,
14387                                 &ShuffleMask[0]);
14388  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
14389  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
14390                     EltNo);
14391}
14392
14393/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
14394/// generation and convert it from being a bunch of shuffles and extracts
14395/// to a simple store and scalar loads to extract the elements.
14396static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
14397                                         TargetLowering::DAGCombinerInfo &DCI) {
14398  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
14399  if (NewOp.getNode())
14400    return NewOp;
14401
14402  SDValue InputVector = N->getOperand(0);
14403
14404  // Only operate on vectors of 4 elements, where the alternative shuffling
14405  // gets to be more expensive.
14406  if (InputVector.getValueType() != MVT::v4i32)
14407    return SDValue();
14408
14409  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
14410  // single use which is a sign-extend or zero-extend, and all elements are
14411  // used.
14412  SmallVector<SDNode *, 4> Uses;
14413  unsigned ExtractedElements = 0;
14414  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
14415       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
14416    if (UI.getUse().getResNo() != InputVector.getResNo())
14417      return SDValue();
14418
14419    SDNode *Extract = *UI;
14420    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14421      return SDValue();
14422
14423    if (Extract->getValueType(0) != MVT::i32)
14424      return SDValue();
14425    if (!Extract->hasOneUse())
14426      return SDValue();
14427    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
14428        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
14429      return SDValue();
14430    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
14431      return SDValue();
14432
14433    // Record which element was extracted.
14434    ExtractedElements |=
14435      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
14436
14437    Uses.push_back(Extract);
14438  }
14439
14440  // If not all the elements were used, this may not be worthwhile.
14441  if (ExtractedElements != 15)
14442    return SDValue();
14443
14444  // Ok, we've now decided to do the transformation.
14445  DebugLoc dl = InputVector.getDebugLoc();
14446
14447  // Store the value to a temporary stack slot.
14448  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
14449  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
14450                            MachinePointerInfo(), false, false, 0);
14451
14452  // Replace each use (extract) with a load of the appropriate element.
14453  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
14454       UE = Uses.end(); UI != UE; ++UI) {
14455    SDNode *Extract = *UI;
14456
14457    // cOMpute the element's address.
14458    SDValue Idx = Extract->getOperand(1);
14459    unsigned EltSize =
14460        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
14461    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
14462    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14463    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
14464
14465    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
14466                                     StackPtr, OffsetVal);
14467
14468    // Load the scalar.
14469    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
14470                                     ScalarAddr, MachinePointerInfo(),
14471                                     false, false, false, 0);
14472
14473    // Replace the exact with the load.
14474    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
14475  }
14476
14477  // The replacement was made in place; don't return anything.
14478  return SDValue();
14479}
14480
14481/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
14482/// nodes.
14483static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
14484                                    TargetLowering::DAGCombinerInfo &DCI,
14485                                    const X86Subtarget *Subtarget) {
14486  DebugLoc DL = N->getDebugLoc();
14487  SDValue Cond = N->getOperand(0);
14488  // Get the LHS/RHS of the select.
14489  SDValue LHS = N->getOperand(1);
14490  SDValue RHS = N->getOperand(2);
14491  EVT VT = LHS.getValueType();
14492
14493  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
14494  // instructions match the semantics of the common C idiom x<y?x:y but not
14495  // x<=y?x:y, because of how they handle negative zero (which can be
14496  // ignored in unsafe-math mode).
14497  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
14498      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
14499      (Subtarget->hasSSE2() ||
14500       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
14501    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14502
14503    unsigned Opcode = 0;
14504    // Check for x CC y ? x : y.
14505    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14506        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14507      switch (CC) {
14508      default: break;
14509      case ISD::SETULT:
14510        // Converting this to a min would handle NaNs incorrectly, and swapping
14511        // the operands would cause it to handle comparisons between positive
14512        // and negative zero incorrectly.
14513        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14514          if (!DAG.getTarget().Options.UnsafeFPMath &&
14515              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14516            break;
14517          std::swap(LHS, RHS);
14518        }
14519        Opcode = X86ISD::FMIN;
14520        break;
14521      case ISD::SETOLE:
14522        // Converting this to a min would handle comparisons between positive
14523        // and negative zero incorrectly.
14524        if (!DAG.getTarget().Options.UnsafeFPMath &&
14525            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14526          break;
14527        Opcode = X86ISD::FMIN;
14528        break;
14529      case ISD::SETULE:
14530        // Converting this to a min would handle both negative zeros and NaNs
14531        // incorrectly, but we can swap the operands to fix both.
14532        std::swap(LHS, RHS);
14533      case ISD::SETOLT:
14534      case ISD::SETLT:
14535      case ISD::SETLE:
14536        Opcode = X86ISD::FMIN;
14537        break;
14538
14539      case ISD::SETOGE:
14540        // Converting this to a max would handle comparisons between positive
14541        // and negative zero incorrectly.
14542        if (!DAG.getTarget().Options.UnsafeFPMath &&
14543            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14544          break;
14545        Opcode = X86ISD::FMAX;
14546        break;
14547      case ISD::SETUGT:
14548        // Converting this to a max would handle NaNs incorrectly, and swapping
14549        // the operands would cause it to handle comparisons between positive
14550        // and negative zero incorrectly.
14551        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14552          if (!DAG.getTarget().Options.UnsafeFPMath &&
14553              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14554            break;
14555          std::swap(LHS, RHS);
14556        }
14557        Opcode = X86ISD::FMAX;
14558        break;
14559      case ISD::SETUGE:
14560        // Converting this to a max would handle both negative zeros and NaNs
14561        // incorrectly, but we can swap the operands to fix both.
14562        std::swap(LHS, RHS);
14563      case ISD::SETOGT:
14564      case ISD::SETGT:
14565      case ISD::SETGE:
14566        Opcode = X86ISD::FMAX;
14567        break;
14568      }
14569    // Check for x CC y ? y : x -- a min/max with reversed arms.
14570    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14571               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14572      switch (CC) {
14573      default: break;
14574      case ISD::SETOGE:
14575        // Converting this to a min would handle comparisons between positive
14576        // and negative zero incorrectly, and swapping the operands would
14577        // cause it to handle NaNs incorrectly.
14578        if (!DAG.getTarget().Options.UnsafeFPMath &&
14579            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
14580          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14581            break;
14582          std::swap(LHS, RHS);
14583        }
14584        Opcode = X86ISD::FMIN;
14585        break;
14586      case ISD::SETUGT:
14587        // Converting this to a min would handle NaNs incorrectly.
14588        if (!DAG.getTarget().Options.UnsafeFPMath &&
14589            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
14590          break;
14591        Opcode = X86ISD::FMIN;
14592        break;
14593      case ISD::SETUGE:
14594        // Converting this to a min would handle both negative zeros and NaNs
14595        // incorrectly, but we can swap the operands to fix both.
14596        std::swap(LHS, RHS);
14597      case ISD::SETOGT:
14598      case ISD::SETGT:
14599      case ISD::SETGE:
14600        Opcode = X86ISD::FMIN;
14601        break;
14602
14603      case ISD::SETULT:
14604        // Converting this to a max would handle NaNs incorrectly.
14605        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14606          break;
14607        Opcode = X86ISD::FMAX;
14608        break;
14609      case ISD::SETOLE:
14610        // Converting this to a max would handle comparisons between positive
14611        // and negative zero incorrectly, and swapping the operands would
14612        // cause it to handle NaNs incorrectly.
14613        if (!DAG.getTarget().Options.UnsafeFPMath &&
14614            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
14615          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14616            break;
14617          std::swap(LHS, RHS);
14618        }
14619        Opcode = X86ISD::FMAX;
14620        break;
14621      case ISD::SETULE:
14622        // Converting this to a max would handle both negative zeros and NaNs
14623        // incorrectly, but we can swap the operands to fix both.
14624        std::swap(LHS, RHS);
14625      case ISD::SETOLT:
14626      case ISD::SETLT:
14627      case ISD::SETLE:
14628        Opcode = X86ISD::FMAX;
14629        break;
14630      }
14631    }
14632
14633    if (Opcode)
14634      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
14635  }
14636
14637  // If this is a select between two integer constants, try to do some
14638  // optimizations.
14639  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
14640    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
14641      // Don't do this for crazy integer types.
14642      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
14643        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
14644        // so that TrueC (the true value) is larger than FalseC.
14645        bool NeedsCondInvert = false;
14646
14647        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
14648            // Efficiently invertible.
14649            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
14650             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
14651              isa<ConstantSDNode>(Cond.getOperand(1))))) {
14652          NeedsCondInvert = true;
14653          std::swap(TrueC, FalseC);
14654        }
14655
14656        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
14657        if (FalseC->getAPIntValue() == 0 &&
14658            TrueC->getAPIntValue().isPowerOf2()) {
14659          if (NeedsCondInvert) // Invert the condition if needed.
14660            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14661                               DAG.getConstant(1, Cond.getValueType()));
14662
14663          // Zero extend the condition if needed.
14664          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
14665
14666          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14667          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
14668                             DAG.getConstant(ShAmt, MVT::i8));
14669        }
14670
14671        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
14672        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14673          if (NeedsCondInvert) // Invert the condition if needed.
14674            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14675                               DAG.getConstant(1, Cond.getValueType()));
14676
14677          // Zero extend the condition if needed.
14678          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14679                             FalseC->getValueType(0), Cond);
14680          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14681                             SDValue(FalseC, 0));
14682        }
14683
14684        // Optimize cases that will turn into an LEA instruction.  This requires
14685        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14686        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14687          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14688          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14689
14690          bool isFastMultiplier = false;
14691          if (Diff < 10) {
14692            switch ((unsigned char)Diff) {
14693              default: break;
14694              case 1:  // result = add base, cond
14695              case 2:  // result = lea base(    , cond*2)
14696              case 3:  // result = lea base(cond, cond*2)
14697              case 4:  // result = lea base(    , cond*4)
14698              case 5:  // result = lea base(cond, cond*4)
14699              case 8:  // result = lea base(    , cond*8)
14700              case 9:  // result = lea base(cond, cond*8)
14701                isFastMultiplier = true;
14702                break;
14703            }
14704          }
14705
14706          if (isFastMultiplier) {
14707            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14708            if (NeedsCondInvert) // Invert the condition if needed.
14709              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14710                                 DAG.getConstant(1, Cond.getValueType()));
14711
14712            // Zero extend the condition if needed.
14713            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14714                               Cond);
14715            // Scale the condition by the difference.
14716            if (Diff != 1)
14717              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14718                                 DAG.getConstant(Diff, Cond.getValueType()));
14719
14720            // Add the base if non-zero.
14721            if (FalseC->getAPIntValue() != 0)
14722              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14723                                 SDValue(FalseC, 0));
14724            return Cond;
14725          }
14726        }
14727      }
14728  }
14729
14730  // Canonicalize max and min:
14731  // (x > y) ? x : y -> (x >= y) ? x : y
14732  // (x < y) ? x : y -> (x <= y) ? x : y
14733  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
14734  // the need for an extra compare
14735  // against zero. e.g.
14736  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
14737  // subl   %esi, %edi
14738  // testl  %edi, %edi
14739  // movl   $0, %eax
14740  // cmovgl %edi, %eax
14741  // =>
14742  // xorl   %eax, %eax
14743  // subl   %esi, $edi
14744  // cmovsl %eax, %edi
14745  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
14746      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14747      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14748    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14749    switch (CC) {
14750    default: break;
14751    case ISD::SETLT:
14752    case ISD::SETGT: {
14753      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
14754      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
14755                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
14756      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
14757    }
14758    }
14759  }
14760
14761  // If we know that this node is legal then we know that it is going to be
14762  // matched by one of the SSE/AVX BLEND instructions. These instructions only
14763  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
14764  // to simplify previous instructions.
14765  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14766  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
14767      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14768    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14769
14770    // Don't optimize vector selects that map to mask-registers.
14771    if (BitWidth == 1)
14772      return SDValue();
14773
14774    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14775    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14776
14777    APInt KnownZero, KnownOne;
14778    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14779                                          DCI.isBeforeLegalizeOps());
14780    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14781        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14782      DCI.CommitTargetLoweringOpt(TLO);
14783  }
14784
14785  return SDValue();
14786}
14787
14788// Check whether a boolean test is testing a boolean value generated by
14789// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14790// code.
14791//
14792// Simplify the following patterns:
14793// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14794// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14795// to (Op EFLAGS Cond)
14796//
14797// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14798// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14799// to (Op EFLAGS !Cond)
14800//
14801// where Op could be BRCOND or CMOV.
14802//
14803static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14804  // Quit if not CMP and SUB with its value result used.
14805  if (Cmp.getOpcode() != X86ISD::CMP &&
14806      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14807      return SDValue();
14808
14809  // Quit if not used as a boolean value.
14810  if (CC != X86::COND_E && CC != X86::COND_NE)
14811    return SDValue();
14812
14813  // Check CMP operands. One of them should be 0 or 1 and the other should be
14814  // an SetCC or extended from it.
14815  SDValue Op1 = Cmp.getOperand(0);
14816  SDValue Op2 = Cmp.getOperand(1);
14817
14818  SDValue SetCC;
14819  const ConstantSDNode* C = 0;
14820  bool needOppositeCond = (CC == X86::COND_E);
14821
14822  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14823    SetCC = Op2;
14824  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14825    SetCC = Op1;
14826  else // Quit if all operands are not constants.
14827    return SDValue();
14828
14829  if (C->getZExtValue() == 1)
14830    needOppositeCond = !needOppositeCond;
14831  else if (C->getZExtValue() != 0)
14832    // Quit if the constant is neither 0 or 1.
14833    return SDValue();
14834
14835  // Skip 'zext' node.
14836  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14837    SetCC = SetCC.getOperand(0);
14838
14839  switch (SetCC.getOpcode()) {
14840  case X86ISD::SETCC:
14841    // Set the condition code or opposite one if necessary.
14842    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14843    if (needOppositeCond)
14844      CC = X86::GetOppositeBranchCondition(CC);
14845    return SetCC.getOperand(1);
14846  case X86ISD::CMOV: {
14847    // Check whether false/true value has canonical one, i.e. 0 or 1.
14848    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
14849    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
14850    // Quit if true value is not a constant.
14851    if (!TVal)
14852      return SDValue();
14853    // Quit if false value is not a constant.
14854    if (!FVal) {
14855      // A special case for rdrand, where 0 is set if false cond is found.
14856      SDValue Op = SetCC.getOperand(0);
14857      if (Op.getOpcode() != X86ISD::RDRAND)
14858        return SDValue();
14859    }
14860    // Quit if false value is not the constant 0 or 1.
14861    bool FValIsFalse = true;
14862    if (FVal && FVal->getZExtValue() != 0) {
14863      if (FVal->getZExtValue() != 1)
14864        return SDValue();
14865      // If FVal is 1, opposite cond is needed.
14866      needOppositeCond = !needOppositeCond;
14867      FValIsFalse = false;
14868    }
14869    // Quit if TVal is not the constant opposite of FVal.
14870    if (FValIsFalse && TVal->getZExtValue() != 1)
14871      return SDValue();
14872    if (!FValIsFalse && TVal->getZExtValue() != 0)
14873      return SDValue();
14874    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
14875    if (needOppositeCond)
14876      CC = X86::GetOppositeBranchCondition(CC);
14877    return SetCC.getOperand(3);
14878  }
14879  }
14880
14881  return SDValue();
14882}
14883
14884/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
14885static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
14886                                  TargetLowering::DAGCombinerInfo &DCI,
14887                                  const X86Subtarget *Subtarget) {
14888  DebugLoc DL = N->getDebugLoc();
14889
14890  // If the flag operand isn't dead, don't touch this CMOV.
14891  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
14892    return SDValue();
14893
14894  SDValue FalseOp = N->getOperand(0);
14895  SDValue TrueOp = N->getOperand(1);
14896  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
14897  SDValue Cond = N->getOperand(3);
14898
14899  if (CC == X86::COND_E || CC == X86::COND_NE) {
14900    switch (Cond.getOpcode()) {
14901    default: break;
14902    case X86ISD::BSR:
14903    case X86ISD::BSF:
14904      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
14905      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
14906        return (CC == X86::COND_E) ? FalseOp : TrueOp;
14907    }
14908  }
14909
14910  SDValue Flags;
14911
14912  Flags = checkBoolTestSetCCCombine(Cond, CC);
14913  if (Flags.getNode() &&
14914      // Extra check as FCMOV only supports a subset of X86 cond.
14915      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
14916    SDValue Ops[] = { FalseOp, TrueOp,
14917                      DAG.getConstant(CC, MVT::i8), Flags };
14918    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14919                       Ops, array_lengthof(Ops));
14920  }
14921
14922  // If this is a select between two integer constants, try to do some
14923  // optimizations.  Note that the operands are ordered the opposite of SELECT
14924  // operands.
14925  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
14926    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
14927      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
14928      // larger than FalseC (the false value).
14929      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
14930        CC = X86::GetOppositeBranchCondition(CC);
14931        std::swap(TrueC, FalseC);
14932        std::swap(TrueOp, FalseOp);
14933      }
14934
14935      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
14936      // This is efficient for any integer data type (including i8/i16) and
14937      // shift amount.
14938      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
14939        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14940                           DAG.getConstant(CC, MVT::i8), Cond);
14941
14942        // Zero extend the condition if needed.
14943        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
14944
14945        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14946        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
14947                           DAG.getConstant(ShAmt, MVT::i8));
14948        if (N->getNumValues() == 2)  // Dead flag value?
14949          return DCI.CombineTo(N, Cond, SDValue());
14950        return Cond;
14951      }
14952
14953      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
14954      // for any integer data type, including i8/i16.
14955      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14956        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14957                           DAG.getConstant(CC, MVT::i8), Cond);
14958
14959        // Zero extend the condition if needed.
14960        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14961                           FalseC->getValueType(0), Cond);
14962        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14963                           SDValue(FalseC, 0));
14964
14965        if (N->getNumValues() == 2)  // Dead flag value?
14966          return DCI.CombineTo(N, Cond, SDValue());
14967        return Cond;
14968      }
14969
14970      // Optimize cases that will turn into an LEA instruction.  This requires
14971      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14972      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14973        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14974        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14975
14976        bool isFastMultiplier = false;
14977        if (Diff < 10) {
14978          switch ((unsigned char)Diff) {
14979          default: break;
14980          case 1:  // result = add base, cond
14981          case 2:  // result = lea base(    , cond*2)
14982          case 3:  // result = lea base(cond, cond*2)
14983          case 4:  // result = lea base(    , cond*4)
14984          case 5:  // result = lea base(cond, cond*4)
14985          case 8:  // result = lea base(    , cond*8)
14986          case 9:  // result = lea base(cond, cond*8)
14987            isFastMultiplier = true;
14988            break;
14989          }
14990        }
14991
14992        if (isFastMultiplier) {
14993          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14994          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14995                             DAG.getConstant(CC, MVT::i8), Cond);
14996          // Zero extend the condition if needed.
14997          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14998                             Cond);
14999          // Scale the condition by the difference.
15000          if (Diff != 1)
15001            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15002                               DAG.getConstant(Diff, Cond.getValueType()));
15003
15004          // Add the base if non-zero.
15005          if (FalseC->getAPIntValue() != 0)
15006            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15007                               SDValue(FalseC, 0));
15008          if (N->getNumValues() == 2)  // Dead flag value?
15009            return DCI.CombineTo(N, Cond, SDValue());
15010          return Cond;
15011        }
15012      }
15013    }
15014  }
15015
15016  // Handle these cases:
15017  //   (select (x != c), e, c) -> select (x != c), e, x),
15018  //   (select (x == c), c, e) -> select (x == c), x, e)
15019  // where the c is an integer constant, and the "select" is the combination
15020  // of CMOV and CMP.
15021  //
15022  // The rationale for this change is that the conditional-move from a constant
15023  // needs two instructions, however, conditional-move from a register needs
15024  // only one instruction.
15025  //
15026  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
15027  //  some instruction-combining opportunities. This opt needs to be
15028  //  postponed as late as possible.
15029  //
15030  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
15031    // the DCI.xxxx conditions are provided to postpone the optimization as
15032    // late as possible.
15033
15034    ConstantSDNode *CmpAgainst = 0;
15035    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
15036        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
15037        dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) {
15038
15039      if (CC == X86::COND_NE &&
15040          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
15041        CC = X86::GetOppositeBranchCondition(CC);
15042        std::swap(TrueOp, FalseOp);
15043      }
15044
15045      if (CC == X86::COND_E &&
15046          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
15047        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
15048                          DAG.getConstant(CC, MVT::i8), Cond };
15049        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
15050                           array_lengthof(Ops));
15051      }
15052    }
15053  }
15054
15055  return SDValue();
15056}
15057
15058
15059/// PerformMulCombine - Optimize a single multiply with constant into two
15060/// in order to implement it with two cheaper instructions, e.g.
15061/// LEA + SHL, LEA + LEA.
15062static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
15063                                 TargetLowering::DAGCombinerInfo &DCI) {
15064  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15065    return SDValue();
15066
15067  EVT VT = N->getValueType(0);
15068  if (VT != MVT::i64)
15069    return SDValue();
15070
15071  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15072  if (!C)
15073    return SDValue();
15074  uint64_t MulAmt = C->getZExtValue();
15075  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
15076    return SDValue();
15077
15078  uint64_t MulAmt1 = 0;
15079  uint64_t MulAmt2 = 0;
15080  if ((MulAmt % 9) == 0) {
15081    MulAmt1 = 9;
15082    MulAmt2 = MulAmt / 9;
15083  } else if ((MulAmt % 5) == 0) {
15084    MulAmt1 = 5;
15085    MulAmt2 = MulAmt / 5;
15086  } else if ((MulAmt % 3) == 0) {
15087    MulAmt1 = 3;
15088    MulAmt2 = MulAmt / 3;
15089  }
15090  if (MulAmt2 &&
15091      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
15092    DebugLoc DL = N->getDebugLoc();
15093
15094    if (isPowerOf2_64(MulAmt2) &&
15095        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
15096      // If second multiplifer is pow2, issue it first. We want the multiply by
15097      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
15098      // is an add.
15099      std::swap(MulAmt1, MulAmt2);
15100
15101    SDValue NewMul;
15102    if (isPowerOf2_64(MulAmt1))
15103      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15104                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
15105    else
15106      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
15107                           DAG.getConstant(MulAmt1, VT));
15108
15109    if (isPowerOf2_64(MulAmt2))
15110      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
15111                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
15112    else
15113      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
15114                           DAG.getConstant(MulAmt2, VT));
15115
15116    // Do not add new nodes to DAG combiner worklist.
15117    DCI.CombineTo(N, NewMul, false);
15118  }
15119  return SDValue();
15120}
15121
15122static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
15123  SDValue N0 = N->getOperand(0);
15124  SDValue N1 = N->getOperand(1);
15125  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
15126  EVT VT = N0.getValueType();
15127
15128  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
15129  // since the result of setcc_c is all zero's or all ones.
15130  if (VT.isInteger() && !VT.isVector() &&
15131      N1C && N0.getOpcode() == ISD::AND &&
15132      N0.getOperand(1).getOpcode() == ISD::Constant) {
15133    SDValue N00 = N0.getOperand(0);
15134    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
15135        ((N00.getOpcode() == ISD::ANY_EXTEND ||
15136          N00.getOpcode() == ISD::ZERO_EXTEND) &&
15137         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
15138      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
15139      APInt ShAmt = N1C->getAPIntValue();
15140      Mask = Mask.shl(ShAmt);
15141      if (Mask != 0)
15142        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
15143                           N00, DAG.getConstant(Mask, VT));
15144    }
15145  }
15146
15147
15148  // Hardware support for vector shifts is sparse which makes us scalarize the
15149  // vector operations in many cases. Also, on sandybridge ADD is faster than
15150  // shl.
15151  // (shl V, 1) -> add V,V
15152  if (isSplatVector(N1.getNode())) {
15153    assert(N0.getValueType().isVector() && "Invalid vector shift type");
15154    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
15155    // We shift all of the values by one. In many cases we do not have
15156    // hardware support for this operation. This is better expressed as an ADD
15157    // of two values.
15158    if (N1C && (1 == N1C->getZExtValue())) {
15159      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
15160    }
15161  }
15162
15163  return SDValue();
15164}
15165
15166/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
15167///                       when possible.
15168static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
15169                                   TargetLowering::DAGCombinerInfo &DCI,
15170                                   const X86Subtarget *Subtarget) {
15171  EVT VT = N->getValueType(0);
15172  if (N->getOpcode() == ISD::SHL) {
15173    SDValue V = PerformSHLCombine(N, DAG);
15174    if (V.getNode()) return V;
15175  }
15176
15177  // On X86 with SSE2 support, we can transform this to a vector shift if
15178  // all elements are shifted by the same amount.  We can't do this in legalize
15179  // because the a constant vector is typically transformed to a constant pool
15180  // so we have no knowledge of the shift amount.
15181  if (!Subtarget->hasSSE2())
15182    return SDValue();
15183
15184  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
15185      (!Subtarget->hasAVX2() ||
15186       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
15187    return SDValue();
15188
15189  SDValue ShAmtOp = N->getOperand(1);
15190  EVT EltVT = VT.getVectorElementType();
15191  DebugLoc DL = N->getDebugLoc();
15192  SDValue BaseShAmt = SDValue();
15193  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
15194    unsigned NumElts = VT.getVectorNumElements();
15195    unsigned i = 0;
15196    for (; i != NumElts; ++i) {
15197      SDValue Arg = ShAmtOp.getOperand(i);
15198      if (Arg.getOpcode() == ISD::UNDEF) continue;
15199      BaseShAmt = Arg;
15200      break;
15201    }
15202    // Handle the case where the build_vector is all undef
15203    // FIXME: Should DAG allow this?
15204    if (i == NumElts)
15205      return SDValue();
15206
15207    for (; i != NumElts; ++i) {
15208      SDValue Arg = ShAmtOp.getOperand(i);
15209      if (Arg.getOpcode() == ISD::UNDEF) continue;
15210      if (Arg != BaseShAmt) {
15211        return SDValue();
15212      }
15213    }
15214  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
15215             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
15216    SDValue InVec = ShAmtOp.getOperand(0);
15217    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
15218      unsigned NumElts = InVec.getValueType().getVectorNumElements();
15219      unsigned i = 0;
15220      for (; i != NumElts; ++i) {
15221        SDValue Arg = InVec.getOperand(i);
15222        if (Arg.getOpcode() == ISD::UNDEF) continue;
15223        BaseShAmt = Arg;
15224        break;
15225      }
15226    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15227       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
15228         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
15229         if (C->getZExtValue() == SplatIdx)
15230           BaseShAmt = InVec.getOperand(1);
15231       }
15232    }
15233    if (BaseShAmt.getNode() == 0) {
15234      // Don't create instructions with illegal types after legalize
15235      // types has run.
15236      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
15237          !DCI.isBeforeLegalize())
15238        return SDValue();
15239
15240      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
15241                              DAG.getIntPtrConstant(0));
15242    }
15243  } else
15244    return SDValue();
15245
15246  // The shift amount is an i32.
15247  if (EltVT.bitsGT(MVT::i32))
15248    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
15249  else if (EltVT.bitsLT(MVT::i32))
15250    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
15251
15252  // The shift amount is identical so we can do a vector shift.
15253  SDValue  ValOp = N->getOperand(0);
15254  switch (N->getOpcode()) {
15255  default:
15256    llvm_unreachable("Unknown shift opcode!");
15257  case ISD::SHL:
15258    switch (VT.getSimpleVT().SimpleTy) {
15259    default: return SDValue();
15260    case MVT::v2i64:
15261    case MVT::v4i32:
15262    case MVT::v8i16:
15263    case MVT::v4i64:
15264    case MVT::v8i32:
15265    case MVT::v16i16:
15266      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
15267    }
15268  case ISD::SRA:
15269    switch (VT.getSimpleVT().SimpleTy) {
15270    default: return SDValue();
15271    case MVT::v4i32:
15272    case MVT::v8i16:
15273    case MVT::v8i32:
15274    case MVT::v16i16:
15275      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
15276    }
15277  case ISD::SRL:
15278    switch (VT.getSimpleVT().SimpleTy) {
15279    default: return SDValue();
15280    case MVT::v2i64:
15281    case MVT::v4i32:
15282    case MVT::v8i16:
15283    case MVT::v4i64:
15284    case MVT::v8i32:
15285    case MVT::v16i16:
15286      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
15287    }
15288  }
15289}
15290
15291
15292// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
15293// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
15294// and friends.  Likewise for OR -> CMPNEQSS.
15295static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
15296                            TargetLowering::DAGCombinerInfo &DCI,
15297                            const X86Subtarget *Subtarget) {
15298  unsigned opcode;
15299
15300  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
15301  // we're requiring SSE2 for both.
15302  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
15303    SDValue N0 = N->getOperand(0);
15304    SDValue N1 = N->getOperand(1);
15305    SDValue CMP0 = N0->getOperand(1);
15306    SDValue CMP1 = N1->getOperand(1);
15307    DebugLoc DL = N->getDebugLoc();
15308
15309    // The SETCCs should both refer to the same CMP.
15310    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
15311      return SDValue();
15312
15313    SDValue CMP00 = CMP0->getOperand(0);
15314    SDValue CMP01 = CMP0->getOperand(1);
15315    EVT     VT    = CMP00.getValueType();
15316
15317    if (VT == MVT::f32 || VT == MVT::f64) {
15318      bool ExpectingFlags = false;
15319      // Check for any users that want flags:
15320      for (SDNode::use_iterator UI = N->use_begin(),
15321             UE = N->use_end();
15322           !ExpectingFlags && UI != UE; ++UI)
15323        switch (UI->getOpcode()) {
15324        default:
15325        case ISD::BR_CC:
15326        case ISD::BRCOND:
15327        case ISD::SELECT:
15328          ExpectingFlags = true;
15329          break;
15330        case ISD::CopyToReg:
15331        case ISD::SIGN_EXTEND:
15332        case ISD::ZERO_EXTEND:
15333        case ISD::ANY_EXTEND:
15334          break;
15335        }
15336
15337      if (!ExpectingFlags) {
15338        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
15339        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
15340
15341        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
15342          X86::CondCode tmp = cc0;
15343          cc0 = cc1;
15344          cc1 = tmp;
15345        }
15346
15347        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
15348            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
15349          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
15350          X86ISD::NodeType NTOperator = is64BitFP ?
15351            X86ISD::FSETCCsd : X86ISD::FSETCCss;
15352          // FIXME: need symbolic constants for these magic numbers.
15353          // See X86ATTInstPrinter.cpp:printSSECC().
15354          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
15355          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
15356                                              DAG.getConstant(x86cc, MVT::i8));
15357          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
15358                                              OnesOrZeroesF);
15359          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
15360                                      DAG.getConstant(1, MVT::i32));
15361          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
15362          return OneBitOfTruth;
15363        }
15364      }
15365    }
15366  }
15367  return SDValue();
15368}
15369
15370/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
15371/// so it can be folded inside ANDNP.
15372static bool CanFoldXORWithAllOnes(const SDNode *N) {
15373  EVT VT = N->getValueType(0);
15374
15375  // Match direct AllOnes for 128 and 256-bit vectors
15376  if (ISD::isBuildVectorAllOnes(N))
15377    return true;
15378
15379  // Look through a bit convert.
15380  if (N->getOpcode() == ISD::BITCAST)
15381    N = N->getOperand(0).getNode();
15382
15383  // Sometimes the operand may come from a insert_subvector building a 256-bit
15384  // allones vector
15385  if (VT.is256BitVector() &&
15386      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
15387    SDValue V1 = N->getOperand(0);
15388    SDValue V2 = N->getOperand(1);
15389
15390    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
15391        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
15392        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
15393        ISD::isBuildVectorAllOnes(V2.getNode()))
15394      return true;
15395  }
15396
15397  return false;
15398}
15399
15400static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
15401                                 TargetLowering::DAGCombinerInfo &DCI,
15402                                 const X86Subtarget *Subtarget) {
15403  if (DCI.isBeforeLegalizeOps())
15404    return SDValue();
15405
15406  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
15407  if (R.getNode())
15408    return R;
15409
15410  EVT VT = N->getValueType(0);
15411
15412  // Create ANDN, BLSI, and BLSR instructions
15413  // BLSI is X & (-X)
15414  // BLSR is X & (X-1)
15415  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
15416    SDValue N0 = N->getOperand(0);
15417    SDValue N1 = N->getOperand(1);
15418    DebugLoc DL = N->getDebugLoc();
15419
15420    // Check LHS for not
15421    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
15422      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
15423    // Check RHS for not
15424    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
15425      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
15426
15427    // Check LHS for neg
15428    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
15429        isZero(N0.getOperand(0)))
15430      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
15431
15432    // Check RHS for neg
15433    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
15434        isZero(N1.getOperand(0)))
15435      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
15436
15437    // Check LHS for X-1
15438    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15439        isAllOnes(N0.getOperand(1)))
15440      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
15441
15442    // Check RHS for X-1
15443    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15444        isAllOnes(N1.getOperand(1)))
15445      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
15446
15447    return SDValue();
15448  }
15449
15450  // Want to form ANDNP nodes:
15451  // 1) In the hopes of then easily combining them with OR and AND nodes
15452  //    to form PBLEND/PSIGN.
15453  // 2) To match ANDN packed intrinsics
15454  if (VT != MVT::v2i64 && VT != MVT::v4i64)
15455    return SDValue();
15456
15457  SDValue N0 = N->getOperand(0);
15458  SDValue N1 = N->getOperand(1);
15459  DebugLoc DL = N->getDebugLoc();
15460
15461  // Check LHS for vnot
15462  if (N0.getOpcode() == ISD::XOR &&
15463      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
15464      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
15465    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
15466
15467  // Check RHS for vnot
15468  if (N1.getOpcode() == ISD::XOR &&
15469      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
15470      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
15471    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
15472
15473  return SDValue();
15474}
15475
15476static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
15477                                TargetLowering::DAGCombinerInfo &DCI,
15478                                const X86Subtarget *Subtarget) {
15479  if (DCI.isBeforeLegalizeOps())
15480    return SDValue();
15481
15482  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
15483  if (R.getNode())
15484    return R;
15485
15486  EVT VT = N->getValueType(0);
15487
15488  SDValue N0 = N->getOperand(0);
15489  SDValue N1 = N->getOperand(1);
15490
15491  // look for psign/blend
15492  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
15493    if (!Subtarget->hasSSSE3() ||
15494        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
15495      return SDValue();
15496
15497    // Canonicalize pandn to RHS
15498    if (N0.getOpcode() == X86ISD::ANDNP)
15499      std::swap(N0, N1);
15500    // or (and (m, y), (pandn m, x))
15501    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
15502      SDValue Mask = N1.getOperand(0);
15503      SDValue X    = N1.getOperand(1);
15504      SDValue Y;
15505      if (N0.getOperand(0) == Mask)
15506        Y = N0.getOperand(1);
15507      if (N0.getOperand(1) == Mask)
15508        Y = N0.getOperand(0);
15509
15510      // Check to see if the mask appeared in both the AND and ANDNP and
15511      if (!Y.getNode())
15512        return SDValue();
15513
15514      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
15515      // Look through mask bitcast.
15516      if (Mask.getOpcode() == ISD::BITCAST)
15517        Mask = Mask.getOperand(0);
15518      if (X.getOpcode() == ISD::BITCAST)
15519        X = X.getOperand(0);
15520      if (Y.getOpcode() == ISD::BITCAST)
15521        Y = Y.getOperand(0);
15522
15523      EVT MaskVT = Mask.getValueType();
15524
15525      // Validate that the Mask operand is a vector sra node.
15526      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
15527      // there is no psrai.b
15528      if (Mask.getOpcode() != X86ISD::VSRAI)
15529        return SDValue();
15530
15531      // Check that the SRA is all signbits.
15532      SDValue SraC = Mask.getOperand(1);
15533      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
15534      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
15535      if ((SraAmt + 1) != EltBits)
15536        return SDValue();
15537
15538      DebugLoc DL = N->getDebugLoc();
15539
15540      // Now we know we at least have a plendvb with the mask val.  See if
15541      // we can form a psignb/w/d.
15542      // psign = x.type == y.type == mask.type && y = sub(0, x);
15543      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
15544          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
15545          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
15546        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
15547               "Unsupported VT for PSIGN");
15548        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
15549        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15550      }
15551      // PBLENDVB only available on SSE 4.1
15552      if (!Subtarget->hasSSE41())
15553        return SDValue();
15554
15555      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
15556
15557      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
15558      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
15559      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
15560      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
15561      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15562    }
15563  }
15564
15565  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
15566    return SDValue();
15567
15568  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
15569  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
15570    std::swap(N0, N1);
15571  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
15572    return SDValue();
15573  if (!N0.hasOneUse() || !N1.hasOneUse())
15574    return SDValue();
15575
15576  SDValue ShAmt0 = N0.getOperand(1);
15577  if (ShAmt0.getValueType() != MVT::i8)
15578    return SDValue();
15579  SDValue ShAmt1 = N1.getOperand(1);
15580  if (ShAmt1.getValueType() != MVT::i8)
15581    return SDValue();
15582  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
15583    ShAmt0 = ShAmt0.getOperand(0);
15584  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
15585    ShAmt1 = ShAmt1.getOperand(0);
15586
15587  DebugLoc DL = N->getDebugLoc();
15588  unsigned Opc = X86ISD::SHLD;
15589  SDValue Op0 = N0.getOperand(0);
15590  SDValue Op1 = N1.getOperand(0);
15591  if (ShAmt0.getOpcode() == ISD::SUB) {
15592    Opc = X86ISD::SHRD;
15593    std::swap(Op0, Op1);
15594    std::swap(ShAmt0, ShAmt1);
15595  }
15596
15597  unsigned Bits = VT.getSizeInBits();
15598  if (ShAmt1.getOpcode() == ISD::SUB) {
15599    SDValue Sum = ShAmt1.getOperand(0);
15600    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
15601      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
15602      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
15603        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
15604      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
15605        return DAG.getNode(Opc, DL, VT,
15606                           Op0, Op1,
15607                           DAG.getNode(ISD::TRUNCATE, DL,
15608                                       MVT::i8, ShAmt0));
15609    }
15610  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
15611    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
15612    if (ShAmt0C &&
15613        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
15614      return DAG.getNode(Opc, DL, VT,
15615                         N0.getOperand(0), N1.getOperand(0),
15616                         DAG.getNode(ISD::TRUNCATE, DL,
15617                                       MVT::i8, ShAmt0));
15618  }
15619
15620  return SDValue();
15621}
15622
15623// Generate NEG and CMOV for integer abs.
15624static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
15625  EVT VT = N->getValueType(0);
15626
15627  // Since X86 does not have CMOV for 8-bit integer, we don't convert
15628  // 8-bit integer abs to NEG and CMOV.
15629  if (VT.isInteger() && VT.getSizeInBits() == 8)
15630    return SDValue();
15631
15632  SDValue N0 = N->getOperand(0);
15633  SDValue N1 = N->getOperand(1);
15634  DebugLoc DL = N->getDebugLoc();
15635
15636  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
15637  // and change it to SUB and CMOV.
15638  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
15639      N0.getOpcode() == ISD::ADD &&
15640      N0.getOperand(1) == N1 &&
15641      N1.getOpcode() == ISD::SRA &&
15642      N1.getOperand(0) == N0.getOperand(0))
15643    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
15644      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
15645        // Generate SUB & CMOV.
15646        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
15647                                  DAG.getConstant(0, VT), N0.getOperand(0));
15648
15649        SDValue Ops[] = { N0.getOperand(0), Neg,
15650                          DAG.getConstant(X86::COND_GE, MVT::i8),
15651                          SDValue(Neg.getNode(), 1) };
15652        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
15653                           Ops, array_lengthof(Ops));
15654      }
15655  return SDValue();
15656}
15657
15658// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
15659static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
15660                                 TargetLowering::DAGCombinerInfo &DCI,
15661                                 const X86Subtarget *Subtarget) {
15662  if (DCI.isBeforeLegalizeOps())
15663    return SDValue();
15664
15665  if (Subtarget->hasCMov()) {
15666    SDValue RV = performIntegerAbsCombine(N, DAG);
15667    if (RV.getNode())
15668      return RV;
15669  }
15670
15671  // Try forming BMI if it is available.
15672  if (!Subtarget->hasBMI())
15673    return SDValue();
15674
15675  EVT VT = N->getValueType(0);
15676
15677  if (VT != MVT::i32 && VT != MVT::i64)
15678    return SDValue();
15679
15680  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
15681
15682  // Create BLSMSK instructions by finding X ^ (X-1)
15683  SDValue N0 = N->getOperand(0);
15684  SDValue N1 = N->getOperand(1);
15685  DebugLoc DL = N->getDebugLoc();
15686
15687  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15688      isAllOnes(N0.getOperand(1)))
15689    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
15690
15691  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15692      isAllOnes(N1.getOperand(1)))
15693    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
15694
15695  return SDValue();
15696}
15697
15698/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
15699static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
15700                                  TargetLowering::DAGCombinerInfo &DCI,
15701                                  const X86Subtarget *Subtarget) {
15702  LoadSDNode *Ld = cast<LoadSDNode>(N);
15703  EVT RegVT = Ld->getValueType(0);
15704  EVT MemVT = Ld->getMemoryVT();
15705  DebugLoc dl = Ld->getDebugLoc();
15706  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15707
15708  ISD::LoadExtType Ext = Ld->getExtensionType();
15709
15710  // If this is a vector EXT Load then attempt to optimize it using a
15711  // shuffle. We need SSSE3 shuffles.
15712  // TODO: It is possible to support ZExt by zeroing the undef values
15713  // during the shuffle phase or after the shuffle.
15714  if (RegVT.isVector() && RegVT.isInteger() &&
15715      Ext == ISD::EXTLOAD && Subtarget->hasSSSE3()) {
15716    assert(MemVT != RegVT && "Cannot extend to the same type");
15717    assert(MemVT.isVector() && "Must load a vector from memory");
15718
15719    unsigned NumElems = RegVT.getVectorNumElements();
15720    unsigned RegSz = RegVT.getSizeInBits();
15721    unsigned MemSz = MemVT.getSizeInBits();
15722    assert(RegSz > MemSz && "Register size must be greater than the mem size");
15723
15724    // All sizes must be a power of two.
15725    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
15726      return SDValue();
15727
15728    // Attempt to load the original value using scalar loads.
15729    // Find the largest scalar type that divides the total loaded size.
15730    MVT SclrLoadTy = MVT::i8;
15731    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15732         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15733      MVT Tp = (MVT::SimpleValueType)tp;
15734      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15735        SclrLoadTy = Tp;
15736      }
15737    }
15738
15739    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15740    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15741        (64 <= MemSz))
15742      SclrLoadTy = MVT::f64;
15743
15744    // Calculate the number of scalar loads that we need to perform
15745    // in order to load our vector from memory.
15746    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15747
15748    // Represent our vector as a sequence of elements which are the
15749    // largest scalar that we can load.
15750    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15751      RegSz/SclrLoadTy.getSizeInBits());
15752
15753    // Represent the data using the same element type that is stored in
15754    // memory. In practice, we ''widen'' MemVT.
15755    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15756                                  RegSz/MemVT.getScalarType().getSizeInBits());
15757
15758    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15759      "Invalid vector type");
15760
15761    // We can't shuffle using an illegal type.
15762    if (!TLI.isTypeLegal(WideVecVT))
15763      return SDValue();
15764
15765    SmallVector<SDValue, 8> Chains;
15766    SDValue Ptr = Ld->getBasePtr();
15767    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15768                                        TLI.getPointerTy());
15769    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15770
15771    for (unsigned i = 0; i < NumLoads; ++i) {
15772      // Perform a single load.
15773      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15774                                       Ptr, Ld->getPointerInfo(),
15775                                       Ld->isVolatile(), Ld->isNonTemporal(),
15776                                       Ld->isInvariant(), Ld->getAlignment());
15777      Chains.push_back(ScalarLoad.getValue(1));
15778      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15779      // another round of DAGCombining.
15780      if (i == 0)
15781        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15782      else
15783        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15784                          ScalarLoad, DAG.getIntPtrConstant(i));
15785
15786      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15787    }
15788
15789    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15790                               Chains.size());
15791
15792    // Bitcast the loaded value to a vector of the original element type, in
15793    // the size of the target vector type.
15794    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15795    unsigned SizeRatio = RegSz/MemSz;
15796
15797    // Redistribute the loaded elements into the different locations.
15798    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15799    for (unsigned i = 0; i != NumElems; ++i)
15800      ShuffleVec[i*SizeRatio] = i;
15801
15802    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15803                                         DAG.getUNDEF(WideVecVT),
15804                                         &ShuffleVec[0]);
15805
15806    // Bitcast to the requested type.
15807    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15808    // Replace the original load with the new sequence
15809    // and return the new chain.
15810    return DCI.CombineTo(N, Shuff, TF, true);
15811  }
15812
15813  return SDValue();
15814}
15815
15816/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15817static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15818                                   const X86Subtarget *Subtarget) {
15819  StoreSDNode *St = cast<StoreSDNode>(N);
15820  EVT VT = St->getValue().getValueType();
15821  EVT StVT = St->getMemoryVT();
15822  DebugLoc dl = St->getDebugLoc();
15823  SDValue StoredVal = St->getOperand(1);
15824  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15825
15826  // If we are saving a concatenation of two XMM registers, perform two stores.
15827  // On Sandy Bridge, 256-bit memory operations are executed by two
15828  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15829  // memory  operation.
15830  if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
15831      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15832      StoredVal.getNumOperands() == 2) {
15833    SDValue Value0 = StoredVal.getOperand(0);
15834    SDValue Value1 = StoredVal.getOperand(1);
15835
15836    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15837    SDValue Ptr0 = St->getBasePtr();
15838    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15839
15840    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15841                                St->getPointerInfo(), St->isVolatile(),
15842                                St->isNonTemporal(), St->getAlignment());
15843    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15844                                St->getPointerInfo(), St->isVolatile(),
15845                                St->isNonTemporal(), St->getAlignment());
15846    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15847  }
15848
15849  // Optimize trunc store (of multiple scalars) to shuffle and store.
15850  // First, pack all of the elements in one place. Next, store to memory
15851  // in fewer chunks.
15852  if (St->isTruncatingStore() && VT.isVector()) {
15853    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15854    unsigned NumElems = VT.getVectorNumElements();
15855    assert(StVT != VT && "Cannot truncate to the same type");
15856    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
15857    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
15858
15859    // From, To sizes and ElemCount must be pow of two
15860    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
15861    // We are going to use the original vector elt for storing.
15862    // Accumulated smaller vector elements must be a multiple of the store size.
15863    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
15864
15865    unsigned SizeRatio  = FromSz / ToSz;
15866
15867    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
15868
15869    // Create a type on which we perform the shuffle
15870    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
15871            StVT.getScalarType(), NumElems*SizeRatio);
15872
15873    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15874
15875    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
15876    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15877    for (unsigned i = 0; i != NumElems; ++i)
15878      ShuffleVec[i] = i * SizeRatio;
15879
15880    // Can't shuffle using an illegal type.
15881    if (!TLI.isTypeLegal(WideVecVT))
15882      return SDValue();
15883
15884    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
15885                                         DAG.getUNDEF(WideVecVT),
15886                                         &ShuffleVec[0]);
15887    // At this point all of the data is stored at the bottom of the
15888    // register. We now need to save it to mem.
15889
15890    // Find the largest store unit
15891    MVT StoreType = MVT::i8;
15892    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15893         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15894      MVT Tp = (MVT::SimpleValueType)tp;
15895      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
15896        StoreType = Tp;
15897    }
15898
15899    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15900    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
15901        (64 <= NumElems * ToSz))
15902      StoreType = MVT::f64;
15903
15904    // Bitcast the original vector into a vector of store-size units
15905    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
15906            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
15907    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15908    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
15909    SmallVector<SDValue, 8> Chains;
15910    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
15911                                        TLI.getPointerTy());
15912    SDValue Ptr = St->getBasePtr();
15913
15914    // Perform one or more big stores into memory.
15915    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
15916      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
15917                                   StoreType, ShuffWide,
15918                                   DAG.getIntPtrConstant(i));
15919      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
15920                                St->getPointerInfo(), St->isVolatile(),
15921                                St->isNonTemporal(), St->getAlignment());
15922      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15923      Chains.push_back(Ch);
15924    }
15925
15926    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15927                               Chains.size());
15928  }
15929
15930
15931  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
15932  // the FP state in cases where an emms may be missing.
15933  // A preferable solution to the general problem is to figure out the right
15934  // places to insert EMMS.  This qualifies as a quick hack.
15935
15936  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
15937  if (VT.getSizeInBits() != 64)
15938    return SDValue();
15939
15940  const Function *F = DAG.getMachineFunction().getFunction();
15941  bool NoImplicitFloatOps = F->getFnAttributes().
15942    hasAttribute(Attributes::NoImplicitFloat);
15943  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
15944                     && Subtarget->hasSSE2();
15945  if ((VT.isVector() ||
15946       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
15947      isa<LoadSDNode>(St->getValue()) &&
15948      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
15949      St->getChain().hasOneUse() && !St->isVolatile()) {
15950    SDNode* LdVal = St->getValue().getNode();
15951    LoadSDNode *Ld = 0;
15952    int TokenFactorIndex = -1;
15953    SmallVector<SDValue, 8> Ops;
15954    SDNode* ChainVal = St->getChain().getNode();
15955    // Must be a store of a load.  We currently handle two cases:  the load
15956    // is a direct child, and it's under an intervening TokenFactor.  It is
15957    // possible to dig deeper under nested TokenFactors.
15958    if (ChainVal == LdVal)
15959      Ld = cast<LoadSDNode>(St->getChain());
15960    else if (St->getValue().hasOneUse() &&
15961             ChainVal->getOpcode() == ISD::TokenFactor) {
15962      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
15963        if (ChainVal->getOperand(i).getNode() == LdVal) {
15964          TokenFactorIndex = i;
15965          Ld = cast<LoadSDNode>(St->getValue());
15966        } else
15967          Ops.push_back(ChainVal->getOperand(i));
15968      }
15969    }
15970
15971    if (!Ld || !ISD::isNormalLoad(Ld))
15972      return SDValue();
15973
15974    // If this is not the MMX case, i.e. we are just turning i64 load/store
15975    // into f64 load/store, avoid the transformation if there are multiple
15976    // uses of the loaded value.
15977    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
15978      return SDValue();
15979
15980    DebugLoc LdDL = Ld->getDebugLoc();
15981    DebugLoc StDL = N->getDebugLoc();
15982    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
15983    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
15984    // pair instead.
15985    if (Subtarget->is64Bit() || F64IsLegal) {
15986      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
15987      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
15988                                  Ld->getPointerInfo(), Ld->isVolatile(),
15989                                  Ld->isNonTemporal(), Ld->isInvariant(),
15990                                  Ld->getAlignment());
15991      SDValue NewChain = NewLd.getValue(1);
15992      if (TokenFactorIndex != -1) {
15993        Ops.push_back(NewChain);
15994        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15995                               Ops.size());
15996      }
15997      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
15998                          St->getPointerInfo(),
15999                          St->isVolatile(), St->isNonTemporal(),
16000                          St->getAlignment());
16001    }
16002
16003    // Otherwise, lower to two pairs of 32-bit loads / stores.
16004    SDValue LoAddr = Ld->getBasePtr();
16005    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
16006                                 DAG.getConstant(4, MVT::i32));
16007
16008    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
16009                               Ld->getPointerInfo(),
16010                               Ld->isVolatile(), Ld->isNonTemporal(),
16011                               Ld->isInvariant(), Ld->getAlignment());
16012    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
16013                               Ld->getPointerInfo().getWithOffset(4),
16014                               Ld->isVolatile(), Ld->isNonTemporal(),
16015                               Ld->isInvariant(),
16016                               MinAlign(Ld->getAlignment(), 4));
16017
16018    SDValue NewChain = LoLd.getValue(1);
16019    if (TokenFactorIndex != -1) {
16020      Ops.push_back(LoLd);
16021      Ops.push_back(HiLd);
16022      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16023                             Ops.size());
16024    }
16025
16026    LoAddr = St->getBasePtr();
16027    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
16028                         DAG.getConstant(4, MVT::i32));
16029
16030    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
16031                                St->getPointerInfo(),
16032                                St->isVolatile(), St->isNonTemporal(),
16033                                St->getAlignment());
16034    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
16035                                St->getPointerInfo().getWithOffset(4),
16036                                St->isVolatile(),
16037                                St->isNonTemporal(),
16038                                MinAlign(St->getAlignment(), 4));
16039    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
16040  }
16041  return SDValue();
16042}
16043
16044/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
16045/// and return the operands for the horizontal operation in LHS and RHS.  A
16046/// horizontal operation performs the binary operation on successive elements
16047/// of its first operand, then on successive elements of its second operand,
16048/// returning the resulting values in a vector.  For example, if
16049///   A = < float a0, float a1, float a2, float a3 >
16050/// and
16051///   B = < float b0, float b1, float b2, float b3 >
16052/// then the result of doing a horizontal operation on A and B is
16053///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
16054/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
16055/// A horizontal-op B, for some already available A and B, and if so then LHS is
16056/// set to A, RHS to B, and the routine returns 'true'.
16057/// Note that the binary operation should have the property that if one of the
16058/// operands is UNDEF then the result is UNDEF.
16059static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
16060  // Look for the following pattern: if
16061  //   A = < float a0, float a1, float a2, float a3 >
16062  //   B = < float b0, float b1, float b2, float b3 >
16063  // and
16064  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
16065  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
16066  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
16067  // which is A horizontal-op B.
16068
16069  // At least one of the operands should be a vector shuffle.
16070  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
16071      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
16072    return false;
16073
16074  EVT VT = LHS.getValueType();
16075
16076  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16077         "Unsupported vector type for horizontal add/sub");
16078
16079  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
16080  // operate independently on 128-bit lanes.
16081  unsigned NumElts = VT.getVectorNumElements();
16082  unsigned NumLanes = VT.getSizeInBits()/128;
16083  unsigned NumLaneElts = NumElts / NumLanes;
16084  assert((NumLaneElts % 2 == 0) &&
16085         "Vector type should have an even number of elements in each lane");
16086  unsigned HalfLaneElts = NumLaneElts/2;
16087
16088  // View LHS in the form
16089  //   LHS = VECTOR_SHUFFLE A, B, LMask
16090  // If LHS is not a shuffle then pretend it is the shuffle
16091  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
16092  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
16093  // type VT.
16094  SDValue A, B;
16095  SmallVector<int, 16> LMask(NumElts);
16096  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16097    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
16098      A = LHS.getOperand(0);
16099    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
16100      B = LHS.getOperand(1);
16101    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
16102    std::copy(Mask.begin(), Mask.end(), LMask.begin());
16103  } else {
16104    if (LHS.getOpcode() != ISD::UNDEF)
16105      A = LHS;
16106    for (unsigned i = 0; i != NumElts; ++i)
16107      LMask[i] = i;
16108  }
16109
16110  // Likewise, view RHS in the form
16111  //   RHS = VECTOR_SHUFFLE C, D, RMask
16112  SDValue C, D;
16113  SmallVector<int, 16> RMask(NumElts);
16114  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16115    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
16116      C = RHS.getOperand(0);
16117    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
16118      D = RHS.getOperand(1);
16119    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
16120    std::copy(Mask.begin(), Mask.end(), RMask.begin());
16121  } else {
16122    if (RHS.getOpcode() != ISD::UNDEF)
16123      C = RHS;
16124    for (unsigned i = 0; i != NumElts; ++i)
16125      RMask[i] = i;
16126  }
16127
16128  // Check that the shuffles are both shuffling the same vectors.
16129  if (!(A == C && B == D) && !(A == D && B == C))
16130    return false;
16131
16132  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
16133  if (!A.getNode() && !B.getNode())
16134    return false;
16135
16136  // If A and B occur in reverse order in RHS, then "swap" them (which means
16137  // rewriting the mask).
16138  if (A != C)
16139    CommuteVectorShuffleMask(RMask, NumElts);
16140
16141  // At this point LHS and RHS are equivalent to
16142  //   LHS = VECTOR_SHUFFLE A, B, LMask
16143  //   RHS = VECTOR_SHUFFLE A, B, RMask
16144  // Check that the masks correspond to performing a horizontal operation.
16145  for (unsigned i = 0; i != NumElts; ++i) {
16146    int LIdx = LMask[i], RIdx = RMask[i];
16147
16148    // Ignore any UNDEF components.
16149    if (LIdx < 0 || RIdx < 0 ||
16150        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
16151        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
16152      continue;
16153
16154    // Check that successive elements are being operated on.  If not, this is
16155    // not a horizontal operation.
16156    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
16157    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
16158    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
16159    if (!(LIdx == Index && RIdx == Index + 1) &&
16160        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
16161      return false;
16162  }
16163
16164  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
16165  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
16166  return true;
16167}
16168
16169/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
16170static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
16171                                  const X86Subtarget *Subtarget) {
16172  EVT VT = N->getValueType(0);
16173  SDValue LHS = N->getOperand(0);
16174  SDValue RHS = N->getOperand(1);
16175
16176  // Try to synthesize horizontal adds from adds of shuffles.
16177  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16178       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16179      isHorizontalBinOp(LHS, RHS, true))
16180    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
16181  return SDValue();
16182}
16183
16184/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
16185static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
16186                                  const X86Subtarget *Subtarget) {
16187  EVT VT = N->getValueType(0);
16188  SDValue LHS = N->getOperand(0);
16189  SDValue RHS = N->getOperand(1);
16190
16191  // Try to synthesize horizontal subs from subs of shuffles.
16192  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16193       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16194      isHorizontalBinOp(LHS, RHS, false))
16195    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
16196  return SDValue();
16197}
16198
16199/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
16200/// X86ISD::FXOR nodes.
16201static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
16202  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
16203  // F[X]OR(0.0, x) -> x
16204  // F[X]OR(x, 0.0) -> x
16205  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16206    if (C->getValueAPF().isPosZero())
16207      return N->getOperand(1);
16208  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16209    if (C->getValueAPF().isPosZero())
16210      return N->getOperand(0);
16211  return SDValue();
16212}
16213
16214/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
16215/// X86ISD::FMAX nodes.
16216static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
16217  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
16218
16219  // Only perform optimizations if UnsafeMath is used.
16220  if (!DAG.getTarget().Options.UnsafeFPMath)
16221    return SDValue();
16222
16223  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
16224  // into FMINC and FMAXC, which are Commutative operations.
16225  unsigned NewOp = 0;
16226  switch (N->getOpcode()) {
16227    default: llvm_unreachable("unknown opcode");
16228    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
16229    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
16230  }
16231
16232  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
16233                     N->getOperand(0), N->getOperand(1));
16234}
16235
16236
16237/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
16238static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
16239  // FAND(0.0, x) -> 0.0
16240  // FAND(x, 0.0) -> 0.0
16241  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16242    if (C->getValueAPF().isPosZero())
16243      return N->getOperand(0);
16244  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16245    if (C->getValueAPF().isPosZero())
16246      return N->getOperand(1);
16247  return SDValue();
16248}
16249
16250static SDValue PerformBTCombine(SDNode *N,
16251                                SelectionDAG &DAG,
16252                                TargetLowering::DAGCombinerInfo &DCI) {
16253  // BT ignores high bits in the bit index operand.
16254  SDValue Op1 = N->getOperand(1);
16255  if (Op1.hasOneUse()) {
16256    unsigned BitWidth = Op1.getValueSizeInBits();
16257    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
16258    APInt KnownZero, KnownOne;
16259    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
16260                                          !DCI.isBeforeLegalizeOps());
16261    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16262    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
16263        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
16264      DCI.CommitTargetLoweringOpt(TLO);
16265  }
16266  return SDValue();
16267}
16268
16269static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
16270  SDValue Op = N->getOperand(0);
16271  if (Op.getOpcode() == ISD::BITCAST)
16272    Op = Op.getOperand(0);
16273  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
16274  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
16275      VT.getVectorElementType().getSizeInBits() ==
16276      OpVT.getVectorElementType().getSizeInBits()) {
16277    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
16278  }
16279  return SDValue();
16280}
16281
16282static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
16283                                  TargetLowering::DAGCombinerInfo &DCI,
16284                                  const X86Subtarget *Subtarget) {
16285  if (!DCI.isBeforeLegalizeOps())
16286    return SDValue();
16287
16288  if (!Subtarget->hasAVX())
16289    return SDValue();
16290
16291  EVT VT = N->getValueType(0);
16292  SDValue Op = N->getOperand(0);
16293  EVT OpVT = Op.getValueType();
16294  DebugLoc dl = N->getDebugLoc();
16295
16296  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
16297      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
16298
16299    if (Subtarget->hasAVX2())
16300      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
16301
16302    // Optimize vectors in AVX mode
16303    // Sign extend  v8i16 to v8i32 and
16304    //              v4i32 to v4i64
16305    //
16306    // Divide input vector into two parts
16307    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
16308    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
16309    // concat the vectors to original VT
16310
16311    unsigned NumElems = OpVT.getVectorNumElements();
16312    SDValue Undef = DAG.getUNDEF(OpVT);
16313
16314    SmallVector<int,8> ShufMask1(NumElems, -1);
16315    for (unsigned i = 0; i != NumElems/2; ++i)
16316      ShufMask1[i] = i;
16317
16318    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
16319
16320    SmallVector<int,8> ShufMask2(NumElems, -1);
16321    for (unsigned i = 0; i != NumElems/2; ++i)
16322      ShufMask2[i] = i + NumElems/2;
16323
16324    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
16325
16326    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
16327                                  VT.getVectorNumElements()/2);
16328
16329    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
16330    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
16331
16332    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
16333  }
16334  return SDValue();
16335}
16336
16337static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
16338                                 const X86Subtarget* Subtarget) {
16339  DebugLoc dl = N->getDebugLoc();
16340  EVT VT = N->getValueType(0);
16341
16342  // Let legalize expand this if it isn't a legal type yet.
16343  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
16344    return SDValue();
16345
16346  EVT ScalarVT = VT.getScalarType();
16347  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
16348      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
16349    return SDValue();
16350
16351  SDValue A = N->getOperand(0);
16352  SDValue B = N->getOperand(1);
16353  SDValue C = N->getOperand(2);
16354
16355  bool NegA = (A.getOpcode() == ISD::FNEG);
16356  bool NegB = (B.getOpcode() == ISD::FNEG);
16357  bool NegC = (C.getOpcode() == ISD::FNEG);
16358
16359  // Negative multiplication when NegA xor NegB
16360  bool NegMul = (NegA != NegB);
16361  if (NegA)
16362    A = A.getOperand(0);
16363  if (NegB)
16364    B = B.getOperand(0);
16365  if (NegC)
16366    C = C.getOperand(0);
16367
16368  unsigned Opcode;
16369  if (!NegMul)
16370    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
16371  else
16372    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
16373
16374  return DAG.getNode(Opcode, dl, VT, A, B, C);
16375}
16376
16377static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
16378                                  TargetLowering::DAGCombinerInfo &DCI,
16379                                  const X86Subtarget *Subtarget) {
16380  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
16381  //           (and (i32 x86isd::setcc_carry), 1)
16382  // This eliminates the zext. This transformation is necessary because
16383  // ISD::SETCC is always legalized to i8.
16384  DebugLoc dl = N->getDebugLoc();
16385  SDValue N0 = N->getOperand(0);
16386  EVT VT = N->getValueType(0);
16387  EVT OpVT = N0.getValueType();
16388
16389  if (N0.getOpcode() == ISD::AND &&
16390      N0.hasOneUse() &&
16391      N0.getOperand(0).hasOneUse()) {
16392    SDValue N00 = N0.getOperand(0);
16393    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
16394      return SDValue();
16395    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
16396    if (!C || C->getZExtValue() != 1)
16397      return SDValue();
16398    return DAG.getNode(ISD::AND, dl, VT,
16399                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
16400                                   N00.getOperand(0), N00.getOperand(1)),
16401                       DAG.getConstant(1, VT));
16402  }
16403
16404  // Optimize vectors in AVX mode:
16405  //
16406  //   v8i16 -> v8i32
16407  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
16408  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
16409  //   Concat upper and lower parts.
16410  //
16411  //   v4i32 -> v4i64
16412  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
16413  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
16414  //   Concat upper and lower parts.
16415  //
16416  if (!DCI.isBeforeLegalizeOps())
16417    return SDValue();
16418
16419  if (!Subtarget->hasAVX())
16420    return SDValue();
16421
16422  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
16423      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
16424
16425    if (Subtarget->hasAVX2())
16426      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
16427
16428    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
16429    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
16430    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
16431
16432    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
16433                               VT.getVectorNumElements()/2);
16434
16435    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
16436    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
16437
16438    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
16439  }
16440
16441  return SDValue();
16442}
16443
16444// Optimize x == -y --> x+y == 0
16445//          x != -y --> x+y != 0
16446static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
16447  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
16448  SDValue LHS = N->getOperand(0);
16449  SDValue RHS = N->getOperand(1);
16450
16451  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
16452    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
16453      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
16454        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
16455                                   LHS.getValueType(), RHS, LHS.getOperand(1));
16456        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
16457                            addV, DAG.getConstant(0, addV.getValueType()), CC);
16458      }
16459  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
16460    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
16461      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
16462        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
16463                                   RHS.getValueType(), LHS, RHS.getOperand(1));
16464        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
16465                            addV, DAG.getConstant(0, addV.getValueType()), CC);
16466      }
16467  return SDValue();
16468}
16469
16470// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
16471static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
16472                                   TargetLowering::DAGCombinerInfo &DCI,
16473                                   const X86Subtarget *Subtarget) {
16474  DebugLoc DL = N->getDebugLoc();
16475  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
16476  SDValue EFLAGS = N->getOperand(1);
16477
16478  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
16479  // a zext and produces an all-ones bit which is more useful than 0/1 in some
16480  // cases.
16481  if (CC == X86::COND_B)
16482    return DAG.getNode(ISD::AND, DL, MVT::i8,
16483                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
16484                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
16485                       DAG.getConstant(1, MVT::i8));
16486
16487  SDValue Flags;
16488
16489  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16490  if (Flags.getNode()) {
16491    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16492    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
16493  }
16494
16495  return SDValue();
16496}
16497
16498// Optimize branch condition evaluation.
16499//
16500static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
16501                                    TargetLowering::DAGCombinerInfo &DCI,
16502                                    const X86Subtarget *Subtarget) {
16503  DebugLoc DL = N->getDebugLoc();
16504  SDValue Chain = N->getOperand(0);
16505  SDValue Dest = N->getOperand(1);
16506  SDValue EFLAGS = N->getOperand(3);
16507  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
16508
16509  SDValue Flags;
16510
16511  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16512  if (Flags.getNode()) {
16513    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16514    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
16515                       Flags);
16516  }
16517
16518  return SDValue();
16519}
16520
16521static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
16522                                        const X86TargetLowering *XTLI) {
16523  SDValue Op0 = N->getOperand(0);
16524  EVT InVT = Op0->getValueType(0);
16525
16526  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
16527  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16528    DebugLoc dl = N->getDebugLoc();
16529    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16530    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
16531    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16532  }
16533
16534  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
16535  // a 32-bit target where SSE doesn't support i64->FP operations.
16536  if (Op0.getOpcode() == ISD::LOAD) {
16537    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
16538    EVT VT = Ld->getValueType(0);
16539    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
16540        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
16541        !XTLI->getSubtarget()->is64Bit() &&
16542        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
16543      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
16544                                          Ld->getChain(), Op0, DAG);
16545      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
16546      return FILDChain;
16547    }
16548  }
16549  return SDValue();
16550}
16551
16552// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
16553static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
16554                                 X86TargetLowering::DAGCombinerInfo &DCI) {
16555  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
16556  // the result is either zero or one (depending on the input carry bit).
16557  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
16558  if (X86::isZeroNode(N->getOperand(0)) &&
16559      X86::isZeroNode(N->getOperand(1)) &&
16560      // We don't have a good way to replace an EFLAGS use, so only do this when
16561      // dead right now.
16562      SDValue(N, 1).use_empty()) {
16563    DebugLoc DL = N->getDebugLoc();
16564    EVT VT = N->getValueType(0);
16565    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
16566    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
16567                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
16568                                           DAG.getConstant(X86::COND_B,MVT::i8),
16569                                           N->getOperand(2)),
16570                               DAG.getConstant(1, VT));
16571    return DCI.CombineTo(N, Res1, CarryOut);
16572  }
16573
16574  return SDValue();
16575}
16576
16577// fold (add Y, (sete  X, 0)) -> adc  0, Y
16578//      (add Y, (setne X, 0)) -> sbb -1, Y
16579//      (sub (sete  X, 0), Y) -> sbb  0, Y
16580//      (sub (setne X, 0), Y) -> adc -1, Y
16581static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
16582  DebugLoc DL = N->getDebugLoc();
16583
16584  // Look through ZExts.
16585  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
16586  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
16587    return SDValue();
16588
16589  SDValue SetCC = Ext.getOperand(0);
16590  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
16591    return SDValue();
16592
16593  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
16594  if (CC != X86::COND_E && CC != X86::COND_NE)
16595    return SDValue();
16596
16597  SDValue Cmp = SetCC.getOperand(1);
16598  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
16599      !X86::isZeroNode(Cmp.getOperand(1)) ||
16600      !Cmp.getOperand(0).getValueType().isInteger())
16601    return SDValue();
16602
16603  SDValue CmpOp0 = Cmp.getOperand(0);
16604  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
16605                               DAG.getConstant(1, CmpOp0.getValueType()));
16606
16607  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
16608  if (CC == X86::COND_NE)
16609    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
16610                       DL, OtherVal.getValueType(), OtherVal,
16611                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
16612  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
16613                     DL, OtherVal.getValueType(), OtherVal,
16614                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
16615}
16616
16617/// PerformADDCombine - Do target-specific dag combines on integer adds.
16618static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
16619                                 const X86Subtarget *Subtarget) {
16620  EVT VT = N->getValueType(0);
16621  SDValue Op0 = N->getOperand(0);
16622  SDValue Op1 = N->getOperand(1);
16623
16624  // Try to synthesize horizontal adds from adds of shuffles.
16625  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16626       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16627      isHorizontalBinOp(Op0, Op1, true))
16628    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
16629
16630  return OptimizeConditionalInDecrement(N, DAG);
16631}
16632
16633static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
16634                                 const X86Subtarget *Subtarget) {
16635  SDValue Op0 = N->getOperand(0);
16636  SDValue Op1 = N->getOperand(1);
16637
16638  // X86 can't encode an immediate LHS of a sub. See if we can push the
16639  // negation into a preceding instruction.
16640  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
16641    // If the RHS of the sub is a XOR with one use and a constant, invert the
16642    // immediate. Then add one to the LHS of the sub so we can turn
16643    // X-Y -> X+~Y+1, saving one register.
16644    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
16645        isa<ConstantSDNode>(Op1.getOperand(1))) {
16646      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
16647      EVT VT = Op0.getValueType();
16648      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
16649                                   Op1.getOperand(0),
16650                                   DAG.getConstant(~XorC, VT));
16651      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
16652                         DAG.getConstant(C->getAPIntValue()+1, VT));
16653    }
16654  }
16655
16656  // Try to synthesize horizontal adds from adds of shuffles.
16657  EVT VT = N->getValueType(0);
16658  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16659       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16660      isHorizontalBinOp(Op0, Op1, true))
16661    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
16662
16663  return OptimizeConditionalInDecrement(N, DAG);
16664}
16665
16666/// performVZEXTCombine - Performs build vector combines
16667static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
16668                                        TargetLowering::DAGCombinerInfo &DCI,
16669                                        const X86Subtarget *Subtarget) {
16670  // (vzext (bitcast (vzext (x)) -> (vzext x)
16671  SDValue In = N->getOperand(0);
16672  while (In.getOpcode() == ISD::BITCAST)
16673    In = In.getOperand(0);
16674
16675  if (In.getOpcode() != X86ISD::VZEXT)
16676    return SDValue();
16677
16678  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), In.getOperand(0));
16679}
16680
16681SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
16682                                             DAGCombinerInfo &DCI) const {
16683  SelectionDAG &DAG = DCI.DAG;
16684  switch (N->getOpcode()) {
16685  default: break;
16686  case ISD::EXTRACT_VECTOR_ELT:
16687    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
16688  case ISD::VSELECT:
16689  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
16690  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
16691  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
16692  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
16693  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
16694  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
16695  case ISD::SHL:
16696  case ISD::SRA:
16697  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
16698  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
16699  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
16700  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
16701  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
16702  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
16703  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
16704  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
16705  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
16706  case X86ISD::FXOR:
16707  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
16708  case X86ISD::FMIN:
16709  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
16710  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
16711  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
16712  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16713  case ISD::ANY_EXTEND:
16714  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16715  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16716  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
16717  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16718  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16719  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16720  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
16721  case X86ISD::SHUFP:       // Handle all target specific shuffles
16722  case X86ISD::PALIGN:
16723  case X86ISD::UNPCKH:
16724  case X86ISD::UNPCKL:
16725  case X86ISD::MOVHLPS:
16726  case X86ISD::MOVLHPS:
16727  case X86ISD::PSHUFD:
16728  case X86ISD::PSHUFHW:
16729  case X86ISD::PSHUFLW:
16730  case X86ISD::MOVSS:
16731  case X86ISD::MOVSD:
16732  case X86ISD::VPERMILP:
16733  case X86ISD::VPERM2X128:
16734  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16735  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16736  }
16737
16738  return SDValue();
16739}
16740
16741/// isTypeDesirableForOp - Return true if the target has native support for
16742/// the specified value type and it is 'desirable' to use the type for the
16743/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16744/// instruction encodings are longer and some i16 instructions are slow.
16745bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16746  if (!isTypeLegal(VT))
16747    return false;
16748  if (VT != MVT::i16)
16749    return true;
16750
16751  switch (Opc) {
16752  default:
16753    return true;
16754  case ISD::LOAD:
16755  case ISD::SIGN_EXTEND:
16756  case ISD::ZERO_EXTEND:
16757  case ISD::ANY_EXTEND:
16758  case ISD::SHL:
16759  case ISD::SRL:
16760  case ISD::SUB:
16761  case ISD::ADD:
16762  case ISD::MUL:
16763  case ISD::AND:
16764  case ISD::OR:
16765  case ISD::XOR:
16766    return false;
16767  }
16768}
16769
16770/// IsDesirableToPromoteOp - This method query the target whether it is
16771/// beneficial for dag combiner to promote the specified node. If true, it
16772/// should return the desired promotion type by reference.
16773bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16774  EVT VT = Op.getValueType();
16775  if (VT != MVT::i16)
16776    return false;
16777
16778  bool Promote = false;
16779  bool Commute = false;
16780  switch (Op.getOpcode()) {
16781  default: break;
16782  case ISD::LOAD: {
16783    LoadSDNode *LD = cast<LoadSDNode>(Op);
16784    // If the non-extending load has a single use and it's not live out, then it
16785    // might be folded.
16786    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16787                                                     Op.hasOneUse()*/) {
16788      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16789             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16790        // The only case where we'd want to promote LOAD (rather then it being
16791        // promoted as an operand is when it's only use is liveout.
16792        if (UI->getOpcode() != ISD::CopyToReg)
16793          return false;
16794      }
16795    }
16796    Promote = true;
16797    break;
16798  }
16799  case ISD::SIGN_EXTEND:
16800  case ISD::ZERO_EXTEND:
16801  case ISD::ANY_EXTEND:
16802    Promote = true;
16803    break;
16804  case ISD::SHL:
16805  case ISD::SRL: {
16806    SDValue N0 = Op.getOperand(0);
16807    // Look out for (store (shl (load), x)).
16808    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16809      return false;
16810    Promote = true;
16811    break;
16812  }
16813  case ISD::ADD:
16814  case ISD::MUL:
16815  case ISD::AND:
16816  case ISD::OR:
16817  case ISD::XOR:
16818    Commute = true;
16819    // fallthrough
16820  case ISD::SUB: {
16821    SDValue N0 = Op.getOperand(0);
16822    SDValue N1 = Op.getOperand(1);
16823    if (!Commute && MayFoldLoad(N1))
16824      return false;
16825    // Avoid disabling potential load folding opportunities.
16826    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16827      return false;
16828    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16829      return false;
16830    Promote = true;
16831  }
16832  }
16833
16834  PVT = MVT::i32;
16835  return Promote;
16836}
16837
16838//===----------------------------------------------------------------------===//
16839//                           X86 Inline Assembly Support
16840//===----------------------------------------------------------------------===//
16841
16842namespace {
16843  // Helper to match a string separated by whitespace.
16844  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
16845    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
16846
16847    for (unsigned i = 0, e = args.size(); i != e; ++i) {
16848      StringRef piece(*args[i]);
16849      if (!s.startswith(piece)) // Check if the piece matches.
16850        return false;
16851
16852      s = s.substr(piece.size());
16853      StringRef::size_type pos = s.find_first_not_of(" \t");
16854      if (pos == 0) // We matched a prefix.
16855        return false;
16856
16857      s = s.substr(pos);
16858    }
16859
16860    return s.empty();
16861  }
16862  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
16863}
16864
16865bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
16866  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
16867
16868  std::string AsmStr = IA->getAsmString();
16869
16870  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
16871  if (!Ty || Ty->getBitWidth() % 16 != 0)
16872    return false;
16873
16874  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
16875  SmallVector<StringRef, 4> AsmPieces;
16876  SplitString(AsmStr, AsmPieces, ";\n");
16877
16878  switch (AsmPieces.size()) {
16879  default: return false;
16880  case 1:
16881    // FIXME: this should verify that we are targeting a 486 or better.  If not,
16882    // we will turn this bswap into something that will be lowered to logical
16883    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
16884    // lower so don't worry about this.
16885    // bswap $0
16886    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
16887        matchAsm(AsmPieces[0], "bswapl", "$0") ||
16888        matchAsm(AsmPieces[0], "bswapq", "$0") ||
16889        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
16890        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
16891        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
16892      // No need to check constraints, nothing other than the equivalent of
16893      // "=r,0" would be valid here.
16894      return IntrinsicLowering::LowerToByteSwap(CI);
16895    }
16896
16897    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
16898    if (CI->getType()->isIntegerTy(16) &&
16899        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16900        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
16901         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
16902      AsmPieces.clear();
16903      const std::string &ConstraintsStr = IA->getConstraintString();
16904      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16905      std::sort(AsmPieces.begin(), AsmPieces.end());
16906      if (AsmPieces.size() == 4 &&
16907          AsmPieces[0] == "~{cc}" &&
16908          AsmPieces[1] == "~{dirflag}" &&
16909          AsmPieces[2] == "~{flags}" &&
16910          AsmPieces[3] == "~{fpsr}")
16911      return IntrinsicLowering::LowerToByteSwap(CI);
16912    }
16913    break;
16914  case 3:
16915    if (CI->getType()->isIntegerTy(32) &&
16916        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16917        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
16918        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
16919        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
16920      AsmPieces.clear();
16921      const std::string &ConstraintsStr = IA->getConstraintString();
16922      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16923      std::sort(AsmPieces.begin(), AsmPieces.end());
16924      if (AsmPieces.size() == 4 &&
16925          AsmPieces[0] == "~{cc}" &&
16926          AsmPieces[1] == "~{dirflag}" &&
16927          AsmPieces[2] == "~{flags}" &&
16928          AsmPieces[3] == "~{fpsr}")
16929        return IntrinsicLowering::LowerToByteSwap(CI);
16930    }
16931
16932    if (CI->getType()->isIntegerTy(64)) {
16933      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
16934      if (Constraints.size() >= 2 &&
16935          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
16936          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
16937        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
16938        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
16939            matchAsm(AsmPieces[1], "bswap", "%edx") &&
16940            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
16941          return IntrinsicLowering::LowerToByteSwap(CI);
16942      }
16943    }
16944    break;
16945  }
16946  return false;
16947}
16948
16949
16950
16951/// getConstraintType - Given a constraint letter, return the type of
16952/// constraint it is for this target.
16953X86TargetLowering::ConstraintType
16954X86TargetLowering::getConstraintType(const std::string &Constraint) const {
16955  if (Constraint.size() == 1) {
16956    switch (Constraint[0]) {
16957    case 'R':
16958    case 'q':
16959    case 'Q':
16960    case 'f':
16961    case 't':
16962    case 'u':
16963    case 'y':
16964    case 'x':
16965    case 'Y':
16966    case 'l':
16967      return C_RegisterClass;
16968    case 'a':
16969    case 'b':
16970    case 'c':
16971    case 'd':
16972    case 'S':
16973    case 'D':
16974    case 'A':
16975      return C_Register;
16976    case 'I':
16977    case 'J':
16978    case 'K':
16979    case 'L':
16980    case 'M':
16981    case 'N':
16982    case 'G':
16983    case 'C':
16984    case 'e':
16985    case 'Z':
16986      return C_Other;
16987    default:
16988      break;
16989    }
16990  }
16991  return TargetLowering::getConstraintType(Constraint);
16992}
16993
16994/// Examine constraint type and operand type and determine a weight value.
16995/// This object must already have been set up with the operand type
16996/// and the current alternative constraint selected.
16997TargetLowering::ConstraintWeight
16998  X86TargetLowering::getSingleConstraintMatchWeight(
16999    AsmOperandInfo &info, const char *constraint) const {
17000  ConstraintWeight weight = CW_Invalid;
17001  Value *CallOperandVal = info.CallOperandVal;
17002    // If we don't have a value, we can't do a match,
17003    // but allow it at the lowest weight.
17004  if (CallOperandVal == NULL)
17005    return CW_Default;
17006  Type *type = CallOperandVal->getType();
17007  // Look at the constraint type.
17008  switch (*constraint) {
17009  default:
17010    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17011  case 'R':
17012  case 'q':
17013  case 'Q':
17014  case 'a':
17015  case 'b':
17016  case 'c':
17017  case 'd':
17018  case 'S':
17019  case 'D':
17020  case 'A':
17021    if (CallOperandVal->getType()->isIntegerTy())
17022      weight = CW_SpecificReg;
17023    break;
17024  case 'f':
17025  case 't':
17026  case 'u':
17027      if (type->isFloatingPointTy())
17028        weight = CW_SpecificReg;
17029      break;
17030  case 'y':
17031      if (type->isX86_MMXTy() && Subtarget->hasMMX())
17032        weight = CW_SpecificReg;
17033      break;
17034  case 'x':
17035  case 'Y':
17036    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
17037        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
17038      weight = CW_Register;
17039    break;
17040  case 'I':
17041    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
17042      if (C->getZExtValue() <= 31)
17043        weight = CW_Constant;
17044    }
17045    break;
17046  case 'J':
17047    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17048      if (C->getZExtValue() <= 63)
17049        weight = CW_Constant;
17050    }
17051    break;
17052  case 'K':
17053    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17054      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
17055        weight = CW_Constant;
17056    }
17057    break;
17058  case 'L':
17059    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17060      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
17061        weight = CW_Constant;
17062    }
17063    break;
17064  case 'M':
17065    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17066      if (C->getZExtValue() <= 3)
17067        weight = CW_Constant;
17068    }
17069    break;
17070  case 'N':
17071    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17072      if (C->getZExtValue() <= 0xff)
17073        weight = CW_Constant;
17074    }
17075    break;
17076  case 'G':
17077  case 'C':
17078    if (dyn_cast<ConstantFP>(CallOperandVal)) {
17079      weight = CW_Constant;
17080    }
17081    break;
17082  case 'e':
17083    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17084      if ((C->getSExtValue() >= -0x80000000LL) &&
17085          (C->getSExtValue() <= 0x7fffffffLL))
17086        weight = CW_Constant;
17087    }
17088    break;
17089  case 'Z':
17090    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17091      if (C->getZExtValue() <= 0xffffffff)
17092        weight = CW_Constant;
17093    }
17094    break;
17095  }
17096  return weight;
17097}
17098
17099/// LowerXConstraint - try to replace an X constraint, which matches anything,
17100/// with another that has more specific requirements based on the type of the
17101/// corresponding operand.
17102const char *X86TargetLowering::
17103LowerXConstraint(EVT ConstraintVT) const {
17104  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
17105  // 'f' like normal targets.
17106  if (ConstraintVT.isFloatingPoint()) {
17107    if (Subtarget->hasSSE2())
17108      return "Y";
17109    if (Subtarget->hasSSE1())
17110      return "x";
17111  }
17112
17113  return TargetLowering::LowerXConstraint(ConstraintVT);
17114}
17115
17116/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
17117/// vector.  If it is invalid, don't add anything to Ops.
17118void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
17119                                                     std::string &Constraint,
17120                                                     std::vector<SDValue>&Ops,
17121                                                     SelectionDAG &DAG) const {
17122  SDValue Result(0, 0);
17123
17124  // Only support length 1 constraints for now.
17125  if (Constraint.length() > 1) return;
17126
17127  char ConstraintLetter = Constraint[0];
17128  switch (ConstraintLetter) {
17129  default: break;
17130  case 'I':
17131    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17132      if (C->getZExtValue() <= 31) {
17133        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17134        break;
17135      }
17136    }
17137    return;
17138  case 'J':
17139    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17140      if (C->getZExtValue() <= 63) {
17141        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17142        break;
17143      }
17144    }
17145    return;
17146  case 'K':
17147    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17148      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
17149        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17150        break;
17151      }
17152    }
17153    return;
17154  case 'N':
17155    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17156      if (C->getZExtValue() <= 255) {
17157        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17158        break;
17159      }
17160    }
17161    return;
17162  case 'e': {
17163    // 32-bit signed value
17164    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17165      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17166                                           C->getSExtValue())) {
17167        // Widen to 64 bits here to get it sign extended.
17168        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
17169        break;
17170      }
17171    // FIXME gcc accepts some relocatable values here too, but only in certain
17172    // memory models; it's complicated.
17173    }
17174    return;
17175  }
17176  case 'Z': {
17177    // 32-bit unsigned value
17178    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17179      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17180                                           C->getZExtValue())) {
17181        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17182        break;
17183      }
17184    }
17185    // FIXME gcc accepts some relocatable values here too, but only in certain
17186    // memory models; it's complicated.
17187    return;
17188  }
17189  case 'i': {
17190    // Literal immediates are always ok.
17191    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
17192      // Widen to 64 bits here to get it sign extended.
17193      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
17194      break;
17195    }
17196
17197    // In any sort of PIC mode addresses need to be computed at runtime by
17198    // adding in a register or some sort of table lookup.  These can't
17199    // be used as immediates.
17200    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
17201      return;
17202
17203    // If we are in non-pic codegen mode, we allow the address of a global (with
17204    // an optional displacement) to be used with 'i'.
17205    GlobalAddressSDNode *GA = 0;
17206    int64_t Offset = 0;
17207
17208    // Match either (GA), (GA+C), (GA+C1+C2), etc.
17209    while (1) {
17210      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
17211        Offset += GA->getOffset();
17212        break;
17213      } else if (Op.getOpcode() == ISD::ADD) {
17214        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17215          Offset += C->getZExtValue();
17216          Op = Op.getOperand(0);
17217          continue;
17218        }
17219      } else if (Op.getOpcode() == ISD::SUB) {
17220        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17221          Offset += -C->getZExtValue();
17222          Op = Op.getOperand(0);
17223          continue;
17224        }
17225      }
17226
17227      // Otherwise, this isn't something we can handle, reject it.
17228      return;
17229    }
17230
17231    const GlobalValue *GV = GA->getGlobal();
17232    // If we require an extra load to get this address, as in PIC mode, we
17233    // can't accept it.
17234    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
17235                                                        getTargetMachine())))
17236      return;
17237
17238    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
17239                                        GA->getValueType(0), Offset);
17240    break;
17241  }
17242  }
17243
17244  if (Result.getNode()) {
17245    Ops.push_back(Result);
17246    return;
17247  }
17248  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
17249}
17250
17251std::pair<unsigned, const TargetRegisterClass*>
17252X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
17253                                                EVT VT) const {
17254  // First, see if this is a constraint that directly corresponds to an LLVM
17255  // register class.
17256  if (Constraint.size() == 1) {
17257    // GCC Constraint Letters
17258    switch (Constraint[0]) {
17259    default: break;
17260      // TODO: Slight differences here in allocation order and leaving
17261      // RIP in the class. Do they matter any more here than they do
17262      // in the normal allocation?
17263    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
17264      if (Subtarget->is64Bit()) {
17265        if (VT == MVT::i32 || VT == MVT::f32)
17266          return std::make_pair(0U, &X86::GR32RegClass);
17267        if (VT == MVT::i16)
17268          return std::make_pair(0U, &X86::GR16RegClass);
17269        if (VT == MVT::i8 || VT == MVT::i1)
17270          return std::make_pair(0U, &X86::GR8RegClass);
17271        if (VT == MVT::i64 || VT == MVT::f64)
17272          return std::make_pair(0U, &X86::GR64RegClass);
17273        break;
17274      }
17275      // 32-bit fallthrough
17276    case 'Q':   // Q_REGS
17277      if (VT == MVT::i32 || VT == MVT::f32)
17278        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
17279      if (VT == MVT::i16)
17280        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
17281      if (VT == MVT::i8 || VT == MVT::i1)
17282        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
17283      if (VT == MVT::i64)
17284        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
17285      break;
17286    case 'r':   // GENERAL_REGS
17287    case 'l':   // INDEX_REGS
17288      if (VT == MVT::i8 || VT == MVT::i1)
17289        return std::make_pair(0U, &X86::GR8RegClass);
17290      if (VT == MVT::i16)
17291        return std::make_pair(0U, &X86::GR16RegClass);
17292      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
17293        return std::make_pair(0U, &X86::GR32RegClass);
17294      return std::make_pair(0U, &X86::GR64RegClass);
17295    case 'R':   // LEGACY_REGS
17296      if (VT == MVT::i8 || VT == MVT::i1)
17297        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
17298      if (VT == MVT::i16)
17299        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
17300      if (VT == MVT::i32 || !Subtarget->is64Bit())
17301        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
17302      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
17303    case 'f':  // FP Stack registers.
17304      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
17305      // value to the correct fpstack register class.
17306      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
17307        return std::make_pair(0U, &X86::RFP32RegClass);
17308      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
17309        return std::make_pair(0U, &X86::RFP64RegClass);
17310      return std::make_pair(0U, &X86::RFP80RegClass);
17311    case 'y':   // MMX_REGS if MMX allowed.
17312      if (!Subtarget->hasMMX()) break;
17313      return std::make_pair(0U, &X86::VR64RegClass);
17314    case 'Y':   // SSE_REGS if SSE2 allowed
17315      if (!Subtarget->hasSSE2()) break;
17316      // FALL THROUGH.
17317    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
17318      if (!Subtarget->hasSSE1()) break;
17319
17320      switch (VT.getSimpleVT().SimpleTy) {
17321      default: break;
17322      // Scalar SSE types.
17323      case MVT::f32:
17324      case MVT::i32:
17325        return std::make_pair(0U, &X86::FR32RegClass);
17326      case MVT::f64:
17327      case MVT::i64:
17328        return std::make_pair(0U, &X86::FR64RegClass);
17329      // Vector types.
17330      case MVT::v16i8:
17331      case MVT::v8i16:
17332      case MVT::v4i32:
17333      case MVT::v2i64:
17334      case MVT::v4f32:
17335      case MVT::v2f64:
17336        return std::make_pair(0U, &X86::VR128RegClass);
17337      // AVX types.
17338      case MVT::v32i8:
17339      case MVT::v16i16:
17340      case MVT::v8i32:
17341      case MVT::v4i64:
17342      case MVT::v8f32:
17343      case MVT::v4f64:
17344        return std::make_pair(0U, &X86::VR256RegClass);
17345      }
17346      break;
17347    }
17348  }
17349
17350  // Use the default implementation in TargetLowering to convert the register
17351  // constraint into a member of a register class.
17352  std::pair<unsigned, const TargetRegisterClass*> Res;
17353  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
17354
17355  // Not found as a standard register?
17356  if (Res.second == 0) {
17357    // Map st(0) -> st(7) -> ST0
17358    if (Constraint.size() == 7 && Constraint[0] == '{' &&
17359        tolower(Constraint[1]) == 's' &&
17360        tolower(Constraint[2]) == 't' &&
17361        Constraint[3] == '(' &&
17362        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
17363        Constraint[5] == ')' &&
17364        Constraint[6] == '}') {
17365
17366      Res.first = X86::ST0+Constraint[4]-'0';
17367      Res.second = &X86::RFP80RegClass;
17368      return Res;
17369    }
17370
17371    // GCC allows "st(0)" to be called just plain "st".
17372    if (StringRef("{st}").equals_lower(Constraint)) {
17373      Res.first = X86::ST0;
17374      Res.second = &X86::RFP80RegClass;
17375      return Res;
17376    }
17377
17378    // flags -> EFLAGS
17379    if (StringRef("{flags}").equals_lower(Constraint)) {
17380      Res.first = X86::EFLAGS;
17381      Res.second = &X86::CCRRegClass;
17382      return Res;
17383    }
17384
17385    // 'A' means EAX + EDX.
17386    if (Constraint == "A") {
17387      Res.first = X86::EAX;
17388      Res.second = &X86::GR32_ADRegClass;
17389      return Res;
17390    }
17391    return Res;
17392  }
17393
17394  // Otherwise, check to see if this is a register class of the wrong value
17395  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
17396  // turn into {ax},{dx}.
17397  if (Res.second->hasType(VT))
17398    return Res;   // Correct type already, nothing to do.
17399
17400  // All of the single-register GCC register classes map their values onto
17401  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
17402  // really want an 8-bit or 32-bit register, map to the appropriate register
17403  // class and return the appropriate register.
17404  if (Res.second == &X86::GR16RegClass) {
17405    if (VT == MVT::i8) {
17406      unsigned DestReg = 0;
17407      switch (Res.first) {
17408      default: break;
17409      case X86::AX: DestReg = X86::AL; break;
17410      case X86::DX: DestReg = X86::DL; break;
17411      case X86::CX: DestReg = X86::CL; break;
17412      case X86::BX: DestReg = X86::BL; break;
17413      }
17414      if (DestReg) {
17415        Res.first = DestReg;
17416        Res.second = &X86::GR8RegClass;
17417      }
17418    } else if (VT == MVT::i32) {
17419      unsigned DestReg = 0;
17420      switch (Res.first) {
17421      default: break;
17422      case X86::AX: DestReg = X86::EAX; break;
17423      case X86::DX: DestReg = X86::EDX; break;
17424      case X86::CX: DestReg = X86::ECX; break;
17425      case X86::BX: DestReg = X86::EBX; break;
17426      case X86::SI: DestReg = X86::ESI; break;
17427      case X86::DI: DestReg = X86::EDI; break;
17428      case X86::BP: DestReg = X86::EBP; break;
17429      case X86::SP: DestReg = X86::ESP; break;
17430      }
17431      if (DestReg) {
17432        Res.first = DestReg;
17433        Res.second = &X86::GR32RegClass;
17434      }
17435    } else if (VT == MVT::i64) {
17436      unsigned DestReg = 0;
17437      switch (Res.first) {
17438      default: break;
17439      case X86::AX: DestReg = X86::RAX; break;
17440      case X86::DX: DestReg = X86::RDX; break;
17441      case X86::CX: DestReg = X86::RCX; break;
17442      case X86::BX: DestReg = X86::RBX; break;
17443      case X86::SI: DestReg = X86::RSI; break;
17444      case X86::DI: DestReg = X86::RDI; break;
17445      case X86::BP: DestReg = X86::RBP; break;
17446      case X86::SP: DestReg = X86::RSP; break;
17447      }
17448      if (DestReg) {
17449        Res.first = DestReg;
17450        Res.second = &X86::GR64RegClass;
17451      }
17452    }
17453  } else if (Res.second == &X86::FR32RegClass ||
17454             Res.second == &X86::FR64RegClass ||
17455             Res.second == &X86::VR128RegClass) {
17456    // Handle references to XMM physical registers that got mapped into the
17457    // wrong class.  This can happen with constraints like {xmm0} where the
17458    // target independent register mapper will just pick the first match it can
17459    // find, ignoring the required type.
17460
17461    if (VT == MVT::f32 || VT == MVT::i32)
17462      Res.second = &X86::FR32RegClass;
17463    else if (VT == MVT::f64 || VT == MVT::i64)
17464      Res.second = &X86::FR64RegClass;
17465    else if (X86::VR128RegClass.hasType(VT))
17466      Res.second = &X86::VR128RegClass;
17467    else if (X86::VR256RegClass.hasType(VT))
17468      Res.second = &X86::VR256RegClass;
17469  }
17470
17471  return Res;
17472}
17473