X86ISelLowering.cpp revision 99faa3b4ec6d03ac7808fe4ff3fbf3d04e375502
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Function.h"
37#include "llvm/GlobalAlias.h"
38#include "llvm/GlobalVariable.h"
39#include "llvm/Instructions.h"
40#include "llvm/Intrinsics.h"
41#include "llvm/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161
162  RegInfo = TM.getRegisterInfo();
163  TD = getDataLayout();
164
165  // Set up the TargetLowering object.
166  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
167
168  // X86 is weird, it always uses i8 for shift amounts and setcc results.
169  setBooleanContents(ZeroOrOneBooleanContent);
170  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
171  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
172
173  // For 64-bit since we have so many registers use the ILP scheduler, for
174  // 32-bit code use the register pressure specific scheduling.
175  // For Atom, always use ILP scheduling.
176  if (Subtarget->isAtom())
177    setSchedulingPreference(Sched::ILP);
178  else if (Subtarget->is64Bit())
179    setSchedulingPreference(Sched::ILP);
180  else
181    setSchedulingPreference(Sched::RegPressure);
182  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
183
184  // Bypass i32 with i8 on Atom when compiling with O2
185  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
186    addBypassSlowDiv(32, 8);
187
188  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
189    // Setup Windows compiler runtime calls.
190    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
191    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
192    setLibcallName(RTLIB::SREM_I64, "_allrem");
193    setLibcallName(RTLIB::UREM_I64, "_aullrem");
194    setLibcallName(RTLIB::MUL_I64, "_allmul");
195    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
196    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
200
201    // The _ftol2 runtime function has an unusual calling conv, which
202    // is modeled by a special pseudo-instruction.
203    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
204    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
206    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
207  }
208
209  if (Subtarget->isTargetDarwin()) {
210    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
211    setUseUnderscoreSetJmp(false);
212    setUseUnderscoreLongJmp(false);
213  } else if (Subtarget->isTargetMingw()) {
214    // MS runtime is weird: it exports _setjmp, but longjmp!
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(false);
217  } else {
218    setUseUnderscoreSetJmp(true);
219    setUseUnderscoreLongJmp(true);
220  }
221
222  // Set up the register classes.
223  addRegisterClass(MVT::i8, &X86::GR8RegClass);
224  addRegisterClass(MVT::i16, &X86::GR16RegClass);
225  addRegisterClass(MVT::i32, &X86::GR32RegClass);
226  if (Subtarget->is64Bit())
227    addRegisterClass(MVT::i64, &X86::GR64RegClass);
228
229  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
230
231  // We don't accept any truncstore of integer registers.
232  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
233  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
235  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
236  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
237  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
238
239  // SETOEQ and SETUNE require checking two conditions.
240  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
243  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
246
247  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
248  // operation.
249  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
252
253  if (Subtarget->is64Bit()) {
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256  } else if (!TM.Options.UseSoftFloat) {
257    // We have an algorithm for SSE2->double, and we turn this into a
258    // 64-bit FILD followed by conditional FADD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
260    // We have an algorithm for SSE2, and we turn this into a 64-bit
261    // FILD for other targets.
262    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
263  }
264
265  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
266  // this operation.
267  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
269
270  if (!TM.Options.UseSoftFloat) {
271    // SSE has no i16 to fp conversion, only i32
272    if (X86ScalarSSEf32) {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
274      // f32 and f64 cases are Legal, f80 case is not
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    } else {
277      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
279    }
280  } else {
281    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
283  }
284
285  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
286  // are Legal, f80 is custom lowered.
287  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
288  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
289
290  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
291  // this operation.
292  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
294
295  if (X86ScalarSSEf32) {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
297    // f32 and f64 cases are Legal, f80 case is not
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  } else {
300    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
302  }
303
304  // Handle FP_TO_UINT by promoting the destination to a larger signed
305  // conversion.
306  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
309
310  if (Subtarget->is64Bit()) {
311    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
313  } else if (!TM.Options.UseSoftFloat) {
314    // Since AVX is a superset of SSE3, only check for SSE here.
315    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  if (isTargetFTOL()) {
327    // Use the _ftol2 runtime function, which has a pseudo-instruction
328    // to handle its weird calling convention.
329    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
330  }
331
332  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
333  if (!X86ScalarSSEf64) {
334    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
335    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
336    if (Subtarget->is64Bit()) {
337      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
338      // Without SSE, i64->f64 goes through memory.
339      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
340    }
341  }
342
343  // Scalar integer divide and remainder are lowered to use operations that
344  // produce two results, to match the available instructions. This exposes
345  // the two-result form to trivial CSE, which is able to combine x/y and x%y
346  // into a single instruction.
347  //
348  // Scalar integer multiply-high is also lowered to use two-result
349  // operations, to match the available instructions. However, plain multiply
350  // (low) operations are left as Legal, as there are single-result
351  // instructions for this in x86. Using the two-result multiply instructions
352  // when both high and low results are needed must be arranged by dagcombine.
353  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
354    MVT VT = IntVTs[i];
355    setOperationAction(ISD::MULHS, VT, Expand);
356    setOperationAction(ISD::MULHU, VT, Expand);
357    setOperationAction(ISD::SDIV, VT, Expand);
358    setOperationAction(ISD::UDIV, VT, Expand);
359    setOperationAction(ISD::SREM, VT, Expand);
360    setOperationAction(ISD::UREM, VT, Expand);
361
362    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
363    setOperationAction(ISD::ADDC, VT, Custom);
364    setOperationAction(ISD::ADDE, VT, Custom);
365    setOperationAction(ISD::SUBC, VT, Custom);
366    setOperationAction(ISD::SUBE, VT, Custom);
367  }
368
369  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
370  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
371  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
372  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
373  if (Subtarget->is64Bit())
374    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
375  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
378  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
379  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
382  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
383
384  // Promote the i8 variants and force them on up to i32 which has a shorter
385  // encoding.
386  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
387  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
388  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
389  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
390  if (Subtarget->hasBMI()) {
391    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
395  } else {
396    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
397    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
398    if (Subtarget->is64Bit())
399      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
400  }
401
402  if (Subtarget->hasLZCNT()) {
403    // When promoting the i8 variants, force them to i32 for a shorter
404    // encoding.
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
406    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
408    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
411    if (Subtarget->is64Bit())
412      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
413  } else {
414    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
417    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
420    if (Subtarget->is64Bit()) {
421      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
422      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
423    }
424  }
425
426  if (Subtarget->hasPOPCNT()) {
427    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
428  } else {
429    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
430    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
432    if (Subtarget->is64Bit())
433      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
434  }
435
436  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
437  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
438
439  // These should be promoted to a larger select which is supported.
440  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
441  // X86 wants to expand cmov itself.
442  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
443  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
454  if (Subtarget->is64Bit()) {
455    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
456    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
457  }
458  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
459  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
460  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
461  // support continuation, user-level threading, and etc.. As a result, no
462  // other SjLj exception interfaces are implemented and please don't build
463  // your own exception handling based on them.
464  // LLVM/Clang supports zero-cost DWARF exception handling.
465  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
466  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
467
468  // Darwin ABI issue.
469  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
470  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
471  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
472  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
473  if (Subtarget->is64Bit())
474    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
475  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
476  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
479    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
480    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
481    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
482    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
483  }
484  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
485  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
486  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
487  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
488  if (Subtarget->is64Bit()) {
489    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
490    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
491    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
492  }
493
494  if (Subtarget->hasSSE1())
495    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
496
497  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
498  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
499
500  // On X86 and X86-64, atomic operations are lowered to locked instructions.
501  // Locked instructions, in turn, have implicit fence semantics (all memory
502  // operations are flushed before issuing the locked instruction, and they
503  // are not buffered), so we can fold away the common pattern of
504  // fence-atomic-fence.
505  setShouldFoldAtomicFences(true);
506
507  // Expand certain atomics
508  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
509    MVT VT = IntVTs[i];
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
512    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
513  }
514
515  if (!Subtarget->is64Bit()) {
516    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
517    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
521    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
522    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
523    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
524    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
526    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
527    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
528  }
529
530  if (Subtarget->hasCmpxchg16b()) {
531    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
532  }
533
534  // FIXME - use subtarget debug flags
535  if (!Subtarget->isTargetDarwin() &&
536      !Subtarget->isTargetELF() &&
537      !Subtarget->isTargetCygMing()) {
538    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
539  }
540
541  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
542  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
543  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
544  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
545  if (Subtarget->is64Bit()) {
546    setExceptionPointerRegister(X86::RAX);
547    setExceptionSelectorRegister(X86::RDX);
548  } else {
549    setExceptionPointerRegister(X86::EAX);
550    setExceptionSelectorRegister(X86::EDX);
551  }
552  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
553  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
554
555  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
556  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
557
558  setOperationAction(ISD::TRAP, MVT::Other, Legal);
559  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
560
561  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
562  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
563  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
564  if (Subtarget->is64Bit()) {
565    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
566    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
567  } else {
568    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
569    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
570  }
571
572  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
573  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
574
575  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
576    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
577                       MVT::i64 : MVT::i32, Custom);
578  else if (TM.Options.EnableSegmentedStacks)
579    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
580                       MVT::i64 : MVT::i32, Custom);
581  else
582    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
583                       MVT::i64 : MVT::i32, Expand);
584
585  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
586    // f32 and f64 use SSE.
587    // Set up the FP register classes.
588    addRegisterClass(MVT::f32, &X86::FR32RegClass);
589    addRegisterClass(MVT::f64, &X86::FR64RegClass);
590
591    // Use ANDPD to simulate FABS.
592    setOperationAction(ISD::FABS , MVT::f64, Custom);
593    setOperationAction(ISD::FABS , MVT::f32, Custom);
594
595    // Use XORP to simulate FNEG.
596    setOperationAction(ISD::FNEG , MVT::f64, Custom);
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    // Use ANDPD and ORPD to simulate FCOPYSIGN.
600    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
601    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
602
603    // Lower this to FGETSIGNx86 plus an AND.
604    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
605    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
606
607    // We don't support sin/cos/fmod
608    setOperationAction(ISD::FSIN , MVT::f64, Expand);
609    setOperationAction(ISD::FCOS , MVT::f64, Expand);
610    setOperationAction(ISD::FSIN , MVT::f32, Expand);
611    setOperationAction(ISD::FCOS , MVT::f32, Expand);
612
613    // Expand FP immediates into loads from the stack, except for the special
614    // cases we handle.
615    addLegalFPImmediate(APFloat(+0.0)); // xorpd
616    addLegalFPImmediate(APFloat(+0.0f)); // xorps
617  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
618    // Use SSE for f32, x87 for f64.
619    // Set up the FP register classes.
620    addRegisterClass(MVT::f32, &X86::FR32RegClass);
621    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
622
623    // Use ANDPS to simulate FABS.
624    setOperationAction(ISD::FABS , MVT::f32, Custom);
625
626    // Use XORP to simulate FNEG.
627    setOperationAction(ISD::FNEG , MVT::f32, Custom);
628
629    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
630
631    // Use ANDPS and ORPS to simulate FCOPYSIGN.
632    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
633    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
634
635    // We don't support sin/cos/fmod
636    setOperationAction(ISD::FSIN , MVT::f32, Expand);
637    setOperationAction(ISD::FCOS , MVT::f32, Expand);
638
639    // Special cases we handle for FP constants.
640    addLegalFPImmediate(APFloat(+0.0f)); // xorps
641    addLegalFPImmediate(APFloat(+0.0)); // FLD0
642    addLegalFPImmediate(APFloat(+1.0)); // FLD1
643    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
644    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
645
646    if (!TM.Options.UnsafeFPMath) {
647      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
648      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
649    }
650  } else if (!TM.Options.UseSoftFloat) {
651    // f32 and f64 in x87.
652    // Set up the FP register classes.
653    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
654    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
655
656    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
657    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
658    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
660
661    if (!TM.Options.UnsafeFPMath) {
662      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
663      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
664      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
665      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
666    }
667    addLegalFPImmediate(APFloat(+0.0)); // FLD0
668    addLegalFPImmediate(APFloat(+1.0)); // FLD1
669    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
670    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
671    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
672    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
673    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
674    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
675  }
676
677  // We don't support FMA.
678  setOperationAction(ISD::FMA, MVT::f64, Expand);
679  setOperationAction(ISD::FMA, MVT::f32, Expand);
680
681  // Long double always uses X87.
682  if (!TM.Options.UseSoftFloat) {
683    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
684    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
685    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
686    {
687      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
688      addLegalFPImmediate(TmpFlt);  // FLD0
689      TmpFlt.changeSign();
690      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
691
692      bool ignored;
693      APFloat TmpFlt2(+1.0);
694      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
695                      &ignored);
696      addLegalFPImmediate(TmpFlt2);  // FLD1
697      TmpFlt2.changeSign();
698      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
699    }
700
701    if (!TM.Options.UnsafeFPMath) {
702      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
703      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
704    }
705
706    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
707    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
708    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
709    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
710    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
711    setOperationAction(ISD::FMA, MVT::f80, Expand);
712  }
713
714  // Always use a library call for pow.
715  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
716  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
717  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
718
719  setOperationAction(ISD::FLOG, MVT::f80, Expand);
720  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
721  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
722  setOperationAction(ISD::FEXP, MVT::f80, Expand);
723  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
724
725  // First set operation action for all vector types to either promote
726  // (for widening) or expand (for scalarization). Then we will selectively
727  // turn on ones that can be effectively codegen'd.
728  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
729           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
730    MVT VT = (MVT::SimpleValueType)i;
731    setOperationAction(ISD::ADD , VT, Expand);
732    setOperationAction(ISD::SUB , VT, Expand);
733    setOperationAction(ISD::FADD, VT, Expand);
734    setOperationAction(ISD::FNEG, VT, Expand);
735    setOperationAction(ISD::FSUB, VT, Expand);
736    setOperationAction(ISD::MUL , VT, Expand);
737    setOperationAction(ISD::FMUL, VT, Expand);
738    setOperationAction(ISD::SDIV, VT, Expand);
739    setOperationAction(ISD::UDIV, VT, Expand);
740    setOperationAction(ISD::FDIV, VT, Expand);
741    setOperationAction(ISD::SREM, VT, Expand);
742    setOperationAction(ISD::UREM, VT, Expand);
743    setOperationAction(ISD::LOAD, VT, Expand);
744    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
746    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
747    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
748    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
749    setOperationAction(ISD::FABS, VT, Expand);
750    setOperationAction(ISD::FSIN, VT, Expand);
751    setOperationAction(ISD::FCOS, VT, Expand);
752    setOperationAction(ISD::FREM, VT, Expand);
753    setOperationAction(ISD::FMA,  VT, Expand);
754    setOperationAction(ISD::FPOWI, VT, Expand);
755    setOperationAction(ISD::FSQRT, VT, Expand);
756    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
757    setOperationAction(ISD::FFLOOR, VT, Expand);
758    setOperationAction(ISD::FCEIL, VT, Expand);
759    setOperationAction(ISD::FTRUNC, VT, Expand);
760    setOperationAction(ISD::FRINT, VT, Expand);
761    setOperationAction(ISD::FNEARBYINT, VT, Expand);
762    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
763    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
764    setOperationAction(ISD::SDIVREM, VT, Expand);
765    setOperationAction(ISD::UDIVREM, VT, Expand);
766    setOperationAction(ISD::FPOW, VT, Expand);
767    setOperationAction(ISD::CTPOP, VT, Expand);
768    setOperationAction(ISD::CTTZ, VT, Expand);
769    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
770    setOperationAction(ISD::CTLZ, VT, Expand);
771    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
772    setOperationAction(ISD::SHL, VT, Expand);
773    setOperationAction(ISD::SRA, VT, Expand);
774    setOperationAction(ISD::SRL, VT, Expand);
775    setOperationAction(ISD::ROTL, VT, Expand);
776    setOperationAction(ISD::ROTR, VT, Expand);
777    setOperationAction(ISD::BSWAP, VT, Expand);
778    setOperationAction(ISD::SETCC, VT, Expand);
779    setOperationAction(ISD::FLOG, VT, Expand);
780    setOperationAction(ISD::FLOG2, VT, Expand);
781    setOperationAction(ISD::FLOG10, VT, Expand);
782    setOperationAction(ISD::FEXP, VT, Expand);
783    setOperationAction(ISD::FEXP2, VT, Expand);
784    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
785    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
786    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
787    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
788    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
789    setOperationAction(ISD::TRUNCATE, VT, Expand);
790    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
791    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
792    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
793    setOperationAction(ISD::VSELECT, VT, Expand);
794    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
795             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
796      setTruncStoreAction(VT,
797                          (MVT::SimpleValueType)InnerVT, Expand);
798    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
799    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
800    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
801  }
802
803  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
804  // with -msoft-float, disable use of MMX as well.
805  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
806    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
807    // No operations on x86mmx supported, everything uses intrinsics.
808  }
809
810  // MMX-sized vectors (other than x86mmx) are expected to be expanded
811  // into smaller operations.
812  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
813  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
814  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
815  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
816  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
817  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
818  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
819  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
820  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
821  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
822  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
823  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
824  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
825  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
826  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
827  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
828  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
829  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
830  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
831  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
832  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
833  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
834  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
835  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
836  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
837  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
838  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
839  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
840  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
841
842  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
843    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
844
845    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
846    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
847    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
848    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
849    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
850    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
851    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
852    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
853    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
854    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
856    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
857  }
858
859  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
860    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
861
862    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
863    // registers cannot be used even for integer operations.
864    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
865    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
866    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
867    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
868
869    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
870    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
871    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
872    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
873    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
874    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
875    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
876    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
877    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
878    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
879    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
880    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
881    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
882    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
883    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
884    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
885    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
886
887    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
888    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
889    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
890    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
891
892    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
893    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
894    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
895    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
896    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
897
898    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
899    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
900      MVT VT = (MVT::SimpleValueType)i;
901      // Do not attempt to custom lower non-power-of-2 vectors
902      if (!isPowerOf2_32(VT.getVectorNumElements()))
903        continue;
904      // Do not attempt to custom lower non-128-bit vectors
905      if (!VT.is128BitVector())
906        continue;
907      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
908      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
909      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
910    }
911
912    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
913    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
914    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
915    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
918
919    if (Subtarget->is64Bit()) {
920      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
921      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
922    }
923
924    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
925    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
926      MVT VT = (MVT::SimpleValueType)i;
927
928      // Do not attempt to promote non-128-bit vectors
929      if (!VT.is128BitVector())
930        continue;
931
932      setOperationAction(ISD::AND,    VT, Promote);
933      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
934      setOperationAction(ISD::OR,     VT, Promote);
935      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
936      setOperationAction(ISD::XOR,    VT, Promote);
937      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
938      setOperationAction(ISD::LOAD,   VT, Promote);
939      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
940      setOperationAction(ISD::SELECT, VT, Promote);
941      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
942    }
943
944    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
945
946    // Custom lower v2i64 and v2f64 selects.
947    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
948    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
949    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
950    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
951
952    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
953    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
954
955    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
956    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
957    // As there is no 64-bit GPR available, we need build a special custom
958    // sequence to convert from v2i32 to v2f32.
959    if (!Subtarget->is64Bit())
960      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
961
962    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
963    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
964
965    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
966  }
967
968  if (Subtarget->hasSSE41()) {
969    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
970    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
971    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
972    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
973    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
974    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
975    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
976    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
977    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
978    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
979
980    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
981    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
982    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
983    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
984    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
985    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
986    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
987    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
988    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
989    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
990
991    // FIXME: Do we need to handle scalar-to-vector here?
992    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
993
994    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
995    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
996    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
997    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
998    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
999
1000    // i8 and i16 vectors are custom , because the source register and source
1001    // source memory operand types are not the same width.  f32 vectors are
1002    // custom since the immediate controlling the insert encodes additional
1003    // information.
1004    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1005    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1006    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1007    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1008
1009    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1010    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1011    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1012    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1013
1014    // FIXME: these should be Legal but thats only for the case where
1015    // the index is constant.  For now custom expand to deal with that.
1016    if (Subtarget->is64Bit()) {
1017      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1018      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1019    }
1020  }
1021
1022  if (Subtarget->hasSSE2()) {
1023    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1024    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1025
1026    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1027    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1028
1029    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1030    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1031
1032    if (Subtarget->hasInt256()) {
1033      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1034      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1035
1036      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1037      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1038
1039      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1040    } else {
1041      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1042      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1043
1044      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1045      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1046
1047      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1048    }
1049  }
1050
1051  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1052    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1053    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1054    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1055    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1056    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1057    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1058
1059    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1060    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1061    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1062
1063    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1064    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1065    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1066    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1067    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1068    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1069    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1070    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1071    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1072    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1073    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1074    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1075
1076    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1077    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1078    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1079    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1080    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1081    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1082    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1083    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1084    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1085    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1086    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1087    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1088
1089    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1090
1091    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1092
1093    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1094    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1095    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1096
1097    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1098    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1099    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1100
1101    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1102
1103    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1104    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1105
1106    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1107    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1108
1109    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1110    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1111
1112    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1113    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1114    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1115    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1116
1117    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1118    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1119    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1120
1121    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1122    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1123    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1124    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1125
1126    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1127      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1128      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1129      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1130      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1131      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1132      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1133    }
1134
1135    if (Subtarget->hasInt256()) {
1136      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1137      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1138      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1139      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1140
1141      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1142      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1143      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1144      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1145
1146      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1147      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1148      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1149      // Don't lower v32i8 because there is no 128-bit byte mul
1150
1151      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1152
1153      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1154      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1155
1156      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1157      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1158
1159      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1160    } else {
1161      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1162      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1163      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1164      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1165
1166      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1167      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1168      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1169      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1170
1171      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1172      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1173      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1174      // Don't lower v32i8 because there is no 128-bit byte mul
1175
1176      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1177      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1178
1179      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1180      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1181
1182      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1183    }
1184
1185    // Custom lower several nodes for 256-bit types.
1186    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1187             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1188      MVT VT = (MVT::SimpleValueType)i;
1189
1190      // Extract subvector is special because the value type
1191      // (result) is 128-bit but the source is 256-bit wide.
1192      if (VT.is128BitVector())
1193        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1194
1195      // Do not attempt to custom lower other non-256-bit vectors
1196      if (!VT.is256BitVector())
1197        continue;
1198
1199      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1200      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1201      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1202      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1203      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1204      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1205      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1206    }
1207
1208    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1209    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1210      MVT VT = (MVT::SimpleValueType)i;
1211
1212      // Do not attempt to promote non-256-bit vectors
1213      if (!VT.is256BitVector())
1214        continue;
1215
1216      setOperationAction(ISD::AND,    VT, Promote);
1217      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1218      setOperationAction(ISD::OR,     VT, Promote);
1219      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1220      setOperationAction(ISD::XOR,    VT, Promote);
1221      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1222      setOperationAction(ISD::LOAD,   VT, Promote);
1223      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1224      setOperationAction(ISD::SELECT, VT, Promote);
1225      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1226    }
1227  }
1228
1229  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1230  // of this type with custom code.
1231  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1232           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1233    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1234                       Custom);
1235  }
1236
1237  // We want to custom lower some of our intrinsics.
1238  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1239  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1240
1241
1242  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1243  // handle type legalization for these operations here.
1244  //
1245  // FIXME: We really should do custom legalization for addition and
1246  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1247  // than generic legalization for 64-bit multiplication-with-overflow, though.
1248  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1249    // Add/Sub/Mul with overflow operations are custom lowered.
1250    MVT VT = IntVTs[i];
1251    setOperationAction(ISD::SADDO, VT, Custom);
1252    setOperationAction(ISD::UADDO, VT, Custom);
1253    setOperationAction(ISD::SSUBO, VT, Custom);
1254    setOperationAction(ISD::USUBO, VT, Custom);
1255    setOperationAction(ISD::SMULO, VT, Custom);
1256    setOperationAction(ISD::UMULO, VT, Custom);
1257  }
1258
1259  // There are no 8-bit 3-address imul/mul instructions
1260  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1261  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1262
1263  if (!Subtarget->is64Bit()) {
1264    // These libcalls are not available in 32-bit.
1265    setLibcallName(RTLIB::SHL_I128, 0);
1266    setLibcallName(RTLIB::SRL_I128, 0);
1267    setLibcallName(RTLIB::SRA_I128, 0);
1268  }
1269
1270  // We have target-specific dag combine patterns for the following nodes:
1271  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1272  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1273  setTargetDAGCombine(ISD::VSELECT);
1274  setTargetDAGCombine(ISD::SELECT);
1275  setTargetDAGCombine(ISD::SHL);
1276  setTargetDAGCombine(ISD::SRA);
1277  setTargetDAGCombine(ISD::SRL);
1278  setTargetDAGCombine(ISD::OR);
1279  setTargetDAGCombine(ISD::AND);
1280  setTargetDAGCombine(ISD::ADD);
1281  setTargetDAGCombine(ISD::FADD);
1282  setTargetDAGCombine(ISD::FSUB);
1283  setTargetDAGCombine(ISD::FMA);
1284  setTargetDAGCombine(ISD::SUB);
1285  setTargetDAGCombine(ISD::LOAD);
1286  setTargetDAGCombine(ISD::STORE);
1287  setTargetDAGCombine(ISD::ZERO_EXTEND);
1288  setTargetDAGCombine(ISD::ANY_EXTEND);
1289  setTargetDAGCombine(ISD::SIGN_EXTEND);
1290  setTargetDAGCombine(ISD::TRUNCATE);
1291  setTargetDAGCombine(ISD::SINT_TO_FP);
1292  setTargetDAGCombine(ISD::SETCC);
1293  if (Subtarget->is64Bit())
1294    setTargetDAGCombine(ISD::MUL);
1295  setTargetDAGCombine(ISD::XOR);
1296
1297  computeRegisterProperties();
1298
1299  // On Darwin, -Os means optimize for size without hurting performance,
1300  // do not reduce the limit.
1301  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1302  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1303  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1304  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1305  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1306  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1307  setPrefLoopAlignment(4); // 2^4 bytes.
1308  benefitFromCodePlacementOpt = true;
1309
1310  // Predictable cmov don't hurt on atom because it's in-order.
1311  predictableSelectIsExpensive = !Subtarget->isAtom();
1312
1313  setPrefFunctionAlignment(4); // 2^4 bytes.
1314}
1315
1316
1317EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1318  if (!VT.isVector()) return MVT::i8;
1319  return VT.changeVectorElementTypeToInteger();
1320}
1321
1322
1323/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1324/// the desired ByVal argument alignment.
1325static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1326  if (MaxAlign == 16)
1327    return;
1328  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1329    if (VTy->getBitWidth() == 128)
1330      MaxAlign = 16;
1331  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1332    unsigned EltAlign = 0;
1333    getMaxByValAlign(ATy->getElementType(), EltAlign);
1334    if (EltAlign > MaxAlign)
1335      MaxAlign = EltAlign;
1336  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1337    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1338      unsigned EltAlign = 0;
1339      getMaxByValAlign(STy->getElementType(i), EltAlign);
1340      if (EltAlign > MaxAlign)
1341        MaxAlign = EltAlign;
1342      if (MaxAlign == 16)
1343        break;
1344    }
1345  }
1346}
1347
1348/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1349/// function arguments in the caller parameter area. For X86, aggregates
1350/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1351/// are at 4-byte boundaries.
1352unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1353  if (Subtarget->is64Bit()) {
1354    // Max of 8 and alignment of type.
1355    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1356    if (TyAlign > 8)
1357      return TyAlign;
1358    return 8;
1359  }
1360
1361  unsigned Align = 4;
1362  if (Subtarget->hasSSE1())
1363    getMaxByValAlign(Ty, Align);
1364  return Align;
1365}
1366
1367/// getOptimalMemOpType - Returns the target specific optimal type for load
1368/// and store operations as a result of memset, memcpy, and memmove
1369/// lowering. If DstAlign is zero that means it's safe to destination
1370/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1371/// means there isn't a need to check it against alignment requirement,
1372/// probably because the source does not need to be loaded. If
1373/// 'IsZeroVal' is true, that means it's safe to return a
1374/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1375/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1376/// constant so it does not need to be loaded.
1377/// It returns EVT::Other if the type should be determined using generic
1378/// target-independent logic.
1379EVT
1380X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1381                                       unsigned DstAlign, unsigned SrcAlign,
1382                                       bool IsZeroVal,
1383                                       bool MemcpyStrSrc,
1384                                       MachineFunction &MF) const {
1385  const Function *F = MF.getFunction();
1386  if (IsZeroVal &&
1387      !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) {
1388    if (Size >= 16 &&
1389        (Subtarget->isUnalignedMemAccessFast() ||
1390         ((DstAlign == 0 || DstAlign >= 16) &&
1391          (SrcAlign == 0 || SrcAlign >= 16)))) {
1392      if (Size >= 32) {
1393        if (Subtarget->hasInt256())
1394          return MVT::v8i32;
1395        if (Subtarget->hasFp256())
1396          return MVT::v8f32;
1397      }
1398      if (Subtarget->hasSSE2())
1399        return MVT::v4i32;
1400      if (Subtarget->hasSSE1())
1401        return MVT::v4f32;
1402    } else if (!MemcpyStrSrc && Size >= 8 &&
1403               !Subtarget->is64Bit() &&
1404               Subtarget->hasSSE2()) {
1405      // Do not use f64 to lower memcpy if source is string constant. It's
1406      // better to use i32 to avoid the loads.
1407      return MVT::f64;
1408    }
1409  }
1410  if (Subtarget->is64Bit() && Size >= 8)
1411    return MVT::i64;
1412  return MVT::i32;
1413}
1414
1415/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1416/// current function.  The returned value is a member of the
1417/// MachineJumpTableInfo::JTEntryKind enum.
1418unsigned X86TargetLowering::getJumpTableEncoding() const {
1419  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1420  // symbol.
1421  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1422      Subtarget->isPICStyleGOT())
1423    return MachineJumpTableInfo::EK_Custom32;
1424
1425  // Otherwise, use the normal jump table encoding heuristics.
1426  return TargetLowering::getJumpTableEncoding();
1427}
1428
1429const MCExpr *
1430X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1431                                             const MachineBasicBlock *MBB,
1432                                             unsigned uid,MCContext &Ctx) const{
1433  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1434         Subtarget->isPICStyleGOT());
1435  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1436  // entries.
1437  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1438                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1439}
1440
1441/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1442/// jumptable.
1443SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1444                                                    SelectionDAG &DAG) const {
1445  if (!Subtarget->is64Bit())
1446    // This doesn't have DebugLoc associated with it, but is not really the
1447    // same as a Register.
1448    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1449  return Table;
1450}
1451
1452/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1453/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1454/// MCExpr.
1455const MCExpr *X86TargetLowering::
1456getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1457                             MCContext &Ctx) const {
1458  // X86-64 uses RIP relative addressing based on the jump table label.
1459  if (Subtarget->isPICStyleRIPRel())
1460    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1461
1462  // Otherwise, the reference is relative to the PIC base.
1463  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1464}
1465
1466// FIXME: Why this routine is here? Move to RegInfo!
1467std::pair<const TargetRegisterClass*, uint8_t>
1468X86TargetLowering::findRepresentativeClass(EVT VT) const{
1469  const TargetRegisterClass *RRC = 0;
1470  uint8_t Cost = 1;
1471  switch (VT.getSimpleVT().SimpleTy) {
1472  default:
1473    return TargetLowering::findRepresentativeClass(VT);
1474  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1475    RRC = Subtarget->is64Bit() ?
1476      (const TargetRegisterClass*)&X86::GR64RegClass :
1477      (const TargetRegisterClass*)&X86::GR32RegClass;
1478    break;
1479  case MVT::x86mmx:
1480    RRC = &X86::VR64RegClass;
1481    break;
1482  case MVT::f32: case MVT::f64:
1483  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1484  case MVT::v4f32: case MVT::v2f64:
1485  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1486  case MVT::v4f64:
1487    RRC = &X86::VR128RegClass;
1488    break;
1489  }
1490  return std::make_pair(RRC, Cost);
1491}
1492
1493bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1494                                               unsigned &Offset) const {
1495  if (!Subtarget->isTargetLinux())
1496    return false;
1497
1498  if (Subtarget->is64Bit()) {
1499    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1500    Offset = 0x28;
1501    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1502      AddressSpace = 256;
1503    else
1504      AddressSpace = 257;
1505  } else {
1506    // %gs:0x14 on i386
1507    Offset = 0x14;
1508    AddressSpace = 256;
1509  }
1510  return true;
1511}
1512
1513
1514//===----------------------------------------------------------------------===//
1515//               Return Value Calling Convention Implementation
1516//===----------------------------------------------------------------------===//
1517
1518#include "X86GenCallingConv.inc"
1519
1520bool
1521X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1522                                  MachineFunction &MF, bool isVarArg,
1523                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1524                        LLVMContext &Context) const {
1525  SmallVector<CCValAssign, 16> RVLocs;
1526  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1527                 RVLocs, Context);
1528  return CCInfo.CheckReturn(Outs, RetCC_X86);
1529}
1530
1531SDValue
1532X86TargetLowering::LowerReturn(SDValue Chain,
1533                               CallingConv::ID CallConv, bool isVarArg,
1534                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1535                               const SmallVectorImpl<SDValue> &OutVals,
1536                               DebugLoc dl, SelectionDAG &DAG) const {
1537  MachineFunction &MF = DAG.getMachineFunction();
1538  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1539
1540  SmallVector<CCValAssign, 16> RVLocs;
1541  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1542                 RVLocs, *DAG.getContext());
1543  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1544
1545  // Add the regs to the liveout set for the function.
1546  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1547  for (unsigned i = 0; i != RVLocs.size(); ++i)
1548    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1549      MRI.addLiveOut(RVLocs[i].getLocReg());
1550
1551  SDValue Flag;
1552
1553  SmallVector<SDValue, 6> RetOps;
1554  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1555  // Operand #1 = Bytes To Pop
1556  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1557                   MVT::i16));
1558
1559  // Copy the result values into the output registers.
1560  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1561    CCValAssign &VA = RVLocs[i];
1562    assert(VA.isRegLoc() && "Can only return in registers!");
1563    SDValue ValToCopy = OutVals[i];
1564    EVT ValVT = ValToCopy.getValueType();
1565
1566    // Promote values to the appropriate types
1567    if (VA.getLocInfo() == CCValAssign::SExt)
1568      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1569    else if (VA.getLocInfo() == CCValAssign::ZExt)
1570      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1571    else if (VA.getLocInfo() == CCValAssign::AExt)
1572      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1573    else if (VA.getLocInfo() == CCValAssign::BCvt)
1574      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1575
1576    // If this is x86-64, and we disabled SSE, we can't return FP values,
1577    // or SSE or MMX vectors.
1578    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1579         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1580          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1581      report_fatal_error("SSE register return with SSE disabled");
1582    }
1583    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1584    // llvm-gcc has never done it right and no one has noticed, so this
1585    // should be OK for now.
1586    if (ValVT == MVT::f64 &&
1587        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1588      report_fatal_error("SSE2 register return with SSE2 disabled");
1589
1590    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1591    // the RET instruction and handled by the FP Stackifier.
1592    if (VA.getLocReg() == X86::ST0 ||
1593        VA.getLocReg() == X86::ST1) {
1594      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1595      // change the value to the FP stack register class.
1596      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1597        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1598      RetOps.push_back(ValToCopy);
1599      // Don't emit a copytoreg.
1600      continue;
1601    }
1602
1603    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1604    // which is returned in RAX / RDX.
1605    if (Subtarget->is64Bit()) {
1606      if (ValVT == MVT::x86mmx) {
1607        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1608          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1609          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1610                                  ValToCopy);
1611          // If we don't have SSE2 available, convert to v4f32 so the generated
1612          // register is legal.
1613          if (!Subtarget->hasSSE2())
1614            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1615        }
1616      }
1617    }
1618
1619    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1620    Flag = Chain.getValue(1);
1621  }
1622
1623  // The x86-64 ABI for returning structs by value requires that we copy
1624  // the sret argument into %rax for the return. We saved the argument into
1625  // a virtual register in the entry block, so now we copy the value out
1626  // and into %rax.
1627  if (Subtarget->is64Bit() &&
1628      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1629    MachineFunction &MF = DAG.getMachineFunction();
1630    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1631    unsigned Reg = FuncInfo->getSRetReturnReg();
1632    assert(Reg &&
1633           "SRetReturnReg should have been set in LowerFormalArguments().");
1634    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1635
1636    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1637    Flag = Chain.getValue(1);
1638
1639    // RAX now acts like a return value.
1640    MRI.addLiveOut(X86::RAX);
1641  }
1642
1643  RetOps[0] = Chain;  // Update chain.
1644
1645  // Add the flag if we have it.
1646  if (Flag.getNode())
1647    RetOps.push_back(Flag);
1648
1649  return DAG.getNode(X86ISD::RET_FLAG, dl,
1650                     MVT::Other, &RetOps[0], RetOps.size());
1651}
1652
1653bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1654  if (N->getNumValues() != 1)
1655    return false;
1656  if (!N->hasNUsesOfValue(1, 0))
1657    return false;
1658
1659  SDValue TCChain = Chain;
1660  SDNode *Copy = *N->use_begin();
1661  if (Copy->getOpcode() == ISD::CopyToReg) {
1662    // If the copy has a glue operand, we conservatively assume it isn't safe to
1663    // perform a tail call.
1664    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1665      return false;
1666    TCChain = Copy->getOperand(0);
1667  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1668    return false;
1669
1670  bool HasRet = false;
1671  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1672       UI != UE; ++UI) {
1673    if (UI->getOpcode() != X86ISD::RET_FLAG)
1674      return false;
1675    HasRet = true;
1676  }
1677
1678  if (!HasRet)
1679    return false;
1680
1681  Chain = TCChain;
1682  return true;
1683}
1684
1685EVT
1686X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1687                                            ISD::NodeType ExtendKind) const {
1688  MVT ReturnMVT;
1689  // TODO: Is this also valid on 32-bit?
1690  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1691    ReturnMVT = MVT::i8;
1692  else
1693    ReturnMVT = MVT::i32;
1694
1695  EVT MinVT = getRegisterType(Context, ReturnMVT);
1696  return VT.bitsLT(MinVT) ? MinVT : VT;
1697}
1698
1699/// LowerCallResult - Lower the result values of a call into the
1700/// appropriate copies out of appropriate physical registers.
1701///
1702SDValue
1703X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1704                                   CallingConv::ID CallConv, bool isVarArg,
1705                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1706                                   DebugLoc dl, SelectionDAG &DAG,
1707                                   SmallVectorImpl<SDValue> &InVals) const {
1708
1709  // Assign locations to each value returned by this call.
1710  SmallVector<CCValAssign, 16> RVLocs;
1711  bool Is64Bit = Subtarget->is64Bit();
1712  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1713                 getTargetMachine(), RVLocs, *DAG.getContext());
1714  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1715
1716  // Copy all of the result registers out of their specified physreg.
1717  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1718    CCValAssign &VA = RVLocs[i];
1719    EVT CopyVT = VA.getValVT();
1720
1721    // If this is x86-64, and we disabled SSE, we can't return FP values
1722    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1723        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1724      report_fatal_error("SSE register return with SSE disabled");
1725    }
1726
1727    SDValue Val;
1728
1729    // If this is a call to a function that returns an fp value on the floating
1730    // point stack, we must guarantee the value is popped from the stack, so
1731    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1732    // if the return value is not used. We use the FpPOP_RETVAL instruction
1733    // instead.
1734    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1735      // If we prefer to use the value in xmm registers, copy it out as f80 and
1736      // use a truncate to move it from fp stack reg to xmm reg.
1737      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1738      SDValue Ops[] = { Chain, InFlag };
1739      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1740                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1741      Val = Chain.getValue(0);
1742
1743      // Round the f80 to the right size, which also moves it to the appropriate
1744      // xmm register.
1745      if (CopyVT != VA.getValVT())
1746        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1747                          // This truncation won't change the value.
1748                          DAG.getIntPtrConstant(1));
1749    } else {
1750      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1751                                 CopyVT, InFlag).getValue(1);
1752      Val = Chain.getValue(0);
1753    }
1754    InFlag = Chain.getValue(2);
1755    InVals.push_back(Val);
1756  }
1757
1758  return Chain;
1759}
1760
1761
1762//===----------------------------------------------------------------------===//
1763//                C & StdCall & Fast Calling Convention implementation
1764//===----------------------------------------------------------------------===//
1765//  StdCall calling convention seems to be standard for many Windows' API
1766//  routines and around. It differs from C calling convention just a little:
1767//  callee should clean up the stack, not caller. Symbols should be also
1768//  decorated in some fancy way :) It doesn't support any vector arguments.
1769//  For info on fast calling convention see Fast Calling Convention (tail call)
1770//  implementation LowerX86_32FastCCCallTo.
1771
1772/// CallIsStructReturn - Determines whether a call uses struct return
1773/// semantics.
1774enum StructReturnType {
1775  NotStructReturn,
1776  RegStructReturn,
1777  StackStructReturn
1778};
1779static StructReturnType
1780callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1781  if (Outs.empty())
1782    return NotStructReturn;
1783
1784  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1785  if (!Flags.isSRet())
1786    return NotStructReturn;
1787  if (Flags.isInReg())
1788    return RegStructReturn;
1789  return StackStructReturn;
1790}
1791
1792/// ArgsAreStructReturn - Determines whether a function uses struct
1793/// return semantics.
1794static StructReturnType
1795argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1796  if (Ins.empty())
1797    return NotStructReturn;
1798
1799  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1800  if (!Flags.isSRet())
1801    return NotStructReturn;
1802  if (Flags.isInReg())
1803    return RegStructReturn;
1804  return StackStructReturn;
1805}
1806
1807/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1808/// by "Src" to address "Dst" with size and alignment information specified by
1809/// the specific parameter attribute. The copy will be passed as a byval
1810/// function parameter.
1811static SDValue
1812CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1813                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1814                          DebugLoc dl) {
1815  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1816
1817  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1818                       /*isVolatile*/false, /*AlwaysInline=*/true,
1819                       MachinePointerInfo(), MachinePointerInfo());
1820}
1821
1822/// IsTailCallConvention - Return true if the calling convention is one that
1823/// supports tail call optimization.
1824static bool IsTailCallConvention(CallingConv::ID CC) {
1825  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
1826          CC == CallingConv::HiPE);
1827}
1828
1829bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1830  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1831    return false;
1832
1833  CallSite CS(CI);
1834  CallingConv::ID CalleeCC = CS.getCallingConv();
1835  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1836    return false;
1837
1838  return true;
1839}
1840
1841/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1842/// a tailcall target by changing its ABI.
1843static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1844                                   bool GuaranteedTailCallOpt) {
1845  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1846}
1847
1848SDValue
1849X86TargetLowering::LowerMemArgument(SDValue Chain,
1850                                    CallingConv::ID CallConv,
1851                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1852                                    DebugLoc dl, SelectionDAG &DAG,
1853                                    const CCValAssign &VA,
1854                                    MachineFrameInfo *MFI,
1855                                    unsigned i) const {
1856  // Create the nodes corresponding to a load from this parameter slot.
1857  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1858  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1859                              getTargetMachine().Options.GuaranteedTailCallOpt);
1860  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1861  EVT ValVT;
1862
1863  // If value is passed by pointer we have address passed instead of the value
1864  // itself.
1865  if (VA.getLocInfo() == CCValAssign::Indirect)
1866    ValVT = VA.getLocVT();
1867  else
1868    ValVT = VA.getValVT();
1869
1870  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1871  // changed with more analysis.
1872  // In case of tail call optimization mark all arguments mutable. Since they
1873  // could be overwritten by lowering of arguments in case of a tail call.
1874  if (Flags.isByVal()) {
1875    unsigned Bytes = Flags.getByValSize();
1876    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1877    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1878    return DAG.getFrameIndex(FI, getPointerTy());
1879  } else {
1880    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1881                                    VA.getLocMemOffset(), isImmutable);
1882    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1883    return DAG.getLoad(ValVT, dl, Chain, FIN,
1884                       MachinePointerInfo::getFixedStack(FI),
1885                       false, false, false, 0);
1886  }
1887}
1888
1889SDValue
1890X86TargetLowering::LowerFormalArguments(SDValue Chain,
1891                                        CallingConv::ID CallConv,
1892                                        bool isVarArg,
1893                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1894                                        DebugLoc dl,
1895                                        SelectionDAG &DAG,
1896                                        SmallVectorImpl<SDValue> &InVals)
1897                                          const {
1898  MachineFunction &MF = DAG.getMachineFunction();
1899  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1900
1901  const Function* Fn = MF.getFunction();
1902  if (Fn->hasExternalLinkage() &&
1903      Subtarget->isTargetCygMing() &&
1904      Fn->getName() == "main")
1905    FuncInfo->setForceFramePointer(true);
1906
1907  MachineFrameInfo *MFI = MF.getFrameInfo();
1908  bool Is64Bit = Subtarget->is64Bit();
1909  bool IsWindows = Subtarget->isTargetWindows();
1910  bool IsWin64 = Subtarget->isTargetWin64();
1911
1912  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1913         "Var args not supported with calling convention fastcc, ghc or hipe");
1914
1915  // Assign locations to all of the incoming arguments.
1916  SmallVector<CCValAssign, 16> ArgLocs;
1917  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1918                 ArgLocs, *DAG.getContext());
1919
1920  // Allocate shadow area for Win64
1921  if (IsWin64) {
1922    CCInfo.AllocateStack(32, 8);
1923  }
1924
1925  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1926
1927  unsigned LastVal = ~0U;
1928  SDValue ArgValue;
1929  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1930    CCValAssign &VA = ArgLocs[i];
1931    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1932    // places.
1933    assert(VA.getValNo() != LastVal &&
1934           "Don't support value assigned to multiple locs yet");
1935    (void)LastVal;
1936    LastVal = VA.getValNo();
1937
1938    if (VA.isRegLoc()) {
1939      EVT RegVT = VA.getLocVT();
1940      const TargetRegisterClass *RC;
1941      if (RegVT == MVT::i32)
1942        RC = &X86::GR32RegClass;
1943      else if (Is64Bit && RegVT == MVT::i64)
1944        RC = &X86::GR64RegClass;
1945      else if (RegVT == MVT::f32)
1946        RC = &X86::FR32RegClass;
1947      else if (RegVT == MVT::f64)
1948        RC = &X86::FR64RegClass;
1949      else if (RegVT.is256BitVector())
1950        RC = &X86::VR256RegClass;
1951      else if (RegVT.is128BitVector())
1952        RC = &X86::VR128RegClass;
1953      else if (RegVT == MVT::x86mmx)
1954        RC = &X86::VR64RegClass;
1955      else
1956        llvm_unreachable("Unknown argument type!");
1957
1958      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1959      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1960
1961      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1962      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1963      // right size.
1964      if (VA.getLocInfo() == CCValAssign::SExt)
1965        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1966                               DAG.getValueType(VA.getValVT()));
1967      else if (VA.getLocInfo() == CCValAssign::ZExt)
1968        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1969                               DAG.getValueType(VA.getValVT()));
1970      else if (VA.getLocInfo() == CCValAssign::BCvt)
1971        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1972
1973      if (VA.isExtInLoc()) {
1974        // Handle MMX values passed in XMM regs.
1975        if (RegVT.isVector()) {
1976          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1977                                 ArgValue);
1978        } else
1979          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1980      }
1981    } else {
1982      assert(VA.isMemLoc());
1983      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1984    }
1985
1986    // If value is passed via pointer - do a load.
1987    if (VA.getLocInfo() == CCValAssign::Indirect)
1988      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1989                             MachinePointerInfo(), false, false, false, 0);
1990
1991    InVals.push_back(ArgValue);
1992  }
1993
1994  // The x86-64 ABI for returning structs by value requires that we copy
1995  // the sret argument into %rax for the return. Save the argument into
1996  // a virtual register so that we can access it from the return points.
1997  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1998    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1999    unsigned Reg = FuncInfo->getSRetReturnReg();
2000    if (!Reg) {
2001      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
2002      FuncInfo->setSRetReturnReg(Reg);
2003    }
2004    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2005    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2006  }
2007
2008  unsigned StackSize = CCInfo.getNextStackOffset();
2009  // Align stack specially for tail calls.
2010  if (FuncIsMadeTailCallSafe(CallConv,
2011                             MF.getTarget().Options.GuaranteedTailCallOpt))
2012    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2013
2014  // If the function takes variable number of arguments, make a frame index for
2015  // the start of the first vararg value... for expansion of llvm.va_start.
2016  if (isVarArg) {
2017    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2018                    CallConv != CallingConv::X86_ThisCall)) {
2019      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2020    }
2021    if (Is64Bit) {
2022      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2023
2024      // FIXME: We should really autogenerate these arrays
2025      static const uint16_t GPR64ArgRegsWin64[] = {
2026        X86::RCX, X86::RDX, X86::R8,  X86::R9
2027      };
2028      static const uint16_t GPR64ArgRegs64Bit[] = {
2029        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2030      };
2031      static const uint16_t XMMArgRegs64Bit[] = {
2032        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2033        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2034      };
2035      const uint16_t *GPR64ArgRegs;
2036      unsigned NumXMMRegs = 0;
2037
2038      if (IsWin64) {
2039        // The XMM registers which might contain var arg parameters are shadowed
2040        // in their paired GPR.  So we only need to save the GPR to their home
2041        // slots.
2042        TotalNumIntRegs = 4;
2043        GPR64ArgRegs = GPR64ArgRegsWin64;
2044      } else {
2045        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2046        GPR64ArgRegs = GPR64ArgRegs64Bit;
2047
2048        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2049                                                TotalNumXMMRegs);
2050      }
2051      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2052                                                       TotalNumIntRegs);
2053
2054      bool NoImplicitFloatOps = Fn->getFnAttributes().
2055        hasAttribute(Attributes::NoImplicitFloat);
2056      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2057             "SSE register cannot be used when SSE is disabled!");
2058      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2059               NoImplicitFloatOps) &&
2060             "SSE register cannot be used when SSE is disabled!");
2061      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2062          !Subtarget->hasSSE1())
2063        // Kernel mode asks for SSE to be disabled, so don't push them
2064        // on the stack.
2065        TotalNumXMMRegs = 0;
2066
2067      if (IsWin64) {
2068        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2069        // Get to the caller-allocated home save location.  Add 8 to account
2070        // for the return address.
2071        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2072        FuncInfo->setRegSaveFrameIndex(
2073          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2074        // Fixup to set vararg frame on shadow area (4 x i64).
2075        if (NumIntRegs < 4)
2076          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2077      } else {
2078        // For X86-64, if there are vararg parameters that are passed via
2079        // registers, then we must store them to their spots on the stack so
2080        // they may be loaded by deferencing the result of va_next.
2081        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2082        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2083        FuncInfo->setRegSaveFrameIndex(
2084          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2085                               false));
2086      }
2087
2088      // Store the integer parameter registers.
2089      SmallVector<SDValue, 8> MemOps;
2090      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2091                                        getPointerTy());
2092      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2093      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2094        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2095                                  DAG.getIntPtrConstant(Offset));
2096        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2097                                     &X86::GR64RegClass);
2098        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2099        SDValue Store =
2100          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2101                       MachinePointerInfo::getFixedStack(
2102                         FuncInfo->getRegSaveFrameIndex(), Offset),
2103                       false, false, 0);
2104        MemOps.push_back(Store);
2105        Offset += 8;
2106      }
2107
2108      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2109        // Now store the XMM (fp + vector) parameter registers.
2110        SmallVector<SDValue, 11> SaveXMMOps;
2111        SaveXMMOps.push_back(Chain);
2112
2113        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2114        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2115        SaveXMMOps.push_back(ALVal);
2116
2117        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2118                               FuncInfo->getRegSaveFrameIndex()));
2119        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2120                               FuncInfo->getVarArgsFPOffset()));
2121
2122        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2123          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2124                                       &X86::VR128RegClass);
2125          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2126          SaveXMMOps.push_back(Val);
2127        }
2128        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2129                                     MVT::Other,
2130                                     &SaveXMMOps[0], SaveXMMOps.size()));
2131      }
2132
2133      if (!MemOps.empty())
2134        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2135                            &MemOps[0], MemOps.size());
2136    }
2137  }
2138
2139  // Some CCs need callee pop.
2140  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2141                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2142    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2143  } else {
2144    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2145    // If this is an sret function, the return should pop the hidden pointer.
2146    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2147        argsAreStructReturn(Ins) == StackStructReturn)
2148      FuncInfo->setBytesToPopOnReturn(4);
2149  }
2150
2151  if (!Is64Bit) {
2152    // RegSaveFrameIndex is X86-64 only.
2153    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2154    if (CallConv == CallingConv::X86_FastCall ||
2155        CallConv == CallingConv::X86_ThisCall)
2156      // fastcc functions can't have varargs.
2157      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2158  }
2159
2160  FuncInfo->setArgumentStackSize(StackSize);
2161
2162  return Chain;
2163}
2164
2165SDValue
2166X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2167                                    SDValue StackPtr, SDValue Arg,
2168                                    DebugLoc dl, SelectionDAG &DAG,
2169                                    const CCValAssign &VA,
2170                                    ISD::ArgFlagsTy Flags) const {
2171  unsigned LocMemOffset = VA.getLocMemOffset();
2172  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2173  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2174  if (Flags.isByVal())
2175    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2176
2177  return DAG.getStore(Chain, dl, Arg, PtrOff,
2178                      MachinePointerInfo::getStack(LocMemOffset),
2179                      false, false, 0);
2180}
2181
2182/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2183/// optimization is performed and it is required.
2184SDValue
2185X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2186                                           SDValue &OutRetAddr, SDValue Chain,
2187                                           bool IsTailCall, bool Is64Bit,
2188                                           int FPDiff, DebugLoc dl) const {
2189  // Adjust the Return address stack slot.
2190  EVT VT = getPointerTy();
2191  OutRetAddr = getReturnAddressFrameIndex(DAG);
2192
2193  // Load the "old" Return address.
2194  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2195                           false, false, false, 0);
2196  return SDValue(OutRetAddr.getNode(), 1);
2197}
2198
2199/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2200/// optimization is performed and it is required (FPDiff!=0).
2201static SDValue
2202EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2203                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2204                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2205  // Store the return address to the appropriate stack slot.
2206  if (!FPDiff) return Chain;
2207  // Calculate the new stack slot for the return address.
2208  int NewReturnAddrFI =
2209    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2210  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2211  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2212                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2213                       false, false, 0);
2214  return Chain;
2215}
2216
2217SDValue
2218X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2219                             SmallVectorImpl<SDValue> &InVals) const {
2220  SelectionDAG &DAG                     = CLI.DAG;
2221  DebugLoc &dl                          = CLI.DL;
2222  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2223  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2224  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2225  SDValue Chain                         = CLI.Chain;
2226  SDValue Callee                        = CLI.Callee;
2227  CallingConv::ID CallConv              = CLI.CallConv;
2228  bool &isTailCall                      = CLI.IsTailCall;
2229  bool isVarArg                         = CLI.IsVarArg;
2230
2231  MachineFunction &MF = DAG.getMachineFunction();
2232  bool Is64Bit        = Subtarget->is64Bit();
2233  bool IsWin64        = Subtarget->isTargetWin64();
2234  bool IsWindows      = Subtarget->isTargetWindows();
2235  StructReturnType SR = callIsStructReturn(Outs);
2236  bool IsSibcall      = false;
2237
2238  if (MF.getTarget().Options.DisableTailCalls)
2239    isTailCall = false;
2240
2241  if (isTailCall) {
2242    // Check if it's really possible to do a tail call.
2243    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2244                    isVarArg, SR != NotStructReturn,
2245                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2246                    Outs, OutVals, Ins, DAG);
2247
2248    // Sibcalls are automatically detected tailcalls which do not require
2249    // ABI changes.
2250    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2251      IsSibcall = true;
2252
2253    if (isTailCall)
2254      ++NumTailCalls;
2255  }
2256
2257  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2258         "Var args not supported with calling convention fastcc, ghc or hipe");
2259
2260  // Analyze operands of the call, assigning locations to each operand.
2261  SmallVector<CCValAssign, 16> ArgLocs;
2262  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2263                 ArgLocs, *DAG.getContext());
2264
2265  // Allocate shadow area for Win64
2266  if (IsWin64) {
2267    CCInfo.AllocateStack(32, 8);
2268  }
2269
2270  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2271
2272  // Get a count of how many bytes are to be pushed on the stack.
2273  unsigned NumBytes = CCInfo.getNextStackOffset();
2274  if (IsSibcall)
2275    // This is a sibcall. The memory operands are available in caller's
2276    // own caller's stack.
2277    NumBytes = 0;
2278  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2279           IsTailCallConvention(CallConv))
2280    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2281
2282  int FPDiff = 0;
2283  if (isTailCall && !IsSibcall) {
2284    // Lower arguments at fp - stackoffset + fpdiff.
2285    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2286    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2287
2288    FPDiff = NumBytesCallerPushed - NumBytes;
2289
2290    // Set the delta of movement of the returnaddr stackslot.
2291    // But only set if delta is greater than previous delta.
2292    if (FPDiff < X86Info->getTCReturnAddrDelta())
2293      X86Info->setTCReturnAddrDelta(FPDiff);
2294  }
2295
2296  if (!IsSibcall)
2297    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2298
2299  SDValue RetAddrFrIdx;
2300  // Load return address for tail calls.
2301  if (isTailCall && FPDiff)
2302    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2303                                    Is64Bit, FPDiff, dl);
2304
2305  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2306  SmallVector<SDValue, 8> MemOpChains;
2307  SDValue StackPtr;
2308
2309  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2310  // of tail call optimization arguments are handle later.
2311  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2312    CCValAssign &VA = ArgLocs[i];
2313    EVT RegVT = VA.getLocVT();
2314    SDValue Arg = OutVals[i];
2315    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2316    bool isByVal = Flags.isByVal();
2317
2318    // Promote the value if needed.
2319    switch (VA.getLocInfo()) {
2320    default: llvm_unreachable("Unknown loc info!");
2321    case CCValAssign::Full: break;
2322    case CCValAssign::SExt:
2323      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2324      break;
2325    case CCValAssign::ZExt:
2326      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2327      break;
2328    case CCValAssign::AExt:
2329      if (RegVT.is128BitVector()) {
2330        // Special case: passing MMX values in XMM registers.
2331        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2332        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2333        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2334      } else
2335        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2336      break;
2337    case CCValAssign::BCvt:
2338      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2339      break;
2340    case CCValAssign::Indirect: {
2341      // Store the argument.
2342      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2343      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2344      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2345                           MachinePointerInfo::getFixedStack(FI),
2346                           false, false, 0);
2347      Arg = SpillSlot;
2348      break;
2349    }
2350    }
2351
2352    if (VA.isRegLoc()) {
2353      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2354      if (isVarArg && IsWin64) {
2355        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2356        // shadow reg if callee is a varargs function.
2357        unsigned ShadowReg = 0;
2358        switch (VA.getLocReg()) {
2359        case X86::XMM0: ShadowReg = X86::RCX; break;
2360        case X86::XMM1: ShadowReg = X86::RDX; break;
2361        case X86::XMM2: ShadowReg = X86::R8; break;
2362        case X86::XMM3: ShadowReg = X86::R9; break;
2363        }
2364        if (ShadowReg)
2365          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2366      }
2367    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2368      assert(VA.isMemLoc());
2369      if (StackPtr.getNode() == 0)
2370        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2371                                      getPointerTy());
2372      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2373                                             dl, DAG, VA, Flags));
2374    }
2375  }
2376
2377  if (!MemOpChains.empty())
2378    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2379                        &MemOpChains[0], MemOpChains.size());
2380
2381  if (Subtarget->isPICStyleGOT()) {
2382    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2383    // GOT pointer.
2384    if (!isTailCall) {
2385      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2386               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2387    } else {
2388      // If we are tail calling and generating PIC/GOT style code load the
2389      // address of the callee into ECX. The value in ecx is used as target of
2390      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2391      // for tail calls on PIC/GOT architectures. Normally we would just put the
2392      // address of GOT into ebx and then call target@PLT. But for tail calls
2393      // ebx would be restored (since ebx is callee saved) before jumping to the
2394      // target@PLT.
2395
2396      // Note: The actual moving to ECX is done further down.
2397      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2398      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2399          !G->getGlobal()->hasProtectedVisibility())
2400        Callee = LowerGlobalAddress(Callee, DAG);
2401      else if (isa<ExternalSymbolSDNode>(Callee))
2402        Callee = LowerExternalSymbol(Callee, DAG);
2403    }
2404  }
2405
2406  if (Is64Bit && isVarArg && !IsWin64) {
2407    // From AMD64 ABI document:
2408    // For calls that may call functions that use varargs or stdargs
2409    // (prototype-less calls or calls to functions containing ellipsis (...) in
2410    // the declaration) %al is used as hidden argument to specify the number
2411    // of SSE registers used. The contents of %al do not need to match exactly
2412    // the number of registers, but must be an ubound on the number of SSE
2413    // registers used and is in the range 0 - 8 inclusive.
2414
2415    // Count the number of XMM registers allocated.
2416    static const uint16_t XMMArgRegs[] = {
2417      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2418      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2419    };
2420    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2421    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2422           && "SSE registers cannot be used when SSE is disabled");
2423
2424    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2425                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2426  }
2427
2428  // For tail calls lower the arguments to the 'real' stack slot.
2429  if (isTailCall) {
2430    // Force all the incoming stack arguments to be loaded from the stack
2431    // before any new outgoing arguments are stored to the stack, because the
2432    // outgoing stack slots may alias the incoming argument stack slots, and
2433    // the alias isn't otherwise explicit. This is slightly more conservative
2434    // than necessary, because it means that each store effectively depends
2435    // on every argument instead of just those arguments it would clobber.
2436    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2437
2438    SmallVector<SDValue, 8> MemOpChains2;
2439    SDValue FIN;
2440    int FI = 0;
2441    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2442      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2443        CCValAssign &VA = ArgLocs[i];
2444        if (VA.isRegLoc())
2445          continue;
2446        assert(VA.isMemLoc());
2447        SDValue Arg = OutVals[i];
2448        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2449        // Create frame index.
2450        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2451        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2452        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2453        FIN = DAG.getFrameIndex(FI, getPointerTy());
2454
2455        if (Flags.isByVal()) {
2456          // Copy relative to framepointer.
2457          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2458          if (StackPtr.getNode() == 0)
2459            StackPtr = DAG.getCopyFromReg(Chain, dl,
2460                                          RegInfo->getStackRegister(),
2461                                          getPointerTy());
2462          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2463
2464          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2465                                                           ArgChain,
2466                                                           Flags, DAG, dl));
2467        } else {
2468          // Store relative to framepointer.
2469          MemOpChains2.push_back(
2470            DAG.getStore(ArgChain, dl, Arg, FIN,
2471                         MachinePointerInfo::getFixedStack(FI),
2472                         false, false, 0));
2473        }
2474      }
2475    }
2476
2477    if (!MemOpChains2.empty())
2478      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2479                          &MemOpChains2[0], MemOpChains2.size());
2480
2481    // Store the return address to the appropriate stack slot.
2482    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2483                                     getPointerTy(), RegInfo->getSlotSize(),
2484                                     FPDiff, dl);
2485  }
2486
2487  // Build a sequence of copy-to-reg nodes chained together with token chain
2488  // and flag operands which copy the outgoing args into registers.
2489  SDValue InFlag;
2490  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2491    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2492                             RegsToPass[i].second, InFlag);
2493    InFlag = Chain.getValue(1);
2494  }
2495
2496  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2497    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2498    // In the 64-bit large code model, we have to make all calls
2499    // through a register, since the call instruction's 32-bit
2500    // pc-relative offset may not be large enough to hold the whole
2501    // address.
2502  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2503    // If the callee is a GlobalAddress node (quite common, every direct call
2504    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2505    // it.
2506
2507    // We should use extra load for direct calls to dllimported functions in
2508    // non-JIT mode.
2509    const GlobalValue *GV = G->getGlobal();
2510    if (!GV->hasDLLImportLinkage()) {
2511      unsigned char OpFlags = 0;
2512      bool ExtraLoad = false;
2513      unsigned WrapperKind = ISD::DELETED_NODE;
2514
2515      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2516      // external symbols most go through the PLT in PIC mode.  If the symbol
2517      // has hidden or protected visibility, or if it is static or local, then
2518      // we don't need to use the PLT - we can directly call it.
2519      if (Subtarget->isTargetELF() &&
2520          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2521          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2522        OpFlags = X86II::MO_PLT;
2523      } else if (Subtarget->isPICStyleStubAny() &&
2524                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2525                 (!Subtarget->getTargetTriple().isMacOSX() ||
2526                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2527        // PC-relative references to external symbols should go through $stub,
2528        // unless we're building with the leopard linker or later, which
2529        // automatically synthesizes these stubs.
2530        OpFlags = X86II::MO_DARWIN_STUB;
2531      } else if (Subtarget->isPICStyleRIPRel() &&
2532                 isa<Function>(GV) &&
2533                 cast<Function>(GV)->getFnAttributes().
2534                   hasAttribute(Attributes::NonLazyBind)) {
2535        // If the function is marked as non-lazy, generate an indirect call
2536        // which loads from the GOT directly. This avoids runtime overhead
2537        // at the cost of eager binding (and one extra byte of encoding).
2538        OpFlags = X86II::MO_GOTPCREL;
2539        WrapperKind = X86ISD::WrapperRIP;
2540        ExtraLoad = true;
2541      }
2542
2543      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2544                                          G->getOffset(), OpFlags);
2545
2546      // Add a wrapper if needed.
2547      if (WrapperKind != ISD::DELETED_NODE)
2548        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2549      // Add extra indirection if needed.
2550      if (ExtraLoad)
2551        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2552                             MachinePointerInfo::getGOT(),
2553                             false, false, false, 0);
2554    }
2555  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2556    unsigned char OpFlags = 0;
2557
2558    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2559    // external symbols should go through the PLT.
2560    if (Subtarget->isTargetELF() &&
2561        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2562      OpFlags = X86II::MO_PLT;
2563    } else if (Subtarget->isPICStyleStubAny() &&
2564               (!Subtarget->getTargetTriple().isMacOSX() ||
2565                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2566      // PC-relative references to external symbols should go through $stub,
2567      // unless we're building with the leopard linker or later, which
2568      // automatically synthesizes these stubs.
2569      OpFlags = X86II::MO_DARWIN_STUB;
2570    }
2571
2572    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2573                                         OpFlags);
2574  }
2575
2576  // Returns a chain & a flag for retval copy to use.
2577  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2578  SmallVector<SDValue, 8> Ops;
2579
2580  if (!IsSibcall && isTailCall) {
2581    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2582                           DAG.getIntPtrConstant(0, true), InFlag);
2583    InFlag = Chain.getValue(1);
2584  }
2585
2586  Ops.push_back(Chain);
2587  Ops.push_back(Callee);
2588
2589  if (isTailCall)
2590    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2591
2592  // Add argument registers to the end of the list so that they are known live
2593  // into the call.
2594  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2595    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2596                                  RegsToPass[i].second.getValueType()));
2597
2598  // Add a register mask operand representing the call-preserved registers.
2599  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2600  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2601  assert(Mask && "Missing call preserved mask for calling convention");
2602  Ops.push_back(DAG.getRegisterMask(Mask));
2603
2604  if (InFlag.getNode())
2605    Ops.push_back(InFlag);
2606
2607  if (isTailCall) {
2608    // We used to do:
2609    //// If this is the first return lowered for this function, add the regs
2610    //// to the liveout set for the function.
2611    // This isn't right, although it's probably harmless on x86; liveouts
2612    // should be computed from returns not tail calls.  Consider a void
2613    // function making a tail call to a function returning int.
2614    return DAG.getNode(X86ISD::TC_RETURN, dl,
2615                       NodeTys, &Ops[0], Ops.size());
2616  }
2617
2618  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2619  InFlag = Chain.getValue(1);
2620
2621  // Create the CALLSEQ_END node.
2622  unsigned NumBytesForCalleeToPush;
2623  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2624                       getTargetMachine().Options.GuaranteedTailCallOpt))
2625    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2626  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2627           SR == StackStructReturn)
2628    // If this is a call to a struct-return function, the callee
2629    // pops the hidden struct pointer, so we have to push it back.
2630    // This is common for Darwin/X86, Linux & Mingw32 targets.
2631    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2632    NumBytesForCalleeToPush = 4;
2633  else
2634    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2635
2636  // Returns a flag for retval copy to use.
2637  if (!IsSibcall) {
2638    Chain = DAG.getCALLSEQ_END(Chain,
2639                               DAG.getIntPtrConstant(NumBytes, true),
2640                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2641                                                     true),
2642                               InFlag);
2643    InFlag = Chain.getValue(1);
2644  }
2645
2646  // Handle result values, copying them out of physregs into vregs that we
2647  // return.
2648  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2649                         Ins, dl, DAG, InVals);
2650}
2651
2652
2653//===----------------------------------------------------------------------===//
2654//                Fast Calling Convention (tail call) implementation
2655//===----------------------------------------------------------------------===//
2656
2657//  Like std call, callee cleans arguments, convention except that ECX is
2658//  reserved for storing the tail called function address. Only 2 registers are
2659//  free for argument passing (inreg). Tail call optimization is performed
2660//  provided:
2661//                * tailcallopt is enabled
2662//                * caller/callee are fastcc
2663//  On X86_64 architecture with GOT-style position independent code only local
2664//  (within module) calls are supported at the moment.
2665//  To keep the stack aligned according to platform abi the function
2666//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2667//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2668//  If a tail called function callee has more arguments than the caller the
2669//  caller needs to make sure that there is room to move the RETADDR to. This is
2670//  achieved by reserving an area the size of the argument delta right after the
2671//  original REtADDR, but before the saved framepointer or the spilled registers
2672//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2673//  stack layout:
2674//    arg1
2675//    arg2
2676//    RETADDR
2677//    [ new RETADDR
2678//      move area ]
2679//    (possible EBP)
2680//    ESI
2681//    EDI
2682//    local1 ..
2683
2684/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2685/// for a 16 byte align requirement.
2686unsigned
2687X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2688                                               SelectionDAG& DAG) const {
2689  MachineFunction &MF = DAG.getMachineFunction();
2690  const TargetMachine &TM = MF.getTarget();
2691  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2692  unsigned StackAlignment = TFI.getStackAlignment();
2693  uint64_t AlignMask = StackAlignment - 1;
2694  int64_t Offset = StackSize;
2695  unsigned SlotSize = RegInfo->getSlotSize();
2696  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2697    // Number smaller than 12 so just add the difference.
2698    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2699  } else {
2700    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2701    Offset = ((~AlignMask) & Offset) + StackAlignment +
2702      (StackAlignment-SlotSize);
2703  }
2704  return Offset;
2705}
2706
2707/// MatchingStackOffset - Return true if the given stack call argument is
2708/// already available in the same position (relatively) of the caller's
2709/// incoming argument stack.
2710static
2711bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2712                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2713                         const X86InstrInfo *TII) {
2714  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2715  int FI = INT_MAX;
2716  if (Arg.getOpcode() == ISD::CopyFromReg) {
2717    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2718    if (!TargetRegisterInfo::isVirtualRegister(VR))
2719      return false;
2720    MachineInstr *Def = MRI->getVRegDef(VR);
2721    if (!Def)
2722      return false;
2723    if (!Flags.isByVal()) {
2724      if (!TII->isLoadFromStackSlot(Def, FI))
2725        return false;
2726    } else {
2727      unsigned Opcode = Def->getOpcode();
2728      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2729          Def->getOperand(1).isFI()) {
2730        FI = Def->getOperand(1).getIndex();
2731        Bytes = Flags.getByValSize();
2732      } else
2733        return false;
2734    }
2735  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2736    if (Flags.isByVal())
2737      // ByVal argument is passed in as a pointer but it's now being
2738      // dereferenced. e.g.
2739      // define @foo(%struct.X* %A) {
2740      //   tail call @bar(%struct.X* byval %A)
2741      // }
2742      return false;
2743    SDValue Ptr = Ld->getBasePtr();
2744    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2745    if (!FINode)
2746      return false;
2747    FI = FINode->getIndex();
2748  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2749    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2750    FI = FINode->getIndex();
2751    Bytes = Flags.getByValSize();
2752  } else
2753    return false;
2754
2755  assert(FI != INT_MAX);
2756  if (!MFI->isFixedObjectIndex(FI))
2757    return false;
2758  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2759}
2760
2761/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2762/// for tail call optimization. Targets which want to do tail call
2763/// optimization should implement this function.
2764bool
2765X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2766                                                     CallingConv::ID CalleeCC,
2767                                                     bool isVarArg,
2768                                                     bool isCalleeStructRet,
2769                                                     bool isCallerStructRet,
2770                                                     Type *RetTy,
2771                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2772                                    const SmallVectorImpl<SDValue> &OutVals,
2773                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2774                                                     SelectionDAG& DAG) const {
2775  if (!IsTailCallConvention(CalleeCC) &&
2776      CalleeCC != CallingConv::C)
2777    return false;
2778
2779  // If -tailcallopt is specified, make fastcc functions tail-callable.
2780  const MachineFunction &MF = DAG.getMachineFunction();
2781  const Function *CallerF = DAG.getMachineFunction().getFunction();
2782
2783  // If the function return type is x86_fp80 and the callee return type is not,
2784  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2785  // perform a tailcall optimization here.
2786  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2787    return false;
2788
2789  CallingConv::ID CallerCC = CallerF->getCallingConv();
2790  bool CCMatch = CallerCC == CalleeCC;
2791
2792  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2793    if (IsTailCallConvention(CalleeCC) && CCMatch)
2794      return true;
2795    return false;
2796  }
2797
2798  // Look for obvious safe cases to perform tail call optimization that do not
2799  // require ABI changes. This is what gcc calls sibcall.
2800
2801  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2802  // emit a special epilogue.
2803  if (RegInfo->needsStackRealignment(MF))
2804    return false;
2805
2806  // Also avoid sibcall optimization if either caller or callee uses struct
2807  // return semantics.
2808  if (isCalleeStructRet || isCallerStructRet)
2809    return false;
2810
2811  // An stdcall caller is expected to clean up its arguments; the callee
2812  // isn't going to do that.
2813  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2814    return false;
2815
2816  // Do not sibcall optimize vararg calls unless all arguments are passed via
2817  // registers.
2818  if (isVarArg && !Outs.empty()) {
2819
2820    // Optimizing for varargs on Win64 is unlikely to be safe without
2821    // additional testing.
2822    if (Subtarget->isTargetWin64())
2823      return false;
2824
2825    SmallVector<CCValAssign, 16> ArgLocs;
2826    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2827                   getTargetMachine(), ArgLocs, *DAG.getContext());
2828
2829    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2830    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2831      if (!ArgLocs[i].isRegLoc())
2832        return false;
2833  }
2834
2835  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2836  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2837  // this into a sibcall.
2838  bool Unused = false;
2839  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2840    if (!Ins[i].Used) {
2841      Unused = true;
2842      break;
2843    }
2844  }
2845  if (Unused) {
2846    SmallVector<CCValAssign, 16> RVLocs;
2847    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2848                   getTargetMachine(), RVLocs, *DAG.getContext());
2849    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2850    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2851      CCValAssign &VA = RVLocs[i];
2852      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2853        return false;
2854    }
2855  }
2856
2857  // If the calling conventions do not match, then we'd better make sure the
2858  // results are returned in the same way as what the caller expects.
2859  if (!CCMatch) {
2860    SmallVector<CCValAssign, 16> RVLocs1;
2861    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2862                    getTargetMachine(), RVLocs1, *DAG.getContext());
2863    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2864
2865    SmallVector<CCValAssign, 16> RVLocs2;
2866    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2867                    getTargetMachine(), RVLocs2, *DAG.getContext());
2868    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2869
2870    if (RVLocs1.size() != RVLocs2.size())
2871      return false;
2872    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2873      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2874        return false;
2875      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2876        return false;
2877      if (RVLocs1[i].isRegLoc()) {
2878        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2879          return false;
2880      } else {
2881        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2882          return false;
2883      }
2884    }
2885  }
2886
2887  // If the callee takes no arguments then go on to check the results of the
2888  // call.
2889  if (!Outs.empty()) {
2890    // Check if stack adjustment is needed. For now, do not do this if any
2891    // argument is passed on the stack.
2892    SmallVector<CCValAssign, 16> ArgLocs;
2893    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2894                   getTargetMachine(), ArgLocs, *DAG.getContext());
2895
2896    // Allocate shadow area for Win64
2897    if (Subtarget->isTargetWin64()) {
2898      CCInfo.AllocateStack(32, 8);
2899    }
2900
2901    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2902    if (CCInfo.getNextStackOffset()) {
2903      MachineFunction &MF = DAG.getMachineFunction();
2904      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2905        return false;
2906
2907      // Check if the arguments are already laid out in the right way as
2908      // the caller's fixed stack objects.
2909      MachineFrameInfo *MFI = MF.getFrameInfo();
2910      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2911      const X86InstrInfo *TII =
2912        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2913      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2914        CCValAssign &VA = ArgLocs[i];
2915        SDValue Arg = OutVals[i];
2916        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2917        if (VA.getLocInfo() == CCValAssign::Indirect)
2918          return false;
2919        if (!VA.isRegLoc()) {
2920          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2921                                   MFI, MRI, TII))
2922            return false;
2923        }
2924      }
2925    }
2926
2927    // If the tailcall address may be in a register, then make sure it's
2928    // possible to register allocate for it. In 32-bit, the call address can
2929    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2930    // callee-saved registers are restored. These happen to be the same
2931    // registers used to pass 'inreg' arguments so watch out for those.
2932    if (!Subtarget->is64Bit() &&
2933        !isa<GlobalAddressSDNode>(Callee) &&
2934        !isa<ExternalSymbolSDNode>(Callee)) {
2935      unsigned NumInRegs = 0;
2936      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2937        CCValAssign &VA = ArgLocs[i];
2938        if (!VA.isRegLoc())
2939          continue;
2940        unsigned Reg = VA.getLocReg();
2941        switch (Reg) {
2942        default: break;
2943        case X86::EAX: case X86::EDX: case X86::ECX:
2944          if (++NumInRegs == 3)
2945            return false;
2946          break;
2947        }
2948      }
2949    }
2950  }
2951
2952  return true;
2953}
2954
2955FastISel *
2956X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2957                                  const TargetLibraryInfo *libInfo) const {
2958  return X86::createFastISel(funcInfo, libInfo);
2959}
2960
2961
2962//===----------------------------------------------------------------------===//
2963//                           Other Lowering Hooks
2964//===----------------------------------------------------------------------===//
2965
2966static bool MayFoldLoad(SDValue Op) {
2967  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2968}
2969
2970static bool MayFoldIntoStore(SDValue Op) {
2971  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2972}
2973
2974static bool isTargetShuffle(unsigned Opcode) {
2975  switch(Opcode) {
2976  default: return false;
2977  case X86ISD::PSHUFD:
2978  case X86ISD::PSHUFHW:
2979  case X86ISD::PSHUFLW:
2980  case X86ISD::SHUFP:
2981  case X86ISD::PALIGN:
2982  case X86ISD::MOVLHPS:
2983  case X86ISD::MOVLHPD:
2984  case X86ISD::MOVHLPS:
2985  case X86ISD::MOVLPS:
2986  case X86ISD::MOVLPD:
2987  case X86ISD::MOVSHDUP:
2988  case X86ISD::MOVSLDUP:
2989  case X86ISD::MOVDDUP:
2990  case X86ISD::MOVSS:
2991  case X86ISD::MOVSD:
2992  case X86ISD::UNPCKL:
2993  case X86ISD::UNPCKH:
2994  case X86ISD::VPERMILP:
2995  case X86ISD::VPERM2X128:
2996  case X86ISD::VPERMI:
2997    return true;
2998  }
2999}
3000
3001static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3002                                    SDValue V1, SelectionDAG &DAG) {
3003  switch(Opc) {
3004  default: llvm_unreachable("Unknown x86 shuffle node");
3005  case X86ISD::MOVSHDUP:
3006  case X86ISD::MOVSLDUP:
3007  case X86ISD::MOVDDUP:
3008    return DAG.getNode(Opc, dl, VT, V1);
3009  }
3010}
3011
3012static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3013                                    SDValue V1, unsigned TargetMask,
3014                                    SelectionDAG &DAG) {
3015  switch(Opc) {
3016  default: llvm_unreachable("Unknown x86 shuffle node");
3017  case X86ISD::PSHUFD:
3018  case X86ISD::PSHUFHW:
3019  case X86ISD::PSHUFLW:
3020  case X86ISD::VPERMILP:
3021  case X86ISD::VPERMI:
3022    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3023  }
3024}
3025
3026static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3027                                    SDValue V1, SDValue V2, unsigned TargetMask,
3028                                    SelectionDAG &DAG) {
3029  switch(Opc) {
3030  default: llvm_unreachable("Unknown x86 shuffle node");
3031  case X86ISD::PALIGN:
3032  case X86ISD::SHUFP:
3033  case X86ISD::VPERM2X128:
3034    return DAG.getNode(Opc, dl, VT, V1, V2,
3035                       DAG.getConstant(TargetMask, MVT::i8));
3036  }
3037}
3038
3039static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3040                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3041  switch(Opc) {
3042  default: llvm_unreachable("Unknown x86 shuffle node");
3043  case X86ISD::MOVLHPS:
3044  case X86ISD::MOVLHPD:
3045  case X86ISD::MOVHLPS:
3046  case X86ISD::MOVLPS:
3047  case X86ISD::MOVLPD:
3048  case X86ISD::MOVSS:
3049  case X86ISD::MOVSD:
3050  case X86ISD::UNPCKL:
3051  case X86ISD::UNPCKH:
3052    return DAG.getNode(Opc, dl, VT, V1, V2);
3053  }
3054}
3055
3056SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3057  MachineFunction &MF = DAG.getMachineFunction();
3058  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3059  int ReturnAddrIndex = FuncInfo->getRAIndex();
3060
3061  if (ReturnAddrIndex == 0) {
3062    // Set up a frame object for the return address.
3063    unsigned SlotSize = RegInfo->getSlotSize();
3064    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3065                                                           false);
3066    FuncInfo->setRAIndex(ReturnAddrIndex);
3067  }
3068
3069  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3070}
3071
3072
3073bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3074                                       bool hasSymbolicDisplacement) {
3075  // Offset should fit into 32 bit immediate field.
3076  if (!isInt<32>(Offset))
3077    return false;
3078
3079  // If we don't have a symbolic displacement - we don't have any extra
3080  // restrictions.
3081  if (!hasSymbolicDisplacement)
3082    return true;
3083
3084  // FIXME: Some tweaks might be needed for medium code model.
3085  if (M != CodeModel::Small && M != CodeModel::Kernel)
3086    return false;
3087
3088  // For small code model we assume that latest object is 16MB before end of 31
3089  // bits boundary. We may also accept pretty large negative constants knowing
3090  // that all objects are in the positive half of address space.
3091  if (M == CodeModel::Small && Offset < 16*1024*1024)
3092    return true;
3093
3094  // For kernel code model we know that all object resist in the negative half
3095  // of 32bits address space. We may not accept negative offsets, since they may
3096  // be just off and we may accept pretty large positive ones.
3097  if (M == CodeModel::Kernel && Offset > 0)
3098    return true;
3099
3100  return false;
3101}
3102
3103/// isCalleePop - Determines whether the callee is required to pop its
3104/// own arguments. Callee pop is necessary to support tail calls.
3105bool X86::isCalleePop(CallingConv::ID CallingConv,
3106                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3107  if (IsVarArg)
3108    return false;
3109
3110  switch (CallingConv) {
3111  default:
3112    return false;
3113  case CallingConv::X86_StdCall:
3114    return !is64Bit;
3115  case CallingConv::X86_FastCall:
3116    return !is64Bit;
3117  case CallingConv::X86_ThisCall:
3118    return !is64Bit;
3119  case CallingConv::Fast:
3120    return TailCallOpt;
3121  case CallingConv::GHC:
3122    return TailCallOpt;
3123  case CallingConv::HiPE:
3124    return TailCallOpt;
3125  }
3126}
3127
3128/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3129/// specific condition code, returning the condition code and the LHS/RHS of the
3130/// comparison to make.
3131static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3132                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3133  if (!isFP) {
3134    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3135      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3136        // X > -1   -> X == 0, jump !sign.
3137        RHS = DAG.getConstant(0, RHS.getValueType());
3138        return X86::COND_NS;
3139      }
3140      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3141        // X < 0   -> X == 0, jump on sign.
3142        return X86::COND_S;
3143      }
3144      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3145        // X < 1   -> X <= 0
3146        RHS = DAG.getConstant(0, RHS.getValueType());
3147        return X86::COND_LE;
3148      }
3149    }
3150
3151    switch (SetCCOpcode) {
3152    default: llvm_unreachable("Invalid integer condition!");
3153    case ISD::SETEQ:  return X86::COND_E;
3154    case ISD::SETGT:  return X86::COND_G;
3155    case ISD::SETGE:  return X86::COND_GE;
3156    case ISD::SETLT:  return X86::COND_L;
3157    case ISD::SETLE:  return X86::COND_LE;
3158    case ISD::SETNE:  return X86::COND_NE;
3159    case ISD::SETULT: return X86::COND_B;
3160    case ISD::SETUGT: return X86::COND_A;
3161    case ISD::SETULE: return X86::COND_BE;
3162    case ISD::SETUGE: return X86::COND_AE;
3163    }
3164  }
3165
3166  // First determine if it is required or is profitable to flip the operands.
3167
3168  // If LHS is a foldable load, but RHS is not, flip the condition.
3169  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3170      !ISD::isNON_EXTLoad(RHS.getNode())) {
3171    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3172    std::swap(LHS, RHS);
3173  }
3174
3175  switch (SetCCOpcode) {
3176  default: break;
3177  case ISD::SETOLT:
3178  case ISD::SETOLE:
3179  case ISD::SETUGT:
3180  case ISD::SETUGE:
3181    std::swap(LHS, RHS);
3182    break;
3183  }
3184
3185  // On a floating point condition, the flags are set as follows:
3186  // ZF  PF  CF   op
3187  //  0 | 0 | 0 | X > Y
3188  //  0 | 0 | 1 | X < Y
3189  //  1 | 0 | 0 | X == Y
3190  //  1 | 1 | 1 | unordered
3191  switch (SetCCOpcode) {
3192  default: llvm_unreachable("Condcode should be pre-legalized away");
3193  case ISD::SETUEQ:
3194  case ISD::SETEQ:   return X86::COND_E;
3195  case ISD::SETOLT:              // flipped
3196  case ISD::SETOGT:
3197  case ISD::SETGT:   return X86::COND_A;
3198  case ISD::SETOLE:              // flipped
3199  case ISD::SETOGE:
3200  case ISD::SETGE:   return X86::COND_AE;
3201  case ISD::SETUGT:              // flipped
3202  case ISD::SETULT:
3203  case ISD::SETLT:   return X86::COND_B;
3204  case ISD::SETUGE:              // flipped
3205  case ISD::SETULE:
3206  case ISD::SETLE:   return X86::COND_BE;
3207  case ISD::SETONE:
3208  case ISD::SETNE:   return X86::COND_NE;
3209  case ISD::SETUO:   return X86::COND_P;
3210  case ISD::SETO:    return X86::COND_NP;
3211  case ISD::SETOEQ:
3212  case ISD::SETUNE:  return X86::COND_INVALID;
3213  }
3214}
3215
3216/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3217/// code. Current x86 isa includes the following FP cmov instructions:
3218/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3219static bool hasFPCMov(unsigned X86CC) {
3220  switch (X86CC) {
3221  default:
3222    return false;
3223  case X86::COND_B:
3224  case X86::COND_BE:
3225  case X86::COND_E:
3226  case X86::COND_P:
3227  case X86::COND_A:
3228  case X86::COND_AE:
3229  case X86::COND_NE:
3230  case X86::COND_NP:
3231    return true;
3232  }
3233}
3234
3235/// isFPImmLegal - Returns true if the target can instruction select the
3236/// specified FP immediate natively. If false, the legalizer will
3237/// materialize the FP immediate as a load from a constant pool.
3238bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3239  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3240    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3241      return true;
3242  }
3243  return false;
3244}
3245
3246/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3247/// the specified range (L, H].
3248static bool isUndefOrInRange(int Val, int Low, int Hi) {
3249  return (Val < 0) || (Val >= Low && Val < Hi);
3250}
3251
3252/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3253/// specified value.
3254static bool isUndefOrEqual(int Val, int CmpVal) {
3255  return (Val < 0 || Val == CmpVal);
3256}
3257
3258/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3259/// from position Pos and ending in Pos+Size, falls within the specified
3260/// sequential range (L, L+Pos]. or is undef.
3261static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3262                                       unsigned Pos, unsigned Size, int Low) {
3263  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3264    if (!isUndefOrEqual(Mask[i], Low))
3265      return false;
3266  return true;
3267}
3268
3269/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3270/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3271/// the second operand.
3272static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3273  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3274    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3275  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3276    return (Mask[0] < 2 && Mask[1] < 2);
3277  return false;
3278}
3279
3280/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3281/// is suitable for input to PSHUFHW.
3282static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3283  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3284    return false;
3285
3286  // Lower quadword copied in order or undef.
3287  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3288    return false;
3289
3290  // Upper quadword shuffled.
3291  for (unsigned i = 4; i != 8; ++i)
3292    if (!isUndefOrInRange(Mask[i], 4, 8))
3293      return false;
3294
3295  if (VT == MVT::v16i16) {
3296    // Lower quadword copied in order or undef.
3297    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3298      return false;
3299
3300    // Upper quadword shuffled.
3301    for (unsigned i = 12; i != 16; ++i)
3302      if (!isUndefOrInRange(Mask[i], 12, 16))
3303        return false;
3304  }
3305
3306  return true;
3307}
3308
3309/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3310/// is suitable for input to PSHUFLW.
3311static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3312  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3313    return false;
3314
3315  // Upper quadword copied in order.
3316  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3317    return false;
3318
3319  // Lower quadword shuffled.
3320  for (unsigned i = 0; i != 4; ++i)
3321    if (!isUndefOrInRange(Mask[i], 0, 4))
3322      return false;
3323
3324  if (VT == MVT::v16i16) {
3325    // Upper quadword copied in order.
3326    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3327      return false;
3328
3329    // Lower quadword shuffled.
3330    for (unsigned i = 8; i != 12; ++i)
3331      if (!isUndefOrInRange(Mask[i], 8, 12))
3332        return false;
3333  }
3334
3335  return true;
3336}
3337
3338/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3339/// is suitable for input to PALIGNR.
3340static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3341                          const X86Subtarget *Subtarget) {
3342  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3343      (VT.getSizeInBits() == 256 && !Subtarget->hasInt256()))
3344    return false;
3345
3346  unsigned NumElts = VT.getVectorNumElements();
3347  unsigned NumLanes = VT.getSizeInBits()/128;
3348  unsigned NumLaneElts = NumElts/NumLanes;
3349
3350  // Do not handle 64-bit element shuffles with palignr.
3351  if (NumLaneElts == 2)
3352    return false;
3353
3354  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3355    unsigned i;
3356    for (i = 0; i != NumLaneElts; ++i) {
3357      if (Mask[i+l] >= 0)
3358        break;
3359    }
3360
3361    // Lane is all undef, go to next lane
3362    if (i == NumLaneElts)
3363      continue;
3364
3365    int Start = Mask[i+l];
3366
3367    // Make sure its in this lane in one of the sources
3368    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3369        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3370      return false;
3371
3372    // If not lane 0, then we must match lane 0
3373    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3374      return false;
3375
3376    // Correct second source to be contiguous with first source
3377    if (Start >= (int)NumElts)
3378      Start -= NumElts - NumLaneElts;
3379
3380    // Make sure we're shifting in the right direction.
3381    if (Start <= (int)(i+l))
3382      return false;
3383
3384    Start -= i;
3385
3386    // Check the rest of the elements to see if they are consecutive.
3387    for (++i; i != NumLaneElts; ++i) {
3388      int Idx = Mask[i+l];
3389
3390      // Make sure its in this lane
3391      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3392          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3393        return false;
3394
3395      // If not lane 0, then we must match lane 0
3396      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3397        return false;
3398
3399      if (Idx >= (int)NumElts)
3400        Idx -= NumElts - NumLaneElts;
3401
3402      if (!isUndefOrEqual(Idx, Start+i))
3403        return false;
3404
3405    }
3406  }
3407
3408  return true;
3409}
3410
3411/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3412/// the two vector operands have swapped position.
3413static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3414                                     unsigned NumElems) {
3415  for (unsigned i = 0; i != NumElems; ++i) {
3416    int idx = Mask[i];
3417    if (idx < 0)
3418      continue;
3419    else if (idx < (int)NumElems)
3420      Mask[i] = idx + NumElems;
3421    else
3422      Mask[i] = idx - NumElems;
3423  }
3424}
3425
3426/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3427/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3428/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3429/// reverse of what x86 shuffles want.
3430static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
3431                        bool Commuted = false) {
3432  if (!HasFp256 && VT.getSizeInBits() == 256)
3433    return false;
3434
3435  unsigned NumElems = VT.getVectorNumElements();
3436  unsigned NumLanes = VT.getSizeInBits()/128;
3437  unsigned NumLaneElems = NumElems/NumLanes;
3438
3439  if (NumLaneElems != 2 && NumLaneElems != 4)
3440    return false;
3441
3442  // VSHUFPSY divides the resulting vector into 4 chunks.
3443  // The sources are also splitted into 4 chunks, and each destination
3444  // chunk must come from a different source chunk.
3445  //
3446  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3447  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3448  //
3449  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3450  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3451  //
3452  // VSHUFPDY divides the resulting vector into 4 chunks.
3453  // The sources are also splitted into 4 chunks, and each destination
3454  // chunk must come from a different source chunk.
3455  //
3456  //  SRC1 =>      X3       X2       X1       X0
3457  //  SRC2 =>      Y3       Y2       Y1       Y0
3458  //
3459  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3460  //
3461  unsigned HalfLaneElems = NumLaneElems/2;
3462  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3463    for (unsigned i = 0; i != NumLaneElems; ++i) {
3464      int Idx = Mask[i+l];
3465      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3466      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3467        return false;
3468      // For VSHUFPSY, the mask of the second half must be the same as the
3469      // first but with the appropriate offsets. This works in the same way as
3470      // VPERMILPS works with masks.
3471      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3472        continue;
3473      if (!isUndefOrEqual(Idx, Mask[i]+l))
3474        return false;
3475    }
3476  }
3477
3478  return true;
3479}
3480
3481/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3482/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3483static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3484  if (!VT.is128BitVector())
3485    return false;
3486
3487  unsigned NumElems = VT.getVectorNumElements();
3488
3489  if (NumElems != 4)
3490    return false;
3491
3492  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3493  return isUndefOrEqual(Mask[0], 6) &&
3494         isUndefOrEqual(Mask[1], 7) &&
3495         isUndefOrEqual(Mask[2], 2) &&
3496         isUndefOrEqual(Mask[3], 3);
3497}
3498
3499/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3500/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3501/// <2, 3, 2, 3>
3502static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3503  if (!VT.is128BitVector())
3504    return false;
3505
3506  unsigned NumElems = VT.getVectorNumElements();
3507
3508  if (NumElems != 4)
3509    return false;
3510
3511  return isUndefOrEqual(Mask[0], 2) &&
3512         isUndefOrEqual(Mask[1], 3) &&
3513         isUndefOrEqual(Mask[2], 2) &&
3514         isUndefOrEqual(Mask[3], 3);
3515}
3516
3517/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3518/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3519static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3520  if (!VT.is128BitVector())
3521    return false;
3522
3523  unsigned NumElems = VT.getVectorNumElements();
3524
3525  if (NumElems != 2 && NumElems != 4)
3526    return false;
3527
3528  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3529    if (!isUndefOrEqual(Mask[i], i + NumElems))
3530      return false;
3531
3532  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3533    if (!isUndefOrEqual(Mask[i], i))
3534      return false;
3535
3536  return true;
3537}
3538
3539/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3540/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3541static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3542  if (!VT.is128BitVector())
3543    return false;
3544
3545  unsigned NumElems = VT.getVectorNumElements();
3546
3547  if (NumElems != 2 && NumElems != 4)
3548    return false;
3549
3550  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3551    if (!isUndefOrEqual(Mask[i], i))
3552      return false;
3553
3554  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3555    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3556      return false;
3557
3558  return true;
3559}
3560
3561//
3562// Some special combinations that can be optimized.
3563//
3564static
3565SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3566                               SelectionDAG &DAG) {
3567  EVT VT = SVOp->getValueType(0);
3568  DebugLoc dl = SVOp->getDebugLoc();
3569
3570  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3571    return SDValue();
3572
3573  ArrayRef<int> Mask = SVOp->getMask();
3574
3575  // These are the special masks that may be optimized.
3576  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3577  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3578  bool MatchEvenMask = true;
3579  bool MatchOddMask  = true;
3580  for (int i=0; i<8; ++i) {
3581    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3582      MatchEvenMask = false;
3583    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3584      MatchOddMask = false;
3585  }
3586
3587  if (!MatchEvenMask && !MatchOddMask)
3588    return SDValue();
3589
3590  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3591
3592  SDValue Op0 = SVOp->getOperand(0);
3593  SDValue Op1 = SVOp->getOperand(1);
3594
3595  if (MatchEvenMask) {
3596    // Shift the second operand right to 32 bits.
3597    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3598    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3599  } else {
3600    // Shift the first operand left to 32 bits.
3601    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3602    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3603  }
3604  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3605  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3606}
3607
3608/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3609/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3610static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3611                         bool HasInt256, bool V2IsSplat = false) {
3612  unsigned NumElts = VT.getVectorNumElements();
3613
3614  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3615         "Unsupported vector type for unpckh");
3616
3617  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3618      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3619    return false;
3620
3621  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3622  // independently on 128-bit lanes.
3623  unsigned NumLanes = VT.getSizeInBits()/128;
3624  unsigned NumLaneElts = NumElts/NumLanes;
3625
3626  for (unsigned l = 0; l != NumLanes; ++l) {
3627    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3628         i != (l+1)*NumLaneElts;
3629         i += 2, ++j) {
3630      int BitI  = Mask[i];
3631      int BitI1 = Mask[i+1];
3632      if (!isUndefOrEqual(BitI, j))
3633        return false;
3634      if (V2IsSplat) {
3635        if (!isUndefOrEqual(BitI1, NumElts))
3636          return false;
3637      } else {
3638        if (!isUndefOrEqual(BitI1, j + NumElts))
3639          return false;
3640      }
3641    }
3642  }
3643
3644  return true;
3645}
3646
3647/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3648/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3649static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3650                         bool HasInt256, bool V2IsSplat = false) {
3651  unsigned NumElts = VT.getVectorNumElements();
3652
3653  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3654         "Unsupported vector type for unpckh");
3655
3656  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3657      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3658    return false;
3659
3660  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3661  // independently on 128-bit lanes.
3662  unsigned NumLanes = VT.getSizeInBits()/128;
3663  unsigned NumLaneElts = NumElts/NumLanes;
3664
3665  for (unsigned l = 0; l != NumLanes; ++l) {
3666    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3667         i != (l+1)*NumLaneElts; i += 2, ++j) {
3668      int BitI  = Mask[i];
3669      int BitI1 = Mask[i+1];
3670      if (!isUndefOrEqual(BitI, j))
3671        return false;
3672      if (V2IsSplat) {
3673        if (isUndefOrEqual(BitI1, NumElts))
3674          return false;
3675      } else {
3676        if (!isUndefOrEqual(BitI1, j+NumElts))
3677          return false;
3678      }
3679    }
3680  }
3681  return true;
3682}
3683
3684/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3685/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3686/// <0, 0, 1, 1>
3687static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3688                                  bool HasInt256) {
3689  unsigned NumElts = VT.getVectorNumElements();
3690
3691  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3692         "Unsupported vector type for unpckh");
3693
3694  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3695      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3696    return false;
3697
3698  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3699  // FIXME: Need a better way to get rid of this, there's no latency difference
3700  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3701  // the former later. We should also remove the "_undef" special mask.
3702  if (NumElts == 4 && VT.getSizeInBits() == 256)
3703    return false;
3704
3705  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3706  // independently on 128-bit lanes.
3707  unsigned NumLanes = VT.getSizeInBits()/128;
3708  unsigned NumLaneElts = NumElts/NumLanes;
3709
3710  for (unsigned l = 0; l != NumLanes; ++l) {
3711    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3712         i != (l+1)*NumLaneElts;
3713         i += 2, ++j) {
3714      int BitI  = Mask[i];
3715      int BitI1 = Mask[i+1];
3716
3717      if (!isUndefOrEqual(BitI, j))
3718        return false;
3719      if (!isUndefOrEqual(BitI1, j))
3720        return false;
3721    }
3722  }
3723
3724  return true;
3725}
3726
3727/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3728/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3729/// <2, 2, 3, 3>
3730static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
3731  unsigned NumElts = VT.getVectorNumElements();
3732
3733  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3734         "Unsupported vector type for unpckh");
3735
3736  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3737      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3738    return false;
3739
3740  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3741  // independently on 128-bit lanes.
3742  unsigned NumLanes = VT.getSizeInBits()/128;
3743  unsigned NumLaneElts = NumElts/NumLanes;
3744
3745  for (unsigned l = 0; l != NumLanes; ++l) {
3746    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3747         i != (l+1)*NumLaneElts; i += 2, ++j) {
3748      int BitI  = Mask[i];
3749      int BitI1 = Mask[i+1];
3750      if (!isUndefOrEqual(BitI, j))
3751        return false;
3752      if (!isUndefOrEqual(BitI1, j))
3753        return false;
3754    }
3755  }
3756  return true;
3757}
3758
3759/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3760/// specifies a shuffle of elements that is suitable for input to MOVSS,
3761/// MOVSD, and MOVD, i.e. setting the lowest element.
3762static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3763  if (VT.getVectorElementType().getSizeInBits() < 32)
3764    return false;
3765  if (!VT.is128BitVector())
3766    return false;
3767
3768  unsigned NumElts = VT.getVectorNumElements();
3769
3770  if (!isUndefOrEqual(Mask[0], NumElts))
3771    return false;
3772
3773  for (unsigned i = 1; i != NumElts; ++i)
3774    if (!isUndefOrEqual(Mask[i], i))
3775      return false;
3776
3777  return true;
3778}
3779
3780/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3781/// as permutations between 128-bit chunks or halves. As an example: this
3782/// shuffle bellow:
3783///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3784/// The first half comes from the second half of V1 and the second half from the
3785/// the second half of V2.
3786static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3787  if (!HasFp256 || !VT.is256BitVector())
3788    return false;
3789
3790  // The shuffle result is divided into half A and half B. In total the two
3791  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3792  // B must come from C, D, E or F.
3793  unsigned HalfSize = VT.getVectorNumElements()/2;
3794  bool MatchA = false, MatchB = false;
3795
3796  // Check if A comes from one of C, D, E, F.
3797  for (unsigned Half = 0; Half != 4; ++Half) {
3798    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3799      MatchA = true;
3800      break;
3801    }
3802  }
3803
3804  // Check if B comes from one of C, D, E, F.
3805  for (unsigned Half = 0; Half != 4; ++Half) {
3806    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3807      MatchB = true;
3808      break;
3809    }
3810  }
3811
3812  return MatchA && MatchB;
3813}
3814
3815/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3816/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3817static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3818  EVT VT = SVOp->getValueType(0);
3819
3820  unsigned HalfSize = VT.getVectorNumElements()/2;
3821
3822  unsigned FstHalf = 0, SndHalf = 0;
3823  for (unsigned i = 0; i < HalfSize; ++i) {
3824    if (SVOp->getMaskElt(i) > 0) {
3825      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3826      break;
3827    }
3828  }
3829  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3830    if (SVOp->getMaskElt(i) > 0) {
3831      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3832      break;
3833    }
3834  }
3835
3836  return (FstHalf | (SndHalf << 4));
3837}
3838
3839/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3840/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3841/// Note that VPERMIL mask matching is different depending whether theunderlying
3842/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3843/// to the same elements of the low, but to the higher half of the source.
3844/// In VPERMILPD the two lanes could be shuffled independently of each other
3845/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3846static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3847  if (!HasFp256)
3848    return false;
3849
3850  unsigned NumElts = VT.getVectorNumElements();
3851  // Only match 256-bit with 32/64-bit types
3852  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3853    return false;
3854
3855  unsigned NumLanes = VT.getSizeInBits()/128;
3856  unsigned LaneSize = NumElts/NumLanes;
3857  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3858    for (unsigned i = 0; i != LaneSize; ++i) {
3859      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3860        return false;
3861      if (NumElts != 8 || l == 0)
3862        continue;
3863      // VPERMILPS handling
3864      if (Mask[i] < 0)
3865        continue;
3866      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3867        return false;
3868    }
3869  }
3870
3871  return true;
3872}
3873
3874/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3875/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3876/// element of vector 2 and the other elements to come from vector 1 in order.
3877static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3878                               bool V2IsSplat = false, bool V2IsUndef = false) {
3879  if (!VT.is128BitVector())
3880    return false;
3881
3882  unsigned NumOps = VT.getVectorNumElements();
3883  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3884    return false;
3885
3886  if (!isUndefOrEqual(Mask[0], 0))
3887    return false;
3888
3889  for (unsigned i = 1; i != NumOps; ++i)
3890    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3891          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3892          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3893      return false;
3894
3895  return true;
3896}
3897
3898/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3899/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3900/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3901static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3902                           const X86Subtarget *Subtarget) {
3903  if (!Subtarget->hasSSE3())
3904    return false;
3905
3906  unsigned NumElems = VT.getVectorNumElements();
3907
3908  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3909      (VT.getSizeInBits() == 256 && NumElems != 8))
3910    return false;
3911
3912  // "i+1" is the value the indexed mask element must have
3913  for (unsigned i = 0; i != NumElems; i += 2)
3914    if (!isUndefOrEqual(Mask[i], i+1) ||
3915        !isUndefOrEqual(Mask[i+1], i+1))
3916      return false;
3917
3918  return true;
3919}
3920
3921/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3922/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3923/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3924static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3925                           const X86Subtarget *Subtarget) {
3926  if (!Subtarget->hasSSE3())
3927    return false;
3928
3929  unsigned NumElems = VT.getVectorNumElements();
3930
3931  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3932      (VT.getSizeInBits() == 256 && NumElems != 8))
3933    return false;
3934
3935  // "i" is the value the indexed mask element must have
3936  for (unsigned i = 0; i != NumElems; i += 2)
3937    if (!isUndefOrEqual(Mask[i], i) ||
3938        !isUndefOrEqual(Mask[i+1], i))
3939      return false;
3940
3941  return true;
3942}
3943
3944/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3945/// specifies a shuffle of elements that is suitable for input to 256-bit
3946/// version of MOVDDUP.
3947static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
3948  if (!HasFp256 || !VT.is256BitVector())
3949    return false;
3950
3951  unsigned NumElts = VT.getVectorNumElements();
3952  if (NumElts != 4)
3953    return false;
3954
3955  for (unsigned i = 0; i != NumElts/2; ++i)
3956    if (!isUndefOrEqual(Mask[i], 0))
3957      return false;
3958  for (unsigned i = NumElts/2; i != NumElts; ++i)
3959    if (!isUndefOrEqual(Mask[i], NumElts/2))
3960      return false;
3961  return true;
3962}
3963
3964/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3965/// specifies a shuffle of elements that is suitable for input to 128-bit
3966/// version of MOVDDUP.
3967static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3968  if (!VT.is128BitVector())
3969    return false;
3970
3971  unsigned e = VT.getVectorNumElements() / 2;
3972  for (unsigned i = 0; i != e; ++i)
3973    if (!isUndefOrEqual(Mask[i], i))
3974      return false;
3975  for (unsigned i = 0; i != e; ++i)
3976    if (!isUndefOrEqual(Mask[e+i], i))
3977      return false;
3978  return true;
3979}
3980
3981/// isVEXTRACTF128Index - Return true if the specified
3982/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3983/// suitable for input to VEXTRACTF128.
3984bool X86::isVEXTRACTF128Index(SDNode *N) {
3985  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3986    return false;
3987
3988  // The index should be aligned on a 128-bit boundary.
3989  uint64_t Index =
3990    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3991
3992  unsigned VL = N->getValueType(0).getVectorNumElements();
3993  unsigned VBits = N->getValueType(0).getSizeInBits();
3994  unsigned ElSize = VBits / VL;
3995  bool Result = (Index * ElSize) % 128 == 0;
3996
3997  return Result;
3998}
3999
4000/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4001/// operand specifies a subvector insert that is suitable for input to
4002/// VINSERTF128.
4003bool X86::isVINSERTF128Index(SDNode *N) {
4004  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4005    return false;
4006
4007  // The index should be aligned on a 128-bit boundary.
4008  uint64_t Index =
4009    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4010
4011  unsigned VL = N->getValueType(0).getVectorNumElements();
4012  unsigned VBits = N->getValueType(0).getSizeInBits();
4013  unsigned ElSize = VBits / VL;
4014  bool Result = (Index * ElSize) % 128 == 0;
4015
4016  return Result;
4017}
4018
4019/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4020/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4021/// Handles 128-bit and 256-bit.
4022static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4023  EVT VT = N->getValueType(0);
4024
4025  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4026         "Unsupported vector type for PSHUF/SHUFP");
4027
4028  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4029  // independently on 128-bit lanes.
4030  unsigned NumElts = VT.getVectorNumElements();
4031  unsigned NumLanes = VT.getSizeInBits()/128;
4032  unsigned NumLaneElts = NumElts/NumLanes;
4033
4034  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4035         "Only supports 2 or 4 elements per lane");
4036
4037  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4038  unsigned Mask = 0;
4039  for (unsigned i = 0; i != NumElts; ++i) {
4040    int Elt = N->getMaskElt(i);
4041    if (Elt < 0) continue;
4042    Elt &= NumLaneElts - 1;
4043    unsigned ShAmt = (i << Shift) % 8;
4044    Mask |= Elt << ShAmt;
4045  }
4046
4047  return Mask;
4048}
4049
4050/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4051/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4052static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4053  EVT VT = N->getValueType(0);
4054
4055  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4056         "Unsupported vector type for PSHUFHW");
4057
4058  unsigned NumElts = VT.getVectorNumElements();
4059
4060  unsigned Mask = 0;
4061  for (unsigned l = 0; l != NumElts; l += 8) {
4062    // 8 nodes per lane, but we only care about the last 4.
4063    for (unsigned i = 0; i < 4; ++i) {
4064      int Elt = N->getMaskElt(l+i+4);
4065      if (Elt < 0) continue;
4066      Elt &= 0x3; // only 2-bits.
4067      Mask |= Elt << (i * 2);
4068    }
4069  }
4070
4071  return Mask;
4072}
4073
4074/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4075/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4076static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4077  EVT VT = N->getValueType(0);
4078
4079  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4080         "Unsupported vector type for PSHUFHW");
4081
4082  unsigned NumElts = VT.getVectorNumElements();
4083
4084  unsigned Mask = 0;
4085  for (unsigned l = 0; l != NumElts; l += 8) {
4086    // 8 nodes per lane, but we only care about the first 4.
4087    for (unsigned i = 0; i < 4; ++i) {
4088      int Elt = N->getMaskElt(l+i);
4089      if (Elt < 0) continue;
4090      Elt &= 0x3; // only 2-bits
4091      Mask |= Elt << (i * 2);
4092    }
4093  }
4094
4095  return Mask;
4096}
4097
4098/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4099/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4100static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4101  EVT VT = SVOp->getValueType(0);
4102  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4103
4104  unsigned NumElts = VT.getVectorNumElements();
4105  unsigned NumLanes = VT.getSizeInBits()/128;
4106  unsigned NumLaneElts = NumElts/NumLanes;
4107
4108  int Val = 0;
4109  unsigned i;
4110  for (i = 0; i != NumElts; ++i) {
4111    Val = SVOp->getMaskElt(i);
4112    if (Val >= 0)
4113      break;
4114  }
4115  if (Val >= (int)NumElts)
4116    Val -= NumElts - NumLaneElts;
4117
4118  assert(Val - i > 0 && "PALIGNR imm should be positive");
4119  return (Val - i) * EltSize;
4120}
4121
4122/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4123/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4124/// instructions.
4125unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4126  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4127    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4128
4129  uint64_t Index =
4130    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4131
4132  EVT VecVT = N->getOperand(0).getValueType();
4133  EVT ElVT = VecVT.getVectorElementType();
4134
4135  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4136  return Index / NumElemsPerChunk;
4137}
4138
4139/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4140/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4141/// instructions.
4142unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4143  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4144    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4145
4146  uint64_t Index =
4147    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4148
4149  EVT VecVT = N->getValueType(0);
4150  EVT ElVT = VecVT.getVectorElementType();
4151
4152  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4153  return Index / NumElemsPerChunk;
4154}
4155
4156/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4157/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4158/// Handles 256-bit.
4159static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4160  EVT VT = N->getValueType(0);
4161
4162  unsigned NumElts = VT.getVectorNumElements();
4163
4164  assert((VT.is256BitVector() && NumElts == 4) &&
4165         "Unsupported vector type for VPERMQ/VPERMPD");
4166
4167  unsigned Mask = 0;
4168  for (unsigned i = 0; i != NumElts; ++i) {
4169    int Elt = N->getMaskElt(i);
4170    if (Elt < 0)
4171      continue;
4172    Mask |= Elt << (i*2);
4173  }
4174
4175  return Mask;
4176}
4177/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4178/// constant +0.0.
4179bool X86::isZeroNode(SDValue Elt) {
4180  return ((isa<ConstantSDNode>(Elt) &&
4181           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4182          (isa<ConstantFPSDNode>(Elt) &&
4183           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4184}
4185
4186/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4187/// their permute mask.
4188static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4189                                    SelectionDAG &DAG) {
4190  EVT VT = SVOp->getValueType(0);
4191  unsigned NumElems = VT.getVectorNumElements();
4192  SmallVector<int, 8> MaskVec;
4193
4194  for (unsigned i = 0; i != NumElems; ++i) {
4195    int Idx = SVOp->getMaskElt(i);
4196    if (Idx >= 0) {
4197      if (Idx < (int)NumElems)
4198        Idx += NumElems;
4199      else
4200        Idx -= NumElems;
4201    }
4202    MaskVec.push_back(Idx);
4203  }
4204  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4205                              SVOp->getOperand(0), &MaskVec[0]);
4206}
4207
4208/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4209/// match movhlps. The lower half elements should come from upper half of
4210/// V1 (and in order), and the upper half elements should come from the upper
4211/// half of V2 (and in order).
4212static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4213  if (!VT.is128BitVector())
4214    return false;
4215  if (VT.getVectorNumElements() != 4)
4216    return false;
4217  for (unsigned i = 0, e = 2; i != e; ++i)
4218    if (!isUndefOrEqual(Mask[i], i+2))
4219      return false;
4220  for (unsigned i = 2; i != 4; ++i)
4221    if (!isUndefOrEqual(Mask[i], i+4))
4222      return false;
4223  return true;
4224}
4225
4226/// isScalarLoadToVector - Returns true if the node is a scalar load that
4227/// is promoted to a vector. It also returns the LoadSDNode by reference if
4228/// required.
4229static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4230  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4231    return false;
4232  N = N->getOperand(0).getNode();
4233  if (!ISD::isNON_EXTLoad(N))
4234    return false;
4235  if (LD)
4236    *LD = cast<LoadSDNode>(N);
4237  return true;
4238}
4239
4240// Test whether the given value is a vector value which will be legalized
4241// into a load.
4242static bool WillBeConstantPoolLoad(SDNode *N) {
4243  if (N->getOpcode() != ISD::BUILD_VECTOR)
4244    return false;
4245
4246  // Check for any non-constant elements.
4247  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4248    switch (N->getOperand(i).getNode()->getOpcode()) {
4249    case ISD::UNDEF:
4250    case ISD::ConstantFP:
4251    case ISD::Constant:
4252      break;
4253    default:
4254      return false;
4255    }
4256
4257  // Vectors of all-zeros and all-ones are materialized with special
4258  // instructions rather than being loaded.
4259  return !ISD::isBuildVectorAllZeros(N) &&
4260         !ISD::isBuildVectorAllOnes(N);
4261}
4262
4263/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4264/// match movlp{s|d}. The lower half elements should come from lower half of
4265/// V1 (and in order), and the upper half elements should come from the upper
4266/// half of V2 (and in order). And since V1 will become the source of the
4267/// MOVLP, it must be either a vector load or a scalar load to vector.
4268static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4269                               ArrayRef<int> Mask, EVT VT) {
4270  if (!VT.is128BitVector())
4271    return false;
4272
4273  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4274    return false;
4275  // Is V2 is a vector load, don't do this transformation. We will try to use
4276  // load folding shufps op.
4277  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4278    return false;
4279
4280  unsigned NumElems = VT.getVectorNumElements();
4281
4282  if (NumElems != 2 && NumElems != 4)
4283    return false;
4284  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4285    if (!isUndefOrEqual(Mask[i], i))
4286      return false;
4287  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4288    if (!isUndefOrEqual(Mask[i], i+NumElems))
4289      return false;
4290  return true;
4291}
4292
4293/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4294/// all the same.
4295static bool isSplatVector(SDNode *N) {
4296  if (N->getOpcode() != ISD::BUILD_VECTOR)
4297    return false;
4298
4299  SDValue SplatValue = N->getOperand(0);
4300  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4301    if (N->getOperand(i) != SplatValue)
4302      return false;
4303  return true;
4304}
4305
4306/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4307/// to an zero vector.
4308/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4309static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4310  SDValue V1 = N->getOperand(0);
4311  SDValue V2 = N->getOperand(1);
4312  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4313  for (unsigned i = 0; i != NumElems; ++i) {
4314    int Idx = N->getMaskElt(i);
4315    if (Idx >= (int)NumElems) {
4316      unsigned Opc = V2.getOpcode();
4317      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4318        continue;
4319      if (Opc != ISD::BUILD_VECTOR ||
4320          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4321        return false;
4322    } else if (Idx >= 0) {
4323      unsigned Opc = V1.getOpcode();
4324      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4325        continue;
4326      if (Opc != ISD::BUILD_VECTOR ||
4327          !X86::isZeroNode(V1.getOperand(Idx)))
4328        return false;
4329    }
4330  }
4331  return true;
4332}
4333
4334/// getZeroVector - Returns a vector of specified type with all zero elements.
4335///
4336static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4337                             SelectionDAG &DAG, DebugLoc dl) {
4338  assert(VT.isVector() && "Expected a vector type");
4339  unsigned Size = VT.getSizeInBits();
4340
4341  // Always build SSE zero vectors as <4 x i32> bitcasted
4342  // to their dest type. This ensures they get CSE'd.
4343  SDValue Vec;
4344  if (Size == 128) {  // SSE
4345    if (Subtarget->hasSSE2()) {  // SSE2
4346      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4347      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4348    } else { // SSE1
4349      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4350      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4351    }
4352  } else if (Size == 256) { // AVX
4353    if (Subtarget->hasInt256()) { // AVX2
4354      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4355      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4356      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4357    } else {
4358      // 256-bit logic and arithmetic instructions in AVX are all
4359      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4360      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4361      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4362      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4363    }
4364  } else
4365    llvm_unreachable("Unexpected vector type");
4366
4367  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4368}
4369
4370/// getOnesVector - Returns a vector of specified type with all bits set.
4371/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4372/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4373/// Then bitcast to their original type, ensuring they get CSE'd.
4374static SDValue getOnesVector(EVT VT, bool HasInt256, SelectionDAG &DAG,
4375                             DebugLoc dl) {
4376  assert(VT.isVector() && "Expected a vector type");
4377  unsigned Size = VT.getSizeInBits();
4378
4379  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4380  SDValue Vec;
4381  if (Size == 256) {
4382    if (HasInt256) { // AVX2
4383      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4384      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4385    } else { // AVX
4386      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4387      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4388    }
4389  } else if (Size == 128) {
4390    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4391  } else
4392    llvm_unreachable("Unexpected vector type");
4393
4394  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4395}
4396
4397/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4398/// that point to V2 points to its first element.
4399static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4400  for (unsigned i = 0; i != NumElems; ++i) {
4401    if (Mask[i] > (int)NumElems) {
4402      Mask[i] = NumElems;
4403    }
4404  }
4405}
4406
4407/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4408/// operation of specified width.
4409static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4410                       SDValue V2) {
4411  unsigned NumElems = VT.getVectorNumElements();
4412  SmallVector<int, 8> Mask;
4413  Mask.push_back(NumElems);
4414  for (unsigned i = 1; i != NumElems; ++i)
4415    Mask.push_back(i);
4416  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4417}
4418
4419/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4420static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4421                          SDValue V2) {
4422  unsigned NumElems = VT.getVectorNumElements();
4423  SmallVector<int, 8> Mask;
4424  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4425    Mask.push_back(i);
4426    Mask.push_back(i + NumElems);
4427  }
4428  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4429}
4430
4431/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4432static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4433                          SDValue V2) {
4434  unsigned NumElems = VT.getVectorNumElements();
4435  SmallVector<int, 8> Mask;
4436  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4437    Mask.push_back(i + Half);
4438    Mask.push_back(i + NumElems + Half);
4439  }
4440  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4441}
4442
4443// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4444// a generic shuffle instruction because the target has no such instructions.
4445// Generate shuffles which repeat i16 and i8 several times until they can be
4446// represented by v4f32 and then be manipulated by target suported shuffles.
4447static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4448  EVT VT = V.getValueType();
4449  int NumElems = VT.getVectorNumElements();
4450  DebugLoc dl = V.getDebugLoc();
4451
4452  while (NumElems > 4) {
4453    if (EltNo < NumElems/2) {
4454      V = getUnpackl(DAG, dl, VT, V, V);
4455    } else {
4456      V = getUnpackh(DAG, dl, VT, V, V);
4457      EltNo -= NumElems/2;
4458    }
4459    NumElems >>= 1;
4460  }
4461  return V;
4462}
4463
4464/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4465static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4466  EVT VT = V.getValueType();
4467  DebugLoc dl = V.getDebugLoc();
4468  unsigned Size = VT.getSizeInBits();
4469
4470  if (Size == 128) {
4471    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4472    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4473    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4474                             &SplatMask[0]);
4475  } else if (Size == 256) {
4476    // To use VPERMILPS to splat scalars, the second half of indicies must
4477    // refer to the higher part, which is a duplication of the lower one,
4478    // because VPERMILPS can only handle in-lane permutations.
4479    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4480                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4481
4482    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4483    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4484                             &SplatMask[0]);
4485  } else
4486    llvm_unreachable("Vector size not supported");
4487
4488  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4489}
4490
4491/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4492static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4493  EVT SrcVT = SV->getValueType(0);
4494  SDValue V1 = SV->getOperand(0);
4495  DebugLoc dl = SV->getDebugLoc();
4496
4497  int EltNo = SV->getSplatIndex();
4498  int NumElems = SrcVT.getVectorNumElements();
4499  unsigned Size = SrcVT.getSizeInBits();
4500
4501  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4502          "Unknown how to promote splat for type");
4503
4504  // Extract the 128-bit part containing the splat element and update
4505  // the splat element index when it refers to the higher register.
4506  if (Size == 256) {
4507    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4508    if (EltNo >= NumElems/2)
4509      EltNo -= NumElems/2;
4510  }
4511
4512  // All i16 and i8 vector types can't be used directly by a generic shuffle
4513  // instruction because the target has no such instruction. Generate shuffles
4514  // which repeat i16 and i8 several times until they fit in i32, and then can
4515  // be manipulated by target suported shuffles.
4516  EVT EltVT = SrcVT.getVectorElementType();
4517  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4518    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4519
4520  // Recreate the 256-bit vector and place the same 128-bit vector
4521  // into the low and high part. This is necessary because we want
4522  // to use VPERM* to shuffle the vectors
4523  if (Size == 256) {
4524    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4525  }
4526
4527  return getLegalSplat(DAG, V1, EltNo);
4528}
4529
4530/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4531/// vector of zero or undef vector.  This produces a shuffle where the low
4532/// element of V2 is swizzled into the zero/undef vector, landing at element
4533/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4534static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4535                                           bool IsZero,
4536                                           const X86Subtarget *Subtarget,
4537                                           SelectionDAG &DAG) {
4538  EVT VT = V2.getValueType();
4539  SDValue V1 = IsZero
4540    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4541  unsigned NumElems = VT.getVectorNumElements();
4542  SmallVector<int, 16> MaskVec;
4543  for (unsigned i = 0; i != NumElems; ++i)
4544    // If this is the insertion idx, put the low elt of V2 here.
4545    MaskVec.push_back(i == Idx ? NumElems : i);
4546  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4547}
4548
4549/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4550/// target specific opcode. Returns true if the Mask could be calculated.
4551/// Sets IsUnary to true if only uses one source.
4552static bool getTargetShuffleMask(SDNode *N, MVT VT,
4553                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4554  unsigned NumElems = VT.getVectorNumElements();
4555  SDValue ImmN;
4556
4557  IsUnary = false;
4558  switch(N->getOpcode()) {
4559  case X86ISD::SHUFP:
4560    ImmN = N->getOperand(N->getNumOperands()-1);
4561    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4562    break;
4563  case X86ISD::UNPCKH:
4564    DecodeUNPCKHMask(VT, Mask);
4565    break;
4566  case X86ISD::UNPCKL:
4567    DecodeUNPCKLMask(VT, Mask);
4568    break;
4569  case X86ISD::MOVHLPS:
4570    DecodeMOVHLPSMask(NumElems, Mask);
4571    break;
4572  case X86ISD::MOVLHPS:
4573    DecodeMOVLHPSMask(NumElems, Mask);
4574    break;
4575  case X86ISD::PSHUFD:
4576  case X86ISD::VPERMILP:
4577    ImmN = N->getOperand(N->getNumOperands()-1);
4578    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4579    IsUnary = true;
4580    break;
4581  case X86ISD::PSHUFHW:
4582    ImmN = N->getOperand(N->getNumOperands()-1);
4583    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4584    IsUnary = true;
4585    break;
4586  case X86ISD::PSHUFLW:
4587    ImmN = N->getOperand(N->getNumOperands()-1);
4588    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4589    IsUnary = true;
4590    break;
4591  case X86ISD::VPERMI:
4592    ImmN = N->getOperand(N->getNumOperands()-1);
4593    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4594    IsUnary = true;
4595    break;
4596  case X86ISD::MOVSS:
4597  case X86ISD::MOVSD: {
4598    // The index 0 always comes from the first element of the second source,
4599    // this is why MOVSS and MOVSD are used in the first place. The other
4600    // elements come from the other positions of the first source vector
4601    Mask.push_back(NumElems);
4602    for (unsigned i = 1; i != NumElems; ++i) {
4603      Mask.push_back(i);
4604    }
4605    break;
4606  }
4607  case X86ISD::VPERM2X128:
4608    ImmN = N->getOperand(N->getNumOperands()-1);
4609    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4610    if (Mask.empty()) return false;
4611    break;
4612  case X86ISD::MOVDDUP:
4613  case X86ISD::MOVLHPD:
4614  case X86ISD::MOVLPD:
4615  case X86ISD::MOVLPS:
4616  case X86ISD::MOVSHDUP:
4617  case X86ISD::MOVSLDUP:
4618  case X86ISD::PALIGN:
4619    // Not yet implemented
4620    return false;
4621  default: llvm_unreachable("unknown target shuffle node");
4622  }
4623
4624  return true;
4625}
4626
4627/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4628/// element of the result of the vector shuffle.
4629static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4630                                   unsigned Depth) {
4631  if (Depth == 6)
4632    return SDValue();  // Limit search depth.
4633
4634  SDValue V = SDValue(N, 0);
4635  EVT VT = V.getValueType();
4636  unsigned Opcode = V.getOpcode();
4637
4638  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4639  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4640    int Elt = SV->getMaskElt(Index);
4641
4642    if (Elt < 0)
4643      return DAG.getUNDEF(VT.getVectorElementType());
4644
4645    unsigned NumElems = VT.getVectorNumElements();
4646    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4647                                         : SV->getOperand(1);
4648    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4649  }
4650
4651  // Recurse into target specific vector shuffles to find scalars.
4652  if (isTargetShuffle(Opcode)) {
4653    MVT ShufVT = V.getValueType().getSimpleVT();
4654    unsigned NumElems = ShufVT.getVectorNumElements();
4655    SmallVector<int, 16> ShuffleMask;
4656    bool IsUnary;
4657
4658    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4659      return SDValue();
4660
4661    int Elt = ShuffleMask[Index];
4662    if (Elt < 0)
4663      return DAG.getUNDEF(ShufVT.getVectorElementType());
4664
4665    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4666                                         : N->getOperand(1);
4667    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4668                               Depth+1);
4669  }
4670
4671  // Actual nodes that may contain scalar elements
4672  if (Opcode == ISD::BITCAST) {
4673    V = V.getOperand(0);
4674    EVT SrcVT = V.getValueType();
4675    unsigned NumElems = VT.getVectorNumElements();
4676
4677    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4678      return SDValue();
4679  }
4680
4681  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4682    return (Index == 0) ? V.getOperand(0)
4683                        : DAG.getUNDEF(VT.getVectorElementType());
4684
4685  if (V.getOpcode() == ISD::BUILD_VECTOR)
4686    return V.getOperand(Index);
4687
4688  return SDValue();
4689}
4690
4691/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4692/// shuffle operation which come from a consecutively from a zero. The
4693/// search can start in two different directions, from left or right.
4694static
4695unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4696                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4697  unsigned i;
4698  for (i = 0; i != NumElems; ++i) {
4699    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4700    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4701    if (!(Elt.getNode() &&
4702         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4703      break;
4704  }
4705
4706  return i;
4707}
4708
4709/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4710/// correspond consecutively to elements from one of the vector operands,
4711/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4712static
4713bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4714                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4715                              unsigned NumElems, unsigned &OpNum) {
4716  bool SeenV1 = false;
4717  bool SeenV2 = false;
4718
4719  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4720    int Idx = SVOp->getMaskElt(i);
4721    // Ignore undef indicies
4722    if (Idx < 0)
4723      continue;
4724
4725    if (Idx < (int)NumElems)
4726      SeenV1 = true;
4727    else
4728      SeenV2 = true;
4729
4730    // Only accept consecutive elements from the same vector
4731    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4732      return false;
4733  }
4734
4735  OpNum = SeenV1 ? 0 : 1;
4736  return true;
4737}
4738
4739/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4740/// logical left shift of a vector.
4741static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4742                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4743  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4744  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4745              false /* check zeros from right */, DAG);
4746  unsigned OpSrc;
4747
4748  if (!NumZeros)
4749    return false;
4750
4751  // Considering the elements in the mask that are not consecutive zeros,
4752  // check if they consecutively come from only one of the source vectors.
4753  //
4754  //               V1 = {X, A, B, C}     0
4755  //                         \  \  \    /
4756  //   vector_shuffle V1, V2 <1, 2, 3, X>
4757  //
4758  if (!isShuffleMaskConsecutive(SVOp,
4759            0,                   // Mask Start Index
4760            NumElems-NumZeros,   // Mask End Index(exclusive)
4761            NumZeros,            // Where to start looking in the src vector
4762            NumElems,            // Number of elements in vector
4763            OpSrc))              // Which source operand ?
4764    return false;
4765
4766  isLeft = false;
4767  ShAmt = NumZeros;
4768  ShVal = SVOp->getOperand(OpSrc);
4769  return true;
4770}
4771
4772/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4773/// logical left shift of a vector.
4774static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4775                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4776  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4777  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4778              true /* check zeros from left */, DAG);
4779  unsigned OpSrc;
4780
4781  if (!NumZeros)
4782    return false;
4783
4784  // Considering the elements in the mask that are not consecutive zeros,
4785  // check if they consecutively come from only one of the source vectors.
4786  //
4787  //                           0    { A, B, X, X } = V2
4788  //                          / \    /  /
4789  //   vector_shuffle V1, V2 <X, X, 4, 5>
4790  //
4791  if (!isShuffleMaskConsecutive(SVOp,
4792            NumZeros,     // Mask Start Index
4793            NumElems,     // Mask End Index(exclusive)
4794            0,            // Where to start looking in the src vector
4795            NumElems,     // Number of elements in vector
4796            OpSrc))       // Which source operand ?
4797    return false;
4798
4799  isLeft = true;
4800  ShAmt = NumZeros;
4801  ShVal = SVOp->getOperand(OpSrc);
4802  return true;
4803}
4804
4805/// isVectorShift - Returns true if the shuffle can be implemented as a
4806/// logical left or right shift of a vector.
4807static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4808                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4809  // Although the logic below support any bitwidth size, there are no
4810  // shift instructions which handle more than 128-bit vectors.
4811  if (!SVOp->getValueType(0).is128BitVector())
4812    return false;
4813
4814  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4815      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4816    return true;
4817
4818  return false;
4819}
4820
4821/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4822///
4823static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4824                                       unsigned NumNonZero, unsigned NumZero,
4825                                       SelectionDAG &DAG,
4826                                       const X86Subtarget* Subtarget,
4827                                       const TargetLowering &TLI) {
4828  if (NumNonZero > 8)
4829    return SDValue();
4830
4831  DebugLoc dl = Op.getDebugLoc();
4832  SDValue V(0, 0);
4833  bool First = true;
4834  for (unsigned i = 0; i < 16; ++i) {
4835    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4836    if (ThisIsNonZero && First) {
4837      if (NumZero)
4838        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4839      else
4840        V = DAG.getUNDEF(MVT::v8i16);
4841      First = false;
4842    }
4843
4844    if ((i & 1) != 0) {
4845      SDValue ThisElt(0, 0), LastElt(0, 0);
4846      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4847      if (LastIsNonZero) {
4848        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4849                              MVT::i16, Op.getOperand(i-1));
4850      }
4851      if (ThisIsNonZero) {
4852        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4853        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4854                              ThisElt, DAG.getConstant(8, MVT::i8));
4855        if (LastIsNonZero)
4856          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4857      } else
4858        ThisElt = LastElt;
4859
4860      if (ThisElt.getNode())
4861        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4862                        DAG.getIntPtrConstant(i/2));
4863    }
4864  }
4865
4866  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4867}
4868
4869/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4870///
4871static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4872                                     unsigned NumNonZero, unsigned NumZero,
4873                                     SelectionDAG &DAG,
4874                                     const X86Subtarget* Subtarget,
4875                                     const TargetLowering &TLI) {
4876  if (NumNonZero > 4)
4877    return SDValue();
4878
4879  DebugLoc dl = Op.getDebugLoc();
4880  SDValue V(0, 0);
4881  bool First = true;
4882  for (unsigned i = 0; i < 8; ++i) {
4883    bool isNonZero = (NonZeros & (1 << i)) != 0;
4884    if (isNonZero) {
4885      if (First) {
4886        if (NumZero)
4887          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4888        else
4889          V = DAG.getUNDEF(MVT::v8i16);
4890        First = false;
4891      }
4892      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4893                      MVT::v8i16, V, Op.getOperand(i),
4894                      DAG.getIntPtrConstant(i));
4895    }
4896  }
4897
4898  return V;
4899}
4900
4901/// getVShift - Return a vector logical shift node.
4902///
4903static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4904                         unsigned NumBits, SelectionDAG &DAG,
4905                         const TargetLowering &TLI, DebugLoc dl) {
4906  assert(VT.is128BitVector() && "Unknown type for VShift");
4907  EVT ShVT = MVT::v2i64;
4908  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4909  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4910  return DAG.getNode(ISD::BITCAST, dl, VT,
4911                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4912                             DAG.getConstant(NumBits,
4913                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4914}
4915
4916SDValue
4917X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4918                                          SelectionDAG &DAG) const {
4919
4920  // Check if the scalar load can be widened into a vector load. And if
4921  // the address is "base + cst" see if the cst can be "absorbed" into
4922  // the shuffle mask.
4923  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4924    SDValue Ptr = LD->getBasePtr();
4925    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4926      return SDValue();
4927    EVT PVT = LD->getValueType(0);
4928    if (PVT != MVT::i32 && PVT != MVT::f32)
4929      return SDValue();
4930
4931    int FI = -1;
4932    int64_t Offset = 0;
4933    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4934      FI = FINode->getIndex();
4935      Offset = 0;
4936    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4937               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4938      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4939      Offset = Ptr.getConstantOperandVal(1);
4940      Ptr = Ptr.getOperand(0);
4941    } else {
4942      return SDValue();
4943    }
4944
4945    // FIXME: 256-bit vector instructions don't require a strict alignment,
4946    // improve this code to support it better.
4947    unsigned RequiredAlign = VT.getSizeInBits()/8;
4948    SDValue Chain = LD->getChain();
4949    // Make sure the stack object alignment is at least 16 or 32.
4950    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4951    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4952      if (MFI->isFixedObjectIndex(FI)) {
4953        // Can't change the alignment. FIXME: It's possible to compute
4954        // the exact stack offset and reference FI + adjust offset instead.
4955        // If someone *really* cares about this. That's the way to implement it.
4956        return SDValue();
4957      } else {
4958        MFI->setObjectAlignment(FI, RequiredAlign);
4959      }
4960    }
4961
4962    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4963    // Ptr + (Offset & ~15).
4964    if (Offset < 0)
4965      return SDValue();
4966    if ((Offset % RequiredAlign) & 3)
4967      return SDValue();
4968    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4969    if (StartOffset)
4970      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4971                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4972
4973    int EltNo = (Offset - StartOffset) >> 2;
4974    unsigned NumElems = VT.getVectorNumElements();
4975
4976    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4977    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4978                             LD->getPointerInfo().getWithOffset(StartOffset),
4979                             false, false, false, 0);
4980
4981    SmallVector<int, 8> Mask;
4982    for (unsigned i = 0; i != NumElems; ++i)
4983      Mask.push_back(EltNo);
4984
4985    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4986  }
4987
4988  return SDValue();
4989}
4990
4991/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4992/// vector of type 'VT', see if the elements can be replaced by a single large
4993/// load which has the same value as a build_vector whose operands are 'elts'.
4994///
4995/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4996///
4997/// FIXME: we'd also like to handle the case where the last elements are zero
4998/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4999/// There's even a handy isZeroNode for that purpose.
5000static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5001                                        DebugLoc &DL, SelectionDAG &DAG) {
5002  EVT EltVT = VT.getVectorElementType();
5003  unsigned NumElems = Elts.size();
5004
5005  LoadSDNode *LDBase = NULL;
5006  unsigned LastLoadedElt = -1U;
5007
5008  // For each element in the initializer, see if we've found a load or an undef.
5009  // If we don't find an initial load element, or later load elements are
5010  // non-consecutive, bail out.
5011  for (unsigned i = 0; i < NumElems; ++i) {
5012    SDValue Elt = Elts[i];
5013
5014    if (!Elt.getNode() ||
5015        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5016      return SDValue();
5017    if (!LDBase) {
5018      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5019        return SDValue();
5020      LDBase = cast<LoadSDNode>(Elt.getNode());
5021      LastLoadedElt = i;
5022      continue;
5023    }
5024    if (Elt.getOpcode() == ISD::UNDEF)
5025      continue;
5026
5027    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5028    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5029      return SDValue();
5030    LastLoadedElt = i;
5031  }
5032
5033  // If we have found an entire vector of loads and undefs, then return a large
5034  // load of the entire vector width starting at the base pointer.  If we found
5035  // consecutive loads for the low half, generate a vzext_load node.
5036  if (LastLoadedElt == NumElems - 1) {
5037    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5038      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5039                         LDBase->getPointerInfo(),
5040                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5041                         LDBase->isInvariant(), 0);
5042    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5043                       LDBase->getPointerInfo(),
5044                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5045                       LDBase->isInvariant(), LDBase->getAlignment());
5046  }
5047  if (NumElems == 4 && LastLoadedElt == 1 &&
5048      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5049    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5050    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5051    SDValue ResNode =
5052        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5053                                LDBase->getPointerInfo(),
5054                                LDBase->getAlignment(),
5055                                false/*isVolatile*/, true/*ReadMem*/,
5056                                false/*WriteMem*/);
5057
5058    // Make sure the newly-created LOAD is in the same position as LDBase in
5059    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5060    // update uses of LDBase's output chain to use the TokenFactor.
5061    if (LDBase->hasAnyUseOfValue(1)) {
5062      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5063                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5064      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5065      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5066                             SDValue(ResNode.getNode(), 1));
5067    }
5068
5069    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5070  }
5071  return SDValue();
5072}
5073
5074/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5075/// to generate a splat value for the following cases:
5076/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5077/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5078/// a scalar load, or a constant.
5079/// The VBROADCAST node is returned when a pattern is found,
5080/// or SDValue() otherwise.
5081SDValue
5082X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5083  if (!Subtarget->hasFp256())
5084    return SDValue();
5085
5086  EVT VT = Op.getValueType();
5087  DebugLoc dl = Op.getDebugLoc();
5088
5089  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5090         "Unsupported vector type for broadcast.");
5091
5092  SDValue Ld;
5093  bool ConstSplatVal;
5094
5095  switch (Op.getOpcode()) {
5096    default:
5097      // Unknown pattern found.
5098      return SDValue();
5099
5100    case ISD::BUILD_VECTOR: {
5101      // The BUILD_VECTOR node must be a splat.
5102      if (!isSplatVector(Op.getNode()))
5103        return SDValue();
5104
5105      Ld = Op.getOperand(0);
5106      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5107                     Ld.getOpcode() == ISD::ConstantFP);
5108
5109      // The suspected load node has several users. Make sure that all
5110      // of its users are from the BUILD_VECTOR node.
5111      // Constants may have multiple users.
5112      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5113        return SDValue();
5114      break;
5115    }
5116
5117    case ISD::VECTOR_SHUFFLE: {
5118      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5119
5120      // Shuffles must have a splat mask where the first element is
5121      // broadcasted.
5122      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5123        return SDValue();
5124
5125      SDValue Sc = Op.getOperand(0);
5126      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5127          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5128
5129        if (!Subtarget->hasInt256())
5130          return SDValue();
5131
5132        // Use the register form of the broadcast instruction available on AVX2.
5133        if (VT.is256BitVector())
5134          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5135        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5136      }
5137
5138      Ld = Sc.getOperand(0);
5139      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5140                       Ld.getOpcode() == ISD::ConstantFP);
5141
5142      // The scalar_to_vector node and the suspected
5143      // load node must have exactly one user.
5144      // Constants may have multiple users.
5145      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5146        return SDValue();
5147      break;
5148    }
5149  }
5150
5151  bool Is256 = VT.is256BitVector();
5152
5153  // Handle the broadcasting a single constant scalar from the constant pool
5154  // into a vector. On Sandybridge it is still better to load a constant vector
5155  // from the constant pool and not to broadcast it from a scalar.
5156  if (ConstSplatVal && Subtarget->hasInt256()) {
5157    EVT CVT = Ld.getValueType();
5158    assert(!CVT.isVector() && "Must not broadcast a vector type");
5159    unsigned ScalarSize = CVT.getSizeInBits();
5160
5161    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5162      const Constant *C = 0;
5163      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5164        C = CI->getConstantIntValue();
5165      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5166        C = CF->getConstantFPValue();
5167
5168      assert(C && "Invalid constant type");
5169
5170      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5171      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5172      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5173                       MachinePointerInfo::getConstantPool(),
5174                       false, false, false, Alignment);
5175
5176      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5177    }
5178  }
5179
5180  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5181  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5182
5183  // Handle AVX2 in-register broadcasts.
5184  if (!IsLoad && Subtarget->hasInt256() &&
5185      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5186    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5187
5188  // The scalar source must be a normal load.
5189  if (!IsLoad)
5190    return SDValue();
5191
5192  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5193    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5194
5195  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5196  // double since there is no vbroadcastsd xmm
5197  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5198    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5199      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5200  }
5201
5202  // Unsupported broadcast.
5203  return SDValue();
5204}
5205
5206SDValue
5207X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5208  EVT VT = Op.getValueType();
5209
5210  // Skip if insert_vec_elt is not supported.
5211  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5212    return SDValue();
5213
5214  DebugLoc DL = Op.getDebugLoc();
5215  unsigned NumElems = Op.getNumOperands();
5216
5217  SDValue VecIn1;
5218  SDValue VecIn2;
5219  SmallVector<unsigned, 4> InsertIndices;
5220  SmallVector<int, 8> Mask(NumElems, -1);
5221
5222  for (unsigned i = 0; i != NumElems; ++i) {
5223    unsigned Opc = Op.getOperand(i).getOpcode();
5224
5225    if (Opc == ISD::UNDEF)
5226      continue;
5227
5228    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5229      // Quit if more than 1 elements need inserting.
5230      if (InsertIndices.size() > 1)
5231        return SDValue();
5232
5233      InsertIndices.push_back(i);
5234      continue;
5235    }
5236
5237    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5238    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5239
5240    // Quit if extracted from vector of different type.
5241    if (ExtractedFromVec.getValueType() != VT)
5242      return SDValue();
5243
5244    // Quit if non-constant index.
5245    if (!isa<ConstantSDNode>(ExtIdx))
5246      return SDValue();
5247
5248    if (VecIn1.getNode() == 0)
5249      VecIn1 = ExtractedFromVec;
5250    else if (VecIn1 != ExtractedFromVec) {
5251      if (VecIn2.getNode() == 0)
5252        VecIn2 = ExtractedFromVec;
5253      else if (VecIn2 != ExtractedFromVec)
5254        // Quit if more than 2 vectors to shuffle
5255        return SDValue();
5256    }
5257
5258    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5259
5260    if (ExtractedFromVec == VecIn1)
5261      Mask[i] = Idx;
5262    else if (ExtractedFromVec == VecIn2)
5263      Mask[i] = Idx + NumElems;
5264  }
5265
5266  if (VecIn1.getNode() == 0)
5267    return SDValue();
5268
5269  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5270  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5271  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5272    unsigned Idx = InsertIndices[i];
5273    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5274                     DAG.getIntPtrConstant(Idx));
5275  }
5276
5277  return NV;
5278}
5279
5280SDValue
5281X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5282  DebugLoc dl = Op.getDebugLoc();
5283
5284  EVT VT = Op.getValueType();
5285  EVT ExtVT = VT.getVectorElementType();
5286  unsigned NumElems = Op.getNumOperands();
5287
5288  // Vectors containing all zeros can be matched by pxor and xorps later
5289  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5290    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5291    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5292    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5293      return Op;
5294
5295    return getZeroVector(VT, Subtarget, DAG, dl);
5296  }
5297
5298  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5299  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5300  // vpcmpeqd on 256-bit vectors.
5301  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5302    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5303      return Op;
5304
5305    return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5306  }
5307
5308  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5309  if (Broadcast.getNode())
5310    return Broadcast;
5311
5312  unsigned EVTBits = ExtVT.getSizeInBits();
5313
5314  unsigned NumZero  = 0;
5315  unsigned NumNonZero = 0;
5316  unsigned NonZeros = 0;
5317  bool IsAllConstants = true;
5318  SmallSet<SDValue, 8> Values;
5319  for (unsigned i = 0; i < NumElems; ++i) {
5320    SDValue Elt = Op.getOperand(i);
5321    if (Elt.getOpcode() == ISD::UNDEF)
5322      continue;
5323    Values.insert(Elt);
5324    if (Elt.getOpcode() != ISD::Constant &&
5325        Elt.getOpcode() != ISD::ConstantFP)
5326      IsAllConstants = false;
5327    if (X86::isZeroNode(Elt))
5328      NumZero++;
5329    else {
5330      NonZeros |= (1 << i);
5331      NumNonZero++;
5332    }
5333  }
5334
5335  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5336  if (NumNonZero == 0)
5337    return DAG.getUNDEF(VT);
5338
5339  // Special case for single non-zero, non-undef, element.
5340  if (NumNonZero == 1) {
5341    unsigned Idx = CountTrailingZeros_32(NonZeros);
5342    SDValue Item = Op.getOperand(Idx);
5343
5344    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5345    // the value are obviously zero, truncate the value to i32 and do the
5346    // insertion that way.  Only do this if the value is non-constant or if the
5347    // value is a constant being inserted into element 0.  It is cheaper to do
5348    // a constant pool load than it is to do a movd + shuffle.
5349    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5350        (!IsAllConstants || Idx == 0)) {
5351      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5352        // Handle SSE only.
5353        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5354        EVT VecVT = MVT::v4i32;
5355        unsigned VecElts = 4;
5356
5357        // Truncate the value (which may itself be a constant) to i32, and
5358        // convert it to a vector with movd (S2V+shuffle to zero extend).
5359        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5360        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5361        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5362
5363        // Now we have our 32-bit value zero extended in the low element of
5364        // a vector.  If Idx != 0, swizzle it into place.
5365        if (Idx != 0) {
5366          SmallVector<int, 4> Mask;
5367          Mask.push_back(Idx);
5368          for (unsigned i = 1; i != VecElts; ++i)
5369            Mask.push_back(i);
5370          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5371                                      &Mask[0]);
5372        }
5373        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5374      }
5375    }
5376
5377    // If we have a constant or non-constant insertion into the low element of
5378    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5379    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5380    // depending on what the source datatype is.
5381    if (Idx == 0) {
5382      if (NumZero == 0)
5383        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5384
5385      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5386          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5387        if (VT.is256BitVector()) {
5388          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5389          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5390                             Item, DAG.getIntPtrConstant(0));
5391        }
5392        assert(VT.is128BitVector() && "Expected an SSE value type!");
5393        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5394        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5395        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5396      }
5397
5398      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5399        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5400        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5401        if (VT.is256BitVector()) {
5402          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5403          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5404        } else {
5405          assert(VT.is128BitVector() && "Expected an SSE value type!");
5406          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5407        }
5408        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5409      }
5410    }
5411
5412    // Is it a vector logical left shift?
5413    if (NumElems == 2 && Idx == 1 &&
5414        X86::isZeroNode(Op.getOperand(0)) &&
5415        !X86::isZeroNode(Op.getOperand(1))) {
5416      unsigned NumBits = VT.getSizeInBits();
5417      return getVShift(true, VT,
5418                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5419                                   VT, Op.getOperand(1)),
5420                       NumBits/2, DAG, *this, dl);
5421    }
5422
5423    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5424      return SDValue();
5425
5426    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5427    // is a non-constant being inserted into an element other than the low one,
5428    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5429    // movd/movss) to move this into the low element, then shuffle it into
5430    // place.
5431    if (EVTBits == 32) {
5432      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5433
5434      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5435      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5436      SmallVector<int, 8> MaskVec;
5437      for (unsigned i = 0; i != NumElems; ++i)
5438        MaskVec.push_back(i == Idx ? 0 : 1);
5439      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5440    }
5441  }
5442
5443  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5444  if (Values.size() == 1) {
5445    if (EVTBits == 32) {
5446      // Instead of a shuffle like this:
5447      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5448      // Check if it's possible to issue this instead.
5449      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5450      unsigned Idx = CountTrailingZeros_32(NonZeros);
5451      SDValue Item = Op.getOperand(Idx);
5452      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5453        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5454    }
5455    return SDValue();
5456  }
5457
5458  // A vector full of immediates; various special cases are already
5459  // handled, so this is best done with a single constant-pool load.
5460  if (IsAllConstants)
5461    return SDValue();
5462
5463  // For AVX-length vectors, build the individual 128-bit pieces and use
5464  // shuffles to put them in place.
5465  if (VT.is256BitVector()) {
5466    SmallVector<SDValue, 32> V;
5467    for (unsigned i = 0; i != NumElems; ++i)
5468      V.push_back(Op.getOperand(i));
5469
5470    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5471
5472    // Build both the lower and upper subvector.
5473    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5474    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5475                                NumElems/2);
5476
5477    // Recreate the wider vector with the lower and upper part.
5478    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5479  }
5480
5481  // Let legalizer expand 2-wide build_vectors.
5482  if (EVTBits == 64) {
5483    if (NumNonZero == 1) {
5484      // One half is zero or undef.
5485      unsigned Idx = CountTrailingZeros_32(NonZeros);
5486      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5487                                 Op.getOperand(Idx));
5488      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5489    }
5490    return SDValue();
5491  }
5492
5493  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5494  if (EVTBits == 8 && NumElems == 16) {
5495    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5496                                        Subtarget, *this);
5497    if (V.getNode()) return V;
5498  }
5499
5500  if (EVTBits == 16 && NumElems == 8) {
5501    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5502                                      Subtarget, *this);
5503    if (V.getNode()) return V;
5504  }
5505
5506  // If element VT is == 32 bits, turn it into a number of shuffles.
5507  SmallVector<SDValue, 8> V(NumElems);
5508  if (NumElems == 4 && NumZero > 0) {
5509    for (unsigned i = 0; i < 4; ++i) {
5510      bool isZero = !(NonZeros & (1 << i));
5511      if (isZero)
5512        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5513      else
5514        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5515    }
5516
5517    for (unsigned i = 0; i < 2; ++i) {
5518      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5519        default: break;
5520        case 0:
5521          V[i] = V[i*2];  // Must be a zero vector.
5522          break;
5523        case 1:
5524          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5525          break;
5526        case 2:
5527          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5528          break;
5529        case 3:
5530          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5531          break;
5532      }
5533    }
5534
5535    bool Reverse1 = (NonZeros & 0x3) == 2;
5536    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5537    int MaskVec[] = {
5538      Reverse1 ? 1 : 0,
5539      Reverse1 ? 0 : 1,
5540      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5541      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5542    };
5543    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5544  }
5545
5546  if (Values.size() > 1 && VT.is128BitVector()) {
5547    // Check for a build vector of consecutive loads.
5548    for (unsigned i = 0; i < NumElems; ++i)
5549      V[i] = Op.getOperand(i);
5550
5551    // Check for elements which are consecutive loads.
5552    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5553    if (LD.getNode())
5554      return LD;
5555
5556    // Check for a build vector from mostly shuffle plus few inserting.
5557    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5558    if (Sh.getNode())
5559      return Sh;
5560
5561    // For SSE 4.1, use insertps to put the high elements into the low element.
5562    if (getSubtarget()->hasSSE41()) {
5563      SDValue Result;
5564      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5565        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5566      else
5567        Result = DAG.getUNDEF(VT);
5568
5569      for (unsigned i = 1; i < NumElems; ++i) {
5570        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5571        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5572                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5573      }
5574      return Result;
5575    }
5576
5577    // Otherwise, expand into a number of unpckl*, start by extending each of
5578    // our (non-undef) elements to the full vector width with the element in the
5579    // bottom slot of the vector (which generates no code for SSE).
5580    for (unsigned i = 0; i < NumElems; ++i) {
5581      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5582        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5583      else
5584        V[i] = DAG.getUNDEF(VT);
5585    }
5586
5587    // Next, we iteratively mix elements, e.g. for v4f32:
5588    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5589    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5590    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5591    unsigned EltStride = NumElems >> 1;
5592    while (EltStride != 0) {
5593      for (unsigned i = 0; i < EltStride; ++i) {
5594        // If V[i+EltStride] is undef and this is the first round of mixing,
5595        // then it is safe to just drop this shuffle: V[i] is already in the
5596        // right place, the one element (since it's the first round) being
5597        // inserted as undef can be dropped.  This isn't safe for successive
5598        // rounds because they will permute elements within both vectors.
5599        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5600            EltStride == NumElems/2)
5601          continue;
5602
5603        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5604      }
5605      EltStride >>= 1;
5606    }
5607    return V[0];
5608  }
5609  return SDValue();
5610}
5611
5612// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5613// to create 256-bit vectors from two other 128-bit ones.
5614static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5615  DebugLoc dl = Op.getDebugLoc();
5616  EVT ResVT = Op.getValueType();
5617
5618  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5619
5620  SDValue V1 = Op.getOperand(0);
5621  SDValue V2 = Op.getOperand(1);
5622  unsigned NumElems = ResVT.getVectorNumElements();
5623
5624  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5625}
5626
5627static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5628  assert(Op.getNumOperands() == 2);
5629
5630  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5631  // from two other 128-bit ones.
5632  return LowerAVXCONCAT_VECTORS(Op, DAG);
5633}
5634
5635// Try to lower a shuffle node into a simple blend instruction.
5636static SDValue
5637LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5638                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5639  SDValue V1 = SVOp->getOperand(0);
5640  SDValue V2 = SVOp->getOperand(1);
5641  DebugLoc dl = SVOp->getDebugLoc();
5642  EVT VT = SVOp->getValueType(0);
5643  EVT EltVT = VT.getVectorElementType();
5644  unsigned NumElems = VT.getVectorNumElements();
5645
5646  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
5647    return SDValue();
5648  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
5649    return SDValue();
5650
5651  // Check the mask for BLEND and build the value.
5652  unsigned MaskValue = 0;
5653  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
5654  unsigned NumLanes = (NumElems-1)/8 + 1;
5655  unsigned NumElemsInLane = NumElems / NumLanes;
5656
5657  // Blend for v16i16 should be symetric for the both lanes.
5658  for (unsigned i = 0; i < NumElemsInLane; ++i) {
5659
5660    int SndLaneEltIdx = (NumLanes == 2) ?
5661      SVOp->getMaskElt(i + NumElemsInLane) : -1;
5662    int EltIdx = SVOp->getMaskElt(i);
5663
5664    if ((EltIdx == -1 || EltIdx == (int)i) &&
5665        (SndLaneEltIdx == -1 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
5666      continue;
5667
5668    if (((unsigned)EltIdx == (i + NumElems)) &&
5669        (SndLaneEltIdx == -1 ||
5670         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
5671      MaskValue |= (1<<i);
5672    else
5673      return SDValue();
5674  }
5675
5676  // Convert i32 vectors to floating point if it is not AVX2.
5677  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
5678  EVT BlendVT = VT;
5679  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
5680    BlendVT = EVT::getVectorVT(*DAG.getContext(),
5681                              EVT::getFloatingPointVT(EltVT.getSizeInBits()),
5682                              NumElems);
5683    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
5684    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
5685  }
5686
5687  SDValue Ret =  DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
5688                             DAG.getConstant(MaskValue, MVT::i32));
5689  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5690}
5691
5692// v8i16 shuffles - Prefer shuffles in the following order:
5693// 1. [all]   pshuflw, pshufhw, optional move
5694// 2. [ssse3] 1 x pshufb
5695// 3. [ssse3] 2 x pshufb + 1 x por
5696// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5697static SDValue
5698LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5699                         SelectionDAG &DAG) {
5700  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5701  SDValue V1 = SVOp->getOperand(0);
5702  SDValue V2 = SVOp->getOperand(1);
5703  DebugLoc dl = SVOp->getDebugLoc();
5704  SmallVector<int, 8> MaskVals;
5705
5706  // Determine if more than 1 of the words in each of the low and high quadwords
5707  // of the result come from the same quadword of one of the two inputs.  Undef
5708  // mask values count as coming from any quadword, for better codegen.
5709  unsigned LoQuad[] = { 0, 0, 0, 0 };
5710  unsigned HiQuad[] = { 0, 0, 0, 0 };
5711  std::bitset<4> InputQuads;
5712  for (unsigned i = 0; i < 8; ++i) {
5713    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5714    int EltIdx = SVOp->getMaskElt(i);
5715    MaskVals.push_back(EltIdx);
5716    if (EltIdx < 0) {
5717      ++Quad[0];
5718      ++Quad[1];
5719      ++Quad[2];
5720      ++Quad[3];
5721      continue;
5722    }
5723    ++Quad[EltIdx / 4];
5724    InputQuads.set(EltIdx / 4);
5725  }
5726
5727  int BestLoQuad = -1;
5728  unsigned MaxQuad = 1;
5729  for (unsigned i = 0; i < 4; ++i) {
5730    if (LoQuad[i] > MaxQuad) {
5731      BestLoQuad = i;
5732      MaxQuad = LoQuad[i];
5733    }
5734  }
5735
5736  int BestHiQuad = -1;
5737  MaxQuad = 1;
5738  for (unsigned i = 0; i < 4; ++i) {
5739    if (HiQuad[i] > MaxQuad) {
5740      BestHiQuad = i;
5741      MaxQuad = HiQuad[i];
5742    }
5743  }
5744
5745  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5746  // of the two input vectors, shuffle them into one input vector so only a
5747  // single pshufb instruction is necessary. If There are more than 2 input
5748  // quads, disable the next transformation since it does not help SSSE3.
5749  bool V1Used = InputQuads[0] || InputQuads[1];
5750  bool V2Used = InputQuads[2] || InputQuads[3];
5751  if (Subtarget->hasSSSE3()) {
5752    if (InputQuads.count() == 2 && V1Used && V2Used) {
5753      BestLoQuad = InputQuads[0] ? 0 : 1;
5754      BestHiQuad = InputQuads[2] ? 2 : 3;
5755    }
5756    if (InputQuads.count() > 2) {
5757      BestLoQuad = -1;
5758      BestHiQuad = -1;
5759    }
5760  }
5761
5762  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5763  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5764  // words from all 4 input quadwords.
5765  SDValue NewV;
5766  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5767    int MaskV[] = {
5768      BestLoQuad < 0 ? 0 : BestLoQuad,
5769      BestHiQuad < 0 ? 1 : BestHiQuad
5770    };
5771    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5772                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5773                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5774    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5775
5776    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5777    // source words for the shuffle, to aid later transformations.
5778    bool AllWordsInNewV = true;
5779    bool InOrder[2] = { true, true };
5780    for (unsigned i = 0; i != 8; ++i) {
5781      int idx = MaskVals[i];
5782      if (idx != (int)i)
5783        InOrder[i/4] = false;
5784      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5785        continue;
5786      AllWordsInNewV = false;
5787      break;
5788    }
5789
5790    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5791    if (AllWordsInNewV) {
5792      for (int i = 0; i != 8; ++i) {
5793        int idx = MaskVals[i];
5794        if (idx < 0)
5795          continue;
5796        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5797        if ((idx != i) && idx < 4)
5798          pshufhw = false;
5799        if ((idx != i) && idx > 3)
5800          pshuflw = false;
5801      }
5802      V1 = NewV;
5803      V2Used = false;
5804      BestLoQuad = 0;
5805      BestHiQuad = 1;
5806    }
5807
5808    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5809    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5810    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5811      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5812      unsigned TargetMask = 0;
5813      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5814                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5815      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5816      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5817                             getShufflePSHUFLWImmediate(SVOp);
5818      V1 = NewV.getOperand(0);
5819      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5820    }
5821  }
5822
5823  // If we have SSSE3, and all words of the result are from 1 input vector,
5824  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5825  // is present, fall back to case 4.
5826  if (Subtarget->hasSSSE3()) {
5827    SmallVector<SDValue,16> pshufbMask;
5828
5829    // If we have elements from both input vectors, set the high bit of the
5830    // shuffle mask element to zero out elements that come from V2 in the V1
5831    // mask, and elements that come from V1 in the V2 mask, so that the two
5832    // results can be OR'd together.
5833    bool TwoInputs = V1Used && V2Used;
5834    for (unsigned i = 0; i != 8; ++i) {
5835      int EltIdx = MaskVals[i] * 2;
5836      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5837      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5838      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5839      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5840    }
5841    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5842    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5843                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5844                                 MVT::v16i8, &pshufbMask[0], 16));
5845    if (!TwoInputs)
5846      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5847
5848    // Calculate the shuffle mask for the second input, shuffle it, and
5849    // OR it with the first shuffled input.
5850    pshufbMask.clear();
5851    for (unsigned i = 0; i != 8; ++i) {
5852      int EltIdx = MaskVals[i] * 2;
5853      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5854      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5855      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5856      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5857    }
5858    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5859    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5860                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5861                                 MVT::v16i8, &pshufbMask[0], 16));
5862    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5863    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5864  }
5865
5866  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5867  // and update MaskVals with new element order.
5868  std::bitset<8> InOrder;
5869  if (BestLoQuad >= 0) {
5870    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5871    for (int i = 0; i != 4; ++i) {
5872      int idx = MaskVals[i];
5873      if (idx < 0) {
5874        InOrder.set(i);
5875      } else if ((idx / 4) == BestLoQuad) {
5876        MaskV[i] = idx & 3;
5877        InOrder.set(i);
5878      }
5879    }
5880    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5881                                &MaskV[0]);
5882
5883    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5884      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5885      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5886                                  NewV.getOperand(0),
5887                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5888    }
5889  }
5890
5891  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5892  // and update MaskVals with the new element order.
5893  if (BestHiQuad >= 0) {
5894    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5895    for (unsigned i = 4; i != 8; ++i) {
5896      int idx = MaskVals[i];
5897      if (idx < 0) {
5898        InOrder.set(i);
5899      } else if ((idx / 4) == BestHiQuad) {
5900        MaskV[i] = (idx & 3) + 4;
5901        InOrder.set(i);
5902      }
5903    }
5904    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5905                                &MaskV[0]);
5906
5907    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5908      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5909      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5910                                  NewV.getOperand(0),
5911                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5912    }
5913  }
5914
5915  // In case BestHi & BestLo were both -1, which means each quadword has a word
5916  // from each of the four input quadwords, calculate the InOrder bitvector now
5917  // before falling through to the insert/extract cleanup.
5918  if (BestLoQuad == -1 && BestHiQuad == -1) {
5919    NewV = V1;
5920    for (int i = 0; i != 8; ++i)
5921      if (MaskVals[i] < 0 || MaskVals[i] == i)
5922        InOrder.set(i);
5923  }
5924
5925  // The other elements are put in the right place using pextrw and pinsrw.
5926  for (unsigned i = 0; i != 8; ++i) {
5927    if (InOrder[i])
5928      continue;
5929    int EltIdx = MaskVals[i];
5930    if (EltIdx < 0)
5931      continue;
5932    SDValue ExtOp = (EltIdx < 8) ?
5933      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5934                  DAG.getIntPtrConstant(EltIdx)) :
5935      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5936                  DAG.getIntPtrConstant(EltIdx - 8));
5937    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5938                       DAG.getIntPtrConstant(i));
5939  }
5940  return NewV;
5941}
5942
5943// v16i8 shuffles - Prefer shuffles in the following order:
5944// 1. [ssse3] 1 x pshufb
5945// 2. [ssse3] 2 x pshufb + 1 x por
5946// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5947static
5948SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5949                                 SelectionDAG &DAG,
5950                                 const X86TargetLowering &TLI) {
5951  SDValue V1 = SVOp->getOperand(0);
5952  SDValue V2 = SVOp->getOperand(1);
5953  DebugLoc dl = SVOp->getDebugLoc();
5954  ArrayRef<int> MaskVals = SVOp->getMask();
5955
5956  // If we have SSSE3, case 1 is generated when all result bytes come from
5957  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5958  // present, fall back to case 3.
5959
5960  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5961  if (TLI.getSubtarget()->hasSSSE3()) {
5962    SmallVector<SDValue,16> pshufbMask;
5963
5964    // If all result elements are from one input vector, then only translate
5965    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5966    //
5967    // Otherwise, we have elements from both input vectors, and must zero out
5968    // elements that come from V2 in the first mask, and V1 in the second mask
5969    // so that we can OR them together.
5970    for (unsigned i = 0; i != 16; ++i) {
5971      int EltIdx = MaskVals[i];
5972      if (EltIdx < 0 || EltIdx >= 16)
5973        EltIdx = 0x80;
5974      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5975    }
5976    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5977                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5978                                 MVT::v16i8, &pshufbMask[0], 16));
5979
5980    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5981    // the 2nd operand if it's undefined or zero.
5982    if (V2.getOpcode() == ISD::UNDEF ||
5983        ISD::isBuildVectorAllZeros(V2.getNode()))
5984      return V1;
5985
5986    // Calculate the shuffle mask for the second input, shuffle it, and
5987    // OR it with the first shuffled input.
5988    pshufbMask.clear();
5989    for (unsigned i = 0; i != 16; ++i) {
5990      int EltIdx = MaskVals[i];
5991      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5992      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5993    }
5994    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5995                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5996                                 MVT::v16i8, &pshufbMask[0], 16));
5997    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5998  }
5999
6000  // No SSSE3 - Calculate in place words and then fix all out of place words
6001  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6002  // the 16 different words that comprise the two doublequadword input vectors.
6003  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6004  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6005  SDValue NewV = V1;
6006  for (int i = 0; i != 8; ++i) {
6007    int Elt0 = MaskVals[i*2];
6008    int Elt1 = MaskVals[i*2+1];
6009
6010    // This word of the result is all undef, skip it.
6011    if (Elt0 < 0 && Elt1 < 0)
6012      continue;
6013
6014    // This word of the result is already in the correct place, skip it.
6015    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6016      continue;
6017
6018    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6019    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6020    SDValue InsElt;
6021
6022    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6023    // using a single extract together, load it and store it.
6024    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6025      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6026                           DAG.getIntPtrConstant(Elt1 / 2));
6027      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6028                        DAG.getIntPtrConstant(i));
6029      continue;
6030    }
6031
6032    // If Elt1 is defined, extract it from the appropriate source.  If the
6033    // source byte is not also odd, shift the extracted word left 8 bits
6034    // otherwise clear the bottom 8 bits if we need to do an or.
6035    if (Elt1 >= 0) {
6036      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6037                           DAG.getIntPtrConstant(Elt1 / 2));
6038      if ((Elt1 & 1) == 0)
6039        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6040                             DAG.getConstant(8,
6041                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6042      else if (Elt0 >= 0)
6043        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6044                             DAG.getConstant(0xFF00, MVT::i16));
6045    }
6046    // If Elt0 is defined, extract it from the appropriate source.  If the
6047    // source byte is not also even, shift the extracted word right 8 bits. If
6048    // Elt1 was also defined, OR the extracted values together before
6049    // inserting them in the result.
6050    if (Elt0 >= 0) {
6051      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6052                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6053      if ((Elt0 & 1) != 0)
6054        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6055                              DAG.getConstant(8,
6056                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6057      else if (Elt1 >= 0)
6058        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6059                             DAG.getConstant(0x00FF, MVT::i16));
6060      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6061                         : InsElt0;
6062    }
6063    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6064                       DAG.getIntPtrConstant(i));
6065  }
6066  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6067}
6068
6069// v32i8 shuffles - Translate to VPSHUFB if possible.
6070static
6071SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6072                                 const X86Subtarget *Subtarget,
6073                                 SelectionDAG &DAG) {
6074  EVT VT = SVOp->getValueType(0);
6075  SDValue V1 = SVOp->getOperand(0);
6076  SDValue V2 = SVOp->getOperand(1);
6077  DebugLoc dl = SVOp->getDebugLoc();
6078  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6079
6080  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6081  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6082  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6083
6084  // VPSHUFB may be generated if
6085  // (1) one of input vector is undefined or zeroinitializer.
6086  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6087  // And (2) the mask indexes don't cross the 128-bit lane.
6088  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6089      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6090    return SDValue();
6091
6092  if (V1IsAllZero && !V2IsAllZero) {
6093    CommuteVectorShuffleMask(MaskVals, 32);
6094    V1 = V2;
6095  }
6096  SmallVector<SDValue, 32> pshufbMask;
6097  for (unsigned i = 0; i != 32; i++) {
6098    int EltIdx = MaskVals[i];
6099    if (EltIdx < 0 || EltIdx >= 32)
6100      EltIdx = 0x80;
6101    else {
6102      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6103        // Cross lane is not allowed.
6104        return SDValue();
6105      EltIdx &= 0xf;
6106    }
6107    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6108  }
6109  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6110                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6111                                  MVT::v32i8, &pshufbMask[0], 32));
6112}
6113
6114/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6115/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6116/// done when every pair / quad of shuffle mask elements point to elements in
6117/// the right sequence. e.g.
6118/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6119static
6120SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6121                                 SelectionDAG &DAG, DebugLoc dl) {
6122  MVT VT = SVOp->getValueType(0).getSimpleVT();
6123  unsigned NumElems = VT.getVectorNumElements();
6124  MVT NewVT;
6125  unsigned Scale;
6126  switch (VT.SimpleTy) {
6127  default: llvm_unreachable("Unexpected!");
6128  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6129  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6130  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6131  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6132  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6133  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6134  }
6135
6136  SmallVector<int, 8> MaskVec;
6137  for (unsigned i = 0; i != NumElems; i += Scale) {
6138    int StartIdx = -1;
6139    for (unsigned j = 0; j != Scale; ++j) {
6140      int EltIdx = SVOp->getMaskElt(i+j);
6141      if (EltIdx < 0)
6142        continue;
6143      if (StartIdx < 0)
6144        StartIdx = (EltIdx / Scale);
6145      if (EltIdx != (int)(StartIdx*Scale + j))
6146        return SDValue();
6147    }
6148    MaskVec.push_back(StartIdx);
6149  }
6150
6151  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6152  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6153  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6154}
6155
6156/// getVZextMovL - Return a zero-extending vector move low node.
6157///
6158static SDValue getVZextMovL(EVT VT, EVT OpVT,
6159                            SDValue SrcOp, SelectionDAG &DAG,
6160                            const X86Subtarget *Subtarget, DebugLoc dl) {
6161  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6162    LoadSDNode *LD = NULL;
6163    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6164      LD = dyn_cast<LoadSDNode>(SrcOp);
6165    if (!LD) {
6166      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6167      // instead.
6168      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6169      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6170          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6171          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6172          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6173        // PR2108
6174        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6175        return DAG.getNode(ISD::BITCAST, dl, VT,
6176                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6177                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6178                                                   OpVT,
6179                                                   SrcOp.getOperand(0)
6180                                                          .getOperand(0))));
6181      }
6182    }
6183  }
6184
6185  return DAG.getNode(ISD::BITCAST, dl, VT,
6186                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6187                                 DAG.getNode(ISD::BITCAST, dl,
6188                                             OpVT, SrcOp)));
6189}
6190
6191/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6192/// which could not be matched by any known target speficic shuffle
6193static SDValue
6194LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6195
6196  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6197  if (NewOp.getNode())
6198    return NewOp;
6199
6200  EVT VT = SVOp->getValueType(0);
6201
6202  unsigned NumElems = VT.getVectorNumElements();
6203  unsigned NumLaneElems = NumElems / 2;
6204
6205  DebugLoc dl = SVOp->getDebugLoc();
6206  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6207  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6208  SDValue Output[2];
6209
6210  SmallVector<int, 16> Mask;
6211  for (unsigned l = 0; l < 2; ++l) {
6212    // Build a shuffle mask for the output, discovering on the fly which
6213    // input vectors to use as shuffle operands (recorded in InputUsed).
6214    // If building a suitable shuffle vector proves too hard, then bail
6215    // out with UseBuildVector set.
6216    bool UseBuildVector = false;
6217    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6218    unsigned LaneStart = l * NumLaneElems;
6219    for (unsigned i = 0; i != NumLaneElems; ++i) {
6220      // The mask element.  This indexes into the input.
6221      int Idx = SVOp->getMaskElt(i+LaneStart);
6222      if (Idx < 0) {
6223        // the mask element does not index into any input vector.
6224        Mask.push_back(-1);
6225        continue;
6226      }
6227
6228      // The input vector this mask element indexes into.
6229      int Input = Idx / NumLaneElems;
6230
6231      // Turn the index into an offset from the start of the input vector.
6232      Idx -= Input * NumLaneElems;
6233
6234      // Find or create a shuffle vector operand to hold this input.
6235      unsigned OpNo;
6236      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6237        if (InputUsed[OpNo] == Input)
6238          // This input vector is already an operand.
6239          break;
6240        if (InputUsed[OpNo] < 0) {
6241          // Create a new operand for this input vector.
6242          InputUsed[OpNo] = Input;
6243          break;
6244        }
6245      }
6246
6247      if (OpNo >= array_lengthof(InputUsed)) {
6248        // More than two input vectors used!  Give up on trying to create a
6249        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6250        UseBuildVector = true;
6251        break;
6252      }
6253
6254      // Add the mask index for the new shuffle vector.
6255      Mask.push_back(Idx + OpNo * NumLaneElems);
6256    }
6257
6258    if (UseBuildVector) {
6259      SmallVector<SDValue, 16> SVOps;
6260      for (unsigned i = 0; i != NumLaneElems; ++i) {
6261        // The mask element.  This indexes into the input.
6262        int Idx = SVOp->getMaskElt(i+LaneStart);
6263        if (Idx < 0) {
6264          SVOps.push_back(DAG.getUNDEF(EltVT));
6265          continue;
6266        }
6267
6268        // The input vector this mask element indexes into.
6269        int Input = Idx / NumElems;
6270
6271        // Turn the index into an offset from the start of the input vector.
6272        Idx -= Input * NumElems;
6273
6274        // Extract the vector element by hand.
6275        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6276                                    SVOp->getOperand(Input),
6277                                    DAG.getIntPtrConstant(Idx)));
6278      }
6279
6280      // Construct the output using a BUILD_VECTOR.
6281      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6282                              SVOps.size());
6283    } else if (InputUsed[0] < 0) {
6284      // No input vectors were used! The result is undefined.
6285      Output[l] = DAG.getUNDEF(NVT);
6286    } else {
6287      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6288                                        (InputUsed[0] % 2) * NumLaneElems,
6289                                        DAG, dl);
6290      // If only one input was used, use an undefined vector for the other.
6291      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6292        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6293                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6294      // At least one input vector was used. Create a new shuffle vector.
6295      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6296    }
6297
6298    Mask.clear();
6299  }
6300
6301  // Concatenate the result back
6302  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6303}
6304
6305/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6306/// 4 elements, and match them with several different shuffle types.
6307static SDValue
6308LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6309  SDValue V1 = SVOp->getOperand(0);
6310  SDValue V2 = SVOp->getOperand(1);
6311  DebugLoc dl = SVOp->getDebugLoc();
6312  EVT VT = SVOp->getValueType(0);
6313
6314  assert(VT.is128BitVector() && "Unsupported vector size");
6315
6316  std::pair<int, int> Locs[4];
6317  int Mask1[] = { -1, -1, -1, -1 };
6318  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6319
6320  unsigned NumHi = 0;
6321  unsigned NumLo = 0;
6322  for (unsigned i = 0; i != 4; ++i) {
6323    int Idx = PermMask[i];
6324    if (Idx < 0) {
6325      Locs[i] = std::make_pair(-1, -1);
6326    } else {
6327      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6328      if (Idx < 4) {
6329        Locs[i] = std::make_pair(0, NumLo);
6330        Mask1[NumLo] = Idx;
6331        NumLo++;
6332      } else {
6333        Locs[i] = std::make_pair(1, NumHi);
6334        if (2+NumHi < 4)
6335          Mask1[2+NumHi] = Idx;
6336        NumHi++;
6337      }
6338    }
6339  }
6340
6341  if (NumLo <= 2 && NumHi <= 2) {
6342    // If no more than two elements come from either vector. This can be
6343    // implemented with two shuffles. First shuffle gather the elements.
6344    // The second shuffle, which takes the first shuffle as both of its
6345    // vector operands, put the elements into the right order.
6346    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6347
6348    int Mask2[] = { -1, -1, -1, -1 };
6349
6350    for (unsigned i = 0; i != 4; ++i)
6351      if (Locs[i].first != -1) {
6352        unsigned Idx = (i < 2) ? 0 : 4;
6353        Idx += Locs[i].first * 2 + Locs[i].second;
6354        Mask2[i] = Idx;
6355      }
6356
6357    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6358  }
6359
6360  if (NumLo == 3 || NumHi == 3) {
6361    // Otherwise, we must have three elements from one vector, call it X, and
6362    // one element from the other, call it Y.  First, use a shufps to build an
6363    // intermediate vector with the one element from Y and the element from X
6364    // that will be in the same half in the final destination (the indexes don't
6365    // matter). Then, use a shufps to build the final vector, taking the half
6366    // containing the element from Y from the intermediate, and the other half
6367    // from X.
6368    if (NumHi == 3) {
6369      // Normalize it so the 3 elements come from V1.
6370      CommuteVectorShuffleMask(PermMask, 4);
6371      std::swap(V1, V2);
6372    }
6373
6374    // Find the element from V2.
6375    unsigned HiIndex;
6376    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6377      int Val = PermMask[HiIndex];
6378      if (Val < 0)
6379        continue;
6380      if (Val >= 4)
6381        break;
6382    }
6383
6384    Mask1[0] = PermMask[HiIndex];
6385    Mask1[1] = -1;
6386    Mask1[2] = PermMask[HiIndex^1];
6387    Mask1[3] = -1;
6388    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6389
6390    if (HiIndex >= 2) {
6391      Mask1[0] = PermMask[0];
6392      Mask1[1] = PermMask[1];
6393      Mask1[2] = HiIndex & 1 ? 6 : 4;
6394      Mask1[3] = HiIndex & 1 ? 4 : 6;
6395      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6396    }
6397
6398    Mask1[0] = HiIndex & 1 ? 2 : 0;
6399    Mask1[1] = HiIndex & 1 ? 0 : 2;
6400    Mask1[2] = PermMask[2];
6401    Mask1[3] = PermMask[3];
6402    if (Mask1[2] >= 0)
6403      Mask1[2] += 4;
6404    if (Mask1[3] >= 0)
6405      Mask1[3] += 4;
6406    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6407  }
6408
6409  // Break it into (shuffle shuffle_hi, shuffle_lo).
6410  int LoMask[] = { -1, -1, -1, -1 };
6411  int HiMask[] = { -1, -1, -1, -1 };
6412
6413  int *MaskPtr = LoMask;
6414  unsigned MaskIdx = 0;
6415  unsigned LoIdx = 0;
6416  unsigned HiIdx = 2;
6417  for (unsigned i = 0; i != 4; ++i) {
6418    if (i == 2) {
6419      MaskPtr = HiMask;
6420      MaskIdx = 1;
6421      LoIdx = 0;
6422      HiIdx = 2;
6423    }
6424    int Idx = PermMask[i];
6425    if (Idx < 0) {
6426      Locs[i] = std::make_pair(-1, -1);
6427    } else if (Idx < 4) {
6428      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6429      MaskPtr[LoIdx] = Idx;
6430      LoIdx++;
6431    } else {
6432      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6433      MaskPtr[HiIdx] = Idx;
6434      HiIdx++;
6435    }
6436  }
6437
6438  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6439  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6440  int MaskOps[] = { -1, -1, -1, -1 };
6441  for (unsigned i = 0; i != 4; ++i)
6442    if (Locs[i].first != -1)
6443      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6444  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6445}
6446
6447static bool MayFoldVectorLoad(SDValue V) {
6448  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6449    V = V.getOperand(0);
6450
6451  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6452    V = V.getOperand(0);
6453  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6454      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6455    // BUILD_VECTOR (load), undef
6456    V = V.getOperand(0);
6457
6458  return MayFoldLoad(V);
6459}
6460
6461static
6462SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6463  EVT VT = Op.getValueType();
6464
6465  // Canonizalize to v2f64.
6466  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6467  return DAG.getNode(ISD::BITCAST, dl, VT,
6468                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6469                                          V1, DAG));
6470}
6471
6472static
6473SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6474                        bool HasSSE2) {
6475  SDValue V1 = Op.getOperand(0);
6476  SDValue V2 = Op.getOperand(1);
6477  EVT VT = Op.getValueType();
6478
6479  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6480
6481  if (HasSSE2 && VT == MVT::v2f64)
6482    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6483
6484  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6485  return DAG.getNode(ISD::BITCAST, dl, VT,
6486                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6487                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6488                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6489}
6490
6491static
6492SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6493  SDValue V1 = Op.getOperand(0);
6494  SDValue V2 = Op.getOperand(1);
6495  EVT VT = Op.getValueType();
6496
6497  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6498         "unsupported shuffle type");
6499
6500  if (V2.getOpcode() == ISD::UNDEF)
6501    V2 = V1;
6502
6503  // v4i32 or v4f32
6504  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6505}
6506
6507static
6508SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6509  SDValue V1 = Op.getOperand(0);
6510  SDValue V2 = Op.getOperand(1);
6511  EVT VT = Op.getValueType();
6512  unsigned NumElems = VT.getVectorNumElements();
6513
6514  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6515  // operand of these instructions is only memory, so check if there's a
6516  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6517  // same masks.
6518  bool CanFoldLoad = false;
6519
6520  // Trivial case, when V2 comes from a load.
6521  if (MayFoldVectorLoad(V2))
6522    CanFoldLoad = true;
6523
6524  // When V1 is a load, it can be folded later into a store in isel, example:
6525  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6526  //    turns into:
6527  //  (MOVLPSmr addr:$src1, VR128:$src2)
6528  // So, recognize this potential and also use MOVLPS or MOVLPD
6529  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6530    CanFoldLoad = true;
6531
6532  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6533  if (CanFoldLoad) {
6534    if (HasSSE2 && NumElems == 2)
6535      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6536
6537    if (NumElems == 4)
6538      // If we don't care about the second element, proceed to use movss.
6539      if (SVOp->getMaskElt(1) != -1)
6540        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6541  }
6542
6543  // movl and movlp will both match v2i64, but v2i64 is never matched by
6544  // movl earlier because we make it strict to avoid messing with the movlp load
6545  // folding logic (see the code above getMOVLP call). Match it here then,
6546  // this is horrible, but will stay like this until we move all shuffle
6547  // matching to x86 specific nodes. Note that for the 1st condition all
6548  // types are matched with movsd.
6549  if (HasSSE2) {
6550    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6551    // as to remove this logic from here, as much as possible
6552    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6553      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6554    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6555  }
6556
6557  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6558
6559  // Invert the operand order and use SHUFPS to match it.
6560  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6561                              getShuffleSHUFImmediate(SVOp), DAG);
6562}
6563
6564// Reduce a vector shuffle to zext.
6565SDValue
6566X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6567  // PMOVZX is only available from SSE41.
6568  if (!Subtarget->hasSSE41())
6569    return SDValue();
6570
6571  EVT VT = Op.getValueType();
6572
6573  // Only AVX2 support 256-bit vector integer extending.
6574  if (!Subtarget->hasInt256() && VT.is256BitVector())
6575    return SDValue();
6576
6577  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6578  DebugLoc DL = Op.getDebugLoc();
6579  SDValue V1 = Op.getOperand(0);
6580  SDValue V2 = Op.getOperand(1);
6581  unsigned NumElems = VT.getVectorNumElements();
6582
6583  // Extending is an unary operation and the element type of the source vector
6584  // won't be equal to or larger than i64.
6585  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6586      VT.getVectorElementType() == MVT::i64)
6587    return SDValue();
6588
6589  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6590  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6591  while ((1U << Shift) < NumElems) {
6592    if (SVOp->getMaskElt(1U << Shift) == 1)
6593      break;
6594    Shift += 1;
6595    // The maximal ratio is 8, i.e. from i8 to i64.
6596    if (Shift > 3)
6597      return SDValue();
6598  }
6599
6600  // Check the shuffle mask.
6601  unsigned Mask = (1U << Shift) - 1;
6602  for (unsigned i = 0; i != NumElems; ++i) {
6603    int EltIdx = SVOp->getMaskElt(i);
6604    if ((i & Mask) != 0 && EltIdx != -1)
6605      return SDValue();
6606    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6607      return SDValue();
6608  }
6609
6610  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6611  EVT NeVT = EVT::getIntegerVT(*DAG.getContext(), NBits);
6612  EVT NVT = EVT::getVectorVT(*DAG.getContext(), NeVT, NumElems >> Shift);
6613
6614  if (!isTypeLegal(NVT))
6615    return SDValue();
6616
6617  // Simplify the operand as it's prepared to be fed into shuffle.
6618  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6619  if (V1.getOpcode() == ISD::BITCAST &&
6620      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6621      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6622      V1.getOperand(0)
6623        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6624    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6625    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6626    ConstantSDNode *CIdx =
6627      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6628    // If it's foldable, i.e. normal load with single use, we will let code
6629    // selection to fold it. Otherwise, we will short the conversion sequence.
6630    if (CIdx && CIdx->getZExtValue() == 0 &&
6631        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse()))
6632      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6633  }
6634
6635  return DAG.getNode(ISD::BITCAST, DL, VT,
6636                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6637}
6638
6639SDValue
6640X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6641  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6642  EVT VT = Op.getValueType();
6643  DebugLoc dl = Op.getDebugLoc();
6644  SDValue V1 = Op.getOperand(0);
6645  SDValue V2 = Op.getOperand(1);
6646
6647  if (isZeroShuffle(SVOp))
6648    return getZeroVector(VT, Subtarget, DAG, dl);
6649
6650  // Handle splat operations
6651  if (SVOp->isSplat()) {
6652    unsigned NumElem = VT.getVectorNumElements();
6653    int Size = VT.getSizeInBits();
6654
6655    // Use vbroadcast whenever the splat comes from a foldable load
6656    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6657    if (Broadcast.getNode())
6658      return Broadcast;
6659
6660    // Handle splats by matching through known shuffle masks
6661    if ((Size == 128 && NumElem <= 4) ||
6662        (Size == 256 && NumElem <= 8))
6663      return SDValue();
6664
6665    // All remaning splats are promoted to target supported vector shuffles.
6666    return PromoteSplat(SVOp, DAG);
6667  }
6668
6669  // Check integer expanding shuffles.
6670  SDValue NewOp = lowerVectorIntExtend(Op, DAG);
6671  if (NewOp.getNode())
6672    return NewOp;
6673
6674  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6675  // do it!
6676  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6677      VT == MVT::v16i16 || VT == MVT::v32i8) {
6678    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6679    if (NewOp.getNode())
6680      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6681  } else if ((VT == MVT::v4i32 ||
6682             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6683    // FIXME: Figure out a cleaner way to do this.
6684    // Try to make use of movq to zero out the top part.
6685    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6686      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6687      if (NewOp.getNode()) {
6688        EVT NewVT = NewOp.getValueType();
6689        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6690                               NewVT, true, false))
6691          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6692                              DAG, Subtarget, dl);
6693      }
6694    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6695      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6696      if (NewOp.getNode()) {
6697        EVT NewVT = NewOp.getValueType();
6698        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6699          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6700                              DAG, Subtarget, dl);
6701      }
6702    }
6703  }
6704  return SDValue();
6705}
6706
6707SDValue
6708X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6709  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6710  SDValue V1 = Op.getOperand(0);
6711  SDValue V2 = Op.getOperand(1);
6712  EVT VT = Op.getValueType();
6713  DebugLoc dl = Op.getDebugLoc();
6714  unsigned NumElems = VT.getVectorNumElements();
6715  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6716  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6717  bool V1IsSplat = false;
6718  bool V2IsSplat = false;
6719  bool HasSSE2 = Subtarget->hasSSE2();
6720  bool HasFp256    = Subtarget->hasFp256();
6721  bool HasInt256   = Subtarget->hasInt256();
6722  MachineFunction &MF = DAG.getMachineFunction();
6723  bool OptForSize = MF.getFunction()->getFnAttributes().
6724    hasAttribute(Attributes::OptimizeForSize);
6725
6726  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6727
6728  if (V1IsUndef && V2IsUndef)
6729    return DAG.getUNDEF(VT);
6730
6731  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6732
6733  // Vector shuffle lowering takes 3 steps:
6734  //
6735  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6736  //    narrowing and commutation of operands should be handled.
6737  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6738  //    shuffle nodes.
6739  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6740  //    so the shuffle can be broken into other shuffles and the legalizer can
6741  //    try the lowering again.
6742  //
6743  // The general idea is that no vector_shuffle operation should be left to
6744  // be matched during isel, all of them must be converted to a target specific
6745  // node here.
6746
6747  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6748  // narrowing and commutation of operands should be handled. The actual code
6749  // doesn't include all of those, work in progress...
6750  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6751  if (NewOp.getNode())
6752    return NewOp;
6753
6754  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6755
6756  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6757  // unpckh_undef). Only use pshufd if speed is more important than size.
6758  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6759    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6760  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6761    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6762
6763  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6764      V2IsUndef && MayFoldVectorLoad(V1))
6765    return getMOVDDup(Op, dl, V1, DAG);
6766
6767  if (isMOVHLPS_v_undef_Mask(M, VT))
6768    return getMOVHighToLow(Op, dl, DAG);
6769
6770  // Use to match splats
6771  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
6772      (VT == MVT::v2f64 || VT == MVT::v2i64))
6773    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6774
6775  if (isPSHUFDMask(M, VT)) {
6776    // The actual implementation will match the mask in the if above and then
6777    // during isel it can match several different instructions, not only pshufd
6778    // as its name says, sad but true, emulate the behavior for now...
6779    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6780      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6781
6782    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6783
6784    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6785      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6786
6787    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
6788      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
6789                                  DAG);
6790
6791    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6792                                TargetMask, DAG);
6793  }
6794
6795  // Check if this can be converted into a logical shift.
6796  bool isLeft = false;
6797  unsigned ShAmt = 0;
6798  SDValue ShVal;
6799  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6800  if (isShift && ShVal.hasOneUse()) {
6801    // If the shifted value has multiple uses, it may be cheaper to use
6802    // v_set0 + movlhps or movhlps, etc.
6803    EVT EltVT = VT.getVectorElementType();
6804    ShAmt *= EltVT.getSizeInBits();
6805    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6806  }
6807
6808  if (isMOVLMask(M, VT)) {
6809    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6810      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6811    if (!isMOVLPMask(M, VT)) {
6812      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6813        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6814
6815      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6816        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6817    }
6818  }
6819
6820  // FIXME: fold these into legal mask.
6821  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
6822    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6823
6824  if (isMOVHLPSMask(M, VT))
6825    return getMOVHighToLow(Op, dl, DAG);
6826
6827  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6828    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6829
6830  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6831    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6832
6833  if (isMOVLPMask(M, VT))
6834    return getMOVLP(Op, dl, DAG, HasSSE2);
6835
6836  if (ShouldXformToMOVHLPS(M, VT) ||
6837      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6838    return CommuteVectorShuffle(SVOp, DAG);
6839
6840  if (isShift) {
6841    // No better options. Use a vshldq / vsrldq.
6842    EVT EltVT = VT.getVectorElementType();
6843    ShAmt *= EltVT.getSizeInBits();
6844    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6845  }
6846
6847  bool Commuted = false;
6848  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6849  // 1,1,1,1 -> v8i16 though.
6850  V1IsSplat = isSplatVector(V1.getNode());
6851  V2IsSplat = isSplatVector(V2.getNode());
6852
6853  // Canonicalize the splat or undef, if present, to be on the RHS.
6854  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6855    CommuteVectorShuffleMask(M, NumElems);
6856    std::swap(V1, V2);
6857    std::swap(V1IsSplat, V2IsSplat);
6858    Commuted = true;
6859  }
6860
6861  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6862    // Shuffling low element of v1 into undef, just return v1.
6863    if (V2IsUndef)
6864      return V1;
6865    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6866    // the instruction selector will not match, so get a canonical MOVL with
6867    // swapped operands to undo the commute.
6868    return getMOVL(DAG, dl, VT, V2, V1);
6869  }
6870
6871  if (isUNPCKLMask(M, VT, HasInt256))
6872    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6873
6874  if (isUNPCKHMask(M, VT, HasInt256))
6875    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6876
6877  if (V2IsSplat) {
6878    // Normalize mask so all entries that point to V2 points to its first
6879    // element then try to match unpck{h|l} again. If match, return a
6880    // new vector_shuffle with the corrected mask.p
6881    SmallVector<int, 8> NewMask(M.begin(), M.end());
6882    NormalizeMask(NewMask, NumElems);
6883    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
6884      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6885    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
6886      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6887  }
6888
6889  if (Commuted) {
6890    // Commute is back and try unpck* again.
6891    // FIXME: this seems wrong.
6892    CommuteVectorShuffleMask(M, NumElems);
6893    std::swap(V1, V2);
6894    std::swap(V1IsSplat, V2IsSplat);
6895    Commuted = false;
6896
6897    if (isUNPCKLMask(M, VT, HasInt256))
6898      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6899
6900    if (isUNPCKHMask(M, VT, HasInt256))
6901      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6902  }
6903
6904  // Normalize the node to match x86 shuffle ops if needed
6905  if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
6906    return CommuteVectorShuffle(SVOp, DAG);
6907
6908  // The checks below are all present in isShuffleMaskLegal, but they are
6909  // inlined here right now to enable us to directly emit target specific
6910  // nodes, and remove one by one until they don't return Op anymore.
6911
6912  if (isPALIGNRMask(M, VT, Subtarget))
6913    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6914                                getShufflePALIGNRImmediate(SVOp),
6915                                DAG);
6916
6917  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6918      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6919    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6920      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6921  }
6922
6923  if (isPSHUFHWMask(M, VT, HasInt256))
6924    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6925                                getShufflePSHUFHWImmediate(SVOp),
6926                                DAG);
6927
6928  if (isPSHUFLWMask(M, VT, HasInt256))
6929    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6930                                getShufflePSHUFLWImmediate(SVOp),
6931                                DAG);
6932
6933  if (isSHUFPMask(M, VT, HasFp256))
6934    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6935                                getShuffleSHUFImmediate(SVOp), DAG);
6936
6937  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
6938    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6939  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
6940    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6941
6942  //===--------------------------------------------------------------------===//
6943  // Generate target specific nodes for 128 or 256-bit shuffles only
6944  // supported in the AVX instruction set.
6945  //
6946
6947  // Handle VMOVDDUPY permutations
6948  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
6949    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6950
6951  // Handle VPERMILPS/D* permutations
6952  if (isVPERMILPMask(M, VT, HasFp256)) {
6953    if (HasInt256 && VT == MVT::v8i32)
6954      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6955                                  getShuffleSHUFImmediate(SVOp), DAG);
6956    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6957                                getShuffleSHUFImmediate(SVOp), DAG);
6958  }
6959
6960  // Handle VPERM2F128/VPERM2I128 permutations
6961  if (isVPERM2X128Mask(M, VT, HasFp256))
6962    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6963                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6964
6965  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6966  if (BlendOp.getNode())
6967    return BlendOp;
6968
6969  if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6970    SmallVector<SDValue, 8> permclMask;
6971    for (unsigned i = 0; i != 8; ++i) {
6972      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6973    }
6974    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6975                               &permclMask[0], 8);
6976    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6977    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6978                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6979  }
6980
6981  if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6982    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6983                                getShuffleCLImmediate(SVOp), DAG);
6984
6985
6986  //===--------------------------------------------------------------------===//
6987  // Since no target specific shuffle was selected for this generic one,
6988  // lower it into other known shuffles. FIXME: this isn't true yet, but
6989  // this is the plan.
6990  //
6991
6992  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6993  if (VT == MVT::v8i16) {
6994    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
6995    if (NewOp.getNode())
6996      return NewOp;
6997  }
6998
6999  if (VT == MVT::v16i8) {
7000    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7001    if (NewOp.getNode())
7002      return NewOp;
7003  }
7004
7005  if (VT == MVT::v32i8) {
7006    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7007    if (NewOp.getNode())
7008      return NewOp;
7009  }
7010
7011  // Handle all 128-bit wide vectors with 4 elements, and match them with
7012  // several different shuffle types.
7013  if (NumElems == 4 && VT.is128BitVector())
7014    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7015
7016  // Handle general 256-bit shuffles
7017  if (VT.is256BitVector())
7018    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7019
7020  return SDValue();
7021}
7022
7023SDValue
7024X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
7025                                                SelectionDAG &DAG) const {
7026  EVT VT = Op.getValueType();
7027  DebugLoc dl = Op.getDebugLoc();
7028
7029  if (!Op.getOperand(0).getValueType().is128BitVector())
7030    return SDValue();
7031
7032  if (VT.getSizeInBits() == 8) {
7033    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7034                                  Op.getOperand(0), Op.getOperand(1));
7035    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7036                                  DAG.getValueType(VT));
7037    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7038  }
7039
7040  if (VT.getSizeInBits() == 16) {
7041    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7042    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7043    if (Idx == 0)
7044      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7045                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7046                                     DAG.getNode(ISD::BITCAST, dl,
7047                                                 MVT::v4i32,
7048                                                 Op.getOperand(0)),
7049                                     Op.getOperand(1)));
7050    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7051                                  Op.getOperand(0), Op.getOperand(1));
7052    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7053                                  DAG.getValueType(VT));
7054    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7055  }
7056
7057  if (VT == MVT::f32) {
7058    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7059    // the result back to FR32 register. It's only worth matching if the
7060    // result has a single use which is a store or a bitcast to i32.  And in
7061    // the case of a store, it's not worth it if the index is a constant 0,
7062    // because a MOVSSmr can be used instead, which is smaller and faster.
7063    if (!Op.hasOneUse())
7064      return SDValue();
7065    SDNode *User = *Op.getNode()->use_begin();
7066    if ((User->getOpcode() != ISD::STORE ||
7067         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7068          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7069        (User->getOpcode() != ISD::BITCAST ||
7070         User->getValueType(0) != MVT::i32))
7071      return SDValue();
7072    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7073                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7074                                              Op.getOperand(0)),
7075                                              Op.getOperand(1));
7076    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7077  }
7078
7079  if (VT == MVT::i32 || VT == MVT::i64) {
7080    // ExtractPS/pextrq works with constant index.
7081    if (isa<ConstantSDNode>(Op.getOperand(1)))
7082      return Op;
7083  }
7084  return SDValue();
7085}
7086
7087
7088SDValue
7089X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7090                                           SelectionDAG &DAG) const {
7091  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7092    return SDValue();
7093
7094  SDValue Vec = Op.getOperand(0);
7095  EVT VecVT = Vec.getValueType();
7096
7097  // If this is a 256-bit vector result, first extract the 128-bit vector and
7098  // then extract the element from the 128-bit vector.
7099  if (VecVT.is256BitVector()) {
7100    DebugLoc dl = Op.getNode()->getDebugLoc();
7101    unsigned NumElems = VecVT.getVectorNumElements();
7102    SDValue Idx = Op.getOperand(1);
7103    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7104
7105    // Get the 128-bit vector.
7106    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7107
7108    if (IdxVal >= NumElems/2)
7109      IdxVal -= NumElems/2;
7110    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7111                       DAG.getConstant(IdxVal, MVT::i32));
7112  }
7113
7114  assert(VecVT.is128BitVector() && "Unexpected vector length");
7115
7116  if (Subtarget->hasSSE41()) {
7117    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7118    if (Res.getNode())
7119      return Res;
7120  }
7121
7122  EVT VT = Op.getValueType();
7123  DebugLoc dl = Op.getDebugLoc();
7124  // TODO: handle v16i8.
7125  if (VT.getSizeInBits() == 16) {
7126    SDValue Vec = Op.getOperand(0);
7127    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7128    if (Idx == 0)
7129      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7130                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7131                                     DAG.getNode(ISD::BITCAST, dl,
7132                                                 MVT::v4i32, Vec),
7133                                     Op.getOperand(1)));
7134    // Transform it so it match pextrw which produces a 32-bit result.
7135    EVT EltVT = MVT::i32;
7136    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7137                                  Op.getOperand(0), Op.getOperand(1));
7138    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7139                                  DAG.getValueType(VT));
7140    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7141  }
7142
7143  if (VT.getSizeInBits() == 32) {
7144    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7145    if (Idx == 0)
7146      return Op;
7147
7148    // SHUFPS the element to the lowest double word, then movss.
7149    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7150    EVT VVT = Op.getOperand(0).getValueType();
7151    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7152                                       DAG.getUNDEF(VVT), Mask);
7153    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7154                       DAG.getIntPtrConstant(0));
7155  }
7156
7157  if (VT.getSizeInBits() == 64) {
7158    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7159    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7160    //        to match extract_elt for f64.
7161    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7162    if (Idx == 0)
7163      return Op;
7164
7165    // UNPCKHPD the element to the lowest double word, then movsd.
7166    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7167    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7168    int Mask[2] = { 1, -1 };
7169    EVT VVT = Op.getOperand(0).getValueType();
7170    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7171                                       DAG.getUNDEF(VVT), Mask);
7172    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7173                       DAG.getIntPtrConstant(0));
7174  }
7175
7176  return SDValue();
7177}
7178
7179SDValue
7180X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7181                                               SelectionDAG &DAG) const {
7182  EVT VT = Op.getValueType();
7183  EVT EltVT = VT.getVectorElementType();
7184  DebugLoc dl = Op.getDebugLoc();
7185
7186  SDValue N0 = Op.getOperand(0);
7187  SDValue N1 = Op.getOperand(1);
7188  SDValue N2 = Op.getOperand(2);
7189
7190  if (!VT.is128BitVector())
7191    return SDValue();
7192
7193  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7194      isa<ConstantSDNode>(N2)) {
7195    unsigned Opc;
7196    if (VT == MVT::v8i16)
7197      Opc = X86ISD::PINSRW;
7198    else if (VT == MVT::v16i8)
7199      Opc = X86ISD::PINSRB;
7200    else
7201      Opc = X86ISD::PINSRB;
7202
7203    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7204    // argument.
7205    if (N1.getValueType() != MVT::i32)
7206      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7207    if (N2.getValueType() != MVT::i32)
7208      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7209    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7210  }
7211
7212  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7213    // Bits [7:6] of the constant are the source select.  This will always be
7214    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7215    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7216    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7217    // Bits [5:4] of the constant are the destination select.  This is the
7218    //  value of the incoming immediate.
7219    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7220    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7221    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7222    // Create this as a scalar to vector..
7223    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7224    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7225  }
7226
7227  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7228    // PINSR* works with constant index.
7229    return Op;
7230  }
7231  return SDValue();
7232}
7233
7234SDValue
7235X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7236  EVT VT = Op.getValueType();
7237  EVT EltVT = VT.getVectorElementType();
7238
7239  DebugLoc dl = Op.getDebugLoc();
7240  SDValue N0 = Op.getOperand(0);
7241  SDValue N1 = Op.getOperand(1);
7242  SDValue N2 = Op.getOperand(2);
7243
7244  // If this is a 256-bit vector result, first extract the 128-bit vector,
7245  // insert the element into the extracted half and then place it back.
7246  if (VT.is256BitVector()) {
7247    if (!isa<ConstantSDNode>(N2))
7248      return SDValue();
7249
7250    // Get the desired 128-bit vector half.
7251    unsigned NumElems = VT.getVectorNumElements();
7252    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7253    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7254
7255    // Insert the element into the desired half.
7256    bool Upper = IdxVal >= NumElems/2;
7257    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7258                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7259
7260    // Insert the changed part back to the 256-bit vector
7261    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7262  }
7263
7264  if (Subtarget->hasSSE41())
7265    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7266
7267  if (EltVT == MVT::i8)
7268    return SDValue();
7269
7270  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7271    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7272    // as its second argument.
7273    if (N1.getValueType() != MVT::i32)
7274      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7275    if (N2.getValueType() != MVT::i32)
7276      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7277    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7278  }
7279  return SDValue();
7280}
7281
7282static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7283  LLVMContext *Context = DAG.getContext();
7284  DebugLoc dl = Op.getDebugLoc();
7285  EVT OpVT = Op.getValueType();
7286
7287  // If this is a 256-bit vector result, first insert into a 128-bit
7288  // vector and then insert into the 256-bit vector.
7289  if (!OpVT.is128BitVector()) {
7290    // Insert into a 128-bit vector.
7291    EVT VT128 = EVT::getVectorVT(*Context,
7292                                 OpVT.getVectorElementType(),
7293                                 OpVT.getVectorNumElements() / 2);
7294
7295    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7296
7297    // Insert the 128-bit vector.
7298    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7299  }
7300
7301  if (OpVT == MVT::v1i64 &&
7302      Op.getOperand(0).getValueType() == MVT::i64)
7303    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7304
7305  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7306  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7307  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7308                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7309}
7310
7311// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7312// a simple subregister reference or explicit instructions to grab
7313// upper bits of a vector.
7314static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7315                                      SelectionDAG &DAG) {
7316  if (Subtarget->hasFp256()) {
7317    DebugLoc dl = Op.getNode()->getDebugLoc();
7318    SDValue Vec = Op.getNode()->getOperand(0);
7319    SDValue Idx = Op.getNode()->getOperand(1);
7320
7321    if (Op.getNode()->getValueType(0).is128BitVector() &&
7322        Vec.getNode()->getValueType(0).is256BitVector() &&
7323        isa<ConstantSDNode>(Idx)) {
7324      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7325      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7326    }
7327  }
7328  return SDValue();
7329}
7330
7331// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7332// simple superregister reference or explicit instructions to insert
7333// the upper bits of a vector.
7334static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7335                                     SelectionDAG &DAG) {
7336  if (Subtarget->hasFp256()) {
7337    DebugLoc dl = Op.getNode()->getDebugLoc();
7338    SDValue Vec = Op.getNode()->getOperand(0);
7339    SDValue SubVec = Op.getNode()->getOperand(1);
7340    SDValue Idx = Op.getNode()->getOperand(2);
7341
7342    if (Op.getNode()->getValueType(0).is256BitVector() &&
7343        SubVec.getNode()->getValueType(0).is128BitVector() &&
7344        isa<ConstantSDNode>(Idx)) {
7345      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7346      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7347    }
7348  }
7349  return SDValue();
7350}
7351
7352// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7353// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7354// one of the above mentioned nodes. It has to be wrapped because otherwise
7355// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7356// be used to form addressing mode. These wrapped nodes will be selected
7357// into MOV32ri.
7358SDValue
7359X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7360  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7361
7362  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7363  // global base reg.
7364  unsigned char OpFlag = 0;
7365  unsigned WrapperKind = X86ISD::Wrapper;
7366  CodeModel::Model M = getTargetMachine().getCodeModel();
7367
7368  if (Subtarget->isPICStyleRIPRel() &&
7369      (M == CodeModel::Small || M == CodeModel::Kernel))
7370    WrapperKind = X86ISD::WrapperRIP;
7371  else if (Subtarget->isPICStyleGOT())
7372    OpFlag = X86II::MO_GOTOFF;
7373  else if (Subtarget->isPICStyleStubPIC())
7374    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7375
7376  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7377                                             CP->getAlignment(),
7378                                             CP->getOffset(), OpFlag);
7379  DebugLoc DL = CP->getDebugLoc();
7380  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7381  // With PIC, the address is actually $g + Offset.
7382  if (OpFlag) {
7383    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7384                         DAG.getNode(X86ISD::GlobalBaseReg,
7385                                     DebugLoc(), getPointerTy()),
7386                         Result);
7387  }
7388
7389  return Result;
7390}
7391
7392SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7393  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7394
7395  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7396  // global base reg.
7397  unsigned char OpFlag = 0;
7398  unsigned WrapperKind = X86ISD::Wrapper;
7399  CodeModel::Model M = getTargetMachine().getCodeModel();
7400
7401  if (Subtarget->isPICStyleRIPRel() &&
7402      (M == CodeModel::Small || M == CodeModel::Kernel))
7403    WrapperKind = X86ISD::WrapperRIP;
7404  else if (Subtarget->isPICStyleGOT())
7405    OpFlag = X86II::MO_GOTOFF;
7406  else if (Subtarget->isPICStyleStubPIC())
7407    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7408
7409  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7410                                          OpFlag);
7411  DebugLoc DL = JT->getDebugLoc();
7412  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7413
7414  // With PIC, the address is actually $g + Offset.
7415  if (OpFlag)
7416    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7417                         DAG.getNode(X86ISD::GlobalBaseReg,
7418                                     DebugLoc(), getPointerTy()),
7419                         Result);
7420
7421  return Result;
7422}
7423
7424SDValue
7425X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7426  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7427
7428  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7429  // global base reg.
7430  unsigned char OpFlag = 0;
7431  unsigned WrapperKind = X86ISD::Wrapper;
7432  CodeModel::Model M = getTargetMachine().getCodeModel();
7433
7434  if (Subtarget->isPICStyleRIPRel() &&
7435      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7436    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7437      OpFlag = X86II::MO_GOTPCREL;
7438    WrapperKind = X86ISD::WrapperRIP;
7439  } else if (Subtarget->isPICStyleGOT()) {
7440    OpFlag = X86II::MO_GOT;
7441  } else if (Subtarget->isPICStyleStubPIC()) {
7442    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7443  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7444    OpFlag = X86II::MO_DARWIN_NONLAZY;
7445  }
7446
7447  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7448
7449  DebugLoc DL = Op.getDebugLoc();
7450  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7451
7452
7453  // With PIC, the address is actually $g + Offset.
7454  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7455      !Subtarget->is64Bit()) {
7456    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7457                         DAG.getNode(X86ISD::GlobalBaseReg,
7458                                     DebugLoc(), getPointerTy()),
7459                         Result);
7460  }
7461
7462  // For symbols that require a load from a stub to get the address, emit the
7463  // load.
7464  if (isGlobalStubReference(OpFlag))
7465    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7466                         MachinePointerInfo::getGOT(), false, false, false, 0);
7467
7468  return Result;
7469}
7470
7471SDValue
7472X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7473  // Create the TargetBlockAddressAddress node.
7474  unsigned char OpFlags =
7475    Subtarget->ClassifyBlockAddressReference();
7476  CodeModel::Model M = getTargetMachine().getCodeModel();
7477  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7478  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7479  DebugLoc dl = Op.getDebugLoc();
7480  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7481                                             OpFlags);
7482
7483  if (Subtarget->isPICStyleRIPRel() &&
7484      (M == CodeModel::Small || M == CodeModel::Kernel))
7485    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7486  else
7487    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7488
7489  // With PIC, the address is actually $g + Offset.
7490  if (isGlobalRelativeToPICBase(OpFlags)) {
7491    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7492                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7493                         Result);
7494  }
7495
7496  return Result;
7497}
7498
7499SDValue
7500X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7501                                      int64_t Offset,
7502                                      SelectionDAG &DAG) const {
7503  // Create the TargetGlobalAddress node, folding in the constant
7504  // offset if it is legal.
7505  unsigned char OpFlags =
7506    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7507  CodeModel::Model M = getTargetMachine().getCodeModel();
7508  SDValue Result;
7509  if (OpFlags == X86II::MO_NO_FLAG &&
7510      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7511    // A direct static reference to a global.
7512    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7513    Offset = 0;
7514  } else {
7515    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7516  }
7517
7518  if (Subtarget->isPICStyleRIPRel() &&
7519      (M == CodeModel::Small || M == CodeModel::Kernel))
7520    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7521  else
7522    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7523
7524  // With PIC, the address is actually $g + Offset.
7525  if (isGlobalRelativeToPICBase(OpFlags)) {
7526    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7527                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7528                         Result);
7529  }
7530
7531  // For globals that require a load from a stub to get the address, emit the
7532  // load.
7533  if (isGlobalStubReference(OpFlags))
7534    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7535                         MachinePointerInfo::getGOT(), false, false, false, 0);
7536
7537  // If there was a non-zero offset that we didn't fold, create an explicit
7538  // addition for it.
7539  if (Offset != 0)
7540    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7541                         DAG.getConstant(Offset, getPointerTy()));
7542
7543  return Result;
7544}
7545
7546SDValue
7547X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7548  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7549  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7550  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7551}
7552
7553static SDValue
7554GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7555           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7556           unsigned char OperandFlags, bool LocalDynamic = false) {
7557  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7558  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7559  DebugLoc dl = GA->getDebugLoc();
7560  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7561                                           GA->getValueType(0),
7562                                           GA->getOffset(),
7563                                           OperandFlags);
7564
7565  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7566                                           : X86ISD::TLSADDR;
7567
7568  if (InFlag) {
7569    SDValue Ops[] = { Chain,  TGA, *InFlag };
7570    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7571  } else {
7572    SDValue Ops[]  = { Chain, TGA };
7573    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7574  }
7575
7576  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7577  MFI->setAdjustsStack(true);
7578
7579  SDValue Flag = Chain.getValue(1);
7580  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7581}
7582
7583// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7584static SDValue
7585LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7586                                const EVT PtrVT) {
7587  SDValue InFlag;
7588  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7589  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7590                                   DAG.getNode(X86ISD::GlobalBaseReg,
7591                                               DebugLoc(), PtrVT), InFlag);
7592  InFlag = Chain.getValue(1);
7593
7594  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7595}
7596
7597// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7598static SDValue
7599LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7600                                const EVT PtrVT) {
7601  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7602                    X86::RAX, X86II::MO_TLSGD);
7603}
7604
7605static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7606                                           SelectionDAG &DAG,
7607                                           const EVT PtrVT,
7608                                           bool is64Bit) {
7609  DebugLoc dl = GA->getDebugLoc();
7610
7611  // Get the start address of the TLS block for this module.
7612  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7613      .getInfo<X86MachineFunctionInfo>();
7614  MFI->incNumLocalDynamicTLSAccesses();
7615
7616  SDValue Base;
7617  if (is64Bit) {
7618    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7619                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7620  } else {
7621    SDValue InFlag;
7622    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7623        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7624    InFlag = Chain.getValue(1);
7625    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7626                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7627  }
7628
7629  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7630  // of Base.
7631
7632  // Build x@dtpoff.
7633  unsigned char OperandFlags = X86II::MO_DTPOFF;
7634  unsigned WrapperKind = X86ISD::Wrapper;
7635  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7636                                           GA->getValueType(0),
7637                                           GA->getOffset(), OperandFlags);
7638  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7639
7640  // Add x@dtpoff with the base.
7641  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7642}
7643
7644// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7645static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7646                                   const EVT PtrVT, TLSModel::Model model,
7647                                   bool is64Bit, bool isPIC) {
7648  DebugLoc dl = GA->getDebugLoc();
7649
7650  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7651  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7652                                                         is64Bit ? 257 : 256));
7653
7654  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7655                                      DAG.getIntPtrConstant(0),
7656                                      MachinePointerInfo(Ptr),
7657                                      false, false, false, 0);
7658
7659  unsigned char OperandFlags = 0;
7660  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7661  // initialexec.
7662  unsigned WrapperKind = X86ISD::Wrapper;
7663  if (model == TLSModel::LocalExec) {
7664    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7665  } else if (model == TLSModel::InitialExec) {
7666    if (is64Bit) {
7667      OperandFlags = X86II::MO_GOTTPOFF;
7668      WrapperKind = X86ISD::WrapperRIP;
7669    } else {
7670      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7671    }
7672  } else {
7673    llvm_unreachable("Unexpected model");
7674  }
7675
7676  // emit "addl x@ntpoff,%eax" (local exec)
7677  // or "addl x@indntpoff,%eax" (initial exec)
7678  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7679  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7680                                           GA->getValueType(0),
7681                                           GA->getOffset(), OperandFlags);
7682  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7683
7684  if (model == TLSModel::InitialExec) {
7685    if (isPIC && !is64Bit) {
7686      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7687                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7688                           Offset);
7689    }
7690
7691    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7692                         MachinePointerInfo::getGOT(), false, false, false,
7693                         0);
7694  }
7695
7696  // The address of the thread local variable is the add of the thread
7697  // pointer with the offset of the variable.
7698  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7699}
7700
7701SDValue
7702X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7703
7704  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7705  const GlobalValue *GV = GA->getGlobal();
7706
7707  if (Subtarget->isTargetELF()) {
7708    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7709
7710    switch (model) {
7711      case TLSModel::GeneralDynamic:
7712        if (Subtarget->is64Bit())
7713          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7714        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7715      case TLSModel::LocalDynamic:
7716        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7717                                           Subtarget->is64Bit());
7718      case TLSModel::InitialExec:
7719      case TLSModel::LocalExec:
7720        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7721                                   Subtarget->is64Bit(),
7722                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7723    }
7724    llvm_unreachable("Unknown TLS model.");
7725  }
7726
7727  if (Subtarget->isTargetDarwin()) {
7728    // Darwin only has one model of TLS.  Lower to that.
7729    unsigned char OpFlag = 0;
7730    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7731                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7732
7733    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7734    // global base reg.
7735    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7736                  !Subtarget->is64Bit();
7737    if (PIC32)
7738      OpFlag = X86II::MO_TLVP_PIC_BASE;
7739    else
7740      OpFlag = X86II::MO_TLVP;
7741    DebugLoc DL = Op.getDebugLoc();
7742    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7743                                                GA->getValueType(0),
7744                                                GA->getOffset(), OpFlag);
7745    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7746
7747    // With PIC32, the address is actually $g + Offset.
7748    if (PIC32)
7749      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7750                           DAG.getNode(X86ISD::GlobalBaseReg,
7751                                       DebugLoc(), getPointerTy()),
7752                           Offset);
7753
7754    // Lowering the machine isd will make sure everything is in the right
7755    // location.
7756    SDValue Chain = DAG.getEntryNode();
7757    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7758    SDValue Args[] = { Chain, Offset };
7759    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7760
7761    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7762    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7763    MFI->setAdjustsStack(true);
7764
7765    // And our return value (tls address) is in the standard call return value
7766    // location.
7767    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7768    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7769                              Chain.getValue(1));
7770  }
7771
7772  if (Subtarget->isTargetWindows()) {
7773    // Just use the implicit TLS architecture
7774    // Need to generate someting similar to:
7775    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7776    //                                  ; from TEB
7777    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7778    //   mov     rcx, qword [rdx+rcx*8]
7779    //   mov     eax, .tls$:tlsvar
7780    //   [rax+rcx] contains the address
7781    // Windows 64bit: gs:0x58
7782    // Windows 32bit: fs:__tls_array
7783
7784    // If GV is an alias then use the aliasee for determining
7785    // thread-localness.
7786    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7787      GV = GA->resolveAliasedGlobal(false);
7788    DebugLoc dl = GA->getDebugLoc();
7789    SDValue Chain = DAG.getEntryNode();
7790
7791    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7792    // %gs:0x58 (64-bit).
7793    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7794                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7795                                                             256)
7796                                        : Type::getInt32PtrTy(*DAG.getContext(),
7797                                                              257));
7798
7799    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7800                                        Subtarget->is64Bit()
7801                                        ? DAG.getIntPtrConstant(0x58)
7802                                        : DAG.getExternalSymbol("_tls_array",
7803                                                                getPointerTy()),
7804                                        MachinePointerInfo(Ptr),
7805                                        false, false, false, 0);
7806
7807    // Load the _tls_index variable
7808    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7809    if (Subtarget->is64Bit())
7810      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7811                           IDX, MachinePointerInfo(), MVT::i32,
7812                           false, false, 0);
7813    else
7814      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7815                        false, false, false, 0);
7816
7817    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7818                                    getPointerTy());
7819    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7820
7821    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7822    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7823                      false, false, false, 0);
7824
7825    // Get the offset of start of .tls section
7826    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7827                                             GA->getValueType(0),
7828                                             GA->getOffset(), X86II::MO_SECREL);
7829    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7830
7831    // The address of the thread local variable is the add of the thread
7832    // pointer with the offset of the variable.
7833    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7834  }
7835
7836  llvm_unreachable("TLS not implemented for this target.");
7837}
7838
7839
7840/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7841/// and take a 2 x i32 value to shift plus a shift amount.
7842SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7843  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7844  EVT VT = Op.getValueType();
7845  unsigned VTBits = VT.getSizeInBits();
7846  DebugLoc dl = Op.getDebugLoc();
7847  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7848  SDValue ShOpLo = Op.getOperand(0);
7849  SDValue ShOpHi = Op.getOperand(1);
7850  SDValue ShAmt  = Op.getOperand(2);
7851  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7852                                     DAG.getConstant(VTBits - 1, MVT::i8))
7853                       : DAG.getConstant(0, VT);
7854
7855  SDValue Tmp2, Tmp3;
7856  if (Op.getOpcode() == ISD::SHL_PARTS) {
7857    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7858    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7859  } else {
7860    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7861    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7862  }
7863
7864  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7865                                DAG.getConstant(VTBits, MVT::i8));
7866  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7867                             AndNode, DAG.getConstant(0, MVT::i8));
7868
7869  SDValue Hi, Lo;
7870  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7871  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7872  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7873
7874  if (Op.getOpcode() == ISD::SHL_PARTS) {
7875    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7876    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7877  } else {
7878    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7879    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7880  }
7881
7882  SDValue Ops[2] = { Lo, Hi };
7883  return DAG.getMergeValues(Ops, 2, dl);
7884}
7885
7886SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7887                                           SelectionDAG &DAG) const {
7888  EVT SrcVT = Op.getOperand(0).getValueType();
7889
7890  if (SrcVT.isVector())
7891    return SDValue();
7892
7893  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7894         "Unknown SINT_TO_FP to lower!");
7895
7896  // These are really Legal; return the operand so the caller accepts it as
7897  // Legal.
7898  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7899    return Op;
7900  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7901      Subtarget->is64Bit()) {
7902    return Op;
7903  }
7904
7905  DebugLoc dl = Op.getDebugLoc();
7906  unsigned Size = SrcVT.getSizeInBits()/8;
7907  MachineFunction &MF = DAG.getMachineFunction();
7908  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7909  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7910  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7911                               StackSlot,
7912                               MachinePointerInfo::getFixedStack(SSFI),
7913                               false, false, 0);
7914  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7915}
7916
7917SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7918                                     SDValue StackSlot,
7919                                     SelectionDAG &DAG) const {
7920  // Build the FILD
7921  DebugLoc DL = Op.getDebugLoc();
7922  SDVTList Tys;
7923  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7924  if (useSSE)
7925    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7926  else
7927    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7928
7929  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7930
7931  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7932  MachineMemOperand *MMO;
7933  if (FI) {
7934    int SSFI = FI->getIndex();
7935    MMO =
7936      DAG.getMachineFunction()
7937      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7938                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7939  } else {
7940    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7941    StackSlot = StackSlot.getOperand(1);
7942  }
7943  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7944  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7945                                           X86ISD::FILD, DL,
7946                                           Tys, Ops, array_lengthof(Ops),
7947                                           SrcVT, MMO);
7948
7949  if (useSSE) {
7950    Chain = Result.getValue(1);
7951    SDValue InFlag = Result.getValue(2);
7952
7953    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7954    // shouldn't be necessary except that RFP cannot be live across
7955    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7956    MachineFunction &MF = DAG.getMachineFunction();
7957    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7958    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7959    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7960    Tys = DAG.getVTList(MVT::Other);
7961    SDValue Ops[] = {
7962      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7963    };
7964    MachineMemOperand *MMO =
7965      DAG.getMachineFunction()
7966      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7967                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7968
7969    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7970                                    Ops, array_lengthof(Ops),
7971                                    Op.getValueType(), MMO);
7972    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7973                         MachinePointerInfo::getFixedStack(SSFI),
7974                         false, false, false, 0);
7975  }
7976
7977  return Result;
7978}
7979
7980// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7981SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7982                                               SelectionDAG &DAG) const {
7983  // This algorithm is not obvious. Here it is what we're trying to output:
7984  /*
7985     movq       %rax,  %xmm0
7986     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7987     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7988     #ifdef __SSE3__
7989       haddpd   %xmm0, %xmm0
7990     #else
7991       pshufd   $0x4e, %xmm0, %xmm1
7992       addpd    %xmm1, %xmm0
7993     #endif
7994  */
7995
7996  DebugLoc dl = Op.getDebugLoc();
7997  LLVMContext *Context = DAG.getContext();
7998
7999  // Build some magic constants.
8000  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8001  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8002  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8003
8004  SmallVector<Constant*,2> CV1;
8005  CV1.push_back(
8006        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
8007  CV1.push_back(
8008        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
8009  Constant *C1 = ConstantVector::get(CV1);
8010  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8011
8012  // Load the 64-bit value into an XMM register.
8013  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8014                            Op.getOperand(0));
8015  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8016                              MachinePointerInfo::getConstantPool(),
8017                              false, false, false, 16);
8018  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8019                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8020                              CLod0);
8021
8022  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8023                              MachinePointerInfo::getConstantPool(),
8024                              false, false, false, 16);
8025  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8026  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8027  SDValue Result;
8028
8029  if (Subtarget->hasSSE3()) {
8030    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8031    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8032  } else {
8033    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8034    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8035                                           S2F, 0x4E, DAG);
8036    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8037                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8038                         Sub);
8039  }
8040
8041  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8042                     DAG.getIntPtrConstant(0));
8043}
8044
8045// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8046SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8047                                               SelectionDAG &DAG) const {
8048  DebugLoc dl = Op.getDebugLoc();
8049  // FP constant to bias correct the final result.
8050  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8051                                   MVT::f64);
8052
8053  // Load the 32-bit value into an XMM register.
8054  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8055                             Op.getOperand(0));
8056
8057  // Zero out the upper parts of the register.
8058  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8059
8060  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8061                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8062                     DAG.getIntPtrConstant(0));
8063
8064  // Or the load with the bias.
8065  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8066                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8067                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8068                                                   MVT::v2f64, Load)),
8069                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8070                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8071                                                   MVT::v2f64, Bias)));
8072  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8073                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8074                   DAG.getIntPtrConstant(0));
8075
8076  // Subtract the bias.
8077  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8078
8079  // Handle final rounding.
8080  EVT DestVT = Op.getValueType();
8081
8082  if (DestVT.bitsLT(MVT::f64))
8083    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8084                       DAG.getIntPtrConstant(0));
8085  if (DestVT.bitsGT(MVT::f64))
8086    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8087
8088  // Handle final rounding.
8089  return Sub;
8090}
8091
8092SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8093                                               SelectionDAG &DAG) const {
8094  SDValue N0 = Op.getOperand(0);
8095  EVT SVT = N0.getValueType();
8096  DebugLoc dl = Op.getDebugLoc();
8097
8098  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8099          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8100         "Custom UINT_TO_FP is not supported!");
8101
8102  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, SVT.getVectorNumElements());
8103  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8104                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8105}
8106
8107SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8108                                           SelectionDAG &DAG) const {
8109  SDValue N0 = Op.getOperand(0);
8110  DebugLoc dl = Op.getDebugLoc();
8111
8112  if (Op.getValueType().isVector())
8113    return lowerUINT_TO_FP_vec(Op, DAG);
8114
8115  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8116  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8117  // the optimization here.
8118  if (DAG.SignBitIsZero(N0))
8119    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8120
8121  EVT SrcVT = N0.getValueType();
8122  EVT DstVT = Op.getValueType();
8123  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8124    return LowerUINT_TO_FP_i64(Op, DAG);
8125  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8126    return LowerUINT_TO_FP_i32(Op, DAG);
8127  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8128    return SDValue();
8129
8130  // Make a 64-bit buffer, and use it to build an FILD.
8131  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8132  if (SrcVT == MVT::i32) {
8133    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8134    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8135                                     getPointerTy(), StackSlot, WordOff);
8136    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8137                                  StackSlot, MachinePointerInfo(),
8138                                  false, false, 0);
8139    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8140                                  OffsetSlot, MachinePointerInfo(),
8141                                  false, false, 0);
8142    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8143    return Fild;
8144  }
8145
8146  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8147  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8148                               StackSlot, MachinePointerInfo(),
8149                               false, false, 0);
8150  // For i64 source, we need to add the appropriate power of 2 if the input
8151  // was negative.  This is the same as the optimization in
8152  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8153  // we must be careful to do the computation in x87 extended precision, not
8154  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8155  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8156  MachineMemOperand *MMO =
8157    DAG.getMachineFunction()
8158    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8159                          MachineMemOperand::MOLoad, 8, 8);
8160
8161  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8162  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8163  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8164                                         MVT::i64, MMO);
8165
8166  APInt FF(32, 0x5F800000ULL);
8167
8168  // Check whether the sign bit is set.
8169  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8170                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8171                                 ISD::SETLT);
8172
8173  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8174  SDValue FudgePtr = DAG.getConstantPool(
8175                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8176                                         getPointerTy());
8177
8178  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8179  SDValue Zero = DAG.getIntPtrConstant(0);
8180  SDValue Four = DAG.getIntPtrConstant(4);
8181  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8182                               Zero, Four);
8183  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8184
8185  // Load the value out, extending it from f32 to f80.
8186  // FIXME: Avoid the extend by constructing the right constant pool?
8187  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8188                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8189                                 MVT::f32, false, false, 4);
8190  // Extend everything to 80 bits to force it to be done on x87.
8191  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8192  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8193}
8194
8195std::pair<SDValue,SDValue> X86TargetLowering::
8196FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8197  DebugLoc DL = Op.getDebugLoc();
8198
8199  EVT DstTy = Op.getValueType();
8200
8201  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8202    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8203    DstTy = MVT::i64;
8204  }
8205
8206  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8207         DstTy.getSimpleVT() >= MVT::i16 &&
8208         "Unknown FP_TO_INT to lower!");
8209
8210  // These are really Legal.
8211  if (DstTy == MVT::i32 &&
8212      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8213    return std::make_pair(SDValue(), SDValue());
8214  if (Subtarget->is64Bit() &&
8215      DstTy == MVT::i64 &&
8216      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8217    return std::make_pair(SDValue(), SDValue());
8218
8219  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8220  // stack slot, or into the FTOL runtime function.
8221  MachineFunction &MF = DAG.getMachineFunction();
8222  unsigned MemSize = DstTy.getSizeInBits()/8;
8223  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8224  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8225
8226  unsigned Opc;
8227  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8228    Opc = X86ISD::WIN_FTOL;
8229  else
8230    switch (DstTy.getSimpleVT().SimpleTy) {
8231    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8232    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8233    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8234    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8235    }
8236
8237  SDValue Chain = DAG.getEntryNode();
8238  SDValue Value = Op.getOperand(0);
8239  EVT TheVT = Op.getOperand(0).getValueType();
8240  // FIXME This causes a redundant load/store if the SSE-class value is already
8241  // in memory, such as if it is on the callstack.
8242  if (isScalarFPTypeInSSEReg(TheVT)) {
8243    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8244    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8245                         MachinePointerInfo::getFixedStack(SSFI),
8246                         false, false, 0);
8247    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8248    SDValue Ops[] = {
8249      Chain, StackSlot, DAG.getValueType(TheVT)
8250    };
8251
8252    MachineMemOperand *MMO =
8253      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8254                              MachineMemOperand::MOLoad, MemSize, MemSize);
8255    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8256                                    DstTy, MMO);
8257    Chain = Value.getValue(1);
8258    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8259    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8260  }
8261
8262  MachineMemOperand *MMO =
8263    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8264                            MachineMemOperand::MOStore, MemSize, MemSize);
8265
8266  if (Opc != X86ISD::WIN_FTOL) {
8267    // Build the FP_TO_INT*_IN_MEM
8268    SDValue Ops[] = { Chain, Value, StackSlot };
8269    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8270                                           Ops, 3, DstTy, MMO);
8271    return std::make_pair(FIST, StackSlot);
8272  } else {
8273    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8274      DAG.getVTList(MVT::Other, MVT::Glue),
8275      Chain, Value);
8276    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8277      MVT::i32, ftol.getValue(1));
8278    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8279      MVT::i32, eax.getValue(2));
8280    SDValue Ops[] = { eax, edx };
8281    SDValue pair = IsReplace
8282      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8283      : DAG.getMergeValues(Ops, 2, DL);
8284    return std::make_pair(pair, SDValue());
8285  }
8286}
8287
8288SDValue X86TargetLowering::lowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const {
8289  DebugLoc DL = Op.getDebugLoc();
8290  EVT VT = Op.getValueType();
8291  SDValue In = Op.getOperand(0);
8292  EVT SVT = In.getValueType();
8293
8294  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8295      VT.getVectorNumElements() != SVT.getVectorNumElements())
8296    return SDValue();
8297
8298  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8299
8300  // AVX2 has better support of integer extending.
8301  if (Subtarget->hasInt256())
8302    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8303
8304  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8305  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8306  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8307                           DAG.getVectorShuffle(MVT::v8i16, DL, In, DAG.getUNDEF(MVT::v8i16), &Mask[0]));
8308
8309  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8310}
8311
8312SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8313  DebugLoc DL = Op.getDebugLoc();
8314  EVT VT = Op.getValueType();
8315  EVT SVT = Op.getOperand(0).getValueType();
8316
8317  if (!VT.is128BitVector() || !SVT.is256BitVector() ||
8318      VT.getVectorNumElements() != SVT.getVectorNumElements())
8319    return SDValue();
8320
8321  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8322
8323  unsigned NumElems = VT.getVectorNumElements();
8324  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8325                             NumElems * 2);
8326
8327  SDValue In = Op.getOperand(0);
8328  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8329  // Prepare truncation shuffle mask
8330  for (unsigned i = 0; i != NumElems; ++i)
8331    MaskVec[i] = i * 2;
8332  SDValue V = DAG.getVectorShuffle(NVT, DL,
8333                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8334                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8335  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8336                     DAG.getIntPtrConstant(0));
8337}
8338
8339SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8340                                           SelectionDAG &DAG) const {
8341  if (Op.getValueType().isVector()) {
8342    if (Op.getValueType() == MVT::v8i16)
8343      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), Op.getValueType(),
8344                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8345                                     MVT::v8i32, Op.getOperand(0)));
8346    return SDValue();
8347  }
8348
8349  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8350    /*IsSigned=*/ true, /*IsReplace=*/ false);
8351  SDValue FIST = Vals.first, StackSlot = Vals.second;
8352  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8353  if (FIST.getNode() == 0) return Op;
8354
8355  if (StackSlot.getNode())
8356    // Load the result.
8357    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8358                       FIST, StackSlot, MachinePointerInfo(),
8359                       false, false, false, 0);
8360
8361  // The node is the result.
8362  return FIST;
8363}
8364
8365SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8366                                           SelectionDAG &DAG) const {
8367  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8368    /*IsSigned=*/ false, /*IsReplace=*/ false);
8369  SDValue FIST = Vals.first, StackSlot = Vals.second;
8370  assert(FIST.getNode() && "Unexpected failure");
8371
8372  if (StackSlot.getNode())
8373    // Load the result.
8374    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8375                       FIST, StackSlot, MachinePointerInfo(),
8376                       false, false, false, 0);
8377
8378  // The node is the result.
8379  return FIST;
8380}
8381
8382SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op,
8383                                          SelectionDAG &DAG) const {
8384  DebugLoc DL = Op.getDebugLoc();
8385  EVT VT = Op.getValueType();
8386  SDValue In = Op.getOperand(0);
8387  EVT SVT = In.getValueType();
8388
8389  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8390
8391  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8392                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8393                                 In, DAG.getUNDEF(SVT)));
8394}
8395
8396SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8397  LLVMContext *Context = DAG.getContext();
8398  DebugLoc dl = Op.getDebugLoc();
8399  EVT VT = Op.getValueType();
8400  EVT EltVT = VT;
8401  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8402  if (VT.isVector()) {
8403    EltVT = VT.getVectorElementType();
8404    NumElts = VT.getVectorNumElements();
8405  }
8406  Constant *C;
8407  if (EltVT == MVT::f64)
8408    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8409  else
8410    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8411  C = ConstantVector::getSplat(NumElts, C);
8412  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8413  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8414  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8415                             MachinePointerInfo::getConstantPool(),
8416                             false, false, false, Alignment);
8417  if (VT.isVector()) {
8418    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8419    return DAG.getNode(ISD::BITCAST, dl, VT,
8420                       DAG.getNode(ISD::AND, dl, ANDVT,
8421                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8422                                               Op.getOperand(0)),
8423                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8424  }
8425  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8426}
8427
8428SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8429  LLVMContext *Context = DAG.getContext();
8430  DebugLoc dl = Op.getDebugLoc();
8431  EVT VT = Op.getValueType();
8432  EVT EltVT = VT;
8433  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8434  if (VT.isVector()) {
8435    EltVT = VT.getVectorElementType();
8436    NumElts = VT.getVectorNumElements();
8437  }
8438  Constant *C;
8439  if (EltVT == MVT::f64)
8440    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8441  else
8442    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8443  C = ConstantVector::getSplat(NumElts, C);
8444  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8445  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8446  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8447                             MachinePointerInfo::getConstantPool(),
8448                             false, false, false, Alignment);
8449  if (VT.isVector()) {
8450    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8451    return DAG.getNode(ISD::BITCAST, dl, VT,
8452                       DAG.getNode(ISD::XOR, dl, XORVT,
8453                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8454                                               Op.getOperand(0)),
8455                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8456  }
8457
8458  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8459}
8460
8461SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8462  LLVMContext *Context = DAG.getContext();
8463  SDValue Op0 = Op.getOperand(0);
8464  SDValue Op1 = Op.getOperand(1);
8465  DebugLoc dl = Op.getDebugLoc();
8466  EVT VT = Op.getValueType();
8467  EVT SrcVT = Op1.getValueType();
8468
8469  // If second operand is smaller, extend it first.
8470  if (SrcVT.bitsLT(VT)) {
8471    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8472    SrcVT = VT;
8473  }
8474  // And if it is bigger, shrink it first.
8475  if (SrcVT.bitsGT(VT)) {
8476    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8477    SrcVT = VT;
8478  }
8479
8480  // At this point the operands and the result should have the same
8481  // type, and that won't be f80 since that is not custom lowered.
8482
8483  // First get the sign bit of second operand.
8484  SmallVector<Constant*,4> CV;
8485  if (SrcVT == MVT::f64) {
8486    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8487    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8488  } else {
8489    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8490    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8491    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8492    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8493  }
8494  Constant *C = ConstantVector::get(CV);
8495  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8496  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8497                              MachinePointerInfo::getConstantPool(),
8498                              false, false, false, 16);
8499  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8500
8501  // Shift sign bit right or left if the two operands have different types.
8502  if (SrcVT.bitsGT(VT)) {
8503    // Op0 is MVT::f32, Op1 is MVT::f64.
8504    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8505    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8506                          DAG.getConstant(32, MVT::i32));
8507    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8508    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8509                          DAG.getIntPtrConstant(0));
8510  }
8511
8512  // Clear first operand sign bit.
8513  CV.clear();
8514  if (VT == MVT::f64) {
8515    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8516    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8517  } else {
8518    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8519    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8520    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8521    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8522  }
8523  C = ConstantVector::get(CV);
8524  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8525  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8526                              MachinePointerInfo::getConstantPool(),
8527                              false, false, false, 16);
8528  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8529
8530  // Or the value with the sign bit.
8531  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8532}
8533
8534static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8535  SDValue N0 = Op.getOperand(0);
8536  DebugLoc dl = Op.getDebugLoc();
8537  EVT VT = Op.getValueType();
8538
8539  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8540  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8541                                  DAG.getConstant(1, VT));
8542  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8543}
8544
8545// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8546//
8547SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8548  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8549
8550  if (!Subtarget->hasSSE41())
8551    return SDValue();
8552
8553  if (!Op->hasOneUse())
8554    return SDValue();
8555
8556  SDNode *N = Op.getNode();
8557  DebugLoc DL = N->getDebugLoc();
8558
8559  SmallVector<SDValue, 8> Opnds;
8560  DenseMap<SDValue, unsigned> VecInMap;
8561  EVT VT = MVT::Other;
8562
8563  // Recognize a special case where a vector is casted into wide integer to
8564  // test all 0s.
8565  Opnds.push_back(N->getOperand(0));
8566  Opnds.push_back(N->getOperand(1));
8567
8568  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8569    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8570    // BFS traverse all OR'd operands.
8571    if (I->getOpcode() == ISD::OR) {
8572      Opnds.push_back(I->getOperand(0));
8573      Opnds.push_back(I->getOperand(1));
8574      // Re-evaluate the number of nodes to be traversed.
8575      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8576      continue;
8577    }
8578
8579    // Quit if a non-EXTRACT_VECTOR_ELT
8580    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8581      return SDValue();
8582
8583    // Quit if without a constant index.
8584    SDValue Idx = I->getOperand(1);
8585    if (!isa<ConstantSDNode>(Idx))
8586      return SDValue();
8587
8588    SDValue ExtractedFromVec = I->getOperand(0);
8589    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8590    if (M == VecInMap.end()) {
8591      VT = ExtractedFromVec.getValueType();
8592      // Quit if not 128/256-bit vector.
8593      if (!VT.is128BitVector() && !VT.is256BitVector())
8594        return SDValue();
8595      // Quit if not the same type.
8596      if (VecInMap.begin() != VecInMap.end() &&
8597          VT != VecInMap.begin()->first.getValueType())
8598        return SDValue();
8599      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8600    }
8601    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8602  }
8603
8604  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8605         "Not extracted from 128-/256-bit vector.");
8606
8607  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8608  SmallVector<SDValue, 8> VecIns;
8609
8610  for (DenseMap<SDValue, unsigned>::const_iterator
8611        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8612    // Quit if not all elements are used.
8613    if (I->second != FullMask)
8614      return SDValue();
8615    VecIns.push_back(I->first);
8616  }
8617
8618  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8619
8620  // Cast all vectors into TestVT for PTEST.
8621  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8622    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8623
8624  // If more than one full vectors are evaluated, OR them first before PTEST.
8625  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8626    // Each iteration will OR 2 nodes and append the result until there is only
8627    // 1 node left, i.e. the final OR'd value of all vectors.
8628    SDValue LHS = VecIns[Slot];
8629    SDValue RHS = VecIns[Slot + 1];
8630    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8631  }
8632
8633  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8634                     VecIns.back(), VecIns.back());
8635}
8636
8637/// Emit nodes that will be selected as "test Op0,Op0", or something
8638/// equivalent.
8639SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8640                                    SelectionDAG &DAG) const {
8641  DebugLoc dl = Op.getDebugLoc();
8642
8643  // CF and OF aren't always set the way we want. Determine which
8644  // of these we need.
8645  bool NeedCF = false;
8646  bool NeedOF = false;
8647  switch (X86CC) {
8648  default: break;
8649  case X86::COND_A: case X86::COND_AE:
8650  case X86::COND_B: case X86::COND_BE:
8651    NeedCF = true;
8652    break;
8653  case X86::COND_G: case X86::COND_GE:
8654  case X86::COND_L: case X86::COND_LE:
8655  case X86::COND_O: case X86::COND_NO:
8656    NeedOF = true;
8657    break;
8658  }
8659
8660  // See if we can use the EFLAGS value from the operand instead of
8661  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8662  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8663  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8664    // Emit a CMP with 0, which is the TEST pattern.
8665    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8666                       DAG.getConstant(0, Op.getValueType()));
8667
8668  unsigned Opcode = 0;
8669  unsigned NumOperands = 0;
8670
8671  // Truncate operations may prevent the merge of the SETCC instruction
8672  // and the arithmetic intruction before it. Attempt to truncate the operands
8673  // of the arithmetic instruction and use a reduced bit-width instruction.
8674  bool NeedTruncation = false;
8675  SDValue ArithOp = Op;
8676  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8677    SDValue Arith = Op->getOperand(0);
8678    // Both the trunc and the arithmetic op need to have one user each.
8679    if (Arith->hasOneUse())
8680      switch (Arith.getOpcode()) {
8681        default: break;
8682        case ISD::ADD:
8683        case ISD::SUB:
8684        case ISD::AND:
8685        case ISD::OR:
8686        case ISD::XOR: {
8687          NeedTruncation = true;
8688          ArithOp = Arith;
8689        }
8690      }
8691  }
8692
8693  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8694  // which may be the result of a CAST.  We use the variable 'Op', which is the
8695  // non-casted variable when we check for possible users.
8696  switch (ArithOp.getOpcode()) {
8697  case ISD::ADD:
8698    // Due to an isel shortcoming, be conservative if this add is likely to be
8699    // selected as part of a load-modify-store instruction. When the root node
8700    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8701    // uses of other nodes in the match, such as the ADD in this case. This
8702    // leads to the ADD being left around and reselected, with the result being
8703    // two adds in the output.  Alas, even if none our users are stores, that
8704    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8705    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8706    // climbing the DAG back to the root, and it doesn't seem to be worth the
8707    // effort.
8708    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8709         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8710      if (UI->getOpcode() != ISD::CopyToReg &&
8711          UI->getOpcode() != ISD::SETCC &&
8712          UI->getOpcode() != ISD::STORE)
8713        goto default_case;
8714
8715    if (ConstantSDNode *C =
8716        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8717      // An add of one will be selected as an INC.
8718      if (C->getAPIntValue() == 1) {
8719        Opcode = X86ISD::INC;
8720        NumOperands = 1;
8721        break;
8722      }
8723
8724      // An add of negative one (subtract of one) will be selected as a DEC.
8725      if (C->getAPIntValue().isAllOnesValue()) {
8726        Opcode = X86ISD::DEC;
8727        NumOperands = 1;
8728        break;
8729      }
8730    }
8731
8732    // Otherwise use a regular EFLAGS-setting add.
8733    Opcode = X86ISD::ADD;
8734    NumOperands = 2;
8735    break;
8736  case ISD::AND: {
8737    // If the primary and result isn't used, don't bother using X86ISD::AND,
8738    // because a TEST instruction will be better.
8739    bool NonFlagUse = false;
8740    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8741           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8742      SDNode *User = *UI;
8743      unsigned UOpNo = UI.getOperandNo();
8744      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8745        // Look pass truncate.
8746        UOpNo = User->use_begin().getOperandNo();
8747        User = *User->use_begin();
8748      }
8749
8750      if (User->getOpcode() != ISD::BRCOND &&
8751          User->getOpcode() != ISD::SETCC &&
8752          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8753        NonFlagUse = true;
8754        break;
8755      }
8756    }
8757
8758    if (!NonFlagUse)
8759      break;
8760  }
8761    // FALL THROUGH
8762  case ISD::SUB:
8763  case ISD::OR:
8764  case ISD::XOR:
8765    // Due to the ISEL shortcoming noted above, be conservative if this op is
8766    // likely to be selected as part of a load-modify-store instruction.
8767    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8768           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8769      if (UI->getOpcode() == ISD::STORE)
8770        goto default_case;
8771
8772    // Otherwise use a regular EFLAGS-setting instruction.
8773    switch (ArithOp.getOpcode()) {
8774    default: llvm_unreachable("unexpected operator!");
8775    case ISD::SUB: Opcode = X86ISD::SUB; break;
8776    case ISD::XOR: Opcode = X86ISD::XOR; break;
8777    case ISD::AND: Opcode = X86ISD::AND; break;
8778    case ISD::OR: {
8779      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8780        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8781        if (EFLAGS.getNode())
8782          return EFLAGS;
8783      }
8784      Opcode = X86ISD::OR;
8785      break;
8786    }
8787    }
8788
8789    NumOperands = 2;
8790    break;
8791  case X86ISD::ADD:
8792  case X86ISD::SUB:
8793  case X86ISD::INC:
8794  case X86ISD::DEC:
8795  case X86ISD::OR:
8796  case X86ISD::XOR:
8797  case X86ISD::AND:
8798    return SDValue(Op.getNode(), 1);
8799  default:
8800  default_case:
8801    break;
8802  }
8803
8804  // If we found that truncation is beneficial, perform the truncation and
8805  // update 'Op'.
8806  if (NeedTruncation) {
8807    EVT VT = Op.getValueType();
8808    SDValue WideVal = Op->getOperand(0);
8809    EVT WideVT = WideVal.getValueType();
8810    unsigned ConvertedOp = 0;
8811    // Use a target machine opcode to prevent further DAGCombine
8812    // optimizations that may separate the arithmetic operations
8813    // from the setcc node.
8814    switch (WideVal.getOpcode()) {
8815      default: break;
8816      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8817      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8818      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8819      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8820      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8821    }
8822
8823    if (ConvertedOp) {
8824      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8825      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8826        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8827        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8828        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8829      }
8830    }
8831  }
8832
8833  if (Opcode == 0)
8834    // Emit a CMP with 0, which is the TEST pattern.
8835    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8836                       DAG.getConstant(0, Op.getValueType()));
8837
8838  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8839  SmallVector<SDValue, 4> Ops;
8840  for (unsigned i = 0; i != NumOperands; ++i)
8841    Ops.push_back(Op.getOperand(i));
8842
8843  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8844  DAG.ReplaceAllUsesWith(Op, New);
8845  return SDValue(New.getNode(), 1);
8846}
8847
8848/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8849/// equivalent.
8850SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8851                                   SelectionDAG &DAG) const {
8852  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8853    if (C->getAPIntValue() == 0)
8854      return EmitTest(Op0, X86CC, DAG);
8855
8856  DebugLoc dl = Op0.getDebugLoc();
8857  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8858       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8859    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8860    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8861    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8862                              Op0, Op1);
8863    return SDValue(Sub.getNode(), 1);
8864  }
8865  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8866}
8867
8868/// Convert a comparison if required by the subtarget.
8869SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8870                                                 SelectionDAG &DAG) const {
8871  // If the subtarget does not support the FUCOMI instruction, floating-point
8872  // comparisons have to be converted.
8873  if (Subtarget->hasCMov() ||
8874      Cmp.getOpcode() != X86ISD::CMP ||
8875      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8876      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8877    return Cmp;
8878
8879  // The instruction selector will select an FUCOM instruction instead of
8880  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8881  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8882  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8883  DebugLoc dl = Cmp.getDebugLoc();
8884  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8885  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8886  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8887                            DAG.getConstant(8, MVT::i8));
8888  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8889  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8890}
8891
8892static bool isAllOnes(SDValue V) {
8893  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8894  return C && C->isAllOnesValue();
8895}
8896
8897/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8898/// if it's possible.
8899SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8900                                     DebugLoc dl, SelectionDAG &DAG) const {
8901  SDValue Op0 = And.getOperand(0);
8902  SDValue Op1 = And.getOperand(1);
8903  if (Op0.getOpcode() == ISD::TRUNCATE)
8904    Op0 = Op0.getOperand(0);
8905  if (Op1.getOpcode() == ISD::TRUNCATE)
8906    Op1 = Op1.getOperand(0);
8907
8908  SDValue LHS, RHS;
8909  if (Op1.getOpcode() == ISD::SHL)
8910    std::swap(Op0, Op1);
8911  if (Op0.getOpcode() == ISD::SHL) {
8912    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8913      if (And00C->getZExtValue() == 1) {
8914        // If we looked past a truncate, check that it's only truncating away
8915        // known zeros.
8916        unsigned BitWidth = Op0.getValueSizeInBits();
8917        unsigned AndBitWidth = And.getValueSizeInBits();
8918        if (BitWidth > AndBitWidth) {
8919          APInt Zeros, Ones;
8920          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8921          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8922            return SDValue();
8923        }
8924        LHS = Op1;
8925        RHS = Op0.getOperand(1);
8926      }
8927  } else if (Op1.getOpcode() == ISD::Constant) {
8928    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8929    uint64_t AndRHSVal = AndRHS->getZExtValue();
8930    SDValue AndLHS = Op0;
8931
8932    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8933      LHS = AndLHS.getOperand(0);
8934      RHS = AndLHS.getOperand(1);
8935    }
8936
8937    // Use BT if the immediate can't be encoded in a TEST instruction.
8938    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8939      LHS = AndLHS;
8940      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8941    }
8942  }
8943
8944  if (LHS.getNode()) {
8945    // If the LHS is of the form (x ^ -1) then replace the LHS with x and flip
8946    // the condition code later.
8947    bool Invert = false;
8948    if (LHS.getOpcode() == ISD::XOR && isAllOnes(LHS.getOperand(1))) {
8949      Invert = true;
8950      LHS = LHS.getOperand(0);
8951    }
8952
8953    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8954    // instruction.  Since the shift amount is in-range-or-undefined, we know
8955    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8956    // the encoding for the i16 version is larger than the i32 version.
8957    // Also promote i16 to i32 for performance / code size reason.
8958    if (LHS.getValueType() == MVT::i8 ||
8959        LHS.getValueType() == MVT::i16)
8960      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8961
8962    // If the operand types disagree, extend the shift amount to match.  Since
8963    // BT ignores high bits (like shifts) we can use anyextend.
8964    if (LHS.getValueType() != RHS.getValueType())
8965      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8966
8967    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8968    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8969    // Flip the condition if the LHS was a not instruction
8970    if (Invert)
8971      Cond = X86::GetOppositeBranchCondition(Cond);
8972    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8973                       DAG.getConstant(Cond, MVT::i8), BT);
8974  }
8975
8976  return SDValue();
8977}
8978
8979SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8980
8981  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8982
8983  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8984  SDValue Op0 = Op.getOperand(0);
8985  SDValue Op1 = Op.getOperand(1);
8986  DebugLoc dl = Op.getDebugLoc();
8987  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8988
8989  // Optimize to BT if possible.
8990  // Lower (X & (1 << N)) == 0 to BT(X, N).
8991  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8992  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8993  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8994      Op1.getOpcode() == ISD::Constant &&
8995      cast<ConstantSDNode>(Op1)->isNullValue() &&
8996      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8997    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8998    if (NewSetCC.getNode())
8999      return NewSetCC;
9000  }
9001
9002  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
9003  // these.
9004  if (Op1.getOpcode() == ISD::Constant &&
9005      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
9006       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9007      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9008
9009    // If the input is a setcc, then reuse the input setcc or use a new one with
9010    // the inverted condition.
9011    if (Op0.getOpcode() == X86ISD::SETCC) {
9012      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9013      bool Invert = (CC == ISD::SETNE) ^
9014        cast<ConstantSDNode>(Op1)->isNullValue();
9015      if (!Invert) return Op0;
9016
9017      CCode = X86::GetOppositeBranchCondition(CCode);
9018      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9019                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9020    }
9021  }
9022
9023  bool isFP = Op1.getValueType().isFloatingPoint();
9024  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9025  if (X86CC == X86::COND_INVALID)
9026    return SDValue();
9027
9028  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9029  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9030  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9031                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9032}
9033
9034// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9035// ones, and then concatenate the result back.
9036static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9037  EVT VT = Op.getValueType();
9038
9039  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9040         "Unsupported value type for operation");
9041
9042  unsigned NumElems = VT.getVectorNumElements();
9043  DebugLoc dl = Op.getDebugLoc();
9044  SDValue CC = Op.getOperand(2);
9045
9046  // Extract the LHS vectors
9047  SDValue LHS = Op.getOperand(0);
9048  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9049  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9050
9051  // Extract the RHS vectors
9052  SDValue RHS = Op.getOperand(1);
9053  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9054  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9055
9056  // Issue the operation on the smaller types and concatenate the result back
9057  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9058  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9059  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9060                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9061                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9062}
9063
9064
9065SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
9066  SDValue Cond;
9067  SDValue Op0 = Op.getOperand(0);
9068  SDValue Op1 = Op.getOperand(1);
9069  SDValue CC = Op.getOperand(2);
9070  EVT VT = Op.getValueType();
9071  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9072  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
9073  DebugLoc dl = Op.getDebugLoc();
9074
9075  if (isFP) {
9076#ifndef NDEBUG
9077    EVT EltVT = Op0.getValueType().getVectorElementType();
9078    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9079#endif
9080
9081    unsigned SSECC;
9082    bool Swap = false;
9083
9084    // SSE Condition code mapping:
9085    //  0 - EQ
9086    //  1 - LT
9087    //  2 - LE
9088    //  3 - UNORD
9089    //  4 - NEQ
9090    //  5 - NLT
9091    //  6 - NLE
9092    //  7 - ORD
9093    switch (SetCCOpcode) {
9094    default: llvm_unreachable("Unexpected SETCC condition");
9095    case ISD::SETOEQ:
9096    case ISD::SETEQ:  SSECC = 0; break;
9097    case ISD::SETOGT:
9098    case ISD::SETGT: Swap = true; // Fallthrough
9099    case ISD::SETLT:
9100    case ISD::SETOLT: SSECC = 1; break;
9101    case ISD::SETOGE:
9102    case ISD::SETGE: Swap = true; // Fallthrough
9103    case ISD::SETLE:
9104    case ISD::SETOLE: SSECC = 2; break;
9105    case ISD::SETUO:  SSECC = 3; break;
9106    case ISD::SETUNE:
9107    case ISD::SETNE:  SSECC = 4; break;
9108    case ISD::SETULE: Swap = true; // Fallthrough
9109    case ISD::SETUGE: SSECC = 5; break;
9110    case ISD::SETULT: Swap = true; // Fallthrough
9111    case ISD::SETUGT: SSECC = 6; break;
9112    case ISD::SETO:   SSECC = 7; break;
9113    case ISD::SETUEQ:
9114    case ISD::SETONE: SSECC = 8; break;
9115    }
9116    if (Swap)
9117      std::swap(Op0, Op1);
9118
9119    // In the two special cases we can't handle, emit two comparisons.
9120    if (SSECC == 8) {
9121      unsigned CC0, CC1;
9122      unsigned CombineOpc;
9123      if (SetCCOpcode == ISD::SETUEQ) {
9124        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9125      } else {
9126        assert(SetCCOpcode == ISD::SETONE);
9127        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9128      }
9129
9130      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9131                                 DAG.getConstant(CC0, MVT::i8));
9132      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9133                                 DAG.getConstant(CC1, MVT::i8));
9134      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9135    }
9136    // Handle all other FP comparisons here.
9137    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9138                       DAG.getConstant(SSECC, MVT::i8));
9139  }
9140
9141  // Break 256-bit integer vector compare into smaller ones.
9142  if (VT.is256BitVector() && !Subtarget->hasInt256())
9143    return Lower256IntVSETCC(Op, DAG);
9144
9145  // We are handling one of the integer comparisons here.  Since SSE only has
9146  // GT and EQ comparisons for integer, swapping operands and multiple
9147  // operations may be required for some comparisons.
9148  unsigned Opc;
9149  bool Swap = false, Invert = false, FlipSigns = false;
9150
9151  switch (SetCCOpcode) {
9152  default: llvm_unreachable("Unexpected SETCC condition");
9153  case ISD::SETNE:  Invert = true;
9154  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9155  case ISD::SETLT:  Swap = true;
9156  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9157  case ISD::SETGE:  Swap = true;
9158  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9159  case ISD::SETULT: Swap = true;
9160  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9161  case ISD::SETUGE: Swap = true;
9162  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9163  }
9164  if (Swap)
9165    std::swap(Op0, Op1);
9166
9167  // Check that the operation in question is available (most are plain SSE2,
9168  // but PCMPGTQ and PCMPEQQ have different requirements).
9169  if (VT == MVT::v2i64) {
9170    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9171      return SDValue();
9172    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
9173      return SDValue();
9174  }
9175
9176  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9177  // bits of the inputs before performing those operations.
9178  if (FlipSigns) {
9179    EVT EltVT = VT.getVectorElementType();
9180    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9181                                      EltVT);
9182    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9183    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9184                                    SignBits.size());
9185    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9186    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9187  }
9188
9189  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9190
9191  // If the logical-not of the result is required, perform that now.
9192  if (Invert)
9193    Result = DAG.getNOT(dl, Result, VT);
9194
9195  return Result;
9196}
9197
9198// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9199static bool isX86LogicalCmp(SDValue Op) {
9200  unsigned Opc = Op.getNode()->getOpcode();
9201  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9202      Opc == X86ISD::SAHF)
9203    return true;
9204  if (Op.getResNo() == 1 &&
9205      (Opc == X86ISD::ADD ||
9206       Opc == X86ISD::SUB ||
9207       Opc == X86ISD::ADC ||
9208       Opc == X86ISD::SBB ||
9209       Opc == X86ISD::SMUL ||
9210       Opc == X86ISD::UMUL ||
9211       Opc == X86ISD::INC ||
9212       Opc == X86ISD::DEC ||
9213       Opc == X86ISD::OR ||
9214       Opc == X86ISD::XOR ||
9215       Opc == X86ISD::AND))
9216    return true;
9217
9218  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9219    return true;
9220
9221  return false;
9222}
9223
9224static bool isZero(SDValue V) {
9225  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9226  return C && C->isNullValue();
9227}
9228
9229static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9230  if (V.getOpcode() != ISD::TRUNCATE)
9231    return false;
9232
9233  SDValue VOp0 = V.getOperand(0);
9234  unsigned InBits = VOp0.getValueSizeInBits();
9235  unsigned Bits = V.getValueSizeInBits();
9236  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9237}
9238
9239SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9240  bool addTest = true;
9241  SDValue Cond  = Op.getOperand(0);
9242  SDValue Op1 = Op.getOperand(1);
9243  SDValue Op2 = Op.getOperand(2);
9244  DebugLoc DL = Op.getDebugLoc();
9245  SDValue CC;
9246
9247  if (Cond.getOpcode() == ISD::SETCC) {
9248    SDValue NewCond = LowerSETCC(Cond, DAG);
9249    if (NewCond.getNode())
9250      Cond = NewCond;
9251  }
9252
9253  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9254  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9255  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9256  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9257  if (Cond.getOpcode() == X86ISD::SETCC &&
9258      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9259      isZero(Cond.getOperand(1).getOperand(1))) {
9260    SDValue Cmp = Cond.getOperand(1);
9261
9262    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9263
9264    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9265        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9266      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9267
9268      SDValue CmpOp0 = Cmp.getOperand(0);
9269      // Apply further optimizations for special cases
9270      // (select (x != 0), -1, 0) -> neg & sbb
9271      // (select (x == 0), 0, -1) -> neg & sbb
9272      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9273        if (YC->isNullValue() &&
9274            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9275          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9276          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9277                                    DAG.getConstant(0, CmpOp0.getValueType()),
9278                                    CmpOp0);
9279          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9280                                    DAG.getConstant(X86::COND_B, MVT::i8),
9281                                    SDValue(Neg.getNode(), 1));
9282          return Res;
9283        }
9284
9285      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9286                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9287      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9288
9289      SDValue Res =   // Res = 0 or -1.
9290        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9291                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9292
9293      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9294        Res = DAG.getNOT(DL, Res, Res.getValueType());
9295
9296      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9297      if (N2C == 0 || !N2C->isNullValue())
9298        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9299      return Res;
9300    }
9301  }
9302
9303  // Look past (and (setcc_carry (cmp ...)), 1).
9304  if (Cond.getOpcode() == ISD::AND &&
9305      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9306    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9307    if (C && C->getAPIntValue() == 1)
9308      Cond = Cond.getOperand(0);
9309  }
9310
9311  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9312  // setting operand in place of the X86ISD::SETCC.
9313  unsigned CondOpcode = Cond.getOpcode();
9314  if (CondOpcode == X86ISD::SETCC ||
9315      CondOpcode == X86ISD::SETCC_CARRY) {
9316    CC = Cond.getOperand(0);
9317
9318    SDValue Cmp = Cond.getOperand(1);
9319    unsigned Opc = Cmp.getOpcode();
9320    EVT VT = Op.getValueType();
9321
9322    bool IllegalFPCMov = false;
9323    if (VT.isFloatingPoint() && !VT.isVector() &&
9324        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9325      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9326
9327    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9328        Opc == X86ISD::BT) { // FIXME
9329      Cond = Cmp;
9330      addTest = false;
9331    }
9332  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9333             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9334             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9335              Cond.getOperand(0).getValueType() != MVT::i8)) {
9336    SDValue LHS = Cond.getOperand(0);
9337    SDValue RHS = Cond.getOperand(1);
9338    unsigned X86Opcode;
9339    unsigned X86Cond;
9340    SDVTList VTs;
9341    switch (CondOpcode) {
9342    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9343    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9344    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9345    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9346    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9347    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9348    default: llvm_unreachable("unexpected overflowing operator");
9349    }
9350    if (CondOpcode == ISD::UMULO)
9351      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9352                          MVT::i32);
9353    else
9354      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9355
9356    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9357
9358    if (CondOpcode == ISD::UMULO)
9359      Cond = X86Op.getValue(2);
9360    else
9361      Cond = X86Op.getValue(1);
9362
9363    CC = DAG.getConstant(X86Cond, MVT::i8);
9364    addTest = false;
9365  }
9366
9367  if (addTest) {
9368    // Look pass the truncate if the high bits are known zero.
9369    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9370        Cond = Cond.getOperand(0);
9371
9372    // We know the result of AND is compared against zero. Try to match
9373    // it to BT.
9374    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9375      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9376      if (NewSetCC.getNode()) {
9377        CC = NewSetCC.getOperand(0);
9378        Cond = NewSetCC.getOperand(1);
9379        addTest = false;
9380      }
9381    }
9382  }
9383
9384  if (addTest) {
9385    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9386    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9387  }
9388
9389  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9390  // a <  b ?  0 : -1 -> RES = setcc_carry
9391  // a >= b ? -1 :  0 -> RES = setcc_carry
9392  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9393  if (Cond.getOpcode() == X86ISD::SUB) {
9394    Cond = ConvertCmpIfNecessary(Cond, DAG);
9395    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9396
9397    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9398        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9399      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9400                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9401      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9402        return DAG.getNOT(DL, Res, Res.getValueType());
9403      return Res;
9404    }
9405  }
9406
9407  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9408  // widen the cmov and push the truncate through. This avoids introducing a new
9409  // branch during isel and doesn't add any extensions.
9410  if (Op.getValueType() == MVT::i8 &&
9411      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9412    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9413    if (T1.getValueType() == T2.getValueType() &&
9414        // Blacklist CopyFromReg to avoid partial register stalls.
9415        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9416      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9417      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9418      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9419    }
9420  }
9421
9422  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9423  // condition is true.
9424  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9425  SDValue Ops[] = { Op2, Op1, CC, Cond };
9426  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9427}
9428
9429// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9430// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9431// from the AND / OR.
9432static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9433  Opc = Op.getOpcode();
9434  if (Opc != ISD::OR && Opc != ISD::AND)
9435    return false;
9436  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9437          Op.getOperand(0).hasOneUse() &&
9438          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9439          Op.getOperand(1).hasOneUse());
9440}
9441
9442// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9443// 1 and that the SETCC node has a single use.
9444static bool isXor1OfSetCC(SDValue Op) {
9445  if (Op.getOpcode() != ISD::XOR)
9446    return false;
9447  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9448  if (N1C && N1C->getAPIntValue() == 1) {
9449    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9450      Op.getOperand(0).hasOneUse();
9451  }
9452  return false;
9453}
9454
9455SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9456  bool addTest = true;
9457  SDValue Chain = Op.getOperand(0);
9458  SDValue Cond  = Op.getOperand(1);
9459  SDValue Dest  = Op.getOperand(2);
9460  DebugLoc dl = Op.getDebugLoc();
9461  SDValue CC;
9462  bool Inverted = false;
9463
9464  if (Cond.getOpcode() == ISD::SETCC) {
9465    // Check for setcc([su]{add,sub,mul}o == 0).
9466    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9467        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9468        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9469        Cond.getOperand(0).getResNo() == 1 &&
9470        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9471         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9472         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9473         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9474         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9475         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9476      Inverted = true;
9477      Cond = Cond.getOperand(0);
9478    } else {
9479      SDValue NewCond = LowerSETCC(Cond, DAG);
9480      if (NewCond.getNode())
9481        Cond = NewCond;
9482    }
9483  }
9484#if 0
9485  // FIXME: LowerXALUO doesn't handle these!!
9486  else if (Cond.getOpcode() == X86ISD::ADD  ||
9487           Cond.getOpcode() == X86ISD::SUB  ||
9488           Cond.getOpcode() == X86ISD::SMUL ||
9489           Cond.getOpcode() == X86ISD::UMUL)
9490    Cond = LowerXALUO(Cond, DAG);
9491#endif
9492
9493  // Look pass (and (setcc_carry (cmp ...)), 1).
9494  if (Cond.getOpcode() == ISD::AND &&
9495      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9496    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9497    if (C && C->getAPIntValue() == 1)
9498      Cond = Cond.getOperand(0);
9499  }
9500
9501  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9502  // setting operand in place of the X86ISD::SETCC.
9503  unsigned CondOpcode = Cond.getOpcode();
9504  if (CondOpcode == X86ISD::SETCC ||
9505      CondOpcode == X86ISD::SETCC_CARRY) {
9506    CC = Cond.getOperand(0);
9507
9508    SDValue Cmp = Cond.getOperand(1);
9509    unsigned Opc = Cmp.getOpcode();
9510    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9511    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9512      Cond = Cmp;
9513      addTest = false;
9514    } else {
9515      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9516      default: break;
9517      case X86::COND_O:
9518      case X86::COND_B:
9519        // These can only come from an arithmetic instruction with overflow,
9520        // e.g. SADDO, UADDO.
9521        Cond = Cond.getNode()->getOperand(1);
9522        addTest = false;
9523        break;
9524      }
9525    }
9526  }
9527  CondOpcode = Cond.getOpcode();
9528  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9529      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9530      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9531       Cond.getOperand(0).getValueType() != MVT::i8)) {
9532    SDValue LHS = Cond.getOperand(0);
9533    SDValue RHS = Cond.getOperand(1);
9534    unsigned X86Opcode;
9535    unsigned X86Cond;
9536    SDVTList VTs;
9537    switch (CondOpcode) {
9538    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9539    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9540    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9541    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9542    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9543    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9544    default: llvm_unreachable("unexpected overflowing operator");
9545    }
9546    if (Inverted)
9547      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9548    if (CondOpcode == ISD::UMULO)
9549      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9550                          MVT::i32);
9551    else
9552      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9553
9554    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9555
9556    if (CondOpcode == ISD::UMULO)
9557      Cond = X86Op.getValue(2);
9558    else
9559      Cond = X86Op.getValue(1);
9560
9561    CC = DAG.getConstant(X86Cond, MVT::i8);
9562    addTest = false;
9563  } else {
9564    unsigned CondOpc;
9565    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9566      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9567      if (CondOpc == ISD::OR) {
9568        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9569        // two branches instead of an explicit OR instruction with a
9570        // separate test.
9571        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9572            isX86LogicalCmp(Cmp)) {
9573          CC = Cond.getOperand(0).getOperand(0);
9574          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9575                              Chain, Dest, CC, Cmp);
9576          CC = Cond.getOperand(1).getOperand(0);
9577          Cond = Cmp;
9578          addTest = false;
9579        }
9580      } else { // ISD::AND
9581        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9582        // two branches instead of an explicit AND instruction with a
9583        // separate test. However, we only do this if this block doesn't
9584        // have a fall-through edge, because this requires an explicit
9585        // jmp when the condition is false.
9586        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9587            isX86LogicalCmp(Cmp) &&
9588            Op.getNode()->hasOneUse()) {
9589          X86::CondCode CCode =
9590            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9591          CCode = X86::GetOppositeBranchCondition(CCode);
9592          CC = DAG.getConstant(CCode, MVT::i8);
9593          SDNode *User = *Op.getNode()->use_begin();
9594          // Look for an unconditional branch following this conditional branch.
9595          // We need this because we need to reverse the successors in order
9596          // to implement FCMP_OEQ.
9597          if (User->getOpcode() == ISD::BR) {
9598            SDValue FalseBB = User->getOperand(1);
9599            SDNode *NewBR =
9600              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9601            assert(NewBR == User);
9602            (void)NewBR;
9603            Dest = FalseBB;
9604
9605            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9606                                Chain, Dest, CC, Cmp);
9607            X86::CondCode CCode =
9608              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9609            CCode = X86::GetOppositeBranchCondition(CCode);
9610            CC = DAG.getConstant(CCode, MVT::i8);
9611            Cond = Cmp;
9612            addTest = false;
9613          }
9614        }
9615      }
9616    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9617      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9618      // It should be transformed during dag combiner except when the condition
9619      // is set by a arithmetics with overflow node.
9620      X86::CondCode CCode =
9621        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9622      CCode = X86::GetOppositeBranchCondition(CCode);
9623      CC = DAG.getConstant(CCode, MVT::i8);
9624      Cond = Cond.getOperand(0).getOperand(1);
9625      addTest = false;
9626    } else if (Cond.getOpcode() == ISD::SETCC &&
9627               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9628      // For FCMP_OEQ, we can emit
9629      // two branches instead of an explicit AND instruction with a
9630      // separate test. However, we only do this if this block doesn't
9631      // have a fall-through edge, because this requires an explicit
9632      // jmp when the condition is false.
9633      if (Op.getNode()->hasOneUse()) {
9634        SDNode *User = *Op.getNode()->use_begin();
9635        // Look for an unconditional branch following this conditional branch.
9636        // We need this because we need to reverse the successors in order
9637        // to implement FCMP_OEQ.
9638        if (User->getOpcode() == ISD::BR) {
9639          SDValue FalseBB = User->getOperand(1);
9640          SDNode *NewBR =
9641            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9642          assert(NewBR == User);
9643          (void)NewBR;
9644          Dest = FalseBB;
9645
9646          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9647                                    Cond.getOperand(0), Cond.getOperand(1));
9648          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9649          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9650          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9651                              Chain, Dest, CC, Cmp);
9652          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9653          Cond = Cmp;
9654          addTest = false;
9655        }
9656      }
9657    } else if (Cond.getOpcode() == ISD::SETCC &&
9658               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9659      // For FCMP_UNE, we can emit
9660      // two branches instead of an explicit AND instruction with a
9661      // separate test. However, we only do this if this block doesn't
9662      // have a fall-through edge, because this requires an explicit
9663      // jmp when the condition is false.
9664      if (Op.getNode()->hasOneUse()) {
9665        SDNode *User = *Op.getNode()->use_begin();
9666        // Look for an unconditional branch following this conditional branch.
9667        // We need this because we need to reverse the successors in order
9668        // to implement FCMP_UNE.
9669        if (User->getOpcode() == ISD::BR) {
9670          SDValue FalseBB = User->getOperand(1);
9671          SDNode *NewBR =
9672            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9673          assert(NewBR == User);
9674          (void)NewBR;
9675
9676          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9677                                    Cond.getOperand(0), Cond.getOperand(1));
9678          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9679          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9680          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9681                              Chain, Dest, CC, Cmp);
9682          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9683          Cond = Cmp;
9684          addTest = false;
9685          Dest = FalseBB;
9686        }
9687      }
9688    }
9689  }
9690
9691  if (addTest) {
9692    // Look pass the truncate if the high bits are known zero.
9693    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9694        Cond = Cond.getOperand(0);
9695
9696    // We know the result of AND is compared against zero. Try to match
9697    // it to BT.
9698    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9699      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9700      if (NewSetCC.getNode()) {
9701        CC = NewSetCC.getOperand(0);
9702        Cond = NewSetCC.getOperand(1);
9703        addTest = false;
9704      }
9705    }
9706  }
9707
9708  if (addTest) {
9709    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9710    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9711  }
9712  Cond = ConvertCmpIfNecessary(Cond, DAG);
9713  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9714                     Chain, Dest, CC, Cond);
9715}
9716
9717
9718// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9719// Calls to _alloca is needed to probe the stack when allocating more than 4k
9720// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9721// that the guard pages used by the OS virtual memory manager are allocated in
9722// correct sequence.
9723SDValue
9724X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9725                                           SelectionDAG &DAG) const {
9726  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9727          getTargetMachine().Options.EnableSegmentedStacks) &&
9728         "This should be used only on Windows targets or when segmented stacks "
9729         "are being used");
9730  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9731  DebugLoc dl = Op.getDebugLoc();
9732
9733  // Get the inputs.
9734  SDValue Chain = Op.getOperand(0);
9735  SDValue Size  = Op.getOperand(1);
9736  // FIXME: Ensure alignment here
9737
9738  bool Is64Bit = Subtarget->is64Bit();
9739  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9740
9741  if (getTargetMachine().Options.EnableSegmentedStacks) {
9742    MachineFunction &MF = DAG.getMachineFunction();
9743    MachineRegisterInfo &MRI = MF.getRegInfo();
9744
9745    if (Is64Bit) {
9746      // The 64 bit implementation of segmented stacks needs to clobber both r10
9747      // r11. This makes it impossible to use it along with nested parameters.
9748      const Function *F = MF.getFunction();
9749
9750      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9751           I != E; ++I)
9752        if (I->hasNestAttr())
9753          report_fatal_error("Cannot use segmented stacks with functions that "
9754                             "have nested arguments.");
9755    }
9756
9757    const TargetRegisterClass *AddrRegClass =
9758      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9759    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9760    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9761    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9762                                DAG.getRegister(Vreg, SPTy));
9763    SDValue Ops1[2] = { Value, Chain };
9764    return DAG.getMergeValues(Ops1, 2, dl);
9765  } else {
9766    SDValue Flag;
9767    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9768
9769    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9770    Flag = Chain.getValue(1);
9771    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9772
9773    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9774    Flag = Chain.getValue(1);
9775
9776    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
9777                               SPTy).getValue(1);
9778
9779    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9780    return DAG.getMergeValues(Ops1, 2, dl);
9781  }
9782}
9783
9784SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9785  MachineFunction &MF = DAG.getMachineFunction();
9786  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9787
9788  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9789  DebugLoc DL = Op.getDebugLoc();
9790
9791  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9792    // vastart just stores the address of the VarArgsFrameIndex slot into the
9793    // memory location argument.
9794    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9795                                   getPointerTy());
9796    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9797                        MachinePointerInfo(SV), false, false, 0);
9798  }
9799
9800  // __va_list_tag:
9801  //   gp_offset         (0 - 6 * 8)
9802  //   fp_offset         (48 - 48 + 8 * 16)
9803  //   overflow_arg_area (point to parameters coming in memory).
9804  //   reg_save_area
9805  SmallVector<SDValue, 8> MemOps;
9806  SDValue FIN = Op.getOperand(1);
9807  // Store gp_offset
9808  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9809                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9810                                               MVT::i32),
9811                               FIN, MachinePointerInfo(SV), false, false, 0);
9812  MemOps.push_back(Store);
9813
9814  // Store fp_offset
9815  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9816                    FIN, DAG.getIntPtrConstant(4));
9817  Store = DAG.getStore(Op.getOperand(0), DL,
9818                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9819                                       MVT::i32),
9820                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9821  MemOps.push_back(Store);
9822
9823  // Store ptr to overflow_arg_area
9824  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9825                    FIN, DAG.getIntPtrConstant(4));
9826  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9827                                    getPointerTy());
9828  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9829                       MachinePointerInfo(SV, 8),
9830                       false, false, 0);
9831  MemOps.push_back(Store);
9832
9833  // Store ptr to reg_save_area.
9834  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9835                    FIN, DAG.getIntPtrConstant(8));
9836  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9837                                    getPointerTy());
9838  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9839                       MachinePointerInfo(SV, 16), false, false, 0);
9840  MemOps.push_back(Store);
9841  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9842                     &MemOps[0], MemOps.size());
9843}
9844
9845SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9846  assert(Subtarget->is64Bit() &&
9847         "LowerVAARG only handles 64-bit va_arg!");
9848  assert((Subtarget->isTargetLinux() ||
9849          Subtarget->isTargetDarwin()) &&
9850          "Unhandled target in LowerVAARG");
9851  assert(Op.getNode()->getNumOperands() == 4);
9852  SDValue Chain = Op.getOperand(0);
9853  SDValue SrcPtr = Op.getOperand(1);
9854  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9855  unsigned Align = Op.getConstantOperandVal(3);
9856  DebugLoc dl = Op.getDebugLoc();
9857
9858  EVT ArgVT = Op.getNode()->getValueType(0);
9859  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9860  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
9861  uint8_t ArgMode;
9862
9863  // Decide which area this value should be read from.
9864  // TODO: Implement the AMD64 ABI in its entirety. This simple
9865  // selection mechanism works only for the basic types.
9866  if (ArgVT == MVT::f80) {
9867    llvm_unreachable("va_arg for f80 not yet implemented");
9868  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9869    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9870  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9871    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9872  } else {
9873    llvm_unreachable("Unhandled argument type in LowerVAARG");
9874  }
9875
9876  if (ArgMode == 2) {
9877    // Sanity Check: Make sure using fp_offset makes sense.
9878    assert(!getTargetMachine().Options.UseSoftFloat &&
9879           !(DAG.getMachineFunction()
9880                .getFunction()->getFnAttributes()
9881                .hasAttribute(Attributes::NoImplicitFloat)) &&
9882           Subtarget->hasSSE1());
9883  }
9884
9885  // Insert VAARG_64 node into the DAG
9886  // VAARG_64 returns two values: Variable Argument Address, Chain
9887  SmallVector<SDValue, 11> InstOps;
9888  InstOps.push_back(Chain);
9889  InstOps.push_back(SrcPtr);
9890  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9891  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9892  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9893  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9894  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9895                                          VTs, &InstOps[0], InstOps.size(),
9896                                          MVT::i64,
9897                                          MachinePointerInfo(SV),
9898                                          /*Align=*/0,
9899                                          /*Volatile=*/false,
9900                                          /*ReadMem=*/true,
9901                                          /*WriteMem=*/true);
9902  Chain = VAARG.getValue(1);
9903
9904  // Load the next argument and return it
9905  return DAG.getLoad(ArgVT, dl,
9906                     Chain,
9907                     VAARG,
9908                     MachinePointerInfo(),
9909                     false, false, false, 0);
9910}
9911
9912static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
9913                           SelectionDAG &DAG) {
9914  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9915  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9916  SDValue Chain = Op.getOperand(0);
9917  SDValue DstPtr = Op.getOperand(1);
9918  SDValue SrcPtr = Op.getOperand(2);
9919  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9920  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9921  DebugLoc DL = Op.getDebugLoc();
9922
9923  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9924                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9925                       false,
9926                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9927}
9928
9929// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9930// may or may not be a constant. Takes immediate version of shift as input.
9931static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9932                                   SDValue SrcOp, SDValue ShAmt,
9933                                   SelectionDAG &DAG) {
9934  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9935
9936  if (isa<ConstantSDNode>(ShAmt)) {
9937    // Constant may be a TargetConstant. Use a regular constant.
9938    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9939    switch (Opc) {
9940      default: llvm_unreachable("Unknown target vector shift node");
9941      case X86ISD::VSHLI:
9942      case X86ISD::VSRLI:
9943      case X86ISD::VSRAI:
9944        return DAG.getNode(Opc, dl, VT, SrcOp,
9945                           DAG.getConstant(ShiftAmt, MVT::i32));
9946    }
9947  }
9948
9949  // Change opcode to non-immediate version
9950  switch (Opc) {
9951    default: llvm_unreachable("Unknown target vector shift node");
9952    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9953    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9954    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9955  }
9956
9957  // Need to build a vector containing shift amount
9958  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9959  SDValue ShOps[4];
9960  ShOps[0] = ShAmt;
9961  ShOps[1] = DAG.getConstant(0, MVT::i32);
9962  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9963  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9964
9965  // The return type has to be a 128-bit type with the same element
9966  // type as the input type.
9967  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9968  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9969
9970  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9971  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9972}
9973
9974static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
9975  DebugLoc dl = Op.getDebugLoc();
9976  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9977  switch (IntNo) {
9978  default: return SDValue();    // Don't custom lower most intrinsics.
9979  // Comparison intrinsics.
9980  case Intrinsic::x86_sse_comieq_ss:
9981  case Intrinsic::x86_sse_comilt_ss:
9982  case Intrinsic::x86_sse_comile_ss:
9983  case Intrinsic::x86_sse_comigt_ss:
9984  case Intrinsic::x86_sse_comige_ss:
9985  case Intrinsic::x86_sse_comineq_ss:
9986  case Intrinsic::x86_sse_ucomieq_ss:
9987  case Intrinsic::x86_sse_ucomilt_ss:
9988  case Intrinsic::x86_sse_ucomile_ss:
9989  case Intrinsic::x86_sse_ucomigt_ss:
9990  case Intrinsic::x86_sse_ucomige_ss:
9991  case Intrinsic::x86_sse_ucomineq_ss:
9992  case Intrinsic::x86_sse2_comieq_sd:
9993  case Intrinsic::x86_sse2_comilt_sd:
9994  case Intrinsic::x86_sse2_comile_sd:
9995  case Intrinsic::x86_sse2_comigt_sd:
9996  case Intrinsic::x86_sse2_comige_sd:
9997  case Intrinsic::x86_sse2_comineq_sd:
9998  case Intrinsic::x86_sse2_ucomieq_sd:
9999  case Intrinsic::x86_sse2_ucomilt_sd:
10000  case Intrinsic::x86_sse2_ucomile_sd:
10001  case Intrinsic::x86_sse2_ucomigt_sd:
10002  case Intrinsic::x86_sse2_ucomige_sd:
10003  case Intrinsic::x86_sse2_ucomineq_sd: {
10004    unsigned Opc;
10005    ISD::CondCode CC;
10006    switch (IntNo) {
10007    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10008    case Intrinsic::x86_sse_comieq_ss:
10009    case Intrinsic::x86_sse2_comieq_sd:
10010      Opc = X86ISD::COMI;
10011      CC = ISD::SETEQ;
10012      break;
10013    case Intrinsic::x86_sse_comilt_ss:
10014    case Intrinsic::x86_sse2_comilt_sd:
10015      Opc = X86ISD::COMI;
10016      CC = ISD::SETLT;
10017      break;
10018    case Intrinsic::x86_sse_comile_ss:
10019    case Intrinsic::x86_sse2_comile_sd:
10020      Opc = X86ISD::COMI;
10021      CC = ISD::SETLE;
10022      break;
10023    case Intrinsic::x86_sse_comigt_ss:
10024    case Intrinsic::x86_sse2_comigt_sd:
10025      Opc = X86ISD::COMI;
10026      CC = ISD::SETGT;
10027      break;
10028    case Intrinsic::x86_sse_comige_ss:
10029    case Intrinsic::x86_sse2_comige_sd:
10030      Opc = X86ISD::COMI;
10031      CC = ISD::SETGE;
10032      break;
10033    case Intrinsic::x86_sse_comineq_ss:
10034    case Intrinsic::x86_sse2_comineq_sd:
10035      Opc = X86ISD::COMI;
10036      CC = ISD::SETNE;
10037      break;
10038    case Intrinsic::x86_sse_ucomieq_ss:
10039    case Intrinsic::x86_sse2_ucomieq_sd:
10040      Opc = X86ISD::UCOMI;
10041      CC = ISD::SETEQ;
10042      break;
10043    case Intrinsic::x86_sse_ucomilt_ss:
10044    case Intrinsic::x86_sse2_ucomilt_sd:
10045      Opc = X86ISD::UCOMI;
10046      CC = ISD::SETLT;
10047      break;
10048    case Intrinsic::x86_sse_ucomile_ss:
10049    case Intrinsic::x86_sse2_ucomile_sd:
10050      Opc = X86ISD::UCOMI;
10051      CC = ISD::SETLE;
10052      break;
10053    case Intrinsic::x86_sse_ucomigt_ss:
10054    case Intrinsic::x86_sse2_ucomigt_sd:
10055      Opc = X86ISD::UCOMI;
10056      CC = ISD::SETGT;
10057      break;
10058    case Intrinsic::x86_sse_ucomige_ss:
10059    case Intrinsic::x86_sse2_ucomige_sd:
10060      Opc = X86ISD::UCOMI;
10061      CC = ISD::SETGE;
10062      break;
10063    case Intrinsic::x86_sse_ucomineq_ss:
10064    case Intrinsic::x86_sse2_ucomineq_sd:
10065      Opc = X86ISD::UCOMI;
10066      CC = ISD::SETNE;
10067      break;
10068    }
10069
10070    SDValue LHS = Op.getOperand(1);
10071    SDValue RHS = Op.getOperand(2);
10072    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10073    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10074    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10075    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10076                                DAG.getConstant(X86CC, MVT::i8), Cond);
10077    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10078  }
10079
10080  // Arithmetic intrinsics.
10081  case Intrinsic::x86_sse2_pmulu_dq:
10082  case Intrinsic::x86_avx2_pmulu_dq:
10083    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10084                       Op.getOperand(1), Op.getOperand(2));
10085
10086  // SSE3/AVX horizontal add/sub intrinsics
10087  case Intrinsic::x86_sse3_hadd_ps:
10088  case Intrinsic::x86_sse3_hadd_pd:
10089  case Intrinsic::x86_avx_hadd_ps_256:
10090  case Intrinsic::x86_avx_hadd_pd_256:
10091  case Intrinsic::x86_sse3_hsub_ps:
10092  case Intrinsic::x86_sse3_hsub_pd:
10093  case Intrinsic::x86_avx_hsub_ps_256:
10094  case Intrinsic::x86_avx_hsub_pd_256:
10095  case Intrinsic::x86_ssse3_phadd_w_128:
10096  case Intrinsic::x86_ssse3_phadd_d_128:
10097  case Intrinsic::x86_avx2_phadd_w:
10098  case Intrinsic::x86_avx2_phadd_d:
10099  case Intrinsic::x86_ssse3_phsub_w_128:
10100  case Intrinsic::x86_ssse3_phsub_d_128:
10101  case Intrinsic::x86_avx2_phsub_w:
10102  case Intrinsic::x86_avx2_phsub_d: {
10103    unsigned Opcode;
10104    switch (IntNo) {
10105    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10106    case Intrinsic::x86_sse3_hadd_ps:
10107    case Intrinsic::x86_sse3_hadd_pd:
10108    case Intrinsic::x86_avx_hadd_ps_256:
10109    case Intrinsic::x86_avx_hadd_pd_256:
10110      Opcode = X86ISD::FHADD;
10111      break;
10112    case Intrinsic::x86_sse3_hsub_ps:
10113    case Intrinsic::x86_sse3_hsub_pd:
10114    case Intrinsic::x86_avx_hsub_ps_256:
10115    case Intrinsic::x86_avx_hsub_pd_256:
10116      Opcode = X86ISD::FHSUB;
10117      break;
10118    case Intrinsic::x86_ssse3_phadd_w_128:
10119    case Intrinsic::x86_ssse3_phadd_d_128:
10120    case Intrinsic::x86_avx2_phadd_w:
10121    case Intrinsic::x86_avx2_phadd_d:
10122      Opcode = X86ISD::HADD;
10123      break;
10124    case Intrinsic::x86_ssse3_phsub_w_128:
10125    case Intrinsic::x86_ssse3_phsub_d_128:
10126    case Intrinsic::x86_avx2_phsub_w:
10127    case Intrinsic::x86_avx2_phsub_d:
10128      Opcode = X86ISD::HSUB;
10129      break;
10130    }
10131    return DAG.getNode(Opcode, dl, Op.getValueType(),
10132                       Op.getOperand(1), Op.getOperand(2));
10133  }
10134
10135  // AVX2 variable shift intrinsics
10136  case Intrinsic::x86_avx2_psllv_d:
10137  case Intrinsic::x86_avx2_psllv_q:
10138  case Intrinsic::x86_avx2_psllv_d_256:
10139  case Intrinsic::x86_avx2_psllv_q_256:
10140  case Intrinsic::x86_avx2_psrlv_d:
10141  case Intrinsic::x86_avx2_psrlv_q:
10142  case Intrinsic::x86_avx2_psrlv_d_256:
10143  case Intrinsic::x86_avx2_psrlv_q_256:
10144  case Intrinsic::x86_avx2_psrav_d:
10145  case Intrinsic::x86_avx2_psrav_d_256: {
10146    unsigned Opcode;
10147    switch (IntNo) {
10148    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10149    case Intrinsic::x86_avx2_psllv_d:
10150    case Intrinsic::x86_avx2_psllv_q:
10151    case Intrinsic::x86_avx2_psllv_d_256:
10152    case Intrinsic::x86_avx2_psllv_q_256:
10153      Opcode = ISD::SHL;
10154      break;
10155    case Intrinsic::x86_avx2_psrlv_d:
10156    case Intrinsic::x86_avx2_psrlv_q:
10157    case Intrinsic::x86_avx2_psrlv_d_256:
10158    case Intrinsic::x86_avx2_psrlv_q_256:
10159      Opcode = ISD::SRL;
10160      break;
10161    case Intrinsic::x86_avx2_psrav_d:
10162    case Intrinsic::x86_avx2_psrav_d_256:
10163      Opcode = ISD::SRA;
10164      break;
10165    }
10166    return DAG.getNode(Opcode, dl, Op.getValueType(),
10167                       Op.getOperand(1), Op.getOperand(2));
10168  }
10169
10170  case Intrinsic::x86_ssse3_pshuf_b_128:
10171  case Intrinsic::x86_avx2_pshuf_b:
10172    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10173                       Op.getOperand(1), Op.getOperand(2));
10174
10175  case Intrinsic::x86_ssse3_psign_b_128:
10176  case Intrinsic::x86_ssse3_psign_w_128:
10177  case Intrinsic::x86_ssse3_psign_d_128:
10178  case Intrinsic::x86_avx2_psign_b:
10179  case Intrinsic::x86_avx2_psign_w:
10180  case Intrinsic::x86_avx2_psign_d:
10181    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10182                       Op.getOperand(1), Op.getOperand(2));
10183
10184  case Intrinsic::x86_sse41_insertps:
10185    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10186                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10187
10188  case Intrinsic::x86_avx_vperm2f128_ps_256:
10189  case Intrinsic::x86_avx_vperm2f128_pd_256:
10190  case Intrinsic::x86_avx_vperm2f128_si_256:
10191  case Intrinsic::x86_avx2_vperm2i128:
10192    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10193                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10194
10195  case Intrinsic::x86_avx2_permd:
10196  case Intrinsic::x86_avx2_permps:
10197    // Operands intentionally swapped. Mask is last operand to intrinsic,
10198    // but second operand for node/intruction.
10199    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10200                       Op.getOperand(2), Op.getOperand(1));
10201
10202  // ptest and testp intrinsics. The intrinsic these come from are designed to
10203  // return an integer value, not just an instruction so lower it to the ptest
10204  // or testp pattern and a setcc for the result.
10205  case Intrinsic::x86_sse41_ptestz:
10206  case Intrinsic::x86_sse41_ptestc:
10207  case Intrinsic::x86_sse41_ptestnzc:
10208  case Intrinsic::x86_avx_ptestz_256:
10209  case Intrinsic::x86_avx_ptestc_256:
10210  case Intrinsic::x86_avx_ptestnzc_256:
10211  case Intrinsic::x86_avx_vtestz_ps:
10212  case Intrinsic::x86_avx_vtestc_ps:
10213  case Intrinsic::x86_avx_vtestnzc_ps:
10214  case Intrinsic::x86_avx_vtestz_pd:
10215  case Intrinsic::x86_avx_vtestc_pd:
10216  case Intrinsic::x86_avx_vtestnzc_pd:
10217  case Intrinsic::x86_avx_vtestz_ps_256:
10218  case Intrinsic::x86_avx_vtestc_ps_256:
10219  case Intrinsic::x86_avx_vtestnzc_ps_256:
10220  case Intrinsic::x86_avx_vtestz_pd_256:
10221  case Intrinsic::x86_avx_vtestc_pd_256:
10222  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10223    bool IsTestPacked = false;
10224    unsigned X86CC;
10225    switch (IntNo) {
10226    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10227    case Intrinsic::x86_avx_vtestz_ps:
10228    case Intrinsic::x86_avx_vtestz_pd:
10229    case Intrinsic::x86_avx_vtestz_ps_256:
10230    case Intrinsic::x86_avx_vtestz_pd_256:
10231      IsTestPacked = true; // Fallthrough
10232    case Intrinsic::x86_sse41_ptestz:
10233    case Intrinsic::x86_avx_ptestz_256:
10234      // ZF = 1
10235      X86CC = X86::COND_E;
10236      break;
10237    case Intrinsic::x86_avx_vtestc_ps:
10238    case Intrinsic::x86_avx_vtestc_pd:
10239    case Intrinsic::x86_avx_vtestc_ps_256:
10240    case Intrinsic::x86_avx_vtestc_pd_256:
10241      IsTestPacked = true; // Fallthrough
10242    case Intrinsic::x86_sse41_ptestc:
10243    case Intrinsic::x86_avx_ptestc_256:
10244      // CF = 1
10245      X86CC = X86::COND_B;
10246      break;
10247    case Intrinsic::x86_avx_vtestnzc_ps:
10248    case Intrinsic::x86_avx_vtestnzc_pd:
10249    case Intrinsic::x86_avx_vtestnzc_ps_256:
10250    case Intrinsic::x86_avx_vtestnzc_pd_256:
10251      IsTestPacked = true; // Fallthrough
10252    case Intrinsic::x86_sse41_ptestnzc:
10253    case Intrinsic::x86_avx_ptestnzc_256:
10254      // ZF and CF = 0
10255      X86CC = X86::COND_A;
10256      break;
10257    }
10258
10259    SDValue LHS = Op.getOperand(1);
10260    SDValue RHS = Op.getOperand(2);
10261    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10262    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10263    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10264    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10265    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10266  }
10267
10268  // SSE/AVX shift intrinsics
10269  case Intrinsic::x86_sse2_psll_w:
10270  case Intrinsic::x86_sse2_psll_d:
10271  case Intrinsic::x86_sse2_psll_q:
10272  case Intrinsic::x86_avx2_psll_w:
10273  case Intrinsic::x86_avx2_psll_d:
10274  case Intrinsic::x86_avx2_psll_q:
10275  case Intrinsic::x86_sse2_psrl_w:
10276  case Intrinsic::x86_sse2_psrl_d:
10277  case Intrinsic::x86_sse2_psrl_q:
10278  case Intrinsic::x86_avx2_psrl_w:
10279  case Intrinsic::x86_avx2_psrl_d:
10280  case Intrinsic::x86_avx2_psrl_q:
10281  case Intrinsic::x86_sse2_psra_w:
10282  case Intrinsic::x86_sse2_psra_d:
10283  case Intrinsic::x86_avx2_psra_w:
10284  case Intrinsic::x86_avx2_psra_d: {
10285    unsigned Opcode;
10286    switch (IntNo) {
10287    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10288    case Intrinsic::x86_sse2_psll_w:
10289    case Intrinsic::x86_sse2_psll_d:
10290    case Intrinsic::x86_sse2_psll_q:
10291    case Intrinsic::x86_avx2_psll_w:
10292    case Intrinsic::x86_avx2_psll_d:
10293    case Intrinsic::x86_avx2_psll_q:
10294      Opcode = X86ISD::VSHL;
10295      break;
10296    case Intrinsic::x86_sse2_psrl_w:
10297    case Intrinsic::x86_sse2_psrl_d:
10298    case Intrinsic::x86_sse2_psrl_q:
10299    case Intrinsic::x86_avx2_psrl_w:
10300    case Intrinsic::x86_avx2_psrl_d:
10301    case Intrinsic::x86_avx2_psrl_q:
10302      Opcode = X86ISD::VSRL;
10303      break;
10304    case Intrinsic::x86_sse2_psra_w:
10305    case Intrinsic::x86_sse2_psra_d:
10306    case Intrinsic::x86_avx2_psra_w:
10307    case Intrinsic::x86_avx2_psra_d:
10308      Opcode = X86ISD::VSRA;
10309      break;
10310    }
10311    return DAG.getNode(Opcode, dl, Op.getValueType(),
10312                       Op.getOperand(1), Op.getOperand(2));
10313  }
10314
10315  // SSE/AVX immediate shift intrinsics
10316  case Intrinsic::x86_sse2_pslli_w:
10317  case Intrinsic::x86_sse2_pslli_d:
10318  case Intrinsic::x86_sse2_pslli_q:
10319  case Intrinsic::x86_avx2_pslli_w:
10320  case Intrinsic::x86_avx2_pslli_d:
10321  case Intrinsic::x86_avx2_pslli_q:
10322  case Intrinsic::x86_sse2_psrli_w:
10323  case Intrinsic::x86_sse2_psrli_d:
10324  case Intrinsic::x86_sse2_psrli_q:
10325  case Intrinsic::x86_avx2_psrli_w:
10326  case Intrinsic::x86_avx2_psrli_d:
10327  case Intrinsic::x86_avx2_psrli_q:
10328  case Intrinsic::x86_sse2_psrai_w:
10329  case Intrinsic::x86_sse2_psrai_d:
10330  case Intrinsic::x86_avx2_psrai_w:
10331  case Intrinsic::x86_avx2_psrai_d: {
10332    unsigned Opcode;
10333    switch (IntNo) {
10334    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10335    case Intrinsic::x86_sse2_pslli_w:
10336    case Intrinsic::x86_sse2_pslli_d:
10337    case Intrinsic::x86_sse2_pslli_q:
10338    case Intrinsic::x86_avx2_pslli_w:
10339    case Intrinsic::x86_avx2_pslli_d:
10340    case Intrinsic::x86_avx2_pslli_q:
10341      Opcode = X86ISD::VSHLI;
10342      break;
10343    case Intrinsic::x86_sse2_psrli_w:
10344    case Intrinsic::x86_sse2_psrli_d:
10345    case Intrinsic::x86_sse2_psrli_q:
10346    case Intrinsic::x86_avx2_psrli_w:
10347    case Intrinsic::x86_avx2_psrli_d:
10348    case Intrinsic::x86_avx2_psrli_q:
10349      Opcode = X86ISD::VSRLI;
10350      break;
10351    case Intrinsic::x86_sse2_psrai_w:
10352    case Intrinsic::x86_sse2_psrai_d:
10353    case Intrinsic::x86_avx2_psrai_w:
10354    case Intrinsic::x86_avx2_psrai_d:
10355      Opcode = X86ISD::VSRAI;
10356      break;
10357    }
10358    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10359                               Op.getOperand(1), Op.getOperand(2), DAG);
10360  }
10361
10362  case Intrinsic::x86_sse42_pcmpistria128:
10363  case Intrinsic::x86_sse42_pcmpestria128:
10364  case Intrinsic::x86_sse42_pcmpistric128:
10365  case Intrinsic::x86_sse42_pcmpestric128:
10366  case Intrinsic::x86_sse42_pcmpistrio128:
10367  case Intrinsic::x86_sse42_pcmpestrio128:
10368  case Intrinsic::x86_sse42_pcmpistris128:
10369  case Intrinsic::x86_sse42_pcmpestris128:
10370  case Intrinsic::x86_sse42_pcmpistriz128:
10371  case Intrinsic::x86_sse42_pcmpestriz128: {
10372    unsigned Opcode;
10373    unsigned X86CC;
10374    switch (IntNo) {
10375    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10376    case Intrinsic::x86_sse42_pcmpistria128:
10377      Opcode = X86ISD::PCMPISTRI;
10378      X86CC = X86::COND_A;
10379      break;
10380    case Intrinsic::x86_sse42_pcmpestria128:
10381      Opcode = X86ISD::PCMPESTRI;
10382      X86CC = X86::COND_A;
10383      break;
10384    case Intrinsic::x86_sse42_pcmpistric128:
10385      Opcode = X86ISD::PCMPISTRI;
10386      X86CC = X86::COND_B;
10387      break;
10388    case Intrinsic::x86_sse42_pcmpestric128:
10389      Opcode = X86ISD::PCMPESTRI;
10390      X86CC = X86::COND_B;
10391      break;
10392    case Intrinsic::x86_sse42_pcmpistrio128:
10393      Opcode = X86ISD::PCMPISTRI;
10394      X86CC = X86::COND_O;
10395      break;
10396    case Intrinsic::x86_sse42_pcmpestrio128:
10397      Opcode = X86ISD::PCMPESTRI;
10398      X86CC = X86::COND_O;
10399      break;
10400    case Intrinsic::x86_sse42_pcmpistris128:
10401      Opcode = X86ISD::PCMPISTRI;
10402      X86CC = X86::COND_S;
10403      break;
10404    case Intrinsic::x86_sse42_pcmpestris128:
10405      Opcode = X86ISD::PCMPESTRI;
10406      X86CC = X86::COND_S;
10407      break;
10408    case Intrinsic::x86_sse42_pcmpistriz128:
10409      Opcode = X86ISD::PCMPISTRI;
10410      X86CC = X86::COND_E;
10411      break;
10412    case Intrinsic::x86_sse42_pcmpestriz128:
10413      Opcode = X86ISD::PCMPESTRI;
10414      X86CC = X86::COND_E;
10415      break;
10416    }
10417    SmallVector<SDValue, 5> NewOps;
10418    NewOps.append(Op->op_begin()+1, Op->op_end());
10419    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10420    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10421    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10422                                DAG.getConstant(X86CC, MVT::i8),
10423                                SDValue(PCMP.getNode(), 1));
10424    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10425  }
10426
10427  case Intrinsic::x86_sse42_pcmpistri128:
10428  case Intrinsic::x86_sse42_pcmpestri128: {
10429    unsigned Opcode;
10430    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10431      Opcode = X86ISD::PCMPISTRI;
10432    else
10433      Opcode = X86ISD::PCMPESTRI;
10434
10435    SmallVector<SDValue, 5> NewOps;
10436    NewOps.append(Op->op_begin()+1, Op->op_end());
10437    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10438    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10439  }
10440  case Intrinsic::x86_fma_vfmadd_ps:
10441  case Intrinsic::x86_fma_vfmadd_pd:
10442  case Intrinsic::x86_fma_vfmsub_ps:
10443  case Intrinsic::x86_fma_vfmsub_pd:
10444  case Intrinsic::x86_fma_vfnmadd_ps:
10445  case Intrinsic::x86_fma_vfnmadd_pd:
10446  case Intrinsic::x86_fma_vfnmsub_ps:
10447  case Intrinsic::x86_fma_vfnmsub_pd:
10448  case Intrinsic::x86_fma_vfmaddsub_ps:
10449  case Intrinsic::x86_fma_vfmaddsub_pd:
10450  case Intrinsic::x86_fma_vfmsubadd_ps:
10451  case Intrinsic::x86_fma_vfmsubadd_pd:
10452  case Intrinsic::x86_fma_vfmadd_ps_256:
10453  case Intrinsic::x86_fma_vfmadd_pd_256:
10454  case Intrinsic::x86_fma_vfmsub_ps_256:
10455  case Intrinsic::x86_fma_vfmsub_pd_256:
10456  case Intrinsic::x86_fma_vfnmadd_ps_256:
10457  case Intrinsic::x86_fma_vfnmadd_pd_256:
10458  case Intrinsic::x86_fma_vfnmsub_ps_256:
10459  case Intrinsic::x86_fma_vfnmsub_pd_256:
10460  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10461  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10462  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10463  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10464    unsigned Opc;
10465    switch (IntNo) {
10466    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10467    case Intrinsic::x86_fma_vfmadd_ps:
10468    case Intrinsic::x86_fma_vfmadd_pd:
10469    case Intrinsic::x86_fma_vfmadd_ps_256:
10470    case Intrinsic::x86_fma_vfmadd_pd_256:
10471      Opc = X86ISD::FMADD;
10472      break;
10473    case Intrinsic::x86_fma_vfmsub_ps:
10474    case Intrinsic::x86_fma_vfmsub_pd:
10475    case Intrinsic::x86_fma_vfmsub_ps_256:
10476    case Intrinsic::x86_fma_vfmsub_pd_256:
10477      Opc = X86ISD::FMSUB;
10478      break;
10479    case Intrinsic::x86_fma_vfnmadd_ps:
10480    case Intrinsic::x86_fma_vfnmadd_pd:
10481    case Intrinsic::x86_fma_vfnmadd_ps_256:
10482    case Intrinsic::x86_fma_vfnmadd_pd_256:
10483      Opc = X86ISD::FNMADD;
10484      break;
10485    case Intrinsic::x86_fma_vfnmsub_ps:
10486    case Intrinsic::x86_fma_vfnmsub_pd:
10487    case Intrinsic::x86_fma_vfnmsub_ps_256:
10488    case Intrinsic::x86_fma_vfnmsub_pd_256:
10489      Opc = X86ISD::FNMSUB;
10490      break;
10491    case Intrinsic::x86_fma_vfmaddsub_ps:
10492    case Intrinsic::x86_fma_vfmaddsub_pd:
10493    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10494    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10495      Opc = X86ISD::FMADDSUB;
10496      break;
10497    case Intrinsic::x86_fma_vfmsubadd_ps:
10498    case Intrinsic::x86_fma_vfmsubadd_pd:
10499    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10500    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10501      Opc = X86ISD::FMSUBADD;
10502      break;
10503    }
10504
10505    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10506                       Op.getOperand(2), Op.getOperand(3));
10507  }
10508  }
10509}
10510
10511static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10512  DebugLoc dl = Op.getDebugLoc();
10513  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10514  switch (IntNo) {
10515  default: return SDValue();    // Don't custom lower most intrinsics.
10516
10517  // RDRAND intrinsics.
10518  case Intrinsic::x86_rdrand_16:
10519  case Intrinsic::x86_rdrand_32:
10520  case Intrinsic::x86_rdrand_64: {
10521    // Emit the node with the right value type.
10522    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10523    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10524
10525    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10526    // return the value from Rand, which is always 0, casted to i32.
10527    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10528                      DAG.getConstant(1, Op->getValueType(1)),
10529                      DAG.getConstant(X86::COND_B, MVT::i32),
10530                      SDValue(Result.getNode(), 1) };
10531    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10532                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10533                                  Ops, 4);
10534
10535    // Return { result, isValid, chain }.
10536    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10537                       SDValue(Result.getNode(), 2));
10538  }
10539  }
10540}
10541
10542SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10543                                           SelectionDAG &DAG) const {
10544  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10545  MFI->setReturnAddressIsTaken(true);
10546
10547  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10548  DebugLoc dl = Op.getDebugLoc();
10549  EVT PtrVT = getPointerTy();
10550
10551  if (Depth > 0) {
10552    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10553    SDValue Offset =
10554      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10555    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10556                       DAG.getNode(ISD::ADD, dl, PtrVT,
10557                                   FrameAddr, Offset),
10558                       MachinePointerInfo(), false, false, false, 0);
10559  }
10560
10561  // Just load the return address.
10562  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10563  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10564                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10565}
10566
10567SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10568  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10569  MFI->setFrameAddressIsTaken(true);
10570
10571  EVT VT = Op.getValueType();
10572  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10573  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10574  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10575  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10576  while (Depth--)
10577    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10578                            MachinePointerInfo(),
10579                            false, false, false, 0);
10580  return FrameAddr;
10581}
10582
10583SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10584                                                     SelectionDAG &DAG) const {
10585  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10586}
10587
10588SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10589  SDValue Chain     = Op.getOperand(0);
10590  SDValue Offset    = Op.getOperand(1);
10591  SDValue Handler   = Op.getOperand(2);
10592  DebugLoc dl       = Op.getDebugLoc();
10593
10594  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10595                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10596                                     getPointerTy());
10597  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10598
10599  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10600                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
10601  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10602  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10603                       false, false, 0);
10604  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10605
10606  return DAG.getNode(X86ISD::EH_RETURN, dl,
10607                     MVT::Other,
10608                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10609}
10610
10611SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
10612                                               SelectionDAG &DAG) const {
10613  DebugLoc DL = Op.getDebugLoc();
10614  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
10615                     DAG.getVTList(MVT::i32, MVT::Other),
10616                     Op.getOperand(0), Op.getOperand(1));
10617}
10618
10619SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
10620                                                SelectionDAG &DAG) const {
10621  DebugLoc DL = Op.getDebugLoc();
10622  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
10623                     Op.getOperand(0), Op.getOperand(1));
10624}
10625
10626static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10627  return Op.getOperand(0);
10628}
10629
10630SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10631                                                SelectionDAG &DAG) const {
10632  SDValue Root = Op.getOperand(0);
10633  SDValue Trmp = Op.getOperand(1); // trampoline
10634  SDValue FPtr = Op.getOperand(2); // nested function
10635  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10636  DebugLoc dl  = Op.getDebugLoc();
10637
10638  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10639  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
10640
10641  if (Subtarget->is64Bit()) {
10642    SDValue OutChains[6];
10643
10644    // Large code-model.
10645    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10646    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10647
10648    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
10649    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
10650
10651    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10652
10653    // Load the pointer to the nested function into R11.
10654    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10655    SDValue Addr = Trmp;
10656    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10657                                Addr, MachinePointerInfo(TrmpAddr),
10658                                false, false, 0);
10659
10660    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10661                       DAG.getConstant(2, MVT::i64));
10662    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10663                                MachinePointerInfo(TrmpAddr, 2),
10664                                false, false, 2);
10665
10666    // Load the 'nest' parameter value into R10.
10667    // R10 is specified in X86CallingConv.td
10668    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10669    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10670                       DAG.getConstant(10, MVT::i64));
10671    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10672                                Addr, MachinePointerInfo(TrmpAddr, 10),
10673                                false, false, 0);
10674
10675    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10676                       DAG.getConstant(12, MVT::i64));
10677    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10678                                MachinePointerInfo(TrmpAddr, 12),
10679                                false, false, 2);
10680
10681    // Jump to the nested function.
10682    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10683    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10684                       DAG.getConstant(20, MVT::i64));
10685    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10686                                Addr, MachinePointerInfo(TrmpAddr, 20),
10687                                false, false, 0);
10688
10689    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10690    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10691                       DAG.getConstant(22, MVT::i64));
10692    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10693                                MachinePointerInfo(TrmpAddr, 22),
10694                                false, false, 0);
10695
10696    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10697  } else {
10698    const Function *Func =
10699      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10700    CallingConv::ID CC = Func->getCallingConv();
10701    unsigned NestReg;
10702
10703    switch (CC) {
10704    default:
10705      llvm_unreachable("Unsupported calling convention");
10706    case CallingConv::C:
10707    case CallingConv::X86_StdCall: {
10708      // Pass 'nest' parameter in ECX.
10709      // Must be kept in sync with X86CallingConv.td
10710      NestReg = X86::ECX;
10711
10712      // Check that ECX wasn't needed by an 'inreg' parameter.
10713      FunctionType *FTy = Func->getFunctionType();
10714      const AttributeSet &Attrs = Func->getAttributes();
10715
10716      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10717        unsigned InRegCount = 0;
10718        unsigned Idx = 1;
10719
10720        for (FunctionType::param_iterator I = FTy->param_begin(),
10721             E = FTy->param_end(); I != E; ++I, ++Idx)
10722          if (Attrs.getParamAttributes(Idx).hasAttribute(Attributes::InReg))
10723            // FIXME: should only count parameters that are lowered to integers.
10724            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10725
10726        if (InRegCount > 2) {
10727          report_fatal_error("Nest register in use - reduce number of inreg"
10728                             " parameters!");
10729        }
10730      }
10731      break;
10732    }
10733    case CallingConv::X86_FastCall:
10734    case CallingConv::X86_ThisCall:
10735    case CallingConv::Fast:
10736      // Pass 'nest' parameter in EAX.
10737      // Must be kept in sync with X86CallingConv.td
10738      NestReg = X86::EAX;
10739      break;
10740    }
10741
10742    SDValue OutChains[4];
10743    SDValue Addr, Disp;
10744
10745    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10746                       DAG.getConstant(10, MVT::i32));
10747    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10748
10749    // This is storing the opcode for MOV32ri.
10750    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10751    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
10752    OutChains[0] = DAG.getStore(Root, dl,
10753                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10754                                Trmp, MachinePointerInfo(TrmpAddr),
10755                                false, false, 0);
10756
10757    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10758                       DAG.getConstant(1, MVT::i32));
10759    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10760                                MachinePointerInfo(TrmpAddr, 1),
10761                                false, false, 1);
10762
10763    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10764    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10765                       DAG.getConstant(5, MVT::i32));
10766    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10767                                MachinePointerInfo(TrmpAddr, 5),
10768                                false, false, 1);
10769
10770    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10771                       DAG.getConstant(6, MVT::i32));
10772    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10773                                MachinePointerInfo(TrmpAddr, 6),
10774                                false, false, 1);
10775
10776    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10777  }
10778}
10779
10780SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10781                                            SelectionDAG &DAG) const {
10782  /*
10783   The rounding mode is in bits 11:10 of FPSR, and has the following
10784   settings:
10785     00 Round to nearest
10786     01 Round to -inf
10787     10 Round to +inf
10788     11 Round to 0
10789
10790  FLT_ROUNDS, on the other hand, expects the following:
10791    -1 Undefined
10792     0 Round to 0
10793     1 Round to nearest
10794     2 Round to +inf
10795     3 Round to -inf
10796
10797  To perform the conversion, we do:
10798    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10799  */
10800
10801  MachineFunction &MF = DAG.getMachineFunction();
10802  const TargetMachine &TM = MF.getTarget();
10803  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10804  unsigned StackAlignment = TFI.getStackAlignment();
10805  EVT VT = Op.getValueType();
10806  DebugLoc DL = Op.getDebugLoc();
10807
10808  // Save FP Control Word to stack slot
10809  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10810  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10811
10812
10813  MachineMemOperand *MMO =
10814   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10815                           MachineMemOperand::MOStore, 2, 2);
10816
10817  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10818  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10819                                          DAG.getVTList(MVT::Other),
10820                                          Ops, 2, MVT::i16, MMO);
10821
10822  // Load FP Control Word from stack slot
10823  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10824                            MachinePointerInfo(), false, false, false, 0);
10825
10826  // Transform as necessary
10827  SDValue CWD1 =
10828    DAG.getNode(ISD::SRL, DL, MVT::i16,
10829                DAG.getNode(ISD::AND, DL, MVT::i16,
10830                            CWD, DAG.getConstant(0x800, MVT::i16)),
10831                DAG.getConstant(11, MVT::i8));
10832  SDValue CWD2 =
10833    DAG.getNode(ISD::SRL, DL, MVT::i16,
10834                DAG.getNode(ISD::AND, DL, MVT::i16,
10835                            CWD, DAG.getConstant(0x400, MVT::i16)),
10836                DAG.getConstant(9, MVT::i8));
10837
10838  SDValue RetVal =
10839    DAG.getNode(ISD::AND, DL, MVT::i16,
10840                DAG.getNode(ISD::ADD, DL, MVT::i16,
10841                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10842                            DAG.getConstant(1, MVT::i16)),
10843                DAG.getConstant(3, MVT::i16));
10844
10845
10846  return DAG.getNode((VT.getSizeInBits() < 16 ?
10847                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10848}
10849
10850static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
10851  EVT VT = Op.getValueType();
10852  EVT OpVT = VT;
10853  unsigned NumBits = VT.getSizeInBits();
10854  DebugLoc dl = Op.getDebugLoc();
10855
10856  Op = Op.getOperand(0);
10857  if (VT == MVT::i8) {
10858    // Zero extend to i32 since there is not an i8 bsr.
10859    OpVT = MVT::i32;
10860    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10861  }
10862
10863  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10864  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10865  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10866
10867  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10868  SDValue Ops[] = {
10869    Op,
10870    DAG.getConstant(NumBits+NumBits-1, OpVT),
10871    DAG.getConstant(X86::COND_E, MVT::i8),
10872    Op.getValue(1)
10873  };
10874  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10875
10876  // Finally xor with NumBits-1.
10877  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10878
10879  if (VT == MVT::i8)
10880    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10881  return Op;
10882}
10883
10884static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
10885  EVT VT = Op.getValueType();
10886  EVT OpVT = VT;
10887  unsigned NumBits = VT.getSizeInBits();
10888  DebugLoc dl = Op.getDebugLoc();
10889
10890  Op = Op.getOperand(0);
10891  if (VT == MVT::i8) {
10892    // Zero extend to i32 since there is not an i8 bsr.
10893    OpVT = MVT::i32;
10894    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10895  }
10896
10897  // Issue a bsr (scan bits in reverse).
10898  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10899  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10900
10901  // And xor with NumBits-1.
10902  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10903
10904  if (VT == MVT::i8)
10905    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10906  return Op;
10907}
10908
10909static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
10910  EVT VT = Op.getValueType();
10911  unsigned NumBits = VT.getSizeInBits();
10912  DebugLoc dl = Op.getDebugLoc();
10913  Op = Op.getOperand(0);
10914
10915  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10916  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10917  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10918
10919  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10920  SDValue Ops[] = {
10921    Op,
10922    DAG.getConstant(NumBits, VT),
10923    DAG.getConstant(X86::COND_E, MVT::i8),
10924    Op.getValue(1)
10925  };
10926  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10927}
10928
10929// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10930// ones, and then concatenate the result back.
10931static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10932  EVT VT = Op.getValueType();
10933
10934  assert(VT.is256BitVector() && VT.isInteger() &&
10935         "Unsupported value type for operation");
10936
10937  unsigned NumElems = VT.getVectorNumElements();
10938  DebugLoc dl = Op.getDebugLoc();
10939
10940  // Extract the LHS vectors
10941  SDValue LHS = Op.getOperand(0);
10942  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10943  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10944
10945  // Extract the RHS vectors
10946  SDValue RHS = Op.getOperand(1);
10947  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10948  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10949
10950  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10951  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10952
10953  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10954                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10955                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10956}
10957
10958static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
10959  assert(Op.getValueType().is256BitVector() &&
10960         Op.getValueType().isInteger() &&
10961         "Only handle AVX 256-bit vector integer operation");
10962  return Lower256IntArith(Op, DAG);
10963}
10964
10965static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
10966  assert(Op.getValueType().is256BitVector() &&
10967         Op.getValueType().isInteger() &&
10968         "Only handle AVX 256-bit vector integer operation");
10969  return Lower256IntArith(Op, DAG);
10970}
10971
10972static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
10973                        SelectionDAG &DAG) {
10974  EVT VT = Op.getValueType();
10975
10976  // Decompose 256-bit ops into smaller 128-bit ops.
10977  if (VT.is256BitVector() && !Subtarget->hasInt256())
10978    return Lower256IntArith(Op, DAG);
10979
10980  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10981         "Only know how to lower V2I64/V4I64 multiply");
10982
10983  DebugLoc dl = Op.getDebugLoc();
10984
10985  //  Ahi = psrlqi(a, 32);
10986  //  Bhi = psrlqi(b, 32);
10987  //
10988  //  AloBlo = pmuludq(a, b);
10989  //  AloBhi = pmuludq(a, Bhi);
10990  //  AhiBlo = pmuludq(Ahi, b);
10991
10992  //  AloBhi = psllqi(AloBhi, 32);
10993  //  AhiBlo = psllqi(AhiBlo, 32);
10994  //  return AloBlo + AloBhi + AhiBlo;
10995
10996  SDValue A = Op.getOperand(0);
10997  SDValue B = Op.getOperand(1);
10998
10999  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
11000
11001  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
11002  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11003
11004  // Bit cast to 32-bit vectors for MULUDQ
11005  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11006  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11007  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11008  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11009  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11010
11011  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11012  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11013  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11014
11015  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11016  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11017
11018  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11019  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11020}
11021
11022SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11023
11024  EVT VT = Op.getValueType();
11025  DebugLoc dl = Op.getDebugLoc();
11026  SDValue R = Op.getOperand(0);
11027  SDValue Amt = Op.getOperand(1);
11028  LLVMContext *Context = DAG.getContext();
11029
11030  if (!Subtarget->hasSSE2())
11031    return SDValue();
11032
11033  // Optimize shl/srl/sra with constant shift amount.
11034  if (isSplatVector(Amt.getNode())) {
11035    SDValue SclrAmt = Amt->getOperand(0);
11036    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11037      uint64_t ShiftAmt = C->getZExtValue();
11038
11039      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11040          (Subtarget->hasInt256() &&
11041           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11042        if (Op.getOpcode() == ISD::SHL)
11043          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11044                             DAG.getConstant(ShiftAmt, MVT::i32));
11045        if (Op.getOpcode() == ISD::SRL)
11046          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11047                             DAG.getConstant(ShiftAmt, MVT::i32));
11048        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11049          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11050                             DAG.getConstant(ShiftAmt, MVT::i32));
11051      }
11052
11053      if (VT == MVT::v16i8) {
11054        if (Op.getOpcode() == ISD::SHL) {
11055          // Make a large shift.
11056          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11057                                    DAG.getConstant(ShiftAmt, MVT::i32));
11058          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11059          // Zero out the rightmost bits.
11060          SmallVector<SDValue, 16> V(16,
11061                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11062                                                     MVT::i8));
11063          return DAG.getNode(ISD::AND, dl, VT, SHL,
11064                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11065        }
11066        if (Op.getOpcode() == ISD::SRL) {
11067          // Make a large shift.
11068          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11069                                    DAG.getConstant(ShiftAmt, MVT::i32));
11070          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11071          // Zero out the leftmost bits.
11072          SmallVector<SDValue, 16> V(16,
11073                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11074                                                     MVT::i8));
11075          return DAG.getNode(ISD::AND, dl, VT, SRL,
11076                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11077        }
11078        if (Op.getOpcode() == ISD::SRA) {
11079          if (ShiftAmt == 7) {
11080            // R s>> 7  ===  R s< 0
11081            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11082            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11083          }
11084
11085          // R s>> a === ((R u>> a) ^ m) - m
11086          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11087          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11088                                                         MVT::i8));
11089          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11090          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11091          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11092          return Res;
11093        }
11094        llvm_unreachable("Unknown shift opcode.");
11095      }
11096
11097      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
11098        if (Op.getOpcode() == ISD::SHL) {
11099          // Make a large shift.
11100          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11101                                    DAG.getConstant(ShiftAmt, MVT::i32));
11102          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11103          // Zero out the rightmost bits.
11104          SmallVector<SDValue, 32> V(32,
11105                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11106                                                     MVT::i8));
11107          return DAG.getNode(ISD::AND, dl, VT, SHL,
11108                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11109        }
11110        if (Op.getOpcode() == ISD::SRL) {
11111          // Make a large shift.
11112          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11113                                    DAG.getConstant(ShiftAmt, MVT::i32));
11114          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11115          // Zero out the leftmost bits.
11116          SmallVector<SDValue, 32> V(32,
11117                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11118                                                     MVT::i8));
11119          return DAG.getNode(ISD::AND, dl, VT, SRL,
11120                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11121        }
11122        if (Op.getOpcode() == ISD::SRA) {
11123          if (ShiftAmt == 7) {
11124            // R s>> 7  ===  R s< 0
11125            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11126            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11127          }
11128
11129          // R s>> a === ((R u>> a) ^ m) - m
11130          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11131          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11132                                                         MVT::i8));
11133          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11134          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11135          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11136          return Res;
11137        }
11138        llvm_unreachable("Unknown shift opcode.");
11139      }
11140    }
11141  }
11142
11143  // Lower SHL with variable shift amount.
11144  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11145    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
11146                     DAG.getConstant(23, MVT::i32));
11147
11148    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
11149    Constant *C = ConstantDataVector::get(*Context, CV);
11150    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
11151    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11152                                 MachinePointerInfo::getConstantPool(),
11153                                 false, false, false, 16);
11154
11155    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
11156    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11157    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11158    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11159  }
11160  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11161    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11162
11163    // a = a << 5;
11164    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
11165                     DAG.getConstant(5, MVT::i32));
11166    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11167
11168    // Turn 'a' into a mask suitable for VSELECT
11169    SDValue VSelM = DAG.getConstant(0x80, VT);
11170    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11171    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11172
11173    SDValue CM1 = DAG.getConstant(0x0f, VT);
11174    SDValue CM2 = DAG.getConstant(0x3f, VT);
11175
11176    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11177    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11178    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11179                            DAG.getConstant(4, MVT::i32), DAG);
11180    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11181    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11182
11183    // a += a
11184    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11185    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11186    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11187
11188    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11189    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11190    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11191                            DAG.getConstant(2, MVT::i32), DAG);
11192    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11193    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11194
11195    // a += a
11196    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11197    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11198    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11199
11200    // return VSELECT(r, r+r, a);
11201    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11202                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11203    return R;
11204  }
11205
11206  // Decompose 256-bit shifts into smaller 128-bit shifts.
11207  if (VT.is256BitVector()) {
11208    unsigned NumElems = VT.getVectorNumElements();
11209    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11210    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11211
11212    // Extract the two vectors
11213    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11214    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11215
11216    // Recreate the shift amount vectors
11217    SDValue Amt1, Amt2;
11218    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11219      // Constant shift amount
11220      SmallVector<SDValue, 4> Amt1Csts;
11221      SmallVector<SDValue, 4> Amt2Csts;
11222      for (unsigned i = 0; i != NumElems/2; ++i)
11223        Amt1Csts.push_back(Amt->getOperand(i));
11224      for (unsigned i = NumElems/2; i != NumElems; ++i)
11225        Amt2Csts.push_back(Amt->getOperand(i));
11226
11227      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11228                                 &Amt1Csts[0], NumElems/2);
11229      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11230                                 &Amt2Csts[0], NumElems/2);
11231    } else {
11232      // Variable shift amount
11233      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11234      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11235    }
11236
11237    // Issue new vector shifts for the smaller types
11238    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11239    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11240
11241    // Concatenate the result back
11242    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11243  }
11244
11245  return SDValue();
11246}
11247
11248static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11249  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11250  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11251  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11252  // has only one use.
11253  SDNode *N = Op.getNode();
11254  SDValue LHS = N->getOperand(0);
11255  SDValue RHS = N->getOperand(1);
11256  unsigned BaseOp = 0;
11257  unsigned Cond = 0;
11258  DebugLoc DL = Op.getDebugLoc();
11259  switch (Op.getOpcode()) {
11260  default: llvm_unreachable("Unknown ovf instruction!");
11261  case ISD::SADDO:
11262    // A subtract of one will be selected as a INC. Note that INC doesn't
11263    // set CF, so we can't do this for UADDO.
11264    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11265      if (C->isOne()) {
11266        BaseOp = X86ISD::INC;
11267        Cond = X86::COND_O;
11268        break;
11269      }
11270    BaseOp = X86ISD::ADD;
11271    Cond = X86::COND_O;
11272    break;
11273  case ISD::UADDO:
11274    BaseOp = X86ISD::ADD;
11275    Cond = X86::COND_B;
11276    break;
11277  case ISD::SSUBO:
11278    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11279    // set CF, so we can't do this for USUBO.
11280    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11281      if (C->isOne()) {
11282        BaseOp = X86ISD::DEC;
11283        Cond = X86::COND_O;
11284        break;
11285      }
11286    BaseOp = X86ISD::SUB;
11287    Cond = X86::COND_O;
11288    break;
11289  case ISD::USUBO:
11290    BaseOp = X86ISD::SUB;
11291    Cond = X86::COND_B;
11292    break;
11293  case ISD::SMULO:
11294    BaseOp = X86ISD::SMUL;
11295    Cond = X86::COND_O;
11296    break;
11297  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11298    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11299                                 MVT::i32);
11300    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11301
11302    SDValue SetCC =
11303      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11304                  DAG.getConstant(X86::COND_O, MVT::i32),
11305                  SDValue(Sum.getNode(), 2));
11306
11307    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11308  }
11309  }
11310
11311  // Also sets EFLAGS.
11312  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11313  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11314
11315  SDValue SetCC =
11316    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11317                DAG.getConstant(Cond, MVT::i32),
11318                SDValue(Sum.getNode(), 1));
11319
11320  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11321}
11322
11323SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11324                                                  SelectionDAG &DAG) const {
11325  DebugLoc dl = Op.getDebugLoc();
11326  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11327  EVT VT = Op.getValueType();
11328
11329  if (!Subtarget->hasSSE2() || !VT.isVector())
11330    return SDValue();
11331
11332  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11333                      ExtraVT.getScalarType().getSizeInBits();
11334  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11335
11336  switch (VT.getSimpleVT().SimpleTy) {
11337    default: return SDValue();
11338    case MVT::v8i32:
11339    case MVT::v16i16:
11340      if (!Subtarget->hasFp256())
11341        return SDValue();
11342      if (!Subtarget->hasInt256()) {
11343        // needs to be split
11344        unsigned NumElems = VT.getVectorNumElements();
11345
11346        // Extract the LHS vectors
11347        SDValue LHS = Op.getOperand(0);
11348        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11349        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11350
11351        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11352        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11353
11354        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11355        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11356        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11357                                   ExtraNumElems/2);
11358        SDValue Extra = DAG.getValueType(ExtraVT);
11359
11360        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11361        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11362
11363        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11364      }
11365      // fall through
11366    case MVT::v4i32:
11367    case MVT::v8i16: {
11368      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11369                                         Op.getOperand(0), ShAmt, DAG);
11370      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11371    }
11372  }
11373}
11374
11375
11376static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11377                              SelectionDAG &DAG) {
11378  DebugLoc dl = Op.getDebugLoc();
11379
11380  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11381  // There isn't any reason to disable it if the target processor supports it.
11382  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11383    SDValue Chain = Op.getOperand(0);
11384    SDValue Zero = DAG.getConstant(0, MVT::i32);
11385    SDValue Ops[] = {
11386      DAG.getRegister(X86::ESP, MVT::i32), // Base
11387      DAG.getTargetConstant(1, MVT::i8),   // Scale
11388      DAG.getRegister(0, MVT::i32),        // Index
11389      DAG.getTargetConstant(0, MVT::i32),  // Disp
11390      DAG.getRegister(0, MVT::i32),        // Segment.
11391      Zero,
11392      Chain
11393    };
11394    SDNode *Res =
11395      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11396                          array_lengthof(Ops));
11397    return SDValue(Res, 0);
11398  }
11399
11400  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11401  if (!isDev)
11402    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11403
11404  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11405  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11406  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11407  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11408
11409  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11410  if (!Op1 && !Op2 && !Op3 && Op4)
11411    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11412
11413  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11414  if (Op1 && !Op2 && !Op3 && !Op4)
11415    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11416
11417  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11418  //           (MFENCE)>;
11419  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11420}
11421
11422static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11423                                 SelectionDAG &DAG) {
11424  DebugLoc dl = Op.getDebugLoc();
11425  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11426    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11427  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11428    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11429
11430  // The only fence that needs an instruction is a sequentially-consistent
11431  // cross-thread fence.
11432  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11433    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11434    // no-sse2). There isn't any reason to disable it if the target processor
11435    // supports it.
11436    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11437      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11438
11439    SDValue Chain = Op.getOperand(0);
11440    SDValue Zero = DAG.getConstant(0, MVT::i32);
11441    SDValue Ops[] = {
11442      DAG.getRegister(X86::ESP, MVT::i32), // Base
11443      DAG.getTargetConstant(1, MVT::i8),   // Scale
11444      DAG.getRegister(0, MVT::i32),        // Index
11445      DAG.getTargetConstant(0, MVT::i32),  // Disp
11446      DAG.getRegister(0, MVT::i32),        // Segment.
11447      Zero,
11448      Chain
11449    };
11450    SDNode *Res =
11451      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11452                         array_lengthof(Ops));
11453    return SDValue(Res, 0);
11454  }
11455
11456  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11457  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11458}
11459
11460
11461static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11462                             SelectionDAG &DAG) {
11463  EVT T = Op.getValueType();
11464  DebugLoc DL = Op.getDebugLoc();
11465  unsigned Reg = 0;
11466  unsigned size = 0;
11467  switch(T.getSimpleVT().SimpleTy) {
11468  default: llvm_unreachable("Invalid value type!");
11469  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11470  case MVT::i16: Reg = X86::AX;  size = 2; break;
11471  case MVT::i32: Reg = X86::EAX; size = 4; break;
11472  case MVT::i64:
11473    assert(Subtarget->is64Bit() && "Node not type legal!");
11474    Reg = X86::RAX; size = 8;
11475    break;
11476  }
11477  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11478                                    Op.getOperand(2), SDValue());
11479  SDValue Ops[] = { cpIn.getValue(0),
11480                    Op.getOperand(1),
11481                    Op.getOperand(3),
11482                    DAG.getTargetConstant(size, MVT::i8),
11483                    cpIn.getValue(1) };
11484  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11485  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11486  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11487                                           Ops, 5, T, MMO);
11488  SDValue cpOut =
11489    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11490  return cpOut;
11491}
11492
11493static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11494                                     SelectionDAG &DAG) {
11495  assert(Subtarget->is64Bit() && "Result not type legalized?");
11496  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11497  SDValue TheChain = Op.getOperand(0);
11498  DebugLoc dl = Op.getDebugLoc();
11499  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11500  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11501  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11502                                   rax.getValue(2));
11503  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11504                            DAG.getConstant(32, MVT::i8));
11505  SDValue Ops[] = {
11506    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11507    rdx.getValue(1)
11508  };
11509  return DAG.getMergeValues(Ops, 2, dl);
11510}
11511
11512SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11513  EVT SrcVT = Op.getOperand(0).getValueType();
11514  EVT DstVT = Op.getValueType();
11515  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11516         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11517  assert((DstVT == MVT::i64 ||
11518          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11519         "Unexpected custom BITCAST");
11520  // i64 <=> MMX conversions are Legal.
11521  if (SrcVT==MVT::i64 && DstVT.isVector())
11522    return Op;
11523  if (DstVT==MVT::i64 && SrcVT.isVector())
11524    return Op;
11525  // MMX <=> MMX conversions are Legal.
11526  if (SrcVT.isVector() && DstVT.isVector())
11527    return Op;
11528  // All other conversions need to be expanded.
11529  return SDValue();
11530}
11531
11532static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11533  SDNode *Node = Op.getNode();
11534  DebugLoc dl = Node->getDebugLoc();
11535  EVT T = Node->getValueType(0);
11536  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11537                              DAG.getConstant(0, T), Node->getOperand(2));
11538  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11539                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11540                       Node->getOperand(0),
11541                       Node->getOperand(1), negOp,
11542                       cast<AtomicSDNode>(Node)->getSrcValue(),
11543                       cast<AtomicSDNode>(Node)->getAlignment(),
11544                       cast<AtomicSDNode>(Node)->getOrdering(),
11545                       cast<AtomicSDNode>(Node)->getSynchScope());
11546}
11547
11548static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11549  SDNode *Node = Op.getNode();
11550  DebugLoc dl = Node->getDebugLoc();
11551  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11552
11553  // Convert seq_cst store -> xchg
11554  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11555  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11556  //        (The only way to get a 16-byte store is cmpxchg16b)
11557  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11558  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11559      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11560    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11561                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11562                                 Node->getOperand(0),
11563                                 Node->getOperand(1), Node->getOperand(2),
11564                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11565                                 cast<AtomicSDNode>(Node)->getOrdering(),
11566                                 cast<AtomicSDNode>(Node)->getSynchScope());
11567    return Swap.getValue(1);
11568  }
11569  // Other atomic stores have a simple pattern.
11570  return Op;
11571}
11572
11573static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11574  EVT VT = Op.getNode()->getValueType(0);
11575
11576  // Let legalize expand this if it isn't a legal type yet.
11577  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11578    return SDValue();
11579
11580  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11581
11582  unsigned Opc;
11583  bool ExtraOp = false;
11584  switch (Op.getOpcode()) {
11585  default: llvm_unreachable("Invalid code");
11586  case ISD::ADDC: Opc = X86ISD::ADD; break;
11587  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11588  case ISD::SUBC: Opc = X86ISD::SUB; break;
11589  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11590  }
11591
11592  if (!ExtraOp)
11593    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11594                       Op.getOperand(1));
11595  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11596                     Op.getOperand(1), Op.getOperand(2));
11597}
11598
11599/// LowerOperation - Provide custom lowering hooks for some operations.
11600///
11601SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11602  switch (Op.getOpcode()) {
11603  default: llvm_unreachable("Should not custom lower this!");
11604  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11605  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
11606  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
11607  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
11608  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11609  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11610  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11611  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11612  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11613  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11614  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11615  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
11616  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
11617  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11618  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11619  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11620  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11621  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11622  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11623  case ISD::SHL_PARTS:
11624  case ISD::SRA_PARTS:
11625  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11626  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11627  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11628  case ISD::TRUNCATE:           return lowerTRUNCATE(Op, DAG);
11629  case ISD::ZERO_EXTEND:        return lowerZERO_EXTEND(Op, DAG);
11630  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11631  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11632  case ISD::FP_EXTEND:          return lowerFP_EXTEND(Op, DAG);
11633  case ISD::FABS:               return LowerFABS(Op, DAG);
11634  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11635  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11636  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11637  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11638  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11639  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11640  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11641  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11642  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11643  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
11644  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11645  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11646  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11647  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11648  case ISD::FRAME_TO_ARGS_OFFSET:
11649                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11650  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11651  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11652  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11653  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11654  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11655  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11656  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11657  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11658  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11659  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11660  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
11661  case ISD::SRA:
11662  case ISD::SRL:
11663  case ISD::SHL:                return LowerShift(Op, DAG);
11664  case ISD::SADDO:
11665  case ISD::UADDO:
11666  case ISD::SSUBO:
11667  case ISD::USUBO:
11668  case ISD::SMULO:
11669  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11670  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
11671  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11672  case ISD::ADDC:
11673  case ISD::ADDE:
11674  case ISD::SUBC:
11675  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11676  case ISD::ADD:                return LowerADD(Op, DAG);
11677  case ISD::SUB:                return LowerSUB(Op, DAG);
11678  }
11679}
11680
11681static void ReplaceATOMIC_LOAD(SDNode *Node,
11682                                  SmallVectorImpl<SDValue> &Results,
11683                                  SelectionDAG &DAG) {
11684  DebugLoc dl = Node->getDebugLoc();
11685  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11686
11687  // Convert wide load -> cmpxchg8b/cmpxchg16b
11688  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11689  //        (The only way to get a 16-byte load is cmpxchg16b)
11690  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11691  SDValue Zero = DAG.getConstant(0, VT);
11692  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11693                               Node->getOperand(0),
11694                               Node->getOperand(1), Zero, Zero,
11695                               cast<AtomicSDNode>(Node)->getMemOperand(),
11696                               cast<AtomicSDNode>(Node)->getOrdering(),
11697                               cast<AtomicSDNode>(Node)->getSynchScope());
11698  Results.push_back(Swap.getValue(0));
11699  Results.push_back(Swap.getValue(1));
11700}
11701
11702static void
11703ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11704                        SelectionDAG &DAG, unsigned NewOp) {
11705  DebugLoc dl = Node->getDebugLoc();
11706  assert (Node->getValueType(0) == MVT::i64 &&
11707          "Only know how to expand i64 atomics");
11708
11709  SDValue Chain = Node->getOperand(0);
11710  SDValue In1 = Node->getOperand(1);
11711  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11712                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11713  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11714                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11715  SDValue Ops[] = { Chain, In1, In2L, In2H };
11716  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11717  SDValue Result =
11718    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11719                            cast<MemSDNode>(Node)->getMemOperand());
11720  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11721  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11722  Results.push_back(Result.getValue(2));
11723}
11724
11725/// ReplaceNodeResults - Replace a node with an illegal result type
11726/// with a new node built out of custom code.
11727void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11728                                           SmallVectorImpl<SDValue>&Results,
11729                                           SelectionDAG &DAG) const {
11730  DebugLoc dl = N->getDebugLoc();
11731  switch (N->getOpcode()) {
11732  default:
11733    llvm_unreachable("Do not know how to custom type legalize this operation!");
11734  case ISD::SIGN_EXTEND_INREG:
11735  case ISD::ADDC:
11736  case ISD::ADDE:
11737  case ISD::SUBC:
11738  case ISD::SUBE:
11739    // We don't want to expand or promote these.
11740    return;
11741  case ISD::FP_TO_SINT:
11742  case ISD::FP_TO_UINT: {
11743    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11744
11745    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11746      return;
11747
11748    std::pair<SDValue,SDValue> Vals =
11749        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11750    SDValue FIST = Vals.first, StackSlot = Vals.second;
11751    if (FIST.getNode() != 0) {
11752      EVT VT = N->getValueType(0);
11753      // Return a load from the stack slot.
11754      if (StackSlot.getNode() != 0)
11755        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11756                                      MachinePointerInfo(),
11757                                      false, false, false, 0));
11758      else
11759        Results.push_back(FIST);
11760    }
11761    return;
11762  }
11763  case ISD::UINT_TO_FP: {
11764    if (N->getOperand(0).getValueType() != MVT::v2i32 &&
11765        N->getValueType(0) != MVT::v2f32)
11766      return;
11767    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
11768                                 N->getOperand(0));
11769    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
11770                                     MVT::f64);
11771    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
11772    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
11773                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
11774    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
11775    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
11776    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
11777    return;
11778  }
11779  case ISD::FP_ROUND: {
11780    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
11781    Results.push_back(V);
11782    return;
11783  }
11784  case ISD::READCYCLECOUNTER: {
11785    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11786    SDValue TheChain = N->getOperand(0);
11787    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11788    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11789                                     rd.getValue(1));
11790    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11791                                     eax.getValue(2));
11792    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11793    SDValue Ops[] = { eax, edx };
11794    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11795    Results.push_back(edx.getValue(1));
11796    return;
11797  }
11798  case ISD::ATOMIC_CMP_SWAP: {
11799    EVT T = N->getValueType(0);
11800    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11801    bool Regs64bit = T == MVT::i128;
11802    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11803    SDValue cpInL, cpInH;
11804    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11805                        DAG.getConstant(0, HalfT));
11806    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11807                        DAG.getConstant(1, HalfT));
11808    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11809                             Regs64bit ? X86::RAX : X86::EAX,
11810                             cpInL, SDValue());
11811    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11812                             Regs64bit ? X86::RDX : X86::EDX,
11813                             cpInH, cpInL.getValue(1));
11814    SDValue swapInL, swapInH;
11815    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11816                          DAG.getConstant(0, HalfT));
11817    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11818                          DAG.getConstant(1, HalfT));
11819    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11820                               Regs64bit ? X86::RBX : X86::EBX,
11821                               swapInL, cpInH.getValue(1));
11822    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11823                               Regs64bit ? X86::RCX : X86::ECX,
11824                               swapInH, swapInL.getValue(1));
11825    SDValue Ops[] = { swapInH.getValue(0),
11826                      N->getOperand(1),
11827                      swapInH.getValue(1) };
11828    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11829    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11830    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11831                                  X86ISD::LCMPXCHG8_DAG;
11832    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11833                                             Ops, 3, T, MMO);
11834    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11835                                        Regs64bit ? X86::RAX : X86::EAX,
11836                                        HalfT, Result.getValue(1));
11837    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11838                                        Regs64bit ? X86::RDX : X86::EDX,
11839                                        HalfT, cpOutL.getValue(2));
11840    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11841    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11842    Results.push_back(cpOutH.getValue(1));
11843    return;
11844  }
11845  case ISD::ATOMIC_LOAD_ADD:
11846  case ISD::ATOMIC_LOAD_AND:
11847  case ISD::ATOMIC_LOAD_NAND:
11848  case ISD::ATOMIC_LOAD_OR:
11849  case ISD::ATOMIC_LOAD_SUB:
11850  case ISD::ATOMIC_LOAD_XOR:
11851  case ISD::ATOMIC_LOAD_MAX:
11852  case ISD::ATOMIC_LOAD_MIN:
11853  case ISD::ATOMIC_LOAD_UMAX:
11854  case ISD::ATOMIC_LOAD_UMIN:
11855  case ISD::ATOMIC_SWAP: {
11856    unsigned Opc;
11857    switch (N->getOpcode()) {
11858    default: llvm_unreachable("Unexpected opcode");
11859    case ISD::ATOMIC_LOAD_ADD:
11860      Opc = X86ISD::ATOMADD64_DAG;
11861      break;
11862    case ISD::ATOMIC_LOAD_AND:
11863      Opc = X86ISD::ATOMAND64_DAG;
11864      break;
11865    case ISD::ATOMIC_LOAD_NAND:
11866      Opc = X86ISD::ATOMNAND64_DAG;
11867      break;
11868    case ISD::ATOMIC_LOAD_OR:
11869      Opc = X86ISD::ATOMOR64_DAG;
11870      break;
11871    case ISD::ATOMIC_LOAD_SUB:
11872      Opc = X86ISD::ATOMSUB64_DAG;
11873      break;
11874    case ISD::ATOMIC_LOAD_XOR:
11875      Opc = X86ISD::ATOMXOR64_DAG;
11876      break;
11877    case ISD::ATOMIC_LOAD_MAX:
11878      Opc = X86ISD::ATOMMAX64_DAG;
11879      break;
11880    case ISD::ATOMIC_LOAD_MIN:
11881      Opc = X86ISD::ATOMMIN64_DAG;
11882      break;
11883    case ISD::ATOMIC_LOAD_UMAX:
11884      Opc = X86ISD::ATOMUMAX64_DAG;
11885      break;
11886    case ISD::ATOMIC_LOAD_UMIN:
11887      Opc = X86ISD::ATOMUMIN64_DAG;
11888      break;
11889    case ISD::ATOMIC_SWAP:
11890      Opc = X86ISD::ATOMSWAP64_DAG;
11891      break;
11892    }
11893    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11894    return;
11895  }
11896  case ISD::ATOMIC_LOAD:
11897    ReplaceATOMIC_LOAD(N, Results, DAG);
11898  }
11899}
11900
11901const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11902  switch (Opcode) {
11903  default: return NULL;
11904  case X86ISD::BSF:                return "X86ISD::BSF";
11905  case X86ISD::BSR:                return "X86ISD::BSR";
11906  case X86ISD::SHLD:               return "X86ISD::SHLD";
11907  case X86ISD::SHRD:               return "X86ISD::SHRD";
11908  case X86ISD::FAND:               return "X86ISD::FAND";
11909  case X86ISD::FOR:                return "X86ISD::FOR";
11910  case X86ISD::FXOR:               return "X86ISD::FXOR";
11911  case X86ISD::FSRL:               return "X86ISD::FSRL";
11912  case X86ISD::FILD:               return "X86ISD::FILD";
11913  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11914  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11915  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11916  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11917  case X86ISD::FLD:                return "X86ISD::FLD";
11918  case X86ISD::FST:                return "X86ISD::FST";
11919  case X86ISD::CALL:               return "X86ISD::CALL";
11920  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11921  case X86ISD::BT:                 return "X86ISD::BT";
11922  case X86ISD::CMP:                return "X86ISD::CMP";
11923  case X86ISD::COMI:               return "X86ISD::COMI";
11924  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11925  case X86ISD::SETCC:              return "X86ISD::SETCC";
11926  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11927  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11928  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11929  case X86ISD::CMOV:               return "X86ISD::CMOV";
11930  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11931  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11932  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11933  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11934  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11935  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11936  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11937  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11938  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11939  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11940  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11941  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11942  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11943  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11944  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11945  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11946  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
11947  case X86ISD::HADD:               return "X86ISD::HADD";
11948  case X86ISD::HSUB:               return "X86ISD::HSUB";
11949  case X86ISD::FHADD:              return "X86ISD::FHADD";
11950  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11951  case X86ISD::FMAX:               return "X86ISD::FMAX";
11952  case X86ISD::FMIN:               return "X86ISD::FMIN";
11953  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11954  case X86ISD::FMINC:              return "X86ISD::FMINC";
11955  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11956  case X86ISD::FRCP:               return "X86ISD::FRCP";
11957  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11958  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11959  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11960  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
11961  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
11962  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11963  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11964  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11965  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11966  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11967  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11968  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11969  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11970  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11971  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11972  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11973  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11974  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11975  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11976  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11977  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
11978  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
11979  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11980  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
11981  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11982  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11983  case X86ISD::VSHL:               return "X86ISD::VSHL";
11984  case X86ISD::VSRL:               return "X86ISD::VSRL";
11985  case X86ISD::VSRA:               return "X86ISD::VSRA";
11986  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11987  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11988  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11989  case X86ISD::CMPP:               return "X86ISD::CMPP";
11990  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11991  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11992  case X86ISD::ADD:                return "X86ISD::ADD";
11993  case X86ISD::SUB:                return "X86ISD::SUB";
11994  case X86ISD::ADC:                return "X86ISD::ADC";
11995  case X86ISD::SBB:                return "X86ISD::SBB";
11996  case X86ISD::SMUL:               return "X86ISD::SMUL";
11997  case X86ISD::UMUL:               return "X86ISD::UMUL";
11998  case X86ISD::INC:                return "X86ISD::INC";
11999  case X86ISD::DEC:                return "X86ISD::DEC";
12000  case X86ISD::OR:                 return "X86ISD::OR";
12001  case X86ISD::XOR:                return "X86ISD::XOR";
12002  case X86ISD::AND:                return "X86ISD::AND";
12003  case X86ISD::ANDN:               return "X86ISD::ANDN";
12004  case X86ISD::BLSI:               return "X86ISD::BLSI";
12005  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12006  case X86ISD::BLSR:               return "X86ISD::BLSR";
12007  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12008  case X86ISD::PTEST:              return "X86ISD::PTEST";
12009  case X86ISD::TESTP:              return "X86ISD::TESTP";
12010  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
12011  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12012  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12013  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12014  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12015  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12016  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12017  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12018  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12019  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12020  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12021  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12022  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12023  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12024  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12025  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12026  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12027  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12028  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12029  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12030  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12031  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12032  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12033  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12034  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12035  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12036  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12037  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12038  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12039  case X86ISD::SAHF:               return "X86ISD::SAHF";
12040  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12041  case X86ISD::FMADD:              return "X86ISD::FMADD";
12042  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12043  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12044  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12045  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12046  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12047  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
12048  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
12049  }
12050}
12051
12052// isLegalAddressingMode - Return true if the addressing mode represented
12053// by AM is legal for this target, for a load/store of the specified type.
12054bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12055                                              Type *Ty) const {
12056  // X86 supports extremely general addressing modes.
12057  CodeModel::Model M = getTargetMachine().getCodeModel();
12058  Reloc::Model R = getTargetMachine().getRelocationModel();
12059
12060  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12061  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12062    return false;
12063
12064  if (AM.BaseGV) {
12065    unsigned GVFlags =
12066      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12067
12068    // If a reference to this global requires an extra load, we can't fold it.
12069    if (isGlobalStubReference(GVFlags))
12070      return false;
12071
12072    // If BaseGV requires a register for the PIC base, we cannot also have a
12073    // BaseReg specified.
12074    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12075      return false;
12076
12077    // If lower 4G is not available, then we must use rip-relative addressing.
12078    if ((M != CodeModel::Small || R != Reloc::Static) &&
12079        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12080      return false;
12081  }
12082
12083  switch (AM.Scale) {
12084  case 0:
12085  case 1:
12086  case 2:
12087  case 4:
12088  case 8:
12089    // These scales always work.
12090    break;
12091  case 3:
12092  case 5:
12093  case 9:
12094    // These scales are formed with basereg+scalereg.  Only accept if there is
12095    // no basereg yet.
12096    if (AM.HasBaseReg)
12097      return false;
12098    break;
12099  default:  // Other stuff never works.
12100    return false;
12101  }
12102
12103  return true;
12104}
12105
12106
12107bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12108  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12109    return false;
12110  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12111  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12112  if (NumBits1 <= NumBits2)
12113    return false;
12114  return true;
12115}
12116
12117bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12118  return Imm == (int32_t)Imm;
12119}
12120
12121bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12122  // Can also use sub to handle negated immediates.
12123  return Imm == (int32_t)Imm;
12124}
12125
12126bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12127  if (!VT1.isInteger() || !VT2.isInteger())
12128    return false;
12129  unsigned NumBits1 = VT1.getSizeInBits();
12130  unsigned NumBits2 = VT2.getSizeInBits();
12131  if (NumBits1 <= NumBits2)
12132    return false;
12133  return true;
12134}
12135
12136bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12137  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12138  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12139}
12140
12141bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12142  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12143  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12144}
12145
12146bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
12147  EVT VT1 = Val.getValueType();
12148  if (isZExtFree(VT1, VT2))
12149    return true;
12150
12151  if (Val.getOpcode() != ISD::LOAD)
12152    return false;
12153
12154  if (!VT1.isSimple() || !VT1.isInteger() ||
12155      !VT2.isSimple() || !VT2.isInteger())
12156    return false;
12157
12158  switch (VT1.getSimpleVT().SimpleTy) {
12159  default: break;
12160  case MVT::i8:
12161  case MVT::i16:
12162  case MVT::i32:
12163    // X86 has 8, 16, and 32-bit zero-extending loads.
12164    return true;
12165  }
12166
12167  return false;
12168}
12169
12170bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12171  // i16 instructions are longer (0x66 prefix) and potentially slower.
12172  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12173}
12174
12175/// isShuffleMaskLegal - Targets can use this to indicate that they only
12176/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12177/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12178/// are assumed to be legal.
12179bool
12180X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12181                                      EVT VT) const {
12182  // Very little shuffling can be done for 64-bit vectors right now.
12183  if (VT.getSizeInBits() == 64)
12184    return false;
12185
12186  // FIXME: pshufb, blends, shifts.
12187  return (VT.getVectorNumElements() == 2 ||
12188          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12189          isMOVLMask(M, VT) ||
12190          isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
12191          isPSHUFDMask(M, VT) ||
12192          isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
12193          isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
12194          isPALIGNRMask(M, VT, Subtarget) ||
12195          isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
12196          isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
12197          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
12198          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
12199}
12200
12201bool
12202X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12203                                          EVT VT) const {
12204  unsigned NumElts = VT.getVectorNumElements();
12205  // FIXME: This collection of masks seems suspect.
12206  if (NumElts == 2)
12207    return true;
12208  if (NumElts == 4 && VT.is128BitVector()) {
12209    return (isMOVLMask(Mask, VT)  ||
12210            isCommutedMOVLMask(Mask, VT, true) ||
12211            isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
12212            isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
12213  }
12214  return false;
12215}
12216
12217//===----------------------------------------------------------------------===//
12218//                           X86 Scheduler Hooks
12219//===----------------------------------------------------------------------===//
12220
12221/// Utility function to emit xbegin specifying the start of an RTM region.
12222static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
12223                                     const TargetInstrInfo *TII) {
12224  DebugLoc DL = MI->getDebugLoc();
12225
12226  const BasicBlock *BB = MBB->getBasicBlock();
12227  MachineFunction::iterator I = MBB;
12228  ++I;
12229
12230  // For the v = xbegin(), we generate
12231  //
12232  // thisMBB:
12233  //  xbegin sinkMBB
12234  //
12235  // mainMBB:
12236  //  eax = -1
12237  //
12238  // sinkMBB:
12239  //  v = eax
12240
12241  MachineBasicBlock *thisMBB = MBB;
12242  MachineFunction *MF = MBB->getParent();
12243  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12244  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12245  MF->insert(I, mainMBB);
12246  MF->insert(I, sinkMBB);
12247
12248  // Transfer the remainder of BB and its successor edges to sinkMBB.
12249  sinkMBB->splice(sinkMBB->begin(), MBB,
12250                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12251  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12252
12253  // thisMBB:
12254  //  xbegin sinkMBB
12255  //  # fallthrough to mainMBB
12256  //  # abortion to sinkMBB
12257  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
12258  thisMBB->addSuccessor(mainMBB);
12259  thisMBB->addSuccessor(sinkMBB);
12260
12261  // mainMBB:
12262  //  EAX = -1
12263  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
12264  mainMBB->addSuccessor(sinkMBB);
12265
12266  // sinkMBB:
12267  // EAX is live into the sinkMBB
12268  sinkMBB->addLiveIn(X86::EAX);
12269  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12270          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12271    .addReg(X86::EAX);
12272
12273  MI->eraseFromParent();
12274  return sinkMBB;
12275}
12276
12277// Get CMPXCHG opcode for the specified data type.
12278static unsigned getCmpXChgOpcode(EVT VT) {
12279  switch (VT.getSimpleVT().SimpleTy) {
12280  case MVT::i8:  return X86::LCMPXCHG8;
12281  case MVT::i16: return X86::LCMPXCHG16;
12282  case MVT::i32: return X86::LCMPXCHG32;
12283  case MVT::i64: return X86::LCMPXCHG64;
12284  default:
12285    break;
12286  }
12287  llvm_unreachable("Invalid operand size!");
12288}
12289
12290// Get LOAD opcode for the specified data type.
12291static unsigned getLoadOpcode(EVT VT) {
12292  switch (VT.getSimpleVT().SimpleTy) {
12293  case MVT::i8:  return X86::MOV8rm;
12294  case MVT::i16: return X86::MOV16rm;
12295  case MVT::i32: return X86::MOV32rm;
12296  case MVT::i64: return X86::MOV64rm;
12297  default:
12298    break;
12299  }
12300  llvm_unreachable("Invalid operand size!");
12301}
12302
12303// Get opcode of the non-atomic one from the specified atomic instruction.
12304static unsigned getNonAtomicOpcode(unsigned Opc) {
12305  switch (Opc) {
12306  case X86::ATOMAND8:  return X86::AND8rr;
12307  case X86::ATOMAND16: return X86::AND16rr;
12308  case X86::ATOMAND32: return X86::AND32rr;
12309  case X86::ATOMAND64: return X86::AND64rr;
12310  case X86::ATOMOR8:   return X86::OR8rr;
12311  case X86::ATOMOR16:  return X86::OR16rr;
12312  case X86::ATOMOR32:  return X86::OR32rr;
12313  case X86::ATOMOR64:  return X86::OR64rr;
12314  case X86::ATOMXOR8:  return X86::XOR8rr;
12315  case X86::ATOMXOR16: return X86::XOR16rr;
12316  case X86::ATOMXOR32: return X86::XOR32rr;
12317  case X86::ATOMXOR64: return X86::XOR64rr;
12318  }
12319  llvm_unreachable("Unhandled atomic-load-op opcode!");
12320}
12321
12322// Get opcode of the non-atomic one from the specified atomic instruction with
12323// extra opcode.
12324static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12325                                               unsigned &ExtraOpc) {
12326  switch (Opc) {
12327  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12328  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12329  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12330  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12331  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12332  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12333  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12334  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12335  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12336  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12337  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12338  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12339  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12340  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12341  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12342  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12343  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12344  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12345  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12346  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12347  }
12348  llvm_unreachable("Unhandled atomic-load-op opcode!");
12349}
12350
12351// Get opcode of the non-atomic one from the specified atomic instruction for
12352// 64-bit data type on 32-bit target.
12353static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12354  switch (Opc) {
12355  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12356  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12357  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12358  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12359  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12360  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12361  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12362  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12363  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12364  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12365  }
12366  llvm_unreachable("Unhandled atomic-load-op opcode!");
12367}
12368
12369// Get opcode of the non-atomic one from the specified atomic instruction for
12370// 64-bit data type on 32-bit target with extra opcode.
12371static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12372                                                   unsigned &HiOpc,
12373                                                   unsigned &ExtraOpc) {
12374  switch (Opc) {
12375  case X86::ATOMNAND6432:
12376    ExtraOpc = X86::NOT32r;
12377    HiOpc = X86::AND32rr;
12378    return X86::AND32rr;
12379  }
12380  llvm_unreachable("Unhandled atomic-load-op opcode!");
12381}
12382
12383// Get pseudo CMOV opcode from the specified data type.
12384static unsigned getPseudoCMOVOpc(EVT VT) {
12385  switch (VT.getSimpleVT().SimpleTy) {
12386  case MVT::i8:  return X86::CMOV_GR8;
12387  case MVT::i16: return X86::CMOV_GR16;
12388  case MVT::i32: return X86::CMOV_GR32;
12389  default:
12390    break;
12391  }
12392  llvm_unreachable("Unknown CMOV opcode!");
12393}
12394
12395// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12396// They will be translated into a spin-loop or compare-exchange loop from
12397//
12398//    ...
12399//    dst = atomic-fetch-op MI.addr, MI.val
12400//    ...
12401//
12402// to
12403//
12404//    ...
12405//    EAX = LOAD MI.addr
12406// loop:
12407//    t1 = OP MI.val, EAX
12408//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12409//    JNE loop
12410// sink:
12411//    dst = EAX
12412//    ...
12413MachineBasicBlock *
12414X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12415                                       MachineBasicBlock *MBB) const {
12416  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12417  DebugLoc DL = MI->getDebugLoc();
12418
12419  MachineFunction *MF = MBB->getParent();
12420  MachineRegisterInfo &MRI = MF->getRegInfo();
12421
12422  const BasicBlock *BB = MBB->getBasicBlock();
12423  MachineFunction::iterator I = MBB;
12424  ++I;
12425
12426  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12427         "Unexpected number of operands");
12428
12429  assert(MI->hasOneMemOperand() &&
12430         "Expected atomic-load-op to have one memoperand");
12431
12432  // Memory Reference
12433  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12434  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12435
12436  unsigned DstReg, SrcReg;
12437  unsigned MemOpndSlot;
12438
12439  unsigned CurOp = 0;
12440
12441  DstReg = MI->getOperand(CurOp++).getReg();
12442  MemOpndSlot = CurOp;
12443  CurOp += X86::AddrNumOperands;
12444  SrcReg = MI->getOperand(CurOp++).getReg();
12445
12446  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12447  MVT::SimpleValueType VT = *RC->vt_begin();
12448  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12449
12450  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12451  unsigned LOADOpc = getLoadOpcode(VT);
12452
12453  // For the atomic load-arith operator, we generate
12454  //
12455  //  thisMBB:
12456  //    EAX = LOAD [MI.addr]
12457  //  mainMBB:
12458  //    t1 = OP MI.val, EAX
12459  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12460  //    JNE mainMBB
12461  //  sinkMBB:
12462
12463  MachineBasicBlock *thisMBB = MBB;
12464  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12465  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12466  MF->insert(I, mainMBB);
12467  MF->insert(I, sinkMBB);
12468
12469  MachineInstrBuilder MIB;
12470
12471  // Transfer the remainder of BB and its successor edges to sinkMBB.
12472  sinkMBB->splice(sinkMBB->begin(), MBB,
12473                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12474  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12475
12476  // thisMBB:
12477  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12478  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12479    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12480  MIB.setMemRefs(MMOBegin, MMOEnd);
12481
12482  thisMBB->addSuccessor(mainMBB);
12483
12484  // mainMBB:
12485  MachineBasicBlock *origMainMBB = mainMBB;
12486  mainMBB->addLiveIn(AccPhyReg);
12487
12488  // Copy AccPhyReg as it is used more than once.
12489  unsigned AccReg = MRI.createVirtualRegister(RC);
12490  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12491    .addReg(AccPhyReg);
12492
12493  unsigned t1 = MRI.createVirtualRegister(RC);
12494  unsigned Opc = MI->getOpcode();
12495  switch (Opc) {
12496  default:
12497    llvm_unreachable("Unhandled atomic-load-op opcode!");
12498  case X86::ATOMAND8:
12499  case X86::ATOMAND16:
12500  case X86::ATOMAND32:
12501  case X86::ATOMAND64:
12502  case X86::ATOMOR8:
12503  case X86::ATOMOR16:
12504  case X86::ATOMOR32:
12505  case X86::ATOMOR64:
12506  case X86::ATOMXOR8:
12507  case X86::ATOMXOR16:
12508  case X86::ATOMXOR32:
12509  case X86::ATOMXOR64: {
12510    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12511    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12512      .addReg(AccReg);
12513    break;
12514  }
12515  case X86::ATOMNAND8:
12516  case X86::ATOMNAND16:
12517  case X86::ATOMNAND32:
12518  case X86::ATOMNAND64: {
12519    unsigned t2 = MRI.createVirtualRegister(RC);
12520    unsigned NOTOpc;
12521    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12522    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12523      .addReg(AccReg);
12524    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12525    break;
12526  }
12527  case X86::ATOMMAX8:
12528  case X86::ATOMMAX16:
12529  case X86::ATOMMAX32:
12530  case X86::ATOMMAX64:
12531  case X86::ATOMMIN8:
12532  case X86::ATOMMIN16:
12533  case X86::ATOMMIN32:
12534  case X86::ATOMMIN64:
12535  case X86::ATOMUMAX8:
12536  case X86::ATOMUMAX16:
12537  case X86::ATOMUMAX32:
12538  case X86::ATOMUMAX64:
12539  case X86::ATOMUMIN8:
12540  case X86::ATOMUMIN16:
12541  case X86::ATOMUMIN32:
12542  case X86::ATOMUMIN64: {
12543    unsigned CMPOpc;
12544    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12545
12546    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12547      .addReg(SrcReg)
12548      .addReg(AccReg);
12549
12550    if (Subtarget->hasCMov()) {
12551      if (VT != MVT::i8) {
12552        // Native support
12553        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12554          .addReg(SrcReg)
12555          .addReg(AccReg);
12556      } else {
12557        // Promote i8 to i32 to use CMOV32
12558        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12559        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12560        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12561        unsigned t2 = MRI.createVirtualRegister(RC32);
12562
12563        unsigned Undef = MRI.createVirtualRegister(RC32);
12564        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12565
12566        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12567          .addReg(Undef)
12568          .addReg(SrcReg)
12569          .addImm(X86::sub_8bit);
12570        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12571          .addReg(Undef)
12572          .addReg(AccReg)
12573          .addImm(X86::sub_8bit);
12574
12575        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12576          .addReg(SrcReg32)
12577          .addReg(AccReg32);
12578
12579        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12580          .addReg(t2, 0, X86::sub_8bit);
12581      }
12582    } else {
12583      // Use pseudo select and lower them.
12584      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12585             "Invalid atomic-load-op transformation!");
12586      unsigned SelOpc = getPseudoCMOVOpc(VT);
12587      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12588      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12589      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12590              .addReg(SrcReg).addReg(AccReg)
12591              .addImm(CC);
12592      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12593    }
12594    break;
12595  }
12596  }
12597
12598  // Copy AccPhyReg back from virtual register.
12599  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
12600    .addReg(AccReg);
12601
12602  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12603  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12604    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12605  MIB.addReg(t1);
12606  MIB.setMemRefs(MMOBegin, MMOEnd);
12607
12608  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12609
12610  mainMBB->addSuccessor(origMainMBB);
12611  mainMBB->addSuccessor(sinkMBB);
12612
12613  // sinkMBB:
12614  sinkMBB->addLiveIn(AccPhyReg);
12615
12616  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12617          TII->get(TargetOpcode::COPY), DstReg)
12618    .addReg(AccPhyReg);
12619
12620  MI->eraseFromParent();
12621  return sinkMBB;
12622}
12623
12624// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
12625// instructions. They will be translated into a spin-loop or compare-exchange
12626// loop from
12627//
12628//    ...
12629//    dst = atomic-fetch-op MI.addr, MI.val
12630//    ...
12631//
12632// to
12633//
12634//    ...
12635//    EAX = LOAD [MI.addr + 0]
12636//    EDX = LOAD [MI.addr + 4]
12637// loop:
12638//    EBX = OP MI.val.lo, EAX
12639//    ECX = OP MI.val.hi, EDX
12640//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12641//    JNE loop
12642// sink:
12643//    dst = EDX:EAX
12644//    ...
12645MachineBasicBlock *
12646X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
12647                                           MachineBasicBlock *MBB) const {
12648  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12649  DebugLoc DL = MI->getDebugLoc();
12650
12651  MachineFunction *MF = MBB->getParent();
12652  MachineRegisterInfo &MRI = MF->getRegInfo();
12653
12654  const BasicBlock *BB = MBB->getBasicBlock();
12655  MachineFunction::iterator I = MBB;
12656  ++I;
12657
12658  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12659         "Unexpected number of operands");
12660
12661  assert(MI->hasOneMemOperand() &&
12662         "Expected atomic-load-op32 to have one memoperand");
12663
12664  // Memory Reference
12665  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12666  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12667
12668  unsigned DstLoReg, DstHiReg;
12669  unsigned SrcLoReg, SrcHiReg;
12670  unsigned MemOpndSlot;
12671
12672  unsigned CurOp = 0;
12673
12674  DstLoReg = MI->getOperand(CurOp++).getReg();
12675  DstHiReg = MI->getOperand(CurOp++).getReg();
12676  MemOpndSlot = CurOp;
12677  CurOp += X86::AddrNumOperands;
12678  SrcLoReg = MI->getOperand(CurOp++).getReg();
12679  SrcHiReg = MI->getOperand(CurOp++).getReg();
12680
12681  const TargetRegisterClass *RC = &X86::GR32RegClass;
12682  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
12683
12684  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
12685  unsigned LOADOpc = X86::MOV32rm;
12686
12687  // For the atomic load-arith operator, we generate
12688  //
12689  //  thisMBB:
12690  //    EAX = LOAD [MI.addr + 0]
12691  //    EDX = LOAD [MI.addr + 4]
12692  //  mainMBB:
12693  //    EBX = OP MI.vallo, EAX
12694  //    ECX = OP MI.valhi, EDX
12695  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12696  //    JNE mainMBB
12697  //  sinkMBB:
12698
12699  MachineBasicBlock *thisMBB = MBB;
12700  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12701  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12702  MF->insert(I, mainMBB);
12703  MF->insert(I, sinkMBB);
12704
12705  MachineInstrBuilder MIB;
12706
12707  // Transfer the remainder of BB and its successor edges to sinkMBB.
12708  sinkMBB->splice(sinkMBB->begin(), MBB,
12709                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12710  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12711
12712  // thisMBB:
12713  // Lo
12714  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
12715  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12716    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12717  MIB.setMemRefs(MMOBegin, MMOEnd);
12718  // Hi
12719  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
12720  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
12721    if (i == X86::AddrDisp)
12722      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
12723    else
12724      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12725  }
12726  MIB.setMemRefs(MMOBegin, MMOEnd);
12727
12728  thisMBB->addSuccessor(mainMBB);
12729
12730  // mainMBB:
12731  MachineBasicBlock *origMainMBB = mainMBB;
12732  mainMBB->addLiveIn(X86::EAX);
12733  mainMBB->addLiveIn(X86::EDX);
12734
12735  // Copy EDX:EAX as they are used more than once.
12736  unsigned LoReg = MRI.createVirtualRegister(RC);
12737  unsigned HiReg = MRI.createVirtualRegister(RC);
12738  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
12739  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
12740
12741  unsigned t1L = MRI.createVirtualRegister(RC);
12742  unsigned t1H = MRI.createVirtualRegister(RC);
12743
12744  unsigned Opc = MI->getOpcode();
12745  switch (Opc) {
12746  default:
12747    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
12748  case X86::ATOMAND6432:
12749  case X86::ATOMOR6432:
12750  case X86::ATOMXOR6432:
12751  case X86::ATOMADD6432:
12752  case X86::ATOMSUB6432: {
12753    unsigned HiOpc;
12754    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12755    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(LoReg).addReg(SrcLoReg);
12756    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(HiReg).addReg(SrcHiReg);
12757    break;
12758  }
12759  case X86::ATOMNAND6432: {
12760    unsigned HiOpc, NOTOpc;
12761    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
12762    unsigned t2L = MRI.createVirtualRegister(RC);
12763    unsigned t2H = MRI.createVirtualRegister(RC);
12764    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
12765    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
12766    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
12767    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
12768    break;
12769  }
12770  case X86::ATOMMAX6432:
12771  case X86::ATOMMIN6432:
12772  case X86::ATOMUMAX6432:
12773  case X86::ATOMUMIN6432: {
12774    unsigned HiOpc;
12775    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12776    unsigned cL = MRI.createVirtualRegister(RC8);
12777    unsigned cH = MRI.createVirtualRegister(RC8);
12778    unsigned cL32 = MRI.createVirtualRegister(RC);
12779    unsigned cH32 = MRI.createVirtualRegister(RC);
12780    unsigned cc = MRI.createVirtualRegister(RC);
12781    // cl := cmp src_lo, lo
12782    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12783      .addReg(SrcLoReg).addReg(LoReg);
12784    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
12785    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
12786    // ch := cmp src_hi, hi
12787    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12788      .addReg(SrcHiReg).addReg(HiReg);
12789    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
12790    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
12791    // cc := if (src_hi == hi) ? cl : ch;
12792    if (Subtarget->hasCMov()) {
12793      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
12794        .addReg(cH32).addReg(cL32);
12795    } else {
12796      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
12797              .addReg(cH32).addReg(cL32)
12798              .addImm(X86::COND_E);
12799      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12800    }
12801    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
12802    if (Subtarget->hasCMov()) {
12803      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
12804        .addReg(SrcLoReg).addReg(LoReg);
12805      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
12806        .addReg(SrcHiReg).addReg(HiReg);
12807    } else {
12808      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
12809              .addReg(SrcLoReg).addReg(LoReg)
12810              .addImm(X86::COND_NE);
12811      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12812      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
12813              .addReg(SrcHiReg).addReg(HiReg)
12814              .addImm(X86::COND_NE);
12815      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12816    }
12817    break;
12818  }
12819  case X86::ATOMSWAP6432: {
12820    unsigned HiOpc;
12821    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12822    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
12823    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
12824    break;
12825  }
12826  }
12827
12828  // Copy EDX:EAX back from HiReg:LoReg
12829  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
12830  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
12831  // Copy ECX:EBX from t1H:t1L
12832  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
12833  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
12834
12835  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12836  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12837    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12838  MIB.setMemRefs(MMOBegin, MMOEnd);
12839
12840  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12841
12842  mainMBB->addSuccessor(origMainMBB);
12843  mainMBB->addSuccessor(sinkMBB);
12844
12845  // sinkMBB:
12846  sinkMBB->addLiveIn(X86::EAX);
12847  sinkMBB->addLiveIn(X86::EDX);
12848
12849  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12850          TII->get(TargetOpcode::COPY), DstLoReg)
12851    .addReg(X86::EAX);
12852  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12853          TII->get(TargetOpcode::COPY), DstHiReg)
12854    .addReg(X86::EDX);
12855
12856  MI->eraseFromParent();
12857  return sinkMBB;
12858}
12859
12860// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12861// or XMM0_V32I8 in AVX all of this code can be replaced with that
12862// in the .td file.
12863static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
12864                                       const TargetInstrInfo *TII) {
12865  unsigned Opc;
12866  switch (MI->getOpcode()) {
12867  default: llvm_unreachable("illegal opcode!");
12868  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
12869  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
12870  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
12871  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
12872  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
12873  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
12874  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
12875  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
12876  }
12877
12878  DebugLoc dl = MI->getDebugLoc();
12879  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12880
12881  unsigned NumArgs = MI->getNumOperands();
12882  for (unsigned i = 1; i < NumArgs; ++i) {
12883    MachineOperand &Op = MI->getOperand(i);
12884    if (!(Op.isReg() && Op.isImplicit()))
12885      MIB.addOperand(Op);
12886  }
12887  if (MI->hasOneMemOperand())
12888    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
12889
12890  BuildMI(*BB, MI, dl,
12891    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12892    .addReg(X86::XMM0);
12893
12894  MI->eraseFromParent();
12895  return BB;
12896}
12897
12898// FIXME: Custom handling because TableGen doesn't support multiple implicit
12899// defs in an instruction pattern
12900static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
12901                                       const TargetInstrInfo *TII) {
12902  unsigned Opc;
12903  switch (MI->getOpcode()) {
12904  default: llvm_unreachable("illegal opcode!");
12905  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
12906  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
12907  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
12908  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
12909  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
12910  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
12911  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
12912  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
12913  }
12914
12915  DebugLoc dl = MI->getDebugLoc();
12916  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12917
12918  unsigned NumArgs = MI->getNumOperands(); // remove the results
12919  for (unsigned i = 1; i < NumArgs; ++i) {
12920    MachineOperand &Op = MI->getOperand(i);
12921    if (!(Op.isReg() && Op.isImplicit()))
12922      MIB.addOperand(Op);
12923  }
12924  if (MI->hasOneMemOperand())
12925    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
12926
12927  BuildMI(*BB, MI, dl,
12928    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12929    .addReg(X86::ECX);
12930
12931  MI->eraseFromParent();
12932  return BB;
12933}
12934
12935static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
12936                                       const TargetInstrInfo *TII,
12937                                       const X86Subtarget* Subtarget) {
12938  DebugLoc dl = MI->getDebugLoc();
12939
12940  // Address into RAX/EAX, other two args into ECX, EDX.
12941  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12942  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12943  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12944  for (int i = 0; i < X86::AddrNumOperands; ++i)
12945    MIB.addOperand(MI->getOperand(i));
12946
12947  unsigned ValOps = X86::AddrNumOperands;
12948  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12949    .addReg(MI->getOperand(ValOps).getReg());
12950  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12951    .addReg(MI->getOperand(ValOps+1).getReg());
12952
12953  // The instruction doesn't actually take any operands though.
12954  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12955
12956  MI->eraseFromParent(); // The pseudo is gone now.
12957  return BB;
12958}
12959
12960MachineBasicBlock *
12961X86TargetLowering::EmitVAARG64WithCustomInserter(
12962                   MachineInstr *MI,
12963                   MachineBasicBlock *MBB) const {
12964  // Emit va_arg instruction on X86-64.
12965
12966  // Operands to this pseudo-instruction:
12967  // 0  ) Output        : destination address (reg)
12968  // 1-5) Input         : va_list address (addr, i64mem)
12969  // 6  ) ArgSize       : Size (in bytes) of vararg type
12970  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12971  // 8  ) Align         : Alignment of type
12972  // 9  ) EFLAGS (implicit-def)
12973
12974  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12975  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12976
12977  unsigned DestReg = MI->getOperand(0).getReg();
12978  MachineOperand &Base = MI->getOperand(1);
12979  MachineOperand &Scale = MI->getOperand(2);
12980  MachineOperand &Index = MI->getOperand(3);
12981  MachineOperand &Disp = MI->getOperand(4);
12982  MachineOperand &Segment = MI->getOperand(5);
12983  unsigned ArgSize = MI->getOperand(6).getImm();
12984  unsigned ArgMode = MI->getOperand(7).getImm();
12985  unsigned Align = MI->getOperand(8).getImm();
12986
12987  // Memory Reference
12988  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12989  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12990  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12991
12992  // Machine Information
12993  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12994  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12995  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12996  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12997  DebugLoc DL = MI->getDebugLoc();
12998
12999  // struct va_list {
13000  //   i32   gp_offset
13001  //   i32   fp_offset
13002  //   i64   overflow_area (address)
13003  //   i64   reg_save_area (address)
13004  // }
13005  // sizeof(va_list) = 24
13006  // alignment(va_list) = 8
13007
13008  unsigned TotalNumIntRegs = 6;
13009  unsigned TotalNumXMMRegs = 8;
13010  bool UseGPOffset = (ArgMode == 1);
13011  bool UseFPOffset = (ArgMode == 2);
13012  unsigned MaxOffset = TotalNumIntRegs * 8 +
13013                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
13014
13015  /* Align ArgSize to a multiple of 8 */
13016  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
13017  bool NeedsAlign = (Align > 8);
13018
13019  MachineBasicBlock *thisMBB = MBB;
13020  MachineBasicBlock *overflowMBB;
13021  MachineBasicBlock *offsetMBB;
13022  MachineBasicBlock *endMBB;
13023
13024  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
13025  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
13026  unsigned OffsetReg = 0;
13027
13028  if (!UseGPOffset && !UseFPOffset) {
13029    // If we only pull from the overflow region, we don't create a branch.
13030    // We don't need to alter control flow.
13031    OffsetDestReg = 0; // unused
13032    OverflowDestReg = DestReg;
13033
13034    offsetMBB = NULL;
13035    overflowMBB = thisMBB;
13036    endMBB = thisMBB;
13037  } else {
13038    // First emit code to check if gp_offset (or fp_offset) is below the bound.
13039    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
13040    // If not, pull from overflow_area. (branch to overflowMBB)
13041    //
13042    //       thisMBB
13043    //         |     .
13044    //         |        .
13045    //     offsetMBB   overflowMBB
13046    //         |        .
13047    //         |     .
13048    //        endMBB
13049
13050    // Registers for the PHI in endMBB
13051    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
13052    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
13053
13054    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13055    MachineFunction *MF = MBB->getParent();
13056    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13057    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13058    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13059
13060    MachineFunction::iterator MBBIter = MBB;
13061    ++MBBIter;
13062
13063    // Insert the new basic blocks
13064    MF->insert(MBBIter, offsetMBB);
13065    MF->insert(MBBIter, overflowMBB);
13066    MF->insert(MBBIter, endMBB);
13067
13068    // Transfer the remainder of MBB and its successor edges to endMBB.
13069    endMBB->splice(endMBB->begin(), thisMBB,
13070                    llvm::next(MachineBasicBlock::iterator(MI)),
13071                    thisMBB->end());
13072    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
13073
13074    // Make offsetMBB and overflowMBB successors of thisMBB
13075    thisMBB->addSuccessor(offsetMBB);
13076    thisMBB->addSuccessor(overflowMBB);
13077
13078    // endMBB is a successor of both offsetMBB and overflowMBB
13079    offsetMBB->addSuccessor(endMBB);
13080    overflowMBB->addSuccessor(endMBB);
13081
13082    // Load the offset value into a register
13083    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13084    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
13085      .addOperand(Base)
13086      .addOperand(Scale)
13087      .addOperand(Index)
13088      .addDisp(Disp, UseFPOffset ? 4 : 0)
13089      .addOperand(Segment)
13090      .setMemRefs(MMOBegin, MMOEnd);
13091
13092    // Check if there is enough room left to pull this argument.
13093    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
13094      .addReg(OffsetReg)
13095      .addImm(MaxOffset + 8 - ArgSizeA8);
13096
13097    // Branch to "overflowMBB" if offset >= max
13098    // Fall through to "offsetMBB" otherwise
13099    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
13100      .addMBB(overflowMBB);
13101  }
13102
13103  // In offsetMBB, emit code to use the reg_save_area.
13104  if (offsetMBB) {
13105    assert(OffsetReg != 0);
13106
13107    // Read the reg_save_area address.
13108    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
13109    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
13110      .addOperand(Base)
13111      .addOperand(Scale)
13112      .addOperand(Index)
13113      .addDisp(Disp, 16)
13114      .addOperand(Segment)
13115      .setMemRefs(MMOBegin, MMOEnd);
13116
13117    // Zero-extend the offset
13118    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13119      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13120        .addImm(0)
13121        .addReg(OffsetReg)
13122        .addImm(X86::sub_32bit);
13123
13124    // Add the offset to the reg_save_area to get the final address.
13125    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13126      .addReg(OffsetReg64)
13127      .addReg(RegSaveReg);
13128
13129    // Compute the offset for the next argument
13130    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13131    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13132      .addReg(OffsetReg)
13133      .addImm(UseFPOffset ? 16 : 8);
13134
13135    // Store it back into the va_list.
13136    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13137      .addOperand(Base)
13138      .addOperand(Scale)
13139      .addOperand(Index)
13140      .addDisp(Disp, UseFPOffset ? 4 : 0)
13141      .addOperand(Segment)
13142      .addReg(NextOffsetReg)
13143      .setMemRefs(MMOBegin, MMOEnd);
13144
13145    // Jump to endMBB
13146    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13147      .addMBB(endMBB);
13148  }
13149
13150  //
13151  // Emit code to use overflow area
13152  //
13153
13154  // Load the overflow_area address into a register.
13155  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13156  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13157    .addOperand(Base)
13158    .addOperand(Scale)
13159    .addOperand(Index)
13160    .addDisp(Disp, 8)
13161    .addOperand(Segment)
13162    .setMemRefs(MMOBegin, MMOEnd);
13163
13164  // If we need to align it, do so. Otherwise, just copy the address
13165  // to OverflowDestReg.
13166  if (NeedsAlign) {
13167    // Align the overflow address
13168    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13169    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
13170
13171    // aligned_addr = (addr + (align-1)) & ~(align-1)
13172    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
13173      .addReg(OverflowAddrReg)
13174      .addImm(Align-1);
13175
13176    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
13177      .addReg(TmpReg)
13178      .addImm(~(uint64_t)(Align-1));
13179  } else {
13180    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
13181      .addReg(OverflowAddrReg);
13182  }
13183
13184  // Compute the next overflow address after this argument.
13185  // (the overflow address should be kept 8-byte aligned)
13186  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
13187  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
13188    .addReg(OverflowDestReg)
13189    .addImm(ArgSizeA8);
13190
13191  // Store the new overflow address.
13192  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
13193    .addOperand(Base)
13194    .addOperand(Scale)
13195    .addOperand(Index)
13196    .addDisp(Disp, 8)
13197    .addOperand(Segment)
13198    .addReg(NextAddrReg)
13199    .setMemRefs(MMOBegin, MMOEnd);
13200
13201  // If we branched, emit the PHI to the front of endMBB.
13202  if (offsetMBB) {
13203    BuildMI(*endMBB, endMBB->begin(), DL,
13204            TII->get(X86::PHI), DestReg)
13205      .addReg(OffsetDestReg).addMBB(offsetMBB)
13206      .addReg(OverflowDestReg).addMBB(overflowMBB);
13207  }
13208
13209  // Erase the pseudo instruction
13210  MI->eraseFromParent();
13211
13212  return endMBB;
13213}
13214
13215MachineBasicBlock *
13216X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
13217                                                 MachineInstr *MI,
13218                                                 MachineBasicBlock *MBB) const {
13219  // Emit code to save XMM registers to the stack. The ABI says that the
13220  // number of registers to save is given in %al, so it's theoretically
13221  // possible to do an indirect jump trick to avoid saving all of them,
13222  // however this code takes a simpler approach and just executes all
13223  // of the stores if %al is non-zero. It's less code, and it's probably
13224  // easier on the hardware branch predictor, and stores aren't all that
13225  // expensive anyway.
13226
13227  // Create the new basic blocks. One block contains all the XMM stores,
13228  // and one block is the final destination regardless of whether any
13229  // stores were performed.
13230  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13231  MachineFunction *F = MBB->getParent();
13232  MachineFunction::iterator MBBIter = MBB;
13233  ++MBBIter;
13234  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
13235  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
13236  F->insert(MBBIter, XMMSaveMBB);
13237  F->insert(MBBIter, EndMBB);
13238
13239  // Transfer the remainder of MBB and its successor edges to EndMBB.
13240  EndMBB->splice(EndMBB->begin(), MBB,
13241                 llvm::next(MachineBasicBlock::iterator(MI)),
13242                 MBB->end());
13243  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
13244
13245  // The original block will now fall through to the XMM save block.
13246  MBB->addSuccessor(XMMSaveMBB);
13247  // The XMMSaveMBB will fall through to the end block.
13248  XMMSaveMBB->addSuccessor(EndMBB);
13249
13250  // Now add the instructions.
13251  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13252  DebugLoc DL = MI->getDebugLoc();
13253
13254  unsigned CountReg = MI->getOperand(0).getReg();
13255  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
13256  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
13257
13258  if (!Subtarget->isTargetWin64()) {
13259    // If %al is 0, branch around the XMM save block.
13260    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
13261    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
13262    MBB->addSuccessor(EndMBB);
13263  }
13264
13265  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
13266  // In the XMM save block, save all the XMM argument registers.
13267  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
13268    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
13269    MachineMemOperand *MMO =
13270      F->getMachineMemOperand(
13271          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
13272        MachineMemOperand::MOStore,
13273        /*Size=*/16, /*Align=*/16);
13274    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
13275      .addFrameIndex(RegSaveFrameIndex)
13276      .addImm(/*Scale=*/1)
13277      .addReg(/*IndexReg=*/0)
13278      .addImm(/*Disp=*/Offset)
13279      .addReg(/*Segment=*/0)
13280      .addReg(MI->getOperand(i).getReg())
13281      .addMemOperand(MMO);
13282  }
13283
13284  MI->eraseFromParent();   // The pseudo instruction is gone now.
13285
13286  return EndMBB;
13287}
13288
13289// The EFLAGS operand of SelectItr might be missing a kill marker
13290// because there were multiple uses of EFLAGS, and ISel didn't know
13291// which to mark. Figure out whether SelectItr should have had a
13292// kill marker, and set it if it should. Returns the correct kill
13293// marker value.
13294static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
13295                                     MachineBasicBlock* BB,
13296                                     const TargetRegisterInfo* TRI) {
13297  // Scan forward through BB for a use/def of EFLAGS.
13298  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
13299  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
13300    const MachineInstr& mi = *miI;
13301    if (mi.readsRegister(X86::EFLAGS))
13302      return false;
13303    if (mi.definesRegister(X86::EFLAGS))
13304      break; // Should have kill-flag - update below.
13305  }
13306
13307  // If we hit the end of the block, check whether EFLAGS is live into a
13308  // successor.
13309  if (miI == BB->end()) {
13310    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
13311                                          sEnd = BB->succ_end();
13312         sItr != sEnd; ++sItr) {
13313      MachineBasicBlock* succ = *sItr;
13314      if (succ->isLiveIn(X86::EFLAGS))
13315        return false;
13316    }
13317  }
13318
13319  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
13320  // out. SelectMI should have a kill flag on EFLAGS.
13321  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
13322  return true;
13323}
13324
13325MachineBasicBlock *
13326X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
13327                                     MachineBasicBlock *BB) const {
13328  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13329  DebugLoc DL = MI->getDebugLoc();
13330
13331  // To "insert" a SELECT_CC instruction, we actually have to insert the
13332  // diamond control-flow pattern.  The incoming instruction knows the
13333  // destination vreg to set, the condition code register to branch on, the
13334  // true/false values to select between, and a branch opcode to use.
13335  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13336  MachineFunction::iterator It = BB;
13337  ++It;
13338
13339  //  thisMBB:
13340  //  ...
13341  //   TrueVal = ...
13342  //   cmpTY ccX, r1, r2
13343  //   bCC copy1MBB
13344  //   fallthrough --> copy0MBB
13345  MachineBasicBlock *thisMBB = BB;
13346  MachineFunction *F = BB->getParent();
13347  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13348  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13349  F->insert(It, copy0MBB);
13350  F->insert(It, sinkMBB);
13351
13352  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13353  // live into the sink and copy blocks.
13354  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13355  if (!MI->killsRegister(X86::EFLAGS) &&
13356      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13357    copy0MBB->addLiveIn(X86::EFLAGS);
13358    sinkMBB->addLiveIn(X86::EFLAGS);
13359  }
13360
13361  // Transfer the remainder of BB and its successor edges to sinkMBB.
13362  sinkMBB->splice(sinkMBB->begin(), BB,
13363                  llvm::next(MachineBasicBlock::iterator(MI)),
13364                  BB->end());
13365  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13366
13367  // Add the true and fallthrough blocks as its successors.
13368  BB->addSuccessor(copy0MBB);
13369  BB->addSuccessor(sinkMBB);
13370
13371  // Create the conditional branch instruction.
13372  unsigned Opc =
13373    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13374  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13375
13376  //  copy0MBB:
13377  //   %FalseValue = ...
13378  //   # fallthrough to sinkMBB
13379  copy0MBB->addSuccessor(sinkMBB);
13380
13381  //  sinkMBB:
13382  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13383  //  ...
13384  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13385          TII->get(X86::PHI), MI->getOperand(0).getReg())
13386    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13387    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13388
13389  MI->eraseFromParent();   // The pseudo instruction is gone now.
13390  return sinkMBB;
13391}
13392
13393MachineBasicBlock *
13394X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13395                                        bool Is64Bit) const {
13396  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13397  DebugLoc DL = MI->getDebugLoc();
13398  MachineFunction *MF = BB->getParent();
13399  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13400
13401  assert(getTargetMachine().Options.EnableSegmentedStacks);
13402
13403  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13404  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13405
13406  // BB:
13407  //  ... [Till the alloca]
13408  // If stacklet is not large enough, jump to mallocMBB
13409  //
13410  // bumpMBB:
13411  //  Allocate by subtracting from RSP
13412  //  Jump to continueMBB
13413  //
13414  // mallocMBB:
13415  //  Allocate by call to runtime
13416  //
13417  // continueMBB:
13418  //  ...
13419  //  [rest of original BB]
13420  //
13421
13422  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13423  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13424  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13425
13426  MachineRegisterInfo &MRI = MF->getRegInfo();
13427  const TargetRegisterClass *AddrRegClass =
13428    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13429
13430  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13431    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13432    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13433    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13434    sizeVReg = MI->getOperand(1).getReg(),
13435    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13436
13437  MachineFunction::iterator MBBIter = BB;
13438  ++MBBIter;
13439
13440  MF->insert(MBBIter, bumpMBB);
13441  MF->insert(MBBIter, mallocMBB);
13442  MF->insert(MBBIter, continueMBB);
13443
13444  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13445                      (MachineBasicBlock::iterator(MI)), BB->end());
13446  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13447
13448  // Add code to the main basic block to check if the stack limit has been hit,
13449  // and if so, jump to mallocMBB otherwise to bumpMBB.
13450  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13451  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13452    .addReg(tmpSPVReg).addReg(sizeVReg);
13453  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13454    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13455    .addReg(SPLimitVReg);
13456  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13457
13458  // bumpMBB simply decreases the stack pointer, since we know the current
13459  // stacklet has enough space.
13460  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13461    .addReg(SPLimitVReg);
13462  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13463    .addReg(SPLimitVReg);
13464  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13465
13466  // Calls into a routine in libgcc to allocate more space from the heap.
13467  const uint32_t *RegMask =
13468    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13469  if (Is64Bit) {
13470    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13471      .addReg(sizeVReg);
13472    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13473      .addExternalSymbol("__morestack_allocate_stack_space")
13474      .addRegMask(RegMask)
13475      .addReg(X86::RDI, RegState::Implicit)
13476      .addReg(X86::RAX, RegState::ImplicitDefine);
13477  } else {
13478    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13479      .addImm(12);
13480    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13481    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13482      .addExternalSymbol("__morestack_allocate_stack_space")
13483      .addRegMask(RegMask)
13484      .addReg(X86::EAX, RegState::ImplicitDefine);
13485  }
13486
13487  if (!Is64Bit)
13488    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13489      .addImm(16);
13490
13491  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13492    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13493  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13494
13495  // Set up the CFG correctly.
13496  BB->addSuccessor(bumpMBB);
13497  BB->addSuccessor(mallocMBB);
13498  mallocMBB->addSuccessor(continueMBB);
13499  bumpMBB->addSuccessor(continueMBB);
13500
13501  // Take care of the PHI nodes.
13502  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13503          MI->getOperand(0).getReg())
13504    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13505    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13506
13507  // Delete the original pseudo instruction.
13508  MI->eraseFromParent();
13509
13510  // And we're done.
13511  return continueMBB;
13512}
13513
13514MachineBasicBlock *
13515X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13516                                          MachineBasicBlock *BB) const {
13517  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13518  DebugLoc DL = MI->getDebugLoc();
13519
13520  assert(!Subtarget->isTargetEnvMacho());
13521
13522  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13523  // non-trivial part is impdef of ESP.
13524
13525  if (Subtarget->isTargetWin64()) {
13526    if (Subtarget->isTargetCygMing()) {
13527      // ___chkstk(Mingw64):
13528      // Clobbers R10, R11, RAX and EFLAGS.
13529      // Updates RSP.
13530      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13531        .addExternalSymbol("___chkstk")
13532        .addReg(X86::RAX, RegState::Implicit)
13533        .addReg(X86::RSP, RegState::Implicit)
13534        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13535        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13536        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13537    } else {
13538      // __chkstk(MSVCRT): does not update stack pointer.
13539      // Clobbers R10, R11 and EFLAGS.
13540      // FIXME: RAX(allocated size) might be reused and not killed.
13541      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13542        .addExternalSymbol("__chkstk")
13543        .addReg(X86::RAX, RegState::Implicit)
13544        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13545      // RAX has the offset to subtracted from RSP.
13546      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13547        .addReg(X86::RSP)
13548        .addReg(X86::RAX);
13549    }
13550  } else {
13551    const char *StackProbeSymbol =
13552      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13553
13554    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13555      .addExternalSymbol(StackProbeSymbol)
13556      .addReg(X86::EAX, RegState::Implicit)
13557      .addReg(X86::ESP, RegState::Implicit)
13558      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13559      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13560      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13561  }
13562
13563  MI->eraseFromParent();   // The pseudo instruction is gone now.
13564  return BB;
13565}
13566
13567MachineBasicBlock *
13568X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13569                                      MachineBasicBlock *BB) const {
13570  // This is pretty easy.  We're taking the value that we received from
13571  // our load from the relocation, sticking it in either RDI (x86-64)
13572  // or EAX and doing an indirect call.  The return value will then
13573  // be in the normal return register.
13574  const X86InstrInfo *TII
13575    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13576  DebugLoc DL = MI->getDebugLoc();
13577  MachineFunction *F = BB->getParent();
13578
13579  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13580  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13581
13582  // Get a register mask for the lowered call.
13583  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13584  // proper register mask.
13585  const uint32_t *RegMask =
13586    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13587  if (Subtarget->is64Bit()) {
13588    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13589                                      TII->get(X86::MOV64rm), X86::RDI)
13590    .addReg(X86::RIP)
13591    .addImm(0).addReg(0)
13592    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13593                      MI->getOperand(3).getTargetFlags())
13594    .addReg(0);
13595    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
13596    addDirectMem(MIB, X86::RDI);
13597    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
13598  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
13599    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13600                                      TII->get(X86::MOV32rm), X86::EAX)
13601    .addReg(0)
13602    .addImm(0).addReg(0)
13603    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13604                      MI->getOperand(3).getTargetFlags())
13605    .addReg(0);
13606    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13607    addDirectMem(MIB, X86::EAX);
13608    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13609  } else {
13610    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13611                                      TII->get(X86::MOV32rm), X86::EAX)
13612    .addReg(TII->getGlobalBaseReg(F))
13613    .addImm(0).addReg(0)
13614    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13615                      MI->getOperand(3).getTargetFlags())
13616    .addReg(0);
13617    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13618    addDirectMem(MIB, X86::EAX);
13619    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13620  }
13621
13622  MI->eraseFromParent(); // The pseudo instruction is gone now.
13623  return BB;
13624}
13625
13626MachineBasicBlock *
13627X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
13628                                    MachineBasicBlock *MBB) const {
13629  DebugLoc DL = MI->getDebugLoc();
13630  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13631
13632  MachineFunction *MF = MBB->getParent();
13633  MachineRegisterInfo &MRI = MF->getRegInfo();
13634
13635  const BasicBlock *BB = MBB->getBasicBlock();
13636  MachineFunction::iterator I = MBB;
13637  ++I;
13638
13639  // Memory Reference
13640  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13641  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13642
13643  unsigned DstReg;
13644  unsigned MemOpndSlot = 0;
13645
13646  unsigned CurOp = 0;
13647
13648  DstReg = MI->getOperand(CurOp++).getReg();
13649  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13650  assert(RC->hasType(MVT::i32) && "Invalid destination!");
13651  unsigned mainDstReg = MRI.createVirtualRegister(RC);
13652  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
13653
13654  MemOpndSlot = CurOp;
13655
13656  MVT PVT = getPointerTy();
13657  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13658         "Invalid Pointer Size!");
13659
13660  // For v = setjmp(buf), we generate
13661  //
13662  // thisMBB:
13663  //  buf[LabelOffset] = restoreMBB
13664  //  SjLjSetup restoreMBB
13665  //
13666  // mainMBB:
13667  //  v_main = 0
13668  //
13669  // sinkMBB:
13670  //  v = phi(main, restore)
13671  //
13672  // restoreMBB:
13673  //  v_restore = 1
13674
13675  MachineBasicBlock *thisMBB = MBB;
13676  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13677  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13678  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
13679  MF->insert(I, mainMBB);
13680  MF->insert(I, sinkMBB);
13681  MF->push_back(restoreMBB);
13682
13683  MachineInstrBuilder MIB;
13684
13685  // Transfer the remainder of BB and its successor edges to sinkMBB.
13686  sinkMBB->splice(sinkMBB->begin(), MBB,
13687                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13688  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13689
13690  // thisMBB:
13691  unsigned PtrStoreOpc = 0;
13692  unsigned LabelReg = 0;
13693  const int64_t LabelOffset = 1 * PVT.getStoreSize();
13694  Reloc::Model RM = getTargetMachine().getRelocationModel();
13695  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
13696                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
13697
13698  // Prepare IP either in reg or imm.
13699  if (!UseImmLabel) {
13700    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
13701    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
13702    LabelReg = MRI.createVirtualRegister(PtrRC);
13703    if (Subtarget->is64Bit()) {
13704      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
13705              .addReg(X86::RIP)
13706              .addImm(0)
13707              .addReg(0)
13708              .addMBB(restoreMBB)
13709              .addReg(0);
13710    } else {
13711      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
13712      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
13713              .addReg(XII->getGlobalBaseReg(MF))
13714              .addImm(0)
13715              .addReg(0)
13716              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
13717              .addReg(0);
13718    }
13719  } else
13720    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
13721  // Store IP
13722  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
13723  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13724    if (i == X86::AddrDisp)
13725      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
13726    else
13727      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13728  }
13729  if (!UseImmLabel)
13730    MIB.addReg(LabelReg);
13731  else
13732    MIB.addMBB(restoreMBB);
13733  MIB.setMemRefs(MMOBegin, MMOEnd);
13734  // Setup
13735  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
13736          .addMBB(restoreMBB);
13737  MIB.addRegMask(RegInfo->getNoPreservedMask());
13738  thisMBB->addSuccessor(mainMBB);
13739  thisMBB->addSuccessor(restoreMBB);
13740
13741  // mainMBB:
13742  //  EAX = 0
13743  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
13744  mainMBB->addSuccessor(sinkMBB);
13745
13746  // sinkMBB:
13747  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13748          TII->get(X86::PHI), DstReg)
13749    .addReg(mainDstReg).addMBB(mainMBB)
13750    .addReg(restoreDstReg).addMBB(restoreMBB);
13751
13752  // restoreMBB:
13753  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
13754  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
13755  restoreMBB->addSuccessor(sinkMBB);
13756
13757  MI->eraseFromParent();
13758  return sinkMBB;
13759}
13760
13761MachineBasicBlock *
13762X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
13763                                     MachineBasicBlock *MBB) const {
13764  DebugLoc DL = MI->getDebugLoc();
13765  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13766
13767  MachineFunction *MF = MBB->getParent();
13768  MachineRegisterInfo &MRI = MF->getRegInfo();
13769
13770  // Memory Reference
13771  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13772  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13773
13774  MVT PVT = getPointerTy();
13775  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13776         "Invalid Pointer Size!");
13777
13778  const TargetRegisterClass *RC =
13779    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
13780  unsigned Tmp = MRI.createVirtualRegister(RC);
13781  // Since FP is only updated here but NOT referenced, it's treated as GPR.
13782  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
13783  unsigned SP = RegInfo->getStackRegister();
13784
13785  MachineInstrBuilder MIB;
13786
13787  const int64_t LabelOffset = 1 * PVT.getStoreSize();
13788  const int64_t SPOffset = 2 * PVT.getStoreSize();
13789
13790  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
13791  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
13792
13793  // Reload FP
13794  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
13795  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13796    MIB.addOperand(MI->getOperand(i));
13797  MIB.setMemRefs(MMOBegin, MMOEnd);
13798  // Reload IP
13799  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
13800  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13801    if (i == X86::AddrDisp)
13802      MIB.addDisp(MI->getOperand(i), LabelOffset);
13803    else
13804      MIB.addOperand(MI->getOperand(i));
13805  }
13806  MIB.setMemRefs(MMOBegin, MMOEnd);
13807  // Reload SP
13808  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
13809  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13810    if (i == X86::AddrDisp)
13811      MIB.addDisp(MI->getOperand(i), SPOffset);
13812    else
13813      MIB.addOperand(MI->getOperand(i));
13814  }
13815  MIB.setMemRefs(MMOBegin, MMOEnd);
13816  // Jump
13817  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
13818
13819  MI->eraseFromParent();
13820  return MBB;
13821}
13822
13823MachineBasicBlock *
13824X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
13825                                               MachineBasicBlock *BB) const {
13826  switch (MI->getOpcode()) {
13827  default: llvm_unreachable("Unexpected instr type to insert");
13828  case X86::TAILJMPd64:
13829  case X86::TAILJMPr64:
13830  case X86::TAILJMPm64:
13831    llvm_unreachable("TAILJMP64 would not be touched here.");
13832  case X86::TCRETURNdi64:
13833  case X86::TCRETURNri64:
13834  case X86::TCRETURNmi64:
13835    return BB;
13836  case X86::WIN_ALLOCA:
13837    return EmitLoweredWinAlloca(MI, BB);
13838  case X86::SEG_ALLOCA_32:
13839    return EmitLoweredSegAlloca(MI, BB, false);
13840  case X86::SEG_ALLOCA_64:
13841    return EmitLoweredSegAlloca(MI, BB, true);
13842  case X86::TLSCall_32:
13843  case X86::TLSCall_64:
13844    return EmitLoweredTLSCall(MI, BB);
13845  case X86::CMOV_GR8:
13846  case X86::CMOV_FR32:
13847  case X86::CMOV_FR64:
13848  case X86::CMOV_V4F32:
13849  case X86::CMOV_V2F64:
13850  case X86::CMOV_V2I64:
13851  case X86::CMOV_V8F32:
13852  case X86::CMOV_V4F64:
13853  case X86::CMOV_V4I64:
13854  case X86::CMOV_GR16:
13855  case X86::CMOV_GR32:
13856  case X86::CMOV_RFP32:
13857  case X86::CMOV_RFP64:
13858  case X86::CMOV_RFP80:
13859    return EmitLoweredSelect(MI, BB);
13860
13861  case X86::FP32_TO_INT16_IN_MEM:
13862  case X86::FP32_TO_INT32_IN_MEM:
13863  case X86::FP32_TO_INT64_IN_MEM:
13864  case X86::FP64_TO_INT16_IN_MEM:
13865  case X86::FP64_TO_INT32_IN_MEM:
13866  case X86::FP64_TO_INT64_IN_MEM:
13867  case X86::FP80_TO_INT16_IN_MEM:
13868  case X86::FP80_TO_INT32_IN_MEM:
13869  case X86::FP80_TO_INT64_IN_MEM: {
13870    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13871    DebugLoc DL = MI->getDebugLoc();
13872
13873    // Change the floating point control register to use "round towards zero"
13874    // mode when truncating to an integer value.
13875    MachineFunction *F = BB->getParent();
13876    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
13877    addFrameReference(BuildMI(*BB, MI, DL,
13878                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
13879
13880    // Load the old value of the high byte of the control word...
13881    unsigned OldCW =
13882      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
13883    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
13884                      CWFrameIdx);
13885
13886    // Set the high part to be round to zero...
13887    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
13888      .addImm(0xC7F);
13889
13890    // Reload the modified control word now...
13891    addFrameReference(BuildMI(*BB, MI, DL,
13892                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13893
13894    // Restore the memory image of control word to original value
13895    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
13896      .addReg(OldCW);
13897
13898    // Get the X86 opcode to use.
13899    unsigned Opc;
13900    switch (MI->getOpcode()) {
13901    default: llvm_unreachable("illegal opcode!");
13902    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
13903    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
13904    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
13905    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
13906    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
13907    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
13908    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
13909    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
13910    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
13911    }
13912
13913    X86AddressMode AM;
13914    MachineOperand &Op = MI->getOperand(0);
13915    if (Op.isReg()) {
13916      AM.BaseType = X86AddressMode::RegBase;
13917      AM.Base.Reg = Op.getReg();
13918    } else {
13919      AM.BaseType = X86AddressMode::FrameIndexBase;
13920      AM.Base.FrameIndex = Op.getIndex();
13921    }
13922    Op = MI->getOperand(1);
13923    if (Op.isImm())
13924      AM.Scale = Op.getImm();
13925    Op = MI->getOperand(2);
13926    if (Op.isImm())
13927      AM.IndexReg = Op.getImm();
13928    Op = MI->getOperand(3);
13929    if (Op.isGlobal()) {
13930      AM.GV = Op.getGlobal();
13931    } else {
13932      AM.Disp = Op.getImm();
13933    }
13934    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
13935                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
13936
13937    // Reload the original control word now.
13938    addFrameReference(BuildMI(*BB, MI, DL,
13939                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13940
13941    MI->eraseFromParent();   // The pseudo instruction is gone now.
13942    return BB;
13943  }
13944    // String/text processing lowering.
13945  case X86::PCMPISTRM128REG:
13946  case X86::VPCMPISTRM128REG:
13947  case X86::PCMPISTRM128MEM:
13948  case X86::VPCMPISTRM128MEM:
13949  case X86::PCMPESTRM128REG:
13950  case X86::VPCMPESTRM128REG:
13951  case X86::PCMPESTRM128MEM:
13952  case X86::VPCMPESTRM128MEM:
13953    assert(Subtarget->hasSSE42() &&
13954           "Target must have SSE4.2 or AVX features enabled");
13955    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
13956
13957  // String/text processing lowering.
13958  case X86::PCMPISTRIREG:
13959  case X86::VPCMPISTRIREG:
13960  case X86::PCMPISTRIMEM:
13961  case X86::VPCMPISTRIMEM:
13962  case X86::PCMPESTRIREG:
13963  case X86::VPCMPESTRIREG:
13964  case X86::PCMPESTRIMEM:
13965  case X86::VPCMPESTRIMEM:
13966    assert(Subtarget->hasSSE42() &&
13967           "Target must have SSE4.2 or AVX features enabled");
13968    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
13969
13970  // Thread synchronization.
13971  case X86::MONITOR:
13972    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
13973
13974  // xbegin
13975  case X86::XBEGIN:
13976    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
13977
13978  // Atomic Lowering.
13979  case X86::ATOMAND8:
13980  case X86::ATOMAND16:
13981  case X86::ATOMAND32:
13982  case X86::ATOMAND64:
13983    // Fall through
13984  case X86::ATOMOR8:
13985  case X86::ATOMOR16:
13986  case X86::ATOMOR32:
13987  case X86::ATOMOR64:
13988    // Fall through
13989  case X86::ATOMXOR16:
13990  case X86::ATOMXOR8:
13991  case X86::ATOMXOR32:
13992  case X86::ATOMXOR64:
13993    // Fall through
13994  case X86::ATOMNAND8:
13995  case X86::ATOMNAND16:
13996  case X86::ATOMNAND32:
13997  case X86::ATOMNAND64:
13998    // Fall through
13999  case X86::ATOMMAX8:
14000  case X86::ATOMMAX16:
14001  case X86::ATOMMAX32:
14002  case X86::ATOMMAX64:
14003    // Fall through
14004  case X86::ATOMMIN8:
14005  case X86::ATOMMIN16:
14006  case X86::ATOMMIN32:
14007  case X86::ATOMMIN64:
14008    // Fall through
14009  case X86::ATOMUMAX8:
14010  case X86::ATOMUMAX16:
14011  case X86::ATOMUMAX32:
14012  case X86::ATOMUMAX64:
14013    // Fall through
14014  case X86::ATOMUMIN8:
14015  case X86::ATOMUMIN16:
14016  case X86::ATOMUMIN32:
14017  case X86::ATOMUMIN64:
14018    return EmitAtomicLoadArith(MI, BB);
14019
14020  // This group does 64-bit operations on a 32-bit host.
14021  case X86::ATOMAND6432:
14022  case X86::ATOMOR6432:
14023  case X86::ATOMXOR6432:
14024  case X86::ATOMNAND6432:
14025  case X86::ATOMADD6432:
14026  case X86::ATOMSUB6432:
14027  case X86::ATOMMAX6432:
14028  case X86::ATOMMIN6432:
14029  case X86::ATOMUMAX6432:
14030  case X86::ATOMUMIN6432:
14031  case X86::ATOMSWAP6432:
14032    return EmitAtomicLoadArith6432(MI, BB);
14033
14034  case X86::VASTART_SAVE_XMM_REGS:
14035    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
14036
14037  case X86::VAARG_64:
14038    return EmitVAARG64WithCustomInserter(MI, BB);
14039
14040  case X86::EH_SjLj_SetJmp32:
14041  case X86::EH_SjLj_SetJmp64:
14042    return emitEHSjLjSetJmp(MI, BB);
14043
14044  case X86::EH_SjLj_LongJmp32:
14045  case X86::EH_SjLj_LongJmp64:
14046    return emitEHSjLjLongJmp(MI, BB);
14047  }
14048}
14049
14050//===----------------------------------------------------------------------===//
14051//                           X86 Optimization Hooks
14052//===----------------------------------------------------------------------===//
14053
14054void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
14055                                                       APInt &KnownZero,
14056                                                       APInt &KnownOne,
14057                                                       const SelectionDAG &DAG,
14058                                                       unsigned Depth) const {
14059  unsigned BitWidth = KnownZero.getBitWidth();
14060  unsigned Opc = Op.getOpcode();
14061  assert((Opc >= ISD::BUILTIN_OP_END ||
14062          Opc == ISD::INTRINSIC_WO_CHAIN ||
14063          Opc == ISD::INTRINSIC_W_CHAIN ||
14064          Opc == ISD::INTRINSIC_VOID) &&
14065         "Should use MaskedValueIsZero if you don't know whether Op"
14066         " is a target node!");
14067
14068  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
14069  switch (Opc) {
14070  default: break;
14071  case X86ISD::ADD:
14072  case X86ISD::SUB:
14073  case X86ISD::ADC:
14074  case X86ISD::SBB:
14075  case X86ISD::SMUL:
14076  case X86ISD::UMUL:
14077  case X86ISD::INC:
14078  case X86ISD::DEC:
14079  case X86ISD::OR:
14080  case X86ISD::XOR:
14081  case X86ISD::AND:
14082    // These nodes' second result is a boolean.
14083    if (Op.getResNo() == 0)
14084      break;
14085    // Fallthrough
14086  case X86ISD::SETCC:
14087    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14088    break;
14089  case ISD::INTRINSIC_WO_CHAIN: {
14090    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14091    unsigned NumLoBits = 0;
14092    switch (IntId) {
14093    default: break;
14094    case Intrinsic::x86_sse_movmsk_ps:
14095    case Intrinsic::x86_avx_movmsk_ps_256:
14096    case Intrinsic::x86_sse2_movmsk_pd:
14097    case Intrinsic::x86_avx_movmsk_pd_256:
14098    case Intrinsic::x86_mmx_pmovmskb:
14099    case Intrinsic::x86_sse2_pmovmskb_128:
14100    case Intrinsic::x86_avx2_pmovmskb: {
14101      // High bits of movmskp{s|d}, pmovmskb are known zero.
14102      switch (IntId) {
14103        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
14104        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
14105        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
14106        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
14107        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
14108        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
14109        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
14110        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
14111      }
14112      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
14113      break;
14114    }
14115    }
14116    break;
14117  }
14118  }
14119}
14120
14121unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14122                                                         unsigned Depth) const {
14123  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14124  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14125    return Op.getValueType().getScalarType().getSizeInBits();
14126
14127  // Fallback case.
14128  return 1;
14129}
14130
14131/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14132/// node is a GlobalAddress + offset.
14133bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14134                                       const GlobalValue* &GA,
14135                                       int64_t &Offset) const {
14136  if (N->getOpcode() == X86ISD::Wrapper) {
14137    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14138      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14139      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14140      return true;
14141    }
14142  }
14143  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14144}
14145
14146/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14147/// same as extracting the high 128-bit part of 256-bit vector and then
14148/// inserting the result into the low part of a new 256-bit vector
14149static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14150  EVT VT = SVOp->getValueType(0);
14151  unsigned NumElems = VT.getVectorNumElements();
14152
14153  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14154  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14155    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14156        SVOp->getMaskElt(j) >= 0)
14157      return false;
14158
14159  return true;
14160}
14161
14162/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14163/// same as extracting the low 128-bit part of 256-bit vector and then
14164/// inserting the result into the high part of a new 256-bit vector
14165static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14166  EVT VT = SVOp->getValueType(0);
14167  unsigned NumElems = VT.getVectorNumElements();
14168
14169  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14170  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
14171    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14172        SVOp->getMaskElt(j) >= 0)
14173      return false;
14174
14175  return true;
14176}
14177
14178/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
14179static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
14180                                        TargetLowering::DAGCombinerInfo &DCI,
14181                                        const X86Subtarget* Subtarget) {
14182  DebugLoc dl = N->getDebugLoc();
14183  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
14184  SDValue V1 = SVOp->getOperand(0);
14185  SDValue V2 = SVOp->getOperand(1);
14186  EVT VT = SVOp->getValueType(0);
14187  unsigned NumElems = VT.getVectorNumElements();
14188
14189  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
14190      V2.getOpcode() == ISD::CONCAT_VECTORS) {
14191    //
14192    //                   0,0,0,...
14193    //                      |
14194    //    V      UNDEF    BUILD_VECTOR    UNDEF
14195    //     \      /           \           /
14196    //  CONCAT_VECTOR         CONCAT_VECTOR
14197    //         \                  /
14198    //          \                /
14199    //          RESULT: V + zero extended
14200    //
14201    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
14202        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
14203        V1.getOperand(1).getOpcode() != ISD::UNDEF)
14204      return SDValue();
14205
14206    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
14207      return SDValue();
14208
14209    // To match the shuffle mask, the first half of the mask should
14210    // be exactly the first vector, and all the rest a splat with the
14211    // first element of the second one.
14212    for (unsigned i = 0; i != NumElems/2; ++i)
14213      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
14214          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
14215        return SDValue();
14216
14217    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
14218    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
14219      if (Ld->hasNUsesOfValue(1, 0)) {
14220        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
14221        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
14222        SDValue ResNode =
14223          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
14224                                  Ld->getMemoryVT(),
14225                                  Ld->getPointerInfo(),
14226                                  Ld->getAlignment(),
14227                                  false/*isVolatile*/, true/*ReadMem*/,
14228                                  false/*WriteMem*/);
14229
14230        // Make sure the newly-created LOAD is in the same position as Ld in
14231        // terms of dependency. We create a TokenFactor for Ld and ResNode,
14232        // and update uses of Ld's output chain to use the TokenFactor.
14233        if (Ld->hasAnyUseOfValue(1)) {
14234          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14235                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
14236          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
14237          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
14238                                 SDValue(ResNode.getNode(), 1));
14239        }
14240
14241        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
14242      }
14243    }
14244
14245    // Emit a zeroed vector and insert the desired subvector on its
14246    // first half.
14247    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
14248    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
14249    return DCI.CombineTo(N, InsV);
14250  }
14251
14252  //===--------------------------------------------------------------------===//
14253  // Combine some shuffles into subvector extracts and inserts:
14254  //
14255
14256  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14257  if (isShuffleHigh128VectorInsertLow(SVOp)) {
14258    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
14259    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
14260    return DCI.CombineTo(N, InsV);
14261  }
14262
14263  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14264  if (isShuffleLow128VectorInsertHigh(SVOp)) {
14265    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
14266    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
14267    return DCI.CombineTo(N, InsV);
14268  }
14269
14270  return SDValue();
14271}
14272
14273/// PerformShuffleCombine - Performs several different shuffle combines.
14274static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
14275                                     TargetLowering::DAGCombinerInfo &DCI,
14276                                     const X86Subtarget *Subtarget) {
14277  DebugLoc dl = N->getDebugLoc();
14278  EVT VT = N->getValueType(0);
14279
14280  // Don't create instructions with illegal types after legalize types has run.
14281  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14282  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
14283    return SDValue();
14284
14285  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
14286  if (Subtarget->hasFp256() && VT.is256BitVector() &&
14287      N->getOpcode() == ISD::VECTOR_SHUFFLE)
14288    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
14289
14290  // Only handle 128 wide vector from here on.
14291  if (!VT.is128BitVector())
14292    return SDValue();
14293
14294  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
14295  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
14296  // consecutive, non-overlapping, and in the right order.
14297  SmallVector<SDValue, 16> Elts;
14298  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
14299    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
14300
14301  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
14302}
14303
14304
14305/// PerformTruncateCombine - Converts truncate operation to
14306/// a sequence of vector shuffle operations.
14307/// It is possible when we truncate 256-bit vector to 128-bit vector
14308static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
14309                                      TargetLowering::DAGCombinerInfo &DCI,
14310                                      const X86Subtarget *Subtarget)  {
14311  if (!DCI.isBeforeLegalizeOps())
14312    return SDValue();
14313
14314  if (!Subtarget->hasFp256())
14315    return SDValue();
14316
14317  EVT VT = N->getValueType(0);
14318  SDValue Op = N->getOperand(0);
14319  EVT OpVT = Op.getValueType();
14320  DebugLoc dl = N->getDebugLoc();
14321
14322  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
14323
14324    if (Subtarget->hasInt256()) {
14325      // AVX2: v4i64 -> v4i32
14326
14327      // VPERMD
14328      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
14329
14330      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
14331      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
14332                                ShufMask);
14333
14334      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
14335                         DAG.getIntPtrConstant(0));
14336    }
14337
14338    // AVX: v4i64 -> v4i32
14339    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14340                               DAG.getIntPtrConstant(0));
14341
14342    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14343                               DAG.getIntPtrConstant(2));
14344
14345    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
14346    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
14347
14348    // PSHUFD
14349    static const int ShufMask1[] = {0, 2, 0, 0};
14350
14351    SDValue Undef = DAG.getUNDEF(VT);
14352    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
14353    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
14354
14355    // MOVLHPS
14356    static const int ShufMask2[] = {0, 1, 4, 5};
14357
14358    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
14359  }
14360
14361  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
14362
14363    if (Subtarget->hasInt256()) {
14364      // AVX2: v8i32 -> v8i16
14365
14366      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
14367
14368      // PSHUFB
14369      SmallVector<SDValue,32> pshufbMask;
14370      for (unsigned i = 0; i < 2; ++i) {
14371        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
14372        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
14373        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
14374        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
14375        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
14376        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
14377        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
14378        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
14379        for (unsigned j = 0; j < 8; ++j)
14380          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
14381      }
14382      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
14383                               &pshufbMask[0], 32);
14384      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
14385
14386      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
14387
14388      static const int ShufMask[] = {0,  2,  -1,  -1};
14389      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
14390                                &ShufMask[0]);
14391
14392      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14393                       DAG.getIntPtrConstant(0));
14394
14395      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
14396    }
14397
14398    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
14399                               DAG.getIntPtrConstant(0));
14400
14401    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
14402                               DAG.getIntPtrConstant(4));
14403
14404    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
14405    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
14406
14407    // PSHUFB
14408    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
14409                                   -1, -1, -1, -1, -1, -1, -1, -1};
14410
14411    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
14412    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
14413    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
14414
14415    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
14416    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
14417
14418    // MOVLHPS
14419    static const int ShufMask2[] = {0, 1, 4, 5};
14420
14421    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
14422    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
14423  }
14424
14425  return SDValue();
14426}
14427
14428/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14429/// specific shuffle of a load can be folded into a single element load.
14430/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14431/// shuffles have been customed lowered so we need to handle those here.
14432static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14433                                         TargetLowering::DAGCombinerInfo &DCI) {
14434  if (DCI.isBeforeLegalizeOps())
14435    return SDValue();
14436
14437  SDValue InVec = N->getOperand(0);
14438  SDValue EltNo = N->getOperand(1);
14439
14440  if (!isa<ConstantSDNode>(EltNo))
14441    return SDValue();
14442
14443  EVT VT = InVec.getValueType();
14444
14445  bool HasShuffleIntoBitcast = false;
14446  if (InVec.getOpcode() == ISD::BITCAST) {
14447    // Don't duplicate a load with other uses.
14448    if (!InVec.hasOneUse())
14449      return SDValue();
14450    EVT BCVT = InVec.getOperand(0).getValueType();
14451    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14452      return SDValue();
14453    InVec = InVec.getOperand(0);
14454    HasShuffleIntoBitcast = true;
14455  }
14456
14457  if (!isTargetShuffle(InVec.getOpcode()))
14458    return SDValue();
14459
14460  // Don't duplicate a load with other uses.
14461  if (!InVec.hasOneUse())
14462    return SDValue();
14463
14464  SmallVector<int, 16> ShuffleMask;
14465  bool UnaryShuffle;
14466  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14467                            UnaryShuffle))
14468    return SDValue();
14469
14470  // Select the input vector, guarding against out of range extract vector.
14471  unsigned NumElems = VT.getVectorNumElements();
14472  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14473  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14474  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14475                                         : InVec.getOperand(1);
14476
14477  // If inputs to shuffle are the same for both ops, then allow 2 uses
14478  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14479
14480  if (LdNode.getOpcode() == ISD::BITCAST) {
14481    // Don't duplicate a load with other uses.
14482    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14483      return SDValue();
14484
14485    AllowedUses = 1; // only allow 1 load use if we have a bitcast
14486    LdNode = LdNode.getOperand(0);
14487  }
14488
14489  if (!ISD::isNormalLoad(LdNode.getNode()))
14490    return SDValue();
14491
14492  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
14493
14494  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
14495    return SDValue();
14496
14497  if (HasShuffleIntoBitcast) {
14498    // If there's a bitcast before the shuffle, check if the load type and
14499    // alignment is valid.
14500    unsigned Align = LN0->getAlignment();
14501    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14502    unsigned NewAlign = TLI.getDataLayout()->
14503      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
14504
14505    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
14506      return SDValue();
14507  }
14508
14509  // All checks match so transform back to vector_shuffle so that DAG combiner
14510  // can finish the job
14511  DebugLoc dl = N->getDebugLoc();
14512
14513  // Create shuffle node taking into account the case that its a unary shuffle
14514  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
14515  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
14516                                 InVec.getOperand(0), Shuffle,
14517                                 &ShuffleMask[0]);
14518  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
14519  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
14520                     EltNo);
14521}
14522
14523/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
14524/// generation and convert it from being a bunch of shuffles and extracts
14525/// to a simple store and scalar loads to extract the elements.
14526static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
14527                                         TargetLowering::DAGCombinerInfo &DCI) {
14528  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
14529  if (NewOp.getNode())
14530    return NewOp;
14531
14532  SDValue InputVector = N->getOperand(0);
14533  // Detect whether we are trying to convert from mmx to i32 and the bitcast
14534  // from mmx to v2i32 has a single usage.
14535  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
14536      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
14537      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
14538    return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
14539                       N->getValueType(0),
14540                       InputVector.getNode()->getOperand(0));
14541
14542  // Only operate on vectors of 4 elements, where the alternative shuffling
14543  // gets to be more expensive.
14544  if (InputVector.getValueType() != MVT::v4i32)
14545    return SDValue();
14546
14547  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
14548  // single use which is a sign-extend or zero-extend, and all elements are
14549  // used.
14550  SmallVector<SDNode *, 4> Uses;
14551  unsigned ExtractedElements = 0;
14552  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
14553       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
14554    if (UI.getUse().getResNo() != InputVector.getResNo())
14555      return SDValue();
14556
14557    SDNode *Extract = *UI;
14558    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14559      return SDValue();
14560
14561    if (Extract->getValueType(0) != MVT::i32)
14562      return SDValue();
14563    if (!Extract->hasOneUse())
14564      return SDValue();
14565    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
14566        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
14567      return SDValue();
14568    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
14569      return SDValue();
14570
14571    // Record which element was extracted.
14572    ExtractedElements |=
14573      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
14574
14575    Uses.push_back(Extract);
14576  }
14577
14578  // If not all the elements were used, this may not be worthwhile.
14579  if (ExtractedElements != 15)
14580    return SDValue();
14581
14582  // Ok, we've now decided to do the transformation.
14583  DebugLoc dl = InputVector.getDebugLoc();
14584
14585  // Store the value to a temporary stack slot.
14586  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
14587  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
14588                            MachinePointerInfo(), false, false, 0);
14589
14590  // Replace each use (extract) with a load of the appropriate element.
14591  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
14592       UE = Uses.end(); UI != UE; ++UI) {
14593    SDNode *Extract = *UI;
14594
14595    // cOMpute the element's address.
14596    SDValue Idx = Extract->getOperand(1);
14597    unsigned EltSize =
14598        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
14599    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
14600    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14601    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
14602
14603    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
14604                                     StackPtr, OffsetVal);
14605
14606    // Load the scalar.
14607    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
14608                                     ScalarAddr, MachinePointerInfo(),
14609                                     false, false, false, 0);
14610
14611    // Replace the exact with the load.
14612    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
14613  }
14614
14615  // The replacement was made in place; don't return anything.
14616  return SDValue();
14617}
14618
14619/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
14620/// nodes.
14621static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
14622                                    TargetLowering::DAGCombinerInfo &DCI,
14623                                    const X86Subtarget *Subtarget) {
14624  DebugLoc DL = N->getDebugLoc();
14625  SDValue Cond = N->getOperand(0);
14626  // Get the LHS/RHS of the select.
14627  SDValue LHS = N->getOperand(1);
14628  SDValue RHS = N->getOperand(2);
14629  EVT VT = LHS.getValueType();
14630
14631  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
14632  // instructions match the semantics of the common C idiom x<y?x:y but not
14633  // x<=y?x:y, because of how they handle negative zero (which can be
14634  // ignored in unsafe-math mode).
14635  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
14636      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
14637      (Subtarget->hasSSE2() ||
14638       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
14639    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14640
14641    unsigned Opcode = 0;
14642    // Check for x CC y ? x : y.
14643    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14644        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14645      switch (CC) {
14646      default: break;
14647      case ISD::SETULT:
14648        // Converting this to a min would handle NaNs incorrectly, and swapping
14649        // the operands would cause it to handle comparisons between positive
14650        // and negative zero incorrectly.
14651        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14652          if (!DAG.getTarget().Options.UnsafeFPMath &&
14653              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14654            break;
14655          std::swap(LHS, RHS);
14656        }
14657        Opcode = X86ISD::FMIN;
14658        break;
14659      case ISD::SETOLE:
14660        // Converting this to a min would handle comparisons between positive
14661        // and negative zero incorrectly.
14662        if (!DAG.getTarget().Options.UnsafeFPMath &&
14663            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14664          break;
14665        Opcode = X86ISD::FMIN;
14666        break;
14667      case ISD::SETULE:
14668        // Converting this to a min would handle both negative zeros and NaNs
14669        // incorrectly, but we can swap the operands to fix both.
14670        std::swap(LHS, RHS);
14671      case ISD::SETOLT:
14672      case ISD::SETLT:
14673      case ISD::SETLE:
14674        Opcode = X86ISD::FMIN;
14675        break;
14676
14677      case ISD::SETOGE:
14678        // Converting this to a max would handle comparisons between positive
14679        // and negative zero incorrectly.
14680        if (!DAG.getTarget().Options.UnsafeFPMath &&
14681            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14682          break;
14683        Opcode = X86ISD::FMAX;
14684        break;
14685      case ISD::SETUGT:
14686        // Converting this to a max would handle NaNs incorrectly, and swapping
14687        // the operands would cause it to handle comparisons between positive
14688        // and negative zero incorrectly.
14689        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14690          if (!DAG.getTarget().Options.UnsafeFPMath &&
14691              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14692            break;
14693          std::swap(LHS, RHS);
14694        }
14695        Opcode = X86ISD::FMAX;
14696        break;
14697      case ISD::SETUGE:
14698        // Converting this to a max would handle both negative zeros and NaNs
14699        // incorrectly, but we can swap the operands to fix both.
14700        std::swap(LHS, RHS);
14701      case ISD::SETOGT:
14702      case ISD::SETGT:
14703      case ISD::SETGE:
14704        Opcode = X86ISD::FMAX;
14705        break;
14706      }
14707    // Check for x CC y ? y : x -- a min/max with reversed arms.
14708    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14709               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14710      switch (CC) {
14711      default: break;
14712      case ISD::SETOGE:
14713        // Converting this to a min would handle comparisons between positive
14714        // and negative zero incorrectly, and swapping the operands would
14715        // cause it to handle NaNs incorrectly.
14716        if (!DAG.getTarget().Options.UnsafeFPMath &&
14717            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
14718          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14719            break;
14720          std::swap(LHS, RHS);
14721        }
14722        Opcode = X86ISD::FMIN;
14723        break;
14724      case ISD::SETUGT:
14725        // Converting this to a min would handle NaNs incorrectly.
14726        if (!DAG.getTarget().Options.UnsafeFPMath &&
14727            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
14728          break;
14729        Opcode = X86ISD::FMIN;
14730        break;
14731      case ISD::SETUGE:
14732        // Converting this to a min would handle both negative zeros and NaNs
14733        // incorrectly, but we can swap the operands to fix both.
14734        std::swap(LHS, RHS);
14735      case ISD::SETOGT:
14736      case ISD::SETGT:
14737      case ISD::SETGE:
14738        Opcode = X86ISD::FMIN;
14739        break;
14740
14741      case ISD::SETULT:
14742        // Converting this to a max would handle NaNs incorrectly.
14743        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14744          break;
14745        Opcode = X86ISD::FMAX;
14746        break;
14747      case ISD::SETOLE:
14748        // Converting this to a max would handle comparisons between positive
14749        // and negative zero incorrectly, and swapping the operands would
14750        // cause it to handle NaNs incorrectly.
14751        if (!DAG.getTarget().Options.UnsafeFPMath &&
14752            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
14753          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14754            break;
14755          std::swap(LHS, RHS);
14756        }
14757        Opcode = X86ISD::FMAX;
14758        break;
14759      case ISD::SETULE:
14760        // Converting this to a max would handle both negative zeros and NaNs
14761        // incorrectly, but we can swap the operands to fix both.
14762        std::swap(LHS, RHS);
14763      case ISD::SETOLT:
14764      case ISD::SETLT:
14765      case ISD::SETLE:
14766        Opcode = X86ISD::FMAX;
14767        break;
14768      }
14769    }
14770
14771    if (Opcode)
14772      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
14773  }
14774
14775  // If this is a select between two integer constants, try to do some
14776  // optimizations.
14777  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
14778    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
14779      // Don't do this for crazy integer types.
14780      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
14781        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
14782        // so that TrueC (the true value) is larger than FalseC.
14783        bool NeedsCondInvert = false;
14784
14785        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
14786            // Efficiently invertible.
14787            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
14788             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
14789              isa<ConstantSDNode>(Cond.getOperand(1))))) {
14790          NeedsCondInvert = true;
14791          std::swap(TrueC, FalseC);
14792        }
14793
14794        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
14795        if (FalseC->getAPIntValue() == 0 &&
14796            TrueC->getAPIntValue().isPowerOf2()) {
14797          if (NeedsCondInvert) // Invert the condition if needed.
14798            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14799                               DAG.getConstant(1, Cond.getValueType()));
14800
14801          // Zero extend the condition if needed.
14802          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
14803
14804          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14805          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
14806                             DAG.getConstant(ShAmt, MVT::i8));
14807        }
14808
14809        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
14810        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14811          if (NeedsCondInvert) // Invert the condition if needed.
14812            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14813                               DAG.getConstant(1, Cond.getValueType()));
14814
14815          // Zero extend the condition if needed.
14816          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14817                             FalseC->getValueType(0), Cond);
14818          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14819                             SDValue(FalseC, 0));
14820        }
14821
14822        // Optimize cases that will turn into an LEA instruction.  This requires
14823        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14824        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14825          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14826          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14827
14828          bool isFastMultiplier = false;
14829          if (Diff < 10) {
14830            switch ((unsigned char)Diff) {
14831              default: break;
14832              case 1:  // result = add base, cond
14833              case 2:  // result = lea base(    , cond*2)
14834              case 3:  // result = lea base(cond, cond*2)
14835              case 4:  // result = lea base(    , cond*4)
14836              case 5:  // result = lea base(cond, cond*4)
14837              case 8:  // result = lea base(    , cond*8)
14838              case 9:  // result = lea base(cond, cond*8)
14839                isFastMultiplier = true;
14840                break;
14841            }
14842          }
14843
14844          if (isFastMultiplier) {
14845            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14846            if (NeedsCondInvert) // Invert the condition if needed.
14847              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14848                                 DAG.getConstant(1, Cond.getValueType()));
14849
14850            // Zero extend the condition if needed.
14851            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14852                               Cond);
14853            // Scale the condition by the difference.
14854            if (Diff != 1)
14855              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14856                                 DAG.getConstant(Diff, Cond.getValueType()));
14857
14858            // Add the base if non-zero.
14859            if (FalseC->getAPIntValue() != 0)
14860              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14861                                 SDValue(FalseC, 0));
14862            return Cond;
14863          }
14864        }
14865      }
14866  }
14867
14868  // Canonicalize max and min:
14869  // (x > y) ? x : y -> (x >= y) ? x : y
14870  // (x < y) ? x : y -> (x <= y) ? x : y
14871  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
14872  // the need for an extra compare
14873  // against zero. e.g.
14874  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
14875  // subl   %esi, %edi
14876  // testl  %edi, %edi
14877  // movl   $0, %eax
14878  // cmovgl %edi, %eax
14879  // =>
14880  // xorl   %eax, %eax
14881  // subl   %esi, $edi
14882  // cmovsl %eax, %edi
14883  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
14884      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14885      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14886    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14887    switch (CC) {
14888    default: break;
14889    case ISD::SETLT:
14890    case ISD::SETGT: {
14891      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
14892      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
14893                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
14894      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
14895    }
14896    }
14897  }
14898
14899  // If we know that this node is legal then we know that it is going to be
14900  // matched by one of the SSE/AVX BLEND instructions. These instructions only
14901  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
14902  // to simplify previous instructions.
14903  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14904  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
14905      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14906    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14907
14908    // Don't optimize vector selects that map to mask-registers.
14909    if (BitWidth == 1)
14910      return SDValue();
14911
14912    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14913    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14914
14915    APInt KnownZero, KnownOne;
14916    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14917                                          DCI.isBeforeLegalizeOps());
14918    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14919        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14920      DCI.CommitTargetLoweringOpt(TLO);
14921  }
14922
14923  return SDValue();
14924}
14925
14926// Check whether a boolean test is testing a boolean value generated by
14927// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14928// code.
14929//
14930// Simplify the following patterns:
14931// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14932// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14933// to (Op EFLAGS Cond)
14934//
14935// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14936// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14937// to (Op EFLAGS !Cond)
14938//
14939// where Op could be BRCOND or CMOV.
14940//
14941static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14942  // Quit if not CMP and SUB with its value result used.
14943  if (Cmp.getOpcode() != X86ISD::CMP &&
14944      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14945      return SDValue();
14946
14947  // Quit if not used as a boolean value.
14948  if (CC != X86::COND_E && CC != X86::COND_NE)
14949    return SDValue();
14950
14951  // Check CMP operands. One of them should be 0 or 1 and the other should be
14952  // an SetCC or extended from it.
14953  SDValue Op1 = Cmp.getOperand(0);
14954  SDValue Op2 = Cmp.getOperand(1);
14955
14956  SDValue SetCC;
14957  const ConstantSDNode* C = 0;
14958  bool needOppositeCond = (CC == X86::COND_E);
14959
14960  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14961    SetCC = Op2;
14962  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14963    SetCC = Op1;
14964  else // Quit if all operands are not constants.
14965    return SDValue();
14966
14967  if (C->getZExtValue() == 1)
14968    needOppositeCond = !needOppositeCond;
14969  else if (C->getZExtValue() != 0)
14970    // Quit if the constant is neither 0 or 1.
14971    return SDValue();
14972
14973  // Skip 'zext' node.
14974  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14975    SetCC = SetCC.getOperand(0);
14976
14977  switch (SetCC.getOpcode()) {
14978  case X86ISD::SETCC:
14979    // Set the condition code or opposite one if necessary.
14980    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14981    if (needOppositeCond)
14982      CC = X86::GetOppositeBranchCondition(CC);
14983    return SetCC.getOperand(1);
14984  case X86ISD::CMOV: {
14985    // Check whether false/true value has canonical one, i.e. 0 or 1.
14986    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
14987    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
14988    // Quit if true value is not a constant.
14989    if (!TVal)
14990      return SDValue();
14991    // Quit if false value is not a constant.
14992    if (!FVal) {
14993      // A special case for rdrand, where 0 is set if false cond is found.
14994      SDValue Op = SetCC.getOperand(0);
14995      if (Op.getOpcode() != X86ISD::RDRAND)
14996        return SDValue();
14997    }
14998    // Quit if false value is not the constant 0 or 1.
14999    bool FValIsFalse = true;
15000    if (FVal && FVal->getZExtValue() != 0) {
15001      if (FVal->getZExtValue() != 1)
15002        return SDValue();
15003      // If FVal is 1, opposite cond is needed.
15004      needOppositeCond = !needOppositeCond;
15005      FValIsFalse = false;
15006    }
15007    // Quit if TVal is not the constant opposite of FVal.
15008    if (FValIsFalse && TVal->getZExtValue() != 1)
15009      return SDValue();
15010    if (!FValIsFalse && TVal->getZExtValue() != 0)
15011      return SDValue();
15012    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
15013    if (needOppositeCond)
15014      CC = X86::GetOppositeBranchCondition(CC);
15015    return SetCC.getOperand(3);
15016  }
15017  }
15018
15019  return SDValue();
15020}
15021
15022/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
15023static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
15024                                  TargetLowering::DAGCombinerInfo &DCI,
15025                                  const X86Subtarget *Subtarget) {
15026  DebugLoc DL = N->getDebugLoc();
15027
15028  // If the flag operand isn't dead, don't touch this CMOV.
15029  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
15030    return SDValue();
15031
15032  SDValue FalseOp = N->getOperand(0);
15033  SDValue TrueOp = N->getOperand(1);
15034  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
15035  SDValue Cond = N->getOperand(3);
15036
15037  if (CC == X86::COND_E || CC == X86::COND_NE) {
15038    switch (Cond.getOpcode()) {
15039    default: break;
15040    case X86ISD::BSR:
15041    case X86ISD::BSF:
15042      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
15043      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
15044        return (CC == X86::COND_E) ? FalseOp : TrueOp;
15045    }
15046  }
15047
15048  SDValue Flags;
15049
15050  Flags = checkBoolTestSetCCCombine(Cond, CC);
15051  if (Flags.getNode() &&
15052      // Extra check as FCMOV only supports a subset of X86 cond.
15053      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
15054    SDValue Ops[] = { FalseOp, TrueOp,
15055                      DAG.getConstant(CC, MVT::i8), Flags };
15056    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
15057                       Ops, array_lengthof(Ops));
15058  }
15059
15060  // If this is a select between two integer constants, try to do some
15061  // optimizations.  Note that the operands are ordered the opposite of SELECT
15062  // operands.
15063  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
15064    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
15065      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
15066      // larger than FalseC (the false value).
15067      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
15068        CC = X86::GetOppositeBranchCondition(CC);
15069        std::swap(TrueC, FalseC);
15070        std::swap(TrueOp, FalseOp);
15071      }
15072
15073      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
15074      // This is efficient for any integer data type (including i8/i16) and
15075      // shift amount.
15076      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
15077        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15078                           DAG.getConstant(CC, MVT::i8), Cond);
15079
15080        // Zero extend the condition if needed.
15081        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
15082
15083        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
15084        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
15085                           DAG.getConstant(ShAmt, MVT::i8));
15086        if (N->getNumValues() == 2)  // Dead flag value?
15087          return DCI.CombineTo(N, Cond, SDValue());
15088        return Cond;
15089      }
15090
15091      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
15092      // for any integer data type, including i8/i16.
15093      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
15094        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15095                           DAG.getConstant(CC, MVT::i8), Cond);
15096
15097        // Zero extend the condition if needed.
15098        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
15099                           FalseC->getValueType(0), Cond);
15100        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15101                           SDValue(FalseC, 0));
15102
15103        if (N->getNumValues() == 2)  // Dead flag value?
15104          return DCI.CombineTo(N, Cond, SDValue());
15105        return Cond;
15106      }
15107
15108      // Optimize cases that will turn into an LEA instruction.  This requires
15109      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
15110      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
15111        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
15112        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
15113
15114        bool isFastMultiplier = false;
15115        if (Diff < 10) {
15116          switch ((unsigned char)Diff) {
15117          default: break;
15118          case 1:  // result = add base, cond
15119          case 2:  // result = lea base(    , cond*2)
15120          case 3:  // result = lea base(cond, cond*2)
15121          case 4:  // result = lea base(    , cond*4)
15122          case 5:  // result = lea base(cond, cond*4)
15123          case 8:  // result = lea base(    , cond*8)
15124          case 9:  // result = lea base(cond, cond*8)
15125            isFastMultiplier = true;
15126            break;
15127          }
15128        }
15129
15130        if (isFastMultiplier) {
15131          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
15132          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
15133                             DAG.getConstant(CC, MVT::i8), Cond);
15134          // Zero extend the condition if needed.
15135          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
15136                             Cond);
15137          // Scale the condition by the difference.
15138          if (Diff != 1)
15139            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15140                               DAG.getConstant(Diff, Cond.getValueType()));
15141
15142          // Add the base if non-zero.
15143          if (FalseC->getAPIntValue() != 0)
15144            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15145                               SDValue(FalseC, 0));
15146          if (N->getNumValues() == 2)  // Dead flag value?
15147            return DCI.CombineTo(N, Cond, SDValue());
15148          return Cond;
15149        }
15150      }
15151    }
15152  }
15153
15154  // Handle these cases:
15155  //   (select (x != c), e, c) -> select (x != c), e, x),
15156  //   (select (x == c), c, e) -> select (x == c), x, e)
15157  // where the c is an integer constant, and the "select" is the combination
15158  // of CMOV and CMP.
15159  //
15160  // The rationale for this change is that the conditional-move from a constant
15161  // needs two instructions, however, conditional-move from a register needs
15162  // only one instruction.
15163  //
15164  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
15165  //  some instruction-combining opportunities. This opt needs to be
15166  //  postponed as late as possible.
15167  //
15168  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
15169    // the DCI.xxxx conditions are provided to postpone the optimization as
15170    // late as possible.
15171
15172    ConstantSDNode *CmpAgainst = 0;
15173    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
15174        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
15175        dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) {
15176
15177      if (CC == X86::COND_NE &&
15178          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
15179        CC = X86::GetOppositeBranchCondition(CC);
15180        std::swap(TrueOp, FalseOp);
15181      }
15182
15183      if (CC == X86::COND_E &&
15184          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
15185        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
15186                          DAG.getConstant(CC, MVT::i8), Cond };
15187        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
15188                           array_lengthof(Ops));
15189      }
15190    }
15191  }
15192
15193  return SDValue();
15194}
15195
15196
15197/// PerformMulCombine - Optimize a single multiply with constant into two
15198/// in order to implement it with two cheaper instructions, e.g.
15199/// LEA + SHL, LEA + LEA.
15200static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
15201                                 TargetLowering::DAGCombinerInfo &DCI) {
15202  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15203    return SDValue();
15204
15205  EVT VT = N->getValueType(0);
15206  if (VT != MVT::i64)
15207    return SDValue();
15208
15209  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15210  if (!C)
15211    return SDValue();
15212  uint64_t MulAmt = C->getZExtValue();
15213  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
15214    return SDValue();
15215
15216  uint64_t MulAmt1 = 0;
15217  uint64_t MulAmt2 = 0;
15218  if ((MulAmt % 9) == 0) {
15219    MulAmt1 = 9;
15220    MulAmt2 = MulAmt / 9;
15221  } else if ((MulAmt % 5) == 0) {
15222    MulAmt1 = 5;
15223    MulAmt2 = MulAmt / 5;
15224  } else if ((MulAmt % 3) == 0) {
15225    MulAmt1 = 3;
15226    MulAmt2 = MulAmt / 3;
15227  }
15228  if (MulAmt2 &&
15229      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
15230    DebugLoc DL = N->getDebugLoc();
15231
15232    if (isPowerOf2_64(MulAmt2) &&
15233        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
15234      // If second multiplifer is pow2, issue it first. We want the multiply by
15235      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
15236      // is an add.
15237      std::swap(MulAmt1, MulAmt2);
15238
15239    SDValue NewMul;
15240    if (isPowerOf2_64(MulAmt1))
15241      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15242                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
15243    else
15244      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
15245                           DAG.getConstant(MulAmt1, VT));
15246
15247    if (isPowerOf2_64(MulAmt2))
15248      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
15249                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
15250    else
15251      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
15252                           DAG.getConstant(MulAmt2, VT));
15253
15254    // Do not add new nodes to DAG combiner worklist.
15255    DCI.CombineTo(N, NewMul, false);
15256  }
15257  return SDValue();
15258}
15259
15260static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
15261  SDValue N0 = N->getOperand(0);
15262  SDValue N1 = N->getOperand(1);
15263  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
15264  EVT VT = N0.getValueType();
15265
15266  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
15267  // since the result of setcc_c is all zero's or all ones.
15268  if (VT.isInteger() && !VT.isVector() &&
15269      N1C && N0.getOpcode() == ISD::AND &&
15270      N0.getOperand(1).getOpcode() == ISD::Constant) {
15271    SDValue N00 = N0.getOperand(0);
15272    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
15273        ((N00.getOpcode() == ISD::ANY_EXTEND ||
15274          N00.getOpcode() == ISD::ZERO_EXTEND) &&
15275         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
15276      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
15277      APInt ShAmt = N1C->getAPIntValue();
15278      Mask = Mask.shl(ShAmt);
15279      if (Mask != 0)
15280        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
15281                           N00, DAG.getConstant(Mask, VT));
15282    }
15283  }
15284
15285
15286  // Hardware support for vector shifts is sparse which makes us scalarize the
15287  // vector operations in many cases. Also, on sandybridge ADD is faster than
15288  // shl.
15289  // (shl V, 1) -> add V,V
15290  if (isSplatVector(N1.getNode())) {
15291    assert(N0.getValueType().isVector() && "Invalid vector shift type");
15292    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
15293    // We shift all of the values by one. In many cases we do not have
15294    // hardware support for this operation. This is better expressed as an ADD
15295    // of two values.
15296    if (N1C && (1 == N1C->getZExtValue())) {
15297      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
15298    }
15299  }
15300
15301  return SDValue();
15302}
15303
15304/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
15305///                       when possible.
15306static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
15307                                   TargetLowering::DAGCombinerInfo &DCI,
15308                                   const X86Subtarget *Subtarget) {
15309  EVT VT = N->getValueType(0);
15310  if (N->getOpcode() == ISD::SHL) {
15311    SDValue V = PerformSHLCombine(N, DAG);
15312    if (V.getNode()) return V;
15313  }
15314
15315  // On X86 with SSE2 support, we can transform this to a vector shift if
15316  // all elements are shifted by the same amount.  We can't do this in legalize
15317  // because the a constant vector is typically transformed to a constant pool
15318  // so we have no knowledge of the shift amount.
15319  if (!Subtarget->hasSSE2())
15320    return SDValue();
15321
15322  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
15323      (!Subtarget->hasInt256() ||
15324       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
15325    return SDValue();
15326
15327  SDValue ShAmtOp = N->getOperand(1);
15328  EVT EltVT = VT.getVectorElementType();
15329  DebugLoc DL = N->getDebugLoc();
15330  SDValue BaseShAmt = SDValue();
15331  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
15332    unsigned NumElts = VT.getVectorNumElements();
15333    unsigned i = 0;
15334    for (; i != NumElts; ++i) {
15335      SDValue Arg = ShAmtOp.getOperand(i);
15336      if (Arg.getOpcode() == ISD::UNDEF) continue;
15337      BaseShAmt = Arg;
15338      break;
15339    }
15340    // Handle the case where the build_vector is all undef
15341    // FIXME: Should DAG allow this?
15342    if (i == NumElts)
15343      return SDValue();
15344
15345    for (; i != NumElts; ++i) {
15346      SDValue Arg = ShAmtOp.getOperand(i);
15347      if (Arg.getOpcode() == ISD::UNDEF) continue;
15348      if (Arg != BaseShAmt) {
15349        return SDValue();
15350      }
15351    }
15352  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
15353             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
15354    SDValue InVec = ShAmtOp.getOperand(0);
15355    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
15356      unsigned NumElts = InVec.getValueType().getVectorNumElements();
15357      unsigned i = 0;
15358      for (; i != NumElts; ++i) {
15359        SDValue Arg = InVec.getOperand(i);
15360        if (Arg.getOpcode() == ISD::UNDEF) continue;
15361        BaseShAmt = Arg;
15362        break;
15363      }
15364    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15365       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
15366         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
15367         if (C->getZExtValue() == SplatIdx)
15368           BaseShAmt = InVec.getOperand(1);
15369       }
15370    }
15371    if (BaseShAmt.getNode() == 0) {
15372      // Don't create instructions with illegal types after legalize
15373      // types has run.
15374      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
15375          !DCI.isBeforeLegalize())
15376        return SDValue();
15377
15378      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
15379                              DAG.getIntPtrConstant(0));
15380    }
15381  } else
15382    return SDValue();
15383
15384  // The shift amount is an i32.
15385  if (EltVT.bitsGT(MVT::i32))
15386    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
15387  else if (EltVT.bitsLT(MVT::i32))
15388    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
15389
15390  // The shift amount is identical so we can do a vector shift.
15391  SDValue  ValOp = N->getOperand(0);
15392  switch (N->getOpcode()) {
15393  default:
15394    llvm_unreachable("Unknown shift opcode!");
15395  case ISD::SHL:
15396    switch (VT.getSimpleVT().SimpleTy) {
15397    default: return SDValue();
15398    case MVT::v2i64:
15399    case MVT::v4i32:
15400    case MVT::v8i16:
15401    case MVT::v4i64:
15402    case MVT::v8i32:
15403    case MVT::v16i16:
15404      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
15405    }
15406  case ISD::SRA:
15407    switch (VT.getSimpleVT().SimpleTy) {
15408    default: return SDValue();
15409    case MVT::v4i32:
15410    case MVT::v8i16:
15411    case MVT::v8i32:
15412    case MVT::v16i16:
15413      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
15414    }
15415  case ISD::SRL:
15416    switch (VT.getSimpleVT().SimpleTy) {
15417    default: return SDValue();
15418    case MVT::v2i64:
15419    case MVT::v4i32:
15420    case MVT::v8i16:
15421    case MVT::v4i64:
15422    case MVT::v8i32:
15423    case MVT::v16i16:
15424      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
15425    }
15426  }
15427}
15428
15429
15430// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
15431// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
15432// and friends.  Likewise for OR -> CMPNEQSS.
15433static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
15434                            TargetLowering::DAGCombinerInfo &DCI,
15435                            const X86Subtarget *Subtarget) {
15436  unsigned opcode;
15437
15438  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
15439  // we're requiring SSE2 for both.
15440  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
15441    SDValue N0 = N->getOperand(0);
15442    SDValue N1 = N->getOperand(1);
15443    SDValue CMP0 = N0->getOperand(1);
15444    SDValue CMP1 = N1->getOperand(1);
15445    DebugLoc DL = N->getDebugLoc();
15446
15447    // The SETCCs should both refer to the same CMP.
15448    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
15449      return SDValue();
15450
15451    SDValue CMP00 = CMP0->getOperand(0);
15452    SDValue CMP01 = CMP0->getOperand(1);
15453    EVT     VT    = CMP00.getValueType();
15454
15455    if (VT == MVT::f32 || VT == MVT::f64) {
15456      bool ExpectingFlags = false;
15457      // Check for any users that want flags:
15458      for (SDNode::use_iterator UI = N->use_begin(),
15459             UE = N->use_end();
15460           !ExpectingFlags && UI != UE; ++UI)
15461        switch (UI->getOpcode()) {
15462        default:
15463        case ISD::BR_CC:
15464        case ISD::BRCOND:
15465        case ISD::SELECT:
15466          ExpectingFlags = true;
15467          break;
15468        case ISD::CopyToReg:
15469        case ISD::SIGN_EXTEND:
15470        case ISD::ZERO_EXTEND:
15471        case ISD::ANY_EXTEND:
15472          break;
15473        }
15474
15475      if (!ExpectingFlags) {
15476        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
15477        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
15478
15479        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
15480          X86::CondCode tmp = cc0;
15481          cc0 = cc1;
15482          cc1 = tmp;
15483        }
15484
15485        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
15486            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
15487          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
15488          X86ISD::NodeType NTOperator = is64BitFP ?
15489            X86ISD::FSETCCsd : X86ISD::FSETCCss;
15490          // FIXME: need symbolic constants for these magic numbers.
15491          // See X86ATTInstPrinter.cpp:printSSECC().
15492          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
15493          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
15494                                              DAG.getConstant(x86cc, MVT::i8));
15495          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
15496                                              OnesOrZeroesF);
15497          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
15498                                      DAG.getConstant(1, MVT::i32));
15499          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
15500          return OneBitOfTruth;
15501        }
15502      }
15503    }
15504  }
15505  return SDValue();
15506}
15507
15508/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
15509/// so it can be folded inside ANDNP.
15510static bool CanFoldXORWithAllOnes(const SDNode *N) {
15511  EVT VT = N->getValueType(0);
15512
15513  // Match direct AllOnes for 128 and 256-bit vectors
15514  if (ISD::isBuildVectorAllOnes(N))
15515    return true;
15516
15517  // Look through a bit convert.
15518  if (N->getOpcode() == ISD::BITCAST)
15519    N = N->getOperand(0).getNode();
15520
15521  // Sometimes the operand may come from a insert_subvector building a 256-bit
15522  // allones vector
15523  if (VT.is256BitVector() &&
15524      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
15525    SDValue V1 = N->getOperand(0);
15526    SDValue V2 = N->getOperand(1);
15527
15528    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
15529        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
15530        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
15531        ISD::isBuildVectorAllOnes(V2.getNode()))
15532      return true;
15533  }
15534
15535  return false;
15536}
15537
15538static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
15539                                 TargetLowering::DAGCombinerInfo &DCI,
15540                                 const X86Subtarget *Subtarget) {
15541  if (DCI.isBeforeLegalizeOps())
15542    return SDValue();
15543
15544  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
15545  if (R.getNode())
15546    return R;
15547
15548  EVT VT = N->getValueType(0);
15549
15550  // Create ANDN, BLSI, and BLSR instructions
15551  // BLSI is X & (-X)
15552  // BLSR is X & (X-1)
15553  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
15554    SDValue N0 = N->getOperand(0);
15555    SDValue N1 = N->getOperand(1);
15556    DebugLoc DL = N->getDebugLoc();
15557
15558    // Check LHS for not
15559    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
15560      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
15561    // Check RHS for not
15562    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
15563      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
15564
15565    // Check LHS for neg
15566    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
15567        isZero(N0.getOperand(0)))
15568      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
15569
15570    // Check RHS for neg
15571    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
15572        isZero(N1.getOperand(0)))
15573      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
15574
15575    // Check LHS for X-1
15576    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15577        isAllOnes(N0.getOperand(1)))
15578      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
15579
15580    // Check RHS for X-1
15581    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15582        isAllOnes(N1.getOperand(1)))
15583      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
15584
15585    return SDValue();
15586  }
15587
15588  // Want to form ANDNP nodes:
15589  // 1) In the hopes of then easily combining them with OR and AND nodes
15590  //    to form PBLEND/PSIGN.
15591  // 2) To match ANDN packed intrinsics
15592  if (VT != MVT::v2i64 && VT != MVT::v4i64)
15593    return SDValue();
15594
15595  SDValue N0 = N->getOperand(0);
15596  SDValue N1 = N->getOperand(1);
15597  DebugLoc DL = N->getDebugLoc();
15598
15599  // Check LHS for vnot
15600  if (N0.getOpcode() == ISD::XOR &&
15601      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
15602      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
15603    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
15604
15605  // Check RHS for vnot
15606  if (N1.getOpcode() == ISD::XOR &&
15607      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
15608      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
15609    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
15610
15611  return SDValue();
15612}
15613
15614static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
15615                                TargetLowering::DAGCombinerInfo &DCI,
15616                                const X86Subtarget *Subtarget) {
15617  if (DCI.isBeforeLegalizeOps())
15618    return SDValue();
15619
15620  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
15621  if (R.getNode())
15622    return R;
15623
15624  EVT VT = N->getValueType(0);
15625
15626  SDValue N0 = N->getOperand(0);
15627  SDValue N1 = N->getOperand(1);
15628
15629  // look for psign/blend
15630  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
15631    if (!Subtarget->hasSSSE3() ||
15632        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
15633      return SDValue();
15634
15635    // Canonicalize pandn to RHS
15636    if (N0.getOpcode() == X86ISD::ANDNP)
15637      std::swap(N0, N1);
15638    // or (and (m, y), (pandn m, x))
15639    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
15640      SDValue Mask = N1.getOperand(0);
15641      SDValue X    = N1.getOperand(1);
15642      SDValue Y;
15643      if (N0.getOperand(0) == Mask)
15644        Y = N0.getOperand(1);
15645      if (N0.getOperand(1) == Mask)
15646        Y = N0.getOperand(0);
15647
15648      // Check to see if the mask appeared in both the AND and ANDNP and
15649      if (!Y.getNode())
15650        return SDValue();
15651
15652      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
15653      // Look through mask bitcast.
15654      if (Mask.getOpcode() == ISD::BITCAST)
15655        Mask = Mask.getOperand(0);
15656      if (X.getOpcode() == ISD::BITCAST)
15657        X = X.getOperand(0);
15658      if (Y.getOpcode() == ISD::BITCAST)
15659        Y = Y.getOperand(0);
15660
15661      EVT MaskVT = Mask.getValueType();
15662
15663      // Validate that the Mask operand is a vector sra node.
15664      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
15665      // there is no psrai.b
15666      if (Mask.getOpcode() != X86ISD::VSRAI)
15667        return SDValue();
15668
15669      // Check that the SRA is all signbits.
15670      SDValue SraC = Mask.getOperand(1);
15671      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
15672      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
15673      if ((SraAmt + 1) != EltBits)
15674        return SDValue();
15675
15676      DebugLoc DL = N->getDebugLoc();
15677
15678      // We are going to replace the AND, OR, NAND with either BLEND
15679      // or PSIGN, which only look at the MSB. The VSRAI instruction
15680      // does not affect the highest bit, so we can get rid of it.
15681      Mask = Mask.getOperand(0);
15682
15683      // Now we know we at least have a plendvb with the mask val.  See if
15684      // we can form a psignb/w/d.
15685      // psign = x.type == y.type == mask.type && y = sub(0, x);
15686      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
15687          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
15688          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
15689        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
15690               "Unsupported VT for PSIGN");
15691        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask);
15692        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15693      }
15694      // PBLENDVB only available on SSE 4.1
15695      if (!Subtarget->hasSSE41())
15696        return SDValue();
15697
15698      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
15699
15700      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
15701      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
15702      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
15703      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
15704      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15705    }
15706  }
15707
15708  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
15709    return SDValue();
15710
15711  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
15712  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
15713    std::swap(N0, N1);
15714  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
15715    return SDValue();
15716  if (!N0.hasOneUse() || !N1.hasOneUse())
15717    return SDValue();
15718
15719  SDValue ShAmt0 = N0.getOperand(1);
15720  if (ShAmt0.getValueType() != MVT::i8)
15721    return SDValue();
15722  SDValue ShAmt1 = N1.getOperand(1);
15723  if (ShAmt1.getValueType() != MVT::i8)
15724    return SDValue();
15725  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
15726    ShAmt0 = ShAmt0.getOperand(0);
15727  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
15728    ShAmt1 = ShAmt1.getOperand(0);
15729
15730  DebugLoc DL = N->getDebugLoc();
15731  unsigned Opc = X86ISD::SHLD;
15732  SDValue Op0 = N0.getOperand(0);
15733  SDValue Op1 = N1.getOperand(0);
15734  if (ShAmt0.getOpcode() == ISD::SUB) {
15735    Opc = X86ISD::SHRD;
15736    std::swap(Op0, Op1);
15737    std::swap(ShAmt0, ShAmt1);
15738  }
15739
15740  unsigned Bits = VT.getSizeInBits();
15741  if (ShAmt1.getOpcode() == ISD::SUB) {
15742    SDValue Sum = ShAmt1.getOperand(0);
15743    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
15744      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
15745      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
15746        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
15747      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
15748        return DAG.getNode(Opc, DL, VT,
15749                           Op0, Op1,
15750                           DAG.getNode(ISD::TRUNCATE, DL,
15751                                       MVT::i8, ShAmt0));
15752    }
15753  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
15754    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
15755    if (ShAmt0C &&
15756        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
15757      return DAG.getNode(Opc, DL, VT,
15758                         N0.getOperand(0), N1.getOperand(0),
15759                         DAG.getNode(ISD::TRUNCATE, DL,
15760                                       MVT::i8, ShAmt0));
15761  }
15762
15763  return SDValue();
15764}
15765
15766// Generate NEG and CMOV for integer abs.
15767static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
15768  EVT VT = N->getValueType(0);
15769
15770  // Since X86 does not have CMOV for 8-bit integer, we don't convert
15771  // 8-bit integer abs to NEG and CMOV.
15772  if (VT.isInteger() && VT.getSizeInBits() == 8)
15773    return SDValue();
15774
15775  SDValue N0 = N->getOperand(0);
15776  SDValue N1 = N->getOperand(1);
15777  DebugLoc DL = N->getDebugLoc();
15778
15779  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
15780  // and change it to SUB and CMOV.
15781  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
15782      N0.getOpcode() == ISD::ADD &&
15783      N0.getOperand(1) == N1 &&
15784      N1.getOpcode() == ISD::SRA &&
15785      N1.getOperand(0) == N0.getOperand(0))
15786    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
15787      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
15788        // Generate SUB & CMOV.
15789        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
15790                                  DAG.getConstant(0, VT), N0.getOperand(0));
15791
15792        SDValue Ops[] = { N0.getOperand(0), Neg,
15793                          DAG.getConstant(X86::COND_GE, MVT::i8),
15794                          SDValue(Neg.getNode(), 1) };
15795        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
15796                           Ops, array_lengthof(Ops));
15797      }
15798  return SDValue();
15799}
15800
15801// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
15802static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
15803                                 TargetLowering::DAGCombinerInfo &DCI,
15804                                 const X86Subtarget *Subtarget) {
15805  if (DCI.isBeforeLegalizeOps())
15806    return SDValue();
15807
15808  if (Subtarget->hasCMov()) {
15809    SDValue RV = performIntegerAbsCombine(N, DAG);
15810    if (RV.getNode())
15811      return RV;
15812  }
15813
15814  // Try forming BMI if it is available.
15815  if (!Subtarget->hasBMI())
15816    return SDValue();
15817
15818  EVT VT = N->getValueType(0);
15819
15820  if (VT != MVT::i32 && VT != MVT::i64)
15821    return SDValue();
15822
15823  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
15824
15825  // Create BLSMSK instructions by finding X ^ (X-1)
15826  SDValue N0 = N->getOperand(0);
15827  SDValue N1 = N->getOperand(1);
15828  DebugLoc DL = N->getDebugLoc();
15829
15830  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15831      isAllOnes(N0.getOperand(1)))
15832    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
15833
15834  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15835      isAllOnes(N1.getOperand(1)))
15836    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
15837
15838  return SDValue();
15839}
15840
15841/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
15842static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
15843                                  TargetLowering::DAGCombinerInfo &DCI,
15844                                  const X86Subtarget *Subtarget) {
15845  LoadSDNode *Ld = cast<LoadSDNode>(N);
15846  EVT RegVT = Ld->getValueType(0);
15847  EVT MemVT = Ld->getMemoryVT();
15848  DebugLoc dl = Ld->getDebugLoc();
15849  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15850
15851  ISD::LoadExtType Ext = Ld->getExtensionType();
15852
15853  // If this is a vector EXT Load then attempt to optimize it using a
15854  // shuffle. We need SSSE3 shuffles.
15855  // TODO: It is possible to support ZExt by zeroing the undef values
15856  // during the shuffle phase or after the shuffle.
15857  if (RegVT.isVector() && RegVT.isInteger() &&
15858      Ext == ISD::EXTLOAD && Subtarget->hasSSSE3()) {
15859    assert(MemVT != RegVT && "Cannot extend to the same type");
15860    assert(MemVT.isVector() && "Must load a vector from memory");
15861
15862    unsigned NumElems = RegVT.getVectorNumElements();
15863    unsigned RegSz = RegVT.getSizeInBits();
15864    unsigned MemSz = MemVT.getSizeInBits();
15865    assert(RegSz > MemSz && "Register size must be greater than the mem size");
15866
15867    // All sizes must be a power of two.
15868    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
15869      return SDValue();
15870
15871    // Attempt to load the original value using scalar loads.
15872    // Find the largest scalar type that divides the total loaded size.
15873    MVT SclrLoadTy = MVT::i8;
15874    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15875         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15876      MVT Tp = (MVT::SimpleValueType)tp;
15877      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15878        SclrLoadTy = Tp;
15879      }
15880    }
15881
15882    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15883    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15884        (64 <= MemSz))
15885      SclrLoadTy = MVT::f64;
15886
15887    // Calculate the number of scalar loads that we need to perform
15888    // in order to load our vector from memory.
15889    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15890
15891    // Represent our vector as a sequence of elements which are the
15892    // largest scalar that we can load.
15893    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15894      RegSz/SclrLoadTy.getSizeInBits());
15895
15896    // Represent the data using the same element type that is stored in
15897    // memory. In practice, we ''widen'' MemVT.
15898    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15899                                  RegSz/MemVT.getScalarType().getSizeInBits());
15900
15901    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15902      "Invalid vector type");
15903
15904    // We can't shuffle using an illegal type.
15905    if (!TLI.isTypeLegal(WideVecVT))
15906      return SDValue();
15907
15908    SmallVector<SDValue, 8> Chains;
15909    SDValue Ptr = Ld->getBasePtr();
15910    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15911                                        TLI.getPointerTy());
15912    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15913
15914    for (unsigned i = 0; i < NumLoads; ++i) {
15915      // Perform a single load.
15916      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15917                                       Ptr, Ld->getPointerInfo(),
15918                                       Ld->isVolatile(), Ld->isNonTemporal(),
15919                                       Ld->isInvariant(), Ld->getAlignment());
15920      Chains.push_back(ScalarLoad.getValue(1));
15921      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15922      // another round of DAGCombining.
15923      if (i == 0)
15924        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15925      else
15926        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15927                          ScalarLoad, DAG.getIntPtrConstant(i));
15928
15929      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15930    }
15931
15932    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15933                               Chains.size());
15934
15935    // Bitcast the loaded value to a vector of the original element type, in
15936    // the size of the target vector type.
15937    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15938    unsigned SizeRatio = RegSz/MemSz;
15939
15940    // Redistribute the loaded elements into the different locations.
15941    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15942    for (unsigned i = 0; i != NumElems; ++i)
15943      ShuffleVec[i*SizeRatio] = i;
15944
15945    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15946                                         DAG.getUNDEF(WideVecVT),
15947                                         &ShuffleVec[0]);
15948
15949    // Bitcast to the requested type.
15950    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15951    // Replace the original load with the new sequence
15952    // and return the new chain.
15953    return DCI.CombineTo(N, Shuff, TF, true);
15954  }
15955
15956  return SDValue();
15957}
15958
15959/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15960static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15961                                   const X86Subtarget *Subtarget) {
15962  StoreSDNode *St = cast<StoreSDNode>(N);
15963  EVT VT = St->getValue().getValueType();
15964  EVT StVT = St->getMemoryVT();
15965  DebugLoc dl = St->getDebugLoc();
15966  SDValue StoredVal = St->getOperand(1);
15967  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15968
15969  // If we are saving a concatenation of two XMM registers, perform two stores.
15970  // On Sandy Bridge, 256-bit memory operations are executed by two
15971  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15972  // memory  operation.
15973  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
15974      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15975      StoredVal.getNumOperands() == 2) {
15976    SDValue Value0 = StoredVal.getOperand(0);
15977    SDValue Value1 = StoredVal.getOperand(1);
15978
15979    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15980    SDValue Ptr0 = St->getBasePtr();
15981    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15982
15983    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15984                                St->getPointerInfo(), St->isVolatile(),
15985                                St->isNonTemporal(), St->getAlignment());
15986    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15987                                St->getPointerInfo(), St->isVolatile(),
15988                                St->isNonTemporal(), St->getAlignment());
15989    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15990  }
15991
15992  // Optimize trunc store (of multiple scalars) to shuffle and store.
15993  // First, pack all of the elements in one place. Next, store to memory
15994  // in fewer chunks.
15995  if (St->isTruncatingStore() && VT.isVector()) {
15996    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15997    unsigned NumElems = VT.getVectorNumElements();
15998    assert(StVT != VT && "Cannot truncate to the same type");
15999    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
16000    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
16001
16002    // From, To sizes and ElemCount must be pow of two
16003    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
16004    // We are going to use the original vector elt for storing.
16005    // Accumulated smaller vector elements must be a multiple of the store size.
16006    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
16007
16008    unsigned SizeRatio  = FromSz / ToSz;
16009
16010    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
16011
16012    // Create a type on which we perform the shuffle
16013    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
16014            StVT.getScalarType(), NumElems*SizeRatio);
16015
16016    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16017
16018    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
16019    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16020    for (unsigned i = 0; i != NumElems; ++i)
16021      ShuffleVec[i] = i * SizeRatio;
16022
16023    // Can't shuffle using an illegal type.
16024    if (!TLI.isTypeLegal(WideVecVT))
16025      return SDValue();
16026
16027    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
16028                                         DAG.getUNDEF(WideVecVT),
16029                                         &ShuffleVec[0]);
16030    // At this point all of the data is stored at the bottom of the
16031    // register. We now need to save it to mem.
16032
16033    // Find the largest store unit
16034    MVT StoreType = MVT::i8;
16035    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
16036         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
16037      MVT Tp = (MVT::SimpleValueType)tp;
16038      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
16039        StoreType = Tp;
16040    }
16041
16042    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
16043    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
16044        (64 <= NumElems * ToSz))
16045      StoreType = MVT::f64;
16046
16047    // Bitcast the original vector into a vector of store-size units
16048    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
16049            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
16050    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16051    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
16052    SmallVector<SDValue, 8> Chains;
16053    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
16054                                        TLI.getPointerTy());
16055    SDValue Ptr = St->getBasePtr();
16056
16057    // Perform one or more big stores into memory.
16058    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
16059      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
16060                                   StoreType, ShuffWide,
16061                                   DAG.getIntPtrConstant(i));
16062      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
16063                                St->getPointerInfo(), St->isVolatile(),
16064                                St->isNonTemporal(), St->getAlignment());
16065      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
16066      Chains.push_back(Ch);
16067    }
16068
16069    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
16070                               Chains.size());
16071  }
16072
16073
16074  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
16075  // the FP state in cases where an emms may be missing.
16076  // A preferable solution to the general problem is to figure out the right
16077  // places to insert EMMS.  This qualifies as a quick hack.
16078
16079  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
16080  if (VT.getSizeInBits() != 64)
16081    return SDValue();
16082
16083  const Function *F = DAG.getMachineFunction().getFunction();
16084  bool NoImplicitFloatOps = F->getFnAttributes().
16085    hasAttribute(Attributes::NoImplicitFloat);
16086  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
16087                     && Subtarget->hasSSE2();
16088  if ((VT.isVector() ||
16089       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
16090      isa<LoadSDNode>(St->getValue()) &&
16091      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
16092      St->getChain().hasOneUse() && !St->isVolatile()) {
16093    SDNode* LdVal = St->getValue().getNode();
16094    LoadSDNode *Ld = 0;
16095    int TokenFactorIndex = -1;
16096    SmallVector<SDValue, 8> Ops;
16097    SDNode* ChainVal = St->getChain().getNode();
16098    // Must be a store of a load.  We currently handle two cases:  the load
16099    // is a direct child, and it's under an intervening TokenFactor.  It is
16100    // possible to dig deeper under nested TokenFactors.
16101    if (ChainVal == LdVal)
16102      Ld = cast<LoadSDNode>(St->getChain());
16103    else if (St->getValue().hasOneUse() &&
16104             ChainVal->getOpcode() == ISD::TokenFactor) {
16105      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
16106        if (ChainVal->getOperand(i).getNode() == LdVal) {
16107          TokenFactorIndex = i;
16108          Ld = cast<LoadSDNode>(St->getValue());
16109        } else
16110          Ops.push_back(ChainVal->getOperand(i));
16111      }
16112    }
16113
16114    if (!Ld || !ISD::isNormalLoad(Ld))
16115      return SDValue();
16116
16117    // If this is not the MMX case, i.e. we are just turning i64 load/store
16118    // into f64 load/store, avoid the transformation if there are multiple
16119    // uses of the loaded value.
16120    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
16121      return SDValue();
16122
16123    DebugLoc LdDL = Ld->getDebugLoc();
16124    DebugLoc StDL = N->getDebugLoc();
16125    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
16126    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
16127    // pair instead.
16128    if (Subtarget->is64Bit() || F64IsLegal) {
16129      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
16130      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
16131                                  Ld->getPointerInfo(), Ld->isVolatile(),
16132                                  Ld->isNonTemporal(), Ld->isInvariant(),
16133                                  Ld->getAlignment());
16134      SDValue NewChain = NewLd.getValue(1);
16135      if (TokenFactorIndex != -1) {
16136        Ops.push_back(NewChain);
16137        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16138                               Ops.size());
16139      }
16140      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
16141                          St->getPointerInfo(),
16142                          St->isVolatile(), St->isNonTemporal(),
16143                          St->getAlignment());
16144    }
16145
16146    // Otherwise, lower to two pairs of 32-bit loads / stores.
16147    SDValue LoAddr = Ld->getBasePtr();
16148    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
16149                                 DAG.getConstant(4, MVT::i32));
16150
16151    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
16152                               Ld->getPointerInfo(),
16153                               Ld->isVolatile(), Ld->isNonTemporal(),
16154                               Ld->isInvariant(), Ld->getAlignment());
16155    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
16156                               Ld->getPointerInfo().getWithOffset(4),
16157                               Ld->isVolatile(), Ld->isNonTemporal(),
16158                               Ld->isInvariant(),
16159                               MinAlign(Ld->getAlignment(), 4));
16160
16161    SDValue NewChain = LoLd.getValue(1);
16162    if (TokenFactorIndex != -1) {
16163      Ops.push_back(LoLd);
16164      Ops.push_back(HiLd);
16165      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16166                             Ops.size());
16167    }
16168
16169    LoAddr = St->getBasePtr();
16170    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
16171                         DAG.getConstant(4, MVT::i32));
16172
16173    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
16174                                St->getPointerInfo(),
16175                                St->isVolatile(), St->isNonTemporal(),
16176                                St->getAlignment());
16177    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
16178                                St->getPointerInfo().getWithOffset(4),
16179                                St->isVolatile(),
16180                                St->isNonTemporal(),
16181                                MinAlign(St->getAlignment(), 4));
16182    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
16183  }
16184  return SDValue();
16185}
16186
16187/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
16188/// and return the operands for the horizontal operation in LHS and RHS.  A
16189/// horizontal operation performs the binary operation on successive elements
16190/// of its first operand, then on successive elements of its second operand,
16191/// returning the resulting values in a vector.  For example, if
16192///   A = < float a0, float a1, float a2, float a3 >
16193/// and
16194///   B = < float b0, float b1, float b2, float b3 >
16195/// then the result of doing a horizontal operation on A and B is
16196///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
16197/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
16198/// A horizontal-op B, for some already available A and B, and if so then LHS is
16199/// set to A, RHS to B, and the routine returns 'true'.
16200/// Note that the binary operation should have the property that if one of the
16201/// operands is UNDEF then the result is UNDEF.
16202static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
16203  // Look for the following pattern: if
16204  //   A = < float a0, float a1, float a2, float a3 >
16205  //   B = < float b0, float b1, float b2, float b3 >
16206  // and
16207  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
16208  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
16209  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
16210  // which is A horizontal-op B.
16211
16212  // At least one of the operands should be a vector shuffle.
16213  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
16214      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
16215    return false;
16216
16217  EVT VT = LHS.getValueType();
16218
16219  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16220         "Unsupported vector type for horizontal add/sub");
16221
16222  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
16223  // operate independently on 128-bit lanes.
16224  unsigned NumElts = VT.getVectorNumElements();
16225  unsigned NumLanes = VT.getSizeInBits()/128;
16226  unsigned NumLaneElts = NumElts / NumLanes;
16227  assert((NumLaneElts % 2 == 0) &&
16228         "Vector type should have an even number of elements in each lane");
16229  unsigned HalfLaneElts = NumLaneElts/2;
16230
16231  // View LHS in the form
16232  //   LHS = VECTOR_SHUFFLE A, B, LMask
16233  // If LHS is not a shuffle then pretend it is the shuffle
16234  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
16235  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
16236  // type VT.
16237  SDValue A, B;
16238  SmallVector<int, 16> LMask(NumElts);
16239  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16240    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
16241      A = LHS.getOperand(0);
16242    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
16243      B = LHS.getOperand(1);
16244    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
16245    std::copy(Mask.begin(), Mask.end(), LMask.begin());
16246  } else {
16247    if (LHS.getOpcode() != ISD::UNDEF)
16248      A = LHS;
16249    for (unsigned i = 0; i != NumElts; ++i)
16250      LMask[i] = i;
16251  }
16252
16253  // Likewise, view RHS in the form
16254  //   RHS = VECTOR_SHUFFLE C, D, RMask
16255  SDValue C, D;
16256  SmallVector<int, 16> RMask(NumElts);
16257  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16258    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
16259      C = RHS.getOperand(0);
16260    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
16261      D = RHS.getOperand(1);
16262    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
16263    std::copy(Mask.begin(), Mask.end(), RMask.begin());
16264  } else {
16265    if (RHS.getOpcode() != ISD::UNDEF)
16266      C = RHS;
16267    for (unsigned i = 0; i != NumElts; ++i)
16268      RMask[i] = i;
16269  }
16270
16271  // Check that the shuffles are both shuffling the same vectors.
16272  if (!(A == C && B == D) && !(A == D && B == C))
16273    return false;
16274
16275  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
16276  if (!A.getNode() && !B.getNode())
16277    return false;
16278
16279  // If A and B occur in reverse order in RHS, then "swap" them (which means
16280  // rewriting the mask).
16281  if (A != C)
16282    CommuteVectorShuffleMask(RMask, NumElts);
16283
16284  // At this point LHS and RHS are equivalent to
16285  //   LHS = VECTOR_SHUFFLE A, B, LMask
16286  //   RHS = VECTOR_SHUFFLE A, B, RMask
16287  // Check that the masks correspond to performing a horizontal operation.
16288  for (unsigned i = 0; i != NumElts; ++i) {
16289    int LIdx = LMask[i], RIdx = RMask[i];
16290
16291    // Ignore any UNDEF components.
16292    if (LIdx < 0 || RIdx < 0 ||
16293        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
16294        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
16295      continue;
16296
16297    // Check that successive elements are being operated on.  If not, this is
16298    // not a horizontal operation.
16299    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
16300    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
16301    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
16302    if (!(LIdx == Index && RIdx == Index + 1) &&
16303        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
16304      return false;
16305  }
16306
16307  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
16308  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
16309  return true;
16310}
16311
16312/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
16313static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
16314                                  const X86Subtarget *Subtarget) {
16315  EVT VT = N->getValueType(0);
16316  SDValue LHS = N->getOperand(0);
16317  SDValue RHS = N->getOperand(1);
16318
16319  // Try to synthesize horizontal adds from adds of shuffles.
16320  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16321       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16322      isHorizontalBinOp(LHS, RHS, true))
16323    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
16324  return SDValue();
16325}
16326
16327/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
16328static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
16329                                  const X86Subtarget *Subtarget) {
16330  EVT VT = N->getValueType(0);
16331  SDValue LHS = N->getOperand(0);
16332  SDValue RHS = N->getOperand(1);
16333
16334  // Try to synthesize horizontal subs from subs of shuffles.
16335  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16336       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16337      isHorizontalBinOp(LHS, RHS, false))
16338    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
16339  return SDValue();
16340}
16341
16342/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
16343/// X86ISD::FXOR nodes.
16344static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
16345  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
16346  // F[X]OR(0.0, x) -> x
16347  // F[X]OR(x, 0.0) -> x
16348  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16349    if (C->getValueAPF().isPosZero())
16350      return N->getOperand(1);
16351  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16352    if (C->getValueAPF().isPosZero())
16353      return N->getOperand(0);
16354  return SDValue();
16355}
16356
16357/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
16358/// X86ISD::FMAX nodes.
16359static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
16360  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
16361
16362  // Only perform optimizations if UnsafeMath is used.
16363  if (!DAG.getTarget().Options.UnsafeFPMath)
16364    return SDValue();
16365
16366  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
16367  // into FMINC and FMAXC, which are Commutative operations.
16368  unsigned NewOp = 0;
16369  switch (N->getOpcode()) {
16370    default: llvm_unreachable("unknown opcode");
16371    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
16372    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
16373  }
16374
16375  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
16376                     N->getOperand(0), N->getOperand(1));
16377}
16378
16379
16380/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
16381static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
16382  // FAND(0.0, x) -> 0.0
16383  // FAND(x, 0.0) -> 0.0
16384  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16385    if (C->getValueAPF().isPosZero())
16386      return N->getOperand(0);
16387  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16388    if (C->getValueAPF().isPosZero())
16389      return N->getOperand(1);
16390  return SDValue();
16391}
16392
16393static SDValue PerformBTCombine(SDNode *N,
16394                                SelectionDAG &DAG,
16395                                TargetLowering::DAGCombinerInfo &DCI) {
16396  // BT ignores high bits in the bit index operand.
16397  SDValue Op1 = N->getOperand(1);
16398  if (Op1.hasOneUse()) {
16399    unsigned BitWidth = Op1.getValueSizeInBits();
16400    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
16401    APInt KnownZero, KnownOne;
16402    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
16403                                          !DCI.isBeforeLegalizeOps());
16404    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16405    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
16406        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
16407      DCI.CommitTargetLoweringOpt(TLO);
16408  }
16409  return SDValue();
16410}
16411
16412static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
16413  SDValue Op = N->getOperand(0);
16414  if (Op.getOpcode() == ISD::BITCAST)
16415    Op = Op.getOperand(0);
16416  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
16417  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
16418      VT.getVectorElementType().getSizeInBits() ==
16419      OpVT.getVectorElementType().getSizeInBits()) {
16420    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
16421  }
16422  return SDValue();
16423}
16424
16425static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
16426                                  TargetLowering::DAGCombinerInfo &DCI,
16427                                  const X86Subtarget *Subtarget) {
16428  if (!DCI.isBeforeLegalizeOps())
16429    return SDValue();
16430
16431  if (!Subtarget->hasFp256())
16432    return SDValue();
16433
16434  EVT VT = N->getValueType(0);
16435  SDValue Op = N->getOperand(0);
16436  EVT OpVT = Op.getValueType();
16437  DebugLoc dl = N->getDebugLoc();
16438
16439  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
16440      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
16441
16442    if (Subtarget->hasInt256())
16443      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
16444
16445    // Optimize vectors in AVX mode
16446    // Sign extend  v8i16 to v8i32 and
16447    //              v4i32 to v4i64
16448    //
16449    // Divide input vector into two parts
16450    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
16451    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
16452    // concat the vectors to original VT
16453
16454    unsigned NumElems = OpVT.getVectorNumElements();
16455    SDValue Undef = DAG.getUNDEF(OpVT);
16456
16457    SmallVector<int,8> ShufMask1(NumElems, -1);
16458    for (unsigned i = 0; i != NumElems/2; ++i)
16459      ShufMask1[i] = i;
16460
16461    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
16462
16463    SmallVector<int,8> ShufMask2(NumElems, -1);
16464    for (unsigned i = 0; i != NumElems/2; ++i)
16465      ShufMask2[i] = i + NumElems/2;
16466
16467    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
16468
16469    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
16470                                  VT.getVectorNumElements()/2);
16471
16472    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
16473    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
16474
16475    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
16476  }
16477  return SDValue();
16478}
16479
16480static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
16481                                 const X86Subtarget* Subtarget) {
16482  DebugLoc dl = N->getDebugLoc();
16483  EVT VT = N->getValueType(0);
16484
16485  // Let legalize expand this if it isn't a legal type yet.
16486  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
16487    return SDValue();
16488
16489  EVT ScalarVT = VT.getScalarType();
16490  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
16491      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
16492    return SDValue();
16493
16494  SDValue A = N->getOperand(0);
16495  SDValue B = N->getOperand(1);
16496  SDValue C = N->getOperand(2);
16497
16498  bool NegA = (A.getOpcode() == ISD::FNEG);
16499  bool NegB = (B.getOpcode() == ISD::FNEG);
16500  bool NegC = (C.getOpcode() == ISD::FNEG);
16501
16502  // Negative multiplication when NegA xor NegB
16503  bool NegMul = (NegA != NegB);
16504  if (NegA)
16505    A = A.getOperand(0);
16506  if (NegB)
16507    B = B.getOperand(0);
16508  if (NegC)
16509    C = C.getOperand(0);
16510
16511  unsigned Opcode;
16512  if (!NegMul)
16513    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
16514  else
16515    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
16516
16517  return DAG.getNode(Opcode, dl, VT, A, B, C);
16518}
16519
16520static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
16521                                  TargetLowering::DAGCombinerInfo &DCI,
16522                                  const X86Subtarget *Subtarget) {
16523  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
16524  //           (and (i32 x86isd::setcc_carry), 1)
16525  // This eliminates the zext. This transformation is necessary because
16526  // ISD::SETCC is always legalized to i8.
16527  DebugLoc dl = N->getDebugLoc();
16528  SDValue N0 = N->getOperand(0);
16529  EVT VT = N->getValueType(0);
16530  EVT OpVT = N0.getValueType();
16531
16532  if (N0.getOpcode() == ISD::AND &&
16533      N0.hasOneUse() &&
16534      N0.getOperand(0).hasOneUse()) {
16535    SDValue N00 = N0.getOperand(0);
16536    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
16537      return SDValue();
16538    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
16539    if (!C || C->getZExtValue() != 1)
16540      return SDValue();
16541    return DAG.getNode(ISD::AND, dl, VT,
16542                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
16543                                   N00.getOperand(0), N00.getOperand(1)),
16544                       DAG.getConstant(1, VT));
16545  }
16546
16547  // Optimize vectors in AVX mode:
16548  //
16549  //   v8i16 -> v8i32
16550  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
16551  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
16552  //   Concat upper and lower parts.
16553  //
16554  //   v4i32 -> v4i64
16555  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
16556  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
16557  //   Concat upper and lower parts.
16558  //
16559  if (!DCI.isBeforeLegalizeOps())
16560    return SDValue();
16561
16562  if (!Subtarget->hasFp256())
16563    return SDValue();
16564
16565  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
16566      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
16567
16568    if (Subtarget->hasInt256())
16569      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
16570
16571    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
16572    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
16573    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
16574
16575    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
16576                               VT.getVectorNumElements()/2);
16577
16578    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
16579    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
16580
16581    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
16582  }
16583
16584  return SDValue();
16585}
16586
16587// Optimize x == -y --> x+y == 0
16588//          x != -y --> x+y != 0
16589static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
16590  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
16591  SDValue LHS = N->getOperand(0);
16592  SDValue RHS = N->getOperand(1);
16593
16594  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
16595    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
16596      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
16597        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
16598                                   LHS.getValueType(), RHS, LHS.getOperand(1));
16599        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
16600                            addV, DAG.getConstant(0, addV.getValueType()), CC);
16601      }
16602  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
16603    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
16604      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
16605        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
16606                                   RHS.getValueType(), LHS, RHS.getOperand(1));
16607        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
16608                            addV, DAG.getConstant(0, addV.getValueType()), CC);
16609      }
16610  return SDValue();
16611}
16612
16613// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
16614// as "sbb reg,reg", since it can be extended without zext and produces
16615// an all-ones bit which is more useful than 0/1 in some cases.
16616static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
16617  return DAG.getNode(ISD::AND, DL, MVT::i8,
16618                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
16619                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
16620                     DAG.getConstant(1, MVT::i8));
16621}
16622
16623// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
16624static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
16625                                   TargetLowering::DAGCombinerInfo &DCI,
16626                                   const X86Subtarget *Subtarget) {
16627  DebugLoc DL = N->getDebugLoc();
16628  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
16629  SDValue EFLAGS = N->getOperand(1);
16630
16631  if (CC == X86::COND_A) {
16632    // Try to convert COND_A into COND_B in an attempt to facilitate
16633    // materializing "setb reg".
16634    //
16635    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
16636    // cannot take an immediate as its first operand.
16637    //
16638    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
16639        EFLAGS.getValueType().isInteger() &&
16640        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
16641      SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
16642                                   EFLAGS.getNode()->getVTList(),
16643                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
16644      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
16645      return MaterializeSETB(DL, NewEFLAGS, DAG);
16646    }
16647  }
16648
16649  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
16650  // a zext and produces an all-ones bit which is more useful than 0/1 in some
16651  // cases.
16652  if (CC == X86::COND_B)
16653    return MaterializeSETB(DL, EFLAGS, DAG);
16654
16655  SDValue Flags;
16656
16657  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16658  if (Flags.getNode()) {
16659    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16660    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
16661  }
16662
16663  return SDValue();
16664}
16665
16666// Optimize branch condition evaluation.
16667//
16668static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
16669                                    TargetLowering::DAGCombinerInfo &DCI,
16670                                    const X86Subtarget *Subtarget) {
16671  DebugLoc DL = N->getDebugLoc();
16672  SDValue Chain = N->getOperand(0);
16673  SDValue Dest = N->getOperand(1);
16674  SDValue EFLAGS = N->getOperand(3);
16675  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
16676
16677  SDValue Flags;
16678
16679  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16680  if (Flags.getNode()) {
16681    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16682    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
16683                       Flags);
16684  }
16685
16686  return SDValue();
16687}
16688
16689static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
16690                                        const X86TargetLowering *XTLI) {
16691  SDValue Op0 = N->getOperand(0);
16692  EVT InVT = Op0->getValueType(0);
16693
16694  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
16695  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16696    DebugLoc dl = N->getDebugLoc();
16697    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16698    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
16699    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16700  }
16701
16702  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
16703  // a 32-bit target where SSE doesn't support i64->FP operations.
16704  if (Op0.getOpcode() == ISD::LOAD) {
16705    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
16706    EVT VT = Ld->getValueType(0);
16707    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
16708        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
16709        !XTLI->getSubtarget()->is64Bit() &&
16710        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
16711      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
16712                                          Ld->getChain(), Op0, DAG);
16713      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
16714      return FILDChain;
16715    }
16716  }
16717  return SDValue();
16718}
16719
16720// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
16721static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
16722                                 X86TargetLowering::DAGCombinerInfo &DCI) {
16723  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
16724  // the result is either zero or one (depending on the input carry bit).
16725  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
16726  if (X86::isZeroNode(N->getOperand(0)) &&
16727      X86::isZeroNode(N->getOperand(1)) &&
16728      // We don't have a good way to replace an EFLAGS use, so only do this when
16729      // dead right now.
16730      SDValue(N, 1).use_empty()) {
16731    DebugLoc DL = N->getDebugLoc();
16732    EVT VT = N->getValueType(0);
16733    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
16734    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
16735                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
16736                                           DAG.getConstant(X86::COND_B,MVT::i8),
16737                                           N->getOperand(2)),
16738                               DAG.getConstant(1, VT));
16739    return DCI.CombineTo(N, Res1, CarryOut);
16740  }
16741
16742  return SDValue();
16743}
16744
16745// fold (add Y, (sete  X, 0)) -> adc  0, Y
16746//      (add Y, (setne X, 0)) -> sbb -1, Y
16747//      (sub (sete  X, 0), Y) -> sbb  0, Y
16748//      (sub (setne X, 0), Y) -> adc -1, Y
16749static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
16750  DebugLoc DL = N->getDebugLoc();
16751
16752  // Look through ZExts.
16753  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
16754  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
16755    return SDValue();
16756
16757  SDValue SetCC = Ext.getOperand(0);
16758  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
16759    return SDValue();
16760
16761  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
16762  if (CC != X86::COND_E && CC != X86::COND_NE)
16763    return SDValue();
16764
16765  SDValue Cmp = SetCC.getOperand(1);
16766  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
16767      !X86::isZeroNode(Cmp.getOperand(1)) ||
16768      !Cmp.getOperand(0).getValueType().isInteger())
16769    return SDValue();
16770
16771  SDValue CmpOp0 = Cmp.getOperand(0);
16772  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
16773                               DAG.getConstant(1, CmpOp0.getValueType()));
16774
16775  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
16776  if (CC == X86::COND_NE)
16777    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
16778                       DL, OtherVal.getValueType(), OtherVal,
16779                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
16780  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
16781                     DL, OtherVal.getValueType(), OtherVal,
16782                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
16783}
16784
16785/// PerformADDCombine - Do target-specific dag combines on integer adds.
16786static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
16787                                 const X86Subtarget *Subtarget) {
16788  EVT VT = N->getValueType(0);
16789  SDValue Op0 = N->getOperand(0);
16790  SDValue Op1 = N->getOperand(1);
16791
16792  // Try to synthesize horizontal adds from adds of shuffles.
16793  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16794       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16795      isHorizontalBinOp(Op0, Op1, true))
16796    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
16797
16798  return OptimizeConditionalInDecrement(N, DAG);
16799}
16800
16801static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
16802                                 const X86Subtarget *Subtarget) {
16803  SDValue Op0 = N->getOperand(0);
16804  SDValue Op1 = N->getOperand(1);
16805
16806  // X86 can't encode an immediate LHS of a sub. See if we can push the
16807  // negation into a preceding instruction.
16808  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
16809    // If the RHS of the sub is a XOR with one use and a constant, invert the
16810    // immediate. Then add one to the LHS of the sub so we can turn
16811    // X-Y -> X+~Y+1, saving one register.
16812    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
16813        isa<ConstantSDNode>(Op1.getOperand(1))) {
16814      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
16815      EVT VT = Op0.getValueType();
16816      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
16817                                   Op1.getOperand(0),
16818                                   DAG.getConstant(~XorC, VT));
16819      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
16820                         DAG.getConstant(C->getAPIntValue()+1, VT));
16821    }
16822  }
16823
16824  // Try to synthesize horizontal adds from adds of shuffles.
16825  EVT VT = N->getValueType(0);
16826  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16827       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16828      isHorizontalBinOp(Op0, Op1, true))
16829    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
16830
16831  return OptimizeConditionalInDecrement(N, DAG);
16832}
16833
16834/// performVZEXTCombine - Performs build vector combines
16835static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
16836                                        TargetLowering::DAGCombinerInfo &DCI,
16837                                        const X86Subtarget *Subtarget) {
16838  // (vzext (bitcast (vzext (x)) -> (vzext x)
16839  SDValue In = N->getOperand(0);
16840  while (In.getOpcode() == ISD::BITCAST)
16841    In = In.getOperand(0);
16842
16843  if (In.getOpcode() != X86ISD::VZEXT)
16844    return SDValue();
16845
16846  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), In.getOperand(0));
16847}
16848
16849SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
16850                                             DAGCombinerInfo &DCI) const {
16851  SelectionDAG &DAG = DCI.DAG;
16852  switch (N->getOpcode()) {
16853  default: break;
16854  case ISD::EXTRACT_VECTOR_ELT:
16855    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
16856  case ISD::VSELECT:
16857  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
16858  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
16859  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
16860  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
16861  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
16862  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
16863  case ISD::SHL:
16864  case ISD::SRA:
16865  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
16866  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
16867  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
16868  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
16869  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
16870  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
16871  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
16872  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
16873  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
16874  case X86ISD::FXOR:
16875  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
16876  case X86ISD::FMIN:
16877  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
16878  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
16879  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
16880  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16881  case ISD::ANY_EXTEND:
16882  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16883  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16884  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
16885  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16886  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16887  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16888  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
16889  case X86ISD::SHUFP:       // Handle all target specific shuffles
16890  case X86ISD::PALIGN:
16891  case X86ISD::UNPCKH:
16892  case X86ISD::UNPCKL:
16893  case X86ISD::MOVHLPS:
16894  case X86ISD::MOVLHPS:
16895  case X86ISD::PSHUFD:
16896  case X86ISD::PSHUFHW:
16897  case X86ISD::PSHUFLW:
16898  case X86ISD::MOVSS:
16899  case X86ISD::MOVSD:
16900  case X86ISD::VPERMILP:
16901  case X86ISD::VPERM2X128:
16902  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16903  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16904  }
16905
16906  return SDValue();
16907}
16908
16909/// isTypeDesirableForOp - Return true if the target has native support for
16910/// the specified value type and it is 'desirable' to use the type for the
16911/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16912/// instruction encodings are longer and some i16 instructions are slow.
16913bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16914  if (!isTypeLegal(VT))
16915    return false;
16916  if (VT != MVT::i16)
16917    return true;
16918
16919  switch (Opc) {
16920  default:
16921    return true;
16922  case ISD::LOAD:
16923  case ISD::SIGN_EXTEND:
16924  case ISD::ZERO_EXTEND:
16925  case ISD::ANY_EXTEND:
16926  case ISD::SHL:
16927  case ISD::SRL:
16928  case ISD::SUB:
16929  case ISD::ADD:
16930  case ISD::MUL:
16931  case ISD::AND:
16932  case ISD::OR:
16933  case ISD::XOR:
16934    return false;
16935  }
16936}
16937
16938/// IsDesirableToPromoteOp - This method query the target whether it is
16939/// beneficial for dag combiner to promote the specified node. If true, it
16940/// should return the desired promotion type by reference.
16941bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16942  EVT VT = Op.getValueType();
16943  if (VT != MVT::i16)
16944    return false;
16945
16946  bool Promote = false;
16947  bool Commute = false;
16948  switch (Op.getOpcode()) {
16949  default: break;
16950  case ISD::LOAD: {
16951    LoadSDNode *LD = cast<LoadSDNode>(Op);
16952    // If the non-extending load has a single use and it's not live out, then it
16953    // might be folded.
16954    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16955                                                     Op.hasOneUse()*/) {
16956      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16957             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16958        // The only case where we'd want to promote LOAD (rather then it being
16959        // promoted as an operand is when it's only use is liveout.
16960        if (UI->getOpcode() != ISD::CopyToReg)
16961          return false;
16962      }
16963    }
16964    Promote = true;
16965    break;
16966  }
16967  case ISD::SIGN_EXTEND:
16968  case ISD::ZERO_EXTEND:
16969  case ISD::ANY_EXTEND:
16970    Promote = true;
16971    break;
16972  case ISD::SHL:
16973  case ISD::SRL: {
16974    SDValue N0 = Op.getOperand(0);
16975    // Look out for (store (shl (load), x)).
16976    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16977      return false;
16978    Promote = true;
16979    break;
16980  }
16981  case ISD::ADD:
16982  case ISD::MUL:
16983  case ISD::AND:
16984  case ISD::OR:
16985  case ISD::XOR:
16986    Commute = true;
16987    // fallthrough
16988  case ISD::SUB: {
16989    SDValue N0 = Op.getOperand(0);
16990    SDValue N1 = Op.getOperand(1);
16991    if (!Commute && MayFoldLoad(N1))
16992      return false;
16993    // Avoid disabling potential load folding opportunities.
16994    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16995      return false;
16996    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16997      return false;
16998    Promote = true;
16999  }
17000  }
17001
17002  PVT = MVT::i32;
17003  return Promote;
17004}
17005
17006//===----------------------------------------------------------------------===//
17007//                           X86 Inline Assembly Support
17008//===----------------------------------------------------------------------===//
17009
17010namespace {
17011  // Helper to match a string separated by whitespace.
17012  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
17013    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
17014
17015    for (unsigned i = 0, e = args.size(); i != e; ++i) {
17016      StringRef piece(*args[i]);
17017      if (!s.startswith(piece)) // Check if the piece matches.
17018        return false;
17019
17020      s = s.substr(piece.size());
17021      StringRef::size_type pos = s.find_first_not_of(" \t");
17022      if (pos == 0) // We matched a prefix.
17023        return false;
17024
17025      s = s.substr(pos);
17026    }
17027
17028    return s.empty();
17029  }
17030  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
17031}
17032
17033bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
17034  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
17035
17036  std::string AsmStr = IA->getAsmString();
17037
17038  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17039  if (!Ty || Ty->getBitWidth() % 16 != 0)
17040    return false;
17041
17042  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
17043  SmallVector<StringRef, 4> AsmPieces;
17044  SplitString(AsmStr, AsmPieces, ";\n");
17045
17046  switch (AsmPieces.size()) {
17047  default: return false;
17048  case 1:
17049    // FIXME: this should verify that we are targeting a 486 or better.  If not,
17050    // we will turn this bswap into something that will be lowered to logical
17051    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
17052    // lower so don't worry about this.
17053    // bswap $0
17054    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
17055        matchAsm(AsmPieces[0], "bswapl", "$0") ||
17056        matchAsm(AsmPieces[0], "bswapq", "$0") ||
17057        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
17058        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
17059        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
17060      // No need to check constraints, nothing other than the equivalent of
17061      // "=r,0" would be valid here.
17062      return IntrinsicLowering::LowerToByteSwap(CI);
17063    }
17064
17065    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
17066    if (CI->getType()->isIntegerTy(16) &&
17067        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17068        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
17069         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
17070      AsmPieces.clear();
17071      const std::string &ConstraintsStr = IA->getConstraintString();
17072      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17073      std::sort(AsmPieces.begin(), AsmPieces.end());
17074      if (AsmPieces.size() == 4 &&
17075          AsmPieces[0] == "~{cc}" &&
17076          AsmPieces[1] == "~{dirflag}" &&
17077          AsmPieces[2] == "~{flags}" &&
17078          AsmPieces[3] == "~{fpsr}")
17079      return IntrinsicLowering::LowerToByteSwap(CI);
17080    }
17081    break;
17082  case 3:
17083    if (CI->getType()->isIntegerTy(32) &&
17084        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
17085        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
17086        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
17087        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
17088      AsmPieces.clear();
17089      const std::string &ConstraintsStr = IA->getConstraintString();
17090      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
17091      std::sort(AsmPieces.begin(), AsmPieces.end());
17092      if (AsmPieces.size() == 4 &&
17093          AsmPieces[0] == "~{cc}" &&
17094          AsmPieces[1] == "~{dirflag}" &&
17095          AsmPieces[2] == "~{flags}" &&
17096          AsmPieces[3] == "~{fpsr}")
17097        return IntrinsicLowering::LowerToByteSwap(CI);
17098    }
17099
17100    if (CI->getType()->isIntegerTy(64)) {
17101      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
17102      if (Constraints.size() >= 2 &&
17103          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
17104          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
17105        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
17106        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
17107            matchAsm(AsmPieces[1], "bswap", "%edx") &&
17108            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
17109          return IntrinsicLowering::LowerToByteSwap(CI);
17110      }
17111    }
17112    break;
17113  }
17114  return false;
17115}
17116
17117
17118
17119/// getConstraintType - Given a constraint letter, return the type of
17120/// constraint it is for this target.
17121X86TargetLowering::ConstraintType
17122X86TargetLowering::getConstraintType(const std::string &Constraint) const {
17123  if (Constraint.size() == 1) {
17124    switch (Constraint[0]) {
17125    case 'R':
17126    case 'q':
17127    case 'Q':
17128    case 'f':
17129    case 't':
17130    case 'u':
17131    case 'y':
17132    case 'x':
17133    case 'Y':
17134    case 'l':
17135      return C_RegisterClass;
17136    case 'a':
17137    case 'b':
17138    case 'c':
17139    case 'd':
17140    case 'S':
17141    case 'D':
17142    case 'A':
17143      return C_Register;
17144    case 'I':
17145    case 'J':
17146    case 'K':
17147    case 'L':
17148    case 'M':
17149    case 'N':
17150    case 'G':
17151    case 'C':
17152    case 'e':
17153    case 'Z':
17154      return C_Other;
17155    default:
17156      break;
17157    }
17158  }
17159  return TargetLowering::getConstraintType(Constraint);
17160}
17161
17162/// Examine constraint type and operand type and determine a weight value.
17163/// This object must already have been set up with the operand type
17164/// and the current alternative constraint selected.
17165TargetLowering::ConstraintWeight
17166  X86TargetLowering::getSingleConstraintMatchWeight(
17167    AsmOperandInfo &info, const char *constraint) const {
17168  ConstraintWeight weight = CW_Invalid;
17169  Value *CallOperandVal = info.CallOperandVal;
17170    // If we don't have a value, we can't do a match,
17171    // but allow it at the lowest weight.
17172  if (CallOperandVal == NULL)
17173    return CW_Default;
17174  Type *type = CallOperandVal->getType();
17175  // Look at the constraint type.
17176  switch (*constraint) {
17177  default:
17178    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17179  case 'R':
17180  case 'q':
17181  case 'Q':
17182  case 'a':
17183  case 'b':
17184  case 'c':
17185  case 'd':
17186  case 'S':
17187  case 'D':
17188  case 'A':
17189    if (CallOperandVal->getType()->isIntegerTy())
17190      weight = CW_SpecificReg;
17191    break;
17192  case 'f':
17193  case 't':
17194  case 'u':
17195      if (type->isFloatingPointTy())
17196        weight = CW_SpecificReg;
17197      break;
17198  case 'y':
17199      if (type->isX86_MMXTy() && Subtarget->hasMMX())
17200        weight = CW_SpecificReg;
17201      break;
17202  case 'x':
17203  case 'Y':
17204    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
17205        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
17206      weight = CW_Register;
17207    break;
17208  case 'I':
17209    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
17210      if (C->getZExtValue() <= 31)
17211        weight = CW_Constant;
17212    }
17213    break;
17214  case 'J':
17215    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17216      if (C->getZExtValue() <= 63)
17217        weight = CW_Constant;
17218    }
17219    break;
17220  case 'K':
17221    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17222      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
17223        weight = CW_Constant;
17224    }
17225    break;
17226  case 'L':
17227    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17228      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
17229        weight = CW_Constant;
17230    }
17231    break;
17232  case 'M':
17233    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17234      if (C->getZExtValue() <= 3)
17235        weight = CW_Constant;
17236    }
17237    break;
17238  case 'N':
17239    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17240      if (C->getZExtValue() <= 0xff)
17241        weight = CW_Constant;
17242    }
17243    break;
17244  case 'G':
17245  case 'C':
17246    if (dyn_cast<ConstantFP>(CallOperandVal)) {
17247      weight = CW_Constant;
17248    }
17249    break;
17250  case 'e':
17251    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17252      if ((C->getSExtValue() >= -0x80000000LL) &&
17253          (C->getSExtValue() <= 0x7fffffffLL))
17254        weight = CW_Constant;
17255    }
17256    break;
17257  case 'Z':
17258    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17259      if (C->getZExtValue() <= 0xffffffff)
17260        weight = CW_Constant;
17261    }
17262    break;
17263  }
17264  return weight;
17265}
17266
17267/// LowerXConstraint - try to replace an X constraint, which matches anything,
17268/// with another that has more specific requirements based on the type of the
17269/// corresponding operand.
17270const char *X86TargetLowering::
17271LowerXConstraint(EVT ConstraintVT) const {
17272  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
17273  // 'f' like normal targets.
17274  if (ConstraintVT.isFloatingPoint()) {
17275    if (Subtarget->hasSSE2())
17276      return "Y";
17277    if (Subtarget->hasSSE1())
17278      return "x";
17279  }
17280
17281  return TargetLowering::LowerXConstraint(ConstraintVT);
17282}
17283
17284/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
17285/// vector.  If it is invalid, don't add anything to Ops.
17286void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
17287                                                     std::string &Constraint,
17288                                                     std::vector<SDValue>&Ops,
17289                                                     SelectionDAG &DAG) const {
17290  SDValue Result(0, 0);
17291
17292  // Only support length 1 constraints for now.
17293  if (Constraint.length() > 1) return;
17294
17295  char ConstraintLetter = Constraint[0];
17296  switch (ConstraintLetter) {
17297  default: break;
17298  case 'I':
17299    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17300      if (C->getZExtValue() <= 31) {
17301        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17302        break;
17303      }
17304    }
17305    return;
17306  case 'J':
17307    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17308      if (C->getZExtValue() <= 63) {
17309        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17310        break;
17311      }
17312    }
17313    return;
17314  case 'K':
17315    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17316      if (isInt<8>(C->getSExtValue())) {
17317        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17318        break;
17319      }
17320    }
17321    return;
17322  case 'N':
17323    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17324      if (C->getZExtValue() <= 255) {
17325        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17326        break;
17327      }
17328    }
17329    return;
17330  case 'e': {
17331    // 32-bit signed value
17332    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17333      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17334                                           C->getSExtValue())) {
17335        // Widen to 64 bits here to get it sign extended.
17336        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
17337        break;
17338      }
17339    // FIXME gcc accepts some relocatable values here too, but only in certain
17340    // memory models; it's complicated.
17341    }
17342    return;
17343  }
17344  case 'Z': {
17345    // 32-bit unsigned value
17346    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17347      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17348                                           C->getZExtValue())) {
17349        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17350        break;
17351      }
17352    }
17353    // FIXME gcc accepts some relocatable values here too, but only in certain
17354    // memory models; it's complicated.
17355    return;
17356  }
17357  case 'i': {
17358    // Literal immediates are always ok.
17359    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
17360      // Widen to 64 bits here to get it sign extended.
17361      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
17362      break;
17363    }
17364
17365    // In any sort of PIC mode addresses need to be computed at runtime by
17366    // adding in a register or some sort of table lookup.  These can't
17367    // be used as immediates.
17368    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
17369      return;
17370
17371    // If we are in non-pic codegen mode, we allow the address of a global (with
17372    // an optional displacement) to be used with 'i'.
17373    GlobalAddressSDNode *GA = 0;
17374    int64_t Offset = 0;
17375
17376    // Match either (GA), (GA+C), (GA+C1+C2), etc.
17377    while (1) {
17378      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
17379        Offset += GA->getOffset();
17380        break;
17381      } else if (Op.getOpcode() == ISD::ADD) {
17382        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17383          Offset += C->getZExtValue();
17384          Op = Op.getOperand(0);
17385          continue;
17386        }
17387      } else if (Op.getOpcode() == ISD::SUB) {
17388        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17389          Offset += -C->getZExtValue();
17390          Op = Op.getOperand(0);
17391          continue;
17392        }
17393      }
17394
17395      // Otherwise, this isn't something we can handle, reject it.
17396      return;
17397    }
17398
17399    const GlobalValue *GV = GA->getGlobal();
17400    // If we require an extra load to get this address, as in PIC mode, we
17401    // can't accept it.
17402    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
17403                                                        getTargetMachine())))
17404      return;
17405
17406    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
17407                                        GA->getValueType(0), Offset);
17408    break;
17409  }
17410  }
17411
17412  if (Result.getNode()) {
17413    Ops.push_back(Result);
17414    return;
17415  }
17416  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
17417}
17418
17419std::pair<unsigned, const TargetRegisterClass*>
17420X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
17421                                                EVT VT) const {
17422  // First, see if this is a constraint that directly corresponds to an LLVM
17423  // register class.
17424  if (Constraint.size() == 1) {
17425    // GCC Constraint Letters
17426    switch (Constraint[0]) {
17427    default: break;
17428      // TODO: Slight differences here in allocation order and leaving
17429      // RIP in the class. Do they matter any more here than they do
17430      // in the normal allocation?
17431    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
17432      if (Subtarget->is64Bit()) {
17433        if (VT == MVT::i32 || VT == MVT::f32)
17434          return std::make_pair(0U, &X86::GR32RegClass);
17435        if (VT == MVT::i16)
17436          return std::make_pair(0U, &X86::GR16RegClass);
17437        if (VT == MVT::i8 || VT == MVT::i1)
17438          return std::make_pair(0U, &X86::GR8RegClass);
17439        if (VT == MVT::i64 || VT == MVT::f64)
17440          return std::make_pair(0U, &X86::GR64RegClass);
17441        break;
17442      }
17443      // 32-bit fallthrough
17444    case 'Q':   // Q_REGS
17445      if (VT == MVT::i32 || VT == MVT::f32)
17446        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
17447      if (VT == MVT::i16)
17448        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
17449      if (VT == MVT::i8 || VT == MVT::i1)
17450        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
17451      if (VT == MVT::i64)
17452        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
17453      break;
17454    case 'r':   // GENERAL_REGS
17455    case 'l':   // INDEX_REGS
17456      if (VT == MVT::i8 || VT == MVT::i1)
17457        return std::make_pair(0U, &X86::GR8RegClass);
17458      if (VT == MVT::i16)
17459        return std::make_pair(0U, &X86::GR16RegClass);
17460      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
17461        return std::make_pair(0U, &X86::GR32RegClass);
17462      return std::make_pair(0U, &X86::GR64RegClass);
17463    case 'R':   // LEGACY_REGS
17464      if (VT == MVT::i8 || VT == MVT::i1)
17465        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
17466      if (VT == MVT::i16)
17467        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
17468      if (VT == MVT::i32 || !Subtarget->is64Bit())
17469        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
17470      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
17471    case 'f':  // FP Stack registers.
17472      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
17473      // value to the correct fpstack register class.
17474      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
17475        return std::make_pair(0U, &X86::RFP32RegClass);
17476      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
17477        return std::make_pair(0U, &X86::RFP64RegClass);
17478      return std::make_pair(0U, &X86::RFP80RegClass);
17479    case 'y':   // MMX_REGS if MMX allowed.
17480      if (!Subtarget->hasMMX()) break;
17481      return std::make_pair(0U, &X86::VR64RegClass);
17482    case 'Y':   // SSE_REGS if SSE2 allowed
17483      if (!Subtarget->hasSSE2()) break;
17484      // FALL THROUGH.
17485    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
17486      if (!Subtarget->hasSSE1()) break;
17487
17488      switch (VT.getSimpleVT().SimpleTy) {
17489      default: break;
17490      // Scalar SSE types.
17491      case MVT::f32:
17492      case MVT::i32:
17493        return std::make_pair(0U, &X86::FR32RegClass);
17494      case MVT::f64:
17495      case MVT::i64:
17496        return std::make_pair(0U, &X86::FR64RegClass);
17497      // Vector types.
17498      case MVT::v16i8:
17499      case MVT::v8i16:
17500      case MVT::v4i32:
17501      case MVT::v2i64:
17502      case MVT::v4f32:
17503      case MVT::v2f64:
17504        return std::make_pair(0U, &X86::VR128RegClass);
17505      // AVX types.
17506      case MVT::v32i8:
17507      case MVT::v16i16:
17508      case MVT::v8i32:
17509      case MVT::v4i64:
17510      case MVT::v8f32:
17511      case MVT::v4f64:
17512        return std::make_pair(0U, &X86::VR256RegClass);
17513      }
17514      break;
17515    }
17516  }
17517
17518  // Use the default implementation in TargetLowering to convert the register
17519  // constraint into a member of a register class.
17520  std::pair<unsigned, const TargetRegisterClass*> Res;
17521  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
17522
17523  // Not found as a standard register?
17524  if (Res.second == 0) {
17525    // Map st(0) -> st(7) -> ST0
17526    if (Constraint.size() == 7 && Constraint[0] == '{' &&
17527        tolower(Constraint[1]) == 's' &&
17528        tolower(Constraint[2]) == 't' &&
17529        Constraint[3] == '(' &&
17530        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
17531        Constraint[5] == ')' &&
17532        Constraint[6] == '}') {
17533
17534      Res.first = X86::ST0+Constraint[4]-'0';
17535      Res.second = &X86::RFP80RegClass;
17536      return Res;
17537    }
17538
17539    // GCC allows "st(0)" to be called just plain "st".
17540    if (StringRef("{st}").equals_lower(Constraint)) {
17541      Res.first = X86::ST0;
17542      Res.second = &X86::RFP80RegClass;
17543      return Res;
17544    }
17545
17546    // flags -> EFLAGS
17547    if (StringRef("{flags}").equals_lower(Constraint)) {
17548      Res.first = X86::EFLAGS;
17549      Res.second = &X86::CCRRegClass;
17550      return Res;
17551    }
17552
17553    // 'A' means EAX + EDX.
17554    if (Constraint == "A") {
17555      Res.first = X86::EAX;
17556      Res.second = &X86::GR32_ADRegClass;
17557      return Res;
17558    }
17559    return Res;
17560  }
17561
17562  // Otherwise, check to see if this is a register class of the wrong value
17563  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
17564  // turn into {ax},{dx}.
17565  if (Res.second->hasType(VT))
17566    return Res;   // Correct type already, nothing to do.
17567
17568  // All of the single-register GCC register classes map their values onto
17569  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
17570  // really want an 8-bit or 32-bit register, map to the appropriate register
17571  // class and return the appropriate register.
17572  if (Res.second == &X86::GR16RegClass) {
17573    if (VT == MVT::i8) {
17574      unsigned DestReg = 0;
17575      switch (Res.first) {
17576      default: break;
17577      case X86::AX: DestReg = X86::AL; break;
17578      case X86::DX: DestReg = X86::DL; break;
17579      case X86::CX: DestReg = X86::CL; break;
17580      case X86::BX: DestReg = X86::BL; break;
17581      }
17582      if (DestReg) {
17583        Res.first = DestReg;
17584        Res.second = &X86::GR8RegClass;
17585      }
17586    } else if (VT == MVT::i32) {
17587      unsigned DestReg = 0;
17588      switch (Res.first) {
17589      default: break;
17590      case X86::AX: DestReg = X86::EAX; break;
17591      case X86::DX: DestReg = X86::EDX; break;
17592      case X86::CX: DestReg = X86::ECX; break;
17593      case X86::BX: DestReg = X86::EBX; break;
17594      case X86::SI: DestReg = X86::ESI; break;
17595      case X86::DI: DestReg = X86::EDI; break;
17596      case X86::BP: DestReg = X86::EBP; break;
17597      case X86::SP: DestReg = X86::ESP; break;
17598      }
17599      if (DestReg) {
17600        Res.first = DestReg;
17601        Res.second = &X86::GR32RegClass;
17602      }
17603    } else if (VT == MVT::i64) {
17604      unsigned DestReg = 0;
17605      switch (Res.first) {
17606      default: break;
17607      case X86::AX: DestReg = X86::RAX; break;
17608      case X86::DX: DestReg = X86::RDX; break;
17609      case X86::CX: DestReg = X86::RCX; break;
17610      case X86::BX: DestReg = X86::RBX; break;
17611      case X86::SI: DestReg = X86::RSI; break;
17612      case X86::DI: DestReg = X86::RDI; break;
17613      case X86::BP: DestReg = X86::RBP; break;
17614      case X86::SP: DestReg = X86::RSP; break;
17615      }
17616      if (DestReg) {
17617        Res.first = DestReg;
17618        Res.second = &X86::GR64RegClass;
17619      }
17620    }
17621  } else if (Res.second == &X86::FR32RegClass ||
17622             Res.second == &X86::FR64RegClass ||
17623             Res.second == &X86::VR128RegClass) {
17624    // Handle references to XMM physical registers that got mapped into the
17625    // wrong class.  This can happen with constraints like {xmm0} where the
17626    // target independent register mapper will just pick the first match it can
17627    // find, ignoring the required type.
17628
17629    if (VT == MVT::f32 || VT == MVT::i32)
17630      Res.second = &X86::FR32RegClass;
17631    else if (VT == MVT::f64 || VT == MVT::i64)
17632      Res.second = &X86::FR64RegClass;
17633    else if (X86::VR128RegClass.hasType(VT))
17634      Res.second = &X86::VR128RegClass;
17635    else if (X86::VR256RegClass.hasType(VT))
17636      Res.second = &X86::VR256RegClass;
17637  }
17638
17639  return Res;
17640}
17641
17642//===----------------------------------------------------------------------===//
17643//
17644// X86 cost model.
17645//
17646//===----------------------------------------------------------------------===//
17647
17648struct X86CostTblEntry {
17649  int ISD;
17650  MVT Type;
17651  unsigned Cost;
17652};
17653
17654static int
17655FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) {
17656  for (unsigned int i = 0; i < len; ++i)
17657    if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty)
17658      return i;
17659
17660  // Could not find an entry.
17661  return -1;
17662}
17663
17664struct X86TypeConversionCostTblEntry {
17665  int ISD;
17666  MVT Dst;
17667  MVT Src;
17668  unsigned Cost;
17669};
17670
17671static int
17672FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
17673                   int ISD, MVT Dst, MVT Src) {
17674  for (unsigned int i = 0; i < len; ++i)
17675    if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst)
17676      return i;
17677
17678  // Could not find an entry.
17679  return -1;
17680}
17681
17682ScalarTargetTransformInfo::PopcntHwSupport
17683X86ScalarTargetTransformImpl::getPopcntHwSupport(unsigned TyWidth) const {
17684  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
17685  const X86Subtarget &ST = TLI->getTargetMachine().getSubtarget<X86Subtarget>();
17686
17687  // TODO: Currently the __builtin_popcount() implementation using SSE3
17688  //   instructions is inefficient. Once the problem is fixed, we should
17689  //   call ST.hasSSE3() instead of ST.hasSSE4().
17690  return ST.hasSSE41() ? Fast : None;
17691}
17692
17693unsigned
17694X86VectorTargetTransformInfo::getArithmeticInstrCost(unsigned Opcode,
17695                                                     Type *Ty) const {
17696  // Legalize the type.
17697  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Ty);
17698
17699  int ISD = InstructionOpcodeToISD(Opcode);
17700  assert(ISD && "Invalid opcode");
17701
17702  const X86Subtarget &ST = TLI->getTargetMachine().getSubtarget<X86Subtarget>();
17703
17704  static const X86CostTblEntry AVX1CostTable[] = {
17705    // We don't have to scalarize unsupported ops. We can issue two half-sized
17706    // operations and we only need to extract the upper YMM half.
17707    // Two ops + 1 extract + 1 insert = 4.
17708    { ISD::MUL,     MVT::v8i32,    4 },
17709    { ISD::SUB,     MVT::v8i32,    4 },
17710    { ISD::ADD,     MVT::v8i32,    4 },
17711    { ISD::MUL,     MVT::v4i64,    4 },
17712    { ISD::SUB,     MVT::v4i64,    4 },
17713    { ISD::ADD,     MVT::v4i64,    4 },
17714    };
17715
17716  // Look for AVX1 lowering tricks.
17717  if (ST.hasAVX()) {
17718    int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD,
17719                          LT.second);
17720    if (Idx != -1)
17721      return LT.first * AVX1CostTable[Idx].Cost;
17722  }
17723  // Fallback to the default implementation.
17724  return VectorTargetTransformImpl::getArithmeticInstrCost(Opcode, Ty);
17725}
17726
17727unsigned
17728X86VectorTargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
17729                                                 unsigned Index) const {
17730  assert(Val->isVectorTy() && "This must be a vector type");
17731
17732  if (Index != -1U) {
17733    // Legalize the type.
17734    std::pair<unsigned, MVT> LT = getTypeLegalizationCost(Val);
17735
17736    // This type is legalized to a scalar type.
17737    if (!LT.second.isVector())
17738      return 0;
17739
17740    // The type may be split. Normalize the index to the new type.
17741    unsigned Width = LT.second.getVectorNumElements();
17742    Index = Index % Width;
17743
17744    // Floating point scalars are already located in index #0.
17745    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
17746      return 0;
17747  }
17748
17749  return VectorTargetTransformImpl::getVectorInstrCost(Opcode, Val, Index);
17750}
17751
17752unsigned X86VectorTargetTransformInfo::getCmpSelInstrCost(unsigned Opcode,
17753                                                          Type *ValTy,
17754                                                          Type *CondTy) const {
17755  // Legalize the type.
17756  std::pair<unsigned, MVT> LT = getTypeLegalizationCost(ValTy);
17757
17758  MVT MTy = LT.second;
17759
17760  int ISD = InstructionOpcodeToISD(Opcode);
17761  assert(ISD && "Invalid opcode");
17762
17763  const X86Subtarget &ST =
17764  TLI->getTargetMachine().getSubtarget<X86Subtarget>();
17765
17766  static const X86CostTblEntry SSE42CostTbl[] = {
17767    { ISD::SETCC,   MVT::v2f64,   1 },
17768    { ISD::SETCC,   MVT::v4f32,   1 },
17769    { ISD::SETCC,   MVT::v2i64,   1 },
17770    { ISD::SETCC,   MVT::v4i32,   1 },
17771    { ISD::SETCC,   MVT::v8i16,   1 },
17772    { ISD::SETCC,   MVT::v16i8,   1 },
17773  };
17774
17775  static const X86CostTblEntry AVX1CostTbl[] = {
17776    { ISD::SETCC,   MVT::v4f64,   1 },
17777    { ISD::SETCC,   MVT::v8f32,   1 },
17778    // AVX1 does not support 8-wide integer compare.
17779    { ISD::SETCC,   MVT::v4i64,   4 },
17780    { ISD::SETCC,   MVT::v8i32,   4 },
17781    { ISD::SETCC,   MVT::v16i16,  4 },
17782    { ISD::SETCC,   MVT::v32i8,   4 },
17783  };
17784
17785  static const X86CostTblEntry AVX2CostTbl[] = {
17786    { ISD::SETCC,   MVT::v4i64,   1 },
17787    { ISD::SETCC,   MVT::v8i32,   1 },
17788    { ISD::SETCC,   MVT::v16i16,  1 },
17789    { ISD::SETCC,   MVT::v32i8,   1 },
17790  };
17791
17792  if (ST.hasSSE42()) {
17793    int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
17794    if (Idx != -1)
17795      return LT.first * SSE42CostTbl[Idx].Cost;
17796  }
17797
17798  if (ST.hasAVX()) {
17799    int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
17800    if (Idx != -1)
17801      return LT.first * AVX1CostTbl[Idx].Cost;
17802  }
17803
17804  if (ST.hasAVX2()) {
17805    int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
17806    if (Idx != -1)
17807      return LT.first * AVX2CostTbl[Idx].Cost;
17808  }
17809
17810  return VectorTargetTransformImpl::getCmpSelInstrCost(Opcode, ValTy, CondTy);
17811}
17812
17813unsigned X86VectorTargetTransformInfo::getCastInstrCost(unsigned Opcode,
17814                                                        Type *Dst,
17815                                                        Type *Src) const {
17816  int ISD = InstructionOpcodeToISD(Opcode);
17817  assert(ISD && "Invalid opcode");
17818
17819  EVT SrcTy = TLI->getValueType(Src);
17820  EVT DstTy = TLI->getValueType(Dst);
17821
17822  if (!SrcTy.isSimple() || !DstTy.isSimple())
17823    return VectorTargetTransformImpl::getCastInstrCost(Opcode, Dst, Src);
17824
17825  const X86Subtarget &ST = TLI->getTargetMachine().getSubtarget<X86Subtarget>();
17826
17827  static const X86TypeConversionCostTblEntry AVXConversionTbl[] = {
17828    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
17829    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
17830    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
17831    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
17832    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
17833    { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
17834    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
17835    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
17836    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  1 },
17837    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  1 },
17838    { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
17839    { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
17840    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
17841    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
17842    { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
17843  };
17844
17845  if (ST.hasAVX()) {
17846    int Idx = FindInConvertTable(AVXConversionTbl,
17847                                 array_lengthof(AVXConversionTbl),
17848                                 ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
17849    if (Idx != -1)
17850      return AVXConversionTbl[Idx].Cost;
17851  }
17852
17853  return VectorTargetTransformImpl::getCastInstrCost(Opcode, Dst, Src);
17854}
17855
17856