X86ISelLowering.cpp revision 9aba7ea472c8a888ff11963caf0cdea0f7ba2d33
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getTargetData();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  // Bypass i32 with i8 on Atom when compiling with O2
186  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
187    addBypassSlowDivType(Type::getInt32Ty(getGlobalContext()), Type::getInt8Ty(getGlobalContext()));
188
189  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
190    // Setup Windows compiler runtime calls.
191    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
192    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
193    setLibcallName(RTLIB::SREM_I64, "_allrem");
194    setLibcallName(RTLIB::UREM_I64, "_aullrem");
195    setLibcallName(RTLIB::MUL_I64, "_allmul");
196    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
201
202    // The _ftol2 runtime function has an unusual calling conv, which
203    // is modeled by a special pseudo-instruction.
204    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
206    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
207    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, &X86::GR8RegClass);
225  addRegisterClass(MVT::i16, &X86::GR16RegClass);
226  addRegisterClass(MVT::i32, &X86::GR32RegClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, &X86::GR64RegClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257  } else if (!TM.Options.UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!TM.Options.UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!TM.Options.UseSoftFloat) {
315    // Since AVX is a superset of SSE3, only check for SSE here.
316    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
317      // Expand FP_TO_UINT into a select.
318      // FIXME: We would like to use a Custom expander here eventually to do
319      // the optimal thing for SSE vs. the default expansion in the legalizer.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
321    else
322      // With SSE3 we can use fisttpll to convert to a signed i64; without
323      // SSE, we're stuck with a fistpll.
324      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
325  }
326
327  if (isTargetFTOL()) {
328    // Use the _ftol2 runtime function, which has a pseudo-instruction
329    // to handle its weird calling convention.
330    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460
461  // Darwin ABI issue.
462  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
463  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
464  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
465  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
466  if (Subtarget->is64Bit())
467    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
468  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
469  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
470  if (Subtarget->is64Bit()) {
471    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
472    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
473    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
474    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
475    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
476  }
477  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
478  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
479  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
480  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
481  if (Subtarget->is64Bit()) {
482    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
483    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
484    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
485  }
486
487  if (Subtarget->hasSSE1())
488    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
489
490  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
491  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
492
493  // On X86 and X86-64, atomic operations are lowered to locked instructions.
494  // Locked instructions, in turn, have implicit fence semantics (all memory
495  // operations are flushed before issuing the locked instruction, and they
496  // are not buffered), so we can fold away the common pattern of
497  // fence-atomic-fence.
498  setShouldFoldAtomicFences(true);
499
500  // Expand certain atomics
501  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
502    MVT VT = IntVTs[i];
503    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
505    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
506  }
507
508  if (!Subtarget->is64Bit()) {
509    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
514    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
515    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
516    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
517  }
518
519  if (Subtarget->hasCmpxchg16b()) {
520    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
521  }
522
523  // FIXME - use subtarget debug flags
524  if (!Subtarget->isTargetDarwin() &&
525      !Subtarget->isTargetELF() &&
526      !Subtarget->isTargetCygMing()) {
527    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
528  }
529
530  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
531  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
532  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
533  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
534  if (Subtarget->is64Bit()) {
535    setExceptionPointerRegister(X86::RAX);
536    setExceptionSelectorRegister(X86::RDX);
537  } else {
538    setExceptionPointerRegister(X86::EAX);
539    setExceptionSelectorRegister(X86::EDX);
540  }
541  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
542  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
543
544  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
545  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
546
547  setOperationAction(ISD::TRAP, MVT::Other, Legal);
548
549  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
550  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
551  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
552  if (Subtarget->is64Bit()) {
553    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
554    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
555  } else {
556    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
557    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
558  }
559
560  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
561  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
562
563  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Custom);
566  else if (TM.Options.EnableSegmentedStacks)
567    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
568                       MVT::i64 : MVT::i32, Custom);
569  else
570    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
571                       MVT::i64 : MVT::i32, Expand);
572
573  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
574    // f32 and f64 use SSE.
575    // Set up the FP register classes.
576    addRegisterClass(MVT::f32, &X86::FR32RegClass);
577    addRegisterClass(MVT::f64, &X86::FR64RegClass);
578
579    // Use ANDPD to simulate FABS.
580    setOperationAction(ISD::FABS , MVT::f64, Custom);
581    setOperationAction(ISD::FABS , MVT::f32, Custom);
582
583    // Use XORP to simulate FNEG.
584    setOperationAction(ISD::FNEG , MVT::f64, Custom);
585    setOperationAction(ISD::FNEG , MVT::f32, Custom);
586
587    // Use ANDPD and ORPD to simulate FCOPYSIGN.
588    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
589    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
590
591    // Lower this to FGETSIGNx86 plus an AND.
592    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
593    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
594
595    // We don't support sin/cos/fmod
596    setOperationAction(ISD::FSIN , MVT::f64, Expand);
597    setOperationAction(ISD::FCOS , MVT::f64, Expand);
598    setOperationAction(ISD::FSIN , MVT::f32, Expand);
599    setOperationAction(ISD::FCOS , MVT::f32, Expand);
600
601    // Expand FP immediates into loads from the stack, except for the special
602    // cases we handle.
603    addLegalFPImmediate(APFloat(+0.0)); // xorpd
604    addLegalFPImmediate(APFloat(+0.0f)); // xorps
605  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
606    // Use SSE for f32, x87 for f64.
607    // Set up the FP register classes.
608    addRegisterClass(MVT::f32, &X86::FR32RegClass);
609    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
610
611    // Use ANDPS to simulate FABS.
612    setOperationAction(ISD::FABS , MVT::f32, Custom);
613
614    // Use XORP to simulate FNEG.
615    setOperationAction(ISD::FNEG , MVT::f32, Custom);
616
617    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
618
619    // Use ANDPS and ORPS to simulate FCOPYSIGN.
620    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
622
623    // We don't support sin/cos/fmod
624    setOperationAction(ISD::FSIN , MVT::f32, Expand);
625    setOperationAction(ISD::FCOS , MVT::f32, Expand);
626
627    // Special cases we handle for FP constants.
628    addLegalFPImmediate(APFloat(+0.0f)); // xorps
629    addLegalFPImmediate(APFloat(+0.0)); // FLD0
630    addLegalFPImmediate(APFloat(+1.0)); // FLD1
631    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
632    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
633
634    if (!TM.Options.UnsafeFPMath) {
635      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
636      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
637    }
638  } else if (!TM.Options.UseSoftFloat) {
639    // f32 and f64 in x87.
640    // Set up the FP register classes.
641    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
642    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
643
644    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
645    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
646    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
647    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
648
649    if (!TM.Options.UnsafeFPMath) {
650      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
651      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
652    }
653    addLegalFPImmediate(APFloat(+0.0)); // FLD0
654    addLegalFPImmediate(APFloat(+1.0)); // FLD1
655    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
656    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
657    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
658    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
659    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
660    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
661  }
662
663  // We don't support FMA.
664  setOperationAction(ISD::FMA, MVT::f64, Expand);
665  setOperationAction(ISD::FMA, MVT::f32, Expand);
666
667  // Long double always uses X87.
668  if (!TM.Options.UseSoftFloat) {
669    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
670    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
671    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
672    {
673      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
674      addLegalFPImmediate(TmpFlt);  // FLD0
675      TmpFlt.changeSign();
676      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
677
678      bool ignored;
679      APFloat TmpFlt2(+1.0);
680      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
681                      &ignored);
682      addLegalFPImmediate(TmpFlt2);  // FLD1
683      TmpFlt2.changeSign();
684      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
685    }
686
687    if (!TM.Options.UnsafeFPMath) {
688      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
689      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
690    }
691
692    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
693    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
694    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
695    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
696    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
697    setOperationAction(ISD::FMA, MVT::f80, Expand);
698  }
699
700  // Always use a library call for pow.
701  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
702  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
703  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
704
705  setOperationAction(ISD::FLOG, MVT::f80, Expand);
706  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
707  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
708  setOperationAction(ISD::FEXP, MVT::f80, Expand);
709  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
710
711  // First set operation action for all vector types to either promote
712  // (for widening) or expand (for scalarization). Then we will selectively
713  // turn on ones that can be effectively codegen'd.
714  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
715           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
716    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
731    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
733    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
734    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
770    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
772    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
773    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
774    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
775    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
776             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
777      setTruncStoreAction((MVT::SimpleValueType)VT,
778                          (MVT::SimpleValueType)InnerVT, Expand);
779    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
780    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
781    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
782  }
783
784  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
785  // with -msoft-float, disable use of MMX as well.
786  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
787    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
788    // No operations on x86mmx supported, everything uses intrinsics.
789  }
790
791  // MMX-sized vectors (other than x86mmx) are expected to be expanded
792  // into smaller operations.
793  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
794  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
795  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
796  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
797  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
799  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
800  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
801  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
802  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
803  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
804  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
805  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
806  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
807  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
808  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
809  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
810  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
811  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
812  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
813  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
814  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
815  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
816  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
817  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
818  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
819  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
820  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
821  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
822
823  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
824    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
825
826    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
827    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
828    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
829    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
830    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
831    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
832    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
833    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
834    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
835    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
836    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
837    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
838  }
839
840  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
841    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
842
843    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
844    // registers cannot be used even for integer operations.
845    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
846    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
847    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
848    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
849
850    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
851    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
852    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
853    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
854    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
855    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
856    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
857    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
858    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
859    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
860    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
861    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
862    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
863    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
864    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
865    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
866    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
867
868    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
869    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
870    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
871    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
872
873    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
874    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
875    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
876    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
877    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
878
879    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
880    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
881      MVT VT = (MVT::SimpleValueType)i;
882      // Do not attempt to custom lower non-power-of-2 vectors
883      if (!isPowerOf2_32(VT.getVectorNumElements()))
884        continue;
885      // Do not attempt to custom lower non-128-bit vectors
886      if (!VT.is128BitVector())
887        continue;
888      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
889      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
890      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
907      MVT VT = (MVT::SimpleValueType)i;
908
909      // Do not attempt to promote non-128-bit vectors
910      if (!VT.is128BitVector())
911        continue;
912
913      setOperationAction(ISD::AND,    VT, Promote);
914      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
915      setOperationAction(ISD::OR,     VT, Promote);
916      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
917      setOperationAction(ISD::XOR,    VT, Promote);
918      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
919      setOperationAction(ISD::LOAD,   VT, Promote);
920      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
921      setOperationAction(ISD::SELECT, VT, Promote);
922      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
923    }
924
925    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
926
927    // Custom lower v2i64 and v2f64 selects.
928    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
929    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
930    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
931    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
932
933    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
934    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
935
936    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
937  }
938
939  if (Subtarget->hasSSE41()) {
940    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
945    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
946    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
947    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
948    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
949    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
950
951    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
952    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
953
954    // FIXME: Do we need to handle scalar-to-vector here?
955    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
956
957    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
959    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
960    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
961    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
962
963    // i8 and i16 vectors are custom , because the source register and source
964    // source memory operand types are not the same width.  f32 vectors are
965    // custom since the immediate controlling the insert encodes additional
966    // information.
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
968    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
969    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
970    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
971
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
973    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
974    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
975    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
976
977    // FIXME: these should be Legal but thats only for the case where
978    // the index is constant.  For now custom expand to deal with that.
979    if (Subtarget->is64Bit()) {
980      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
981      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
982    }
983  }
984
985  if (Subtarget->hasSSE2()) {
986    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
987    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
988
989    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
990    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
991
992    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
993    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
994
995    if (Subtarget->hasAVX2()) {
996      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
997      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
998
999      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1000      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1001
1002      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1003    } else {
1004      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1005      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1006
1007      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1008      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1009
1010      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1011    }
1012  }
1013
1014  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1015    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1016    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1017    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1018    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1019    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1020    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1021
1022    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1024    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1025
1026    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1031    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1032    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1033    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1034
1035    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1038    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1039    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1040    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1041    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1042    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1043
1044    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1045    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1046    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1047
1048    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1074      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1075      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1076      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1077      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1078      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1079      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1080    }
1081
1082    if (Subtarget->hasAVX2()) {
1083      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1084      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1085      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1086      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1087
1088      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1089      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1090      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1091      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1092
1093      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1094      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1095      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1096      // Don't lower v32i8 because there is no 128-bit byte mul
1097
1098      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1099
1100      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1101      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1102
1103      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1104      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1105
1106      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1107    } else {
1108      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1109      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1110      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1111      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1112
1113      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1114      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1115      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1116      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1117
1118      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1119      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1120      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1121      // Don't lower v32i8 because there is no 128-bit byte mul
1122
1123      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1124      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1125
1126      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1127      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1128
1129      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1130    }
1131
1132    // Custom lower several nodes for 256-bit types.
1133    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1134             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1135      MVT VT = (MVT::SimpleValueType)i;
1136
1137      // Extract subvector is special because the value type
1138      // (result) is 128-bit but the source is 256-bit wide.
1139      if (VT.is128BitVector())
1140        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1141
1142      // Do not attempt to custom lower other non-256-bit vectors
1143      if (!VT.is256BitVector())
1144        continue;
1145
1146      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1147      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1148      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1149      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1150      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1151      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1152      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1153    }
1154
1155    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1156    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1157      MVT VT = (MVT::SimpleValueType)i;
1158
1159      // Do not attempt to promote non-256-bit vectors
1160      if (!VT.is256BitVector())
1161        continue;
1162
1163      setOperationAction(ISD::AND,    VT, Promote);
1164      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1165      setOperationAction(ISD::OR,     VT, Promote);
1166      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1167      setOperationAction(ISD::XOR,    VT, Promote);
1168      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1169      setOperationAction(ISD::LOAD,   VT, Promote);
1170      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1171      setOperationAction(ISD::SELECT, VT, Promote);
1172      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1173    }
1174  }
1175
1176  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1177  // of this type with custom code.
1178  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1179           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1180    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1181                       Custom);
1182  }
1183
1184  // We want to custom lower some of our intrinsics.
1185  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1186  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1187
1188
1189  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1190  // handle type legalization for these operations here.
1191  //
1192  // FIXME: We really should do custom legalization for addition and
1193  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1194  // than generic legalization for 64-bit multiplication-with-overflow, though.
1195  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1196    // Add/Sub/Mul with overflow operations are custom lowered.
1197    MVT VT = IntVTs[i];
1198    setOperationAction(ISD::SADDO, VT, Custom);
1199    setOperationAction(ISD::UADDO, VT, Custom);
1200    setOperationAction(ISD::SSUBO, VT, Custom);
1201    setOperationAction(ISD::USUBO, VT, Custom);
1202    setOperationAction(ISD::SMULO, VT, Custom);
1203    setOperationAction(ISD::UMULO, VT, Custom);
1204  }
1205
1206  // There are no 8-bit 3-address imul/mul instructions
1207  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1208  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1209
1210  if (!Subtarget->is64Bit()) {
1211    // These libcalls are not available in 32-bit.
1212    setLibcallName(RTLIB::SHL_I128, 0);
1213    setLibcallName(RTLIB::SRL_I128, 0);
1214    setLibcallName(RTLIB::SRA_I128, 0);
1215  }
1216
1217  // We have target-specific dag combine patterns for the following nodes:
1218  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1219  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1220  setTargetDAGCombine(ISD::VSELECT);
1221  setTargetDAGCombine(ISD::SELECT);
1222  setTargetDAGCombine(ISD::SHL);
1223  setTargetDAGCombine(ISD::SRA);
1224  setTargetDAGCombine(ISD::SRL);
1225  setTargetDAGCombine(ISD::OR);
1226  setTargetDAGCombine(ISD::AND);
1227  setTargetDAGCombine(ISD::ADD);
1228  setTargetDAGCombine(ISD::FADD);
1229  setTargetDAGCombine(ISD::FSUB);
1230  setTargetDAGCombine(ISD::FMA);
1231  setTargetDAGCombine(ISD::SUB);
1232  setTargetDAGCombine(ISD::LOAD);
1233  setTargetDAGCombine(ISD::STORE);
1234  setTargetDAGCombine(ISD::ZERO_EXTEND);
1235  setTargetDAGCombine(ISD::ANY_EXTEND);
1236  setTargetDAGCombine(ISD::SIGN_EXTEND);
1237  setTargetDAGCombine(ISD::TRUNCATE);
1238  setTargetDAGCombine(ISD::UINT_TO_FP);
1239  setTargetDAGCombine(ISD::SINT_TO_FP);
1240  setTargetDAGCombine(ISD::SETCC);
1241  setTargetDAGCombine(ISD::FP_TO_SINT);
1242  if (Subtarget->is64Bit())
1243    setTargetDAGCombine(ISD::MUL);
1244  setTargetDAGCombine(ISD::XOR);
1245
1246  computeRegisterProperties();
1247
1248  // On Darwin, -Os means optimize for size without hurting performance,
1249  // do not reduce the limit.
1250  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1251  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1252  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1253  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1254  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1255  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1256  setPrefLoopAlignment(4); // 2^4 bytes.
1257  benefitFromCodePlacementOpt = true;
1258
1259  // Predictable cmov don't hurt on atom because it's in-order.
1260  predictableSelectIsExpensive = !Subtarget->isAtom();
1261
1262  setPrefFunctionAlignment(4); // 2^4 bytes.
1263}
1264
1265
1266EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1267  if (!VT.isVector()) return MVT::i8;
1268  return VT.changeVectorElementTypeToInteger();
1269}
1270
1271
1272/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1273/// the desired ByVal argument alignment.
1274static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1275  if (MaxAlign == 16)
1276    return;
1277  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1278    if (VTy->getBitWidth() == 128)
1279      MaxAlign = 16;
1280  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1281    unsigned EltAlign = 0;
1282    getMaxByValAlign(ATy->getElementType(), EltAlign);
1283    if (EltAlign > MaxAlign)
1284      MaxAlign = EltAlign;
1285  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1286    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1287      unsigned EltAlign = 0;
1288      getMaxByValAlign(STy->getElementType(i), EltAlign);
1289      if (EltAlign > MaxAlign)
1290        MaxAlign = EltAlign;
1291      if (MaxAlign == 16)
1292        break;
1293    }
1294  }
1295}
1296
1297/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1298/// function arguments in the caller parameter area. For X86, aggregates
1299/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1300/// are at 4-byte boundaries.
1301unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1302  if (Subtarget->is64Bit()) {
1303    // Max of 8 and alignment of type.
1304    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1305    if (TyAlign > 8)
1306      return TyAlign;
1307    return 8;
1308  }
1309
1310  unsigned Align = 4;
1311  if (Subtarget->hasSSE1())
1312    getMaxByValAlign(Ty, Align);
1313  return Align;
1314}
1315
1316/// getOptimalMemOpType - Returns the target specific optimal type for load
1317/// and store operations as a result of memset, memcpy, and memmove
1318/// lowering. If DstAlign is zero that means it's safe to destination
1319/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1320/// means there isn't a need to check it against alignment requirement,
1321/// probably because the source does not need to be loaded. If
1322/// 'IsZeroVal' is true, that means it's safe to return a
1323/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1324/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1325/// constant so it does not need to be loaded.
1326/// It returns EVT::Other if the type should be determined using generic
1327/// target-independent logic.
1328EVT
1329X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1330                                       unsigned DstAlign, unsigned SrcAlign,
1331                                       bool IsZeroVal,
1332                                       bool MemcpyStrSrc,
1333                                       MachineFunction &MF) const {
1334  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1335  // linux.  This is because the stack realignment code can't handle certain
1336  // cases like PR2962.  This should be removed when PR2962 is fixed.
1337  const Function *F = MF.getFunction();
1338  if (IsZeroVal &&
1339      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1340    if (Size >= 16 &&
1341        (Subtarget->isUnalignedMemAccessFast() ||
1342         ((DstAlign == 0 || DstAlign >= 16) &&
1343          (SrcAlign == 0 || SrcAlign >= 16))) &&
1344        Subtarget->getStackAlignment() >= 16) {
1345      if (Subtarget->getStackAlignment() >= 32) {
1346        if (Subtarget->hasAVX2())
1347          return MVT::v8i32;
1348        if (Subtarget->hasAVX())
1349          return MVT::v8f32;
1350      }
1351      if (Subtarget->hasSSE2())
1352        return MVT::v4i32;
1353      if (Subtarget->hasSSE1())
1354        return MVT::v4f32;
1355    } else if (!MemcpyStrSrc && Size >= 8 &&
1356               !Subtarget->is64Bit() &&
1357               Subtarget->getStackAlignment() >= 8 &&
1358               Subtarget->hasSSE2()) {
1359      // Do not use f64 to lower memcpy if source is string constant. It's
1360      // better to use i32 to avoid the loads.
1361      return MVT::f64;
1362    }
1363  }
1364  if (Subtarget->is64Bit() && Size >= 8)
1365    return MVT::i64;
1366  return MVT::i32;
1367}
1368
1369/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1370/// current function.  The returned value is a member of the
1371/// MachineJumpTableInfo::JTEntryKind enum.
1372unsigned X86TargetLowering::getJumpTableEncoding() const {
1373  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1374  // symbol.
1375  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1376      Subtarget->isPICStyleGOT())
1377    return MachineJumpTableInfo::EK_Custom32;
1378
1379  // Otherwise, use the normal jump table encoding heuristics.
1380  return TargetLowering::getJumpTableEncoding();
1381}
1382
1383const MCExpr *
1384X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1385                                             const MachineBasicBlock *MBB,
1386                                             unsigned uid,MCContext &Ctx) const{
1387  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1388         Subtarget->isPICStyleGOT());
1389  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1390  // entries.
1391  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1392                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1393}
1394
1395/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1396/// jumptable.
1397SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1398                                                    SelectionDAG &DAG) const {
1399  if (!Subtarget->is64Bit())
1400    // This doesn't have DebugLoc associated with it, but is not really the
1401    // same as a Register.
1402    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1403  return Table;
1404}
1405
1406/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1407/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1408/// MCExpr.
1409const MCExpr *X86TargetLowering::
1410getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1411                             MCContext &Ctx) const {
1412  // X86-64 uses RIP relative addressing based on the jump table label.
1413  if (Subtarget->isPICStyleRIPRel())
1414    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1415
1416  // Otherwise, the reference is relative to the PIC base.
1417  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1418}
1419
1420// FIXME: Why this routine is here? Move to RegInfo!
1421std::pair<const TargetRegisterClass*, uint8_t>
1422X86TargetLowering::findRepresentativeClass(EVT VT) const{
1423  const TargetRegisterClass *RRC = 0;
1424  uint8_t Cost = 1;
1425  switch (VT.getSimpleVT().SimpleTy) {
1426  default:
1427    return TargetLowering::findRepresentativeClass(VT);
1428  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1429    RRC = Subtarget->is64Bit() ?
1430      (const TargetRegisterClass*)&X86::GR64RegClass :
1431      (const TargetRegisterClass*)&X86::GR32RegClass;
1432    break;
1433  case MVT::x86mmx:
1434    RRC = &X86::VR64RegClass;
1435    break;
1436  case MVT::f32: case MVT::f64:
1437  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1438  case MVT::v4f32: case MVT::v2f64:
1439  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1440  case MVT::v4f64:
1441    RRC = &X86::VR128RegClass;
1442    break;
1443  }
1444  return std::make_pair(RRC, Cost);
1445}
1446
1447bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1448                                               unsigned &Offset) const {
1449  if (!Subtarget->isTargetLinux())
1450    return false;
1451
1452  if (Subtarget->is64Bit()) {
1453    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1454    Offset = 0x28;
1455    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1456      AddressSpace = 256;
1457    else
1458      AddressSpace = 257;
1459  } else {
1460    // %gs:0x14 on i386
1461    Offset = 0x14;
1462    AddressSpace = 256;
1463  }
1464  return true;
1465}
1466
1467
1468//===----------------------------------------------------------------------===//
1469//               Return Value Calling Convention Implementation
1470//===----------------------------------------------------------------------===//
1471
1472#include "X86GenCallingConv.inc"
1473
1474bool
1475X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1476                                  MachineFunction &MF, bool isVarArg,
1477                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1478                        LLVMContext &Context) const {
1479  SmallVector<CCValAssign, 16> RVLocs;
1480  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1481                 RVLocs, Context);
1482  return CCInfo.CheckReturn(Outs, RetCC_X86);
1483}
1484
1485SDValue
1486X86TargetLowering::LowerReturn(SDValue Chain,
1487                               CallingConv::ID CallConv, bool isVarArg,
1488                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1489                               const SmallVectorImpl<SDValue> &OutVals,
1490                               DebugLoc dl, SelectionDAG &DAG) const {
1491  MachineFunction &MF = DAG.getMachineFunction();
1492  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1493
1494  SmallVector<CCValAssign, 16> RVLocs;
1495  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1496                 RVLocs, *DAG.getContext());
1497  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1498
1499  // Add the regs to the liveout set for the function.
1500  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1501  for (unsigned i = 0; i != RVLocs.size(); ++i)
1502    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1503      MRI.addLiveOut(RVLocs[i].getLocReg());
1504
1505  SDValue Flag;
1506
1507  SmallVector<SDValue, 6> RetOps;
1508  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1509  // Operand #1 = Bytes To Pop
1510  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1511                   MVT::i16));
1512
1513  // Copy the result values into the output registers.
1514  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1515    CCValAssign &VA = RVLocs[i];
1516    assert(VA.isRegLoc() && "Can only return in registers!");
1517    SDValue ValToCopy = OutVals[i];
1518    EVT ValVT = ValToCopy.getValueType();
1519
1520    // Promote values to the appropriate types
1521    if (VA.getLocInfo() == CCValAssign::SExt)
1522      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1523    else if (VA.getLocInfo() == CCValAssign::ZExt)
1524      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1525    else if (VA.getLocInfo() == CCValAssign::AExt)
1526      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1527    else if (VA.getLocInfo() == CCValAssign::BCvt)
1528      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1529
1530    // If this is x86-64, and we disabled SSE, we can't return FP values,
1531    // or SSE or MMX vectors.
1532    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1533         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1534          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1535      report_fatal_error("SSE register return with SSE disabled");
1536    }
1537    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1538    // llvm-gcc has never done it right and no one has noticed, so this
1539    // should be OK for now.
1540    if (ValVT == MVT::f64 &&
1541        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1542      report_fatal_error("SSE2 register return with SSE2 disabled");
1543
1544    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1545    // the RET instruction and handled by the FP Stackifier.
1546    if (VA.getLocReg() == X86::ST0 ||
1547        VA.getLocReg() == X86::ST1) {
1548      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1549      // change the value to the FP stack register class.
1550      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1551        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1552      RetOps.push_back(ValToCopy);
1553      // Don't emit a copytoreg.
1554      continue;
1555    }
1556
1557    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1558    // which is returned in RAX / RDX.
1559    if (Subtarget->is64Bit()) {
1560      if (ValVT == MVT::x86mmx) {
1561        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1562          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1563          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1564                                  ValToCopy);
1565          // If we don't have SSE2 available, convert to v4f32 so the generated
1566          // register is legal.
1567          if (!Subtarget->hasSSE2())
1568            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1569        }
1570      }
1571    }
1572
1573    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1574    Flag = Chain.getValue(1);
1575  }
1576
1577  // The x86-64 ABI for returning structs by value requires that we copy
1578  // the sret argument into %rax for the return. We saved the argument into
1579  // a virtual register in the entry block, so now we copy the value out
1580  // and into %rax.
1581  if (Subtarget->is64Bit() &&
1582      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1583    MachineFunction &MF = DAG.getMachineFunction();
1584    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1585    unsigned Reg = FuncInfo->getSRetReturnReg();
1586    assert(Reg &&
1587           "SRetReturnReg should have been set in LowerFormalArguments().");
1588    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1589
1590    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1591    Flag = Chain.getValue(1);
1592
1593    // RAX now acts like a return value.
1594    MRI.addLiveOut(X86::RAX);
1595  }
1596
1597  RetOps[0] = Chain;  // Update chain.
1598
1599  // Add the flag if we have it.
1600  if (Flag.getNode())
1601    RetOps.push_back(Flag);
1602
1603  return DAG.getNode(X86ISD::RET_FLAG, dl,
1604                     MVT::Other, &RetOps[0], RetOps.size());
1605}
1606
1607bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1608  if (N->getNumValues() != 1)
1609    return false;
1610  if (!N->hasNUsesOfValue(1, 0))
1611    return false;
1612
1613  SDValue TCChain = Chain;
1614  SDNode *Copy = *N->use_begin();
1615  if (Copy->getOpcode() == ISD::CopyToReg) {
1616    // If the copy has a glue operand, we conservatively assume it isn't safe to
1617    // perform a tail call.
1618    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1619      return false;
1620    TCChain = Copy->getOperand(0);
1621  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1622    return false;
1623
1624  bool HasRet = false;
1625  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1626       UI != UE; ++UI) {
1627    if (UI->getOpcode() != X86ISD::RET_FLAG)
1628      return false;
1629    HasRet = true;
1630  }
1631
1632  if (!HasRet)
1633    return false;
1634
1635  Chain = TCChain;
1636  return true;
1637}
1638
1639EVT
1640X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1641                                            ISD::NodeType ExtendKind) const {
1642  MVT ReturnMVT;
1643  // TODO: Is this also valid on 32-bit?
1644  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1645    ReturnMVT = MVT::i8;
1646  else
1647    ReturnMVT = MVT::i32;
1648
1649  EVT MinVT = getRegisterType(Context, ReturnMVT);
1650  return VT.bitsLT(MinVT) ? MinVT : VT;
1651}
1652
1653/// LowerCallResult - Lower the result values of a call into the
1654/// appropriate copies out of appropriate physical registers.
1655///
1656SDValue
1657X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1658                                   CallingConv::ID CallConv, bool isVarArg,
1659                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1660                                   DebugLoc dl, SelectionDAG &DAG,
1661                                   SmallVectorImpl<SDValue> &InVals) const {
1662
1663  // Assign locations to each value returned by this call.
1664  SmallVector<CCValAssign, 16> RVLocs;
1665  bool Is64Bit = Subtarget->is64Bit();
1666  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1667                 getTargetMachine(), RVLocs, *DAG.getContext());
1668  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1669
1670  // Copy all of the result registers out of their specified physreg.
1671  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1672    CCValAssign &VA = RVLocs[i];
1673    EVT CopyVT = VA.getValVT();
1674
1675    // If this is x86-64, and we disabled SSE, we can't return FP values
1676    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1677        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1678      report_fatal_error("SSE register return with SSE disabled");
1679    }
1680
1681    SDValue Val;
1682
1683    // If this is a call to a function that returns an fp value on the floating
1684    // point stack, we must guarantee the value is popped from the stack, so
1685    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1686    // if the return value is not used. We use the FpPOP_RETVAL instruction
1687    // instead.
1688    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1689      // If we prefer to use the value in xmm registers, copy it out as f80 and
1690      // use a truncate to move it from fp stack reg to xmm reg.
1691      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1692      SDValue Ops[] = { Chain, InFlag };
1693      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1694                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1695      Val = Chain.getValue(0);
1696
1697      // Round the f80 to the right size, which also moves it to the appropriate
1698      // xmm register.
1699      if (CopyVT != VA.getValVT())
1700        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1701                          // This truncation won't change the value.
1702                          DAG.getIntPtrConstant(1));
1703    } else {
1704      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1705                                 CopyVT, InFlag).getValue(1);
1706      Val = Chain.getValue(0);
1707    }
1708    InFlag = Chain.getValue(2);
1709    InVals.push_back(Val);
1710  }
1711
1712  return Chain;
1713}
1714
1715
1716//===----------------------------------------------------------------------===//
1717//                C & StdCall & Fast Calling Convention implementation
1718//===----------------------------------------------------------------------===//
1719//  StdCall calling convention seems to be standard for many Windows' API
1720//  routines and around. It differs from C calling convention just a little:
1721//  callee should clean up the stack, not caller. Symbols should be also
1722//  decorated in some fancy way :) It doesn't support any vector arguments.
1723//  For info on fast calling convention see Fast Calling Convention (tail call)
1724//  implementation LowerX86_32FastCCCallTo.
1725
1726/// CallIsStructReturn - Determines whether a call uses struct return
1727/// semantics.
1728enum StructReturnType {
1729  NotStructReturn,
1730  RegStructReturn,
1731  StackStructReturn
1732};
1733static StructReturnType
1734callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1735  if (Outs.empty())
1736    return NotStructReturn;
1737
1738  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1739  if (!Flags.isSRet())
1740    return NotStructReturn;
1741  if (Flags.isInReg())
1742    return RegStructReturn;
1743  return StackStructReturn;
1744}
1745
1746/// ArgsAreStructReturn - Determines whether a function uses struct
1747/// return semantics.
1748static StructReturnType
1749argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1750  if (Ins.empty())
1751    return NotStructReturn;
1752
1753  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1754  if (!Flags.isSRet())
1755    return NotStructReturn;
1756  if (Flags.isInReg())
1757    return RegStructReturn;
1758  return StackStructReturn;
1759}
1760
1761/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1762/// by "Src" to address "Dst" with size and alignment information specified by
1763/// the specific parameter attribute. The copy will be passed as a byval
1764/// function parameter.
1765static SDValue
1766CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1767                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1768                          DebugLoc dl) {
1769  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1770
1771  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1772                       /*isVolatile*/false, /*AlwaysInline=*/true,
1773                       MachinePointerInfo(), MachinePointerInfo());
1774}
1775
1776/// IsTailCallConvention - Return true if the calling convention is one that
1777/// supports tail call optimization.
1778static bool IsTailCallConvention(CallingConv::ID CC) {
1779  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1780}
1781
1782bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1783  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1784    return false;
1785
1786  CallSite CS(CI);
1787  CallingConv::ID CalleeCC = CS.getCallingConv();
1788  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1789    return false;
1790
1791  return true;
1792}
1793
1794/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1795/// a tailcall target by changing its ABI.
1796static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1797                                   bool GuaranteedTailCallOpt) {
1798  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1799}
1800
1801SDValue
1802X86TargetLowering::LowerMemArgument(SDValue Chain,
1803                                    CallingConv::ID CallConv,
1804                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1805                                    DebugLoc dl, SelectionDAG &DAG,
1806                                    const CCValAssign &VA,
1807                                    MachineFrameInfo *MFI,
1808                                    unsigned i) const {
1809  // Create the nodes corresponding to a load from this parameter slot.
1810  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1811  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1812                              getTargetMachine().Options.GuaranteedTailCallOpt);
1813  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1814  EVT ValVT;
1815
1816  // If value is passed by pointer we have address passed instead of the value
1817  // itself.
1818  if (VA.getLocInfo() == CCValAssign::Indirect)
1819    ValVT = VA.getLocVT();
1820  else
1821    ValVT = VA.getValVT();
1822
1823  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1824  // changed with more analysis.
1825  // In case of tail call optimization mark all arguments mutable. Since they
1826  // could be overwritten by lowering of arguments in case of a tail call.
1827  if (Flags.isByVal()) {
1828    unsigned Bytes = Flags.getByValSize();
1829    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1830    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1831    return DAG.getFrameIndex(FI, getPointerTy());
1832  } else {
1833    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1834                                    VA.getLocMemOffset(), isImmutable);
1835    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1836    return DAG.getLoad(ValVT, dl, Chain, FIN,
1837                       MachinePointerInfo::getFixedStack(FI),
1838                       false, false, false, 0);
1839  }
1840}
1841
1842SDValue
1843X86TargetLowering::LowerFormalArguments(SDValue Chain,
1844                                        CallingConv::ID CallConv,
1845                                        bool isVarArg,
1846                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1847                                        DebugLoc dl,
1848                                        SelectionDAG &DAG,
1849                                        SmallVectorImpl<SDValue> &InVals)
1850                                          const {
1851  MachineFunction &MF = DAG.getMachineFunction();
1852  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1853
1854  const Function* Fn = MF.getFunction();
1855  if (Fn->hasExternalLinkage() &&
1856      Subtarget->isTargetCygMing() &&
1857      Fn->getName() == "main")
1858    FuncInfo->setForceFramePointer(true);
1859
1860  MachineFrameInfo *MFI = MF.getFrameInfo();
1861  bool Is64Bit = Subtarget->is64Bit();
1862  bool IsWindows = Subtarget->isTargetWindows();
1863  bool IsWin64 = Subtarget->isTargetWin64();
1864
1865  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1866         "Var args not supported with calling convention fastcc or ghc");
1867
1868  // Assign locations to all of the incoming arguments.
1869  SmallVector<CCValAssign, 16> ArgLocs;
1870  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1871                 ArgLocs, *DAG.getContext());
1872
1873  // Allocate shadow area for Win64
1874  if (IsWin64) {
1875    CCInfo.AllocateStack(32, 8);
1876  }
1877
1878  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1879
1880  unsigned LastVal = ~0U;
1881  SDValue ArgValue;
1882  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1883    CCValAssign &VA = ArgLocs[i];
1884    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1885    // places.
1886    assert(VA.getValNo() != LastVal &&
1887           "Don't support value assigned to multiple locs yet");
1888    (void)LastVal;
1889    LastVal = VA.getValNo();
1890
1891    if (VA.isRegLoc()) {
1892      EVT RegVT = VA.getLocVT();
1893      const TargetRegisterClass *RC;
1894      if (RegVT == MVT::i32)
1895        RC = &X86::GR32RegClass;
1896      else if (Is64Bit && RegVT == MVT::i64)
1897        RC = &X86::GR64RegClass;
1898      else if (RegVT == MVT::f32)
1899        RC = &X86::FR32RegClass;
1900      else if (RegVT == MVT::f64)
1901        RC = &X86::FR64RegClass;
1902      else if (RegVT.is256BitVector())
1903        RC = &X86::VR256RegClass;
1904      else if (RegVT.is128BitVector())
1905        RC = &X86::VR128RegClass;
1906      else if (RegVT == MVT::x86mmx)
1907        RC = &X86::VR64RegClass;
1908      else
1909        llvm_unreachable("Unknown argument type!");
1910
1911      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1912      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1913
1914      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1915      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1916      // right size.
1917      if (VA.getLocInfo() == CCValAssign::SExt)
1918        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1919                               DAG.getValueType(VA.getValVT()));
1920      else if (VA.getLocInfo() == CCValAssign::ZExt)
1921        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1922                               DAG.getValueType(VA.getValVT()));
1923      else if (VA.getLocInfo() == CCValAssign::BCvt)
1924        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1925
1926      if (VA.isExtInLoc()) {
1927        // Handle MMX values passed in XMM regs.
1928        if (RegVT.isVector()) {
1929          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1930                                 ArgValue);
1931        } else
1932          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1933      }
1934    } else {
1935      assert(VA.isMemLoc());
1936      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1937    }
1938
1939    // If value is passed via pointer - do a load.
1940    if (VA.getLocInfo() == CCValAssign::Indirect)
1941      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1942                             MachinePointerInfo(), false, false, false, 0);
1943
1944    InVals.push_back(ArgValue);
1945  }
1946
1947  // The x86-64 ABI for returning structs by value requires that we copy
1948  // the sret argument into %rax for the return. Save the argument into
1949  // a virtual register so that we can access it from the return points.
1950  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1951    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1952    unsigned Reg = FuncInfo->getSRetReturnReg();
1953    if (!Reg) {
1954      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1955      FuncInfo->setSRetReturnReg(Reg);
1956    }
1957    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1958    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1959  }
1960
1961  unsigned StackSize = CCInfo.getNextStackOffset();
1962  // Align stack specially for tail calls.
1963  if (FuncIsMadeTailCallSafe(CallConv,
1964                             MF.getTarget().Options.GuaranteedTailCallOpt))
1965    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1966
1967  // If the function takes variable number of arguments, make a frame index for
1968  // the start of the first vararg value... for expansion of llvm.va_start.
1969  if (isVarArg) {
1970    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1971                    CallConv != CallingConv::X86_ThisCall)) {
1972      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1973    }
1974    if (Is64Bit) {
1975      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1976
1977      // FIXME: We should really autogenerate these arrays
1978      static const uint16_t GPR64ArgRegsWin64[] = {
1979        X86::RCX, X86::RDX, X86::R8,  X86::R9
1980      };
1981      static const uint16_t GPR64ArgRegs64Bit[] = {
1982        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1983      };
1984      static const uint16_t XMMArgRegs64Bit[] = {
1985        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1986        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1987      };
1988      const uint16_t *GPR64ArgRegs;
1989      unsigned NumXMMRegs = 0;
1990
1991      if (IsWin64) {
1992        // The XMM registers which might contain var arg parameters are shadowed
1993        // in their paired GPR.  So we only need to save the GPR to their home
1994        // slots.
1995        TotalNumIntRegs = 4;
1996        GPR64ArgRegs = GPR64ArgRegsWin64;
1997      } else {
1998        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1999        GPR64ArgRegs = GPR64ArgRegs64Bit;
2000
2001        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2002                                                TotalNumXMMRegs);
2003      }
2004      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2005                                                       TotalNumIntRegs);
2006
2007      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
2008      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2009             "SSE register cannot be used when SSE is disabled!");
2010      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2011               NoImplicitFloatOps) &&
2012             "SSE register cannot be used when SSE is disabled!");
2013      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2014          !Subtarget->hasSSE1())
2015        // Kernel mode asks for SSE to be disabled, so don't push them
2016        // on the stack.
2017        TotalNumXMMRegs = 0;
2018
2019      if (IsWin64) {
2020        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2021        // Get to the caller-allocated home save location.  Add 8 to account
2022        // for the return address.
2023        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2024        FuncInfo->setRegSaveFrameIndex(
2025          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2026        // Fixup to set vararg frame on shadow area (4 x i64).
2027        if (NumIntRegs < 4)
2028          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2029      } else {
2030        // For X86-64, if there are vararg parameters that are passed via
2031        // registers, then we must store them to their spots on the stack so
2032        // they may be loaded by deferencing the result of va_next.
2033        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2034        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2035        FuncInfo->setRegSaveFrameIndex(
2036          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2037                               false));
2038      }
2039
2040      // Store the integer parameter registers.
2041      SmallVector<SDValue, 8> MemOps;
2042      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2043                                        getPointerTy());
2044      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2045      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2046        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2047                                  DAG.getIntPtrConstant(Offset));
2048        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2049                                     &X86::GR64RegClass);
2050        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2051        SDValue Store =
2052          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2053                       MachinePointerInfo::getFixedStack(
2054                         FuncInfo->getRegSaveFrameIndex(), Offset),
2055                       false, false, 0);
2056        MemOps.push_back(Store);
2057        Offset += 8;
2058      }
2059
2060      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2061        // Now store the XMM (fp + vector) parameter registers.
2062        SmallVector<SDValue, 11> SaveXMMOps;
2063        SaveXMMOps.push_back(Chain);
2064
2065        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2066        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2067        SaveXMMOps.push_back(ALVal);
2068
2069        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2070                               FuncInfo->getRegSaveFrameIndex()));
2071        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2072                               FuncInfo->getVarArgsFPOffset()));
2073
2074        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2075          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2076                                       &X86::VR128RegClass);
2077          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2078          SaveXMMOps.push_back(Val);
2079        }
2080        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2081                                     MVT::Other,
2082                                     &SaveXMMOps[0], SaveXMMOps.size()));
2083      }
2084
2085      if (!MemOps.empty())
2086        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2087                            &MemOps[0], MemOps.size());
2088    }
2089  }
2090
2091  // Some CCs need callee pop.
2092  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2093                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2094    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2095  } else {
2096    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2097    // If this is an sret function, the return should pop the hidden pointer.
2098    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2099        argsAreStructReturn(Ins) == StackStructReturn)
2100      FuncInfo->setBytesToPopOnReturn(4);
2101  }
2102
2103  if (!Is64Bit) {
2104    // RegSaveFrameIndex is X86-64 only.
2105    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2106    if (CallConv == CallingConv::X86_FastCall ||
2107        CallConv == CallingConv::X86_ThisCall)
2108      // fastcc functions can't have varargs.
2109      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2110  }
2111
2112  FuncInfo->setArgumentStackSize(StackSize);
2113
2114  return Chain;
2115}
2116
2117SDValue
2118X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2119                                    SDValue StackPtr, SDValue Arg,
2120                                    DebugLoc dl, SelectionDAG &DAG,
2121                                    const CCValAssign &VA,
2122                                    ISD::ArgFlagsTy Flags) const {
2123  unsigned LocMemOffset = VA.getLocMemOffset();
2124  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2125  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2126  if (Flags.isByVal())
2127    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2128
2129  return DAG.getStore(Chain, dl, Arg, PtrOff,
2130                      MachinePointerInfo::getStack(LocMemOffset),
2131                      false, false, 0);
2132}
2133
2134/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2135/// optimization is performed and it is required.
2136SDValue
2137X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2138                                           SDValue &OutRetAddr, SDValue Chain,
2139                                           bool IsTailCall, bool Is64Bit,
2140                                           int FPDiff, DebugLoc dl) const {
2141  // Adjust the Return address stack slot.
2142  EVT VT = getPointerTy();
2143  OutRetAddr = getReturnAddressFrameIndex(DAG);
2144
2145  // Load the "old" Return address.
2146  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2147                           false, false, false, 0);
2148  return SDValue(OutRetAddr.getNode(), 1);
2149}
2150
2151/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2152/// optimization is performed and it is required (FPDiff!=0).
2153static SDValue
2154EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2155                         SDValue Chain, SDValue RetAddrFrIdx,
2156                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2157  // Store the return address to the appropriate stack slot.
2158  if (!FPDiff) return Chain;
2159  // Calculate the new stack slot for the return address.
2160  int SlotSize = Is64Bit ? 8 : 4;
2161  int NewReturnAddrFI =
2162    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2163  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2164  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2165  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2166                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2167                       false, false, 0);
2168  return Chain;
2169}
2170
2171SDValue
2172X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2173                             SmallVectorImpl<SDValue> &InVals) const {
2174  SelectionDAG &DAG                     = CLI.DAG;
2175  DebugLoc &dl                          = CLI.DL;
2176  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2177  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2178  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2179  SDValue Chain                         = CLI.Chain;
2180  SDValue Callee                        = CLI.Callee;
2181  CallingConv::ID CallConv              = CLI.CallConv;
2182  bool &isTailCall                      = CLI.IsTailCall;
2183  bool isVarArg                         = CLI.IsVarArg;
2184
2185  MachineFunction &MF = DAG.getMachineFunction();
2186  bool Is64Bit        = Subtarget->is64Bit();
2187  bool IsWin64        = Subtarget->isTargetWin64();
2188  bool IsWindows      = Subtarget->isTargetWindows();
2189  StructReturnType SR = callIsStructReturn(Outs);
2190  bool IsSibcall      = false;
2191
2192  if (MF.getTarget().Options.DisableTailCalls)
2193    isTailCall = false;
2194
2195  if (isTailCall) {
2196    // Check if it's really possible to do a tail call.
2197    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2198                    isVarArg, SR != NotStructReturn,
2199                    MF.getFunction()->hasStructRetAttr(),
2200                    Outs, OutVals, Ins, DAG);
2201
2202    // Sibcalls are automatically detected tailcalls which do not require
2203    // ABI changes.
2204    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2205      IsSibcall = true;
2206
2207    if (isTailCall)
2208      ++NumTailCalls;
2209  }
2210
2211  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2212         "Var args not supported with calling convention fastcc or ghc");
2213
2214  // Analyze operands of the call, assigning locations to each operand.
2215  SmallVector<CCValAssign, 16> ArgLocs;
2216  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2217                 ArgLocs, *DAG.getContext());
2218
2219  // Allocate shadow area for Win64
2220  if (IsWin64) {
2221    CCInfo.AllocateStack(32, 8);
2222  }
2223
2224  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2225
2226  // Get a count of how many bytes are to be pushed on the stack.
2227  unsigned NumBytes = CCInfo.getNextStackOffset();
2228  if (IsSibcall)
2229    // This is a sibcall. The memory operands are available in caller's
2230    // own caller's stack.
2231    NumBytes = 0;
2232  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2233           IsTailCallConvention(CallConv))
2234    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2235
2236  int FPDiff = 0;
2237  if (isTailCall && !IsSibcall) {
2238    // Lower arguments at fp - stackoffset + fpdiff.
2239    unsigned NumBytesCallerPushed =
2240      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2241    FPDiff = NumBytesCallerPushed - NumBytes;
2242
2243    // Set the delta of movement of the returnaddr stackslot.
2244    // But only set if delta is greater than previous delta.
2245    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2246      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2247  }
2248
2249  if (!IsSibcall)
2250    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2251
2252  SDValue RetAddrFrIdx;
2253  // Load return address for tail calls.
2254  if (isTailCall && FPDiff)
2255    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2256                                    Is64Bit, FPDiff, dl);
2257
2258  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2259  SmallVector<SDValue, 8> MemOpChains;
2260  SDValue StackPtr;
2261
2262  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2263  // of tail call optimization arguments are handle later.
2264  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2265    CCValAssign &VA = ArgLocs[i];
2266    EVT RegVT = VA.getLocVT();
2267    SDValue Arg = OutVals[i];
2268    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2269    bool isByVal = Flags.isByVal();
2270
2271    // Promote the value if needed.
2272    switch (VA.getLocInfo()) {
2273    default: llvm_unreachable("Unknown loc info!");
2274    case CCValAssign::Full: break;
2275    case CCValAssign::SExt:
2276      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2277      break;
2278    case CCValAssign::ZExt:
2279      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2280      break;
2281    case CCValAssign::AExt:
2282      if (RegVT.is128BitVector()) {
2283        // Special case: passing MMX values in XMM registers.
2284        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2285        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2286        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2287      } else
2288        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2289      break;
2290    case CCValAssign::BCvt:
2291      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2292      break;
2293    case CCValAssign::Indirect: {
2294      // Store the argument.
2295      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2296      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2297      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2298                           MachinePointerInfo::getFixedStack(FI),
2299                           false, false, 0);
2300      Arg = SpillSlot;
2301      break;
2302    }
2303    }
2304
2305    if (VA.isRegLoc()) {
2306      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2307      if (isVarArg && IsWin64) {
2308        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2309        // shadow reg if callee is a varargs function.
2310        unsigned ShadowReg = 0;
2311        switch (VA.getLocReg()) {
2312        case X86::XMM0: ShadowReg = X86::RCX; break;
2313        case X86::XMM1: ShadowReg = X86::RDX; break;
2314        case X86::XMM2: ShadowReg = X86::R8; break;
2315        case X86::XMM3: ShadowReg = X86::R9; break;
2316        }
2317        if (ShadowReg)
2318          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2319      }
2320    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2321      assert(VA.isMemLoc());
2322      if (StackPtr.getNode() == 0)
2323        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2324      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2325                                             dl, DAG, VA, Flags));
2326    }
2327  }
2328
2329  if (!MemOpChains.empty())
2330    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2331                        &MemOpChains[0], MemOpChains.size());
2332
2333  if (Subtarget->isPICStyleGOT()) {
2334    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2335    // GOT pointer.
2336    if (!isTailCall) {
2337      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2338               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2339    } else {
2340      // If we are tail calling and generating PIC/GOT style code load the
2341      // address of the callee into ECX. The value in ecx is used as target of
2342      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2343      // for tail calls on PIC/GOT architectures. Normally we would just put the
2344      // address of GOT into ebx and then call target@PLT. But for tail calls
2345      // ebx would be restored (since ebx is callee saved) before jumping to the
2346      // target@PLT.
2347
2348      // Note: The actual moving to ECX is done further down.
2349      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2350      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2351          !G->getGlobal()->hasProtectedVisibility())
2352        Callee = LowerGlobalAddress(Callee, DAG);
2353      else if (isa<ExternalSymbolSDNode>(Callee))
2354        Callee = LowerExternalSymbol(Callee, DAG);
2355    }
2356  }
2357
2358  if (Is64Bit && isVarArg && !IsWin64) {
2359    // From AMD64 ABI document:
2360    // For calls that may call functions that use varargs or stdargs
2361    // (prototype-less calls or calls to functions containing ellipsis (...) in
2362    // the declaration) %al is used as hidden argument to specify the number
2363    // of SSE registers used. The contents of %al do not need to match exactly
2364    // the number of registers, but must be an ubound on the number of SSE
2365    // registers used and is in the range 0 - 8 inclusive.
2366
2367    // Count the number of XMM registers allocated.
2368    static const uint16_t XMMArgRegs[] = {
2369      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2370      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2371    };
2372    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2373    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2374           && "SSE registers cannot be used when SSE is disabled");
2375
2376    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2377                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2378  }
2379
2380  // For tail calls lower the arguments to the 'real' stack slot.
2381  if (isTailCall) {
2382    // Force all the incoming stack arguments to be loaded from the stack
2383    // before any new outgoing arguments are stored to the stack, because the
2384    // outgoing stack slots may alias the incoming argument stack slots, and
2385    // the alias isn't otherwise explicit. This is slightly more conservative
2386    // than necessary, because it means that each store effectively depends
2387    // on every argument instead of just those arguments it would clobber.
2388    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2389
2390    SmallVector<SDValue, 8> MemOpChains2;
2391    SDValue FIN;
2392    int FI = 0;
2393    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2394      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2395        CCValAssign &VA = ArgLocs[i];
2396        if (VA.isRegLoc())
2397          continue;
2398        assert(VA.isMemLoc());
2399        SDValue Arg = OutVals[i];
2400        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2401        // Create frame index.
2402        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2403        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2404        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2405        FIN = DAG.getFrameIndex(FI, getPointerTy());
2406
2407        if (Flags.isByVal()) {
2408          // Copy relative to framepointer.
2409          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2410          if (StackPtr.getNode() == 0)
2411            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2412                                          getPointerTy());
2413          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2414
2415          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2416                                                           ArgChain,
2417                                                           Flags, DAG, dl));
2418        } else {
2419          // Store relative to framepointer.
2420          MemOpChains2.push_back(
2421            DAG.getStore(ArgChain, dl, Arg, FIN,
2422                         MachinePointerInfo::getFixedStack(FI),
2423                         false, false, 0));
2424        }
2425      }
2426    }
2427
2428    if (!MemOpChains2.empty())
2429      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2430                          &MemOpChains2[0], MemOpChains2.size());
2431
2432    // Store the return address to the appropriate stack slot.
2433    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2434                                     FPDiff, dl);
2435  }
2436
2437  // Build a sequence of copy-to-reg nodes chained together with token chain
2438  // and flag operands which copy the outgoing args into registers.
2439  SDValue InFlag;
2440  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2441    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2442                             RegsToPass[i].second, InFlag);
2443    InFlag = Chain.getValue(1);
2444  }
2445
2446  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2447    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2448    // In the 64-bit large code model, we have to make all calls
2449    // through a register, since the call instruction's 32-bit
2450    // pc-relative offset may not be large enough to hold the whole
2451    // address.
2452  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2453    // If the callee is a GlobalAddress node (quite common, every direct call
2454    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2455    // it.
2456
2457    // We should use extra load for direct calls to dllimported functions in
2458    // non-JIT mode.
2459    const GlobalValue *GV = G->getGlobal();
2460    if (!GV->hasDLLImportLinkage()) {
2461      unsigned char OpFlags = 0;
2462      bool ExtraLoad = false;
2463      unsigned WrapperKind = ISD::DELETED_NODE;
2464
2465      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2466      // external symbols most go through the PLT in PIC mode.  If the symbol
2467      // has hidden or protected visibility, or if it is static or local, then
2468      // we don't need to use the PLT - we can directly call it.
2469      if (Subtarget->isTargetELF() &&
2470          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2471          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2472        OpFlags = X86II::MO_PLT;
2473      } else if (Subtarget->isPICStyleStubAny() &&
2474                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2475                 (!Subtarget->getTargetTriple().isMacOSX() ||
2476                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2477        // PC-relative references to external symbols should go through $stub,
2478        // unless we're building with the leopard linker or later, which
2479        // automatically synthesizes these stubs.
2480        OpFlags = X86II::MO_DARWIN_STUB;
2481      } else if (Subtarget->isPICStyleRIPRel() &&
2482                 isa<Function>(GV) &&
2483                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2484        // If the function is marked as non-lazy, generate an indirect call
2485        // which loads from the GOT directly. This avoids runtime overhead
2486        // at the cost of eager binding (and one extra byte of encoding).
2487        OpFlags = X86II::MO_GOTPCREL;
2488        WrapperKind = X86ISD::WrapperRIP;
2489        ExtraLoad = true;
2490      }
2491
2492      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2493                                          G->getOffset(), OpFlags);
2494
2495      // Add a wrapper if needed.
2496      if (WrapperKind != ISD::DELETED_NODE)
2497        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2498      // Add extra indirection if needed.
2499      if (ExtraLoad)
2500        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2501                             MachinePointerInfo::getGOT(),
2502                             false, false, false, 0);
2503    }
2504  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2505    unsigned char OpFlags = 0;
2506
2507    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2508    // external symbols should go through the PLT.
2509    if (Subtarget->isTargetELF() &&
2510        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2511      OpFlags = X86II::MO_PLT;
2512    } else if (Subtarget->isPICStyleStubAny() &&
2513               (!Subtarget->getTargetTriple().isMacOSX() ||
2514                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2515      // PC-relative references to external symbols should go through $stub,
2516      // unless we're building with the leopard linker or later, which
2517      // automatically synthesizes these stubs.
2518      OpFlags = X86II::MO_DARWIN_STUB;
2519    }
2520
2521    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2522                                         OpFlags);
2523  }
2524
2525  // Returns a chain & a flag for retval copy to use.
2526  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2527  SmallVector<SDValue, 8> Ops;
2528
2529  if (!IsSibcall && isTailCall) {
2530    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2531                           DAG.getIntPtrConstant(0, true), InFlag);
2532    InFlag = Chain.getValue(1);
2533  }
2534
2535  Ops.push_back(Chain);
2536  Ops.push_back(Callee);
2537
2538  if (isTailCall)
2539    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2540
2541  // Add argument registers to the end of the list so that they are known live
2542  // into the call.
2543  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2544    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2545                                  RegsToPass[i].second.getValueType()));
2546
2547  // Add a register mask operand representing the call-preserved registers.
2548  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2549  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2550  assert(Mask && "Missing call preserved mask for calling convention");
2551  Ops.push_back(DAG.getRegisterMask(Mask));
2552
2553  if (InFlag.getNode())
2554    Ops.push_back(InFlag);
2555
2556  if (isTailCall) {
2557    // We used to do:
2558    //// If this is the first return lowered for this function, add the regs
2559    //// to the liveout set for the function.
2560    // This isn't right, although it's probably harmless on x86; liveouts
2561    // should be computed from returns not tail calls.  Consider a void
2562    // function making a tail call to a function returning int.
2563    return DAG.getNode(X86ISD::TC_RETURN, dl,
2564                       NodeTys, &Ops[0], Ops.size());
2565  }
2566
2567  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2568  InFlag = Chain.getValue(1);
2569
2570  // Create the CALLSEQ_END node.
2571  unsigned NumBytesForCalleeToPush;
2572  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2573                       getTargetMachine().Options.GuaranteedTailCallOpt))
2574    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2575  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2576           SR == StackStructReturn)
2577    // If this is a call to a struct-return function, the callee
2578    // pops the hidden struct pointer, so we have to push it back.
2579    // This is common for Darwin/X86, Linux & Mingw32 targets.
2580    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2581    NumBytesForCalleeToPush = 4;
2582  else
2583    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2584
2585  // Returns a flag for retval copy to use.
2586  if (!IsSibcall) {
2587    Chain = DAG.getCALLSEQ_END(Chain,
2588                               DAG.getIntPtrConstant(NumBytes, true),
2589                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2590                                                     true),
2591                               InFlag);
2592    InFlag = Chain.getValue(1);
2593  }
2594
2595  // Handle result values, copying them out of physregs into vregs that we
2596  // return.
2597  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2598                         Ins, dl, DAG, InVals);
2599}
2600
2601
2602//===----------------------------------------------------------------------===//
2603//                Fast Calling Convention (tail call) implementation
2604//===----------------------------------------------------------------------===//
2605
2606//  Like std call, callee cleans arguments, convention except that ECX is
2607//  reserved for storing the tail called function address. Only 2 registers are
2608//  free for argument passing (inreg). Tail call optimization is performed
2609//  provided:
2610//                * tailcallopt is enabled
2611//                * caller/callee are fastcc
2612//  On X86_64 architecture with GOT-style position independent code only local
2613//  (within module) calls are supported at the moment.
2614//  To keep the stack aligned according to platform abi the function
2615//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2616//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2617//  If a tail called function callee has more arguments than the caller the
2618//  caller needs to make sure that there is room to move the RETADDR to. This is
2619//  achieved by reserving an area the size of the argument delta right after the
2620//  original REtADDR, but before the saved framepointer or the spilled registers
2621//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2622//  stack layout:
2623//    arg1
2624//    arg2
2625//    RETADDR
2626//    [ new RETADDR
2627//      move area ]
2628//    (possible EBP)
2629//    ESI
2630//    EDI
2631//    local1 ..
2632
2633/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2634/// for a 16 byte align requirement.
2635unsigned
2636X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2637                                               SelectionDAG& DAG) const {
2638  MachineFunction &MF = DAG.getMachineFunction();
2639  const TargetMachine &TM = MF.getTarget();
2640  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2641  unsigned StackAlignment = TFI.getStackAlignment();
2642  uint64_t AlignMask = StackAlignment - 1;
2643  int64_t Offset = StackSize;
2644  uint64_t SlotSize = TD->getPointerSize();
2645  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2646    // Number smaller than 12 so just add the difference.
2647    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2648  } else {
2649    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2650    Offset = ((~AlignMask) & Offset) + StackAlignment +
2651      (StackAlignment-SlotSize);
2652  }
2653  return Offset;
2654}
2655
2656/// MatchingStackOffset - Return true if the given stack call argument is
2657/// already available in the same position (relatively) of the caller's
2658/// incoming argument stack.
2659static
2660bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2661                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2662                         const X86InstrInfo *TII) {
2663  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2664  int FI = INT_MAX;
2665  if (Arg.getOpcode() == ISD::CopyFromReg) {
2666    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2667    if (!TargetRegisterInfo::isVirtualRegister(VR))
2668      return false;
2669    MachineInstr *Def = MRI->getVRegDef(VR);
2670    if (!Def)
2671      return false;
2672    if (!Flags.isByVal()) {
2673      if (!TII->isLoadFromStackSlot(Def, FI))
2674        return false;
2675    } else {
2676      unsigned Opcode = Def->getOpcode();
2677      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2678          Def->getOperand(1).isFI()) {
2679        FI = Def->getOperand(1).getIndex();
2680        Bytes = Flags.getByValSize();
2681      } else
2682        return false;
2683    }
2684  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2685    if (Flags.isByVal())
2686      // ByVal argument is passed in as a pointer but it's now being
2687      // dereferenced. e.g.
2688      // define @foo(%struct.X* %A) {
2689      //   tail call @bar(%struct.X* byval %A)
2690      // }
2691      return false;
2692    SDValue Ptr = Ld->getBasePtr();
2693    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2694    if (!FINode)
2695      return false;
2696    FI = FINode->getIndex();
2697  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2698    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2699    FI = FINode->getIndex();
2700    Bytes = Flags.getByValSize();
2701  } else
2702    return false;
2703
2704  assert(FI != INT_MAX);
2705  if (!MFI->isFixedObjectIndex(FI))
2706    return false;
2707  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2708}
2709
2710/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2711/// for tail call optimization. Targets which want to do tail call
2712/// optimization should implement this function.
2713bool
2714X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2715                                                     CallingConv::ID CalleeCC,
2716                                                     bool isVarArg,
2717                                                     bool isCalleeStructRet,
2718                                                     bool isCallerStructRet,
2719                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2720                                    const SmallVectorImpl<SDValue> &OutVals,
2721                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2722                                                     SelectionDAG& DAG) const {
2723  if (!IsTailCallConvention(CalleeCC) &&
2724      CalleeCC != CallingConv::C)
2725    return false;
2726
2727  // If -tailcallopt is specified, make fastcc functions tail-callable.
2728  const MachineFunction &MF = DAG.getMachineFunction();
2729  const Function *CallerF = DAG.getMachineFunction().getFunction();
2730  CallingConv::ID CallerCC = CallerF->getCallingConv();
2731  bool CCMatch = CallerCC == CalleeCC;
2732
2733  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2734    if (IsTailCallConvention(CalleeCC) && CCMatch)
2735      return true;
2736    return false;
2737  }
2738
2739  // Look for obvious safe cases to perform tail call optimization that do not
2740  // require ABI changes. This is what gcc calls sibcall.
2741
2742  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2743  // emit a special epilogue.
2744  if (RegInfo->needsStackRealignment(MF))
2745    return false;
2746
2747  // Also avoid sibcall optimization if either caller or callee uses struct
2748  // return semantics.
2749  if (isCalleeStructRet || isCallerStructRet)
2750    return false;
2751
2752  // An stdcall caller is expected to clean up its arguments; the callee
2753  // isn't going to do that.
2754  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2755    return false;
2756
2757  // Do not sibcall optimize vararg calls unless all arguments are passed via
2758  // registers.
2759  if (isVarArg && !Outs.empty()) {
2760
2761    // Optimizing for varargs on Win64 is unlikely to be safe without
2762    // additional testing.
2763    if (Subtarget->isTargetWin64())
2764      return false;
2765
2766    SmallVector<CCValAssign, 16> ArgLocs;
2767    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2768                   getTargetMachine(), ArgLocs, *DAG.getContext());
2769
2770    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2771    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2772      if (!ArgLocs[i].isRegLoc())
2773        return false;
2774  }
2775
2776  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2777  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2778  // this into a sibcall.
2779  bool Unused = false;
2780  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2781    if (!Ins[i].Used) {
2782      Unused = true;
2783      break;
2784    }
2785  }
2786  if (Unused) {
2787    SmallVector<CCValAssign, 16> RVLocs;
2788    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2789                   getTargetMachine(), RVLocs, *DAG.getContext());
2790    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2791    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2792      CCValAssign &VA = RVLocs[i];
2793      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2794        return false;
2795    }
2796  }
2797
2798  // If the calling conventions do not match, then we'd better make sure the
2799  // results are returned in the same way as what the caller expects.
2800  if (!CCMatch) {
2801    SmallVector<CCValAssign, 16> RVLocs1;
2802    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2803                    getTargetMachine(), RVLocs1, *DAG.getContext());
2804    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2805
2806    SmallVector<CCValAssign, 16> RVLocs2;
2807    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2808                    getTargetMachine(), RVLocs2, *DAG.getContext());
2809    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2810
2811    if (RVLocs1.size() != RVLocs2.size())
2812      return false;
2813    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2814      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2815        return false;
2816      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2817        return false;
2818      if (RVLocs1[i].isRegLoc()) {
2819        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2820          return false;
2821      } else {
2822        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2823          return false;
2824      }
2825    }
2826  }
2827
2828  // If the callee takes no arguments then go on to check the results of the
2829  // call.
2830  if (!Outs.empty()) {
2831    // Check if stack adjustment is needed. For now, do not do this if any
2832    // argument is passed on the stack.
2833    SmallVector<CCValAssign, 16> ArgLocs;
2834    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2835                   getTargetMachine(), ArgLocs, *DAG.getContext());
2836
2837    // Allocate shadow area for Win64
2838    if (Subtarget->isTargetWin64()) {
2839      CCInfo.AllocateStack(32, 8);
2840    }
2841
2842    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2843    if (CCInfo.getNextStackOffset()) {
2844      MachineFunction &MF = DAG.getMachineFunction();
2845      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2846        return false;
2847
2848      // Check if the arguments are already laid out in the right way as
2849      // the caller's fixed stack objects.
2850      MachineFrameInfo *MFI = MF.getFrameInfo();
2851      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2852      const X86InstrInfo *TII =
2853        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2854      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2855        CCValAssign &VA = ArgLocs[i];
2856        SDValue Arg = OutVals[i];
2857        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2858        if (VA.getLocInfo() == CCValAssign::Indirect)
2859          return false;
2860        if (!VA.isRegLoc()) {
2861          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2862                                   MFI, MRI, TII))
2863            return false;
2864        }
2865      }
2866    }
2867
2868    // If the tailcall address may be in a register, then make sure it's
2869    // possible to register allocate for it. In 32-bit, the call address can
2870    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2871    // callee-saved registers are restored. These happen to be the same
2872    // registers used to pass 'inreg' arguments so watch out for those.
2873    if (!Subtarget->is64Bit() &&
2874        !isa<GlobalAddressSDNode>(Callee) &&
2875        !isa<ExternalSymbolSDNode>(Callee)) {
2876      unsigned NumInRegs = 0;
2877      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2878        CCValAssign &VA = ArgLocs[i];
2879        if (!VA.isRegLoc())
2880          continue;
2881        unsigned Reg = VA.getLocReg();
2882        switch (Reg) {
2883        default: break;
2884        case X86::EAX: case X86::EDX: case X86::ECX:
2885          if (++NumInRegs == 3)
2886            return false;
2887          break;
2888        }
2889      }
2890    }
2891  }
2892
2893  return true;
2894}
2895
2896FastISel *
2897X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2898                                  const TargetLibraryInfo *libInfo) const {
2899  return X86::createFastISel(funcInfo, libInfo);
2900}
2901
2902
2903//===----------------------------------------------------------------------===//
2904//                           Other Lowering Hooks
2905//===----------------------------------------------------------------------===//
2906
2907static bool MayFoldLoad(SDValue Op) {
2908  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2909}
2910
2911static bool MayFoldIntoStore(SDValue Op) {
2912  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2913}
2914
2915static bool isTargetShuffle(unsigned Opcode) {
2916  switch(Opcode) {
2917  default: return false;
2918  case X86ISD::PSHUFD:
2919  case X86ISD::PSHUFHW:
2920  case X86ISD::PSHUFLW:
2921  case X86ISD::SHUFP:
2922  case X86ISD::PALIGN:
2923  case X86ISD::MOVLHPS:
2924  case X86ISD::MOVLHPD:
2925  case X86ISD::MOVHLPS:
2926  case X86ISD::MOVLPS:
2927  case X86ISD::MOVLPD:
2928  case X86ISD::MOVSHDUP:
2929  case X86ISD::MOVSLDUP:
2930  case X86ISD::MOVDDUP:
2931  case X86ISD::MOVSS:
2932  case X86ISD::MOVSD:
2933  case X86ISD::UNPCKL:
2934  case X86ISD::UNPCKH:
2935  case X86ISD::VPERMILP:
2936  case X86ISD::VPERM2X128:
2937  case X86ISD::VPERMI:
2938    return true;
2939  }
2940}
2941
2942static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2943                                    SDValue V1, SelectionDAG &DAG) {
2944  switch(Opc) {
2945  default: llvm_unreachable("Unknown x86 shuffle node");
2946  case X86ISD::MOVSHDUP:
2947  case X86ISD::MOVSLDUP:
2948  case X86ISD::MOVDDUP:
2949    return DAG.getNode(Opc, dl, VT, V1);
2950  }
2951}
2952
2953static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2954                                    SDValue V1, unsigned TargetMask,
2955                                    SelectionDAG &DAG) {
2956  switch(Opc) {
2957  default: llvm_unreachable("Unknown x86 shuffle node");
2958  case X86ISD::PSHUFD:
2959  case X86ISD::PSHUFHW:
2960  case X86ISD::PSHUFLW:
2961  case X86ISD::VPERMILP:
2962  case X86ISD::VPERMI:
2963    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2964  }
2965}
2966
2967static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2968                                    SDValue V1, SDValue V2, unsigned TargetMask,
2969                                    SelectionDAG &DAG) {
2970  switch(Opc) {
2971  default: llvm_unreachable("Unknown x86 shuffle node");
2972  case X86ISD::PALIGN:
2973  case X86ISD::SHUFP:
2974  case X86ISD::VPERM2X128:
2975    return DAG.getNode(Opc, dl, VT, V1, V2,
2976                       DAG.getConstant(TargetMask, MVT::i8));
2977  }
2978}
2979
2980static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2981                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2982  switch(Opc) {
2983  default: llvm_unreachable("Unknown x86 shuffle node");
2984  case X86ISD::MOVLHPS:
2985  case X86ISD::MOVLHPD:
2986  case X86ISD::MOVHLPS:
2987  case X86ISD::MOVLPS:
2988  case X86ISD::MOVLPD:
2989  case X86ISD::MOVSS:
2990  case X86ISD::MOVSD:
2991  case X86ISD::UNPCKL:
2992  case X86ISD::UNPCKH:
2993    return DAG.getNode(Opc, dl, VT, V1, V2);
2994  }
2995}
2996
2997SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2998  MachineFunction &MF = DAG.getMachineFunction();
2999  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3000  int ReturnAddrIndex = FuncInfo->getRAIndex();
3001
3002  if (ReturnAddrIndex == 0) {
3003    // Set up a frame object for the return address.
3004    uint64_t SlotSize = TD->getPointerSize();
3005    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3006                                                           false);
3007    FuncInfo->setRAIndex(ReturnAddrIndex);
3008  }
3009
3010  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3011}
3012
3013
3014bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3015                                       bool hasSymbolicDisplacement) {
3016  // Offset should fit into 32 bit immediate field.
3017  if (!isInt<32>(Offset))
3018    return false;
3019
3020  // If we don't have a symbolic displacement - we don't have any extra
3021  // restrictions.
3022  if (!hasSymbolicDisplacement)
3023    return true;
3024
3025  // FIXME: Some tweaks might be needed for medium code model.
3026  if (M != CodeModel::Small && M != CodeModel::Kernel)
3027    return false;
3028
3029  // For small code model we assume that latest object is 16MB before end of 31
3030  // bits boundary. We may also accept pretty large negative constants knowing
3031  // that all objects are in the positive half of address space.
3032  if (M == CodeModel::Small && Offset < 16*1024*1024)
3033    return true;
3034
3035  // For kernel code model we know that all object resist in the negative half
3036  // of 32bits address space. We may not accept negative offsets, since they may
3037  // be just off and we may accept pretty large positive ones.
3038  if (M == CodeModel::Kernel && Offset > 0)
3039    return true;
3040
3041  return false;
3042}
3043
3044/// isCalleePop - Determines whether the callee is required to pop its
3045/// own arguments. Callee pop is necessary to support tail calls.
3046bool X86::isCalleePop(CallingConv::ID CallingConv,
3047                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3048  if (IsVarArg)
3049    return false;
3050
3051  switch (CallingConv) {
3052  default:
3053    return false;
3054  case CallingConv::X86_StdCall:
3055    return !is64Bit;
3056  case CallingConv::X86_FastCall:
3057    return !is64Bit;
3058  case CallingConv::X86_ThisCall:
3059    return !is64Bit;
3060  case CallingConv::Fast:
3061    return TailCallOpt;
3062  case CallingConv::GHC:
3063    return TailCallOpt;
3064  }
3065}
3066
3067/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3068/// specific condition code, returning the condition code and the LHS/RHS of the
3069/// comparison to make.
3070static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3071                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3072  if (!isFP) {
3073    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3074      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3075        // X > -1   -> X == 0, jump !sign.
3076        RHS = DAG.getConstant(0, RHS.getValueType());
3077        return X86::COND_NS;
3078      }
3079      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3080        // X < 0   -> X == 0, jump on sign.
3081        return X86::COND_S;
3082      }
3083      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3084        // X < 1   -> X <= 0
3085        RHS = DAG.getConstant(0, RHS.getValueType());
3086        return X86::COND_LE;
3087      }
3088    }
3089
3090    switch (SetCCOpcode) {
3091    default: llvm_unreachable("Invalid integer condition!");
3092    case ISD::SETEQ:  return X86::COND_E;
3093    case ISD::SETGT:  return X86::COND_G;
3094    case ISD::SETGE:  return X86::COND_GE;
3095    case ISD::SETLT:  return X86::COND_L;
3096    case ISD::SETLE:  return X86::COND_LE;
3097    case ISD::SETNE:  return X86::COND_NE;
3098    case ISD::SETULT: return X86::COND_B;
3099    case ISD::SETUGT: return X86::COND_A;
3100    case ISD::SETULE: return X86::COND_BE;
3101    case ISD::SETUGE: return X86::COND_AE;
3102    }
3103  }
3104
3105  // First determine if it is required or is profitable to flip the operands.
3106
3107  // If LHS is a foldable load, but RHS is not, flip the condition.
3108  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3109      !ISD::isNON_EXTLoad(RHS.getNode())) {
3110    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3111    std::swap(LHS, RHS);
3112  }
3113
3114  switch (SetCCOpcode) {
3115  default: break;
3116  case ISD::SETOLT:
3117  case ISD::SETOLE:
3118  case ISD::SETUGT:
3119  case ISD::SETUGE:
3120    std::swap(LHS, RHS);
3121    break;
3122  }
3123
3124  // On a floating point condition, the flags are set as follows:
3125  // ZF  PF  CF   op
3126  //  0 | 0 | 0 | X > Y
3127  //  0 | 0 | 1 | X < Y
3128  //  1 | 0 | 0 | X == Y
3129  //  1 | 1 | 1 | unordered
3130  switch (SetCCOpcode) {
3131  default: llvm_unreachable("Condcode should be pre-legalized away");
3132  case ISD::SETUEQ:
3133  case ISD::SETEQ:   return X86::COND_E;
3134  case ISD::SETOLT:              // flipped
3135  case ISD::SETOGT:
3136  case ISD::SETGT:   return X86::COND_A;
3137  case ISD::SETOLE:              // flipped
3138  case ISD::SETOGE:
3139  case ISD::SETGE:   return X86::COND_AE;
3140  case ISD::SETUGT:              // flipped
3141  case ISD::SETULT:
3142  case ISD::SETLT:   return X86::COND_B;
3143  case ISD::SETUGE:              // flipped
3144  case ISD::SETULE:
3145  case ISD::SETLE:   return X86::COND_BE;
3146  case ISD::SETONE:
3147  case ISD::SETNE:   return X86::COND_NE;
3148  case ISD::SETUO:   return X86::COND_P;
3149  case ISD::SETO:    return X86::COND_NP;
3150  case ISD::SETOEQ:
3151  case ISD::SETUNE:  return X86::COND_INVALID;
3152  }
3153}
3154
3155/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3156/// code. Current x86 isa includes the following FP cmov instructions:
3157/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3158static bool hasFPCMov(unsigned X86CC) {
3159  switch (X86CC) {
3160  default:
3161    return false;
3162  case X86::COND_B:
3163  case X86::COND_BE:
3164  case X86::COND_E:
3165  case X86::COND_P:
3166  case X86::COND_A:
3167  case X86::COND_AE:
3168  case X86::COND_NE:
3169  case X86::COND_NP:
3170    return true;
3171  }
3172}
3173
3174/// isFPImmLegal - Returns true if the target can instruction select the
3175/// specified FP immediate natively. If false, the legalizer will
3176/// materialize the FP immediate as a load from a constant pool.
3177bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3178  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3179    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3180      return true;
3181  }
3182  return false;
3183}
3184
3185/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3186/// the specified range (L, H].
3187static bool isUndefOrInRange(int Val, int Low, int Hi) {
3188  return (Val < 0) || (Val >= Low && Val < Hi);
3189}
3190
3191/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3192/// specified value.
3193static bool isUndefOrEqual(int Val, int CmpVal) {
3194  if (Val < 0 || Val == CmpVal)
3195    return true;
3196  return false;
3197}
3198
3199/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3200/// from position Pos and ending in Pos+Size, falls within the specified
3201/// sequential range (L, L+Pos]. or is undef.
3202static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3203                                       unsigned Pos, unsigned Size, int Low) {
3204  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3205    if (!isUndefOrEqual(Mask[i], Low))
3206      return false;
3207  return true;
3208}
3209
3210/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3211/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3212/// the second operand.
3213static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3214  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3215    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3216  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3217    return (Mask[0] < 2 && Mask[1] < 2);
3218  return false;
3219}
3220
3221/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3222/// is suitable for input to PSHUFHW.
3223static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3224  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3225    return false;
3226
3227  // Lower quadword copied in order or undef.
3228  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3229    return false;
3230
3231  // Upper quadword shuffled.
3232  for (unsigned i = 4; i != 8; ++i)
3233    if (!isUndefOrInRange(Mask[i], 4, 8))
3234      return false;
3235
3236  if (VT == MVT::v16i16) {
3237    // Lower quadword copied in order or undef.
3238    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3239      return false;
3240
3241    // Upper quadword shuffled.
3242    for (unsigned i = 12; i != 16; ++i)
3243      if (!isUndefOrInRange(Mask[i], 12, 16))
3244        return false;
3245  }
3246
3247  return true;
3248}
3249
3250/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3251/// is suitable for input to PSHUFLW.
3252static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3253  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3254    return false;
3255
3256  // Upper quadword copied in order.
3257  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3258    return false;
3259
3260  // Lower quadword shuffled.
3261  for (unsigned i = 0; i != 4; ++i)
3262    if (!isUndefOrInRange(Mask[i], 0, 4))
3263      return false;
3264
3265  if (VT == MVT::v16i16) {
3266    // Upper quadword copied in order.
3267    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3268      return false;
3269
3270    // Lower quadword shuffled.
3271    for (unsigned i = 8; i != 12; ++i)
3272      if (!isUndefOrInRange(Mask[i], 8, 12))
3273        return false;
3274  }
3275
3276  return true;
3277}
3278
3279/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3280/// is suitable for input to PALIGNR.
3281static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3282                          const X86Subtarget *Subtarget) {
3283  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3284      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3285    return false;
3286
3287  unsigned NumElts = VT.getVectorNumElements();
3288  unsigned NumLanes = VT.getSizeInBits()/128;
3289  unsigned NumLaneElts = NumElts/NumLanes;
3290
3291  // Do not handle 64-bit element shuffles with palignr.
3292  if (NumLaneElts == 2)
3293    return false;
3294
3295  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3296    unsigned i;
3297    for (i = 0; i != NumLaneElts; ++i) {
3298      if (Mask[i+l] >= 0)
3299        break;
3300    }
3301
3302    // Lane is all undef, go to next lane
3303    if (i == NumLaneElts)
3304      continue;
3305
3306    int Start = Mask[i+l];
3307
3308    // Make sure its in this lane in one of the sources
3309    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3310        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3311      return false;
3312
3313    // If not lane 0, then we must match lane 0
3314    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3315      return false;
3316
3317    // Correct second source to be contiguous with first source
3318    if (Start >= (int)NumElts)
3319      Start -= NumElts - NumLaneElts;
3320
3321    // Make sure we're shifting in the right direction.
3322    if (Start <= (int)(i+l))
3323      return false;
3324
3325    Start -= i;
3326
3327    // Check the rest of the elements to see if they are consecutive.
3328    for (++i; i != NumLaneElts; ++i) {
3329      int Idx = Mask[i+l];
3330
3331      // Make sure its in this lane
3332      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3333          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3334        return false;
3335
3336      // If not lane 0, then we must match lane 0
3337      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3338        return false;
3339
3340      if (Idx >= (int)NumElts)
3341        Idx -= NumElts - NumLaneElts;
3342
3343      if (!isUndefOrEqual(Idx, Start+i))
3344        return false;
3345
3346    }
3347  }
3348
3349  return true;
3350}
3351
3352/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3353/// the two vector operands have swapped position.
3354static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3355                                     unsigned NumElems) {
3356  for (unsigned i = 0; i != NumElems; ++i) {
3357    int idx = Mask[i];
3358    if (idx < 0)
3359      continue;
3360    else if (idx < (int)NumElems)
3361      Mask[i] = idx + NumElems;
3362    else
3363      Mask[i] = idx - NumElems;
3364  }
3365}
3366
3367/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3368/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3369/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3370/// reverse of what x86 shuffles want.
3371static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3372                        bool Commuted = false) {
3373  if (!HasAVX && VT.getSizeInBits() == 256)
3374    return false;
3375
3376  unsigned NumElems = VT.getVectorNumElements();
3377  unsigned NumLanes = VT.getSizeInBits()/128;
3378  unsigned NumLaneElems = NumElems/NumLanes;
3379
3380  if (NumLaneElems != 2 && NumLaneElems != 4)
3381    return false;
3382
3383  // VSHUFPSY divides the resulting vector into 4 chunks.
3384  // The sources are also splitted into 4 chunks, and each destination
3385  // chunk must come from a different source chunk.
3386  //
3387  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3388  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3389  //
3390  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3391  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3392  //
3393  // VSHUFPDY divides the resulting vector into 4 chunks.
3394  // The sources are also splitted into 4 chunks, and each destination
3395  // chunk must come from a different source chunk.
3396  //
3397  //  SRC1 =>      X3       X2       X1       X0
3398  //  SRC2 =>      Y3       Y2       Y1       Y0
3399  //
3400  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3401  //
3402  unsigned HalfLaneElems = NumLaneElems/2;
3403  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3404    for (unsigned i = 0; i != NumLaneElems; ++i) {
3405      int Idx = Mask[i+l];
3406      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3407      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3408        return false;
3409      // For VSHUFPSY, the mask of the second half must be the same as the
3410      // first but with the appropriate offsets. This works in the same way as
3411      // VPERMILPS works with masks.
3412      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3413        continue;
3414      if (!isUndefOrEqual(Idx, Mask[i]+l))
3415        return false;
3416    }
3417  }
3418
3419  return true;
3420}
3421
3422/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3423/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3424static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3425  if (!VT.is128BitVector())
3426    return false;
3427
3428  unsigned NumElems = VT.getVectorNumElements();
3429
3430  if (NumElems != 4)
3431    return false;
3432
3433  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3434  return isUndefOrEqual(Mask[0], 6) &&
3435         isUndefOrEqual(Mask[1], 7) &&
3436         isUndefOrEqual(Mask[2], 2) &&
3437         isUndefOrEqual(Mask[3], 3);
3438}
3439
3440/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3441/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3442/// <2, 3, 2, 3>
3443static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3444  if (!VT.is128BitVector())
3445    return false;
3446
3447  unsigned NumElems = VT.getVectorNumElements();
3448
3449  if (NumElems != 4)
3450    return false;
3451
3452  return isUndefOrEqual(Mask[0], 2) &&
3453         isUndefOrEqual(Mask[1], 3) &&
3454         isUndefOrEqual(Mask[2], 2) &&
3455         isUndefOrEqual(Mask[3], 3);
3456}
3457
3458/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3459/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3460static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3461  if (!VT.is128BitVector())
3462    return false;
3463
3464  unsigned NumElems = VT.getVectorNumElements();
3465
3466  if (NumElems != 2 && NumElems != 4)
3467    return false;
3468
3469  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3470    if (!isUndefOrEqual(Mask[i], i + NumElems))
3471      return false;
3472
3473  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3474    if (!isUndefOrEqual(Mask[i], i))
3475      return false;
3476
3477  return true;
3478}
3479
3480/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3481/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3482static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3483  if (!VT.is128BitVector())
3484    return false;
3485
3486  unsigned NumElems = VT.getVectorNumElements();
3487
3488  if (NumElems != 2 && NumElems != 4)
3489    return false;
3490
3491  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3492    if (!isUndefOrEqual(Mask[i], i))
3493      return false;
3494
3495  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3496    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3497      return false;
3498
3499  return true;
3500}
3501
3502//
3503// Some special combinations that can be optimized.
3504//
3505static
3506SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3507                               SelectionDAG &DAG) {
3508  EVT VT = SVOp->getValueType(0);
3509  DebugLoc dl = SVOp->getDebugLoc();
3510
3511  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3512    return SDValue();
3513
3514  ArrayRef<int> Mask = SVOp->getMask();
3515
3516  // These are the special masks that may be optimized.
3517  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3518  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3519  bool MatchEvenMask = true;
3520  bool MatchOddMask  = true;
3521  for (int i=0; i<8; ++i) {
3522    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3523      MatchEvenMask = false;
3524    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3525      MatchOddMask = false;
3526  }
3527
3528  if (!MatchEvenMask && !MatchOddMask)
3529    return SDValue();
3530
3531  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3532
3533  SDValue Op0 = SVOp->getOperand(0);
3534  SDValue Op1 = SVOp->getOperand(1);
3535
3536  if (MatchEvenMask) {
3537    // Shift the second operand right to 32 bits.
3538    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3539    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3540  } else {
3541    // Shift the first operand left to 32 bits.
3542    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3543    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3544  }
3545  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3546  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3547}
3548
3549/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3550/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3551static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3552                         bool HasAVX2, bool V2IsSplat = false) {
3553  unsigned NumElts = VT.getVectorNumElements();
3554
3555  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3556         "Unsupported vector type for unpckh");
3557
3558  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3559      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3560    return false;
3561
3562  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3563  // independently on 128-bit lanes.
3564  unsigned NumLanes = VT.getSizeInBits()/128;
3565  unsigned NumLaneElts = NumElts/NumLanes;
3566
3567  for (unsigned l = 0; l != NumLanes; ++l) {
3568    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3569         i != (l+1)*NumLaneElts;
3570         i += 2, ++j) {
3571      int BitI  = Mask[i];
3572      int BitI1 = Mask[i+1];
3573      if (!isUndefOrEqual(BitI, j))
3574        return false;
3575      if (V2IsSplat) {
3576        if (!isUndefOrEqual(BitI1, NumElts))
3577          return false;
3578      } else {
3579        if (!isUndefOrEqual(BitI1, j + NumElts))
3580          return false;
3581      }
3582    }
3583  }
3584
3585  return true;
3586}
3587
3588/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3589/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3590static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3591                         bool HasAVX2, bool V2IsSplat = false) {
3592  unsigned NumElts = VT.getVectorNumElements();
3593
3594  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3595         "Unsupported vector type for unpckh");
3596
3597  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3598      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3599    return false;
3600
3601  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3602  // independently on 128-bit lanes.
3603  unsigned NumLanes = VT.getSizeInBits()/128;
3604  unsigned NumLaneElts = NumElts/NumLanes;
3605
3606  for (unsigned l = 0; l != NumLanes; ++l) {
3607    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3608         i != (l+1)*NumLaneElts; i += 2, ++j) {
3609      int BitI  = Mask[i];
3610      int BitI1 = Mask[i+1];
3611      if (!isUndefOrEqual(BitI, j))
3612        return false;
3613      if (V2IsSplat) {
3614        if (isUndefOrEqual(BitI1, NumElts))
3615          return false;
3616      } else {
3617        if (!isUndefOrEqual(BitI1, j+NumElts))
3618          return false;
3619      }
3620    }
3621  }
3622  return true;
3623}
3624
3625/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3626/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3627/// <0, 0, 1, 1>
3628static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3629                                  bool HasAVX2) {
3630  unsigned NumElts = VT.getVectorNumElements();
3631
3632  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3633         "Unsupported vector type for unpckh");
3634
3635  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3636      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3637    return false;
3638
3639  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3640  // FIXME: Need a better way to get rid of this, there's no latency difference
3641  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3642  // the former later. We should also remove the "_undef" special mask.
3643  if (NumElts == 4 && VT.getSizeInBits() == 256)
3644    return false;
3645
3646  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3647  // independently on 128-bit lanes.
3648  unsigned NumLanes = VT.getSizeInBits()/128;
3649  unsigned NumLaneElts = NumElts/NumLanes;
3650
3651  for (unsigned l = 0; l != NumLanes; ++l) {
3652    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3653         i != (l+1)*NumLaneElts;
3654         i += 2, ++j) {
3655      int BitI  = Mask[i];
3656      int BitI1 = Mask[i+1];
3657
3658      if (!isUndefOrEqual(BitI, j))
3659        return false;
3660      if (!isUndefOrEqual(BitI1, j))
3661        return false;
3662    }
3663  }
3664
3665  return true;
3666}
3667
3668/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3669/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3670/// <2, 2, 3, 3>
3671static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3672  unsigned NumElts = VT.getVectorNumElements();
3673
3674  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3675         "Unsupported vector type for unpckh");
3676
3677  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3678      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3679    return false;
3680
3681  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3682  // independently on 128-bit lanes.
3683  unsigned NumLanes = VT.getSizeInBits()/128;
3684  unsigned NumLaneElts = NumElts/NumLanes;
3685
3686  for (unsigned l = 0; l != NumLanes; ++l) {
3687    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3688         i != (l+1)*NumLaneElts; i += 2, ++j) {
3689      int BitI  = Mask[i];
3690      int BitI1 = Mask[i+1];
3691      if (!isUndefOrEqual(BitI, j))
3692        return false;
3693      if (!isUndefOrEqual(BitI1, j))
3694        return false;
3695    }
3696  }
3697  return true;
3698}
3699
3700/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3701/// specifies a shuffle of elements that is suitable for input to MOVSS,
3702/// MOVSD, and MOVD, i.e. setting the lowest element.
3703static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3704  if (VT.getVectorElementType().getSizeInBits() < 32)
3705    return false;
3706  if (!VT.is128BitVector())
3707    return false;
3708
3709  unsigned NumElts = VT.getVectorNumElements();
3710
3711  if (!isUndefOrEqual(Mask[0], NumElts))
3712    return false;
3713
3714  for (unsigned i = 1; i != NumElts; ++i)
3715    if (!isUndefOrEqual(Mask[i], i))
3716      return false;
3717
3718  return true;
3719}
3720
3721/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3722/// as permutations between 128-bit chunks or halves. As an example: this
3723/// shuffle bellow:
3724///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3725/// The first half comes from the second half of V1 and the second half from the
3726/// the second half of V2.
3727static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3728  if (!HasAVX || !VT.is256BitVector())
3729    return false;
3730
3731  // The shuffle result is divided into half A and half B. In total the two
3732  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3733  // B must come from C, D, E or F.
3734  unsigned HalfSize = VT.getVectorNumElements()/2;
3735  bool MatchA = false, MatchB = false;
3736
3737  // Check if A comes from one of C, D, E, F.
3738  for (unsigned Half = 0; Half != 4; ++Half) {
3739    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3740      MatchA = true;
3741      break;
3742    }
3743  }
3744
3745  // Check if B comes from one of C, D, E, F.
3746  for (unsigned Half = 0; Half != 4; ++Half) {
3747    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3748      MatchB = true;
3749      break;
3750    }
3751  }
3752
3753  return MatchA && MatchB;
3754}
3755
3756/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3757/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3758static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3759  EVT VT = SVOp->getValueType(0);
3760
3761  unsigned HalfSize = VT.getVectorNumElements()/2;
3762
3763  unsigned FstHalf = 0, SndHalf = 0;
3764  for (unsigned i = 0; i < HalfSize; ++i) {
3765    if (SVOp->getMaskElt(i) > 0) {
3766      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3767      break;
3768    }
3769  }
3770  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3771    if (SVOp->getMaskElt(i) > 0) {
3772      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3773      break;
3774    }
3775  }
3776
3777  return (FstHalf | (SndHalf << 4));
3778}
3779
3780/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3781/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3782/// Note that VPERMIL mask matching is different depending whether theunderlying
3783/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3784/// to the same elements of the low, but to the higher half of the source.
3785/// In VPERMILPD the two lanes could be shuffled independently of each other
3786/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3787static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3788  if (!HasAVX)
3789    return false;
3790
3791  unsigned NumElts = VT.getVectorNumElements();
3792  // Only match 256-bit with 32/64-bit types
3793  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3794    return false;
3795
3796  unsigned NumLanes = VT.getSizeInBits()/128;
3797  unsigned LaneSize = NumElts/NumLanes;
3798  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3799    for (unsigned i = 0; i != LaneSize; ++i) {
3800      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3801        return false;
3802      if (NumElts != 8 || l == 0)
3803        continue;
3804      // VPERMILPS handling
3805      if (Mask[i] < 0)
3806        continue;
3807      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3808        return false;
3809    }
3810  }
3811
3812  return true;
3813}
3814
3815/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3816/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3817/// element of vector 2 and the other elements to come from vector 1 in order.
3818static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3819                               bool V2IsSplat = false, bool V2IsUndef = false) {
3820  if (!VT.is128BitVector())
3821    return false;
3822
3823  unsigned NumOps = VT.getVectorNumElements();
3824  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3825    return false;
3826
3827  if (!isUndefOrEqual(Mask[0], 0))
3828    return false;
3829
3830  for (unsigned i = 1; i != NumOps; ++i)
3831    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3832          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3833          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3834      return false;
3835
3836  return true;
3837}
3838
3839/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3840/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3841/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3842static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3843                           const X86Subtarget *Subtarget) {
3844  if (!Subtarget->hasSSE3())
3845    return false;
3846
3847  unsigned NumElems = VT.getVectorNumElements();
3848
3849  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3850      (VT.getSizeInBits() == 256 && NumElems != 8))
3851    return false;
3852
3853  // "i+1" is the value the indexed mask element must have
3854  for (unsigned i = 0; i != NumElems; i += 2)
3855    if (!isUndefOrEqual(Mask[i], i+1) ||
3856        !isUndefOrEqual(Mask[i+1], i+1))
3857      return false;
3858
3859  return true;
3860}
3861
3862/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3863/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3864/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3865static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3866                           const X86Subtarget *Subtarget) {
3867  if (!Subtarget->hasSSE3())
3868    return false;
3869
3870  unsigned NumElems = VT.getVectorNumElements();
3871
3872  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3873      (VT.getSizeInBits() == 256 && NumElems != 8))
3874    return false;
3875
3876  // "i" is the value the indexed mask element must have
3877  for (unsigned i = 0; i != NumElems; i += 2)
3878    if (!isUndefOrEqual(Mask[i], i) ||
3879        !isUndefOrEqual(Mask[i+1], i))
3880      return false;
3881
3882  return true;
3883}
3884
3885/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3886/// specifies a shuffle of elements that is suitable for input to 256-bit
3887/// version of MOVDDUP.
3888static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3889  if (!HasAVX || !VT.is256BitVector())
3890    return false;
3891
3892  unsigned NumElts = VT.getVectorNumElements();
3893  if (NumElts != 4)
3894    return false;
3895
3896  for (unsigned i = 0; i != NumElts/2; ++i)
3897    if (!isUndefOrEqual(Mask[i], 0))
3898      return false;
3899  for (unsigned i = NumElts/2; i != NumElts; ++i)
3900    if (!isUndefOrEqual(Mask[i], NumElts/2))
3901      return false;
3902  return true;
3903}
3904
3905/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3906/// specifies a shuffle of elements that is suitable for input to 128-bit
3907/// version of MOVDDUP.
3908static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3909  if (!VT.is128BitVector())
3910    return false;
3911
3912  unsigned e = VT.getVectorNumElements() / 2;
3913  for (unsigned i = 0; i != e; ++i)
3914    if (!isUndefOrEqual(Mask[i], i))
3915      return false;
3916  for (unsigned i = 0; i != e; ++i)
3917    if (!isUndefOrEqual(Mask[e+i], i))
3918      return false;
3919  return true;
3920}
3921
3922/// isVEXTRACTF128Index - Return true if the specified
3923/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3924/// suitable for input to VEXTRACTF128.
3925bool X86::isVEXTRACTF128Index(SDNode *N) {
3926  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3927    return false;
3928
3929  // The index should be aligned on a 128-bit boundary.
3930  uint64_t Index =
3931    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3932
3933  unsigned VL = N->getValueType(0).getVectorNumElements();
3934  unsigned VBits = N->getValueType(0).getSizeInBits();
3935  unsigned ElSize = VBits / VL;
3936  bool Result = (Index * ElSize) % 128 == 0;
3937
3938  return Result;
3939}
3940
3941/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3942/// operand specifies a subvector insert that is suitable for input to
3943/// VINSERTF128.
3944bool X86::isVINSERTF128Index(SDNode *N) {
3945  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3946    return false;
3947
3948  // The index should be aligned on a 128-bit boundary.
3949  uint64_t Index =
3950    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3951
3952  unsigned VL = N->getValueType(0).getVectorNumElements();
3953  unsigned VBits = N->getValueType(0).getSizeInBits();
3954  unsigned ElSize = VBits / VL;
3955  bool Result = (Index * ElSize) % 128 == 0;
3956
3957  return Result;
3958}
3959
3960/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3961/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3962/// Handles 128-bit and 256-bit.
3963static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3964  EVT VT = N->getValueType(0);
3965
3966  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3967         "Unsupported vector type for PSHUF/SHUFP");
3968
3969  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3970  // independently on 128-bit lanes.
3971  unsigned NumElts = VT.getVectorNumElements();
3972  unsigned NumLanes = VT.getSizeInBits()/128;
3973  unsigned NumLaneElts = NumElts/NumLanes;
3974
3975  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3976         "Only supports 2 or 4 elements per lane");
3977
3978  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3979  unsigned Mask = 0;
3980  for (unsigned i = 0; i != NumElts; ++i) {
3981    int Elt = N->getMaskElt(i);
3982    if (Elt < 0) continue;
3983    Elt &= NumLaneElts - 1;
3984    unsigned ShAmt = (i << Shift) % 8;
3985    Mask |= Elt << ShAmt;
3986  }
3987
3988  return Mask;
3989}
3990
3991/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3992/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3993static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3994  EVT VT = N->getValueType(0);
3995
3996  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3997         "Unsupported vector type for PSHUFHW");
3998
3999  unsigned NumElts = VT.getVectorNumElements();
4000
4001  unsigned Mask = 0;
4002  for (unsigned l = 0; l != NumElts; l += 8) {
4003    // 8 nodes per lane, but we only care about the last 4.
4004    for (unsigned i = 0; i < 4; ++i) {
4005      int Elt = N->getMaskElt(l+i+4);
4006      if (Elt < 0) continue;
4007      Elt &= 0x3; // only 2-bits.
4008      Mask |= Elt << (i * 2);
4009    }
4010  }
4011
4012  return Mask;
4013}
4014
4015/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4016/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4017static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4018  EVT VT = N->getValueType(0);
4019
4020  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4021         "Unsupported vector type for PSHUFHW");
4022
4023  unsigned NumElts = VT.getVectorNumElements();
4024
4025  unsigned Mask = 0;
4026  for (unsigned l = 0; l != NumElts; l += 8) {
4027    // 8 nodes per lane, but we only care about the first 4.
4028    for (unsigned i = 0; i < 4; ++i) {
4029      int Elt = N->getMaskElt(l+i);
4030      if (Elt < 0) continue;
4031      Elt &= 0x3; // only 2-bits
4032      Mask |= Elt << (i * 2);
4033    }
4034  }
4035
4036  return Mask;
4037}
4038
4039/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4040/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4041static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4042  EVT VT = SVOp->getValueType(0);
4043  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4044
4045  unsigned NumElts = VT.getVectorNumElements();
4046  unsigned NumLanes = VT.getSizeInBits()/128;
4047  unsigned NumLaneElts = NumElts/NumLanes;
4048
4049  int Val = 0;
4050  unsigned i;
4051  for (i = 0; i != NumElts; ++i) {
4052    Val = SVOp->getMaskElt(i);
4053    if (Val >= 0)
4054      break;
4055  }
4056  if (Val >= (int)NumElts)
4057    Val -= NumElts - NumLaneElts;
4058
4059  assert(Val - i > 0 && "PALIGNR imm should be positive");
4060  return (Val - i) * EltSize;
4061}
4062
4063/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4064/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4065/// instructions.
4066unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4067  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4068    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4069
4070  uint64_t Index =
4071    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4072
4073  EVT VecVT = N->getOperand(0).getValueType();
4074  EVT ElVT = VecVT.getVectorElementType();
4075
4076  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4077  return Index / NumElemsPerChunk;
4078}
4079
4080/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4081/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4082/// instructions.
4083unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4084  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4085    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4086
4087  uint64_t Index =
4088    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4089
4090  EVT VecVT = N->getValueType(0);
4091  EVT ElVT = VecVT.getVectorElementType();
4092
4093  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4094  return Index / NumElemsPerChunk;
4095}
4096
4097/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4098/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4099/// Handles 256-bit.
4100static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4101  EVT VT = N->getValueType(0);
4102
4103  unsigned NumElts = VT.getVectorNumElements();
4104
4105  assert((VT.is256BitVector() && NumElts == 4) &&
4106         "Unsupported vector type for VPERMQ/VPERMPD");
4107
4108  unsigned Mask = 0;
4109  for (unsigned i = 0; i != NumElts; ++i) {
4110    int Elt = N->getMaskElt(i);
4111    if (Elt < 0)
4112      continue;
4113    Mask |= Elt << (i*2);
4114  }
4115
4116  return Mask;
4117}
4118/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4119/// constant +0.0.
4120bool X86::isZeroNode(SDValue Elt) {
4121  return ((isa<ConstantSDNode>(Elt) &&
4122           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4123          (isa<ConstantFPSDNode>(Elt) &&
4124           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4125}
4126
4127/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4128/// their permute mask.
4129static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4130                                    SelectionDAG &DAG) {
4131  EVT VT = SVOp->getValueType(0);
4132  unsigned NumElems = VT.getVectorNumElements();
4133  SmallVector<int, 8> MaskVec;
4134
4135  for (unsigned i = 0; i != NumElems; ++i) {
4136    int Idx = SVOp->getMaskElt(i);
4137    if (Idx >= 0) {
4138      if (Idx < (int)NumElems)
4139        Idx += NumElems;
4140      else
4141        Idx -= NumElems;
4142    }
4143    MaskVec.push_back(Idx);
4144  }
4145  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4146                              SVOp->getOperand(0), &MaskVec[0]);
4147}
4148
4149/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4150/// match movhlps. The lower half elements should come from upper half of
4151/// V1 (and in order), and the upper half elements should come from the upper
4152/// half of V2 (and in order).
4153static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4154  if (!VT.is128BitVector())
4155    return false;
4156  if (VT.getVectorNumElements() != 4)
4157    return false;
4158  for (unsigned i = 0, e = 2; i != e; ++i)
4159    if (!isUndefOrEqual(Mask[i], i+2))
4160      return false;
4161  for (unsigned i = 2; i != 4; ++i)
4162    if (!isUndefOrEqual(Mask[i], i+4))
4163      return false;
4164  return true;
4165}
4166
4167/// isScalarLoadToVector - Returns true if the node is a scalar load that
4168/// is promoted to a vector. It also returns the LoadSDNode by reference if
4169/// required.
4170static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4171  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4172    return false;
4173  N = N->getOperand(0).getNode();
4174  if (!ISD::isNON_EXTLoad(N))
4175    return false;
4176  if (LD)
4177    *LD = cast<LoadSDNode>(N);
4178  return true;
4179}
4180
4181// Test whether the given value is a vector value which will be legalized
4182// into a load.
4183static bool WillBeConstantPoolLoad(SDNode *N) {
4184  if (N->getOpcode() != ISD::BUILD_VECTOR)
4185    return false;
4186
4187  // Check for any non-constant elements.
4188  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4189    switch (N->getOperand(i).getNode()->getOpcode()) {
4190    case ISD::UNDEF:
4191    case ISD::ConstantFP:
4192    case ISD::Constant:
4193      break;
4194    default:
4195      return false;
4196    }
4197
4198  // Vectors of all-zeros and all-ones are materialized with special
4199  // instructions rather than being loaded.
4200  return !ISD::isBuildVectorAllZeros(N) &&
4201         !ISD::isBuildVectorAllOnes(N);
4202}
4203
4204/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4205/// match movlp{s|d}. The lower half elements should come from lower half of
4206/// V1 (and in order), and the upper half elements should come from the upper
4207/// half of V2 (and in order). And since V1 will become the source of the
4208/// MOVLP, it must be either a vector load or a scalar load to vector.
4209static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4210                               ArrayRef<int> Mask, EVT VT) {
4211  if (!VT.is128BitVector())
4212    return false;
4213
4214  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4215    return false;
4216  // Is V2 is a vector load, don't do this transformation. We will try to use
4217  // load folding shufps op.
4218  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4219    return false;
4220
4221  unsigned NumElems = VT.getVectorNumElements();
4222
4223  if (NumElems != 2 && NumElems != 4)
4224    return false;
4225  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4226    if (!isUndefOrEqual(Mask[i], i))
4227      return false;
4228  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4229    if (!isUndefOrEqual(Mask[i], i+NumElems))
4230      return false;
4231  return true;
4232}
4233
4234/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4235/// all the same.
4236static bool isSplatVector(SDNode *N) {
4237  if (N->getOpcode() != ISD::BUILD_VECTOR)
4238    return false;
4239
4240  SDValue SplatValue = N->getOperand(0);
4241  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4242    if (N->getOperand(i) != SplatValue)
4243      return false;
4244  return true;
4245}
4246
4247/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4248/// to an zero vector.
4249/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4250static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4251  SDValue V1 = N->getOperand(0);
4252  SDValue V2 = N->getOperand(1);
4253  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4254  for (unsigned i = 0; i != NumElems; ++i) {
4255    int Idx = N->getMaskElt(i);
4256    if (Idx >= (int)NumElems) {
4257      unsigned Opc = V2.getOpcode();
4258      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4259        continue;
4260      if (Opc != ISD::BUILD_VECTOR ||
4261          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4262        return false;
4263    } else if (Idx >= 0) {
4264      unsigned Opc = V1.getOpcode();
4265      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4266        continue;
4267      if (Opc != ISD::BUILD_VECTOR ||
4268          !X86::isZeroNode(V1.getOperand(Idx)))
4269        return false;
4270    }
4271  }
4272  return true;
4273}
4274
4275/// getZeroVector - Returns a vector of specified type with all zero elements.
4276///
4277static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4278                             SelectionDAG &DAG, DebugLoc dl) {
4279  assert(VT.isVector() && "Expected a vector type");
4280  unsigned Size = VT.getSizeInBits();
4281
4282  // Always build SSE zero vectors as <4 x i32> bitcasted
4283  // to their dest type. This ensures they get CSE'd.
4284  SDValue Vec;
4285  if (Size == 128) {  // SSE
4286    if (Subtarget->hasSSE2()) {  // SSE2
4287      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4288      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4289    } else { // SSE1
4290      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4291      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4292    }
4293  } else if (Size == 256) { // AVX
4294    if (Subtarget->hasAVX2()) { // AVX2
4295      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4296      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4297      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4298    } else {
4299      // 256-bit logic and arithmetic instructions in AVX are all
4300      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4301      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4302      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4303      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4304    }
4305  } else
4306    llvm_unreachable("Unexpected vector type");
4307
4308  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4309}
4310
4311/// getOnesVector - Returns a vector of specified type with all bits set.
4312/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4313/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4314/// Then bitcast to their original type, ensuring they get CSE'd.
4315static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4316                             DebugLoc dl) {
4317  assert(VT.isVector() && "Expected a vector type");
4318  unsigned Size = VT.getSizeInBits();
4319
4320  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4321  SDValue Vec;
4322  if (Size == 256) {
4323    if (HasAVX2) { // AVX2
4324      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4325      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4326    } else { // AVX
4327      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4328      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4329    }
4330  } else if (Size == 128) {
4331    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4332  } else
4333    llvm_unreachable("Unexpected vector type");
4334
4335  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4336}
4337
4338/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4339/// that point to V2 points to its first element.
4340static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4341  for (unsigned i = 0; i != NumElems; ++i) {
4342    if (Mask[i] > (int)NumElems) {
4343      Mask[i] = NumElems;
4344    }
4345  }
4346}
4347
4348/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4349/// operation of specified width.
4350static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4351                       SDValue V2) {
4352  unsigned NumElems = VT.getVectorNumElements();
4353  SmallVector<int, 8> Mask;
4354  Mask.push_back(NumElems);
4355  for (unsigned i = 1; i != NumElems; ++i)
4356    Mask.push_back(i);
4357  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4358}
4359
4360/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4361static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4362                          SDValue V2) {
4363  unsigned NumElems = VT.getVectorNumElements();
4364  SmallVector<int, 8> Mask;
4365  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4366    Mask.push_back(i);
4367    Mask.push_back(i + NumElems);
4368  }
4369  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4370}
4371
4372/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4373static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4374                          SDValue V2) {
4375  unsigned NumElems = VT.getVectorNumElements();
4376  SmallVector<int, 8> Mask;
4377  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4378    Mask.push_back(i + Half);
4379    Mask.push_back(i + NumElems + Half);
4380  }
4381  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4382}
4383
4384// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4385// a generic shuffle instruction because the target has no such instructions.
4386// Generate shuffles which repeat i16 and i8 several times until they can be
4387// represented by v4f32 and then be manipulated by target suported shuffles.
4388static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4389  EVT VT = V.getValueType();
4390  int NumElems = VT.getVectorNumElements();
4391  DebugLoc dl = V.getDebugLoc();
4392
4393  while (NumElems > 4) {
4394    if (EltNo < NumElems/2) {
4395      V = getUnpackl(DAG, dl, VT, V, V);
4396    } else {
4397      V = getUnpackh(DAG, dl, VT, V, V);
4398      EltNo -= NumElems/2;
4399    }
4400    NumElems >>= 1;
4401  }
4402  return V;
4403}
4404
4405/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4406static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4407  EVT VT = V.getValueType();
4408  DebugLoc dl = V.getDebugLoc();
4409  unsigned Size = VT.getSizeInBits();
4410
4411  if (Size == 128) {
4412    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4413    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4414    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4415                             &SplatMask[0]);
4416  } else if (Size == 256) {
4417    // To use VPERMILPS to splat scalars, the second half of indicies must
4418    // refer to the higher part, which is a duplication of the lower one,
4419    // because VPERMILPS can only handle in-lane permutations.
4420    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4421                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4422
4423    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4424    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4425                             &SplatMask[0]);
4426  } else
4427    llvm_unreachable("Vector size not supported");
4428
4429  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4430}
4431
4432/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4433static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4434  EVT SrcVT = SV->getValueType(0);
4435  SDValue V1 = SV->getOperand(0);
4436  DebugLoc dl = SV->getDebugLoc();
4437
4438  int EltNo = SV->getSplatIndex();
4439  int NumElems = SrcVT.getVectorNumElements();
4440  unsigned Size = SrcVT.getSizeInBits();
4441
4442  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4443          "Unknown how to promote splat for type");
4444
4445  // Extract the 128-bit part containing the splat element and update
4446  // the splat element index when it refers to the higher register.
4447  if (Size == 256) {
4448    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4449    if (EltNo >= NumElems/2)
4450      EltNo -= NumElems/2;
4451  }
4452
4453  // All i16 and i8 vector types can't be used directly by a generic shuffle
4454  // instruction because the target has no such instruction. Generate shuffles
4455  // which repeat i16 and i8 several times until they fit in i32, and then can
4456  // be manipulated by target suported shuffles.
4457  EVT EltVT = SrcVT.getVectorElementType();
4458  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4459    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4460
4461  // Recreate the 256-bit vector and place the same 128-bit vector
4462  // into the low and high part. This is necessary because we want
4463  // to use VPERM* to shuffle the vectors
4464  if (Size == 256) {
4465    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4466  }
4467
4468  return getLegalSplat(DAG, V1, EltNo);
4469}
4470
4471/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4472/// vector of zero or undef vector.  This produces a shuffle where the low
4473/// element of V2 is swizzled into the zero/undef vector, landing at element
4474/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4475static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4476                                           bool IsZero,
4477                                           const X86Subtarget *Subtarget,
4478                                           SelectionDAG &DAG) {
4479  EVT VT = V2.getValueType();
4480  SDValue V1 = IsZero
4481    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4482  unsigned NumElems = VT.getVectorNumElements();
4483  SmallVector<int, 16> MaskVec;
4484  for (unsigned i = 0; i != NumElems; ++i)
4485    // If this is the insertion idx, put the low elt of V2 here.
4486    MaskVec.push_back(i == Idx ? NumElems : i);
4487  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4488}
4489
4490/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4491/// target specific opcode. Returns true if the Mask could be calculated.
4492/// Sets IsUnary to true if only uses one source.
4493static bool getTargetShuffleMask(SDNode *N, MVT VT,
4494                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4495  unsigned NumElems = VT.getVectorNumElements();
4496  SDValue ImmN;
4497
4498  IsUnary = false;
4499  switch(N->getOpcode()) {
4500  case X86ISD::SHUFP:
4501    ImmN = N->getOperand(N->getNumOperands()-1);
4502    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4503    break;
4504  case X86ISD::UNPCKH:
4505    DecodeUNPCKHMask(VT, Mask);
4506    break;
4507  case X86ISD::UNPCKL:
4508    DecodeUNPCKLMask(VT, Mask);
4509    break;
4510  case X86ISD::MOVHLPS:
4511    DecodeMOVHLPSMask(NumElems, Mask);
4512    break;
4513  case X86ISD::MOVLHPS:
4514    DecodeMOVLHPSMask(NumElems, Mask);
4515    break;
4516  case X86ISD::PSHUFD:
4517  case X86ISD::VPERMILP:
4518    ImmN = N->getOperand(N->getNumOperands()-1);
4519    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4520    IsUnary = true;
4521    break;
4522  case X86ISD::PSHUFHW:
4523    ImmN = N->getOperand(N->getNumOperands()-1);
4524    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4525    IsUnary = true;
4526    break;
4527  case X86ISD::PSHUFLW:
4528    ImmN = N->getOperand(N->getNumOperands()-1);
4529    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4530    IsUnary = true;
4531    break;
4532  case X86ISD::VPERMI:
4533    ImmN = N->getOperand(N->getNumOperands()-1);
4534    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4535    IsUnary = true;
4536    break;
4537  case X86ISD::MOVSS:
4538  case X86ISD::MOVSD: {
4539    // The index 0 always comes from the first element of the second source,
4540    // this is why MOVSS and MOVSD are used in the first place. The other
4541    // elements come from the other positions of the first source vector
4542    Mask.push_back(NumElems);
4543    for (unsigned i = 1; i != NumElems; ++i) {
4544      Mask.push_back(i);
4545    }
4546    break;
4547  }
4548  case X86ISD::VPERM2X128:
4549    ImmN = N->getOperand(N->getNumOperands()-1);
4550    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4551    if (Mask.empty()) return false;
4552    break;
4553  case X86ISD::MOVDDUP:
4554  case X86ISD::MOVLHPD:
4555  case X86ISD::MOVLPD:
4556  case X86ISD::MOVLPS:
4557  case X86ISD::MOVSHDUP:
4558  case X86ISD::MOVSLDUP:
4559  case X86ISD::PALIGN:
4560    // Not yet implemented
4561    return false;
4562  default: llvm_unreachable("unknown target shuffle node");
4563  }
4564
4565  return true;
4566}
4567
4568/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4569/// element of the result of the vector shuffle.
4570static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4571                                   unsigned Depth) {
4572  if (Depth == 6)
4573    return SDValue();  // Limit search depth.
4574
4575  SDValue V = SDValue(N, 0);
4576  EVT VT = V.getValueType();
4577  unsigned Opcode = V.getOpcode();
4578
4579  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4580  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4581    int Elt = SV->getMaskElt(Index);
4582
4583    if (Elt < 0)
4584      return DAG.getUNDEF(VT.getVectorElementType());
4585
4586    unsigned NumElems = VT.getVectorNumElements();
4587    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4588                                         : SV->getOperand(1);
4589    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4590  }
4591
4592  // Recurse into target specific vector shuffles to find scalars.
4593  if (isTargetShuffle(Opcode)) {
4594    MVT ShufVT = V.getValueType().getSimpleVT();
4595    unsigned NumElems = ShufVT.getVectorNumElements();
4596    SmallVector<int, 16> ShuffleMask;
4597    SDValue ImmN;
4598    bool IsUnary;
4599
4600    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4601      return SDValue();
4602
4603    int Elt = ShuffleMask[Index];
4604    if (Elt < 0)
4605      return DAG.getUNDEF(ShufVT.getVectorElementType());
4606
4607    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4608                                         : N->getOperand(1);
4609    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4610                               Depth+1);
4611  }
4612
4613  // Actual nodes that may contain scalar elements
4614  if (Opcode == ISD::BITCAST) {
4615    V = V.getOperand(0);
4616    EVT SrcVT = V.getValueType();
4617    unsigned NumElems = VT.getVectorNumElements();
4618
4619    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4620      return SDValue();
4621  }
4622
4623  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4624    return (Index == 0) ? V.getOperand(0)
4625                        : DAG.getUNDEF(VT.getVectorElementType());
4626
4627  if (V.getOpcode() == ISD::BUILD_VECTOR)
4628    return V.getOperand(Index);
4629
4630  return SDValue();
4631}
4632
4633/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4634/// shuffle operation which come from a consecutively from a zero. The
4635/// search can start in two different directions, from left or right.
4636static
4637unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4638                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4639  unsigned i;
4640  for (i = 0; i != NumElems; ++i) {
4641    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4642    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4643    if (!(Elt.getNode() &&
4644         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4645      break;
4646  }
4647
4648  return i;
4649}
4650
4651/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4652/// correspond consecutively to elements from one of the vector operands,
4653/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4654static
4655bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4656                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4657                              unsigned NumElems, unsigned &OpNum) {
4658  bool SeenV1 = false;
4659  bool SeenV2 = false;
4660
4661  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4662    int Idx = SVOp->getMaskElt(i);
4663    // Ignore undef indicies
4664    if (Idx < 0)
4665      continue;
4666
4667    if (Idx < (int)NumElems)
4668      SeenV1 = true;
4669    else
4670      SeenV2 = true;
4671
4672    // Only accept consecutive elements from the same vector
4673    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4674      return false;
4675  }
4676
4677  OpNum = SeenV1 ? 0 : 1;
4678  return true;
4679}
4680
4681/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4682/// logical left shift of a vector.
4683static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4684                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4685  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4686  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4687              false /* check zeros from right */, DAG);
4688  unsigned OpSrc;
4689
4690  if (!NumZeros)
4691    return false;
4692
4693  // Considering the elements in the mask that are not consecutive zeros,
4694  // check if they consecutively come from only one of the source vectors.
4695  //
4696  //               V1 = {X, A, B, C}     0
4697  //                         \  \  \    /
4698  //   vector_shuffle V1, V2 <1, 2, 3, X>
4699  //
4700  if (!isShuffleMaskConsecutive(SVOp,
4701            0,                   // Mask Start Index
4702            NumElems-NumZeros,   // Mask End Index(exclusive)
4703            NumZeros,            // Where to start looking in the src vector
4704            NumElems,            // Number of elements in vector
4705            OpSrc))              // Which source operand ?
4706    return false;
4707
4708  isLeft = false;
4709  ShAmt = NumZeros;
4710  ShVal = SVOp->getOperand(OpSrc);
4711  return true;
4712}
4713
4714/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4715/// logical left shift of a vector.
4716static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4717                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4718  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4719  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4720              true /* check zeros from left */, DAG);
4721  unsigned OpSrc;
4722
4723  if (!NumZeros)
4724    return false;
4725
4726  // Considering the elements in the mask that are not consecutive zeros,
4727  // check if they consecutively come from only one of the source vectors.
4728  //
4729  //                           0    { A, B, X, X } = V2
4730  //                          / \    /  /
4731  //   vector_shuffle V1, V2 <X, X, 4, 5>
4732  //
4733  if (!isShuffleMaskConsecutive(SVOp,
4734            NumZeros,     // Mask Start Index
4735            NumElems,     // Mask End Index(exclusive)
4736            0,            // Where to start looking in the src vector
4737            NumElems,     // Number of elements in vector
4738            OpSrc))       // Which source operand ?
4739    return false;
4740
4741  isLeft = true;
4742  ShAmt = NumZeros;
4743  ShVal = SVOp->getOperand(OpSrc);
4744  return true;
4745}
4746
4747/// isVectorShift - Returns true if the shuffle can be implemented as a
4748/// logical left or right shift of a vector.
4749static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4750                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4751  // Although the logic below support any bitwidth size, there are no
4752  // shift instructions which handle more than 128-bit vectors.
4753  if (!SVOp->getValueType(0).is128BitVector())
4754    return false;
4755
4756  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4757      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4758    return true;
4759
4760  return false;
4761}
4762
4763/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4764///
4765static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4766                                       unsigned NumNonZero, unsigned NumZero,
4767                                       SelectionDAG &DAG,
4768                                       const X86Subtarget* Subtarget,
4769                                       const TargetLowering &TLI) {
4770  if (NumNonZero > 8)
4771    return SDValue();
4772
4773  DebugLoc dl = Op.getDebugLoc();
4774  SDValue V(0, 0);
4775  bool First = true;
4776  for (unsigned i = 0; i < 16; ++i) {
4777    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4778    if (ThisIsNonZero && First) {
4779      if (NumZero)
4780        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4781      else
4782        V = DAG.getUNDEF(MVT::v8i16);
4783      First = false;
4784    }
4785
4786    if ((i & 1) != 0) {
4787      SDValue ThisElt(0, 0), LastElt(0, 0);
4788      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4789      if (LastIsNonZero) {
4790        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4791                              MVT::i16, Op.getOperand(i-1));
4792      }
4793      if (ThisIsNonZero) {
4794        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4795        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4796                              ThisElt, DAG.getConstant(8, MVT::i8));
4797        if (LastIsNonZero)
4798          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4799      } else
4800        ThisElt = LastElt;
4801
4802      if (ThisElt.getNode())
4803        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4804                        DAG.getIntPtrConstant(i/2));
4805    }
4806  }
4807
4808  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4809}
4810
4811/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4812///
4813static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4814                                     unsigned NumNonZero, unsigned NumZero,
4815                                     SelectionDAG &DAG,
4816                                     const X86Subtarget* Subtarget,
4817                                     const TargetLowering &TLI) {
4818  if (NumNonZero > 4)
4819    return SDValue();
4820
4821  DebugLoc dl = Op.getDebugLoc();
4822  SDValue V(0, 0);
4823  bool First = true;
4824  for (unsigned i = 0; i < 8; ++i) {
4825    bool isNonZero = (NonZeros & (1 << i)) != 0;
4826    if (isNonZero) {
4827      if (First) {
4828        if (NumZero)
4829          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4830        else
4831          V = DAG.getUNDEF(MVT::v8i16);
4832        First = false;
4833      }
4834      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4835                      MVT::v8i16, V, Op.getOperand(i),
4836                      DAG.getIntPtrConstant(i));
4837    }
4838  }
4839
4840  return V;
4841}
4842
4843/// getVShift - Return a vector logical shift node.
4844///
4845static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4846                         unsigned NumBits, SelectionDAG &DAG,
4847                         const TargetLowering &TLI, DebugLoc dl) {
4848  assert(VT.is128BitVector() && "Unknown type for VShift");
4849  EVT ShVT = MVT::v2i64;
4850  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4851  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4852  return DAG.getNode(ISD::BITCAST, dl, VT,
4853                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4854                             DAG.getConstant(NumBits,
4855                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4856}
4857
4858SDValue
4859X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4860                                          SelectionDAG &DAG) const {
4861
4862  // Check if the scalar load can be widened into a vector load. And if
4863  // the address is "base + cst" see if the cst can be "absorbed" into
4864  // the shuffle mask.
4865  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4866    SDValue Ptr = LD->getBasePtr();
4867    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4868      return SDValue();
4869    EVT PVT = LD->getValueType(0);
4870    if (PVT != MVT::i32 && PVT != MVT::f32)
4871      return SDValue();
4872
4873    int FI = -1;
4874    int64_t Offset = 0;
4875    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4876      FI = FINode->getIndex();
4877      Offset = 0;
4878    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4879               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4880      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4881      Offset = Ptr.getConstantOperandVal(1);
4882      Ptr = Ptr.getOperand(0);
4883    } else {
4884      return SDValue();
4885    }
4886
4887    // FIXME: 256-bit vector instructions don't require a strict alignment,
4888    // improve this code to support it better.
4889    unsigned RequiredAlign = VT.getSizeInBits()/8;
4890    SDValue Chain = LD->getChain();
4891    // Make sure the stack object alignment is at least 16 or 32.
4892    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4893    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4894      if (MFI->isFixedObjectIndex(FI)) {
4895        // Can't change the alignment. FIXME: It's possible to compute
4896        // the exact stack offset and reference FI + adjust offset instead.
4897        // If someone *really* cares about this. That's the way to implement it.
4898        return SDValue();
4899      } else {
4900        MFI->setObjectAlignment(FI, RequiredAlign);
4901      }
4902    }
4903
4904    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4905    // Ptr + (Offset & ~15).
4906    if (Offset < 0)
4907      return SDValue();
4908    if ((Offset % RequiredAlign) & 3)
4909      return SDValue();
4910    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4911    if (StartOffset)
4912      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4913                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4914
4915    int EltNo = (Offset - StartOffset) >> 2;
4916    unsigned NumElems = VT.getVectorNumElements();
4917
4918    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4919    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4920                             LD->getPointerInfo().getWithOffset(StartOffset),
4921                             false, false, false, 0);
4922
4923    SmallVector<int, 8> Mask;
4924    for (unsigned i = 0; i != NumElems; ++i)
4925      Mask.push_back(EltNo);
4926
4927    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4928  }
4929
4930  return SDValue();
4931}
4932
4933/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4934/// vector of type 'VT', see if the elements can be replaced by a single large
4935/// load which has the same value as a build_vector whose operands are 'elts'.
4936///
4937/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4938///
4939/// FIXME: we'd also like to handle the case where the last elements are zero
4940/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4941/// There's even a handy isZeroNode for that purpose.
4942static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4943                                        DebugLoc &DL, SelectionDAG &DAG) {
4944  EVT EltVT = VT.getVectorElementType();
4945  unsigned NumElems = Elts.size();
4946
4947  LoadSDNode *LDBase = NULL;
4948  unsigned LastLoadedElt = -1U;
4949
4950  // For each element in the initializer, see if we've found a load or an undef.
4951  // If we don't find an initial load element, or later load elements are
4952  // non-consecutive, bail out.
4953  for (unsigned i = 0; i < NumElems; ++i) {
4954    SDValue Elt = Elts[i];
4955
4956    if (!Elt.getNode() ||
4957        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4958      return SDValue();
4959    if (!LDBase) {
4960      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4961        return SDValue();
4962      LDBase = cast<LoadSDNode>(Elt.getNode());
4963      LastLoadedElt = i;
4964      continue;
4965    }
4966    if (Elt.getOpcode() == ISD::UNDEF)
4967      continue;
4968
4969    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4970    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4971      return SDValue();
4972    LastLoadedElt = i;
4973  }
4974
4975  // If we have found an entire vector of loads and undefs, then return a large
4976  // load of the entire vector width starting at the base pointer.  If we found
4977  // consecutive loads for the low half, generate a vzext_load node.
4978  if (LastLoadedElt == NumElems - 1) {
4979    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4980      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4981                         LDBase->getPointerInfo(),
4982                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4983                         LDBase->isInvariant(), 0);
4984    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4985                       LDBase->getPointerInfo(),
4986                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4987                       LDBase->isInvariant(), LDBase->getAlignment());
4988  }
4989  if (NumElems == 4 && LastLoadedElt == 1 &&
4990      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4991    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4992    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4993    SDValue ResNode =
4994        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4995                                LDBase->getPointerInfo(),
4996                                LDBase->getAlignment(),
4997                                false/*isVolatile*/, true/*ReadMem*/,
4998                                false/*WriteMem*/);
4999
5000    // Make sure the newly-created LOAD is in the same position as LDBase in
5001    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5002    // update uses of LDBase's output chain to use the TokenFactor.
5003    if (LDBase->hasAnyUseOfValue(1)) {
5004      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5005                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5006      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5007      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5008                             SDValue(ResNode.getNode(), 1));
5009    }
5010
5011    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5012  }
5013  return SDValue();
5014}
5015
5016/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5017/// to generate a splat value for the following cases:
5018/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5019/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5020/// a scalar load, or a constant.
5021/// The VBROADCAST node is returned when a pattern is found,
5022/// or SDValue() otherwise.
5023SDValue
5024X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5025  if (!Subtarget->hasAVX())
5026    return SDValue();
5027
5028  EVT VT = Op.getValueType();
5029  DebugLoc dl = Op.getDebugLoc();
5030
5031  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5032         "Unsupported vector type for broadcast.");
5033
5034  SDValue Ld;
5035  bool ConstSplatVal;
5036
5037  switch (Op.getOpcode()) {
5038    default:
5039      // Unknown pattern found.
5040      return SDValue();
5041
5042    case ISD::BUILD_VECTOR: {
5043      // The BUILD_VECTOR node must be a splat.
5044      if (!isSplatVector(Op.getNode()))
5045        return SDValue();
5046
5047      Ld = Op.getOperand(0);
5048      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5049                     Ld.getOpcode() == ISD::ConstantFP);
5050
5051      // The suspected load node has several users. Make sure that all
5052      // of its users are from the BUILD_VECTOR node.
5053      // Constants may have multiple users.
5054      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5055        return SDValue();
5056      break;
5057    }
5058
5059    case ISD::VECTOR_SHUFFLE: {
5060      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5061
5062      // Shuffles must have a splat mask where the first element is
5063      // broadcasted.
5064      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5065        return SDValue();
5066
5067      SDValue Sc = Op.getOperand(0);
5068      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5069          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5070
5071        if (!Subtarget->hasAVX2())
5072          return SDValue();
5073
5074        // Use the register form of the broadcast instruction available on AVX2.
5075        if (VT.is256BitVector())
5076          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5077        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5078      }
5079
5080      Ld = Sc.getOperand(0);
5081      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5082                       Ld.getOpcode() == ISD::ConstantFP);
5083
5084      // The scalar_to_vector node and the suspected
5085      // load node must have exactly one user.
5086      // Constants may have multiple users.
5087      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5088        return SDValue();
5089      break;
5090    }
5091  }
5092
5093  bool Is256 = VT.is256BitVector();
5094
5095  // Handle the broadcasting a single constant scalar from the constant pool
5096  // into a vector. On Sandybridge it is still better to load a constant vector
5097  // from the constant pool and not to broadcast it from a scalar.
5098  if (ConstSplatVal && Subtarget->hasAVX2()) {
5099    EVT CVT = Ld.getValueType();
5100    assert(!CVT.isVector() && "Must not broadcast a vector type");
5101    unsigned ScalarSize = CVT.getSizeInBits();
5102
5103    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5104      const Constant *C = 0;
5105      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5106        C = CI->getConstantIntValue();
5107      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5108        C = CF->getConstantFPValue();
5109
5110      assert(C && "Invalid constant type");
5111
5112      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5113      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5114      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5115                       MachinePointerInfo::getConstantPool(),
5116                       false, false, false, Alignment);
5117
5118      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5119    }
5120  }
5121
5122  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5123  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5124
5125  // Handle AVX2 in-register broadcasts.
5126  if (!IsLoad && Subtarget->hasAVX2() &&
5127      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5128    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5129
5130  // The scalar source must be a normal load.
5131  if (!IsLoad)
5132    return SDValue();
5133
5134  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5135    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5136
5137  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5138  // double since there is no vbroadcastsd xmm
5139  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5140    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5141      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5142  }
5143
5144  // Unsupported broadcast.
5145  return SDValue();
5146}
5147
5148// LowerVectorFpExtend - Recognize the scalarized FP_EXTEND from v2f32 to v2f64
5149// and convert it into X86ISD::VFPEXT due to the current ISD::FP_EXTEND has the
5150// constraint of matching input/output vector elements.
5151SDValue
5152X86TargetLowering::LowerVectorFpExtend(SDValue &Op, SelectionDAG &DAG) const {
5153  DebugLoc DL = Op.getDebugLoc();
5154  SDNode *N = Op.getNode();
5155  EVT VT = Op.getValueType();
5156  unsigned NumElts = Op.getNumOperands();
5157
5158  // Check supported types and sub-targets.
5159  //
5160  // Only v2f32 -> v2f64 needs special handling.
5161  if (VT != MVT::v2f64 || !Subtarget->hasSSE2())
5162    return SDValue();
5163
5164  SDValue VecIn;
5165  EVT VecInVT;
5166  SmallVector<int, 8> Mask;
5167  EVT SrcVT = MVT::Other;
5168
5169  // Check the patterns could be translated into X86vfpext.
5170  for (unsigned i = 0; i < NumElts; ++i) {
5171    SDValue In = N->getOperand(i);
5172    unsigned Opcode = In.getOpcode();
5173
5174    // Skip if the element is undefined.
5175    if (Opcode == ISD::UNDEF) {
5176      Mask.push_back(-1);
5177      continue;
5178    }
5179
5180    // Quit if one of the elements is not defined from 'fpext'.
5181    if (Opcode != ISD::FP_EXTEND)
5182      return SDValue();
5183
5184    // Check how the source of 'fpext' is defined.
5185    SDValue L2In = In.getOperand(0);
5186    EVT L2InVT = L2In.getValueType();
5187
5188    // Check the original type
5189    if (SrcVT == MVT::Other)
5190      SrcVT = L2InVT;
5191    else if (SrcVT != L2InVT) // Quit if non-homogenous typed.
5192      return SDValue();
5193
5194    // Check whether the value being 'fpext'ed is extracted from the same
5195    // source.
5196    Opcode = L2In.getOpcode();
5197
5198    // Quit if it's not extracted with a constant index.
5199    if (Opcode != ISD::EXTRACT_VECTOR_ELT ||
5200        !isa<ConstantSDNode>(L2In.getOperand(1)))
5201      return SDValue();
5202
5203    SDValue ExtractedFromVec = L2In.getOperand(0);
5204
5205    if (VecIn.getNode() == 0) {
5206      VecIn = ExtractedFromVec;
5207      VecInVT = ExtractedFromVec.getValueType();
5208    } else if (VecIn != ExtractedFromVec) // Quit if built from more than 1 vec.
5209      return SDValue();
5210
5211    Mask.push_back(cast<ConstantSDNode>(L2In.getOperand(1))->getZExtValue());
5212  }
5213
5214  // Quit if all operands of BUILD_VECTOR are undefined.
5215  if (!VecIn.getNode())
5216    return SDValue();
5217
5218  // Fill the remaining mask as undef.
5219  for (unsigned i = NumElts; i < VecInVT.getVectorNumElements(); ++i)
5220    Mask.push_back(-1);
5221
5222  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
5223                     DAG.getVectorShuffle(VecInVT, DL,
5224                                          VecIn, DAG.getUNDEF(VecInVT),
5225                                          &Mask[0]));
5226}
5227
5228SDValue
5229X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5230  DebugLoc dl = Op.getDebugLoc();
5231
5232  EVT VT = Op.getValueType();
5233  EVT ExtVT = VT.getVectorElementType();
5234  unsigned NumElems = Op.getNumOperands();
5235
5236  // Vectors containing all zeros can be matched by pxor and xorps later
5237  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5238    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5239    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5240    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5241      return Op;
5242
5243    return getZeroVector(VT, Subtarget, DAG, dl);
5244  }
5245
5246  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5247  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5248  // vpcmpeqd on 256-bit vectors.
5249  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5250    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5251      return Op;
5252
5253    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5254  }
5255
5256  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5257  if (Broadcast.getNode())
5258    return Broadcast;
5259
5260  SDValue FpExt = LowerVectorFpExtend(Op, DAG);
5261  if (FpExt.getNode())
5262    return FpExt;
5263
5264  unsigned EVTBits = ExtVT.getSizeInBits();
5265
5266  unsigned NumZero  = 0;
5267  unsigned NumNonZero = 0;
5268  unsigned NonZeros = 0;
5269  bool IsAllConstants = true;
5270  SmallSet<SDValue, 8> Values;
5271  for (unsigned i = 0; i < NumElems; ++i) {
5272    SDValue Elt = Op.getOperand(i);
5273    if (Elt.getOpcode() == ISD::UNDEF)
5274      continue;
5275    Values.insert(Elt);
5276    if (Elt.getOpcode() != ISD::Constant &&
5277        Elt.getOpcode() != ISD::ConstantFP)
5278      IsAllConstants = false;
5279    if (X86::isZeroNode(Elt))
5280      NumZero++;
5281    else {
5282      NonZeros |= (1 << i);
5283      NumNonZero++;
5284    }
5285  }
5286
5287  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5288  if (NumNonZero == 0)
5289    return DAG.getUNDEF(VT);
5290
5291  // Special case for single non-zero, non-undef, element.
5292  if (NumNonZero == 1) {
5293    unsigned Idx = CountTrailingZeros_32(NonZeros);
5294    SDValue Item = Op.getOperand(Idx);
5295
5296    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5297    // the value are obviously zero, truncate the value to i32 and do the
5298    // insertion that way.  Only do this if the value is non-constant or if the
5299    // value is a constant being inserted into element 0.  It is cheaper to do
5300    // a constant pool load than it is to do a movd + shuffle.
5301    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5302        (!IsAllConstants || Idx == 0)) {
5303      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5304        // Handle SSE only.
5305        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5306        EVT VecVT = MVT::v4i32;
5307        unsigned VecElts = 4;
5308
5309        // Truncate the value (which may itself be a constant) to i32, and
5310        // convert it to a vector with movd (S2V+shuffle to zero extend).
5311        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5312        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5313        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5314
5315        // Now we have our 32-bit value zero extended in the low element of
5316        // a vector.  If Idx != 0, swizzle it into place.
5317        if (Idx != 0) {
5318          SmallVector<int, 4> Mask;
5319          Mask.push_back(Idx);
5320          for (unsigned i = 1; i != VecElts; ++i)
5321            Mask.push_back(i);
5322          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5323                                      &Mask[0]);
5324        }
5325        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5326      }
5327    }
5328
5329    // If we have a constant or non-constant insertion into the low element of
5330    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5331    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5332    // depending on what the source datatype is.
5333    if (Idx == 0) {
5334      if (NumZero == 0)
5335        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5336
5337      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5338          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5339        if (VT.is256BitVector()) {
5340          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5341          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5342                             Item, DAG.getIntPtrConstant(0));
5343        }
5344        assert(VT.is128BitVector() && "Expected an SSE value type!");
5345        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5346        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5347        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5348      }
5349
5350      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5351        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5352        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5353        if (VT.is256BitVector()) {
5354          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5355          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5356        } else {
5357          assert(VT.is128BitVector() && "Expected an SSE value type!");
5358          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5359        }
5360        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5361      }
5362    }
5363
5364    // Is it a vector logical left shift?
5365    if (NumElems == 2 && Idx == 1 &&
5366        X86::isZeroNode(Op.getOperand(0)) &&
5367        !X86::isZeroNode(Op.getOperand(1))) {
5368      unsigned NumBits = VT.getSizeInBits();
5369      return getVShift(true, VT,
5370                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5371                                   VT, Op.getOperand(1)),
5372                       NumBits/2, DAG, *this, dl);
5373    }
5374
5375    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5376      return SDValue();
5377
5378    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5379    // is a non-constant being inserted into an element other than the low one,
5380    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5381    // movd/movss) to move this into the low element, then shuffle it into
5382    // place.
5383    if (EVTBits == 32) {
5384      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5385
5386      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5387      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5388      SmallVector<int, 8> MaskVec;
5389      for (unsigned i = 0; i != NumElems; ++i)
5390        MaskVec.push_back(i == Idx ? 0 : 1);
5391      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5392    }
5393  }
5394
5395  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5396  if (Values.size() == 1) {
5397    if (EVTBits == 32) {
5398      // Instead of a shuffle like this:
5399      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5400      // Check if it's possible to issue this instead.
5401      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5402      unsigned Idx = CountTrailingZeros_32(NonZeros);
5403      SDValue Item = Op.getOperand(Idx);
5404      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5405        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5406    }
5407    return SDValue();
5408  }
5409
5410  // A vector full of immediates; various special cases are already
5411  // handled, so this is best done with a single constant-pool load.
5412  if (IsAllConstants)
5413    return SDValue();
5414
5415  // For AVX-length vectors, build the individual 128-bit pieces and use
5416  // shuffles to put them in place.
5417  if (VT.is256BitVector()) {
5418    SmallVector<SDValue, 32> V;
5419    for (unsigned i = 0; i != NumElems; ++i)
5420      V.push_back(Op.getOperand(i));
5421
5422    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5423
5424    // Build both the lower and upper subvector.
5425    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5426    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5427                                NumElems/2);
5428
5429    // Recreate the wider vector with the lower and upper part.
5430    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5431  }
5432
5433  // Let legalizer expand 2-wide build_vectors.
5434  if (EVTBits == 64) {
5435    if (NumNonZero == 1) {
5436      // One half is zero or undef.
5437      unsigned Idx = CountTrailingZeros_32(NonZeros);
5438      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5439                                 Op.getOperand(Idx));
5440      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5441    }
5442    return SDValue();
5443  }
5444
5445  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5446  if (EVTBits == 8 && NumElems == 16) {
5447    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5448                                        Subtarget, *this);
5449    if (V.getNode()) return V;
5450  }
5451
5452  if (EVTBits == 16 && NumElems == 8) {
5453    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5454                                      Subtarget, *this);
5455    if (V.getNode()) return V;
5456  }
5457
5458  // If element VT is == 32 bits, turn it into a number of shuffles.
5459  SmallVector<SDValue, 8> V(NumElems);
5460  if (NumElems == 4 && NumZero > 0) {
5461    for (unsigned i = 0; i < 4; ++i) {
5462      bool isZero = !(NonZeros & (1 << i));
5463      if (isZero)
5464        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5465      else
5466        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5467    }
5468
5469    for (unsigned i = 0; i < 2; ++i) {
5470      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5471        default: break;
5472        case 0:
5473          V[i] = V[i*2];  // Must be a zero vector.
5474          break;
5475        case 1:
5476          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5477          break;
5478        case 2:
5479          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5480          break;
5481        case 3:
5482          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5483          break;
5484      }
5485    }
5486
5487    bool Reverse1 = (NonZeros & 0x3) == 2;
5488    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5489    int MaskVec[] = {
5490      Reverse1 ? 1 : 0,
5491      Reverse1 ? 0 : 1,
5492      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5493      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5494    };
5495    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5496  }
5497
5498  if (Values.size() > 1 && VT.is128BitVector()) {
5499    // Check for a build vector of consecutive loads.
5500    for (unsigned i = 0; i < NumElems; ++i)
5501      V[i] = Op.getOperand(i);
5502
5503    // Check for elements which are consecutive loads.
5504    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5505    if (LD.getNode())
5506      return LD;
5507
5508    // For SSE 4.1, use insertps to put the high elements into the low element.
5509    if (getSubtarget()->hasSSE41()) {
5510      SDValue Result;
5511      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5512        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5513      else
5514        Result = DAG.getUNDEF(VT);
5515
5516      for (unsigned i = 1; i < NumElems; ++i) {
5517        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5518        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5519                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5520      }
5521      return Result;
5522    }
5523
5524    // Otherwise, expand into a number of unpckl*, start by extending each of
5525    // our (non-undef) elements to the full vector width with the element in the
5526    // bottom slot of the vector (which generates no code for SSE).
5527    for (unsigned i = 0; i < NumElems; ++i) {
5528      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5529        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5530      else
5531        V[i] = DAG.getUNDEF(VT);
5532    }
5533
5534    // Next, we iteratively mix elements, e.g. for v4f32:
5535    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5536    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5537    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5538    unsigned EltStride = NumElems >> 1;
5539    while (EltStride != 0) {
5540      for (unsigned i = 0; i < EltStride; ++i) {
5541        // If V[i+EltStride] is undef and this is the first round of mixing,
5542        // then it is safe to just drop this shuffle: V[i] is already in the
5543        // right place, the one element (since it's the first round) being
5544        // inserted as undef can be dropped.  This isn't safe for successive
5545        // rounds because they will permute elements within both vectors.
5546        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5547            EltStride == NumElems/2)
5548          continue;
5549
5550        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5551      }
5552      EltStride >>= 1;
5553    }
5554    return V[0];
5555  }
5556  return SDValue();
5557}
5558
5559// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5560// to create 256-bit vectors from two other 128-bit ones.
5561static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5562  DebugLoc dl = Op.getDebugLoc();
5563  EVT ResVT = Op.getValueType();
5564
5565  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5566
5567  SDValue V1 = Op.getOperand(0);
5568  SDValue V2 = Op.getOperand(1);
5569  unsigned NumElems = ResVT.getVectorNumElements();
5570
5571  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5572}
5573
5574static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5575  assert(Op.getNumOperands() == 2);
5576
5577  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5578  // from two other 128-bit ones.
5579  return LowerAVXCONCAT_VECTORS(Op, DAG);
5580}
5581
5582// Try to lower a shuffle node into a simple blend instruction.
5583static SDValue
5584LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5585                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5586  SDValue V1 = SVOp->getOperand(0);
5587  SDValue V2 = SVOp->getOperand(1);
5588  DebugLoc dl = SVOp->getDebugLoc();
5589  MVT VT = SVOp->getValueType(0).getSimpleVT();
5590  unsigned NumElems = VT.getVectorNumElements();
5591
5592  if (!Subtarget->hasSSE41())
5593    return SDValue();
5594
5595  unsigned ISDNo = 0;
5596  MVT OpTy;
5597
5598  switch (VT.SimpleTy) {
5599  default: return SDValue();
5600  case MVT::v8i16:
5601    ISDNo = X86ISD::BLENDPW;
5602    OpTy = MVT::v8i16;
5603    break;
5604  case MVT::v4i32:
5605  case MVT::v4f32:
5606    ISDNo = X86ISD::BLENDPS;
5607    OpTy = MVT::v4f32;
5608    break;
5609  case MVT::v2i64:
5610  case MVT::v2f64:
5611    ISDNo = X86ISD::BLENDPD;
5612    OpTy = MVT::v2f64;
5613    break;
5614  case MVT::v8i32:
5615  case MVT::v8f32:
5616    if (!Subtarget->hasAVX())
5617      return SDValue();
5618    ISDNo = X86ISD::BLENDPS;
5619    OpTy = MVT::v8f32;
5620    break;
5621  case MVT::v4i64:
5622  case MVT::v4f64:
5623    if (!Subtarget->hasAVX())
5624      return SDValue();
5625    ISDNo = X86ISD::BLENDPD;
5626    OpTy = MVT::v4f64;
5627    break;
5628  }
5629  assert(ISDNo && "Invalid Op Number");
5630
5631  unsigned MaskVals = 0;
5632
5633  for (unsigned i = 0; i != NumElems; ++i) {
5634    int EltIdx = SVOp->getMaskElt(i);
5635    if (EltIdx == (int)i || EltIdx < 0)
5636      MaskVals |= (1<<i);
5637    else if (EltIdx == (int)(i + NumElems))
5638      continue; // Bit is set to zero;
5639    else
5640      return SDValue();
5641  }
5642
5643  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5644  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5645  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5646                             DAG.getConstant(MaskVals, MVT::i32));
5647  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5648}
5649
5650// v8i16 shuffles - Prefer shuffles in the following order:
5651// 1. [all]   pshuflw, pshufhw, optional move
5652// 2. [ssse3] 1 x pshufb
5653// 3. [ssse3] 2 x pshufb + 1 x por
5654// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5655static SDValue
5656LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5657                         SelectionDAG &DAG) {
5658  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5659  SDValue V1 = SVOp->getOperand(0);
5660  SDValue V2 = SVOp->getOperand(1);
5661  DebugLoc dl = SVOp->getDebugLoc();
5662  SmallVector<int, 8> MaskVals;
5663
5664  // Determine if more than 1 of the words in each of the low and high quadwords
5665  // of the result come from the same quadword of one of the two inputs.  Undef
5666  // mask values count as coming from any quadword, for better codegen.
5667  unsigned LoQuad[] = { 0, 0, 0, 0 };
5668  unsigned HiQuad[] = { 0, 0, 0, 0 };
5669  std::bitset<4> InputQuads;
5670  for (unsigned i = 0; i < 8; ++i) {
5671    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5672    int EltIdx = SVOp->getMaskElt(i);
5673    MaskVals.push_back(EltIdx);
5674    if (EltIdx < 0) {
5675      ++Quad[0];
5676      ++Quad[1];
5677      ++Quad[2];
5678      ++Quad[3];
5679      continue;
5680    }
5681    ++Quad[EltIdx / 4];
5682    InputQuads.set(EltIdx / 4);
5683  }
5684
5685  int BestLoQuad = -1;
5686  unsigned MaxQuad = 1;
5687  for (unsigned i = 0; i < 4; ++i) {
5688    if (LoQuad[i] > MaxQuad) {
5689      BestLoQuad = i;
5690      MaxQuad = LoQuad[i];
5691    }
5692  }
5693
5694  int BestHiQuad = -1;
5695  MaxQuad = 1;
5696  for (unsigned i = 0; i < 4; ++i) {
5697    if (HiQuad[i] > MaxQuad) {
5698      BestHiQuad = i;
5699      MaxQuad = HiQuad[i];
5700    }
5701  }
5702
5703  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5704  // of the two input vectors, shuffle them into one input vector so only a
5705  // single pshufb instruction is necessary. If There are more than 2 input
5706  // quads, disable the next transformation since it does not help SSSE3.
5707  bool V1Used = InputQuads[0] || InputQuads[1];
5708  bool V2Used = InputQuads[2] || InputQuads[3];
5709  if (Subtarget->hasSSSE3()) {
5710    if (InputQuads.count() == 2 && V1Used && V2Used) {
5711      BestLoQuad = InputQuads[0] ? 0 : 1;
5712      BestHiQuad = InputQuads[2] ? 2 : 3;
5713    }
5714    if (InputQuads.count() > 2) {
5715      BestLoQuad = -1;
5716      BestHiQuad = -1;
5717    }
5718  }
5719
5720  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5721  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5722  // words from all 4 input quadwords.
5723  SDValue NewV;
5724  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5725    int MaskV[] = {
5726      BestLoQuad < 0 ? 0 : BestLoQuad,
5727      BestHiQuad < 0 ? 1 : BestHiQuad
5728    };
5729    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5730                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5731                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5732    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5733
5734    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5735    // source words for the shuffle, to aid later transformations.
5736    bool AllWordsInNewV = true;
5737    bool InOrder[2] = { true, true };
5738    for (unsigned i = 0; i != 8; ++i) {
5739      int idx = MaskVals[i];
5740      if (idx != (int)i)
5741        InOrder[i/4] = false;
5742      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5743        continue;
5744      AllWordsInNewV = false;
5745      break;
5746    }
5747
5748    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5749    if (AllWordsInNewV) {
5750      for (int i = 0; i != 8; ++i) {
5751        int idx = MaskVals[i];
5752        if (idx < 0)
5753          continue;
5754        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5755        if ((idx != i) && idx < 4)
5756          pshufhw = false;
5757        if ((idx != i) && idx > 3)
5758          pshuflw = false;
5759      }
5760      V1 = NewV;
5761      V2Used = false;
5762      BestLoQuad = 0;
5763      BestHiQuad = 1;
5764    }
5765
5766    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5767    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5768    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5769      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5770      unsigned TargetMask = 0;
5771      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5772                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5773      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5774      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5775                             getShufflePSHUFLWImmediate(SVOp);
5776      V1 = NewV.getOperand(0);
5777      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5778    }
5779  }
5780
5781  // If we have SSSE3, and all words of the result are from 1 input vector,
5782  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5783  // is present, fall back to case 4.
5784  if (Subtarget->hasSSSE3()) {
5785    SmallVector<SDValue,16> pshufbMask;
5786
5787    // If we have elements from both input vectors, set the high bit of the
5788    // shuffle mask element to zero out elements that come from V2 in the V1
5789    // mask, and elements that come from V1 in the V2 mask, so that the two
5790    // results can be OR'd together.
5791    bool TwoInputs = V1Used && V2Used;
5792    for (unsigned i = 0; i != 8; ++i) {
5793      int EltIdx = MaskVals[i] * 2;
5794      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5795      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5796      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5797      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5798    }
5799    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5800    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5801                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5802                                 MVT::v16i8, &pshufbMask[0], 16));
5803    if (!TwoInputs)
5804      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5805
5806    // Calculate the shuffle mask for the second input, shuffle it, and
5807    // OR it with the first shuffled input.
5808    pshufbMask.clear();
5809    for (unsigned i = 0; i != 8; ++i) {
5810      int EltIdx = MaskVals[i] * 2;
5811      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5812      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5813      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5814      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5815    }
5816    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5817    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5818                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5819                                 MVT::v16i8, &pshufbMask[0], 16));
5820    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5821    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5822  }
5823
5824  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5825  // and update MaskVals with new element order.
5826  std::bitset<8> InOrder;
5827  if (BestLoQuad >= 0) {
5828    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5829    for (int i = 0; i != 4; ++i) {
5830      int idx = MaskVals[i];
5831      if (idx < 0) {
5832        InOrder.set(i);
5833      } else if ((idx / 4) == BestLoQuad) {
5834        MaskV[i] = idx & 3;
5835        InOrder.set(i);
5836      }
5837    }
5838    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5839                                &MaskV[0]);
5840
5841    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5842      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5843      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5844                                  NewV.getOperand(0),
5845                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5846    }
5847  }
5848
5849  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5850  // and update MaskVals with the new element order.
5851  if (BestHiQuad >= 0) {
5852    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5853    for (unsigned i = 4; i != 8; ++i) {
5854      int idx = MaskVals[i];
5855      if (idx < 0) {
5856        InOrder.set(i);
5857      } else if ((idx / 4) == BestHiQuad) {
5858        MaskV[i] = (idx & 3) + 4;
5859        InOrder.set(i);
5860      }
5861    }
5862    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5863                                &MaskV[0]);
5864
5865    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5866      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5867      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5868                                  NewV.getOperand(0),
5869                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5870    }
5871  }
5872
5873  // In case BestHi & BestLo were both -1, which means each quadword has a word
5874  // from each of the four input quadwords, calculate the InOrder bitvector now
5875  // before falling through to the insert/extract cleanup.
5876  if (BestLoQuad == -1 && BestHiQuad == -1) {
5877    NewV = V1;
5878    for (int i = 0; i != 8; ++i)
5879      if (MaskVals[i] < 0 || MaskVals[i] == i)
5880        InOrder.set(i);
5881  }
5882
5883  // The other elements are put in the right place using pextrw and pinsrw.
5884  for (unsigned i = 0; i != 8; ++i) {
5885    if (InOrder[i])
5886      continue;
5887    int EltIdx = MaskVals[i];
5888    if (EltIdx < 0)
5889      continue;
5890    SDValue ExtOp = (EltIdx < 8) ?
5891      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5892                  DAG.getIntPtrConstant(EltIdx)) :
5893      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5894                  DAG.getIntPtrConstant(EltIdx - 8));
5895    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5896                       DAG.getIntPtrConstant(i));
5897  }
5898  return NewV;
5899}
5900
5901// v16i8 shuffles - Prefer shuffles in the following order:
5902// 1. [ssse3] 1 x pshufb
5903// 2. [ssse3] 2 x pshufb + 1 x por
5904// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5905static
5906SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5907                                 SelectionDAG &DAG,
5908                                 const X86TargetLowering &TLI) {
5909  SDValue V1 = SVOp->getOperand(0);
5910  SDValue V2 = SVOp->getOperand(1);
5911  DebugLoc dl = SVOp->getDebugLoc();
5912  ArrayRef<int> MaskVals = SVOp->getMask();
5913
5914  // If we have SSSE3, case 1 is generated when all result bytes come from
5915  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5916  // present, fall back to case 3.
5917
5918  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5919  if (TLI.getSubtarget()->hasSSSE3()) {
5920    SmallVector<SDValue,16> pshufbMask;
5921
5922    // If all result elements are from one input vector, then only translate
5923    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5924    //
5925    // Otherwise, we have elements from both input vectors, and must zero out
5926    // elements that come from V2 in the first mask, and V1 in the second mask
5927    // so that we can OR them together.
5928    for (unsigned i = 0; i != 16; ++i) {
5929      int EltIdx = MaskVals[i];
5930      if (EltIdx < 0 || EltIdx >= 16)
5931        EltIdx = 0x80;
5932      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5933    }
5934    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5935                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5936                                 MVT::v16i8, &pshufbMask[0], 16));
5937
5938    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5939    // the 2nd operand if it's undefined or zero.
5940    if (V2.getOpcode() == ISD::UNDEF ||
5941        ISD::isBuildVectorAllZeros(V2.getNode()))
5942      return V1;
5943
5944    // Calculate the shuffle mask for the second input, shuffle it, and
5945    // OR it with the first shuffled input.
5946    pshufbMask.clear();
5947    for (unsigned i = 0; i != 16; ++i) {
5948      int EltIdx = MaskVals[i];
5949      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5950      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5951    }
5952    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5953                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5954                                 MVT::v16i8, &pshufbMask[0], 16));
5955    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5956  }
5957
5958  // No SSSE3 - Calculate in place words and then fix all out of place words
5959  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5960  // the 16 different words that comprise the two doublequadword input vectors.
5961  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5962  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5963  SDValue NewV = V1;
5964  for (int i = 0; i != 8; ++i) {
5965    int Elt0 = MaskVals[i*2];
5966    int Elt1 = MaskVals[i*2+1];
5967
5968    // This word of the result is all undef, skip it.
5969    if (Elt0 < 0 && Elt1 < 0)
5970      continue;
5971
5972    // This word of the result is already in the correct place, skip it.
5973    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5974      continue;
5975
5976    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5977    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5978    SDValue InsElt;
5979
5980    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5981    // using a single extract together, load it and store it.
5982    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5983      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5984                           DAG.getIntPtrConstant(Elt1 / 2));
5985      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5986                        DAG.getIntPtrConstant(i));
5987      continue;
5988    }
5989
5990    // If Elt1 is defined, extract it from the appropriate source.  If the
5991    // source byte is not also odd, shift the extracted word left 8 bits
5992    // otherwise clear the bottom 8 bits if we need to do an or.
5993    if (Elt1 >= 0) {
5994      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5995                           DAG.getIntPtrConstant(Elt1 / 2));
5996      if ((Elt1 & 1) == 0)
5997        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5998                             DAG.getConstant(8,
5999                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6000      else if (Elt0 >= 0)
6001        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6002                             DAG.getConstant(0xFF00, MVT::i16));
6003    }
6004    // If Elt0 is defined, extract it from the appropriate source.  If the
6005    // source byte is not also even, shift the extracted word right 8 bits. If
6006    // Elt1 was also defined, OR the extracted values together before
6007    // inserting them in the result.
6008    if (Elt0 >= 0) {
6009      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6010                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6011      if ((Elt0 & 1) != 0)
6012        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6013                              DAG.getConstant(8,
6014                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6015      else if (Elt1 >= 0)
6016        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6017                             DAG.getConstant(0x00FF, MVT::i16));
6018      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6019                         : InsElt0;
6020    }
6021    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6022                       DAG.getIntPtrConstant(i));
6023  }
6024  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6025}
6026
6027// v32i8 shuffles - Translate to VPSHUFB if possible.
6028static
6029SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6030                                 const X86Subtarget *Subtarget,
6031                                 SelectionDAG &DAG) {
6032  EVT VT = SVOp->getValueType(0);
6033  SDValue V1 = SVOp->getOperand(0);
6034  SDValue V2 = SVOp->getOperand(1);
6035  DebugLoc dl = SVOp->getDebugLoc();
6036  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6037
6038  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6039  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6040  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6041
6042  // VPSHUFB may be generated if
6043  // (1) one of input vector is undefined or zeroinitializer.
6044  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6045  // And (2) the mask indexes don't cross the 128-bit lane.
6046  if (VT != MVT::v32i8 || !Subtarget->hasAVX2() ||
6047      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6048    return SDValue();
6049
6050  if (V1IsAllZero && !V2IsAllZero) {
6051    CommuteVectorShuffleMask(MaskVals, 32);
6052    V1 = V2;
6053  }
6054  SmallVector<SDValue, 32> pshufbMask;
6055  for (unsigned i = 0; i != 32; i++) {
6056    int EltIdx = MaskVals[i];
6057    if (EltIdx < 0 || EltIdx >= 32)
6058      EltIdx = 0x80;
6059    else {
6060      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6061        // Cross lane is not allowed.
6062        return SDValue();
6063      EltIdx &= 0xf;
6064    }
6065    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6066  }
6067  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6068                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6069                                  MVT::v32i8, &pshufbMask[0], 32));
6070}
6071
6072/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6073/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6074/// done when every pair / quad of shuffle mask elements point to elements in
6075/// the right sequence. e.g.
6076/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6077static
6078SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6079                                 SelectionDAG &DAG, DebugLoc dl) {
6080  MVT VT = SVOp->getValueType(0).getSimpleVT();
6081  unsigned NumElems = VT.getVectorNumElements();
6082  MVT NewVT;
6083  unsigned Scale;
6084  switch (VT.SimpleTy) {
6085  default: llvm_unreachable("Unexpected!");
6086  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6087  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6088  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6089  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6090  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6091  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6092  }
6093
6094  SmallVector<int, 8> MaskVec;
6095  for (unsigned i = 0; i != NumElems; i += Scale) {
6096    int StartIdx = -1;
6097    for (unsigned j = 0; j != Scale; ++j) {
6098      int EltIdx = SVOp->getMaskElt(i+j);
6099      if (EltIdx < 0)
6100        continue;
6101      if (StartIdx < 0)
6102        StartIdx = (EltIdx / Scale);
6103      if (EltIdx != (int)(StartIdx*Scale + j))
6104        return SDValue();
6105    }
6106    MaskVec.push_back(StartIdx);
6107  }
6108
6109  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6110  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6111  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6112}
6113
6114/// getVZextMovL - Return a zero-extending vector move low node.
6115///
6116static SDValue getVZextMovL(EVT VT, EVT OpVT,
6117                            SDValue SrcOp, SelectionDAG &DAG,
6118                            const X86Subtarget *Subtarget, DebugLoc dl) {
6119  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6120    LoadSDNode *LD = NULL;
6121    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6122      LD = dyn_cast<LoadSDNode>(SrcOp);
6123    if (!LD) {
6124      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6125      // instead.
6126      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6127      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6128          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6129          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6130          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6131        // PR2108
6132        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6133        return DAG.getNode(ISD::BITCAST, dl, VT,
6134                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6135                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6136                                                   OpVT,
6137                                                   SrcOp.getOperand(0)
6138                                                          .getOperand(0))));
6139      }
6140    }
6141  }
6142
6143  return DAG.getNode(ISD::BITCAST, dl, VT,
6144                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6145                                 DAG.getNode(ISD::BITCAST, dl,
6146                                             OpVT, SrcOp)));
6147}
6148
6149/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6150/// which could not be matched by any known target speficic shuffle
6151static SDValue
6152LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6153
6154  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6155  if (NewOp.getNode())
6156    return NewOp;
6157
6158  EVT VT = SVOp->getValueType(0);
6159
6160  unsigned NumElems = VT.getVectorNumElements();
6161  unsigned NumLaneElems = NumElems / 2;
6162
6163  DebugLoc dl = SVOp->getDebugLoc();
6164  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6165  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6166  SDValue Output[2];
6167
6168  SmallVector<int, 16> Mask;
6169  for (unsigned l = 0; l < 2; ++l) {
6170    // Build a shuffle mask for the output, discovering on the fly which
6171    // input vectors to use as shuffle operands (recorded in InputUsed).
6172    // If building a suitable shuffle vector proves too hard, then bail
6173    // out with UseBuildVector set.
6174    bool UseBuildVector = false;
6175    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6176    unsigned LaneStart = l * NumLaneElems;
6177    for (unsigned i = 0; i != NumLaneElems; ++i) {
6178      // The mask element.  This indexes into the input.
6179      int Idx = SVOp->getMaskElt(i+LaneStart);
6180      if (Idx < 0) {
6181        // the mask element does not index into any input vector.
6182        Mask.push_back(-1);
6183        continue;
6184      }
6185
6186      // The input vector this mask element indexes into.
6187      int Input = Idx / NumLaneElems;
6188
6189      // Turn the index into an offset from the start of the input vector.
6190      Idx -= Input * NumLaneElems;
6191
6192      // Find or create a shuffle vector operand to hold this input.
6193      unsigned OpNo;
6194      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6195        if (InputUsed[OpNo] == Input)
6196          // This input vector is already an operand.
6197          break;
6198        if (InputUsed[OpNo] < 0) {
6199          // Create a new operand for this input vector.
6200          InputUsed[OpNo] = Input;
6201          break;
6202        }
6203      }
6204
6205      if (OpNo >= array_lengthof(InputUsed)) {
6206        // More than two input vectors used!  Give up on trying to create a
6207        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6208        UseBuildVector = true;
6209        break;
6210      }
6211
6212      // Add the mask index for the new shuffle vector.
6213      Mask.push_back(Idx + OpNo * NumLaneElems);
6214    }
6215
6216    if (UseBuildVector) {
6217      SmallVector<SDValue, 16> SVOps;
6218      for (unsigned i = 0; i != NumLaneElems; ++i) {
6219        // The mask element.  This indexes into the input.
6220        int Idx = SVOp->getMaskElt(i+LaneStart);
6221        if (Idx < 0) {
6222          SVOps.push_back(DAG.getUNDEF(EltVT));
6223          continue;
6224        }
6225
6226        // The input vector this mask element indexes into.
6227        int Input = Idx / NumElems;
6228
6229        // Turn the index into an offset from the start of the input vector.
6230        Idx -= Input * NumElems;
6231
6232        // Extract the vector element by hand.
6233        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6234                                    SVOp->getOperand(Input),
6235                                    DAG.getIntPtrConstant(Idx)));
6236      }
6237
6238      // Construct the output using a BUILD_VECTOR.
6239      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6240                              SVOps.size());
6241    } else if (InputUsed[0] < 0) {
6242      // No input vectors were used! The result is undefined.
6243      Output[l] = DAG.getUNDEF(NVT);
6244    } else {
6245      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6246                                        (InputUsed[0] % 2) * NumLaneElems,
6247                                        DAG, dl);
6248      // If only one input was used, use an undefined vector for the other.
6249      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6250        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6251                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6252      // At least one input vector was used. Create a new shuffle vector.
6253      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6254    }
6255
6256    Mask.clear();
6257  }
6258
6259  // Concatenate the result back
6260  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6261}
6262
6263/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6264/// 4 elements, and match them with several different shuffle types.
6265static SDValue
6266LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6267  SDValue V1 = SVOp->getOperand(0);
6268  SDValue V2 = SVOp->getOperand(1);
6269  DebugLoc dl = SVOp->getDebugLoc();
6270  EVT VT = SVOp->getValueType(0);
6271
6272  assert(VT.is128BitVector() && "Unsupported vector size");
6273
6274  std::pair<int, int> Locs[4];
6275  int Mask1[] = { -1, -1, -1, -1 };
6276  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6277
6278  unsigned NumHi = 0;
6279  unsigned NumLo = 0;
6280  for (unsigned i = 0; i != 4; ++i) {
6281    int Idx = PermMask[i];
6282    if (Idx < 0) {
6283      Locs[i] = std::make_pair(-1, -1);
6284    } else {
6285      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6286      if (Idx < 4) {
6287        Locs[i] = std::make_pair(0, NumLo);
6288        Mask1[NumLo] = Idx;
6289        NumLo++;
6290      } else {
6291        Locs[i] = std::make_pair(1, NumHi);
6292        if (2+NumHi < 4)
6293          Mask1[2+NumHi] = Idx;
6294        NumHi++;
6295      }
6296    }
6297  }
6298
6299  if (NumLo <= 2 && NumHi <= 2) {
6300    // If no more than two elements come from either vector. This can be
6301    // implemented with two shuffles. First shuffle gather the elements.
6302    // The second shuffle, which takes the first shuffle as both of its
6303    // vector operands, put the elements into the right order.
6304    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6305
6306    int Mask2[] = { -1, -1, -1, -1 };
6307
6308    for (unsigned i = 0; i != 4; ++i)
6309      if (Locs[i].first != -1) {
6310        unsigned Idx = (i < 2) ? 0 : 4;
6311        Idx += Locs[i].first * 2 + Locs[i].second;
6312        Mask2[i] = Idx;
6313      }
6314
6315    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6316  }
6317
6318  if (NumLo == 3 || NumHi == 3) {
6319    // Otherwise, we must have three elements from one vector, call it X, and
6320    // one element from the other, call it Y.  First, use a shufps to build an
6321    // intermediate vector with the one element from Y and the element from X
6322    // that will be in the same half in the final destination (the indexes don't
6323    // matter). Then, use a shufps to build the final vector, taking the half
6324    // containing the element from Y from the intermediate, and the other half
6325    // from X.
6326    if (NumHi == 3) {
6327      // Normalize it so the 3 elements come from V1.
6328      CommuteVectorShuffleMask(PermMask, 4);
6329      std::swap(V1, V2);
6330    }
6331
6332    // Find the element from V2.
6333    unsigned HiIndex;
6334    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6335      int Val = PermMask[HiIndex];
6336      if (Val < 0)
6337        continue;
6338      if (Val >= 4)
6339        break;
6340    }
6341
6342    Mask1[0] = PermMask[HiIndex];
6343    Mask1[1] = -1;
6344    Mask1[2] = PermMask[HiIndex^1];
6345    Mask1[3] = -1;
6346    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6347
6348    if (HiIndex >= 2) {
6349      Mask1[0] = PermMask[0];
6350      Mask1[1] = PermMask[1];
6351      Mask1[2] = HiIndex & 1 ? 6 : 4;
6352      Mask1[3] = HiIndex & 1 ? 4 : 6;
6353      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6354    }
6355
6356    Mask1[0] = HiIndex & 1 ? 2 : 0;
6357    Mask1[1] = HiIndex & 1 ? 0 : 2;
6358    Mask1[2] = PermMask[2];
6359    Mask1[3] = PermMask[3];
6360    if (Mask1[2] >= 0)
6361      Mask1[2] += 4;
6362    if (Mask1[3] >= 0)
6363      Mask1[3] += 4;
6364    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6365  }
6366
6367  // Break it into (shuffle shuffle_hi, shuffle_lo).
6368  int LoMask[] = { -1, -1, -1, -1 };
6369  int HiMask[] = { -1, -1, -1, -1 };
6370
6371  int *MaskPtr = LoMask;
6372  unsigned MaskIdx = 0;
6373  unsigned LoIdx = 0;
6374  unsigned HiIdx = 2;
6375  for (unsigned i = 0; i != 4; ++i) {
6376    if (i == 2) {
6377      MaskPtr = HiMask;
6378      MaskIdx = 1;
6379      LoIdx = 0;
6380      HiIdx = 2;
6381    }
6382    int Idx = PermMask[i];
6383    if (Idx < 0) {
6384      Locs[i] = std::make_pair(-1, -1);
6385    } else if (Idx < 4) {
6386      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6387      MaskPtr[LoIdx] = Idx;
6388      LoIdx++;
6389    } else {
6390      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6391      MaskPtr[HiIdx] = Idx;
6392      HiIdx++;
6393    }
6394  }
6395
6396  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6397  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6398  int MaskOps[] = { -1, -1, -1, -1 };
6399  for (unsigned i = 0; i != 4; ++i)
6400    if (Locs[i].first != -1)
6401      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6402  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6403}
6404
6405static bool MayFoldVectorLoad(SDValue V) {
6406  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6407    V = V.getOperand(0);
6408  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6409    V = V.getOperand(0);
6410  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6411      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6412    // BUILD_VECTOR (load), undef
6413    V = V.getOperand(0);
6414  if (MayFoldLoad(V))
6415    return true;
6416  return false;
6417}
6418
6419// FIXME: the version above should always be used. Since there's
6420// a bug where several vector shuffles can't be folded because the
6421// DAG is not updated during lowering and a node claims to have two
6422// uses while it only has one, use this version, and let isel match
6423// another instruction if the load really happens to have more than
6424// one use. Remove this version after this bug get fixed.
6425// rdar://8434668, PR8156
6426static bool RelaxedMayFoldVectorLoad(SDValue V) {
6427  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6428    V = V.getOperand(0);
6429  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6430    V = V.getOperand(0);
6431  if (ISD::isNormalLoad(V.getNode()))
6432    return true;
6433  return false;
6434}
6435
6436static
6437SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6438  EVT VT = Op.getValueType();
6439
6440  // Canonizalize to v2f64.
6441  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6442  return DAG.getNode(ISD::BITCAST, dl, VT,
6443                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6444                                          V1, DAG));
6445}
6446
6447static
6448SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6449                        bool HasSSE2) {
6450  SDValue V1 = Op.getOperand(0);
6451  SDValue V2 = Op.getOperand(1);
6452  EVT VT = Op.getValueType();
6453
6454  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6455
6456  if (HasSSE2 && VT == MVT::v2f64)
6457    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6458
6459  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6460  return DAG.getNode(ISD::BITCAST, dl, VT,
6461                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6462                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6463                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6464}
6465
6466static
6467SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6468  SDValue V1 = Op.getOperand(0);
6469  SDValue V2 = Op.getOperand(1);
6470  EVT VT = Op.getValueType();
6471
6472  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6473         "unsupported shuffle type");
6474
6475  if (V2.getOpcode() == ISD::UNDEF)
6476    V2 = V1;
6477
6478  // v4i32 or v4f32
6479  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6480}
6481
6482static
6483SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6484  SDValue V1 = Op.getOperand(0);
6485  SDValue V2 = Op.getOperand(1);
6486  EVT VT = Op.getValueType();
6487  unsigned NumElems = VT.getVectorNumElements();
6488
6489  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6490  // operand of these instructions is only memory, so check if there's a
6491  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6492  // same masks.
6493  bool CanFoldLoad = false;
6494
6495  // Trivial case, when V2 comes from a load.
6496  if (MayFoldVectorLoad(V2))
6497    CanFoldLoad = true;
6498
6499  // When V1 is a load, it can be folded later into a store in isel, example:
6500  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6501  //    turns into:
6502  //  (MOVLPSmr addr:$src1, VR128:$src2)
6503  // So, recognize this potential and also use MOVLPS or MOVLPD
6504  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6505    CanFoldLoad = true;
6506
6507  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6508  if (CanFoldLoad) {
6509    if (HasSSE2 && NumElems == 2)
6510      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6511
6512    if (NumElems == 4)
6513      // If we don't care about the second element, proceed to use movss.
6514      if (SVOp->getMaskElt(1) != -1)
6515        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6516  }
6517
6518  // movl and movlp will both match v2i64, but v2i64 is never matched by
6519  // movl earlier because we make it strict to avoid messing with the movlp load
6520  // folding logic (see the code above getMOVLP call). Match it here then,
6521  // this is horrible, but will stay like this until we move all shuffle
6522  // matching to x86 specific nodes. Note that for the 1st condition all
6523  // types are matched with movsd.
6524  if (HasSSE2) {
6525    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6526    // as to remove this logic from here, as much as possible
6527    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6528      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6529    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6530  }
6531
6532  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6533
6534  // Invert the operand order and use SHUFPS to match it.
6535  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6536                              getShuffleSHUFImmediate(SVOp), DAG);
6537}
6538
6539SDValue
6540X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6541  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6542  EVT VT = Op.getValueType();
6543  DebugLoc dl = Op.getDebugLoc();
6544  SDValue V1 = Op.getOperand(0);
6545  SDValue V2 = Op.getOperand(1);
6546
6547  if (isZeroShuffle(SVOp))
6548    return getZeroVector(VT, Subtarget, DAG, dl);
6549
6550  // Handle splat operations
6551  if (SVOp->isSplat()) {
6552    unsigned NumElem = VT.getVectorNumElements();
6553    int Size = VT.getSizeInBits();
6554
6555    // Use vbroadcast whenever the splat comes from a foldable load
6556    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6557    if (Broadcast.getNode())
6558      return Broadcast;
6559
6560    // Handle splats by matching through known shuffle masks
6561    if ((Size == 128 && NumElem <= 4) ||
6562        (Size == 256 && NumElem < 8))
6563      return SDValue();
6564
6565    // All remaning splats are promoted to target supported vector shuffles.
6566    return PromoteSplat(SVOp, DAG);
6567  }
6568
6569  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6570  // do it!
6571  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6572      VT == MVT::v16i16 || VT == MVT::v32i8) {
6573    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6574    if (NewOp.getNode())
6575      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6576  } else if ((VT == MVT::v4i32 ||
6577             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6578    // FIXME: Figure out a cleaner way to do this.
6579    // Try to make use of movq to zero out the top part.
6580    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6581      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6582      if (NewOp.getNode()) {
6583        EVT NewVT = NewOp.getValueType();
6584        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6585                               NewVT, true, false))
6586          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6587                              DAG, Subtarget, dl);
6588      }
6589    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6590      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6591      if (NewOp.getNode()) {
6592        EVT NewVT = NewOp.getValueType();
6593        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6594          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6595                              DAG, Subtarget, dl);
6596      }
6597    }
6598  }
6599  return SDValue();
6600}
6601
6602SDValue
6603X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6604  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6605  SDValue V1 = Op.getOperand(0);
6606  SDValue V2 = Op.getOperand(1);
6607  EVT VT = Op.getValueType();
6608  DebugLoc dl = Op.getDebugLoc();
6609  unsigned NumElems = VT.getVectorNumElements();
6610  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6611  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6612  bool V1IsSplat = false;
6613  bool V2IsSplat = false;
6614  bool HasSSE2 = Subtarget->hasSSE2();
6615  bool HasAVX    = Subtarget->hasAVX();
6616  bool HasAVX2   = Subtarget->hasAVX2();
6617  MachineFunction &MF = DAG.getMachineFunction();
6618  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6619
6620  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6621
6622  if (V1IsUndef && V2IsUndef)
6623    return DAG.getUNDEF(VT);
6624
6625  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6626
6627  // Vector shuffle lowering takes 3 steps:
6628  //
6629  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6630  //    narrowing and commutation of operands should be handled.
6631  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6632  //    shuffle nodes.
6633  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6634  //    so the shuffle can be broken into other shuffles and the legalizer can
6635  //    try the lowering again.
6636  //
6637  // The general idea is that no vector_shuffle operation should be left to
6638  // be matched during isel, all of them must be converted to a target specific
6639  // node here.
6640
6641  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6642  // narrowing and commutation of operands should be handled. The actual code
6643  // doesn't include all of those, work in progress...
6644  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6645  if (NewOp.getNode())
6646    return NewOp;
6647
6648  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6649
6650  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6651  // unpckh_undef). Only use pshufd if speed is more important than size.
6652  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6653    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6654  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6655    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6656
6657  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6658      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6659    return getMOVDDup(Op, dl, V1, DAG);
6660
6661  if (isMOVHLPS_v_undef_Mask(M, VT))
6662    return getMOVHighToLow(Op, dl, DAG);
6663
6664  // Use to match splats
6665  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6666      (VT == MVT::v2f64 || VT == MVT::v2i64))
6667    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6668
6669  if (isPSHUFDMask(M, VT)) {
6670    // The actual implementation will match the mask in the if above and then
6671    // during isel it can match several different instructions, not only pshufd
6672    // as its name says, sad but true, emulate the behavior for now...
6673    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6674      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6675
6676    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6677
6678    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6679      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6680
6681    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6682      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6683
6684    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6685                                TargetMask, DAG);
6686  }
6687
6688  // Check if this can be converted into a logical shift.
6689  bool isLeft = false;
6690  unsigned ShAmt = 0;
6691  SDValue ShVal;
6692  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6693  if (isShift && ShVal.hasOneUse()) {
6694    // If the shifted value has multiple uses, it may be cheaper to use
6695    // v_set0 + movlhps or movhlps, etc.
6696    EVT EltVT = VT.getVectorElementType();
6697    ShAmt *= EltVT.getSizeInBits();
6698    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6699  }
6700
6701  if (isMOVLMask(M, VT)) {
6702    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6703      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6704    if (!isMOVLPMask(M, VT)) {
6705      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6706        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6707
6708      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6709        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6710    }
6711  }
6712
6713  // FIXME: fold these into legal mask.
6714  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6715    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6716
6717  if (isMOVHLPSMask(M, VT))
6718    return getMOVHighToLow(Op, dl, DAG);
6719
6720  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6721    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6722
6723  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6724    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6725
6726  if (isMOVLPMask(M, VT))
6727    return getMOVLP(Op, dl, DAG, HasSSE2);
6728
6729  if (ShouldXformToMOVHLPS(M, VT) ||
6730      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6731    return CommuteVectorShuffle(SVOp, DAG);
6732
6733  if (isShift) {
6734    // No better options. Use a vshldq / vsrldq.
6735    EVT EltVT = VT.getVectorElementType();
6736    ShAmt *= EltVT.getSizeInBits();
6737    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6738  }
6739
6740  bool Commuted = false;
6741  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6742  // 1,1,1,1 -> v8i16 though.
6743  V1IsSplat = isSplatVector(V1.getNode());
6744  V2IsSplat = isSplatVector(V2.getNode());
6745
6746  // Canonicalize the splat or undef, if present, to be on the RHS.
6747  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6748    CommuteVectorShuffleMask(M, NumElems);
6749    std::swap(V1, V2);
6750    std::swap(V1IsSplat, V2IsSplat);
6751    Commuted = true;
6752  }
6753
6754  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6755    // Shuffling low element of v1 into undef, just return v1.
6756    if (V2IsUndef)
6757      return V1;
6758    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6759    // the instruction selector will not match, so get a canonical MOVL with
6760    // swapped operands to undo the commute.
6761    return getMOVL(DAG, dl, VT, V2, V1);
6762  }
6763
6764  if (isUNPCKLMask(M, VT, HasAVX2))
6765    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6766
6767  if (isUNPCKHMask(M, VT, HasAVX2))
6768    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6769
6770  if (V2IsSplat) {
6771    // Normalize mask so all entries that point to V2 points to its first
6772    // element then try to match unpck{h|l} again. If match, return a
6773    // new vector_shuffle with the corrected mask.p
6774    SmallVector<int, 8> NewMask(M.begin(), M.end());
6775    NormalizeMask(NewMask, NumElems);
6776    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6777      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6778    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6779      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6780  }
6781
6782  if (Commuted) {
6783    // Commute is back and try unpck* again.
6784    // FIXME: this seems wrong.
6785    CommuteVectorShuffleMask(M, NumElems);
6786    std::swap(V1, V2);
6787    std::swap(V1IsSplat, V2IsSplat);
6788    Commuted = false;
6789
6790    if (isUNPCKLMask(M, VT, HasAVX2))
6791      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6792
6793    if (isUNPCKHMask(M, VT, HasAVX2))
6794      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6795  }
6796
6797  // Normalize the node to match x86 shuffle ops if needed
6798  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6799    return CommuteVectorShuffle(SVOp, DAG);
6800
6801  // The checks below are all present in isShuffleMaskLegal, but they are
6802  // inlined here right now to enable us to directly emit target specific
6803  // nodes, and remove one by one until they don't return Op anymore.
6804
6805  if (isPALIGNRMask(M, VT, Subtarget))
6806    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6807                                getShufflePALIGNRImmediate(SVOp),
6808                                DAG);
6809
6810  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6811      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6812    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6813      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6814  }
6815
6816  if (isPSHUFHWMask(M, VT, HasAVX2))
6817    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6818                                getShufflePSHUFHWImmediate(SVOp),
6819                                DAG);
6820
6821  if (isPSHUFLWMask(M, VT, HasAVX2))
6822    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6823                                getShufflePSHUFLWImmediate(SVOp),
6824                                DAG);
6825
6826  if (isSHUFPMask(M, VT, HasAVX))
6827    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6828                                getShuffleSHUFImmediate(SVOp), DAG);
6829
6830  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6831    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6832  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6833    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6834
6835  //===--------------------------------------------------------------------===//
6836  // Generate target specific nodes for 128 or 256-bit shuffles only
6837  // supported in the AVX instruction set.
6838  //
6839
6840  // Handle VMOVDDUPY permutations
6841  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6842    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6843
6844  // Handle VPERMILPS/D* permutations
6845  if (isVPERMILPMask(M, VT, HasAVX)) {
6846    if (HasAVX2 && VT == MVT::v8i32)
6847      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6848                                  getShuffleSHUFImmediate(SVOp), DAG);
6849    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6850                                getShuffleSHUFImmediate(SVOp), DAG);
6851  }
6852
6853  // Handle VPERM2F128/VPERM2I128 permutations
6854  if (isVPERM2X128Mask(M, VT, HasAVX))
6855    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6856                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6857
6858  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6859  if (BlendOp.getNode())
6860    return BlendOp;
6861
6862  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6863    SmallVector<SDValue, 8> permclMask;
6864    for (unsigned i = 0; i != 8; ++i) {
6865      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6866    }
6867    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6868                               &permclMask[0], 8);
6869    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6870    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6871                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6872  }
6873
6874  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6875    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6876                                getShuffleCLImmediate(SVOp), DAG);
6877
6878
6879  //===--------------------------------------------------------------------===//
6880  // Since no target specific shuffle was selected for this generic one,
6881  // lower it into other known shuffles. FIXME: this isn't true yet, but
6882  // this is the plan.
6883  //
6884
6885  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6886  if (VT == MVT::v8i16) {
6887    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
6888    if (NewOp.getNode())
6889      return NewOp;
6890  }
6891
6892  if (VT == MVT::v16i8) {
6893    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6894    if (NewOp.getNode())
6895      return NewOp;
6896  }
6897
6898  if (VT == MVT::v32i8) {
6899    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
6900    if (NewOp.getNode())
6901      return NewOp;
6902  }
6903
6904  // Handle all 128-bit wide vectors with 4 elements, and match them with
6905  // several different shuffle types.
6906  if (NumElems == 4 && VT.is128BitVector())
6907    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6908
6909  // Handle general 256-bit shuffles
6910  if (VT.is256BitVector())
6911    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6912
6913  return SDValue();
6914}
6915
6916SDValue
6917X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6918                                                SelectionDAG &DAG) const {
6919  EVT VT = Op.getValueType();
6920  DebugLoc dl = Op.getDebugLoc();
6921
6922  if (!Op.getOperand(0).getValueType().is128BitVector())
6923    return SDValue();
6924
6925  if (VT.getSizeInBits() == 8) {
6926    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6927                                  Op.getOperand(0), Op.getOperand(1));
6928    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6929                                  DAG.getValueType(VT));
6930    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6931  }
6932
6933  if (VT.getSizeInBits() == 16) {
6934    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6935    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6936    if (Idx == 0)
6937      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6938                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6939                                     DAG.getNode(ISD::BITCAST, dl,
6940                                                 MVT::v4i32,
6941                                                 Op.getOperand(0)),
6942                                     Op.getOperand(1)));
6943    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6944                                  Op.getOperand(0), Op.getOperand(1));
6945    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6946                                  DAG.getValueType(VT));
6947    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6948  }
6949
6950  if (VT == MVT::f32) {
6951    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6952    // the result back to FR32 register. It's only worth matching if the
6953    // result has a single use which is a store or a bitcast to i32.  And in
6954    // the case of a store, it's not worth it if the index is a constant 0,
6955    // because a MOVSSmr can be used instead, which is smaller and faster.
6956    if (!Op.hasOneUse())
6957      return SDValue();
6958    SDNode *User = *Op.getNode()->use_begin();
6959    if ((User->getOpcode() != ISD::STORE ||
6960         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6961          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6962        (User->getOpcode() != ISD::BITCAST ||
6963         User->getValueType(0) != MVT::i32))
6964      return SDValue();
6965    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6966                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6967                                              Op.getOperand(0)),
6968                                              Op.getOperand(1));
6969    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6970  }
6971
6972  if (VT == MVT::i32 || VT == MVT::i64) {
6973    // ExtractPS/pextrq works with constant index.
6974    if (isa<ConstantSDNode>(Op.getOperand(1)))
6975      return Op;
6976  }
6977  return SDValue();
6978}
6979
6980
6981SDValue
6982X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6983                                           SelectionDAG &DAG) const {
6984  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6985    return SDValue();
6986
6987  SDValue Vec = Op.getOperand(0);
6988  EVT VecVT = Vec.getValueType();
6989
6990  // If this is a 256-bit vector result, first extract the 128-bit vector and
6991  // then extract the element from the 128-bit vector.
6992  if (VecVT.is256BitVector()) {
6993    DebugLoc dl = Op.getNode()->getDebugLoc();
6994    unsigned NumElems = VecVT.getVectorNumElements();
6995    SDValue Idx = Op.getOperand(1);
6996    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6997
6998    // Get the 128-bit vector.
6999    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7000
7001    if (IdxVal >= NumElems/2)
7002      IdxVal -= NumElems/2;
7003    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7004                       DAG.getConstant(IdxVal, MVT::i32));
7005  }
7006
7007  assert(VecVT.is128BitVector() && "Unexpected vector length");
7008
7009  if (Subtarget->hasSSE41()) {
7010    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7011    if (Res.getNode())
7012      return Res;
7013  }
7014
7015  EVT VT = Op.getValueType();
7016  DebugLoc dl = Op.getDebugLoc();
7017  // TODO: handle v16i8.
7018  if (VT.getSizeInBits() == 16) {
7019    SDValue Vec = Op.getOperand(0);
7020    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7021    if (Idx == 0)
7022      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7023                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7024                                     DAG.getNode(ISD::BITCAST, dl,
7025                                                 MVT::v4i32, Vec),
7026                                     Op.getOperand(1)));
7027    // Transform it so it match pextrw which produces a 32-bit result.
7028    EVT EltVT = MVT::i32;
7029    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7030                                  Op.getOperand(0), Op.getOperand(1));
7031    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7032                                  DAG.getValueType(VT));
7033    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7034  }
7035
7036  if (VT.getSizeInBits() == 32) {
7037    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7038    if (Idx == 0)
7039      return Op;
7040
7041    // SHUFPS the element to the lowest double word, then movss.
7042    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7043    EVT VVT = Op.getOperand(0).getValueType();
7044    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7045                                       DAG.getUNDEF(VVT), Mask);
7046    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7047                       DAG.getIntPtrConstant(0));
7048  }
7049
7050  if (VT.getSizeInBits() == 64) {
7051    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7052    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7053    //        to match extract_elt for f64.
7054    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7055    if (Idx == 0)
7056      return Op;
7057
7058    // UNPCKHPD the element to the lowest double word, then movsd.
7059    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7060    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7061    int Mask[2] = { 1, -1 };
7062    EVT VVT = Op.getOperand(0).getValueType();
7063    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7064                                       DAG.getUNDEF(VVT), Mask);
7065    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7066                       DAG.getIntPtrConstant(0));
7067  }
7068
7069  return SDValue();
7070}
7071
7072SDValue
7073X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7074                                               SelectionDAG &DAG) const {
7075  EVT VT = Op.getValueType();
7076  EVT EltVT = VT.getVectorElementType();
7077  DebugLoc dl = Op.getDebugLoc();
7078
7079  SDValue N0 = Op.getOperand(0);
7080  SDValue N1 = Op.getOperand(1);
7081  SDValue N2 = Op.getOperand(2);
7082
7083  if (!VT.is128BitVector())
7084    return SDValue();
7085
7086  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7087      isa<ConstantSDNode>(N2)) {
7088    unsigned Opc;
7089    if (VT == MVT::v8i16)
7090      Opc = X86ISD::PINSRW;
7091    else if (VT == MVT::v16i8)
7092      Opc = X86ISD::PINSRB;
7093    else
7094      Opc = X86ISD::PINSRB;
7095
7096    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7097    // argument.
7098    if (N1.getValueType() != MVT::i32)
7099      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7100    if (N2.getValueType() != MVT::i32)
7101      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7102    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7103  }
7104
7105  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7106    // Bits [7:6] of the constant are the source select.  This will always be
7107    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7108    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7109    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7110    // Bits [5:4] of the constant are the destination select.  This is the
7111    //  value of the incoming immediate.
7112    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7113    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7114    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7115    // Create this as a scalar to vector..
7116    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7117    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7118  }
7119
7120  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7121    // PINSR* works with constant index.
7122    return Op;
7123  }
7124  return SDValue();
7125}
7126
7127SDValue
7128X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7129  EVT VT = Op.getValueType();
7130  EVT EltVT = VT.getVectorElementType();
7131
7132  DebugLoc dl = Op.getDebugLoc();
7133  SDValue N0 = Op.getOperand(0);
7134  SDValue N1 = Op.getOperand(1);
7135  SDValue N2 = Op.getOperand(2);
7136
7137  // If this is a 256-bit vector result, first extract the 128-bit vector,
7138  // insert the element into the extracted half and then place it back.
7139  if (VT.is256BitVector()) {
7140    if (!isa<ConstantSDNode>(N2))
7141      return SDValue();
7142
7143    // Get the desired 128-bit vector half.
7144    unsigned NumElems = VT.getVectorNumElements();
7145    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7146    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7147
7148    // Insert the element into the desired half.
7149    bool Upper = IdxVal >= NumElems/2;
7150    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7151                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7152
7153    // Insert the changed part back to the 256-bit vector
7154    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7155  }
7156
7157  if (Subtarget->hasSSE41())
7158    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7159
7160  if (EltVT == MVT::i8)
7161    return SDValue();
7162
7163  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7164    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7165    // as its second argument.
7166    if (N1.getValueType() != MVT::i32)
7167      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7168    if (N2.getValueType() != MVT::i32)
7169      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7170    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7171  }
7172  return SDValue();
7173}
7174
7175static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7176  LLVMContext *Context = DAG.getContext();
7177  DebugLoc dl = Op.getDebugLoc();
7178  EVT OpVT = Op.getValueType();
7179
7180  // If this is a 256-bit vector result, first insert into a 128-bit
7181  // vector and then insert into the 256-bit vector.
7182  if (!OpVT.is128BitVector()) {
7183    // Insert into a 128-bit vector.
7184    EVT VT128 = EVT::getVectorVT(*Context,
7185                                 OpVT.getVectorElementType(),
7186                                 OpVT.getVectorNumElements() / 2);
7187
7188    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7189
7190    // Insert the 128-bit vector.
7191    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7192  }
7193
7194  if (OpVT == MVT::v1i64 &&
7195      Op.getOperand(0).getValueType() == MVT::i64)
7196    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7197
7198  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7199  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7200  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7201                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7202}
7203
7204// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7205// a simple subregister reference or explicit instructions to grab
7206// upper bits of a vector.
7207static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7208                                      SelectionDAG &DAG) {
7209  if (Subtarget->hasAVX()) {
7210    DebugLoc dl = Op.getNode()->getDebugLoc();
7211    SDValue Vec = Op.getNode()->getOperand(0);
7212    SDValue Idx = Op.getNode()->getOperand(1);
7213
7214    if (Op.getNode()->getValueType(0).is128BitVector() &&
7215        Vec.getNode()->getValueType(0).is256BitVector() &&
7216        isa<ConstantSDNode>(Idx)) {
7217      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7218      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7219    }
7220  }
7221  return SDValue();
7222}
7223
7224// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7225// simple superregister reference or explicit instructions to insert
7226// the upper bits of a vector.
7227static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7228                                     SelectionDAG &DAG) {
7229  if (Subtarget->hasAVX()) {
7230    DebugLoc dl = Op.getNode()->getDebugLoc();
7231    SDValue Vec = Op.getNode()->getOperand(0);
7232    SDValue SubVec = Op.getNode()->getOperand(1);
7233    SDValue Idx = Op.getNode()->getOperand(2);
7234
7235    if (Op.getNode()->getValueType(0).is256BitVector() &&
7236        SubVec.getNode()->getValueType(0).is128BitVector() &&
7237        isa<ConstantSDNode>(Idx)) {
7238      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7239      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7240    }
7241  }
7242  return SDValue();
7243}
7244
7245// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7246// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7247// one of the above mentioned nodes. It has to be wrapped because otherwise
7248// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7249// be used to form addressing mode. These wrapped nodes will be selected
7250// into MOV32ri.
7251SDValue
7252X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7253  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7254
7255  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7256  // global base reg.
7257  unsigned char OpFlag = 0;
7258  unsigned WrapperKind = X86ISD::Wrapper;
7259  CodeModel::Model M = getTargetMachine().getCodeModel();
7260
7261  if (Subtarget->isPICStyleRIPRel() &&
7262      (M == CodeModel::Small || M == CodeModel::Kernel))
7263    WrapperKind = X86ISD::WrapperRIP;
7264  else if (Subtarget->isPICStyleGOT())
7265    OpFlag = X86II::MO_GOTOFF;
7266  else if (Subtarget->isPICStyleStubPIC())
7267    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7268
7269  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7270                                             CP->getAlignment(),
7271                                             CP->getOffset(), OpFlag);
7272  DebugLoc DL = CP->getDebugLoc();
7273  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7274  // With PIC, the address is actually $g + Offset.
7275  if (OpFlag) {
7276    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7277                         DAG.getNode(X86ISD::GlobalBaseReg,
7278                                     DebugLoc(), getPointerTy()),
7279                         Result);
7280  }
7281
7282  return Result;
7283}
7284
7285SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7286  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7287
7288  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7289  // global base reg.
7290  unsigned char OpFlag = 0;
7291  unsigned WrapperKind = X86ISD::Wrapper;
7292  CodeModel::Model M = getTargetMachine().getCodeModel();
7293
7294  if (Subtarget->isPICStyleRIPRel() &&
7295      (M == CodeModel::Small || M == CodeModel::Kernel))
7296    WrapperKind = X86ISD::WrapperRIP;
7297  else if (Subtarget->isPICStyleGOT())
7298    OpFlag = X86II::MO_GOTOFF;
7299  else if (Subtarget->isPICStyleStubPIC())
7300    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7301
7302  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7303                                          OpFlag);
7304  DebugLoc DL = JT->getDebugLoc();
7305  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7306
7307  // With PIC, the address is actually $g + Offset.
7308  if (OpFlag)
7309    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7310                         DAG.getNode(X86ISD::GlobalBaseReg,
7311                                     DebugLoc(), getPointerTy()),
7312                         Result);
7313
7314  return Result;
7315}
7316
7317SDValue
7318X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7319  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7320
7321  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7322  // global base reg.
7323  unsigned char OpFlag = 0;
7324  unsigned WrapperKind = X86ISD::Wrapper;
7325  CodeModel::Model M = getTargetMachine().getCodeModel();
7326
7327  if (Subtarget->isPICStyleRIPRel() &&
7328      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7329    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7330      OpFlag = X86II::MO_GOTPCREL;
7331    WrapperKind = X86ISD::WrapperRIP;
7332  } else if (Subtarget->isPICStyleGOT()) {
7333    OpFlag = X86II::MO_GOT;
7334  } else if (Subtarget->isPICStyleStubPIC()) {
7335    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7336  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7337    OpFlag = X86II::MO_DARWIN_NONLAZY;
7338  }
7339
7340  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7341
7342  DebugLoc DL = Op.getDebugLoc();
7343  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7344
7345
7346  // With PIC, the address is actually $g + Offset.
7347  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7348      !Subtarget->is64Bit()) {
7349    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7350                         DAG.getNode(X86ISD::GlobalBaseReg,
7351                                     DebugLoc(), getPointerTy()),
7352                         Result);
7353  }
7354
7355  // For symbols that require a load from a stub to get the address, emit the
7356  // load.
7357  if (isGlobalStubReference(OpFlag))
7358    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7359                         MachinePointerInfo::getGOT(), false, false, false, 0);
7360
7361  return Result;
7362}
7363
7364SDValue
7365X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7366  // Create the TargetBlockAddressAddress node.
7367  unsigned char OpFlags =
7368    Subtarget->ClassifyBlockAddressReference();
7369  CodeModel::Model M = getTargetMachine().getCodeModel();
7370  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7371  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7372  DebugLoc dl = Op.getDebugLoc();
7373  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7374                                             OpFlags);
7375
7376  if (Subtarget->isPICStyleRIPRel() &&
7377      (M == CodeModel::Small || M == CodeModel::Kernel))
7378    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7379  else
7380    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7381
7382  // With PIC, the address is actually $g + Offset.
7383  if (isGlobalRelativeToPICBase(OpFlags)) {
7384    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7385                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7386                         Result);
7387  }
7388
7389  return Result;
7390}
7391
7392SDValue
7393X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7394                                      int64_t Offset,
7395                                      SelectionDAG &DAG) const {
7396  // Create the TargetGlobalAddress node, folding in the constant
7397  // offset if it is legal.
7398  unsigned char OpFlags =
7399    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7400  CodeModel::Model M = getTargetMachine().getCodeModel();
7401  SDValue Result;
7402  if (OpFlags == X86II::MO_NO_FLAG &&
7403      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7404    // A direct static reference to a global.
7405    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7406    Offset = 0;
7407  } else {
7408    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7409  }
7410
7411  if (Subtarget->isPICStyleRIPRel() &&
7412      (M == CodeModel::Small || M == CodeModel::Kernel))
7413    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7414  else
7415    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7416
7417  // With PIC, the address is actually $g + Offset.
7418  if (isGlobalRelativeToPICBase(OpFlags)) {
7419    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7420                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7421                         Result);
7422  }
7423
7424  // For globals that require a load from a stub to get the address, emit the
7425  // load.
7426  if (isGlobalStubReference(OpFlags))
7427    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7428                         MachinePointerInfo::getGOT(), false, false, false, 0);
7429
7430  // If there was a non-zero offset that we didn't fold, create an explicit
7431  // addition for it.
7432  if (Offset != 0)
7433    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7434                         DAG.getConstant(Offset, getPointerTy()));
7435
7436  return Result;
7437}
7438
7439SDValue
7440X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7441  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7442  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7443  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7444}
7445
7446static SDValue
7447GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7448           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7449           unsigned char OperandFlags, bool LocalDynamic = false) {
7450  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7451  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7452  DebugLoc dl = GA->getDebugLoc();
7453  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7454                                           GA->getValueType(0),
7455                                           GA->getOffset(),
7456                                           OperandFlags);
7457
7458  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7459                                           : X86ISD::TLSADDR;
7460
7461  if (InFlag) {
7462    SDValue Ops[] = { Chain,  TGA, *InFlag };
7463    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7464  } else {
7465    SDValue Ops[]  = { Chain, TGA };
7466    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7467  }
7468
7469  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7470  MFI->setAdjustsStack(true);
7471
7472  SDValue Flag = Chain.getValue(1);
7473  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7474}
7475
7476// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7477static SDValue
7478LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7479                                const EVT PtrVT) {
7480  SDValue InFlag;
7481  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7482  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7483                                   DAG.getNode(X86ISD::GlobalBaseReg,
7484                                               DebugLoc(), PtrVT), InFlag);
7485  InFlag = Chain.getValue(1);
7486
7487  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7488}
7489
7490// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7491static SDValue
7492LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7493                                const EVT PtrVT) {
7494  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7495                    X86::RAX, X86II::MO_TLSGD);
7496}
7497
7498static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7499                                           SelectionDAG &DAG,
7500                                           const EVT PtrVT,
7501                                           bool is64Bit) {
7502  DebugLoc dl = GA->getDebugLoc();
7503
7504  // Get the start address of the TLS block for this module.
7505  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7506      .getInfo<X86MachineFunctionInfo>();
7507  MFI->incNumLocalDynamicTLSAccesses();
7508
7509  SDValue Base;
7510  if (is64Bit) {
7511    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7512                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7513  } else {
7514    SDValue InFlag;
7515    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7516        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7517    InFlag = Chain.getValue(1);
7518    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7519                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7520  }
7521
7522  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7523  // of Base.
7524
7525  // Build x@dtpoff.
7526  unsigned char OperandFlags = X86II::MO_DTPOFF;
7527  unsigned WrapperKind = X86ISD::Wrapper;
7528  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7529                                           GA->getValueType(0),
7530                                           GA->getOffset(), OperandFlags);
7531  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7532
7533  // Add x@dtpoff with the base.
7534  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7535}
7536
7537// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7538static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7539                                   const EVT PtrVT, TLSModel::Model model,
7540                                   bool is64Bit, bool isPIC) {
7541  DebugLoc dl = GA->getDebugLoc();
7542
7543  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7544  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7545                                                         is64Bit ? 257 : 256));
7546
7547  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7548                                      DAG.getIntPtrConstant(0),
7549                                      MachinePointerInfo(Ptr),
7550                                      false, false, false, 0);
7551
7552  unsigned char OperandFlags = 0;
7553  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7554  // initialexec.
7555  unsigned WrapperKind = X86ISD::Wrapper;
7556  if (model == TLSModel::LocalExec) {
7557    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7558  } else if (model == TLSModel::InitialExec) {
7559    if (is64Bit) {
7560      OperandFlags = X86II::MO_GOTTPOFF;
7561      WrapperKind = X86ISD::WrapperRIP;
7562    } else {
7563      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7564    }
7565  } else {
7566    llvm_unreachable("Unexpected model");
7567  }
7568
7569  // emit "addl x@ntpoff,%eax" (local exec)
7570  // or "addl x@indntpoff,%eax" (initial exec)
7571  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7572  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7573                                           GA->getValueType(0),
7574                                           GA->getOffset(), OperandFlags);
7575  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7576
7577  if (model == TLSModel::InitialExec) {
7578    if (isPIC && !is64Bit) {
7579      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7580                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7581                           Offset);
7582    }
7583
7584    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7585                         MachinePointerInfo::getGOT(), false, false, false,
7586                         0);
7587  }
7588
7589  // The address of the thread local variable is the add of the thread
7590  // pointer with the offset of the variable.
7591  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7592}
7593
7594SDValue
7595X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7596
7597  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7598  const GlobalValue *GV = GA->getGlobal();
7599
7600  if (Subtarget->isTargetELF()) {
7601    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7602
7603    switch (model) {
7604      case TLSModel::GeneralDynamic:
7605        if (Subtarget->is64Bit())
7606          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7607        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7608      case TLSModel::LocalDynamic:
7609        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7610                                           Subtarget->is64Bit());
7611      case TLSModel::InitialExec:
7612      case TLSModel::LocalExec:
7613        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7614                                   Subtarget->is64Bit(),
7615                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7616    }
7617    llvm_unreachable("Unknown TLS model.");
7618  }
7619
7620  if (Subtarget->isTargetDarwin()) {
7621    // Darwin only has one model of TLS.  Lower to that.
7622    unsigned char OpFlag = 0;
7623    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7624                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7625
7626    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7627    // global base reg.
7628    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7629                  !Subtarget->is64Bit();
7630    if (PIC32)
7631      OpFlag = X86II::MO_TLVP_PIC_BASE;
7632    else
7633      OpFlag = X86II::MO_TLVP;
7634    DebugLoc DL = Op.getDebugLoc();
7635    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7636                                                GA->getValueType(0),
7637                                                GA->getOffset(), OpFlag);
7638    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7639
7640    // With PIC32, the address is actually $g + Offset.
7641    if (PIC32)
7642      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7643                           DAG.getNode(X86ISD::GlobalBaseReg,
7644                                       DebugLoc(), getPointerTy()),
7645                           Offset);
7646
7647    // Lowering the machine isd will make sure everything is in the right
7648    // location.
7649    SDValue Chain = DAG.getEntryNode();
7650    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7651    SDValue Args[] = { Chain, Offset };
7652    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7653
7654    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7655    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7656    MFI->setAdjustsStack(true);
7657
7658    // And our return value (tls address) is in the standard call return value
7659    // location.
7660    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7661    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7662                              Chain.getValue(1));
7663  }
7664
7665  if (Subtarget->isTargetWindows()) {
7666    // Just use the implicit TLS architecture
7667    // Need to generate someting similar to:
7668    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7669    //                                  ; from TEB
7670    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7671    //   mov     rcx, qword [rdx+rcx*8]
7672    //   mov     eax, .tls$:tlsvar
7673    //   [rax+rcx] contains the address
7674    // Windows 64bit: gs:0x58
7675    // Windows 32bit: fs:__tls_array
7676
7677    // If GV is an alias then use the aliasee for determining
7678    // thread-localness.
7679    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7680      GV = GA->resolveAliasedGlobal(false);
7681    DebugLoc dl = GA->getDebugLoc();
7682    SDValue Chain = DAG.getEntryNode();
7683
7684    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7685    // %gs:0x58 (64-bit).
7686    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7687                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7688                                                             256)
7689                                        : Type::getInt32PtrTy(*DAG.getContext(),
7690                                                              257));
7691
7692    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7693                                        Subtarget->is64Bit()
7694                                        ? DAG.getIntPtrConstant(0x58)
7695                                        : DAG.getExternalSymbol("_tls_array",
7696                                                                getPointerTy()),
7697                                        MachinePointerInfo(Ptr),
7698                                        false, false, false, 0);
7699
7700    // Load the _tls_index variable
7701    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7702    if (Subtarget->is64Bit())
7703      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7704                           IDX, MachinePointerInfo(), MVT::i32,
7705                           false, false, 0);
7706    else
7707      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7708                        false, false, false, 0);
7709
7710    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7711                                    getPointerTy());
7712    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7713
7714    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7715    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7716                      false, false, false, 0);
7717
7718    // Get the offset of start of .tls section
7719    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7720                                             GA->getValueType(0),
7721                                             GA->getOffset(), X86II::MO_SECREL);
7722    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7723
7724    // The address of the thread local variable is the add of the thread
7725    // pointer with the offset of the variable.
7726    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7727  }
7728
7729  llvm_unreachable("TLS not implemented for this target.");
7730}
7731
7732
7733/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7734/// and take a 2 x i32 value to shift plus a shift amount.
7735SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7736  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7737  EVT VT = Op.getValueType();
7738  unsigned VTBits = VT.getSizeInBits();
7739  DebugLoc dl = Op.getDebugLoc();
7740  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7741  SDValue ShOpLo = Op.getOperand(0);
7742  SDValue ShOpHi = Op.getOperand(1);
7743  SDValue ShAmt  = Op.getOperand(2);
7744  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7745                                     DAG.getConstant(VTBits - 1, MVT::i8))
7746                       : DAG.getConstant(0, VT);
7747
7748  SDValue Tmp2, Tmp3;
7749  if (Op.getOpcode() == ISD::SHL_PARTS) {
7750    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7751    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7752  } else {
7753    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7754    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7755  }
7756
7757  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7758                                DAG.getConstant(VTBits, MVT::i8));
7759  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7760                             AndNode, DAG.getConstant(0, MVT::i8));
7761
7762  SDValue Hi, Lo;
7763  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7764  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7765  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7766
7767  if (Op.getOpcode() == ISD::SHL_PARTS) {
7768    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7769    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7770  } else {
7771    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7772    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7773  }
7774
7775  SDValue Ops[2] = { Lo, Hi };
7776  return DAG.getMergeValues(Ops, 2, dl);
7777}
7778
7779SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7780                                           SelectionDAG &DAG) const {
7781  EVT SrcVT = Op.getOperand(0).getValueType();
7782
7783  if (SrcVT.isVector())
7784    return SDValue();
7785
7786  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7787         "Unknown SINT_TO_FP to lower!");
7788
7789  // These are really Legal; return the operand so the caller accepts it as
7790  // Legal.
7791  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7792    return Op;
7793  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7794      Subtarget->is64Bit()) {
7795    return Op;
7796  }
7797
7798  DebugLoc dl = Op.getDebugLoc();
7799  unsigned Size = SrcVT.getSizeInBits()/8;
7800  MachineFunction &MF = DAG.getMachineFunction();
7801  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7802  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7803  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7804                               StackSlot,
7805                               MachinePointerInfo::getFixedStack(SSFI),
7806                               false, false, 0);
7807  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7808}
7809
7810SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7811                                     SDValue StackSlot,
7812                                     SelectionDAG &DAG) const {
7813  // Build the FILD
7814  DebugLoc DL = Op.getDebugLoc();
7815  SDVTList Tys;
7816  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7817  if (useSSE)
7818    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7819  else
7820    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7821
7822  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7823
7824  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7825  MachineMemOperand *MMO;
7826  if (FI) {
7827    int SSFI = FI->getIndex();
7828    MMO =
7829      DAG.getMachineFunction()
7830      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7831                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7832  } else {
7833    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7834    StackSlot = StackSlot.getOperand(1);
7835  }
7836  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7837  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7838                                           X86ISD::FILD, DL,
7839                                           Tys, Ops, array_lengthof(Ops),
7840                                           SrcVT, MMO);
7841
7842  if (useSSE) {
7843    Chain = Result.getValue(1);
7844    SDValue InFlag = Result.getValue(2);
7845
7846    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7847    // shouldn't be necessary except that RFP cannot be live across
7848    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7849    MachineFunction &MF = DAG.getMachineFunction();
7850    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7851    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7852    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7853    Tys = DAG.getVTList(MVT::Other);
7854    SDValue Ops[] = {
7855      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7856    };
7857    MachineMemOperand *MMO =
7858      DAG.getMachineFunction()
7859      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7860                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7861
7862    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7863                                    Ops, array_lengthof(Ops),
7864                                    Op.getValueType(), MMO);
7865    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7866                         MachinePointerInfo::getFixedStack(SSFI),
7867                         false, false, false, 0);
7868  }
7869
7870  return Result;
7871}
7872
7873// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7874SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7875                                               SelectionDAG &DAG) const {
7876  // This algorithm is not obvious. Here it is what we're trying to output:
7877  /*
7878     movq       %rax,  %xmm0
7879     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7880     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7881     #ifdef __SSE3__
7882       haddpd   %xmm0, %xmm0
7883     #else
7884       pshufd   $0x4e, %xmm0, %xmm1
7885       addpd    %xmm1, %xmm0
7886     #endif
7887  */
7888
7889  DebugLoc dl = Op.getDebugLoc();
7890  LLVMContext *Context = DAG.getContext();
7891
7892  // Build some magic constants.
7893  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7894  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7895  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7896
7897  SmallVector<Constant*,2> CV1;
7898  CV1.push_back(
7899        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7900  CV1.push_back(
7901        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7902  Constant *C1 = ConstantVector::get(CV1);
7903  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7904
7905  // Load the 64-bit value into an XMM register.
7906  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7907                            Op.getOperand(0));
7908  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7909                              MachinePointerInfo::getConstantPool(),
7910                              false, false, false, 16);
7911  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7912                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7913                              CLod0);
7914
7915  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7916                              MachinePointerInfo::getConstantPool(),
7917                              false, false, false, 16);
7918  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7919  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7920  SDValue Result;
7921
7922  if (Subtarget->hasSSE3()) {
7923    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7924    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7925  } else {
7926    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7927    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7928                                           S2F, 0x4E, DAG);
7929    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7930                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7931                         Sub);
7932  }
7933
7934  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7935                     DAG.getIntPtrConstant(0));
7936}
7937
7938// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7939SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7940                                               SelectionDAG &DAG) const {
7941  DebugLoc dl = Op.getDebugLoc();
7942  // FP constant to bias correct the final result.
7943  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7944                                   MVT::f64);
7945
7946  // Load the 32-bit value into an XMM register.
7947  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7948                             Op.getOperand(0));
7949
7950  // Zero out the upper parts of the register.
7951  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7952
7953  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7954                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7955                     DAG.getIntPtrConstant(0));
7956
7957  // Or the load with the bias.
7958  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7959                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7960                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7961                                                   MVT::v2f64, Load)),
7962                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7963                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7964                                                   MVT::v2f64, Bias)));
7965  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7966                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7967                   DAG.getIntPtrConstant(0));
7968
7969  // Subtract the bias.
7970  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7971
7972  // Handle final rounding.
7973  EVT DestVT = Op.getValueType();
7974
7975  if (DestVT.bitsLT(MVT::f64))
7976    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7977                       DAG.getIntPtrConstant(0));
7978  if (DestVT.bitsGT(MVT::f64))
7979    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7980
7981  // Handle final rounding.
7982  return Sub;
7983}
7984
7985SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7986                                           SelectionDAG &DAG) const {
7987  SDValue N0 = Op.getOperand(0);
7988  DebugLoc dl = Op.getDebugLoc();
7989
7990  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7991  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7992  // the optimization here.
7993  if (DAG.SignBitIsZero(N0))
7994    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7995
7996  EVT SrcVT = N0.getValueType();
7997  EVT DstVT = Op.getValueType();
7998  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7999    return LowerUINT_TO_FP_i64(Op, DAG);
8000  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8001    return LowerUINT_TO_FP_i32(Op, DAG);
8002  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8003    return SDValue();
8004
8005  // Make a 64-bit buffer, and use it to build an FILD.
8006  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8007  if (SrcVT == MVT::i32) {
8008    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8009    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8010                                     getPointerTy(), StackSlot, WordOff);
8011    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8012                                  StackSlot, MachinePointerInfo(),
8013                                  false, false, 0);
8014    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8015                                  OffsetSlot, MachinePointerInfo(),
8016                                  false, false, 0);
8017    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8018    return Fild;
8019  }
8020
8021  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8022  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8023                               StackSlot, MachinePointerInfo(),
8024                               false, false, 0);
8025  // For i64 source, we need to add the appropriate power of 2 if the input
8026  // was negative.  This is the same as the optimization in
8027  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8028  // we must be careful to do the computation in x87 extended precision, not
8029  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8030  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8031  MachineMemOperand *MMO =
8032    DAG.getMachineFunction()
8033    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8034                          MachineMemOperand::MOLoad, 8, 8);
8035
8036  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8037  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8038  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8039                                         MVT::i64, MMO);
8040
8041  APInt FF(32, 0x5F800000ULL);
8042
8043  // Check whether the sign bit is set.
8044  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8045                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8046                                 ISD::SETLT);
8047
8048  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8049  SDValue FudgePtr = DAG.getConstantPool(
8050                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8051                                         getPointerTy());
8052
8053  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8054  SDValue Zero = DAG.getIntPtrConstant(0);
8055  SDValue Four = DAG.getIntPtrConstant(4);
8056  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8057                               Zero, Four);
8058  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8059
8060  // Load the value out, extending it from f32 to f80.
8061  // FIXME: Avoid the extend by constructing the right constant pool?
8062  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8063                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8064                                 MVT::f32, false, false, 4);
8065  // Extend everything to 80 bits to force it to be done on x87.
8066  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8067  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8068}
8069
8070std::pair<SDValue,SDValue> X86TargetLowering::
8071FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8072  DebugLoc DL = Op.getDebugLoc();
8073
8074  EVT DstTy = Op.getValueType();
8075
8076  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8077    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8078    DstTy = MVT::i64;
8079  }
8080
8081  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8082         DstTy.getSimpleVT() >= MVT::i16 &&
8083         "Unknown FP_TO_INT to lower!");
8084
8085  // These are really Legal.
8086  if (DstTy == MVT::i32 &&
8087      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8088    return std::make_pair(SDValue(), SDValue());
8089  if (Subtarget->is64Bit() &&
8090      DstTy == MVT::i64 &&
8091      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8092    return std::make_pair(SDValue(), SDValue());
8093
8094  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8095  // stack slot, or into the FTOL runtime function.
8096  MachineFunction &MF = DAG.getMachineFunction();
8097  unsigned MemSize = DstTy.getSizeInBits()/8;
8098  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8099  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8100
8101  unsigned Opc;
8102  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8103    Opc = X86ISD::WIN_FTOL;
8104  else
8105    switch (DstTy.getSimpleVT().SimpleTy) {
8106    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8107    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8108    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8109    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8110    }
8111
8112  SDValue Chain = DAG.getEntryNode();
8113  SDValue Value = Op.getOperand(0);
8114  EVT TheVT = Op.getOperand(0).getValueType();
8115  // FIXME This causes a redundant load/store if the SSE-class value is already
8116  // in memory, such as if it is on the callstack.
8117  if (isScalarFPTypeInSSEReg(TheVT)) {
8118    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8119    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8120                         MachinePointerInfo::getFixedStack(SSFI),
8121                         false, false, 0);
8122    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8123    SDValue Ops[] = {
8124      Chain, StackSlot, DAG.getValueType(TheVT)
8125    };
8126
8127    MachineMemOperand *MMO =
8128      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8129                              MachineMemOperand::MOLoad, MemSize, MemSize);
8130    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8131                                    DstTy, MMO);
8132    Chain = Value.getValue(1);
8133    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8134    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8135  }
8136
8137  MachineMemOperand *MMO =
8138    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8139                            MachineMemOperand::MOStore, MemSize, MemSize);
8140
8141  if (Opc != X86ISD::WIN_FTOL) {
8142    // Build the FP_TO_INT*_IN_MEM
8143    SDValue Ops[] = { Chain, Value, StackSlot };
8144    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8145                                           Ops, 3, DstTy, MMO);
8146    return std::make_pair(FIST, StackSlot);
8147  } else {
8148    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8149      DAG.getVTList(MVT::Other, MVT::Glue),
8150      Chain, Value);
8151    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8152      MVT::i32, ftol.getValue(1));
8153    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8154      MVT::i32, eax.getValue(2));
8155    SDValue Ops[] = { eax, edx };
8156    SDValue pair = IsReplace
8157      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8158      : DAG.getMergeValues(Ops, 2, DL);
8159    return std::make_pair(pair, SDValue());
8160  }
8161}
8162
8163SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8164                                           SelectionDAG &DAG) const {
8165  if (Op.getValueType().isVector())
8166    return SDValue();
8167
8168  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8169    /*IsSigned=*/ true, /*IsReplace=*/ false);
8170  SDValue FIST = Vals.first, StackSlot = Vals.second;
8171  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8172  if (FIST.getNode() == 0) return Op;
8173
8174  if (StackSlot.getNode())
8175    // Load the result.
8176    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8177                       FIST, StackSlot, MachinePointerInfo(),
8178                       false, false, false, 0);
8179
8180  // The node is the result.
8181  return FIST;
8182}
8183
8184SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8185                                           SelectionDAG &DAG) const {
8186  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8187    /*IsSigned=*/ false, /*IsReplace=*/ false);
8188  SDValue FIST = Vals.first, StackSlot = Vals.second;
8189  assert(FIST.getNode() && "Unexpected failure");
8190
8191  if (StackSlot.getNode())
8192    // Load the result.
8193    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8194                       FIST, StackSlot, MachinePointerInfo(),
8195                       false, false, false, 0);
8196
8197  // The node is the result.
8198  return FIST;
8199}
8200
8201SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8202  LLVMContext *Context = DAG.getContext();
8203  DebugLoc dl = Op.getDebugLoc();
8204  EVT VT = Op.getValueType();
8205  EVT EltVT = VT;
8206  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8207  if (VT.isVector()) {
8208    EltVT = VT.getVectorElementType();
8209    NumElts = VT.getVectorNumElements();
8210  }
8211  Constant *C;
8212  if (EltVT == MVT::f64)
8213    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8214  else
8215    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8216  C = ConstantVector::getSplat(NumElts, C);
8217  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8218  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8219  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8220                             MachinePointerInfo::getConstantPool(),
8221                             false, false, false, Alignment);
8222  if (VT.isVector()) {
8223    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8224    return DAG.getNode(ISD::BITCAST, dl, VT,
8225                       DAG.getNode(ISD::AND, dl, ANDVT,
8226                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8227                                               Op.getOperand(0)),
8228                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8229  }
8230  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8231}
8232
8233SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8234  LLVMContext *Context = DAG.getContext();
8235  DebugLoc dl = Op.getDebugLoc();
8236  EVT VT = Op.getValueType();
8237  EVT EltVT = VT;
8238  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8239  if (VT.isVector()) {
8240    EltVT = VT.getVectorElementType();
8241    NumElts = VT.getVectorNumElements();
8242  }
8243  Constant *C;
8244  if (EltVT == MVT::f64)
8245    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8246  else
8247    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8248  C = ConstantVector::getSplat(NumElts, C);
8249  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8250  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8251  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8252                             MachinePointerInfo::getConstantPool(),
8253                             false, false, false, Alignment);
8254  if (VT.isVector()) {
8255    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8256    return DAG.getNode(ISD::BITCAST, dl, VT,
8257                       DAG.getNode(ISD::XOR, dl, XORVT,
8258                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8259                                               Op.getOperand(0)),
8260                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8261  }
8262
8263  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8264}
8265
8266SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8267  LLVMContext *Context = DAG.getContext();
8268  SDValue Op0 = Op.getOperand(0);
8269  SDValue Op1 = Op.getOperand(1);
8270  DebugLoc dl = Op.getDebugLoc();
8271  EVT VT = Op.getValueType();
8272  EVT SrcVT = Op1.getValueType();
8273
8274  // If second operand is smaller, extend it first.
8275  if (SrcVT.bitsLT(VT)) {
8276    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8277    SrcVT = VT;
8278  }
8279  // And if it is bigger, shrink it first.
8280  if (SrcVT.bitsGT(VT)) {
8281    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8282    SrcVT = VT;
8283  }
8284
8285  // At this point the operands and the result should have the same
8286  // type, and that won't be f80 since that is not custom lowered.
8287
8288  // First get the sign bit of second operand.
8289  SmallVector<Constant*,4> CV;
8290  if (SrcVT == MVT::f64) {
8291    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8292    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8293  } else {
8294    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8295    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8296    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8297    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8298  }
8299  Constant *C = ConstantVector::get(CV);
8300  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8301  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8302                              MachinePointerInfo::getConstantPool(),
8303                              false, false, false, 16);
8304  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8305
8306  // Shift sign bit right or left if the two operands have different types.
8307  if (SrcVT.bitsGT(VT)) {
8308    // Op0 is MVT::f32, Op1 is MVT::f64.
8309    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8310    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8311                          DAG.getConstant(32, MVT::i32));
8312    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8313    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8314                          DAG.getIntPtrConstant(0));
8315  }
8316
8317  // Clear first operand sign bit.
8318  CV.clear();
8319  if (VT == MVT::f64) {
8320    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8321    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8322  } else {
8323    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8324    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8325    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8326    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8327  }
8328  C = ConstantVector::get(CV);
8329  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8330  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8331                              MachinePointerInfo::getConstantPool(),
8332                              false, false, false, 16);
8333  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8334
8335  // Or the value with the sign bit.
8336  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8337}
8338
8339static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8340  SDValue N0 = Op.getOperand(0);
8341  DebugLoc dl = Op.getDebugLoc();
8342  EVT VT = Op.getValueType();
8343
8344  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8345  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8346                                  DAG.getConstant(1, VT));
8347  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8348}
8349
8350// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8351//
8352SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8353  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8354
8355  if (!Subtarget->hasSSE41())
8356    return SDValue();
8357
8358  if (!Op->hasOneUse())
8359    return SDValue();
8360
8361  SDNode *N = Op.getNode();
8362  DebugLoc DL = N->getDebugLoc();
8363
8364  SmallVector<SDValue, 8> Opnds;
8365  DenseMap<SDValue, unsigned> VecInMap;
8366  EVT VT = MVT::Other;
8367
8368  // Recognize a special case where a vector is casted into wide integer to
8369  // test all 0s.
8370  Opnds.push_back(N->getOperand(0));
8371  Opnds.push_back(N->getOperand(1));
8372
8373  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8374    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8375    // BFS traverse all OR'd operands.
8376    if (I->getOpcode() == ISD::OR) {
8377      Opnds.push_back(I->getOperand(0));
8378      Opnds.push_back(I->getOperand(1));
8379      // Re-evaluate the number of nodes to be traversed.
8380      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8381      continue;
8382    }
8383
8384    // Quit if a non-EXTRACT_VECTOR_ELT
8385    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8386      return SDValue();
8387
8388    // Quit if without a constant index.
8389    SDValue Idx = I->getOperand(1);
8390    if (!isa<ConstantSDNode>(Idx))
8391      return SDValue();
8392
8393    SDValue ExtractedFromVec = I->getOperand(0);
8394    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8395    if (M == VecInMap.end()) {
8396      VT = ExtractedFromVec.getValueType();
8397      // Quit if not 128/256-bit vector.
8398      if (!VT.is128BitVector() && !VT.is256BitVector())
8399        return SDValue();
8400      // Quit if not the same type.
8401      if (VecInMap.begin() != VecInMap.end() &&
8402          VT != VecInMap.begin()->first.getValueType())
8403        return SDValue();
8404      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8405    }
8406    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8407  }
8408
8409  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8410         "Not extracted from 128-/256-bit vector.");
8411
8412  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8413  SmallVector<SDValue, 8> VecIns;
8414
8415  for (DenseMap<SDValue, unsigned>::const_iterator
8416        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8417    // Quit if not all elements are used.
8418    if (I->second != FullMask)
8419      return SDValue();
8420    VecIns.push_back(I->first);
8421  }
8422
8423  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8424
8425  // Cast all vectors into TestVT for PTEST.
8426  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8427    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8428
8429  // If more than one full vectors are evaluated, OR them first before PTEST.
8430  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8431    // Each iteration will OR 2 nodes and append the result until there is only
8432    // 1 node left, i.e. the final OR'd value of all vectors.
8433    SDValue LHS = VecIns[Slot];
8434    SDValue RHS = VecIns[Slot + 1];
8435    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8436  }
8437
8438  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8439                     VecIns.back(), VecIns.back());
8440}
8441
8442/// Emit nodes that will be selected as "test Op0,Op0", or something
8443/// equivalent.
8444SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8445                                    SelectionDAG &DAG) const {
8446  DebugLoc dl = Op.getDebugLoc();
8447
8448  // CF and OF aren't always set the way we want. Determine which
8449  // of these we need.
8450  bool NeedCF = false;
8451  bool NeedOF = false;
8452  switch (X86CC) {
8453  default: break;
8454  case X86::COND_A: case X86::COND_AE:
8455  case X86::COND_B: case X86::COND_BE:
8456    NeedCF = true;
8457    break;
8458  case X86::COND_G: case X86::COND_GE:
8459  case X86::COND_L: case X86::COND_LE:
8460  case X86::COND_O: case X86::COND_NO:
8461    NeedOF = true;
8462    break;
8463  }
8464
8465  // See if we can use the EFLAGS value from the operand instead of
8466  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8467  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8468  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8469    // Emit a CMP with 0, which is the TEST pattern.
8470    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8471                       DAG.getConstant(0, Op.getValueType()));
8472
8473  unsigned Opcode = 0;
8474  unsigned NumOperands = 0;
8475
8476  // Truncate operations may prevent the merge of the SETCC instruction
8477  // and the arithmetic intruction before it. Attempt to truncate the operands
8478  // of the arithmetic instruction and use a reduced bit-width instruction.
8479  bool NeedTruncation = false;
8480  SDValue ArithOp = Op;
8481  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8482    SDValue Arith = Op->getOperand(0);
8483    // Both the trunc and the arithmetic op need to have one user each.
8484    if (Arith->hasOneUse())
8485      switch (Arith.getOpcode()) {
8486        default: break;
8487        case ISD::ADD:
8488        case ISD::SUB:
8489        case ISD::AND:
8490        case ISD::OR:
8491        case ISD::XOR: {
8492          NeedTruncation = true;
8493          ArithOp = Arith;
8494        }
8495      }
8496  }
8497
8498  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8499  // which may be the result of a CAST.  We use the variable 'Op', which is the
8500  // non-casted variable when we check for possible users.
8501  switch (ArithOp.getOpcode()) {
8502  case ISD::ADD:
8503    // Due to an isel shortcoming, be conservative if this add is likely to be
8504    // selected as part of a load-modify-store instruction. When the root node
8505    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8506    // uses of other nodes in the match, such as the ADD in this case. This
8507    // leads to the ADD being left around and reselected, with the result being
8508    // two adds in the output.  Alas, even if none our users are stores, that
8509    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8510    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8511    // climbing the DAG back to the root, and it doesn't seem to be worth the
8512    // effort.
8513    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8514         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8515      if (UI->getOpcode() != ISD::CopyToReg &&
8516          UI->getOpcode() != ISD::SETCC &&
8517          UI->getOpcode() != ISD::STORE)
8518        goto default_case;
8519
8520    if (ConstantSDNode *C =
8521        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8522      // An add of one will be selected as an INC.
8523      if (C->getAPIntValue() == 1) {
8524        Opcode = X86ISD::INC;
8525        NumOperands = 1;
8526        break;
8527      }
8528
8529      // An add of negative one (subtract of one) will be selected as a DEC.
8530      if (C->getAPIntValue().isAllOnesValue()) {
8531        Opcode = X86ISD::DEC;
8532        NumOperands = 1;
8533        break;
8534      }
8535    }
8536
8537    // Otherwise use a regular EFLAGS-setting add.
8538    Opcode = X86ISD::ADD;
8539    NumOperands = 2;
8540    break;
8541  case ISD::AND: {
8542    // If the primary and result isn't used, don't bother using X86ISD::AND,
8543    // because a TEST instruction will be better.
8544    bool NonFlagUse = false;
8545    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8546           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8547      SDNode *User = *UI;
8548      unsigned UOpNo = UI.getOperandNo();
8549      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8550        // Look pass truncate.
8551        UOpNo = User->use_begin().getOperandNo();
8552        User = *User->use_begin();
8553      }
8554
8555      if (User->getOpcode() != ISD::BRCOND &&
8556          User->getOpcode() != ISD::SETCC &&
8557          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8558        NonFlagUse = true;
8559        break;
8560      }
8561    }
8562
8563    if (!NonFlagUse)
8564      break;
8565  }
8566    // FALL THROUGH
8567  case ISD::SUB:
8568  case ISD::OR:
8569  case ISD::XOR:
8570    // Due to the ISEL shortcoming noted above, be conservative if this op is
8571    // likely to be selected as part of a load-modify-store instruction.
8572    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8573           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8574      if (UI->getOpcode() == ISD::STORE)
8575        goto default_case;
8576
8577    // Otherwise use a regular EFLAGS-setting instruction.
8578    switch (ArithOp.getOpcode()) {
8579    default: llvm_unreachable("unexpected operator!");
8580    case ISD::SUB: Opcode = X86ISD::SUB; break;
8581    case ISD::XOR: Opcode = X86ISD::XOR; break;
8582    case ISD::AND: Opcode = X86ISD::AND; break;
8583    case ISD::OR: {
8584      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8585        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8586        if (EFLAGS.getNode())
8587          return EFLAGS;
8588      }
8589      Opcode = X86ISD::OR;
8590      break;
8591    }
8592    }
8593
8594    NumOperands = 2;
8595    break;
8596  case X86ISD::ADD:
8597  case X86ISD::SUB:
8598  case X86ISD::INC:
8599  case X86ISD::DEC:
8600  case X86ISD::OR:
8601  case X86ISD::XOR:
8602  case X86ISD::AND:
8603    return SDValue(Op.getNode(), 1);
8604  default:
8605  default_case:
8606    break;
8607  }
8608
8609  // If we found that truncation is beneficial, perform the truncation and
8610  // update 'Op'.
8611  if (NeedTruncation) {
8612    EVT VT = Op.getValueType();
8613    SDValue WideVal = Op->getOperand(0);
8614    EVT WideVT = WideVal.getValueType();
8615    unsigned ConvertedOp = 0;
8616    // Use a target machine opcode to prevent further DAGCombine
8617    // optimizations that may separate the arithmetic operations
8618    // from the setcc node.
8619    switch (WideVal.getOpcode()) {
8620      default: break;
8621      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8622      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8623      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8624      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8625      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8626    }
8627
8628    if (ConvertedOp) {
8629      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8630      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8631        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8632        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8633        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8634      }
8635    }
8636  }
8637
8638  if (Opcode == 0)
8639    // Emit a CMP with 0, which is the TEST pattern.
8640    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8641                       DAG.getConstant(0, Op.getValueType()));
8642
8643  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8644  SmallVector<SDValue, 4> Ops;
8645  for (unsigned i = 0; i != NumOperands; ++i)
8646    Ops.push_back(Op.getOperand(i));
8647
8648  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8649  DAG.ReplaceAllUsesWith(Op, New);
8650  return SDValue(New.getNode(), 1);
8651}
8652
8653/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8654/// equivalent.
8655SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8656                                   SelectionDAG &DAG) const {
8657  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8658    if (C->getAPIntValue() == 0)
8659      return EmitTest(Op0, X86CC, DAG);
8660
8661  DebugLoc dl = Op0.getDebugLoc();
8662  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8663       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8664    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8665    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8666    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8667                              Op0, Op1);
8668    return SDValue(Sub.getNode(), 1);
8669  }
8670  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8671}
8672
8673/// Convert a comparison if required by the subtarget.
8674SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8675                                                 SelectionDAG &DAG) const {
8676  // If the subtarget does not support the FUCOMI instruction, floating-point
8677  // comparisons have to be converted.
8678  if (Subtarget->hasCMov() ||
8679      Cmp.getOpcode() != X86ISD::CMP ||
8680      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8681      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8682    return Cmp;
8683
8684  // The instruction selector will select an FUCOM instruction instead of
8685  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8686  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8687  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8688  DebugLoc dl = Cmp.getDebugLoc();
8689  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8690  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8691  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8692                            DAG.getConstant(8, MVT::i8));
8693  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8694  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8695}
8696
8697/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8698/// if it's possible.
8699SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8700                                     DebugLoc dl, SelectionDAG &DAG) const {
8701  SDValue Op0 = And.getOperand(0);
8702  SDValue Op1 = And.getOperand(1);
8703  if (Op0.getOpcode() == ISD::TRUNCATE)
8704    Op0 = Op0.getOperand(0);
8705  if (Op1.getOpcode() == ISD::TRUNCATE)
8706    Op1 = Op1.getOperand(0);
8707
8708  SDValue LHS, RHS;
8709  if (Op1.getOpcode() == ISD::SHL)
8710    std::swap(Op0, Op1);
8711  if (Op0.getOpcode() == ISD::SHL) {
8712    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8713      if (And00C->getZExtValue() == 1) {
8714        // If we looked past a truncate, check that it's only truncating away
8715        // known zeros.
8716        unsigned BitWidth = Op0.getValueSizeInBits();
8717        unsigned AndBitWidth = And.getValueSizeInBits();
8718        if (BitWidth > AndBitWidth) {
8719          APInt Zeros, Ones;
8720          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8721          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8722            return SDValue();
8723        }
8724        LHS = Op1;
8725        RHS = Op0.getOperand(1);
8726      }
8727  } else if (Op1.getOpcode() == ISD::Constant) {
8728    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8729    uint64_t AndRHSVal = AndRHS->getZExtValue();
8730    SDValue AndLHS = Op0;
8731
8732    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8733      LHS = AndLHS.getOperand(0);
8734      RHS = AndLHS.getOperand(1);
8735    }
8736
8737    // Use BT if the immediate can't be encoded in a TEST instruction.
8738    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8739      LHS = AndLHS;
8740      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8741    }
8742  }
8743
8744  if (LHS.getNode()) {
8745    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8746    // instruction.  Since the shift amount is in-range-or-undefined, we know
8747    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8748    // the encoding for the i16 version is larger than the i32 version.
8749    // Also promote i16 to i32 for performance / code size reason.
8750    if (LHS.getValueType() == MVT::i8 ||
8751        LHS.getValueType() == MVT::i16)
8752      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8753
8754    // If the operand types disagree, extend the shift amount to match.  Since
8755    // BT ignores high bits (like shifts) we can use anyextend.
8756    if (LHS.getValueType() != RHS.getValueType())
8757      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8758
8759    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8760    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8761    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8762                       DAG.getConstant(Cond, MVT::i8), BT);
8763  }
8764
8765  return SDValue();
8766}
8767
8768SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8769
8770  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8771
8772  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8773  SDValue Op0 = Op.getOperand(0);
8774  SDValue Op1 = Op.getOperand(1);
8775  DebugLoc dl = Op.getDebugLoc();
8776  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8777
8778  // Optimize to BT if possible.
8779  // Lower (X & (1 << N)) == 0 to BT(X, N).
8780  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8781  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8782  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8783      Op1.getOpcode() == ISD::Constant &&
8784      cast<ConstantSDNode>(Op1)->isNullValue() &&
8785      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8786    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8787    if (NewSetCC.getNode())
8788      return NewSetCC;
8789  }
8790
8791  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8792  // these.
8793  if (Op1.getOpcode() == ISD::Constant &&
8794      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8795       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8796      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8797
8798    // If the input is a setcc, then reuse the input setcc or use a new one with
8799    // the inverted condition.
8800    if (Op0.getOpcode() == X86ISD::SETCC) {
8801      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8802      bool Invert = (CC == ISD::SETNE) ^
8803        cast<ConstantSDNode>(Op1)->isNullValue();
8804      if (!Invert) return Op0;
8805
8806      CCode = X86::GetOppositeBranchCondition(CCode);
8807      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8808                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8809    }
8810  }
8811
8812  bool isFP = Op1.getValueType().isFloatingPoint();
8813  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8814  if (X86CC == X86::COND_INVALID)
8815    return SDValue();
8816
8817  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8818  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8819  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8820                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8821}
8822
8823// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8824// ones, and then concatenate the result back.
8825static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8826  EVT VT = Op.getValueType();
8827
8828  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
8829         "Unsupported value type for operation");
8830
8831  unsigned NumElems = VT.getVectorNumElements();
8832  DebugLoc dl = Op.getDebugLoc();
8833  SDValue CC = Op.getOperand(2);
8834
8835  // Extract the LHS vectors
8836  SDValue LHS = Op.getOperand(0);
8837  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8838  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8839
8840  // Extract the RHS vectors
8841  SDValue RHS = Op.getOperand(1);
8842  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8843  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8844
8845  // Issue the operation on the smaller types and concatenate the result back
8846  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8847  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8848  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8849                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8850                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8851}
8852
8853
8854SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8855  SDValue Cond;
8856  SDValue Op0 = Op.getOperand(0);
8857  SDValue Op1 = Op.getOperand(1);
8858  SDValue CC = Op.getOperand(2);
8859  EVT VT = Op.getValueType();
8860  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8861  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8862  DebugLoc dl = Op.getDebugLoc();
8863
8864  if (isFP) {
8865#ifndef NDEBUG
8866    EVT EltVT = Op0.getValueType().getVectorElementType();
8867    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8868#endif
8869
8870    unsigned SSECC;
8871    bool Swap = false;
8872
8873    // SSE Condition code mapping:
8874    //  0 - EQ
8875    //  1 - LT
8876    //  2 - LE
8877    //  3 - UNORD
8878    //  4 - NEQ
8879    //  5 - NLT
8880    //  6 - NLE
8881    //  7 - ORD
8882    switch (SetCCOpcode) {
8883    default: llvm_unreachable("Unexpected SETCC condition");
8884    case ISD::SETOEQ:
8885    case ISD::SETEQ:  SSECC = 0; break;
8886    case ISD::SETOGT:
8887    case ISD::SETGT: Swap = true; // Fallthrough
8888    case ISD::SETLT:
8889    case ISD::SETOLT: SSECC = 1; break;
8890    case ISD::SETOGE:
8891    case ISD::SETGE: Swap = true; // Fallthrough
8892    case ISD::SETLE:
8893    case ISD::SETOLE: SSECC = 2; break;
8894    case ISD::SETUO:  SSECC = 3; break;
8895    case ISD::SETUNE:
8896    case ISD::SETNE:  SSECC = 4; break;
8897    case ISD::SETULE: Swap = true; // Fallthrough
8898    case ISD::SETUGE: SSECC = 5; break;
8899    case ISD::SETULT: Swap = true; // Fallthrough
8900    case ISD::SETUGT: SSECC = 6; break;
8901    case ISD::SETO:   SSECC = 7; break;
8902    case ISD::SETUEQ:
8903    case ISD::SETONE: SSECC = 8; break;
8904    }
8905    if (Swap)
8906      std::swap(Op0, Op1);
8907
8908    // In the two special cases we can't handle, emit two comparisons.
8909    if (SSECC == 8) {
8910      unsigned CC0, CC1;
8911      unsigned CombineOpc;
8912      if (SetCCOpcode == ISD::SETUEQ) {
8913        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
8914      } else {
8915        assert(SetCCOpcode == ISD::SETONE);
8916        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
8917      }
8918
8919      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8920                                 DAG.getConstant(CC0, MVT::i8));
8921      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8922                                 DAG.getConstant(CC1, MVT::i8));
8923      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
8924    }
8925    // Handle all other FP comparisons here.
8926    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8927                       DAG.getConstant(SSECC, MVT::i8));
8928  }
8929
8930  // Break 256-bit integer vector compare into smaller ones.
8931  if (VT.is256BitVector() && !Subtarget->hasAVX2())
8932    return Lower256IntVSETCC(Op, DAG);
8933
8934  // We are handling one of the integer comparisons here.  Since SSE only has
8935  // GT and EQ comparisons for integer, swapping operands and multiple
8936  // operations may be required for some comparisons.
8937  unsigned Opc;
8938  bool Swap = false, Invert = false, FlipSigns = false;
8939
8940  switch (SetCCOpcode) {
8941  default: llvm_unreachable("Unexpected SETCC condition");
8942  case ISD::SETNE:  Invert = true;
8943  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8944  case ISD::SETLT:  Swap = true;
8945  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8946  case ISD::SETGE:  Swap = true;
8947  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8948  case ISD::SETULT: Swap = true;
8949  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8950  case ISD::SETUGE: Swap = true;
8951  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8952  }
8953  if (Swap)
8954    std::swap(Op0, Op1);
8955
8956  // Check that the operation in question is available (most are plain SSE2,
8957  // but PCMPGTQ and PCMPEQQ have different requirements).
8958  if (VT == MVT::v2i64) {
8959    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
8960      return SDValue();
8961    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
8962      return SDValue();
8963  }
8964
8965  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8966  // bits of the inputs before performing those operations.
8967  if (FlipSigns) {
8968    EVT EltVT = VT.getVectorElementType();
8969    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8970                                      EltVT);
8971    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8972    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8973                                    SignBits.size());
8974    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8975    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8976  }
8977
8978  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8979
8980  // If the logical-not of the result is required, perform that now.
8981  if (Invert)
8982    Result = DAG.getNOT(dl, Result, VT);
8983
8984  return Result;
8985}
8986
8987// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8988static bool isX86LogicalCmp(SDValue Op) {
8989  unsigned Opc = Op.getNode()->getOpcode();
8990  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8991      Opc == X86ISD::SAHF)
8992    return true;
8993  if (Op.getResNo() == 1 &&
8994      (Opc == X86ISD::ADD ||
8995       Opc == X86ISD::SUB ||
8996       Opc == X86ISD::ADC ||
8997       Opc == X86ISD::SBB ||
8998       Opc == X86ISD::SMUL ||
8999       Opc == X86ISD::UMUL ||
9000       Opc == X86ISD::INC ||
9001       Opc == X86ISD::DEC ||
9002       Opc == X86ISD::OR ||
9003       Opc == X86ISD::XOR ||
9004       Opc == X86ISD::AND))
9005    return true;
9006
9007  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9008    return true;
9009
9010  return false;
9011}
9012
9013static bool isZero(SDValue V) {
9014  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9015  return C && C->isNullValue();
9016}
9017
9018static bool isAllOnes(SDValue V) {
9019  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9020  return C && C->isAllOnesValue();
9021}
9022
9023static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9024  if (V.getOpcode() != ISD::TRUNCATE)
9025    return false;
9026
9027  SDValue VOp0 = V.getOperand(0);
9028  unsigned InBits = VOp0.getValueSizeInBits();
9029  unsigned Bits = V.getValueSizeInBits();
9030  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9031}
9032
9033SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9034  bool addTest = true;
9035  SDValue Cond  = Op.getOperand(0);
9036  SDValue Op1 = Op.getOperand(1);
9037  SDValue Op2 = Op.getOperand(2);
9038  DebugLoc DL = Op.getDebugLoc();
9039  SDValue CC;
9040
9041  if (Cond.getOpcode() == ISD::SETCC) {
9042    SDValue NewCond = LowerSETCC(Cond, DAG);
9043    if (NewCond.getNode())
9044      Cond = NewCond;
9045  }
9046
9047  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9048  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9049  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9050  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9051  if (Cond.getOpcode() == X86ISD::SETCC &&
9052      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9053      isZero(Cond.getOperand(1).getOperand(1))) {
9054    SDValue Cmp = Cond.getOperand(1);
9055
9056    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9057
9058    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9059        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9060      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9061
9062      SDValue CmpOp0 = Cmp.getOperand(0);
9063      // Apply further optimizations for special cases
9064      // (select (x != 0), -1, 0) -> neg & sbb
9065      // (select (x == 0), 0, -1) -> neg & sbb
9066      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9067        if (YC->isNullValue() &&
9068            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9069          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9070          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9071                                    DAG.getConstant(0, CmpOp0.getValueType()),
9072                                    CmpOp0);
9073          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9074                                    DAG.getConstant(X86::COND_B, MVT::i8),
9075                                    SDValue(Neg.getNode(), 1));
9076          return Res;
9077        }
9078
9079      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9080                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9081      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9082
9083      SDValue Res =   // Res = 0 or -1.
9084        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9085                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9086
9087      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9088        Res = DAG.getNOT(DL, Res, Res.getValueType());
9089
9090      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9091      if (N2C == 0 || !N2C->isNullValue())
9092        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9093      return Res;
9094    }
9095  }
9096
9097  // Look past (and (setcc_carry (cmp ...)), 1).
9098  if (Cond.getOpcode() == ISD::AND &&
9099      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9100    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9101    if (C && C->getAPIntValue() == 1)
9102      Cond = Cond.getOperand(0);
9103  }
9104
9105  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9106  // setting operand in place of the X86ISD::SETCC.
9107  unsigned CondOpcode = Cond.getOpcode();
9108  if (CondOpcode == X86ISD::SETCC ||
9109      CondOpcode == X86ISD::SETCC_CARRY) {
9110    CC = Cond.getOperand(0);
9111
9112    SDValue Cmp = Cond.getOperand(1);
9113    unsigned Opc = Cmp.getOpcode();
9114    EVT VT = Op.getValueType();
9115
9116    bool IllegalFPCMov = false;
9117    if (VT.isFloatingPoint() && !VT.isVector() &&
9118        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9119      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9120
9121    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9122        Opc == X86ISD::BT) { // FIXME
9123      Cond = Cmp;
9124      addTest = false;
9125    }
9126  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9127             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9128             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9129              Cond.getOperand(0).getValueType() != MVT::i8)) {
9130    SDValue LHS = Cond.getOperand(0);
9131    SDValue RHS = Cond.getOperand(1);
9132    unsigned X86Opcode;
9133    unsigned X86Cond;
9134    SDVTList VTs;
9135    switch (CondOpcode) {
9136    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9137    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9138    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9139    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9140    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9141    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9142    default: llvm_unreachable("unexpected overflowing operator");
9143    }
9144    if (CondOpcode == ISD::UMULO)
9145      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9146                          MVT::i32);
9147    else
9148      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9149
9150    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9151
9152    if (CondOpcode == ISD::UMULO)
9153      Cond = X86Op.getValue(2);
9154    else
9155      Cond = X86Op.getValue(1);
9156
9157    CC = DAG.getConstant(X86Cond, MVT::i8);
9158    addTest = false;
9159  }
9160
9161  if (addTest) {
9162    // Look pass the truncate if the high bits are known zero.
9163    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9164        Cond = Cond.getOperand(0);
9165
9166    // We know the result of AND is compared against zero. Try to match
9167    // it to BT.
9168    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9169      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9170      if (NewSetCC.getNode()) {
9171        CC = NewSetCC.getOperand(0);
9172        Cond = NewSetCC.getOperand(1);
9173        addTest = false;
9174      }
9175    }
9176  }
9177
9178  if (addTest) {
9179    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9180    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9181  }
9182
9183  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9184  // a <  b ?  0 : -1 -> RES = setcc_carry
9185  // a >= b ? -1 :  0 -> RES = setcc_carry
9186  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9187  if (Cond.getOpcode() == X86ISD::SUB) {
9188    Cond = ConvertCmpIfNecessary(Cond, DAG);
9189    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9190
9191    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9192        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9193      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9194                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9195      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9196        return DAG.getNOT(DL, Res, Res.getValueType());
9197      return Res;
9198    }
9199  }
9200
9201  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9202  // condition is true.
9203  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9204  SDValue Ops[] = { Op2, Op1, CC, Cond };
9205  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9206}
9207
9208// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9209// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9210// from the AND / OR.
9211static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9212  Opc = Op.getOpcode();
9213  if (Opc != ISD::OR && Opc != ISD::AND)
9214    return false;
9215  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9216          Op.getOperand(0).hasOneUse() &&
9217          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9218          Op.getOperand(1).hasOneUse());
9219}
9220
9221// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9222// 1 and that the SETCC node has a single use.
9223static bool isXor1OfSetCC(SDValue Op) {
9224  if (Op.getOpcode() != ISD::XOR)
9225    return false;
9226  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9227  if (N1C && N1C->getAPIntValue() == 1) {
9228    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9229      Op.getOperand(0).hasOneUse();
9230  }
9231  return false;
9232}
9233
9234SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9235  bool addTest = true;
9236  SDValue Chain = Op.getOperand(0);
9237  SDValue Cond  = Op.getOperand(1);
9238  SDValue Dest  = Op.getOperand(2);
9239  DebugLoc dl = Op.getDebugLoc();
9240  SDValue CC;
9241  bool Inverted = false;
9242
9243  if (Cond.getOpcode() == ISD::SETCC) {
9244    // Check for setcc([su]{add,sub,mul}o == 0).
9245    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9246        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9247        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9248        Cond.getOperand(0).getResNo() == 1 &&
9249        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9250         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9251         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9252         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9253         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9254         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9255      Inverted = true;
9256      Cond = Cond.getOperand(0);
9257    } else {
9258      SDValue NewCond = LowerSETCC(Cond, DAG);
9259      if (NewCond.getNode())
9260        Cond = NewCond;
9261    }
9262  }
9263#if 0
9264  // FIXME: LowerXALUO doesn't handle these!!
9265  else if (Cond.getOpcode() == X86ISD::ADD  ||
9266           Cond.getOpcode() == X86ISD::SUB  ||
9267           Cond.getOpcode() == X86ISD::SMUL ||
9268           Cond.getOpcode() == X86ISD::UMUL)
9269    Cond = LowerXALUO(Cond, DAG);
9270#endif
9271
9272  // Look pass (and (setcc_carry (cmp ...)), 1).
9273  if (Cond.getOpcode() == ISD::AND &&
9274      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9275    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9276    if (C && C->getAPIntValue() == 1)
9277      Cond = Cond.getOperand(0);
9278  }
9279
9280  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9281  // setting operand in place of the X86ISD::SETCC.
9282  unsigned CondOpcode = Cond.getOpcode();
9283  if (CondOpcode == X86ISD::SETCC ||
9284      CondOpcode == X86ISD::SETCC_CARRY) {
9285    CC = Cond.getOperand(0);
9286
9287    SDValue Cmp = Cond.getOperand(1);
9288    unsigned Opc = Cmp.getOpcode();
9289    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9290    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9291      Cond = Cmp;
9292      addTest = false;
9293    } else {
9294      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9295      default: break;
9296      case X86::COND_O:
9297      case X86::COND_B:
9298        // These can only come from an arithmetic instruction with overflow,
9299        // e.g. SADDO, UADDO.
9300        Cond = Cond.getNode()->getOperand(1);
9301        addTest = false;
9302        break;
9303      }
9304    }
9305  }
9306  CondOpcode = Cond.getOpcode();
9307  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9308      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9309      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9310       Cond.getOperand(0).getValueType() != MVT::i8)) {
9311    SDValue LHS = Cond.getOperand(0);
9312    SDValue RHS = Cond.getOperand(1);
9313    unsigned X86Opcode;
9314    unsigned X86Cond;
9315    SDVTList VTs;
9316    switch (CondOpcode) {
9317    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9318    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9319    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9320    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9321    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9322    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9323    default: llvm_unreachable("unexpected overflowing operator");
9324    }
9325    if (Inverted)
9326      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9327    if (CondOpcode == ISD::UMULO)
9328      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9329                          MVT::i32);
9330    else
9331      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9332
9333    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9334
9335    if (CondOpcode == ISD::UMULO)
9336      Cond = X86Op.getValue(2);
9337    else
9338      Cond = X86Op.getValue(1);
9339
9340    CC = DAG.getConstant(X86Cond, MVT::i8);
9341    addTest = false;
9342  } else {
9343    unsigned CondOpc;
9344    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9345      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9346      if (CondOpc == ISD::OR) {
9347        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9348        // two branches instead of an explicit OR instruction with a
9349        // separate test.
9350        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9351            isX86LogicalCmp(Cmp)) {
9352          CC = Cond.getOperand(0).getOperand(0);
9353          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9354                              Chain, Dest, CC, Cmp);
9355          CC = Cond.getOperand(1).getOperand(0);
9356          Cond = Cmp;
9357          addTest = false;
9358        }
9359      } else { // ISD::AND
9360        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9361        // two branches instead of an explicit AND instruction with a
9362        // separate test. However, we only do this if this block doesn't
9363        // have a fall-through edge, because this requires an explicit
9364        // jmp when the condition is false.
9365        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9366            isX86LogicalCmp(Cmp) &&
9367            Op.getNode()->hasOneUse()) {
9368          X86::CondCode CCode =
9369            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9370          CCode = X86::GetOppositeBranchCondition(CCode);
9371          CC = DAG.getConstant(CCode, MVT::i8);
9372          SDNode *User = *Op.getNode()->use_begin();
9373          // Look for an unconditional branch following this conditional branch.
9374          // We need this because we need to reverse the successors in order
9375          // to implement FCMP_OEQ.
9376          if (User->getOpcode() == ISD::BR) {
9377            SDValue FalseBB = User->getOperand(1);
9378            SDNode *NewBR =
9379              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9380            assert(NewBR == User);
9381            (void)NewBR;
9382            Dest = FalseBB;
9383
9384            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9385                                Chain, Dest, CC, Cmp);
9386            X86::CondCode CCode =
9387              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9388            CCode = X86::GetOppositeBranchCondition(CCode);
9389            CC = DAG.getConstant(CCode, MVT::i8);
9390            Cond = Cmp;
9391            addTest = false;
9392          }
9393        }
9394      }
9395    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9396      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9397      // It should be transformed during dag combiner except when the condition
9398      // is set by a arithmetics with overflow node.
9399      X86::CondCode CCode =
9400        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9401      CCode = X86::GetOppositeBranchCondition(CCode);
9402      CC = DAG.getConstant(CCode, MVT::i8);
9403      Cond = Cond.getOperand(0).getOperand(1);
9404      addTest = false;
9405    } else if (Cond.getOpcode() == ISD::SETCC &&
9406               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9407      // For FCMP_OEQ, we can emit
9408      // two branches instead of an explicit AND instruction with a
9409      // separate test. However, we only do this if this block doesn't
9410      // have a fall-through edge, because this requires an explicit
9411      // jmp when the condition is false.
9412      if (Op.getNode()->hasOneUse()) {
9413        SDNode *User = *Op.getNode()->use_begin();
9414        // Look for an unconditional branch following this conditional branch.
9415        // We need this because we need to reverse the successors in order
9416        // to implement FCMP_OEQ.
9417        if (User->getOpcode() == ISD::BR) {
9418          SDValue FalseBB = User->getOperand(1);
9419          SDNode *NewBR =
9420            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9421          assert(NewBR == User);
9422          (void)NewBR;
9423          Dest = FalseBB;
9424
9425          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9426                                    Cond.getOperand(0), Cond.getOperand(1));
9427          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9428          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9429          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9430                              Chain, Dest, CC, Cmp);
9431          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9432          Cond = Cmp;
9433          addTest = false;
9434        }
9435      }
9436    } else if (Cond.getOpcode() == ISD::SETCC &&
9437               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9438      // For FCMP_UNE, we can emit
9439      // two branches instead of an explicit AND instruction with a
9440      // separate test. However, we only do this if this block doesn't
9441      // have a fall-through edge, because this requires an explicit
9442      // jmp when the condition is false.
9443      if (Op.getNode()->hasOneUse()) {
9444        SDNode *User = *Op.getNode()->use_begin();
9445        // Look for an unconditional branch following this conditional branch.
9446        // We need this because we need to reverse the successors in order
9447        // to implement FCMP_UNE.
9448        if (User->getOpcode() == ISD::BR) {
9449          SDValue FalseBB = User->getOperand(1);
9450          SDNode *NewBR =
9451            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9452          assert(NewBR == User);
9453          (void)NewBR;
9454
9455          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9456                                    Cond.getOperand(0), Cond.getOperand(1));
9457          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9458          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9459          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9460                              Chain, Dest, CC, Cmp);
9461          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9462          Cond = Cmp;
9463          addTest = false;
9464          Dest = FalseBB;
9465        }
9466      }
9467    }
9468  }
9469
9470  if (addTest) {
9471    // Look pass the truncate if the high bits are known zero.
9472    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9473        Cond = Cond.getOperand(0);
9474
9475    // We know the result of AND is compared against zero. Try to match
9476    // it to BT.
9477    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9478      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9479      if (NewSetCC.getNode()) {
9480        CC = NewSetCC.getOperand(0);
9481        Cond = NewSetCC.getOperand(1);
9482        addTest = false;
9483      }
9484    }
9485  }
9486
9487  if (addTest) {
9488    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9489    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9490  }
9491  Cond = ConvertCmpIfNecessary(Cond, DAG);
9492  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9493                     Chain, Dest, CC, Cond);
9494}
9495
9496
9497// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9498// Calls to _alloca is needed to probe the stack when allocating more than 4k
9499// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9500// that the guard pages used by the OS virtual memory manager are allocated in
9501// correct sequence.
9502SDValue
9503X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9504                                           SelectionDAG &DAG) const {
9505  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9506          getTargetMachine().Options.EnableSegmentedStacks) &&
9507         "This should be used only on Windows targets or when segmented stacks "
9508         "are being used");
9509  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9510  DebugLoc dl = Op.getDebugLoc();
9511
9512  // Get the inputs.
9513  SDValue Chain = Op.getOperand(0);
9514  SDValue Size  = Op.getOperand(1);
9515  // FIXME: Ensure alignment here
9516
9517  bool Is64Bit = Subtarget->is64Bit();
9518  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9519
9520  if (getTargetMachine().Options.EnableSegmentedStacks) {
9521    MachineFunction &MF = DAG.getMachineFunction();
9522    MachineRegisterInfo &MRI = MF.getRegInfo();
9523
9524    if (Is64Bit) {
9525      // The 64 bit implementation of segmented stacks needs to clobber both r10
9526      // r11. This makes it impossible to use it along with nested parameters.
9527      const Function *F = MF.getFunction();
9528
9529      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9530           I != E; ++I)
9531        if (I->hasNestAttr())
9532          report_fatal_error("Cannot use segmented stacks with functions that "
9533                             "have nested arguments.");
9534    }
9535
9536    const TargetRegisterClass *AddrRegClass =
9537      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9538    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9539    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9540    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9541                                DAG.getRegister(Vreg, SPTy));
9542    SDValue Ops1[2] = { Value, Chain };
9543    return DAG.getMergeValues(Ops1, 2, dl);
9544  } else {
9545    SDValue Flag;
9546    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9547
9548    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9549    Flag = Chain.getValue(1);
9550    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9551
9552    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9553    Flag = Chain.getValue(1);
9554
9555    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9556
9557    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9558    return DAG.getMergeValues(Ops1, 2, dl);
9559  }
9560}
9561
9562SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9563  MachineFunction &MF = DAG.getMachineFunction();
9564  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9565
9566  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9567  DebugLoc DL = Op.getDebugLoc();
9568
9569  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9570    // vastart just stores the address of the VarArgsFrameIndex slot into the
9571    // memory location argument.
9572    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9573                                   getPointerTy());
9574    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9575                        MachinePointerInfo(SV), false, false, 0);
9576  }
9577
9578  // __va_list_tag:
9579  //   gp_offset         (0 - 6 * 8)
9580  //   fp_offset         (48 - 48 + 8 * 16)
9581  //   overflow_arg_area (point to parameters coming in memory).
9582  //   reg_save_area
9583  SmallVector<SDValue, 8> MemOps;
9584  SDValue FIN = Op.getOperand(1);
9585  // Store gp_offset
9586  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9587                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9588                                               MVT::i32),
9589                               FIN, MachinePointerInfo(SV), false, false, 0);
9590  MemOps.push_back(Store);
9591
9592  // Store fp_offset
9593  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9594                    FIN, DAG.getIntPtrConstant(4));
9595  Store = DAG.getStore(Op.getOperand(0), DL,
9596                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9597                                       MVT::i32),
9598                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9599  MemOps.push_back(Store);
9600
9601  // Store ptr to overflow_arg_area
9602  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9603                    FIN, DAG.getIntPtrConstant(4));
9604  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9605                                    getPointerTy());
9606  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9607                       MachinePointerInfo(SV, 8),
9608                       false, false, 0);
9609  MemOps.push_back(Store);
9610
9611  // Store ptr to reg_save_area.
9612  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9613                    FIN, DAG.getIntPtrConstant(8));
9614  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9615                                    getPointerTy());
9616  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9617                       MachinePointerInfo(SV, 16), false, false, 0);
9618  MemOps.push_back(Store);
9619  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9620                     &MemOps[0], MemOps.size());
9621}
9622
9623SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9624  assert(Subtarget->is64Bit() &&
9625         "LowerVAARG only handles 64-bit va_arg!");
9626  assert((Subtarget->isTargetLinux() ||
9627          Subtarget->isTargetDarwin()) &&
9628          "Unhandled target in LowerVAARG");
9629  assert(Op.getNode()->getNumOperands() == 4);
9630  SDValue Chain = Op.getOperand(0);
9631  SDValue SrcPtr = Op.getOperand(1);
9632  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9633  unsigned Align = Op.getConstantOperandVal(3);
9634  DebugLoc dl = Op.getDebugLoc();
9635
9636  EVT ArgVT = Op.getNode()->getValueType(0);
9637  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9638  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9639  uint8_t ArgMode;
9640
9641  // Decide which area this value should be read from.
9642  // TODO: Implement the AMD64 ABI in its entirety. This simple
9643  // selection mechanism works only for the basic types.
9644  if (ArgVT == MVT::f80) {
9645    llvm_unreachable("va_arg for f80 not yet implemented");
9646  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9647    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9648  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9649    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9650  } else {
9651    llvm_unreachable("Unhandled argument type in LowerVAARG");
9652  }
9653
9654  if (ArgMode == 2) {
9655    // Sanity Check: Make sure using fp_offset makes sense.
9656    assert(!getTargetMachine().Options.UseSoftFloat &&
9657           !(DAG.getMachineFunction()
9658                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9659           Subtarget->hasSSE1());
9660  }
9661
9662  // Insert VAARG_64 node into the DAG
9663  // VAARG_64 returns two values: Variable Argument Address, Chain
9664  SmallVector<SDValue, 11> InstOps;
9665  InstOps.push_back(Chain);
9666  InstOps.push_back(SrcPtr);
9667  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9668  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9669  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9670  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9671  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9672                                          VTs, &InstOps[0], InstOps.size(),
9673                                          MVT::i64,
9674                                          MachinePointerInfo(SV),
9675                                          /*Align=*/0,
9676                                          /*Volatile=*/false,
9677                                          /*ReadMem=*/true,
9678                                          /*WriteMem=*/true);
9679  Chain = VAARG.getValue(1);
9680
9681  // Load the next argument and return it
9682  return DAG.getLoad(ArgVT, dl,
9683                     Chain,
9684                     VAARG,
9685                     MachinePointerInfo(),
9686                     false, false, false, 0);
9687}
9688
9689static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
9690                           SelectionDAG &DAG) {
9691  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9692  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9693  SDValue Chain = Op.getOperand(0);
9694  SDValue DstPtr = Op.getOperand(1);
9695  SDValue SrcPtr = Op.getOperand(2);
9696  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9697  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9698  DebugLoc DL = Op.getDebugLoc();
9699
9700  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9701                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9702                       false,
9703                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9704}
9705
9706// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9707// may or may not be a constant. Takes immediate version of shift as input.
9708static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9709                                   SDValue SrcOp, SDValue ShAmt,
9710                                   SelectionDAG &DAG) {
9711  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9712
9713  if (isa<ConstantSDNode>(ShAmt)) {
9714    // Constant may be a TargetConstant. Use a regular constant.
9715    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9716    switch (Opc) {
9717      default: llvm_unreachable("Unknown target vector shift node");
9718      case X86ISD::VSHLI:
9719      case X86ISD::VSRLI:
9720      case X86ISD::VSRAI:
9721        return DAG.getNode(Opc, dl, VT, SrcOp,
9722                           DAG.getConstant(ShiftAmt, MVT::i32));
9723    }
9724  }
9725
9726  // Change opcode to non-immediate version
9727  switch (Opc) {
9728    default: llvm_unreachable("Unknown target vector shift node");
9729    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9730    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9731    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9732  }
9733
9734  // Need to build a vector containing shift amount
9735  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9736  SDValue ShOps[4];
9737  ShOps[0] = ShAmt;
9738  ShOps[1] = DAG.getConstant(0, MVT::i32);
9739  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9740  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9741
9742  // The return type has to be a 128-bit type with the same element
9743  // type as the input type.
9744  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9745  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9746
9747  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9748  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9749}
9750
9751static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
9752  DebugLoc dl = Op.getDebugLoc();
9753  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9754  switch (IntNo) {
9755  default: return SDValue();    // Don't custom lower most intrinsics.
9756  // Comparison intrinsics.
9757  case Intrinsic::x86_sse_comieq_ss:
9758  case Intrinsic::x86_sse_comilt_ss:
9759  case Intrinsic::x86_sse_comile_ss:
9760  case Intrinsic::x86_sse_comigt_ss:
9761  case Intrinsic::x86_sse_comige_ss:
9762  case Intrinsic::x86_sse_comineq_ss:
9763  case Intrinsic::x86_sse_ucomieq_ss:
9764  case Intrinsic::x86_sse_ucomilt_ss:
9765  case Intrinsic::x86_sse_ucomile_ss:
9766  case Intrinsic::x86_sse_ucomigt_ss:
9767  case Intrinsic::x86_sse_ucomige_ss:
9768  case Intrinsic::x86_sse_ucomineq_ss:
9769  case Intrinsic::x86_sse2_comieq_sd:
9770  case Intrinsic::x86_sse2_comilt_sd:
9771  case Intrinsic::x86_sse2_comile_sd:
9772  case Intrinsic::x86_sse2_comigt_sd:
9773  case Intrinsic::x86_sse2_comige_sd:
9774  case Intrinsic::x86_sse2_comineq_sd:
9775  case Intrinsic::x86_sse2_ucomieq_sd:
9776  case Intrinsic::x86_sse2_ucomilt_sd:
9777  case Intrinsic::x86_sse2_ucomile_sd:
9778  case Intrinsic::x86_sse2_ucomigt_sd:
9779  case Intrinsic::x86_sse2_ucomige_sd:
9780  case Intrinsic::x86_sse2_ucomineq_sd: {
9781    unsigned Opc;
9782    ISD::CondCode CC;
9783    switch (IntNo) {
9784    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9785    case Intrinsic::x86_sse_comieq_ss:
9786    case Intrinsic::x86_sse2_comieq_sd:
9787      Opc = X86ISD::COMI;
9788      CC = ISD::SETEQ;
9789      break;
9790    case Intrinsic::x86_sse_comilt_ss:
9791    case Intrinsic::x86_sse2_comilt_sd:
9792      Opc = X86ISD::COMI;
9793      CC = ISD::SETLT;
9794      break;
9795    case Intrinsic::x86_sse_comile_ss:
9796    case Intrinsic::x86_sse2_comile_sd:
9797      Opc = X86ISD::COMI;
9798      CC = ISD::SETLE;
9799      break;
9800    case Intrinsic::x86_sse_comigt_ss:
9801    case Intrinsic::x86_sse2_comigt_sd:
9802      Opc = X86ISD::COMI;
9803      CC = ISD::SETGT;
9804      break;
9805    case Intrinsic::x86_sse_comige_ss:
9806    case Intrinsic::x86_sse2_comige_sd:
9807      Opc = X86ISD::COMI;
9808      CC = ISD::SETGE;
9809      break;
9810    case Intrinsic::x86_sse_comineq_ss:
9811    case Intrinsic::x86_sse2_comineq_sd:
9812      Opc = X86ISD::COMI;
9813      CC = ISD::SETNE;
9814      break;
9815    case Intrinsic::x86_sse_ucomieq_ss:
9816    case Intrinsic::x86_sse2_ucomieq_sd:
9817      Opc = X86ISD::UCOMI;
9818      CC = ISD::SETEQ;
9819      break;
9820    case Intrinsic::x86_sse_ucomilt_ss:
9821    case Intrinsic::x86_sse2_ucomilt_sd:
9822      Opc = X86ISD::UCOMI;
9823      CC = ISD::SETLT;
9824      break;
9825    case Intrinsic::x86_sse_ucomile_ss:
9826    case Intrinsic::x86_sse2_ucomile_sd:
9827      Opc = X86ISD::UCOMI;
9828      CC = ISD::SETLE;
9829      break;
9830    case Intrinsic::x86_sse_ucomigt_ss:
9831    case Intrinsic::x86_sse2_ucomigt_sd:
9832      Opc = X86ISD::UCOMI;
9833      CC = ISD::SETGT;
9834      break;
9835    case Intrinsic::x86_sse_ucomige_ss:
9836    case Intrinsic::x86_sse2_ucomige_sd:
9837      Opc = X86ISD::UCOMI;
9838      CC = ISD::SETGE;
9839      break;
9840    case Intrinsic::x86_sse_ucomineq_ss:
9841    case Intrinsic::x86_sse2_ucomineq_sd:
9842      Opc = X86ISD::UCOMI;
9843      CC = ISD::SETNE;
9844      break;
9845    }
9846
9847    SDValue LHS = Op.getOperand(1);
9848    SDValue RHS = Op.getOperand(2);
9849    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9850    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9851    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9852    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9853                                DAG.getConstant(X86CC, MVT::i8), Cond);
9854    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9855  }
9856
9857  // Arithmetic intrinsics.
9858  case Intrinsic::x86_sse2_pmulu_dq:
9859  case Intrinsic::x86_avx2_pmulu_dq:
9860    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9861                       Op.getOperand(1), Op.getOperand(2));
9862
9863  // SSE3/AVX horizontal add/sub intrinsics
9864  case Intrinsic::x86_sse3_hadd_ps:
9865  case Intrinsic::x86_sse3_hadd_pd:
9866  case Intrinsic::x86_avx_hadd_ps_256:
9867  case Intrinsic::x86_avx_hadd_pd_256:
9868  case Intrinsic::x86_sse3_hsub_ps:
9869  case Intrinsic::x86_sse3_hsub_pd:
9870  case Intrinsic::x86_avx_hsub_ps_256:
9871  case Intrinsic::x86_avx_hsub_pd_256:
9872  case Intrinsic::x86_ssse3_phadd_w_128:
9873  case Intrinsic::x86_ssse3_phadd_d_128:
9874  case Intrinsic::x86_avx2_phadd_w:
9875  case Intrinsic::x86_avx2_phadd_d:
9876  case Intrinsic::x86_ssse3_phsub_w_128:
9877  case Intrinsic::x86_ssse3_phsub_d_128:
9878  case Intrinsic::x86_avx2_phsub_w:
9879  case Intrinsic::x86_avx2_phsub_d: {
9880    unsigned Opcode;
9881    switch (IntNo) {
9882    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9883    case Intrinsic::x86_sse3_hadd_ps:
9884    case Intrinsic::x86_sse3_hadd_pd:
9885    case Intrinsic::x86_avx_hadd_ps_256:
9886    case Intrinsic::x86_avx_hadd_pd_256:
9887      Opcode = X86ISD::FHADD;
9888      break;
9889    case Intrinsic::x86_sse3_hsub_ps:
9890    case Intrinsic::x86_sse3_hsub_pd:
9891    case Intrinsic::x86_avx_hsub_ps_256:
9892    case Intrinsic::x86_avx_hsub_pd_256:
9893      Opcode = X86ISD::FHSUB;
9894      break;
9895    case Intrinsic::x86_ssse3_phadd_w_128:
9896    case Intrinsic::x86_ssse3_phadd_d_128:
9897    case Intrinsic::x86_avx2_phadd_w:
9898    case Intrinsic::x86_avx2_phadd_d:
9899      Opcode = X86ISD::HADD;
9900      break;
9901    case Intrinsic::x86_ssse3_phsub_w_128:
9902    case Intrinsic::x86_ssse3_phsub_d_128:
9903    case Intrinsic::x86_avx2_phsub_w:
9904    case Intrinsic::x86_avx2_phsub_d:
9905      Opcode = X86ISD::HSUB;
9906      break;
9907    }
9908    return DAG.getNode(Opcode, dl, Op.getValueType(),
9909                       Op.getOperand(1), Op.getOperand(2));
9910  }
9911
9912  // AVX2 variable shift intrinsics
9913  case Intrinsic::x86_avx2_psllv_d:
9914  case Intrinsic::x86_avx2_psllv_q:
9915  case Intrinsic::x86_avx2_psllv_d_256:
9916  case Intrinsic::x86_avx2_psllv_q_256:
9917  case Intrinsic::x86_avx2_psrlv_d:
9918  case Intrinsic::x86_avx2_psrlv_q:
9919  case Intrinsic::x86_avx2_psrlv_d_256:
9920  case Intrinsic::x86_avx2_psrlv_q_256:
9921  case Intrinsic::x86_avx2_psrav_d:
9922  case Intrinsic::x86_avx2_psrav_d_256: {
9923    unsigned Opcode;
9924    switch (IntNo) {
9925    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9926    case Intrinsic::x86_avx2_psllv_d:
9927    case Intrinsic::x86_avx2_psllv_q:
9928    case Intrinsic::x86_avx2_psllv_d_256:
9929    case Intrinsic::x86_avx2_psllv_q_256:
9930      Opcode = ISD::SHL;
9931      break;
9932    case Intrinsic::x86_avx2_psrlv_d:
9933    case Intrinsic::x86_avx2_psrlv_q:
9934    case Intrinsic::x86_avx2_psrlv_d_256:
9935    case Intrinsic::x86_avx2_psrlv_q_256:
9936      Opcode = ISD::SRL;
9937      break;
9938    case Intrinsic::x86_avx2_psrav_d:
9939    case Intrinsic::x86_avx2_psrav_d_256:
9940      Opcode = ISD::SRA;
9941      break;
9942    }
9943    return DAG.getNode(Opcode, dl, Op.getValueType(),
9944                       Op.getOperand(1), Op.getOperand(2));
9945  }
9946
9947  case Intrinsic::x86_ssse3_pshuf_b_128:
9948  case Intrinsic::x86_avx2_pshuf_b:
9949    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9950                       Op.getOperand(1), Op.getOperand(2));
9951
9952  case Intrinsic::x86_ssse3_psign_b_128:
9953  case Intrinsic::x86_ssse3_psign_w_128:
9954  case Intrinsic::x86_ssse3_psign_d_128:
9955  case Intrinsic::x86_avx2_psign_b:
9956  case Intrinsic::x86_avx2_psign_w:
9957  case Intrinsic::x86_avx2_psign_d:
9958    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9959                       Op.getOperand(1), Op.getOperand(2));
9960
9961  case Intrinsic::x86_sse41_insertps:
9962    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9963                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9964
9965  case Intrinsic::x86_avx_vperm2f128_ps_256:
9966  case Intrinsic::x86_avx_vperm2f128_pd_256:
9967  case Intrinsic::x86_avx_vperm2f128_si_256:
9968  case Intrinsic::x86_avx2_vperm2i128:
9969    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9970                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9971
9972  case Intrinsic::x86_avx2_permd:
9973  case Intrinsic::x86_avx2_permps:
9974    // Operands intentionally swapped. Mask is last operand to intrinsic,
9975    // but second operand for node/intruction.
9976    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9977                       Op.getOperand(2), Op.getOperand(1));
9978
9979  // ptest and testp intrinsics. The intrinsic these come from are designed to
9980  // return an integer value, not just an instruction so lower it to the ptest
9981  // or testp pattern and a setcc for the result.
9982  case Intrinsic::x86_sse41_ptestz:
9983  case Intrinsic::x86_sse41_ptestc:
9984  case Intrinsic::x86_sse41_ptestnzc:
9985  case Intrinsic::x86_avx_ptestz_256:
9986  case Intrinsic::x86_avx_ptestc_256:
9987  case Intrinsic::x86_avx_ptestnzc_256:
9988  case Intrinsic::x86_avx_vtestz_ps:
9989  case Intrinsic::x86_avx_vtestc_ps:
9990  case Intrinsic::x86_avx_vtestnzc_ps:
9991  case Intrinsic::x86_avx_vtestz_pd:
9992  case Intrinsic::x86_avx_vtestc_pd:
9993  case Intrinsic::x86_avx_vtestnzc_pd:
9994  case Intrinsic::x86_avx_vtestz_ps_256:
9995  case Intrinsic::x86_avx_vtestc_ps_256:
9996  case Intrinsic::x86_avx_vtestnzc_ps_256:
9997  case Intrinsic::x86_avx_vtestz_pd_256:
9998  case Intrinsic::x86_avx_vtestc_pd_256:
9999  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10000    bool IsTestPacked = false;
10001    unsigned X86CC;
10002    switch (IntNo) {
10003    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10004    case Intrinsic::x86_avx_vtestz_ps:
10005    case Intrinsic::x86_avx_vtestz_pd:
10006    case Intrinsic::x86_avx_vtestz_ps_256:
10007    case Intrinsic::x86_avx_vtestz_pd_256:
10008      IsTestPacked = true; // Fallthrough
10009    case Intrinsic::x86_sse41_ptestz:
10010    case Intrinsic::x86_avx_ptestz_256:
10011      // ZF = 1
10012      X86CC = X86::COND_E;
10013      break;
10014    case Intrinsic::x86_avx_vtestc_ps:
10015    case Intrinsic::x86_avx_vtestc_pd:
10016    case Intrinsic::x86_avx_vtestc_ps_256:
10017    case Intrinsic::x86_avx_vtestc_pd_256:
10018      IsTestPacked = true; // Fallthrough
10019    case Intrinsic::x86_sse41_ptestc:
10020    case Intrinsic::x86_avx_ptestc_256:
10021      // CF = 1
10022      X86CC = X86::COND_B;
10023      break;
10024    case Intrinsic::x86_avx_vtestnzc_ps:
10025    case Intrinsic::x86_avx_vtestnzc_pd:
10026    case Intrinsic::x86_avx_vtestnzc_ps_256:
10027    case Intrinsic::x86_avx_vtestnzc_pd_256:
10028      IsTestPacked = true; // Fallthrough
10029    case Intrinsic::x86_sse41_ptestnzc:
10030    case Intrinsic::x86_avx_ptestnzc_256:
10031      // ZF and CF = 0
10032      X86CC = X86::COND_A;
10033      break;
10034    }
10035
10036    SDValue LHS = Op.getOperand(1);
10037    SDValue RHS = Op.getOperand(2);
10038    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10039    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10040    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10041    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10042    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10043  }
10044
10045  // SSE/AVX shift intrinsics
10046  case Intrinsic::x86_sse2_psll_w:
10047  case Intrinsic::x86_sse2_psll_d:
10048  case Intrinsic::x86_sse2_psll_q:
10049  case Intrinsic::x86_avx2_psll_w:
10050  case Intrinsic::x86_avx2_psll_d:
10051  case Intrinsic::x86_avx2_psll_q:
10052  case Intrinsic::x86_sse2_psrl_w:
10053  case Intrinsic::x86_sse2_psrl_d:
10054  case Intrinsic::x86_sse2_psrl_q:
10055  case Intrinsic::x86_avx2_psrl_w:
10056  case Intrinsic::x86_avx2_psrl_d:
10057  case Intrinsic::x86_avx2_psrl_q:
10058  case Intrinsic::x86_sse2_psra_w:
10059  case Intrinsic::x86_sse2_psra_d:
10060  case Intrinsic::x86_avx2_psra_w:
10061  case Intrinsic::x86_avx2_psra_d: {
10062    unsigned Opcode;
10063    switch (IntNo) {
10064    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10065    case Intrinsic::x86_sse2_psll_w:
10066    case Intrinsic::x86_sse2_psll_d:
10067    case Intrinsic::x86_sse2_psll_q:
10068    case Intrinsic::x86_avx2_psll_w:
10069    case Intrinsic::x86_avx2_psll_d:
10070    case Intrinsic::x86_avx2_psll_q:
10071      Opcode = X86ISD::VSHL;
10072      break;
10073    case Intrinsic::x86_sse2_psrl_w:
10074    case Intrinsic::x86_sse2_psrl_d:
10075    case Intrinsic::x86_sse2_psrl_q:
10076    case Intrinsic::x86_avx2_psrl_w:
10077    case Intrinsic::x86_avx2_psrl_d:
10078    case Intrinsic::x86_avx2_psrl_q:
10079      Opcode = X86ISD::VSRL;
10080      break;
10081    case Intrinsic::x86_sse2_psra_w:
10082    case Intrinsic::x86_sse2_psra_d:
10083    case Intrinsic::x86_avx2_psra_w:
10084    case Intrinsic::x86_avx2_psra_d:
10085      Opcode = X86ISD::VSRA;
10086      break;
10087    }
10088    return DAG.getNode(Opcode, dl, Op.getValueType(),
10089                       Op.getOperand(1), Op.getOperand(2));
10090  }
10091
10092  // SSE/AVX immediate shift intrinsics
10093  case Intrinsic::x86_sse2_pslli_w:
10094  case Intrinsic::x86_sse2_pslli_d:
10095  case Intrinsic::x86_sse2_pslli_q:
10096  case Intrinsic::x86_avx2_pslli_w:
10097  case Intrinsic::x86_avx2_pslli_d:
10098  case Intrinsic::x86_avx2_pslli_q:
10099  case Intrinsic::x86_sse2_psrli_w:
10100  case Intrinsic::x86_sse2_psrli_d:
10101  case Intrinsic::x86_sse2_psrli_q:
10102  case Intrinsic::x86_avx2_psrli_w:
10103  case Intrinsic::x86_avx2_psrli_d:
10104  case Intrinsic::x86_avx2_psrli_q:
10105  case Intrinsic::x86_sse2_psrai_w:
10106  case Intrinsic::x86_sse2_psrai_d:
10107  case Intrinsic::x86_avx2_psrai_w:
10108  case Intrinsic::x86_avx2_psrai_d: {
10109    unsigned Opcode;
10110    switch (IntNo) {
10111    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10112    case Intrinsic::x86_sse2_pslli_w:
10113    case Intrinsic::x86_sse2_pslli_d:
10114    case Intrinsic::x86_sse2_pslli_q:
10115    case Intrinsic::x86_avx2_pslli_w:
10116    case Intrinsic::x86_avx2_pslli_d:
10117    case Intrinsic::x86_avx2_pslli_q:
10118      Opcode = X86ISD::VSHLI;
10119      break;
10120    case Intrinsic::x86_sse2_psrli_w:
10121    case Intrinsic::x86_sse2_psrli_d:
10122    case Intrinsic::x86_sse2_psrli_q:
10123    case Intrinsic::x86_avx2_psrli_w:
10124    case Intrinsic::x86_avx2_psrli_d:
10125    case Intrinsic::x86_avx2_psrli_q:
10126      Opcode = X86ISD::VSRLI;
10127      break;
10128    case Intrinsic::x86_sse2_psrai_w:
10129    case Intrinsic::x86_sse2_psrai_d:
10130    case Intrinsic::x86_avx2_psrai_w:
10131    case Intrinsic::x86_avx2_psrai_d:
10132      Opcode = X86ISD::VSRAI;
10133      break;
10134    }
10135    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10136                               Op.getOperand(1), Op.getOperand(2), DAG);
10137  }
10138
10139  case Intrinsic::x86_sse42_pcmpistria128:
10140  case Intrinsic::x86_sse42_pcmpestria128:
10141  case Intrinsic::x86_sse42_pcmpistric128:
10142  case Intrinsic::x86_sse42_pcmpestric128:
10143  case Intrinsic::x86_sse42_pcmpistrio128:
10144  case Intrinsic::x86_sse42_pcmpestrio128:
10145  case Intrinsic::x86_sse42_pcmpistris128:
10146  case Intrinsic::x86_sse42_pcmpestris128:
10147  case Intrinsic::x86_sse42_pcmpistriz128:
10148  case Intrinsic::x86_sse42_pcmpestriz128: {
10149    unsigned Opcode;
10150    unsigned X86CC;
10151    switch (IntNo) {
10152    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10153    case Intrinsic::x86_sse42_pcmpistria128:
10154      Opcode = X86ISD::PCMPISTRI;
10155      X86CC = X86::COND_A;
10156      break;
10157    case Intrinsic::x86_sse42_pcmpestria128:
10158      Opcode = X86ISD::PCMPESTRI;
10159      X86CC = X86::COND_A;
10160      break;
10161    case Intrinsic::x86_sse42_pcmpistric128:
10162      Opcode = X86ISD::PCMPISTRI;
10163      X86CC = X86::COND_B;
10164      break;
10165    case Intrinsic::x86_sse42_pcmpestric128:
10166      Opcode = X86ISD::PCMPESTRI;
10167      X86CC = X86::COND_B;
10168      break;
10169    case Intrinsic::x86_sse42_pcmpistrio128:
10170      Opcode = X86ISD::PCMPISTRI;
10171      X86CC = X86::COND_O;
10172      break;
10173    case Intrinsic::x86_sse42_pcmpestrio128:
10174      Opcode = X86ISD::PCMPESTRI;
10175      X86CC = X86::COND_O;
10176      break;
10177    case Intrinsic::x86_sse42_pcmpistris128:
10178      Opcode = X86ISD::PCMPISTRI;
10179      X86CC = X86::COND_S;
10180      break;
10181    case Intrinsic::x86_sse42_pcmpestris128:
10182      Opcode = X86ISD::PCMPESTRI;
10183      X86CC = X86::COND_S;
10184      break;
10185    case Intrinsic::x86_sse42_pcmpistriz128:
10186      Opcode = X86ISD::PCMPISTRI;
10187      X86CC = X86::COND_E;
10188      break;
10189    case Intrinsic::x86_sse42_pcmpestriz128:
10190      Opcode = X86ISD::PCMPESTRI;
10191      X86CC = X86::COND_E;
10192      break;
10193    }
10194    SmallVector<SDValue, 5> NewOps;
10195    NewOps.append(Op->op_begin()+1, Op->op_end());
10196    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10197    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10198    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10199                                DAG.getConstant(X86CC, MVT::i8),
10200                                SDValue(PCMP.getNode(), 1));
10201    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10202  }
10203
10204  case Intrinsic::x86_sse42_pcmpistri128:
10205  case Intrinsic::x86_sse42_pcmpestri128: {
10206    unsigned Opcode;
10207    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10208      Opcode = X86ISD::PCMPISTRI;
10209    else
10210      Opcode = X86ISD::PCMPESTRI;
10211
10212    SmallVector<SDValue, 5> NewOps;
10213    NewOps.append(Op->op_begin()+1, Op->op_end());
10214    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10215    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10216  }
10217  case Intrinsic::x86_fma_vfmadd_ps:
10218  case Intrinsic::x86_fma_vfmadd_pd:
10219  case Intrinsic::x86_fma_vfmsub_ps:
10220  case Intrinsic::x86_fma_vfmsub_pd:
10221  case Intrinsic::x86_fma_vfnmadd_ps:
10222  case Intrinsic::x86_fma_vfnmadd_pd:
10223  case Intrinsic::x86_fma_vfnmsub_ps:
10224  case Intrinsic::x86_fma_vfnmsub_pd:
10225  case Intrinsic::x86_fma_vfmaddsub_ps:
10226  case Intrinsic::x86_fma_vfmaddsub_pd:
10227  case Intrinsic::x86_fma_vfmsubadd_ps:
10228  case Intrinsic::x86_fma_vfmsubadd_pd:
10229  case Intrinsic::x86_fma_vfmadd_ps_256:
10230  case Intrinsic::x86_fma_vfmadd_pd_256:
10231  case Intrinsic::x86_fma_vfmsub_ps_256:
10232  case Intrinsic::x86_fma_vfmsub_pd_256:
10233  case Intrinsic::x86_fma_vfnmadd_ps_256:
10234  case Intrinsic::x86_fma_vfnmadd_pd_256:
10235  case Intrinsic::x86_fma_vfnmsub_ps_256:
10236  case Intrinsic::x86_fma_vfnmsub_pd_256:
10237  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10238  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10239  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10240  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10241    unsigned Opc;
10242    switch (IntNo) {
10243    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10244    case Intrinsic::x86_fma_vfmadd_ps:
10245    case Intrinsic::x86_fma_vfmadd_pd:
10246    case Intrinsic::x86_fma_vfmadd_ps_256:
10247    case Intrinsic::x86_fma_vfmadd_pd_256:
10248      Opc = X86ISD::FMADD;
10249      break;
10250    case Intrinsic::x86_fma_vfmsub_ps:
10251    case Intrinsic::x86_fma_vfmsub_pd:
10252    case Intrinsic::x86_fma_vfmsub_ps_256:
10253    case Intrinsic::x86_fma_vfmsub_pd_256:
10254      Opc = X86ISD::FMSUB;
10255      break;
10256    case Intrinsic::x86_fma_vfnmadd_ps:
10257    case Intrinsic::x86_fma_vfnmadd_pd:
10258    case Intrinsic::x86_fma_vfnmadd_ps_256:
10259    case Intrinsic::x86_fma_vfnmadd_pd_256:
10260      Opc = X86ISD::FNMADD;
10261      break;
10262    case Intrinsic::x86_fma_vfnmsub_ps:
10263    case Intrinsic::x86_fma_vfnmsub_pd:
10264    case Intrinsic::x86_fma_vfnmsub_ps_256:
10265    case Intrinsic::x86_fma_vfnmsub_pd_256:
10266      Opc = X86ISD::FNMSUB;
10267      break;
10268    case Intrinsic::x86_fma_vfmaddsub_ps:
10269    case Intrinsic::x86_fma_vfmaddsub_pd:
10270    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10271    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10272      Opc = X86ISD::FMADDSUB;
10273      break;
10274    case Intrinsic::x86_fma_vfmsubadd_ps:
10275    case Intrinsic::x86_fma_vfmsubadd_pd:
10276    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10277    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10278      Opc = X86ISD::FMSUBADD;
10279      break;
10280    }
10281
10282    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10283                       Op.getOperand(2), Op.getOperand(3));
10284  }
10285  }
10286}
10287
10288static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10289  DebugLoc dl = Op.getDebugLoc();
10290  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10291  switch (IntNo) {
10292  default: return SDValue();    // Don't custom lower most intrinsics.
10293
10294  // RDRAND intrinsics.
10295  case Intrinsic::x86_rdrand_16:
10296  case Intrinsic::x86_rdrand_32:
10297  case Intrinsic::x86_rdrand_64: {
10298    // Emit the node with the right value type.
10299    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10300    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10301
10302    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10303    // return the value from Rand, which is always 0, casted to i32.
10304    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10305                      DAG.getConstant(1, Op->getValueType(1)),
10306                      DAG.getConstant(X86::COND_B, MVT::i32),
10307                      SDValue(Result.getNode(), 1) };
10308    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10309                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10310                                  Ops, 4);
10311
10312    // Return { result, isValid, chain }.
10313    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10314                       SDValue(Result.getNode(), 2));
10315  }
10316  }
10317}
10318
10319SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10320                                           SelectionDAG &DAG) const {
10321  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10322  MFI->setReturnAddressIsTaken(true);
10323
10324  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10325  DebugLoc dl = Op.getDebugLoc();
10326
10327  if (Depth > 0) {
10328    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10329    SDValue Offset =
10330      DAG.getConstant(TD->getPointerSize(),
10331                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
10332    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10333                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
10334                                   FrameAddr, Offset),
10335                       MachinePointerInfo(), false, false, false, 0);
10336  }
10337
10338  // Just load the return address.
10339  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10340  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10341                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10342}
10343
10344SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10345  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10346  MFI->setFrameAddressIsTaken(true);
10347
10348  EVT VT = Op.getValueType();
10349  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10350  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10351  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10352  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10353  while (Depth--)
10354    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10355                            MachinePointerInfo(),
10356                            false, false, false, 0);
10357  return FrameAddr;
10358}
10359
10360SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10361                                                     SelectionDAG &DAG) const {
10362  return DAG.getIntPtrConstant(2*TD->getPointerSize());
10363}
10364
10365SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10366  SDValue Chain     = Op.getOperand(0);
10367  SDValue Offset    = Op.getOperand(1);
10368  SDValue Handler   = Op.getOperand(2);
10369  DebugLoc dl       = Op.getDebugLoc();
10370
10371  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10372                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10373                                     getPointerTy());
10374  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10375
10376  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10377                                  DAG.getIntPtrConstant(TD->getPointerSize()));
10378  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10379  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10380                       false, false, 0);
10381  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10382
10383  return DAG.getNode(X86ISD::EH_RETURN, dl,
10384                     MVT::Other,
10385                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10386}
10387
10388static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10389  return Op.getOperand(0);
10390}
10391
10392SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10393                                                SelectionDAG &DAG) const {
10394  SDValue Root = Op.getOperand(0);
10395  SDValue Trmp = Op.getOperand(1); // trampoline
10396  SDValue FPtr = Op.getOperand(2); // nested function
10397  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10398  DebugLoc dl  = Op.getDebugLoc();
10399
10400  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10401
10402  if (Subtarget->is64Bit()) {
10403    SDValue OutChains[6];
10404
10405    // Large code-model.
10406    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10407    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10408
10409    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
10410    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
10411
10412    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10413
10414    // Load the pointer to the nested function into R11.
10415    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10416    SDValue Addr = Trmp;
10417    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10418                                Addr, MachinePointerInfo(TrmpAddr),
10419                                false, false, 0);
10420
10421    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10422                       DAG.getConstant(2, MVT::i64));
10423    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10424                                MachinePointerInfo(TrmpAddr, 2),
10425                                false, false, 2);
10426
10427    // Load the 'nest' parameter value into R10.
10428    // R10 is specified in X86CallingConv.td
10429    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10430    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10431                       DAG.getConstant(10, MVT::i64));
10432    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10433                                Addr, MachinePointerInfo(TrmpAddr, 10),
10434                                false, false, 0);
10435
10436    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10437                       DAG.getConstant(12, MVT::i64));
10438    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10439                                MachinePointerInfo(TrmpAddr, 12),
10440                                false, false, 2);
10441
10442    // Jump to the nested function.
10443    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10444    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10445                       DAG.getConstant(20, MVT::i64));
10446    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10447                                Addr, MachinePointerInfo(TrmpAddr, 20),
10448                                false, false, 0);
10449
10450    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10451    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10452                       DAG.getConstant(22, MVT::i64));
10453    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10454                                MachinePointerInfo(TrmpAddr, 22),
10455                                false, false, 0);
10456
10457    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10458  } else {
10459    const Function *Func =
10460      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10461    CallingConv::ID CC = Func->getCallingConv();
10462    unsigned NestReg;
10463
10464    switch (CC) {
10465    default:
10466      llvm_unreachable("Unsupported calling convention");
10467    case CallingConv::C:
10468    case CallingConv::X86_StdCall: {
10469      // Pass 'nest' parameter in ECX.
10470      // Must be kept in sync with X86CallingConv.td
10471      NestReg = X86::ECX;
10472
10473      // Check that ECX wasn't needed by an 'inreg' parameter.
10474      FunctionType *FTy = Func->getFunctionType();
10475      const AttrListPtr &Attrs = Func->getAttributes();
10476
10477      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10478        unsigned InRegCount = 0;
10479        unsigned Idx = 1;
10480
10481        for (FunctionType::param_iterator I = FTy->param_begin(),
10482             E = FTy->param_end(); I != E; ++I, ++Idx)
10483          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10484            // FIXME: should only count parameters that are lowered to integers.
10485            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10486
10487        if (InRegCount > 2) {
10488          report_fatal_error("Nest register in use - reduce number of inreg"
10489                             " parameters!");
10490        }
10491      }
10492      break;
10493    }
10494    case CallingConv::X86_FastCall:
10495    case CallingConv::X86_ThisCall:
10496    case CallingConv::Fast:
10497      // Pass 'nest' parameter in EAX.
10498      // Must be kept in sync with X86CallingConv.td
10499      NestReg = X86::EAX;
10500      break;
10501    }
10502
10503    SDValue OutChains[4];
10504    SDValue Addr, Disp;
10505
10506    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10507                       DAG.getConstant(10, MVT::i32));
10508    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10509
10510    // This is storing the opcode for MOV32ri.
10511    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10512    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10513    OutChains[0] = DAG.getStore(Root, dl,
10514                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10515                                Trmp, MachinePointerInfo(TrmpAddr),
10516                                false, false, 0);
10517
10518    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10519                       DAG.getConstant(1, MVT::i32));
10520    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10521                                MachinePointerInfo(TrmpAddr, 1),
10522                                false, false, 1);
10523
10524    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10525    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10526                       DAG.getConstant(5, MVT::i32));
10527    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10528                                MachinePointerInfo(TrmpAddr, 5),
10529                                false, false, 1);
10530
10531    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10532                       DAG.getConstant(6, MVT::i32));
10533    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10534                                MachinePointerInfo(TrmpAddr, 6),
10535                                false, false, 1);
10536
10537    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10538  }
10539}
10540
10541SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10542                                            SelectionDAG &DAG) const {
10543  /*
10544   The rounding mode is in bits 11:10 of FPSR, and has the following
10545   settings:
10546     00 Round to nearest
10547     01 Round to -inf
10548     10 Round to +inf
10549     11 Round to 0
10550
10551  FLT_ROUNDS, on the other hand, expects the following:
10552    -1 Undefined
10553     0 Round to 0
10554     1 Round to nearest
10555     2 Round to +inf
10556     3 Round to -inf
10557
10558  To perform the conversion, we do:
10559    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10560  */
10561
10562  MachineFunction &MF = DAG.getMachineFunction();
10563  const TargetMachine &TM = MF.getTarget();
10564  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10565  unsigned StackAlignment = TFI.getStackAlignment();
10566  EVT VT = Op.getValueType();
10567  DebugLoc DL = Op.getDebugLoc();
10568
10569  // Save FP Control Word to stack slot
10570  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10571  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10572
10573
10574  MachineMemOperand *MMO =
10575   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10576                           MachineMemOperand::MOStore, 2, 2);
10577
10578  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10579  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10580                                          DAG.getVTList(MVT::Other),
10581                                          Ops, 2, MVT::i16, MMO);
10582
10583  // Load FP Control Word from stack slot
10584  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10585                            MachinePointerInfo(), false, false, false, 0);
10586
10587  // Transform as necessary
10588  SDValue CWD1 =
10589    DAG.getNode(ISD::SRL, DL, MVT::i16,
10590                DAG.getNode(ISD::AND, DL, MVT::i16,
10591                            CWD, DAG.getConstant(0x800, MVT::i16)),
10592                DAG.getConstant(11, MVT::i8));
10593  SDValue CWD2 =
10594    DAG.getNode(ISD::SRL, DL, MVT::i16,
10595                DAG.getNode(ISD::AND, DL, MVT::i16,
10596                            CWD, DAG.getConstant(0x400, MVT::i16)),
10597                DAG.getConstant(9, MVT::i8));
10598
10599  SDValue RetVal =
10600    DAG.getNode(ISD::AND, DL, MVT::i16,
10601                DAG.getNode(ISD::ADD, DL, MVT::i16,
10602                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10603                            DAG.getConstant(1, MVT::i16)),
10604                DAG.getConstant(3, MVT::i16));
10605
10606
10607  return DAG.getNode((VT.getSizeInBits() < 16 ?
10608                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10609}
10610
10611static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
10612  EVT VT = Op.getValueType();
10613  EVT OpVT = VT;
10614  unsigned NumBits = VT.getSizeInBits();
10615  DebugLoc dl = Op.getDebugLoc();
10616
10617  Op = Op.getOperand(0);
10618  if (VT == MVT::i8) {
10619    // Zero extend to i32 since there is not an i8 bsr.
10620    OpVT = MVT::i32;
10621    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10622  }
10623
10624  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10625  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10626  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10627
10628  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10629  SDValue Ops[] = {
10630    Op,
10631    DAG.getConstant(NumBits+NumBits-1, OpVT),
10632    DAG.getConstant(X86::COND_E, MVT::i8),
10633    Op.getValue(1)
10634  };
10635  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10636
10637  // Finally xor with NumBits-1.
10638  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10639
10640  if (VT == MVT::i8)
10641    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10642  return Op;
10643}
10644
10645static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
10646  EVT VT = Op.getValueType();
10647  EVT OpVT = VT;
10648  unsigned NumBits = VT.getSizeInBits();
10649  DebugLoc dl = Op.getDebugLoc();
10650
10651  Op = Op.getOperand(0);
10652  if (VT == MVT::i8) {
10653    // Zero extend to i32 since there is not an i8 bsr.
10654    OpVT = MVT::i32;
10655    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10656  }
10657
10658  // Issue a bsr (scan bits in reverse).
10659  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10660  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10661
10662  // And xor with NumBits-1.
10663  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10664
10665  if (VT == MVT::i8)
10666    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10667  return Op;
10668}
10669
10670static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
10671  EVT VT = Op.getValueType();
10672  unsigned NumBits = VT.getSizeInBits();
10673  DebugLoc dl = Op.getDebugLoc();
10674  Op = Op.getOperand(0);
10675
10676  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10677  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10678  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10679
10680  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10681  SDValue Ops[] = {
10682    Op,
10683    DAG.getConstant(NumBits, VT),
10684    DAG.getConstant(X86::COND_E, MVT::i8),
10685    Op.getValue(1)
10686  };
10687  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10688}
10689
10690// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10691// ones, and then concatenate the result back.
10692static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10693  EVT VT = Op.getValueType();
10694
10695  assert(VT.is256BitVector() && VT.isInteger() &&
10696         "Unsupported value type for operation");
10697
10698  unsigned NumElems = VT.getVectorNumElements();
10699  DebugLoc dl = Op.getDebugLoc();
10700
10701  // Extract the LHS vectors
10702  SDValue LHS = Op.getOperand(0);
10703  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10704  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10705
10706  // Extract the RHS vectors
10707  SDValue RHS = Op.getOperand(1);
10708  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10709  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10710
10711  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10712  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10713
10714  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10715                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10716                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10717}
10718
10719static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
10720  assert(Op.getValueType().is256BitVector() &&
10721         Op.getValueType().isInteger() &&
10722         "Only handle AVX 256-bit vector integer operation");
10723  return Lower256IntArith(Op, DAG);
10724}
10725
10726static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
10727  assert(Op.getValueType().is256BitVector() &&
10728         Op.getValueType().isInteger() &&
10729         "Only handle AVX 256-bit vector integer operation");
10730  return Lower256IntArith(Op, DAG);
10731}
10732
10733static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
10734                        SelectionDAG &DAG) {
10735  EVT VT = Op.getValueType();
10736
10737  // Decompose 256-bit ops into smaller 128-bit ops.
10738  if (VT.is256BitVector() && !Subtarget->hasAVX2())
10739    return Lower256IntArith(Op, DAG);
10740
10741  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10742         "Only know how to lower V2I64/V4I64 multiply");
10743
10744  DebugLoc dl = Op.getDebugLoc();
10745
10746  //  Ahi = psrlqi(a, 32);
10747  //  Bhi = psrlqi(b, 32);
10748  //
10749  //  AloBlo = pmuludq(a, b);
10750  //  AloBhi = pmuludq(a, Bhi);
10751  //  AhiBlo = pmuludq(Ahi, b);
10752
10753  //  AloBhi = psllqi(AloBhi, 32);
10754  //  AhiBlo = psllqi(AhiBlo, 32);
10755  //  return AloBlo + AloBhi + AhiBlo;
10756
10757  SDValue A = Op.getOperand(0);
10758  SDValue B = Op.getOperand(1);
10759
10760  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10761
10762  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10763  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10764
10765  // Bit cast to 32-bit vectors for MULUDQ
10766  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10767  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10768  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10769  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10770  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10771
10772  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10773  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10774  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10775
10776  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10777  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10778
10779  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10780  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10781}
10782
10783SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10784
10785  EVT VT = Op.getValueType();
10786  DebugLoc dl = Op.getDebugLoc();
10787  SDValue R = Op.getOperand(0);
10788  SDValue Amt = Op.getOperand(1);
10789  LLVMContext *Context = DAG.getContext();
10790
10791  if (!Subtarget->hasSSE2())
10792    return SDValue();
10793
10794  // Optimize shl/srl/sra with constant shift amount.
10795  if (isSplatVector(Amt.getNode())) {
10796    SDValue SclrAmt = Amt->getOperand(0);
10797    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10798      uint64_t ShiftAmt = C->getZExtValue();
10799
10800      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10801          (Subtarget->hasAVX2() &&
10802           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10803        if (Op.getOpcode() == ISD::SHL)
10804          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10805                             DAG.getConstant(ShiftAmt, MVT::i32));
10806        if (Op.getOpcode() == ISD::SRL)
10807          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10808                             DAG.getConstant(ShiftAmt, MVT::i32));
10809        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10810          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10811                             DAG.getConstant(ShiftAmt, MVT::i32));
10812      }
10813
10814      if (VT == MVT::v16i8) {
10815        if (Op.getOpcode() == ISD::SHL) {
10816          // Make a large shift.
10817          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10818                                    DAG.getConstant(ShiftAmt, MVT::i32));
10819          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10820          // Zero out the rightmost bits.
10821          SmallVector<SDValue, 16> V(16,
10822                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10823                                                     MVT::i8));
10824          return DAG.getNode(ISD::AND, dl, VT, SHL,
10825                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10826        }
10827        if (Op.getOpcode() == ISD::SRL) {
10828          // Make a large shift.
10829          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10830                                    DAG.getConstant(ShiftAmt, MVT::i32));
10831          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10832          // Zero out the leftmost bits.
10833          SmallVector<SDValue, 16> V(16,
10834                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10835                                                     MVT::i8));
10836          return DAG.getNode(ISD::AND, dl, VT, SRL,
10837                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10838        }
10839        if (Op.getOpcode() == ISD::SRA) {
10840          if (ShiftAmt == 7) {
10841            // R s>> 7  ===  R s< 0
10842            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10843            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10844          }
10845
10846          // R s>> a === ((R u>> a) ^ m) - m
10847          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10848          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10849                                                         MVT::i8));
10850          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10851          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10852          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10853          return Res;
10854        }
10855        llvm_unreachable("Unknown shift opcode.");
10856      }
10857
10858      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10859        if (Op.getOpcode() == ISD::SHL) {
10860          // Make a large shift.
10861          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10862                                    DAG.getConstant(ShiftAmt, MVT::i32));
10863          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10864          // Zero out the rightmost bits.
10865          SmallVector<SDValue, 32> V(32,
10866                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10867                                                     MVT::i8));
10868          return DAG.getNode(ISD::AND, dl, VT, SHL,
10869                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10870        }
10871        if (Op.getOpcode() == ISD::SRL) {
10872          // Make a large shift.
10873          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10874                                    DAG.getConstant(ShiftAmt, MVT::i32));
10875          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10876          // Zero out the leftmost bits.
10877          SmallVector<SDValue, 32> V(32,
10878                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10879                                                     MVT::i8));
10880          return DAG.getNode(ISD::AND, dl, VT, SRL,
10881                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10882        }
10883        if (Op.getOpcode() == ISD::SRA) {
10884          if (ShiftAmt == 7) {
10885            // R s>> 7  ===  R s< 0
10886            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10887            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10888          }
10889
10890          // R s>> a === ((R u>> a) ^ m) - m
10891          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10892          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10893                                                         MVT::i8));
10894          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10895          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10896          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10897          return Res;
10898        }
10899        llvm_unreachable("Unknown shift opcode.");
10900      }
10901    }
10902  }
10903
10904  // Lower SHL with variable shift amount.
10905  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10906    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10907                     DAG.getConstant(23, MVT::i32));
10908
10909    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10910    Constant *C = ConstantDataVector::get(*Context, CV);
10911    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10912    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10913                                 MachinePointerInfo::getConstantPool(),
10914                                 false, false, false, 16);
10915
10916    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10917    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10918    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10919    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10920  }
10921  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10922    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10923
10924    // a = a << 5;
10925    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10926                     DAG.getConstant(5, MVT::i32));
10927    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10928
10929    // Turn 'a' into a mask suitable for VSELECT
10930    SDValue VSelM = DAG.getConstant(0x80, VT);
10931    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10932    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10933
10934    SDValue CM1 = DAG.getConstant(0x0f, VT);
10935    SDValue CM2 = DAG.getConstant(0x3f, VT);
10936
10937    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10938    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10939    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10940                            DAG.getConstant(4, MVT::i32), DAG);
10941    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10942    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10943
10944    // a += a
10945    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10946    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10947    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10948
10949    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10950    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10951    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10952                            DAG.getConstant(2, MVT::i32), DAG);
10953    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10954    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10955
10956    // a += a
10957    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10958    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10959    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10960
10961    // return VSELECT(r, r+r, a);
10962    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10963                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10964    return R;
10965  }
10966
10967  // Decompose 256-bit shifts into smaller 128-bit shifts.
10968  if (VT.is256BitVector()) {
10969    unsigned NumElems = VT.getVectorNumElements();
10970    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10971    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10972
10973    // Extract the two vectors
10974    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10975    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10976
10977    // Recreate the shift amount vectors
10978    SDValue Amt1, Amt2;
10979    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10980      // Constant shift amount
10981      SmallVector<SDValue, 4> Amt1Csts;
10982      SmallVector<SDValue, 4> Amt2Csts;
10983      for (unsigned i = 0; i != NumElems/2; ++i)
10984        Amt1Csts.push_back(Amt->getOperand(i));
10985      for (unsigned i = NumElems/2; i != NumElems; ++i)
10986        Amt2Csts.push_back(Amt->getOperand(i));
10987
10988      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10989                                 &Amt1Csts[0], NumElems/2);
10990      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10991                                 &Amt2Csts[0], NumElems/2);
10992    } else {
10993      // Variable shift amount
10994      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10995      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10996    }
10997
10998    // Issue new vector shifts for the smaller types
10999    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11000    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11001
11002    // Concatenate the result back
11003    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11004  }
11005
11006  return SDValue();
11007}
11008
11009static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11010  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11011  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11012  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11013  // has only one use.
11014  SDNode *N = Op.getNode();
11015  SDValue LHS = N->getOperand(0);
11016  SDValue RHS = N->getOperand(1);
11017  unsigned BaseOp = 0;
11018  unsigned Cond = 0;
11019  DebugLoc DL = Op.getDebugLoc();
11020  switch (Op.getOpcode()) {
11021  default: llvm_unreachable("Unknown ovf instruction!");
11022  case ISD::SADDO:
11023    // A subtract of one will be selected as a INC. Note that INC doesn't
11024    // set CF, so we can't do this for UADDO.
11025    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11026      if (C->isOne()) {
11027        BaseOp = X86ISD::INC;
11028        Cond = X86::COND_O;
11029        break;
11030      }
11031    BaseOp = X86ISD::ADD;
11032    Cond = X86::COND_O;
11033    break;
11034  case ISD::UADDO:
11035    BaseOp = X86ISD::ADD;
11036    Cond = X86::COND_B;
11037    break;
11038  case ISD::SSUBO:
11039    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11040    // set CF, so we can't do this for USUBO.
11041    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11042      if (C->isOne()) {
11043        BaseOp = X86ISD::DEC;
11044        Cond = X86::COND_O;
11045        break;
11046      }
11047    BaseOp = X86ISD::SUB;
11048    Cond = X86::COND_O;
11049    break;
11050  case ISD::USUBO:
11051    BaseOp = X86ISD::SUB;
11052    Cond = X86::COND_B;
11053    break;
11054  case ISD::SMULO:
11055    BaseOp = X86ISD::SMUL;
11056    Cond = X86::COND_O;
11057    break;
11058  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11059    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11060                                 MVT::i32);
11061    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11062
11063    SDValue SetCC =
11064      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11065                  DAG.getConstant(X86::COND_O, MVT::i32),
11066                  SDValue(Sum.getNode(), 2));
11067
11068    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11069  }
11070  }
11071
11072  // Also sets EFLAGS.
11073  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11074  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11075
11076  SDValue SetCC =
11077    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11078                DAG.getConstant(Cond, MVT::i32),
11079                SDValue(Sum.getNode(), 1));
11080
11081  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11082}
11083
11084SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11085                                                  SelectionDAG &DAG) const {
11086  DebugLoc dl = Op.getDebugLoc();
11087  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11088  EVT VT = Op.getValueType();
11089
11090  if (!Subtarget->hasSSE2() || !VT.isVector())
11091    return SDValue();
11092
11093  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11094                      ExtraVT.getScalarType().getSizeInBits();
11095  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11096
11097  switch (VT.getSimpleVT().SimpleTy) {
11098    default: return SDValue();
11099    case MVT::v8i32:
11100    case MVT::v16i16:
11101      if (!Subtarget->hasAVX())
11102        return SDValue();
11103      if (!Subtarget->hasAVX2()) {
11104        // needs to be split
11105        unsigned NumElems = VT.getVectorNumElements();
11106
11107        // Extract the LHS vectors
11108        SDValue LHS = Op.getOperand(0);
11109        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11110        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11111
11112        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11113        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11114
11115        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11116        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11117        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11118                                   ExtraNumElems/2);
11119        SDValue Extra = DAG.getValueType(ExtraVT);
11120
11121        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11122        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11123
11124        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11125      }
11126      // fall through
11127    case MVT::v4i32:
11128    case MVT::v8i16: {
11129      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11130                                         Op.getOperand(0), ShAmt, DAG);
11131      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11132    }
11133  }
11134}
11135
11136
11137static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11138                              SelectionDAG &DAG) {
11139  DebugLoc dl = Op.getDebugLoc();
11140
11141  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11142  // There isn't any reason to disable it if the target processor supports it.
11143  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11144    SDValue Chain = Op.getOperand(0);
11145    SDValue Zero = DAG.getConstant(0, MVT::i32);
11146    SDValue Ops[] = {
11147      DAG.getRegister(X86::ESP, MVT::i32), // Base
11148      DAG.getTargetConstant(1, MVT::i8),   // Scale
11149      DAG.getRegister(0, MVT::i32),        // Index
11150      DAG.getTargetConstant(0, MVT::i32),  // Disp
11151      DAG.getRegister(0, MVT::i32),        // Segment.
11152      Zero,
11153      Chain
11154    };
11155    SDNode *Res =
11156      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11157                          array_lengthof(Ops));
11158    return SDValue(Res, 0);
11159  }
11160
11161  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11162  if (!isDev)
11163    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11164
11165  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11166  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11167  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11168  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11169
11170  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11171  if (!Op1 && !Op2 && !Op3 && Op4)
11172    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11173
11174  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11175  if (Op1 && !Op2 && !Op3 && !Op4)
11176    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11177
11178  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11179  //           (MFENCE)>;
11180  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11181}
11182
11183static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11184                                 SelectionDAG &DAG) {
11185  DebugLoc dl = Op.getDebugLoc();
11186  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11187    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11188  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11189    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11190
11191  // The only fence that needs an instruction is a sequentially-consistent
11192  // cross-thread fence.
11193  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11194    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11195    // no-sse2). There isn't any reason to disable it if the target processor
11196    // supports it.
11197    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11198      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11199
11200    SDValue Chain = Op.getOperand(0);
11201    SDValue Zero = DAG.getConstant(0, MVT::i32);
11202    SDValue Ops[] = {
11203      DAG.getRegister(X86::ESP, MVT::i32), // Base
11204      DAG.getTargetConstant(1, MVT::i8),   // Scale
11205      DAG.getRegister(0, MVT::i32),        // Index
11206      DAG.getTargetConstant(0, MVT::i32),  // Disp
11207      DAG.getRegister(0, MVT::i32),        // Segment.
11208      Zero,
11209      Chain
11210    };
11211    SDNode *Res =
11212      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11213                         array_lengthof(Ops));
11214    return SDValue(Res, 0);
11215  }
11216
11217  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11218  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11219}
11220
11221
11222static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11223                             SelectionDAG &DAG) {
11224  EVT T = Op.getValueType();
11225  DebugLoc DL = Op.getDebugLoc();
11226  unsigned Reg = 0;
11227  unsigned size = 0;
11228  switch(T.getSimpleVT().SimpleTy) {
11229  default: llvm_unreachable("Invalid value type!");
11230  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11231  case MVT::i16: Reg = X86::AX;  size = 2; break;
11232  case MVT::i32: Reg = X86::EAX; size = 4; break;
11233  case MVT::i64:
11234    assert(Subtarget->is64Bit() && "Node not type legal!");
11235    Reg = X86::RAX; size = 8;
11236    break;
11237  }
11238  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11239                                    Op.getOperand(2), SDValue());
11240  SDValue Ops[] = { cpIn.getValue(0),
11241                    Op.getOperand(1),
11242                    Op.getOperand(3),
11243                    DAG.getTargetConstant(size, MVT::i8),
11244                    cpIn.getValue(1) };
11245  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11246  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11247  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11248                                           Ops, 5, T, MMO);
11249  SDValue cpOut =
11250    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11251  return cpOut;
11252}
11253
11254static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11255                                     SelectionDAG &DAG) {
11256  assert(Subtarget->is64Bit() && "Result not type legalized?");
11257  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11258  SDValue TheChain = Op.getOperand(0);
11259  DebugLoc dl = Op.getDebugLoc();
11260  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11261  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11262  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11263                                   rax.getValue(2));
11264  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11265                            DAG.getConstant(32, MVT::i8));
11266  SDValue Ops[] = {
11267    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11268    rdx.getValue(1)
11269  };
11270  return DAG.getMergeValues(Ops, 2, dl);
11271}
11272
11273SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11274  EVT SrcVT = Op.getOperand(0).getValueType();
11275  EVT DstVT = Op.getValueType();
11276  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11277         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11278  assert((DstVT == MVT::i64 ||
11279          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11280         "Unexpected custom BITCAST");
11281  // i64 <=> MMX conversions are Legal.
11282  if (SrcVT==MVT::i64 && DstVT.isVector())
11283    return Op;
11284  if (DstVT==MVT::i64 && SrcVT.isVector())
11285    return Op;
11286  // MMX <=> MMX conversions are Legal.
11287  if (SrcVT.isVector() && DstVT.isVector())
11288    return Op;
11289  // All other conversions need to be expanded.
11290  return SDValue();
11291}
11292
11293static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11294  SDNode *Node = Op.getNode();
11295  DebugLoc dl = Node->getDebugLoc();
11296  EVT T = Node->getValueType(0);
11297  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11298                              DAG.getConstant(0, T), Node->getOperand(2));
11299  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11300                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11301                       Node->getOperand(0),
11302                       Node->getOperand(1), negOp,
11303                       cast<AtomicSDNode>(Node)->getSrcValue(),
11304                       cast<AtomicSDNode>(Node)->getAlignment(),
11305                       cast<AtomicSDNode>(Node)->getOrdering(),
11306                       cast<AtomicSDNode>(Node)->getSynchScope());
11307}
11308
11309static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11310  SDNode *Node = Op.getNode();
11311  DebugLoc dl = Node->getDebugLoc();
11312  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11313
11314  // Convert seq_cst store -> xchg
11315  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11316  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11317  //        (The only way to get a 16-byte store is cmpxchg16b)
11318  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11319  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11320      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11321    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11322                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11323                                 Node->getOperand(0),
11324                                 Node->getOperand(1), Node->getOperand(2),
11325                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11326                                 cast<AtomicSDNode>(Node)->getOrdering(),
11327                                 cast<AtomicSDNode>(Node)->getSynchScope());
11328    return Swap.getValue(1);
11329  }
11330  // Other atomic stores have a simple pattern.
11331  return Op;
11332}
11333
11334static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11335  EVT VT = Op.getNode()->getValueType(0);
11336
11337  // Let legalize expand this if it isn't a legal type yet.
11338  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11339    return SDValue();
11340
11341  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11342
11343  unsigned Opc;
11344  bool ExtraOp = false;
11345  switch (Op.getOpcode()) {
11346  default: llvm_unreachable("Invalid code");
11347  case ISD::ADDC: Opc = X86ISD::ADD; break;
11348  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11349  case ISD::SUBC: Opc = X86ISD::SUB; break;
11350  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11351  }
11352
11353  if (!ExtraOp)
11354    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11355                       Op.getOperand(1));
11356  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11357                     Op.getOperand(1), Op.getOperand(2));
11358}
11359
11360/// LowerOperation - Provide custom lowering hooks for some operations.
11361///
11362SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11363  switch (Op.getOpcode()) {
11364  default: llvm_unreachable("Should not custom lower this!");
11365  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11366  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
11367  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
11368  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
11369  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11370  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11371  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11372  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11373  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11374  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11375  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11376  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
11377  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
11378  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11379  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11380  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11381  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11382  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11383  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11384  case ISD::SHL_PARTS:
11385  case ISD::SRA_PARTS:
11386  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11387  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11388  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11389  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11390  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11391  case ISD::FABS:               return LowerFABS(Op, DAG);
11392  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11393  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11394  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11395  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11396  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11397  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11398  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11399  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11400  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11401  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
11402  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11403  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11404  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11405  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11406  case ISD::FRAME_TO_ARGS_OFFSET:
11407                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11408  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11409  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11410  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11411  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11412  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11413  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11414  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11415  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11416  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
11417  case ISD::SRA:
11418  case ISD::SRL:
11419  case ISD::SHL:                return LowerShift(Op, DAG);
11420  case ISD::SADDO:
11421  case ISD::UADDO:
11422  case ISD::SSUBO:
11423  case ISD::USUBO:
11424  case ISD::SMULO:
11425  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11426  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
11427  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11428  case ISD::ADDC:
11429  case ISD::ADDE:
11430  case ISD::SUBC:
11431  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11432  case ISD::ADD:                return LowerADD(Op, DAG);
11433  case ISD::SUB:                return LowerSUB(Op, DAG);
11434  }
11435}
11436
11437static void ReplaceATOMIC_LOAD(SDNode *Node,
11438                                  SmallVectorImpl<SDValue> &Results,
11439                                  SelectionDAG &DAG) {
11440  DebugLoc dl = Node->getDebugLoc();
11441  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11442
11443  // Convert wide load -> cmpxchg8b/cmpxchg16b
11444  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11445  //        (The only way to get a 16-byte load is cmpxchg16b)
11446  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11447  SDValue Zero = DAG.getConstant(0, VT);
11448  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11449                               Node->getOperand(0),
11450                               Node->getOperand(1), Zero, Zero,
11451                               cast<AtomicSDNode>(Node)->getMemOperand(),
11452                               cast<AtomicSDNode>(Node)->getOrdering(),
11453                               cast<AtomicSDNode>(Node)->getSynchScope());
11454  Results.push_back(Swap.getValue(0));
11455  Results.push_back(Swap.getValue(1));
11456}
11457
11458static void
11459ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11460                        SelectionDAG &DAG, unsigned NewOp) {
11461  DebugLoc dl = Node->getDebugLoc();
11462  assert (Node->getValueType(0) == MVT::i64 &&
11463          "Only know how to expand i64 atomics");
11464
11465  SDValue Chain = Node->getOperand(0);
11466  SDValue In1 = Node->getOperand(1);
11467  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11468                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11469  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11470                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11471  SDValue Ops[] = { Chain, In1, In2L, In2H };
11472  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11473  SDValue Result =
11474    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11475                            cast<MemSDNode>(Node)->getMemOperand());
11476  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11477  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11478  Results.push_back(Result.getValue(2));
11479}
11480
11481/// ReplaceNodeResults - Replace a node with an illegal result type
11482/// with a new node built out of custom code.
11483void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11484                                           SmallVectorImpl<SDValue>&Results,
11485                                           SelectionDAG &DAG) const {
11486  DebugLoc dl = N->getDebugLoc();
11487  switch (N->getOpcode()) {
11488  default:
11489    llvm_unreachable("Do not know how to custom type legalize this operation!");
11490  case ISD::SIGN_EXTEND_INREG:
11491  case ISD::ADDC:
11492  case ISD::ADDE:
11493  case ISD::SUBC:
11494  case ISD::SUBE:
11495    // We don't want to expand or promote these.
11496    return;
11497  case ISD::FP_TO_SINT:
11498  case ISD::FP_TO_UINT: {
11499    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11500
11501    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11502      return;
11503
11504    std::pair<SDValue,SDValue> Vals =
11505        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11506    SDValue FIST = Vals.first, StackSlot = Vals.second;
11507    if (FIST.getNode() != 0) {
11508      EVT VT = N->getValueType(0);
11509      // Return a load from the stack slot.
11510      if (StackSlot.getNode() != 0)
11511        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11512                                      MachinePointerInfo(),
11513                                      false, false, false, 0));
11514      else
11515        Results.push_back(FIST);
11516    }
11517    return;
11518  }
11519  case ISD::READCYCLECOUNTER: {
11520    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11521    SDValue TheChain = N->getOperand(0);
11522    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11523    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11524                                     rd.getValue(1));
11525    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11526                                     eax.getValue(2));
11527    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11528    SDValue Ops[] = { eax, edx };
11529    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11530    Results.push_back(edx.getValue(1));
11531    return;
11532  }
11533  case ISD::ATOMIC_CMP_SWAP: {
11534    EVT T = N->getValueType(0);
11535    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11536    bool Regs64bit = T == MVT::i128;
11537    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11538    SDValue cpInL, cpInH;
11539    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11540                        DAG.getConstant(0, HalfT));
11541    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11542                        DAG.getConstant(1, HalfT));
11543    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11544                             Regs64bit ? X86::RAX : X86::EAX,
11545                             cpInL, SDValue());
11546    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11547                             Regs64bit ? X86::RDX : X86::EDX,
11548                             cpInH, cpInL.getValue(1));
11549    SDValue swapInL, swapInH;
11550    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11551                          DAG.getConstant(0, HalfT));
11552    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11553                          DAG.getConstant(1, HalfT));
11554    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11555                               Regs64bit ? X86::RBX : X86::EBX,
11556                               swapInL, cpInH.getValue(1));
11557    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11558                               Regs64bit ? X86::RCX : X86::ECX,
11559                               swapInH, swapInL.getValue(1));
11560    SDValue Ops[] = { swapInH.getValue(0),
11561                      N->getOperand(1),
11562                      swapInH.getValue(1) };
11563    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11564    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11565    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11566                                  X86ISD::LCMPXCHG8_DAG;
11567    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11568                                             Ops, 3, T, MMO);
11569    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11570                                        Regs64bit ? X86::RAX : X86::EAX,
11571                                        HalfT, Result.getValue(1));
11572    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11573                                        Regs64bit ? X86::RDX : X86::EDX,
11574                                        HalfT, cpOutL.getValue(2));
11575    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11576    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11577    Results.push_back(cpOutH.getValue(1));
11578    return;
11579  }
11580  case ISD::ATOMIC_LOAD_ADD:
11581  case ISD::ATOMIC_LOAD_AND:
11582  case ISD::ATOMIC_LOAD_NAND:
11583  case ISD::ATOMIC_LOAD_OR:
11584  case ISD::ATOMIC_LOAD_SUB:
11585  case ISD::ATOMIC_LOAD_XOR:
11586  case ISD::ATOMIC_SWAP: {
11587    unsigned Opc;
11588    switch (N->getOpcode()) {
11589    default: llvm_unreachable("Unexpected opcode");
11590    case ISD::ATOMIC_LOAD_ADD:
11591      Opc = X86ISD::ATOMADD64_DAG;
11592      break;
11593    case ISD::ATOMIC_LOAD_AND:
11594      Opc = X86ISD::ATOMAND64_DAG;
11595      break;
11596    case ISD::ATOMIC_LOAD_NAND:
11597      Opc = X86ISD::ATOMNAND64_DAG;
11598      break;
11599    case ISD::ATOMIC_LOAD_OR:
11600      Opc = X86ISD::ATOMOR64_DAG;
11601      break;
11602    case ISD::ATOMIC_LOAD_SUB:
11603      Opc = X86ISD::ATOMSUB64_DAG;
11604      break;
11605    case ISD::ATOMIC_LOAD_XOR:
11606      Opc = X86ISD::ATOMXOR64_DAG;
11607      break;
11608    case ISD::ATOMIC_SWAP:
11609      Opc = X86ISD::ATOMSWAP64_DAG;
11610      break;
11611    }
11612    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11613    return;
11614  }
11615  case ISD::ATOMIC_LOAD:
11616    ReplaceATOMIC_LOAD(N, Results, DAG);
11617  }
11618}
11619
11620const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11621  switch (Opcode) {
11622  default: return NULL;
11623  case X86ISD::BSF:                return "X86ISD::BSF";
11624  case X86ISD::BSR:                return "X86ISD::BSR";
11625  case X86ISD::SHLD:               return "X86ISD::SHLD";
11626  case X86ISD::SHRD:               return "X86ISD::SHRD";
11627  case X86ISD::FAND:               return "X86ISD::FAND";
11628  case X86ISD::FOR:                return "X86ISD::FOR";
11629  case X86ISD::FXOR:               return "X86ISD::FXOR";
11630  case X86ISD::FSRL:               return "X86ISD::FSRL";
11631  case X86ISD::FILD:               return "X86ISD::FILD";
11632  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11633  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11634  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11635  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11636  case X86ISD::FLD:                return "X86ISD::FLD";
11637  case X86ISD::FST:                return "X86ISD::FST";
11638  case X86ISD::CALL:               return "X86ISD::CALL";
11639  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11640  case X86ISD::BT:                 return "X86ISD::BT";
11641  case X86ISD::CMP:                return "X86ISD::CMP";
11642  case X86ISD::COMI:               return "X86ISD::COMI";
11643  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11644  case X86ISD::SETCC:              return "X86ISD::SETCC";
11645  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11646  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11647  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11648  case X86ISD::CMOV:               return "X86ISD::CMOV";
11649  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11650  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11651  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11652  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11653  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11654  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11655  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11656  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11657  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11658  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11659  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11660  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11661  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11662  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11663  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11664  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11665  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11666  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11667  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11668  case X86ISD::HADD:               return "X86ISD::HADD";
11669  case X86ISD::HSUB:               return "X86ISD::HSUB";
11670  case X86ISD::FHADD:              return "X86ISD::FHADD";
11671  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11672  case X86ISD::FMAX:               return "X86ISD::FMAX";
11673  case X86ISD::FMIN:               return "X86ISD::FMIN";
11674  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11675  case X86ISD::FMINC:              return "X86ISD::FMINC";
11676  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11677  case X86ISD::FRCP:               return "X86ISD::FRCP";
11678  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11679  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11680  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11681  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11682  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11683  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11684  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11685  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11686  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11687  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11688  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11689  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11690  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11691  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11692  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11693  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11694  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11695  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11696  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11697  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11698  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11699  case X86ISD::VSHL:               return "X86ISD::VSHL";
11700  case X86ISD::VSRL:               return "X86ISD::VSRL";
11701  case X86ISD::VSRA:               return "X86ISD::VSRA";
11702  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11703  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11704  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11705  case X86ISD::CMPP:               return "X86ISD::CMPP";
11706  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11707  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11708  case X86ISD::ADD:                return "X86ISD::ADD";
11709  case X86ISD::SUB:                return "X86ISD::SUB";
11710  case X86ISD::ADC:                return "X86ISD::ADC";
11711  case X86ISD::SBB:                return "X86ISD::SBB";
11712  case X86ISD::SMUL:               return "X86ISD::SMUL";
11713  case X86ISD::UMUL:               return "X86ISD::UMUL";
11714  case X86ISD::INC:                return "X86ISD::INC";
11715  case X86ISD::DEC:                return "X86ISD::DEC";
11716  case X86ISD::OR:                 return "X86ISD::OR";
11717  case X86ISD::XOR:                return "X86ISD::XOR";
11718  case X86ISD::AND:                return "X86ISD::AND";
11719  case X86ISD::ANDN:               return "X86ISD::ANDN";
11720  case X86ISD::BLSI:               return "X86ISD::BLSI";
11721  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11722  case X86ISD::BLSR:               return "X86ISD::BLSR";
11723  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11724  case X86ISD::PTEST:              return "X86ISD::PTEST";
11725  case X86ISD::TESTP:              return "X86ISD::TESTP";
11726  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11727  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11728  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11729  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11730  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11731  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11732  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11733  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11734  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11735  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11736  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11737  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11738  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11739  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11740  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11741  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11742  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11743  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11744  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11745  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11746  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11747  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11748  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11749  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11750  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11751  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11752  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11753  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11754  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11755  case X86ISD::SAHF:               return "X86ISD::SAHF";
11756  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11757  case X86ISD::FMADD:              return "X86ISD::FMADD";
11758  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
11759  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
11760  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
11761  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
11762  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
11763  }
11764}
11765
11766// isLegalAddressingMode - Return true if the addressing mode represented
11767// by AM is legal for this target, for a load/store of the specified type.
11768bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11769                                              Type *Ty) const {
11770  // X86 supports extremely general addressing modes.
11771  CodeModel::Model M = getTargetMachine().getCodeModel();
11772  Reloc::Model R = getTargetMachine().getRelocationModel();
11773
11774  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11775  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11776    return false;
11777
11778  if (AM.BaseGV) {
11779    unsigned GVFlags =
11780      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11781
11782    // If a reference to this global requires an extra load, we can't fold it.
11783    if (isGlobalStubReference(GVFlags))
11784      return false;
11785
11786    // If BaseGV requires a register for the PIC base, we cannot also have a
11787    // BaseReg specified.
11788    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11789      return false;
11790
11791    // If lower 4G is not available, then we must use rip-relative addressing.
11792    if ((M != CodeModel::Small || R != Reloc::Static) &&
11793        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11794      return false;
11795  }
11796
11797  switch (AM.Scale) {
11798  case 0:
11799  case 1:
11800  case 2:
11801  case 4:
11802  case 8:
11803    // These scales always work.
11804    break;
11805  case 3:
11806  case 5:
11807  case 9:
11808    // These scales are formed with basereg+scalereg.  Only accept if there is
11809    // no basereg yet.
11810    if (AM.HasBaseReg)
11811      return false;
11812    break;
11813  default:  // Other stuff never works.
11814    return false;
11815  }
11816
11817  return true;
11818}
11819
11820
11821bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11822  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11823    return false;
11824  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11825  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11826  if (NumBits1 <= NumBits2)
11827    return false;
11828  return true;
11829}
11830
11831bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11832  return Imm == (int32_t)Imm;
11833}
11834
11835bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
11836  // Can also use sub to handle negated immediates.
11837  return Imm == (int32_t)Imm;
11838}
11839
11840bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11841  if (!VT1.isInteger() || !VT2.isInteger())
11842    return false;
11843  unsigned NumBits1 = VT1.getSizeInBits();
11844  unsigned NumBits2 = VT2.getSizeInBits();
11845  if (NumBits1 <= NumBits2)
11846    return false;
11847  return true;
11848}
11849
11850bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11851  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11852  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11853}
11854
11855bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11856  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11857  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11858}
11859
11860bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11861  // i16 instructions are longer (0x66 prefix) and potentially slower.
11862  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11863}
11864
11865/// isShuffleMaskLegal - Targets can use this to indicate that they only
11866/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11867/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11868/// are assumed to be legal.
11869bool
11870X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11871                                      EVT VT) const {
11872  // Very little shuffling can be done for 64-bit vectors right now.
11873  if (VT.getSizeInBits() == 64)
11874    return false;
11875
11876  // FIXME: pshufb, blends, shifts.
11877  return (VT.getVectorNumElements() == 2 ||
11878          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11879          isMOVLMask(M, VT) ||
11880          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11881          isPSHUFDMask(M, VT) ||
11882          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11883          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11884          isPALIGNRMask(M, VT, Subtarget) ||
11885          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11886          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11887          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11888          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11889}
11890
11891bool
11892X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11893                                          EVT VT) const {
11894  unsigned NumElts = VT.getVectorNumElements();
11895  // FIXME: This collection of masks seems suspect.
11896  if (NumElts == 2)
11897    return true;
11898  if (NumElts == 4 && VT.is128BitVector()) {
11899    return (isMOVLMask(Mask, VT)  ||
11900            isCommutedMOVLMask(Mask, VT, true) ||
11901            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11902            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11903  }
11904  return false;
11905}
11906
11907//===----------------------------------------------------------------------===//
11908//                           X86 Scheduler Hooks
11909//===----------------------------------------------------------------------===//
11910
11911// private utility function
11912MachineBasicBlock *
11913X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11914                                                       MachineBasicBlock *MBB,
11915                                                       unsigned regOpc,
11916                                                       unsigned immOpc,
11917                                                       unsigned LoadOpc,
11918                                                       unsigned CXchgOpc,
11919                                                       unsigned notOpc,
11920                                                       unsigned EAXreg,
11921                                                 const TargetRegisterClass *RC,
11922                                                       bool Invert) const {
11923  // For the atomic bitwise operator, we generate
11924  //   thisMBB:
11925  //   newMBB:
11926  //     ld  t1 = [bitinstr.addr]
11927  //     op  t2 = t1, [bitinstr.val]
11928  //     not t3 = t2  (if Invert)
11929  //     mov EAX = t1
11930  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11931  //     bz  newMBB
11932  //     fallthrough -->nextMBB
11933  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11934  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11935  MachineFunction::iterator MBBIter = MBB;
11936  ++MBBIter;
11937
11938  /// First build the CFG
11939  MachineFunction *F = MBB->getParent();
11940  MachineBasicBlock *thisMBB = MBB;
11941  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11942  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11943  F->insert(MBBIter, newMBB);
11944  F->insert(MBBIter, nextMBB);
11945
11946  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11947  nextMBB->splice(nextMBB->begin(), thisMBB,
11948                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11949                  thisMBB->end());
11950  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11951
11952  // Update thisMBB to fall through to newMBB
11953  thisMBB->addSuccessor(newMBB);
11954
11955  // newMBB jumps to itself and fall through to nextMBB
11956  newMBB->addSuccessor(nextMBB);
11957  newMBB->addSuccessor(newMBB);
11958
11959  // Insert instructions into newMBB based on incoming instruction
11960  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11961         "unexpected number of operands");
11962  DebugLoc dl = bInstr->getDebugLoc();
11963  MachineOperand& destOper = bInstr->getOperand(0);
11964  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11965  int numArgs = bInstr->getNumOperands() - 1;
11966  for (int i=0; i < numArgs; ++i)
11967    argOpers[i] = &bInstr->getOperand(i+1);
11968
11969  // x86 address has 4 operands: base, index, scale, and displacement
11970  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11971  int valArgIndx = lastAddrIndx + 1;
11972
11973  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11974  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11975  for (int i=0; i <= lastAddrIndx; ++i)
11976    (*MIB).addOperand(*argOpers[i]);
11977
11978  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11979  assert((argOpers[valArgIndx]->isReg() ||
11980          argOpers[valArgIndx]->isImm()) &&
11981         "invalid operand");
11982  if (argOpers[valArgIndx]->isReg())
11983    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11984  else
11985    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11986  MIB.addReg(t1);
11987  (*MIB).addOperand(*argOpers[valArgIndx]);
11988
11989  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11990  if (Invert) {
11991    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11992  }
11993  else
11994    t3 = t2;
11995
11996  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11997  MIB.addReg(t1);
11998
11999  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
12000  for (int i=0; i <= lastAddrIndx; ++i)
12001    (*MIB).addOperand(*argOpers[i]);
12002  MIB.addReg(t3);
12003  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
12004  (*MIB).setMemRefs(bInstr->memoperands_begin(),
12005                    bInstr->memoperands_end());
12006
12007  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
12008  MIB.addReg(EAXreg);
12009
12010  // insert branch
12011  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
12012
12013  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
12014  return nextMBB;
12015}
12016
12017// private utility function:  64 bit atomics on 32 bit host.
12018MachineBasicBlock *
12019X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
12020                                                       MachineBasicBlock *MBB,
12021                                                       unsigned regOpcL,
12022                                                       unsigned regOpcH,
12023                                                       unsigned immOpcL,
12024                                                       unsigned immOpcH,
12025                                                       bool Invert) const {
12026  // For the atomic bitwise operator, we generate
12027  //   thisMBB (instructions are in pairs, except cmpxchg8b)
12028  //     ld t1,t2 = [bitinstr.addr]
12029  //   newMBB:
12030  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
12031  //     op  t5, t6 <- out1, out2, [bitinstr.val]
12032  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
12033  //     neg t7, t8 < t5, t6  (if Invert)
12034  //     mov ECX, EBX <- t5, t6
12035  //     mov EAX, EDX <- t1, t2
12036  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
12037  //     mov t3, t4 <- EAX, EDX
12038  //     bz  newMBB
12039  //     result in out1, out2
12040  //     fallthrough -->nextMBB
12041
12042  const TargetRegisterClass *RC = &X86::GR32RegClass;
12043  const unsigned LoadOpc = X86::MOV32rm;
12044  const unsigned NotOpc = X86::NOT32r;
12045  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12046  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12047  MachineFunction::iterator MBBIter = MBB;
12048  ++MBBIter;
12049
12050  /// First build the CFG
12051  MachineFunction *F = MBB->getParent();
12052  MachineBasicBlock *thisMBB = MBB;
12053  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
12054  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
12055  F->insert(MBBIter, newMBB);
12056  F->insert(MBBIter, nextMBB);
12057
12058  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
12059  nextMBB->splice(nextMBB->begin(), thisMBB,
12060                  llvm::next(MachineBasicBlock::iterator(bInstr)),
12061                  thisMBB->end());
12062  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12063
12064  // Update thisMBB to fall through to newMBB
12065  thisMBB->addSuccessor(newMBB);
12066
12067  // newMBB jumps to itself and fall through to nextMBB
12068  newMBB->addSuccessor(nextMBB);
12069  newMBB->addSuccessor(newMBB);
12070
12071  DebugLoc dl = bInstr->getDebugLoc();
12072  // Insert instructions into newMBB based on incoming instruction
12073  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
12074  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
12075         "unexpected number of operands");
12076  MachineOperand& dest1Oper = bInstr->getOperand(0);
12077  MachineOperand& dest2Oper = bInstr->getOperand(1);
12078  MachineOperand* argOpers[2 + X86::AddrNumOperands];
12079  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
12080    argOpers[i] = &bInstr->getOperand(i+2);
12081
12082    // We use some of the operands multiple times, so conservatively just
12083    // clear any kill flags that might be present.
12084    if (argOpers[i]->isReg() && argOpers[i]->isUse())
12085      argOpers[i]->setIsKill(false);
12086  }
12087
12088  // x86 address has 5 operands: base, index, scale, displacement, and segment.
12089  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
12090
12091  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
12092  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
12093  for (int i=0; i <= lastAddrIndx; ++i)
12094    (*MIB).addOperand(*argOpers[i]);
12095  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
12096  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
12097  // add 4 to displacement.
12098  for (int i=0; i <= lastAddrIndx-2; ++i)
12099    (*MIB).addOperand(*argOpers[i]);
12100  MachineOperand newOp3 = *(argOpers[3]);
12101  if (newOp3.isImm())
12102    newOp3.setImm(newOp3.getImm()+4);
12103  else
12104    newOp3.setOffset(newOp3.getOffset()+4);
12105  (*MIB).addOperand(newOp3);
12106  (*MIB).addOperand(*argOpers[lastAddrIndx]);
12107
12108  // t3/4 are defined later, at the bottom of the loop
12109  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
12110  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
12111  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
12112    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
12113  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
12114    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
12115
12116  // The subsequent operations should be using the destination registers of
12117  // the PHI instructions.
12118  t1 = dest1Oper.getReg();
12119  t2 = dest2Oper.getReg();
12120
12121  int valArgIndx = lastAddrIndx + 1;
12122  assert((argOpers[valArgIndx]->isReg() ||
12123          argOpers[valArgIndx]->isImm()) &&
12124         "invalid operand");
12125  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
12126  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
12127  if (argOpers[valArgIndx]->isReg())
12128    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
12129  else
12130    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
12131  if (regOpcL != X86::MOV32rr)
12132    MIB.addReg(t1);
12133  (*MIB).addOperand(*argOpers[valArgIndx]);
12134  assert(argOpers[valArgIndx + 1]->isReg() ==
12135         argOpers[valArgIndx]->isReg());
12136  assert(argOpers[valArgIndx + 1]->isImm() ==
12137         argOpers[valArgIndx]->isImm());
12138  if (argOpers[valArgIndx + 1]->isReg())
12139    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
12140  else
12141    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
12142  if (regOpcH != X86::MOV32rr)
12143    MIB.addReg(t2);
12144  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
12145
12146  unsigned t7, t8;
12147  if (Invert) {
12148    t7 = F->getRegInfo().createVirtualRegister(RC);
12149    t8 = F->getRegInfo().createVirtualRegister(RC);
12150    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
12151    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
12152  } else {
12153    t7 = t5;
12154    t8 = t6;
12155  }
12156
12157  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
12158  MIB.addReg(t1);
12159  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
12160  MIB.addReg(t2);
12161
12162  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
12163  MIB.addReg(t7);
12164  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
12165  MIB.addReg(t8);
12166
12167  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
12168  for (int i=0; i <= lastAddrIndx; ++i)
12169    (*MIB).addOperand(*argOpers[i]);
12170
12171  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
12172  (*MIB).setMemRefs(bInstr->memoperands_begin(),
12173                    bInstr->memoperands_end());
12174
12175  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
12176  MIB.addReg(X86::EAX);
12177  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
12178  MIB.addReg(X86::EDX);
12179
12180  // insert branch
12181  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
12182
12183  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
12184  return nextMBB;
12185}
12186
12187// private utility function
12188MachineBasicBlock *
12189X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
12190                                                      MachineBasicBlock *MBB,
12191                                                      unsigned cmovOpc) const {
12192  // For the atomic min/max operator, we generate
12193  //   thisMBB:
12194  //   newMBB:
12195  //     ld t1 = [min/max.addr]
12196  //     mov t2 = [min/max.val]
12197  //     cmp  t1, t2
12198  //     cmov[cond] t2 = t1
12199  //     mov EAX = t1
12200  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
12201  //     bz   newMBB
12202  //     fallthrough -->nextMBB
12203  //
12204  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12205  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12206  MachineFunction::iterator MBBIter = MBB;
12207  ++MBBIter;
12208
12209  /// First build the CFG
12210  MachineFunction *F = MBB->getParent();
12211  MachineBasicBlock *thisMBB = MBB;
12212  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
12213  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
12214  F->insert(MBBIter, newMBB);
12215  F->insert(MBBIter, nextMBB);
12216
12217  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
12218  nextMBB->splice(nextMBB->begin(), thisMBB,
12219                  llvm::next(MachineBasicBlock::iterator(mInstr)),
12220                  thisMBB->end());
12221  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12222
12223  // Update thisMBB to fall through to newMBB
12224  thisMBB->addSuccessor(newMBB);
12225
12226  // newMBB jumps to newMBB and fall through to nextMBB
12227  newMBB->addSuccessor(nextMBB);
12228  newMBB->addSuccessor(newMBB);
12229
12230  DebugLoc dl = mInstr->getDebugLoc();
12231  // Insert instructions into newMBB based on incoming instruction
12232  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
12233         "unexpected number of operands");
12234  MachineOperand& destOper = mInstr->getOperand(0);
12235  MachineOperand* argOpers[2 + X86::AddrNumOperands];
12236  int numArgs = mInstr->getNumOperands() - 1;
12237  for (int i=0; i < numArgs; ++i)
12238    argOpers[i] = &mInstr->getOperand(i+1);
12239
12240  // x86 address has 4 operands: base, index, scale, and displacement
12241  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
12242  int valArgIndx = lastAddrIndx + 1;
12243
12244  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
12245  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
12246  for (int i=0; i <= lastAddrIndx; ++i)
12247    (*MIB).addOperand(*argOpers[i]);
12248
12249  // We only support register and immediate values
12250  assert((argOpers[valArgIndx]->isReg() ||
12251          argOpers[valArgIndx]->isImm()) &&
12252         "invalid operand");
12253
12254  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
12255  if (argOpers[valArgIndx]->isReg())
12256    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
12257  else
12258    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
12259  (*MIB).addOperand(*argOpers[valArgIndx]);
12260
12261  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
12262  MIB.addReg(t1);
12263
12264  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
12265  MIB.addReg(t1);
12266  MIB.addReg(t2);
12267
12268  // Generate movc
12269  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
12270  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
12271  MIB.addReg(t2);
12272  MIB.addReg(t1);
12273
12274  // Cmp and exchange if none has modified the memory location
12275  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
12276  for (int i=0; i <= lastAddrIndx; ++i)
12277    (*MIB).addOperand(*argOpers[i]);
12278  MIB.addReg(t3);
12279  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
12280  (*MIB).setMemRefs(mInstr->memoperands_begin(),
12281                    mInstr->memoperands_end());
12282
12283  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
12284  MIB.addReg(X86::EAX);
12285
12286  // insert branch
12287  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
12288
12289  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
12290  return nextMBB;
12291}
12292
12293// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12294// or XMM0_V32I8 in AVX all of this code can be replaced with that
12295// in the .td file.
12296MachineBasicBlock *
12297X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
12298                            unsigned numArgs, bool memArg) const {
12299  assert(Subtarget->hasSSE42() &&
12300         "Target must have SSE4.2 or AVX features enabled");
12301
12302  DebugLoc dl = MI->getDebugLoc();
12303  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12304  unsigned Opc;
12305  if (!Subtarget->hasAVX()) {
12306    if (memArg)
12307      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
12308    else
12309      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
12310  } else {
12311    if (memArg)
12312      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
12313    else
12314      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
12315  }
12316
12317  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12318  for (unsigned i = 0; i < numArgs; ++i) {
12319    MachineOperand &Op = MI->getOperand(i+1);
12320    if (!(Op.isReg() && Op.isImplicit()))
12321      MIB.addOperand(Op);
12322  }
12323  BuildMI(*BB, MI, dl,
12324    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12325    .addReg(X86::XMM0);
12326
12327  MI->eraseFromParent();
12328  return BB;
12329}
12330
12331MachineBasicBlock *
12332X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
12333  DebugLoc dl = MI->getDebugLoc();
12334  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12335
12336  // Address into RAX/EAX, other two args into ECX, EDX.
12337  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12338  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12339  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12340  for (int i = 0; i < X86::AddrNumOperands; ++i)
12341    MIB.addOperand(MI->getOperand(i));
12342
12343  unsigned ValOps = X86::AddrNumOperands;
12344  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12345    .addReg(MI->getOperand(ValOps).getReg());
12346  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12347    .addReg(MI->getOperand(ValOps+1).getReg());
12348
12349  // The instruction doesn't actually take any operands though.
12350  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12351
12352  MI->eraseFromParent(); // The pseudo is gone now.
12353  return BB;
12354}
12355
12356MachineBasicBlock *
12357X86TargetLowering::EmitVAARG64WithCustomInserter(
12358                   MachineInstr *MI,
12359                   MachineBasicBlock *MBB) const {
12360  // Emit va_arg instruction on X86-64.
12361
12362  // Operands to this pseudo-instruction:
12363  // 0  ) Output        : destination address (reg)
12364  // 1-5) Input         : va_list address (addr, i64mem)
12365  // 6  ) ArgSize       : Size (in bytes) of vararg type
12366  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12367  // 8  ) Align         : Alignment of type
12368  // 9  ) EFLAGS (implicit-def)
12369
12370  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12371  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12372
12373  unsigned DestReg = MI->getOperand(0).getReg();
12374  MachineOperand &Base = MI->getOperand(1);
12375  MachineOperand &Scale = MI->getOperand(2);
12376  MachineOperand &Index = MI->getOperand(3);
12377  MachineOperand &Disp = MI->getOperand(4);
12378  MachineOperand &Segment = MI->getOperand(5);
12379  unsigned ArgSize = MI->getOperand(6).getImm();
12380  unsigned ArgMode = MI->getOperand(7).getImm();
12381  unsigned Align = MI->getOperand(8).getImm();
12382
12383  // Memory Reference
12384  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12385  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12386  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12387
12388  // Machine Information
12389  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12390  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12391  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12392  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12393  DebugLoc DL = MI->getDebugLoc();
12394
12395  // struct va_list {
12396  //   i32   gp_offset
12397  //   i32   fp_offset
12398  //   i64   overflow_area (address)
12399  //   i64   reg_save_area (address)
12400  // }
12401  // sizeof(va_list) = 24
12402  // alignment(va_list) = 8
12403
12404  unsigned TotalNumIntRegs = 6;
12405  unsigned TotalNumXMMRegs = 8;
12406  bool UseGPOffset = (ArgMode == 1);
12407  bool UseFPOffset = (ArgMode == 2);
12408  unsigned MaxOffset = TotalNumIntRegs * 8 +
12409                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12410
12411  /* Align ArgSize to a multiple of 8 */
12412  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12413  bool NeedsAlign = (Align > 8);
12414
12415  MachineBasicBlock *thisMBB = MBB;
12416  MachineBasicBlock *overflowMBB;
12417  MachineBasicBlock *offsetMBB;
12418  MachineBasicBlock *endMBB;
12419
12420  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12421  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12422  unsigned OffsetReg = 0;
12423
12424  if (!UseGPOffset && !UseFPOffset) {
12425    // If we only pull from the overflow region, we don't create a branch.
12426    // We don't need to alter control flow.
12427    OffsetDestReg = 0; // unused
12428    OverflowDestReg = DestReg;
12429
12430    offsetMBB = NULL;
12431    overflowMBB = thisMBB;
12432    endMBB = thisMBB;
12433  } else {
12434    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12435    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12436    // If not, pull from overflow_area. (branch to overflowMBB)
12437    //
12438    //       thisMBB
12439    //         |     .
12440    //         |        .
12441    //     offsetMBB   overflowMBB
12442    //         |        .
12443    //         |     .
12444    //        endMBB
12445
12446    // Registers for the PHI in endMBB
12447    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12448    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12449
12450    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12451    MachineFunction *MF = MBB->getParent();
12452    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12453    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12454    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12455
12456    MachineFunction::iterator MBBIter = MBB;
12457    ++MBBIter;
12458
12459    // Insert the new basic blocks
12460    MF->insert(MBBIter, offsetMBB);
12461    MF->insert(MBBIter, overflowMBB);
12462    MF->insert(MBBIter, endMBB);
12463
12464    // Transfer the remainder of MBB and its successor edges to endMBB.
12465    endMBB->splice(endMBB->begin(), thisMBB,
12466                    llvm::next(MachineBasicBlock::iterator(MI)),
12467                    thisMBB->end());
12468    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12469
12470    // Make offsetMBB and overflowMBB successors of thisMBB
12471    thisMBB->addSuccessor(offsetMBB);
12472    thisMBB->addSuccessor(overflowMBB);
12473
12474    // endMBB is a successor of both offsetMBB and overflowMBB
12475    offsetMBB->addSuccessor(endMBB);
12476    overflowMBB->addSuccessor(endMBB);
12477
12478    // Load the offset value into a register
12479    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12480    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12481      .addOperand(Base)
12482      .addOperand(Scale)
12483      .addOperand(Index)
12484      .addDisp(Disp, UseFPOffset ? 4 : 0)
12485      .addOperand(Segment)
12486      .setMemRefs(MMOBegin, MMOEnd);
12487
12488    // Check if there is enough room left to pull this argument.
12489    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12490      .addReg(OffsetReg)
12491      .addImm(MaxOffset + 8 - ArgSizeA8);
12492
12493    // Branch to "overflowMBB" if offset >= max
12494    // Fall through to "offsetMBB" otherwise
12495    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12496      .addMBB(overflowMBB);
12497  }
12498
12499  // In offsetMBB, emit code to use the reg_save_area.
12500  if (offsetMBB) {
12501    assert(OffsetReg != 0);
12502
12503    // Read the reg_save_area address.
12504    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12505    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12506      .addOperand(Base)
12507      .addOperand(Scale)
12508      .addOperand(Index)
12509      .addDisp(Disp, 16)
12510      .addOperand(Segment)
12511      .setMemRefs(MMOBegin, MMOEnd);
12512
12513    // Zero-extend the offset
12514    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12515      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12516        .addImm(0)
12517        .addReg(OffsetReg)
12518        .addImm(X86::sub_32bit);
12519
12520    // Add the offset to the reg_save_area to get the final address.
12521    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12522      .addReg(OffsetReg64)
12523      .addReg(RegSaveReg);
12524
12525    // Compute the offset for the next argument
12526    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12527    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12528      .addReg(OffsetReg)
12529      .addImm(UseFPOffset ? 16 : 8);
12530
12531    // Store it back into the va_list.
12532    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12533      .addOperand(Base)
12534      .addOperand(Scale)
12535      .addOperand(Index)
12536      .addDisp(Disp, UseFPOffset ? 4 : 0)
12537      .addOperand(Segment)
12538      .addReg(NextOffsetReg)
12539      .setMemRefs(MMOBegin, MMOEnd);
12540
12541    // Jump to endMBB
12542    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12543      .addMBB(endMBB);
12544  }
12545
12546  //
12547  // Emit code to use overflow area
12548  //
12549
12550  // Load the overflow_area address into a register.
12551  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12552  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12553    .addOperand(Base)
12554    .addOperand(Scale)
12555    .addOperand(Index)
12556    .addDisp(Disp, 8)
12557    .addOperand(Segment)
12558    .setMemRefs(MMOBegin, MMOEnd);
12559
12560  // If we need to align it, do so. Otherwise, just copy the address
12561  // to OverflowDestReg.
12562  if (NeedsAlign) {
12563    // Align the overflow address
12564    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12565    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12566
12567    // aligned_addr = (addr + (align-1)) & ~(align-1)
12568    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12569      .addReg(OverflowAddrReg)
12570      .addImm(Align-1);
12571
12572    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12573      .addReg(TmpReg)
12574      .addImm(~(uint64_t)(Align-1));
12575  } else {
12576    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12577      .addReg(OverflowAddrReg);
12578  }
12579
12580  // Compute the next overflow address after this argument.
12581  // (the overflow address should be kept 8-byte aligned)
12582  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12583  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12584    .addReg(OverflowDestReg)
12585    .addImm(ArgSizeA8);
12586
12587  // Store the new overflow address.
12588  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12589    .addOperand(Base)
12590    .addOperand(Scale)
12591    .addOperand(Index)
12592    .addDisp(Disp, 8)
12593    .addOperand(Segment)
12594    .addReg(NextAddrReg)
12595    .setMemRefs(MMOBegin, MMOEnd);
12596
12597  // If we branched, emit the PHI to the front of endMBB.
12598  if (offsetMBB) {
12599    BuildMI(*endMBB, endMBB->begin(), DL,
12600            TII->get(X86::PHI), DestReg)
12601      .addReg(OffsetDestReg).addMBB(offsetMBB)
12602      .addReg(OverflowDestReg).addMBB(overflowMBB);
12603  }
12604
12605  // Erase the pseudo instruction
12606  MI->eraseFromParent();
12607
12608  return endMBB;
12609}
12610
12611MachineBasicBlock *
12612X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12613                                                 MachineInstr *MI,
12614                                                 MachineBasicBlock *MBB) const {
12615  // Emit code to save XMM registers to the stack. The ABI says that the
12616  // number of registers to save is given in %al, so it's theoretically
12617  // possible to do an indirect jump trick to avoid saving all of them,
12618  // however this code takes a simpler approach and just executes all
12619  // of the stores if %al is non-zero. It's less code, and it's probably
12620  // easier on the hardware branch predictor, and stores aren't all that
12621  // expensive anyway.
12622
12623  // Create the new basic blocks. One block contains all the XMM stores,
12624  // and one block is the final destination regardless of whether any
12625  // stores were performed.
12626  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12627  MachineFunction *F = MBB->getParent();
12628  MachineFunction::iterator MBBIter = MBB;
12629  ++MBBIter;
12630  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12631  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12632  F->insert(MBBIter, XMMSaveMBB);
12633  F->insert(MBBIter, EndMBB);
12634
12635  // Transfer the remainder of MBB and its successor edges to EndMBB.
12636  EndMBB->splice(EndMBB->begin(), MBB,
12637                 llvm::next(MachineBasicBlock::iterator(MI)),
12638                 MBB->end());
12639  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12640
12641  // The original block will now fall through to the XMM save block.
12642  MBB->addSuccessor(XMMSaveMBB);
12643  // The XMMSaveMBB will fall through to the end block.
12644  XMMSaveMBB->addSuccessor(EndMBB);
12645
12646  // Now add the instructions.
12647  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12648  DebugLoc DL = MI->getDebugLoc();
12649
12650  unsigned CountReg = MI->getOperand(0).getReg();
12651  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12652  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12653
12654  if (!Subtarget->isTargetWin64()) {
12655    // If %al is 0, branch around the XMM save block.
12656    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12657    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12658    MBB->addSuccessor(EndMBB);
12659  }
12660
12661  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12662  // In the XMM save block, save all the XMM argument registers.
12663  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12664    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12665    MachineMemOperand *MMO =
12666      F->getMachineMemOperand(
12667          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12668        MachineMemOperand::MOStore,
12669        /*Size=*/16, /*Align=*/16);
12670    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12671      .addFrameIndex(RegSaveFrameIndex)
12672      .addImm(/*Scale=*/1)
12673      .addReg(/*IndexReg=*/0)
12674      .addImm(/*Disp=*/Offset)
12675      .addReg(/*Segment=*/0)
12676      .addReg(MI->getOperand(i).getReg())
12677      .addMemOperand(MMO);
12678  }
12679
12680  MI->eraseFromParent();   // The pseudo instruction is gone now.
12681
12682  return EndMBB;
12683}
12684
12685// The EFLAGS operand of SelectItr might be missing a kill marker
12686// because there were multiple uses of EFLAGS, and ISel didn't know
12687// which to mark. Figure out whether SelectItr should have had a
12688// kill marker, and set it if it should. Returns the correct kill
12689// marker value.
12690static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12691                                     MachineBasicBlock* BB,
12692                                     const TargetRegisterInfo* TRI) {
12693  // Scan forward through BB for a use/def of EFLAGS.
12694  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12695  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12696    const MachineInstr& mi = *miI;
12697    if (mi.readsRegister(X86::EFLAGS))
12698      return false;
12699    if (mi.definesRegister(X86::EFLAGS))
12700      break; // Should have kill-flag - update below.
12701  }
12702
12703  // If we hit the end of the block, check whether EFLAGS is live into a
12704  // successor.
12705  if (miI == BB->end()) {
12706    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12707                                          sEnd = BB->succ_end();
12708         sItr != sEnd; ++sItr) {
12709      MachineBasicBlock* succ = *sItr;
12710      if (succ->isLiveIn(X86::EFLAGS))
12711        return false;
12712    }
12713  }
12714
12715  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12716  // out. SelectMI should have a kill flag on EFLAGS.
12717  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12718  return true;
12719}
12720
12721MachineBasicBlock *
12722X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12723                                     MachineBasicBlock *BB) const {
12724  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12725  DebugLoc DL = MI->getDebugLoc();
12726
12727  // To "insert" a SELECT_CC instruction, we actually have to insert the
12728  // diamond control-flow pattern.  The incoming instruction knows the
12729  // destination vreg to set, the condition code register to branch on, the
12730  // true/false values to select between, and a branch opcode to use.
12731  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12732  MachineFunction::iterator It = BB;
12733  ++It;
12734
12735  //  thisMBB:
12736  //  ...
12737  //   TrueVal = ...
12738  //   cmpTY ccX, r1, r2
12739  //   bCC copy1MBB
12740  //   fallthrough --> copy0MBB
12741  MachineBasicBlock *thisMBB = BB;
12742  MachineFunction *F = BB->getParent();
12743  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12744  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12745  F->insert(It, copy0MBB);
12746  F->insert(It, sinkMBB);
12747
12748  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12749  // live into the sink and copy blocks.
12750  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12751  if (!MI->killsRegister(X86::EFLAGS) &&
12752      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12753    copy0MBB->addLiveIn(X86::EFLAGS);
12754    sinkMBB->addLiveIn(X86::EFLAGS);
12755  }
12756
12757  // Transfer the remainder of BB and its successor edges to sinkMBB.
12758  sinkMBB->splice(sinkMBB->begin(), BB,
12759                  llvm::next(MachineBasicBlock::iterator(MI)),
12760                  BB->end());
12761  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12762
12763  // Add the true and fallthrough blocks as its successors.
12764  BB->addSuccessor(copy0MBB);
12765  BB->addSuccessor(sinkMBB);
12766
12767  // Create the conditional branch instruction.
12768  unsigned Opc =
12769    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12770  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12771
12772  //  copy0MBB:
12773  //   %FalseValue = ...
12774  //   # fallthrough to sinkMBB
12775  copy0MBB->addSuccessor(sinkMBB);
12776
12777  //  sinkMBB:
12778  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12779  //  ...
12780  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12781          TII->get(X86::PHI), MI->getOperand(0).getReg())
12782    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12783    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12784
12785  MI->eraseFromParent();   // The pseudo instruction is gone now.
12786  return sinkMBB;
12787}
12788
12789MachineBasicBlock *
12790X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12791                                        bool Is64Bit) const {
12792  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12793  DebugLoc DL = MI->getDebugLoc();
12794  MachineFunction *MF = BB->getParent();
12795  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12796
12797  assert(getTargetMachine().Options.EnableSegmentedStacks);
12798
12799  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12800  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12801
12802  // BB:
12803  //  ... [Till the alloca]
12804  // If stacklet is not large enough, jump to mallocMBB
12805  //
12806  // bumpMBB:
12807  //  Allocate by subtracting from RSP
12808  //  Jump to continueMBB
12809  //
12810  // mallocMBB:
12811  //  Allocate by call to runtime
12812  //
12813  // continueMBB:
12814  //  ...
12815  //  [rest of original BB]
12816  //
12817
12818  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12819  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12820  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12821
12822  MachineRegisterInfo &MRI = MF->getRegInfo();
12823  const TargetRegisterClass *AddrRegClass =
12824    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12825
12826  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12827    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12828    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12829    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12830    sizeVReg = MI->getOperand(1).getReg(),
12831    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12832
12833  MachineFunction::iterator MBBIter = BB;
12834  ++MBBIter;
12835
12836  MF->insert(MBBIter, bumpMBB);
12837  MF->insert(MBBIter, mallocMBB);
12838  MF->insert(MBBIter, continueMBB);
12839
12840  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12841                      (MachineBasicBlock::iterator(MI)), BB->end());
12842  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12843
12844  // Add code to the main basic block to check if the stack limit has been hit,
12845  // and if so, jump to mallocMBB otherwise to bumpMBB.
12846  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12847  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12848    .addReg(tmpSPVReg).addReg(sizeVReg);
12849  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12850    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12851    .addReg(SPLimitVReg);
12852  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12853
12854  // bumpMBB simply decreases the stack pointer, since we know the current
12855  // stacklet has enough space.
12856  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12857    .addReg(SPLimitVReg);
12858  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12859    .addReg(SPLimitVReg);
12860  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12861
12862  // Calls into a routine in libgcc to allocate more space from the heap.
12863  const uint32_t *RegMask =
12864    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12865  if (Is64Bit) {
12866    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12867      .addReg(sizeVReg);
12868    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12869      .addExternalSymbol("__morestack_allocate_stack_space")
12870      .addRegMask(RegMask)
12871      .addReg(X86::RDI, RegState::Implicit)
12872      .addReg(X86::RAX, RegState::ImplicitDefine);
12873  } else {
12874    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12875      .addImm(12);
12876    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12877    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12878      .addExternalSymbol("__morestack_allocate_stack_space")
12879      .addRegMask(RegMask)
12880      .addReg(X86::EAX, RegState::ImplicitDefine);
12881  }
12882
12883  if (!Is64Bit)
12884    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12885      .addImm(16);
12886
12887  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12888    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12889  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12890
12891  // Set up the CFG correctly.
12892  BB->addSuccessor(bumpMBB);
12893  BB->addSuccessor(mallocMBB);
12894  mallocMBB->addSuccessor(continueMBB);
12895  bumpMBB->addSuccessor(continueMBB);
12896
12897  // Take care of the PHI nodes.
12898  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12899          MI->getOperand(0).getReg())
12900    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12901    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12902
12903  // Delete the original pseudo instruction.
12904  MI->eraseFromParent();
12905
12906  // And we're done.
12907  return continueMBB;
12908}
12909
12910MachineBasicBlock *
12911X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12912                                          MachineBasicBlock *BB) const {
12913  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12914  DebugLoc DL = MI->getDebugLoc();
12915
12916  assert(!Subtarget->isTargetEnvMacho());
12917
12918  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12919  // non-trivial part is impdef of ESP.
12920
12921  if (Subtarget->isTargetWin64()) {
12922    if (Subtarget->isTargetCygMing()) {
12923      // ___chkstk(Mingw64):
12924      // Clobbers R10, R11, RAX and EFLAGS.
12925      // Updates RSP.
12926      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12927        .addExternalSymbol("___chkstk")
12928        .addReg(X86::RAX, RegState::Implicit)
12929        .addReg(X86::RSP, RegState::Implicit)
12930        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12931        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12932        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12933    } else {
12934      // __chkstk(MSVCRT): does not update stack pointer.
12935      // Clobbers R10, R11 and EFLAGS.
12936      // FIXME: RAX(allocated size) might be reused and not killed.
12937      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12938        .addExternalSymbol("__chkstk")
12939        .addReg(X86::RAX, RegState::Implicit)
12940        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12941      // RAX has the offset to subtracted from RSP.
12942      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12943        .addReg(X86::RSP)
12944        .addReg(X86::RAX);
12945    }
12946  } else {
12947    const char *StackProbeSymbol =
12948      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12949
12950    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12951      .addExternalSymbol(StackProbeSymbol)
12952      .addReg(X86::EAX, RegState::Implicit)
12953      .addReg(X86::ESP, RegState::Implicit)
12954      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12955      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12956      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12957  }
12958
12959  MI->eraseFromParent();   // The pseudo instruction is gone now.
12960  return BB;
12961}
12962
12963MachineBasicBlock *
12964X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12965                                      MachineBasicBlock *BB) const {
12966  // This is pretty easy.  We're taking the value that we received from
12967  // our load from the relocation, sticking it in either RDI (x86-64)
12968  // or EAX and doing an indirect call.  The return value will then
12969  // be in the normal return register.
12970  const X86InstrInfo *TII
12971    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12972  DebugLoc DL = MI->getDebugLoc();
12973  MachineFunction *F = BB->getParent();
12974
12975  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12976  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12977
12978  // Get a register mask for the lowered call.
12979  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12980  // proper register mask.
12981  const uint32_t *RegMask =
12982    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12983  if (Subtarget->is64Bit()) {
12984    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12985                                      TII->get(X86::MOV64rm), X86::RDI)
12986    .addReg(X86::RIP)
12987    .addImm(0).addReg(0)
12988    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12989                      MI->getOperand(3).getTargetFlags())
12990    .addReg(0);
12991    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12992    addDirectMem(MIB, X86::RDI);
12993    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12994  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12995    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12996                                      TII->get(X86::MOV32rm), X86::EAX)
12997    .addReg(0)
12998    .addImm(0).addReg(0)
12999    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13000                      MI->getOperand(3).getTargetFlags())
13001    .addReg(0);
13002    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13003    addDirectMem(MIB, X86::EAX);
13004    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13005  } else {
13006    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13007                                      TII->get(X86::MOV32rm), X86::EAX)
13008    .addReg(TII->getGlobalBaseReg(F))
13009    .addImm(0).addReg(0)
13010    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13011                      MI->getOperand(3).getTargetFlags())
13012    .addReg(0);
13013    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13014    addDirectMem(MIB, X86::EAX);
13015    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13016  }
13017
13018  MI->eraseFromParent(); // The pseudo instruction is gone now.
13019  return BB;
13020}
13021
13022MachineBasicBlock *
13023X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
13024                                               MachineBasicBlock *BB) const {
13025  switch (MI->getOpcode()) {
13026  default: llvm_unreachable("Unexpected instr type to insert");
13027  case X86::TAILJMPd64:
13028  case X86::TAILJMPr64:
13029  case X86::TAILJMPm64:
13030    llvm_unreachable("TAILJMP64 would not be touched here.");
13031  case X86::TCRETURNdi64:
13032  case X86::TCRETURNri64:
13033  case X86::TCRETURNmi64:
13034    return BB;
13035  case X86::WIN_ALLOCA:
13036    return EmitLoweredWinAlloca(MI, BB);
13037  case X86::SEG_ALLOCA_32:
13038    return EmitLoweredSegAlloca(MI, BB, false);
13039  case X86::SEG_ALLOCA_64:
13040    return EmitLoweredSegAlloca(MI, BB, true);
13041  case X86::TLSCall_32:
13042  case X86::TLSCall_64:
13043    return EmitLoweredTLSCall(MI, BB);
13044  case X86::CMOV_GR8:
13045  case X86::CMOV_FR32:
13046  case X86::CMOV_FR64:
13047  case X86::CMOV_V4F32:
13048  case X86::CMOV_V2F64:
13049  case X86::CMOV_V2I64:
13050  case X86::CMOV_V8F32:
13051  case X86::CMOV_V4F64:
13052  case X86::CMOV_V4I64:
13053  case X86::CMOV_GR16:
13054  case X86::CMOV_GR32:
13055  case X86::CMOV_RFP32:
13056  case X86::CMOV_RFP64:
13057  case X86::CMOV_RFP80:
13058    return EmitLoweredSelect(MI, BB);
13059
13060  case X86::FP32_TO_INT16_IN_MEM:
13061  case X86::FP32_TO_INT32_IN_MEM:
13062  case X86::FP32_TO_INT64_IN_MEM:
13063  case X86::FP64_TO_INT16_IN_MEM:
13064  case X86::FP64_TO_INT32_IN_MEM:
13065  case X86::FP64_TO_INT64_IN_MEM:
13066  case X86::FP80_TO_INT16_IN_MEM:
13067  case X86::FP80_TO_INT32_IN_MEM:
13068  case X86::FP80_TO_INT64_IN_MEM: {
13069    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13070    DebugLoc DL = MI->getDebugLoc();
13071
13072    // Change the floating point control register to use "round towards zero"
13073    // mode when truncating to an integer value.
13074    MachineFunction *F = BB->getParent();
13075    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
13076    addFrameReference(BuildMI(*BB, MI, DL,
13077                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
13078
13079    // Load the old value of the high byte of the control word...
13080    unsigned OldCW =
13081      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
13082    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
13083                      CWFrameIdx);
13084
13085    // Set the high part to be round to zero...
13086    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
13087      .addImm(0xC7F);
13088
13089    // Reload the modified control word now...
13090    addFrameReference(BuildMI(*BB, MI, DL,
13091                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13092
13093    // Restore the memory image of control word to original value
13094    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
13095      .addReg(OldCW);
13096
13097    // Get the X86 opcode to use.
13098    unsigned Opc;
13099    switch (MI->getOpcode()) {
13100    default: llvm_unreachable("illegal opcode!");
13101    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
13102    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
13103    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
13104    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
13105    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
13106    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
13107    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
13108    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
13109    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
13110    }
13111
13112    X86AddressMode AM;
13113    MachineOperand &Op = MI->getOperand(0);
13114    if (Op.isReg()) {
13115      AM.BaseType = X86AddressMode::RegBase;
13116      AM.Base.Reg = Op.getReg();
13117    } else {
13118      AM.BaseType = X86AddressMode::FrameIndexBase;
13119      AM.Base.FrameIndex = Op.getIndex();
13120    }
13121    Op = MI->getOperand(1);
13122    if (Op.isImm())
13123      AM.Scale = Op.getImm();
13124    Op = MI->getOperand(2);
13125    if (Op.isImm())
13126      AM.IndexReg = Op.getImm();
13127    Op = MI->getOperand(3);
13128    if (Op.isGlobal()) {
13129      AM.GV = Op.getGlobal();
13130    } else {
13131      AM.Disp = Op.getImm();
13132    }
13133    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
13134                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
13135
13136    // Reload the original control word now.
13137    addFrameReference(BuildMI(*BB, MI, DL,
13138                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13139
13140    MI->eraseFromParent();   // The pseudo instruction is gone now.
13141    return BB;
13142  }
13143    // String/text processing lowering.
13144  case X86::PCMPISTRM128REG:
13145  case X86::VPCMPISTRM128REG:
13146  case X86::PCMPISTRM128MEM:
13147  case X86::VPCMPISTRM128MEM:
13148  case X86::PCMPESTRM128REG:
13149  case X86::VPCMPESTRM128REG:
13150  case X86::PCMPESTRM128MEM:
13151  case X86::VPCMPESTRM128MEM: {
13152    unsigned NumArgs;
13153    bool MemArg;
13154    switch (MI->getOpcode()) {
13155    default: llvm_unreachable("illegal opcode!");
13156    case X86::PCMPISTRM128REG:
13157    case X86::VPCMPISTRM128REG:
13158      NumArgs = 3; MemArg = false; break;
13159    case X86::PCMPISTRM128MEM:
13160    case X86::VPCMPISTRM128MEM:
13161      NumArgs = 3; MemArg = true; break;
13162    case X86::PCMPESTRM128REG:
13163    case X86::VPCMPESTRM128REG:
13164      NumArgs = 5; MemArg = false; break;
13165    case X86::PCMPESTRM128MEM:
13166    case X86::VPCMPESTRM128MEM:
13167      NumArgs = 5; MemArg = true; break;
13168    }
13169    return EmitPCMP(MI, BB, NumArgs, MemArg);
13170  }
13171
13172    // Thread synchronization.
13173  case X86::MONITOR:
13174    return EmitMonitor(MI, BB);
13175
13176    // Atomic Lowering.
13177  case X86::ATOMMIN32:
13178  case X86::ATOMMAX32:
13179  case X86::ATOMUMIN32:
13180  case X86::ATOMUMAX32:
13181  case X86::ATOMMIN16:
13182  case X86::ATOMMAX16:
13183  case X86::ATOMUMIN16:
13184  case X86::ATOMUMAX16:
13185  case X86::ATOMMIN64:
13186  case X86::ATOMMAX64:
13187  case X86::ATOMUMIN64:
13188  case X86::ATOMUMAX64: {
13189    unsigned Opc;
13190    switch (MI->getOpcode()) {
13191    default: llvm_unreachable("illegal opcode!");
13192    case X86::ATOMMIN32:  Opc = X86::CMOVL32rr; break;
13193    case X86::ATOMMAX32:  Opc = X86::CMOVG32rr; break;
13194    case X86::ATOMUMIN32: Opc = X86::CMOVB32rr; break;
13195    case X86::ATOMUMAX32: Opc = X86::CMOVA32rr; break;
13196    case X86::ATOMMIN16:  Opc = X86::CMOVL16rr; break;
13197    case X86::ATOMMAX16:  Opc = X86::CMOVG16rr; break;
13198    case X86::ATOMUMIN16: Opc = X86::CMOVB16rr; break;
13199    case X86::ATOMUMAX16: Opc = X86::CMOVA16rr; break;
13200    case X86::ATOMMIN64:  Opc = X86::CMOVL64rr; break;
13201    case X86::ATOMMAX64:  Opc = X86::CMOVG64rr; break;
13202    case X86::ATOMUMIN64: Opc = X86::CMOVB64rr; break;
13203    case X86::ATOMUMAX64: Opc = X86::CMOVA64rr; break;
13204    // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
13205    }
13206    return EmitAtomicMinMaxWithCustomInserter(MI, BB, Opc);
13207  }
13208
13209  case X86::ATOMAND32:
13210  case X86::ATOMOR32:
13211  case X86::ATOMXOR32:
13212  case X86::ATOMNAND32: {
13213    bool Invert = false;
13214    unsigned RegOpc, ImmOpc;
13215    switch (MI->getOpcode()) {
13216    default: llvm_unreachable("illegal opcode!");
13217    case X86::ATOMAND32:
13218      RegOpc = X86::AND32rr; ImmOpc = X86::AND32ri; break;
13219    case X86::ATOMOR32:
13220      RegOpc = X86::OR32rr;  ImmOpc = X86::OR32ri; break;
13221    case X86::ATOMXOR32:
13222      RegOpc = X86::XOR32rr; ImmOpc = X86::XOR32ri; break;
13223    case X86::ATOMNAND32:
13224      RegOpc = X86::AND32rr; ImmOpc = X86::AND32ri; Invert = true; break;
13225    }
13226    return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
13227                                               X86::MOV32rm, X86::LCMPXCHG32,
13228                                               X86::NOT32r, X86::EAX,
13229                                               &X86::GR32RegClass, Invert);
13230  }
13231
13232  case X86::ATOMAND16:
13233  case X86::ATOMOR16:
13234  case X86::ATOMXOR16:
13235  case X86::ATOMNAND16: {
13236    bool Invert = false;
13237    unsigned RegOpc, ImmOpc;
13238    switch (MI->getOpcode()) {
13239    default: llvm_unreachable("illegal opcode!");
13240    case X86::ATOMAND16:
13241      RegOpc = X86::AND16rr; ImmOpc = X86::AND16ri; break;
13242    case X86::ATOMOR16:
13243      RegOpc = X86::OR16rr;  ImmOpc = X86::OR16ri; break;
13244    case X86::ATOMXOR16:
13245      RegOpc = X86::XOR16rr; ImmOpc = X86::XOR16ri; break;
13246    case X86::ATOMNAND16:
13247      RegOpc = X86::AND16rr; ImmOpc = X86::AND16ri; Invert = true; break;
13248    }
13249    return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
13250                                               X86::MOV16rm, X86::LCMPXCHG16,
13251                                               X86::NOT16r, X86::AX,
13252                                               &X86::GR16RegClass, Invert);
13253  }
13254
13255  case X86::ATOMAND8:
13256  case X86::ATOMOR8:
13257  case X86::ATOMXOR8:
13258  case X86::ATOMNAND8: {
13259    bool Invert = false;
13260    unsigned RegOpc, ImmOpc;
13261    switch (MI->getOpcode()) {
13262    default: llvm_unreachable("illegal opcode!");
13263    case X86::ATOMAND8:
13264      RegOpc = X86::AND8rr; ImmOpc = X86::AND8ri; break;
13265    case X86::ATOMOR8:
13266      RegOpc = X86::OR8rr;  ImmOpc = X86::OR8ri; break;
13267    case X86::ATOMXOR8:
13268      RegOpc = X86::XOR8rr; ImmOpc = X86::XOR8ri; break;
13269    case X86::ATOMNAND8:
13270      RegOpc = X86::AND8rr; ImmOpc = X86::AND8ri; Invert = true; break;
13271    }
13272    return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
13273                                               X86::MOV8rm, X86::LCMPXCHG8,
13274                                               X86::NOT8r, X86::AL,
13275                                               &X86::GR8RegClass, Invert);
13276  }
13277
13278  // This group is for 64-bit host.
13279  case X86::ATOMAND64:
13280  case X86::ATOMOR64:
13281  case X86::ATOMXOR64:
13282  case X86::ATOMNAND64: {
13283    bool Invert = false;
13284    unsigned RegOpc, ImmOpc;
13285    switch (MI->getOpcode()) {
13286    default: llvm_unreachable("illegal opcode!");
13287    case X86::ATOMAND64:
13288      RegOpc = X86::AND64rr; ImmOpc = X86::AND64ri32; break;
13289    case X86::ATOMOR64:
13290      RegOpc = X86::OR64rr;  ImmOpc = X86::OR64ri32; break;
13291    case X86::ATOMXOR64:
13292      RegOpc = X86::XOR64rr; ImmOpc = X86::XOR64ri32; break;
13293    case X86::ATOMNAND64:
13294      RegOpc = X86::AND64rr; ImmOpc = X86::AND64ri32; Invert = true; break;
13295    }
13296    return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
13297                                               X86::MOV64rm, X86::LCMPXCHG64,
13298                                               X86::NOT64r, X86::RAX,
13299                                               &X86::GR64RegClass, Invert);
13300  }
13301
13302  // This group does 64-bit operations on a 32-bit host.
13303  case X86::ATOMAND6432:
13304  case X86::ATOMOR6432:
13305  case X86::ATOMXOR6432:
13306  case X86::ATOMNAND6432:
13307  case X86::ATOMADD6432:
13308  case X86::ATOMSUB6432:
13309  case X86::ATOMSWAP6432: {
13310    bool Invert = false;
13311    unsigned RegOpcL, RegOpcH, ImmOpcL, ImmOpcH;
13312    switch (MI->getOpcode()) {
13313    default: llvm_unreachable("illegal opcode!");
13314    case X86::ATOMAND6432:
13315      RegOpcL = RegOpcH = X86::AND32rr;
13316      ImmOpcL = ImmOpcH = X86::AND32ri;
13317      break;
13318    case X86::ATOMOR6432:
13319      RegOpcL = RegOpcH = X86::OR32rr;
13320      ImmOpcL = ImmOpcH = X86::OR32ri;
13321      break;
13322    case X86::ATOMXOR6432:
13323      RegOpcL = RegOpcH = X86::XOR32rr;
13324      ImmOpcL = ImmOpcH = X86::XOR32ri;
13325      break;
13326    case X86::ATOMNAND6432:
13327      RegOpcL = RegOpcH = X86::AND32rr;
13328      ImmOpcL = ImmOpcH = X86::AND32ri;
13329      Invert = true;
13330      break;
13331    case X86::ATOMADD6432:
13332      RegOpcL = X86::ADD32rr; RegOpcH = X86::ADC32rr;
13333      ImmOpcL = X86::ADD32ri; ImmOpcH = X86::ADC32ri;
13334      break;
13335    case X86::ATOMSUB6432:
13336      RegOpcL = X86::SUB32rr; RegOpcH = X86::SBB32rr;
13337      ImmOpcL = X86::SUB32ri; ImmOpcH = X86::SBB32ri;
13338      break;
13339    case X86::ATOMSWAP6432:
13340      RegOpcL = RegOpcH = X86::MOV32rr;
13341      ImmOpcL = ImmOpcH = X86::MOV32ri;
13342      break;
13343    }
13344    return EmitAtomicBit6432WithCustomInserter(MI, BB, RegOpcL, RegOpcH,
13345                                               ImmOpcL, ImmOpcH, Invert);
13346  }
13347
13348  case X86::VASTART_SAVE_XMM_REGS:
13349    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
13350
13351  case X86::VAARG_64:
13352    return EmitVAARG64WithCustomInserter(MI, BB);
13353  }
13354}
13355
13356//===----------------------------------------------------------------------===//
13357//                           X86 Optimization Hooks
13358//===----------------------------------------------------------------------===//
13359
13360void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
13361                                                       APInt &KnownZero,
13362                                                       APInt &KnownOne,
13363                                                       const SelectionDAG &DAG,
13364                                                       unsigned Depth) const {
13365  unsigned BitWidth = KnownZero.getBitWidth();
13366  unsigned Opc = Op.getOpcode();
13367  assert((Opc >= ISD::BUILTIN_OP_END ||
13368          Opc == ISD::INTRINSIC_WO_CHAIN ||
13369          Opc == ISD::INTRINSIC_W_CHAIN ||
13370          Opc == ISD::INTRINSIC_VOID) &&
13371         "Should use MaskedValueIsZero if you don't know whether Op"
13372         " is a target node!");
13373
13374  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
13375  switch (Opc) {
13376  default: break;
13377  case X86ISD::ADD:
13378  case X86ISD::SUB:
13379  case X86ISD::ADC:
13380  case X86ISD::SBB:
13381  case X86ISD::SMUL:
13382  case X86ISD::UMUL:
13383  case X86ISD::INC:
13384  case X86ISD::DEC:
13385  case X86ISD::OR:
13386  case X86ISD::XOR:
13387  case X86ISD::AND:
13388    // These nodes' second result is a boolean.
13389    if (Op.getResNo() == 0)
13390      break;
13391    // Fallthrough
13392  case X86ISD::SETCC:
13393    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13394    break;
13395  case ISD::INTRINSIC_WO_CHAIN: {
13396    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13397    unsigned NumLoBits = 0;
13398    switch (IntId) {
13399    default: break;
13400    case Intrinsic::x86_sse_movmsk_ps:
13401    case Intrinsic::x86_avx_movmsk_ps_256:
13402    case Intrinsic::x86_sse2_movmsk_pd:
13403    case Intrinsic::x86_avx_movmsk_pd_256:
13404    case Intrinsic::x86_mmx_pmovmskb:
13405    case Intrinsic::x86_sse2_pmovmskb_128:
13406    case Intrinsic::x86_avx2_pmovmskb: {
13407      // High bits of movmskp{s|d}, pmovmskb are known zero.
13408      switch (IntId) {
13409        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13410        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
13411        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
13412        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
13413        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
13414        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
13415        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
13416        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
13417      }
13418      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
13419      break;
13420    }
13421    }
13422    break;
13423  }
13424  }
13425}
13426
13427unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
13428                                                         unsigned Depth) const {
13429  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
13430  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
13431    return Op.getValueType().getScalarType().getSizeInBits();
13432
13433  // Fallback case.
13434  return 1;
13435}
13436
13437/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
13438/// node is a GlobalAddress + offset.
13439bool X86TargetLowering::isGAPlusOffset(SDNode *N,
13440                                       const GlobalValue* &GA,
13441                                       int64_t &Offset) const {
13442  if (N->getOpcode() == X86ISD::Wrapper) {
13443    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
13444      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
13445      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
13446      return true;
13447    }
13448  }
13449  return TargetLowering::isGAPlusOffset(N, GA, Offset);
13450}
13451
13452/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
13453/// same as extracting the high 128-bit part of 256-bit vector and then
13454/// inserting the result into the low part of a new 256-bit vector
13455static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
13456  EVT VT = SVOp->getValueType(0);
13457  unsigned NumElems = VT.getVectorNumElements();
13458
13459  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13460  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13461    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13462        SVOp->getMaskElt(j) >= 0)
13463      return false;
13464
13465  return true;
13466}
13467
13468/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13469/// same as extracting the low 128-bit part of 256-bit vector and then
13470/// inserting the result into the high part of a new 256-bit vector
13471static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13472  EVT VT = SVOp->getValueType(0);
13473  unsigned NumElems = VT.getVectorNumElements();
13474
13475  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13476  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13477    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13478        SVOp->getMaskElt(j) >= 0)
13479      return false;
13480
13481  return true;
13482}
13483
13484/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13485static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13486                                        TargetLowering::DAGCombinerInfo &DCI,
13487                                        const X86Subtarget* Subtarget) {
13488  DebugLoc dl = N->getDebugLoc();
13489  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13490  SDValue V1 = SVOp->getOperand(0);
13491  SDValue V2 = SVOp->getOperand(1);
13492  EVT VT = SVOp->getValueType(0);
13493  unsigned NumElems = VT.getVectorNumElements();
13494
13495  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13496      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13497    //
13498    //                   0,0,0,...
13499    //                      |
13500    //    V      UNDEF    BUILD_VECTOR    UNDEF
13501    //     \      /           \           /
13502    //  CONCAT_VECTOR         CONCAT_VECTOR
13503    //         \                  /
13504    //          \                /
13505    //          RESULT: V + zero extended
13506    //
13507    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13508        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13509        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13510      return SDValue();
13511
13512    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13513      return SDValue();
13514
13515    // To match the shuffle mask, the first half of the mask should
13516    // be exactly the first vector, and all the rest a splat with the
13517    // first element of the second one.
13518    for (unsigned i = 0; i != NumElems/2; ++i)
13519      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13520          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13521        return SDValue();
13522
13523    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13524    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13525      if (Ld->hasNUsesOfValue(1, 0)) {
13526        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13527        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13528        SDValue ResNode =
13529          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13530                                  Ld->getMemoryVT(),
13531                                  Ld->getPointerInfo(),
13532                                  Ld->getAlignment(),
13533                                  false/*isVolatile*/, true/*ReadMem*/,
13534                                  false/*WriteMem*/);
13535        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13536      }
13537    }
13538
13539    // Emit a zeroed vector and insert the desired subvector on its
13540    // first half.
13541    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13542    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13543    return DCI.CombineTo(N, InsV);
13544  }
13545
13546  //===--------------------------------------------------------------------===//
13547  // Combine some shuffles into subvector extracts and inserts:
13548  //
13549
13550  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13551  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13552    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13553    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13554    return DCI.CombineTo(N, InsV);
13555  }
13556
13557  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13558  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13559    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13560    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13561    return DCI.CombineTo(N, InsV);
13562  }
13563
13564  return SDValue();
13565}
13566
13567/// PerformShuffleCombine - Performs several different shuffle combines.
13568static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13569                                     TargetLowering::DAGCombinerInfo &DCI,
13570                                     const X86Subtarget *Subtarget) {
13571  DebugLoc dl = N->getDebugLoc();
13572  EVT VT = N->getValueType(0);
13573
13574  // Don't create instructions with illegal types after legalize types has run.
13575  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13576  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13577    return SDValue();
13578
13579  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13580  if (Subtarget->hasAVX() && VT.is256BitVector() &&
13581      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13582    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13583
13584  // Only handle 128 wide vector from here on.
13585  if (!VT.is128BitVector())
13586    return SDValue();
13587
13588  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13589  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13590  // consecutive, non-overlapping, and in the right order.
13591  SmallVector<SDValue, 16> Elts;
13592  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13593    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13594
13595  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13596}
13597
13598
13599/// PerformTruncateCombine - Converts truncate operation to
13600/// a sequence of vector shuffle operations.
13601/// It is possible when we truncate 256-bit vector to 128-bit vector
13602static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13603                                      TargetLowering::DAGCombinerInfo &DCI,
13604                                      const X86Subtarget *Subtarget)  {
13605  if (!DCI.isBeforeLegalizeOps())
13606    return SDValue();
13607
13608  if (!Subtarget->hasAVX())
13609    return SDValue();
13610
13611  EVT VT = N->getValueType(0);
13612  SDValue Op = N->getOperand(0);
13613  EVT OpVT = Op.getValueType();
13614  DebugLoc dl = N->getDebugLoc();
13615
13616  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13617
13618    if (Subtarget->hasAVX2()) {
13619      // AVX2: v4i64 -> v4i32
13620
13621      // VPERMD
13622      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13623
13624      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13625      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13626                                ShufMask);
13627
13628      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13629                         DAG.getIntPtrConstant(0));
13630    }
13631
13632    // AVX: v4i64 -> v4i32
13633    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13634                               DAG.getIntPtrConstant(0));
13635
13636    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13637                               DAG.getIntPtrConstant(2));
13638
13639    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13640    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13641
13642    // PSHUFD
13643    static const int ShufMask1[] = {0, 2, 0, 0};
13644
13645    SDValue Undef = DAG.getUNDEF(VT);
13646    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
13647    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
13648
13649    // MOVLHPS
13650    static const int ShufMask2[] = {0, 1, 4, 5};
13651
13652    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13653  }
13654
13655  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13656
13657    if (Subtarget->hasAVX2()) {
13658      // AVX2: v8i32 -> v8i16
13659
13660      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13661
13662      // PSHUFB
13663      SmallVector<SDValue,32> pshufbMask;
13664      for (unsigned i = 0; i < 2; ++i) {
13665        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13666        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13667        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13668        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13669        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13670        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13671        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13672        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13673        for (unsigned j = 0; j < 8; ++j)
13674          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13675      }
13676      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13677                               &pshufbMask[0], 32);
13678      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13679
13680      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13681
13682      static const int ShufMask[] = {0,  2,  -1,  -1};
13683      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13684                                &ShufMask[0]);
13685
13686      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13687                       DAG.getIntPtrConstant(0));
13688
13689      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13690    }
13691
13692    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13693                               DAG.getIntPtrConstant(0));
13694
13695    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13696                               DAG.getIntPtrConstant(4));
13697
13698    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13699    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13700
13701    // PSHUFB
13702    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13703                                   -1, -1, -1, -1, -1, -1, -1, -1};
13704
13705    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
13706    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
13707    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
13708
13709    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13710    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13711
13712    // MOVLHPS
13713    static const int ShufMask2[] = {0, 1, 4, 5};
13714
13715    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13716    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13717  }
13718
13719  return SDValue();
13720}
13721
13722/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13723/// specific shuffle of a load can be folded into a single element load.
13724/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13725/// shuffles have been customed lowered so we need to handle those here.
13726static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13727                                         TargetLowering::DAGCombinerInfo &DCI) {
13728  if (DCI.isBeforeLegalizeOps())
13729    return SDValue();
13730
13731  SDValue InVec = N->getOperand(0);
13732  SDValue EltNo = N->getOperand(1);
13733
13734  if (!isa<ConstantSDNode>(EltNo))
13735    return SDValue();
13736
13737  EVT VT = InVec.getValueType();
13738
13739  bool HasShuffleIntoBitcast = false;
13740  if (InVec.getOpcode() == ISD::BITCAST) {
13741    // Don't duplicate a load with other uses.
13742    if (!InVec.hasOneUse())
13743      return SDValue();
13744    EVT BCVT = InVec.getOperand(0).getValueType();
13745    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13746      return SDValue();
13747    InVec = InVec.getOperand(0);
13748    HasShuffleIntoBitcast = true;
13749  }
13750
13751  if (!isTargetShuffle(InVec.getOpcode()))
13752    return SDValue();
13753
13754  // Don't duplicate a load with other uses.
13755  if (!InVec.hasOneUse())
13756    return SDValue();
13757
13758  SmallVector<int, 16> ShuffleMask;
13759  bool UnaryShuffle;
13760  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13761                            UnaryShuffle))
13762    return SDValue();
13763
13764  // Select the input vector, guarding against out of range extract vector.
13765  unsigned NumElems = VT.getVectorNumElements();
13766  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13767  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13768  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13769                                         : InVec.getOperand(1);
13770
13771  // If inputs to shuffle are the same for both ops, then allow 2 uses
13772  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13773
13774  if (LdNode.getOpcode() == ISD::BITCAST) {
13775    // Don't duplicate a load with other uses.
13776    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13777      return SDValue();
13778
13779    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13780    LdNode = LdNode.getOperand(0);
13781  }
13782
13783  if (!ISD::isNormalLoad(LdNode.getNode()))
13784    return SDValue();
13785
13786  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13787
13788  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13789    return SDValue();
13790
13791  if (HasShuffleIntoBitcast) {
13792    // If there's a bitcast before the shuffle, check if the load type and
13793    // alignment is valid.
13794    unsigned Align = LN0->getAlignment();
13795    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13796    unsigned NewAlign = TLI.getTargetData()->
13797      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13798
13799    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13800      return SDValue();
13801  }
13802
13803  // All checks match so transform back to vector_shuffle so that DAG combiner
13804  // can finish the job
13805  DebugLoc dl = N->getDebugLoc();
13806
13807  // Create shuffle node taking into account the case that its a unary shuffle
13808  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13809  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13810                                 InVec.getOperand(0), Shuffle,
13811                                 &ShuffleMask[0]);
13812  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13813  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13814                     EltNo);
13815}
13816
13817/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13818/// generation and convert it from being a bunch of shuffles and extracts
13819/// to a simple store and scalar loads to extract the elements.
13820static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13821                                         TargetLowering::DAGCombinerInfo &DCI) {
13822  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13823  if (NewOp.getNode())
13824    return NewOp;
13825
13826  SDValue InputVector = N->getOperand(0);
13827
13828  // Only operate on vectors of 4 elements, where the alternative shuffling
13829  // gets to be more expensive.
13830  if (InputVector.getValueType() != MVT::v4i32)
13831    return SDValue();
13832
13833  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13834  // single use which is a sign-extend or zero-extend, and all elements are
13835  // used.
13836  SmallVector<SDNode *, 4> Uses;
13837  unsigned ExtractedElements = 0;
13838  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13839       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13840    if (UI.getUse().getResNo() != InputVector.getResNo())
13841      return SDValue();
13842
13843    SDNode *Extract = *UI;
13844    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13845      return SDValue();
13846
13847    if (Extract->getValueType(0) != MVT::i32)
13848      return SDValue();
13849    if (!Extract->hasOneUse())
13850      return SDValue();
13851    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13852        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13853      return SDValue();
13854    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13855      return SDValue();
13856
13857    // Record which element was extracted.
13858    ExtractedElements |=
13859      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13860
13861    Uses.push_back(Extract);
13862  }
13863
13864  // If not all the elements were used, this may not be worthwhile.
13865  if (ExtractedElements != 15)
13866    return SDValue();
13867
13868  // Ok, we've now decided to do the transformation.
13869  DebugLoc dl = InputVector.getDebugLoc();
13870
13871  // Store the value to a temporary stack slot.
13872  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13873  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13874                            MachinePointerInfo(), false, false, 0);
13875
13876  // Replace each use (extract) with a load of the appropriate element.
13877  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13878       UE = Uses.end(); UI != UE; ++UI) {
13879    SDNode *Extract = *UI;
13880
13881    // cOMpute the element's address.
13882    SDValue Idx = Extract->getOperand(1);
13883    unsigned EltSize =
13884        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13885    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13886    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13887    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13888
13889    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13890                                     StackPtr, OffsetVal);
13891
13892    // Load the scalar.
13893    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13894                                     ScalarAddr, MachinePointerInfo(),
13895                                     false, false, false, 0);
13896
13897    // Replace the exact with the load.
13898    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13899  }
13900
13901  // The replacement was made in place; don't return anything.
13902  return SDValue();
13903}
13904
13905/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13906/// nodes.
13907static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13908                                    TargetLowering::DAGCombinerInfo &DCI,
13909                                    const X86Subtarget *Subtarget) {
13910  DebugLoc DL = N->getDebugLoc();
13911  SDValue Cond = N->getOperand(0);
13912  // Get the LHS/RHS of the select.
13913  SDValue LHS = N->getOperand(1);
13914  SDValue RHS = N->getOperand(2);
13915  EVT VT = LHS.getValueType();
13916
13917  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13918  // instructions match the semantics of the common C idiom x<y?x:y but not
13919  // x<=y?x:y, because of how they handle negative zero (which can be
13920  // ignored in unsafe-math mode).
13921  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13922      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13923      (Subtarget->hasSSE2() ||
13924       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13925    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13926
13927    unsigned Opcode = 0;
13928    // Check for x CC y ? x : y.
13929    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13930        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13931      switch (CC) {
13932      default: break;
13933      case ISD::SETULT:
13934        // Converting this to a min would handle NaNs incorrectly, and swapping
13935        // the operands would cause it to handle comparisons between positive
13936        // and negative zero incorrectly.
13937        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13938          if (!DAG.getTarget().Options.UnsafeFPMath &&
13939              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13940            break;
13941          std::swap(LHS, RHS);
13942        }
13943        Opcode = X86ISD::FMIN;
13944        break;
13945      case ISD::SETOLE:
13946        // Converting this to a min would handle comparisons between positive
13947        // and negative zero incorrectly.
13948        if (!DAG.getTarget().Options.UnsafeFPMath &&
13949            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13950          break;
13951        Opcode = X86ISD::FMIN;
13952        break;
13953      case ISD::SETULE:
13954        // Converting this to a min would handle both negative zeros and NaNs
13955        // incorrectly, but we can swap the operands to fix both.
13956        std::swap(LHS, RHS);
13957      case ISD::SETOLT:
13958      case ISD::SETLT:
13959      case ISD::SETLE:
13960        Opcode = X86ISD::FMIN;
13961        break;
13962
13963      case ISD::SETOGE:
13964        // Converting this to a max would handle comparisons between positive
13965        // and negative zero incorrectly.
13966        if (!DAG.getTarget().Options.UnsafeFPMath &&
13967            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13968          break;
13969        Opcode = X86ISD::FMAX;
13970        break;
13971      case ISD::SETUGT:
13972        // Converting this to a max would handle NaNs incorrectly, and swapping
13973        // the operands would cause it to handle comparisons between positive
13974        // and negative zero incorrectly.
13975        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13976          if (!DAG.getTarget().Options.UnsafeFPMath &&
13977              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13978            break;
13979          std::swap(LHS, RHS);
13980        }
13981        Opcode = X86ISD::FMAX;
13982        break;
13983      case ISD::SETUGE:
13984        // Converting this to a max would handle both negative zeros and NaNs
13985        // incorrectly, but we can swap the operands to fix both.
13986        std::swap(LHS, RHS);
13987      case ISD::SETOGT:
13988      case ISD::SETGT:
13989      case ISD::SETGE:
13990        Opcode = X86ISD::FMAX;
13991        break;
13992      }
13993    // Check for x CC y ? y : x -- a min/max with reversed arms.
13994    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13995               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13996      switch (CC) {
13997      default: break;
13998      case ISD::SETOGE:
13999        // Converting this to a min would handle comparisons between positive
14000        // and negative zero incorrectly, and swapping the operands would
14001        // cause it to handle NaNs incorrectly.
14002        if (!DAG.getTarget().Options.UnsafeFPMath &&
14003            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
14004          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14005            break;
14006          std::swap(LHS, RHS);
14007        }
14008        Opcode = X86ISD::FMIN;
14009        break;
14010      case ISD::SETUGT:
14011        // Converting this to a min would handle NaNs incorrectly.
14012        if (!DAG.getTarget().Options.UnsafeFPMath &&
14013            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
14014          break;
14015        Opcode = X86ISD::FMIN;
14016        break;
14017      case ISD::SETUGE:
14018        // Converting this to a min would handle both negative zeros and NaNs
14019        // incorrectly, but we can swap the operands to fix both.
14020        std::swap(LHS, RHS);
14021      case ISD::SETOGT:
14022      case ISD::SETGT:
14023      case ISD::SETGE:
14024        Opcode = X86ISD::FMIN;
14025        break;
14026
14027      case ISD::SETULT:
14028        // Converting this to a max would handle NaNs incorrectly.
14029        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14030          break;
14031        Opcode = X86ISD::FMAX;
14032        break;
14033      case ISD::SETOLE:
14034        // Converting this to a max would handle comparisons between positive
14035        // and negative zero incorrectly, and swapping the operands would
14036        // cause it to handle NaNs incorrectly.
14037        if (!DAG.getTarget().Options.UnsafeFPMath &&
14038            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
14039          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14040            break;
14041          std::swap(LHS, RHS);
14042        }
14043        Opcode = X86ISD::FMAX;
14044        break;
14045      case ISD::SETULE:
14046        // Converting this to a max would handle both negative zeros and NaNs
14047        // incorrectly, but we can swap the operands to fix both.
14048        std::swap(LHS, RHS);
14049      case ISD::SETOLT:
14050      case ISD::SETLT:
14051      case ISD::SETLE:
14052        Opcode = X86ISD::FMAX;
14053        break;
14054      }
14055    }
14056
14057    if (Opcode)
14058      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
14059  }
14060
14061  // If this is a select between two integer constants, try to do some
14062  // optimizations.
14063  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
14064    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
14065      // Don't do this for crazy integer types.
14066      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
14067        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
14068        // so that TrueC (the true value) is larger than FalseC.
14069        bool NeedsCondInvert = false;
14070
14071        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
14072            // Efficiently invertible.
14073            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
14074             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
14075              isa<ConstantSDNode>(Cond.getOperand(1))))) {
14076          NeedsCondInvert = true;
14077          std::swap(TrueC, FalseC);
14078        }
14079
14080        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
14081        if (FalseC->getAPIntValue() == 0 &&
14082            TrueC->getAPIntValue().isPowerOf2()) {
14083          if (NeedsCondInvert) // Invert the condition if needed.
14084            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14085                               DAG.getConstant(1, Cond.getValueType()));
14086
14087          // Zero extend the condition if needed.
14088          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
14089
14090          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14091          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
14092                             DAG.getConstant(ShAmt, MVT::i8));
14093        }
14094
14095        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
14096        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14097          if (NeedsCondInvert) // Invert the condition if needed.
14098            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14099                               DAG.getConstant(1, Cond.getValueType()));
14100
14101          // Zero extend the condition if needed.
14102          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14103                             FalseC->getValueType(0), Cond);
14104          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14105                             SDValue(FalseC, 0));
14106        }
14107
14108        // Optimize cases that will turn into an LEA instruction.  This requires
14109        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14110        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14111          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14112          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14113
14114          bool isFastMultiplier = false;
14115          if (Diff < 10) {
14116            switch ((unsigned char)Diff) {
14117              default: break;
14118              case 1:  // result = add base, cond
14119              case 2:  // result = lea base(    , cond*2)
14120              case 3:  // result = lea base(cond, cond*2)
14121              case 4:  // result = lea base(    , cond*4)
14122              case 5:  // result = lea base(cond, cond*4)
14123              case 8:  // result = lea base(    , cond*8)
14124              case 9:  // result = lea base(cond, cond*8)
14125                isFastMultiplier = true;
14126                break;
14127            }
14128          }
14129
14130          if (isFastMultiplier) {
14131            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14132            if (NeedsCondInvert) // Invert the condition if needed.
14133              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14134                                 DAG.getConstant(1, Cond.getValueType()));
14135
14136            // Zero extend the condition if needed.
14137            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14138                               Cond);
14139            // Scale the condition by the difference.
14140            if (Diff != 1)
14141              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14142                                 DAG.getConstant(Diff, Cond.getValueType()));
14143
14144            // Add the base if non-zero.
14145            if (FalseC->getAPIntValue() != 0)
14146              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14147                                 SDValue(FalseC, 0));
14148            return Cond;
14149          }
14150        }
14151      }
14152  }
14153
14154  // Canonicalize max and min:
14155  // (x > y) ? x : y -> (x >= y) ? x : y
14156  // (x < y) ? x : y -> (x <= y) ? x : y
14157  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
14158  // the need for an extra compare
14159  // against zero. e.g.
14160  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
14161  // subl   %esi, %edi
14162  // testl  %edi, %edi
14163  // movl   $0, %eax
14164  // cmovgl %edi, %eax
14165  // =>
14166  // xorl   %eax, %eax
14167  // subl   %esi, $edi
14168  // cmovsl %eax, %edi
14169  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
14170      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14171      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14172    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14173    switch (CC) {
14174    default: break;
14175    case ISD::SETLT:
14176    case ISD::SETGT: {
14177      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
14178      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
14179                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
14180      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
14181    }
14182    }
14183  }
14184
14185  // If we know that this node is legal then we know that it is going to be
14186  // matched by one of the SSE/AVX BLEND instructions. These instructions only
14187  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
14188  // to simplify previous instructions.
14189  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14190  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
14191      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14192    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14193
14194    // Don't optimize vector selects that map to mask-registers.
14195    if (BitWidth == 1)
14196      return SDValue();
14197
14198    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14199    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14200
14201    APInt KnownZero, KnownOne;
14202    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14203                                          DCI.isBeforeLegalizeOps());
14204    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14205        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14206      DCI.CommitTargetLoweringOpt(TLO);
14207  }
14208
14209  return SDValue();
14210}
14211
14212// Check whether a boolean test is testing a boolean value generated by
14213// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14214// code.
14215//
14216// Simplify the following patterns:
14217// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14218// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14219// to (Op EFLAGS Cond)
14220//
14221// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14222// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14223// to (Op EFLAGS !Cond)
14224//
14225// where Op could be BRCOND or CMOV.
14226//
14227static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14228  // Quit if not CMP and SUB with its value result used.
14229  if (Cmp.getOpcode() != X86ISD::CMP &&
14230      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14231      return SDValue();
14232
14233  // Quit if not used as a boolean value.
14234  if (CC != X86::COND_E && CC != X86::COND_NE)
14235    return SDValue();
14236
14237  // Check CMP operands. One of them should be 0 or 1 and the other should be
14238  // an SetCC or extended from it.
14239  SDValue Op1 = Cmp.getOperand(0);
14240  SDValue Op2 = Cmp.getOperand(1);
14241
14242  SDValue SetCC;
14243  const ConstantSDNode* C = 0;
14244  bool needOppositeCond = (CC == X86::COND_E);
14245
14246  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14247    SetCC = Op2;
14248  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14249    SetCC = Op1;
14250  else // Quit if all operands are not constants.
14251    return SDValue();
14252
14253  if (C->getZExtValue() == 1)
14254    needOppositeCond = !needOppositeCond;
14255  else if (C->getZExtValue() != 0)
14256    // Quit if the constant is neither 0 or 1.
14257    return SDValue();
14258
14259  // Skip 'zext' node.
14260  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14261    SetCC = SetCC.getOperand(0);
14262
14263  switch (SetCC.getOpcode()) {
14264  case X86ISD::SETCC:
14265    // Set the condition code or opposite one if necessary.
14266    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14267    if (needOppositeCond)
14268      CC = X86::GetOppositeBranchCondition(CC);
14269    return SetCC.getOperand(1);
14270  case X86ISD::CMOV: {
14271    // Check whether false/true value has canonical one, i.e. 0 or 1.
14272    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
14273    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
14274    // Quit if true value is not a constant.
14275    if (!TVal)
14276      return SDValue();
14277    // Quit if false value is not a constant.
14278    if (!FVal) {
14279      // A special case for rdrand, where 0 is set if false cond is found.
14280      SDValue Op = SetCC.getOperand(0);
14281      if (Op.getOpcode() != X86ISD::RDRAND)
14282        return SDValue();
14283    }
14284    // Quit if false value is not the constant 0 or 1.
14285    bool FValIsFalse = true;
14286    if (FVal && FVal->getZExtValue() != 0) {
14287      if (FVal->getZExtValue() != 1)
14288        return SDValue();
14289      // If FVal is 1, opposite cond is needed.
14290      needOppositeCond = !needOppositeCond;
14291      FValIsFalse = false;
14292    }
14293    // Quit if TVal is not the constant opposite of FVal.
14294    if (FValIsFalse && TVal->getZExtValue() != 1)
14295      return SDValue();
14296    if (!FValIsFalse && TVal->getZExtValue() != 0)
14297      return SDValue();
14298    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
14299    if (needOppositeCond)
14300      CC = X86::GetOppositeBranchCondition(CC);
14301    return SetCC.getOperand(3);
14302  }
14303  }
14304
14305  return SDValue();
14306}
14307
14308/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
14309static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
14310                                  TargetLowering::DAGCombinerInfo &DCI,
14311                                  const X86Subtarget *Subtarget) {
14312  DebugLoc DL = N->getDebugLoc();
14313
14314  // If the flag operand isn't dead, don't touch this CMOV.
14315  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
14316    return SDValue();
14317
14318  SDValue FalseOp = N->getOperand(0);
14319  SDValue TrueOp = N->getOperand(1);
14320  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
14321  SDValue Cond = N->getOperand(3);
14322
14323  if (CC == X86::COND_E || CC == X86::COND_NE) {
14324    switch (Cond.getOpcode()) {
14325    default: break;
14326    case X86ISD::BSR:
14327    case X86ISD::BSF:
14328      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
14329      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
14330        return (CC == X86::COND_E) ? FalseOp : TrueOp;
14331    }
14332  }
14333
14334  SDValue Flags;
14335
14336  Flags = checkBoolTestSetCCCombine(Cond, CC);
14337  if (Flags.getNode() &&
14338      // Extra check as FCMOV only supports a subset of X86 cond.
14339      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
14340    SDValue Ops[] = { FalseOp, TrueOp,
14341                      DAG.getConstant(CC, MVT::i8), Flags };
14342    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14343                       Ops, array_lengthof(Ops));
14344  }
14345
14346  // If this is a select between two integer constants, try to do some
14347  // optimizations.  Note that the operands are ordered the opposite of SELECT
14348  // operands.
14349  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
14350    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
14351      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
14352      // larger than FalseC (the false value).
14353      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
14354        CC = X86::GetOppositeBranchCondition(CC);
14355        std::swap(TrueC, FalseC);
14356      }
14357
14358      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
14359      // This is efficient for any integer data type (including i8/i16) and
14360      // shift amount.
14361      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
14362        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14363                           DAG.getConstant(CC, MVT::i8), Cond);
14364
14365        // Zero extend the condition if needed.
14366        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
14367
14368        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14369        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
14370                           DAG.getConstant(ShAmt, MVT::i8));
14371        if (N->getNumValues() == 2)  // Dead flag value?
14372          return DCI.CombineTo(N, Cond, SDValue());
14373        return Cond;
14374      }
14375
14376      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
14377      // for any integer data type, including i8/i16.
14378      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14379        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14380                           DAG.getConstant(CC, MVT::i8), Cond);
14381
14382        // Zero extend the condition if needed.
14383        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14384                           FalseC->getValueType(0), Cond);
14385        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14386                           SDValue(FalseC, 0));
14387
14388        if (N->getNumValues() == 2)  // Dead flag value?
14389          return DCI.CombineTo(N, Cond, SDValue());
14390        return Cond;
14391      }
14392
14393      // Optimize cases that will turn into an LEA instruction.  This requires
14394      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14395      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14396        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14397        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14398
14399        bool isFastMultiplier = false;
14400        if (Diff < 10) {
14401          switch ((unsigned char)Diff) {
14402          default: break;
14403          case 1:  // result = add base, cond
14404          case 2:  // result = lea base(    , cond*2)
14405          case 3:  // result = lea base(cond, cond*2)
14406          case 4:  // result = lea base(    , cond*4)
14407          case 5:  // result = lea base(cond, cond*4)
14408          case 8:  // result = lea base(    , cond*8)
14409          case 9:  // result = lea base(cond, cond*8)
14410            isFastMultiplier = true;
14411            break;
14412          }
14413        }
14414
14415        if (isFastMultiplier) {
14416          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14417          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14418                             DAG.getConstant(CC, MVT::i8), Cond);
14419          // Zero extend the condition if needed.
14420          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14421                             Cond);
14422          // Scale the condition by the difference.
14423          if (Diff != 1)
14424            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14425                               DAG.getConstant(Diff, Cond.getValueType()));
14426
14427          // Add the base if non-zero.
14428          if (FalseC->getAPIntValue() != 0)
14429            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14430                               SDValue(FalseC, 0));
14431          if (N->getNumValues() == 2)  // Dead flag value?
14432            return DCI.CombineTo(N, Cond, SDValue());
14433          return Cond;
14434        }
14435      }
14436    }
14437  }
14438  return SDValue();
14439}
14440
14441
14442/// PerformMulCombine - Optimize a single multiply with constant into two
14443/// in order to implement it with two cheaper instructions, e.g.
14444/// LEA + SHL, LEA + LEA.
14445static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
14446                                 TargetLowering::DAGCombinerInfo &DCI) {
14447  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14448    return SDValue();
14449
14450  EVT VT = N->getValueType(0);
14451  if (VT != MVT::i64)
14452    return SDValue();
14453
14454  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14455  if (!C)
14456    return SDValue();
14457  uint64_t MulAmt = C->getZExtValue();
14458  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
14459    return SDValue();
14460
14461  uint64_t MulAmt1 = 0;
14462  uint64_t MulAmt2 = 0;
14463  if ((MulAmt % 9) == 0) {
14464    MulAmt1 = 9;
14465    MulAmt2 = MulAmt / 9;
14466  } else if ((MulAmt % 5) == 0) {
14467    MulAmt1 = 5;
14468    MulAmt2 = MulAmt / 5;
14469  } else if ((MulAmt % 3) == 0) {
14470    MulAmt1 = 3;
14471    MulAmt2 = MulAmt / 3;
14472  }
14473  if (MulAmt2 &&
14474      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
14475    DebugLoc DL = N->getDebugLoc();
14476
14477    if (isPowerOf2_64(MulAmt2) &&
14478        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
14479      // If second multiplifer is pow2, issue it first. We want the multiply by
14480      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
14481      // is an add.
14482      std::swap(MulAmt1, MulAmt2);
14483
14484    SDValue NewMul;
14485    if (isPowerOf2_64(MulAmt1))
14486      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14487                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
14488    else
14489      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
14490                           DAG.getConstant(MulAmt1, VT));
14491
14492    if (isPowerOf2_64(MulAmt2))
14493      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
14494                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
14495    else
14496      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
14497                           DAG.getConstant(MulAmt2, VT));
14498
14499    // Do not add new nodes to DAG combiner worklist.
14500    DCI.CombineTo(N, NewMul, false);
14501  }
14502  return SDValue();
14503}
14504
14505static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
14506  SDValue N0 = N->getOperand(0);
14507  SDValue N1 = N->getOperand(1);
14508  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14509  EVT VT = N0.getValueType();
14510
14511  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
14512  // since the result of setcc_c is all zero's or all ones.
14513  if (VT.isInteger() && !VT.isVector() &&
14514      N1C && N0.getOpcode() == ISD::AND &&
14515      N0.getOperand(1).getOpcode() == ISD::Constant) {
14516    SDValue N00 = N0.getOperand(0);
14517    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
14518        ((N00.getOpcode() == ISD::ANY_EXTEND ||
14519          N00.getOpcode() == ISD::ZERO_EXTEND) &&
14520         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
14521      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
14522      APInt ShAmt = N1C->getAPIntValue();
14523      Mask = Mask.shl(ShAmt);
14524      if (Mask != 0)
14525        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
14526                           N00, DAG.getConstant(Mask, VT));
14527    }
14528  }
14529
14530
14531  // Hardware support for vector shifts is sparse which makes us scalarize the
14532  // vector operations in many cases. Also, on sandybridge ADD is faster than
14533  // shl.
14534  // (shl V, 1) -> add V,V
14535  if (isSplatVector(N1.getNode())) {
14536    assert(N0.getValueType().isVector() && "Invalid vector shift type");
14537    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
14538    // We shift all of the values by one. In many cases we do not have
14539    // hardware support for this operation. This is better expressed as an ADD
14540    // of two values.
14541    if (N1C && (1 == N1C->getZExtValue())) {
14542      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
14543    }
14544  }
14545
14546  return SDValue();
14547}
14548
14549/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
14550///                       when possible.
14551static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
14552                                   TargetLowering::DAGCombinerInfo &DCI,
14553                                   const X86Subtarget *Subtarget) {
14554  EVT VT = N->getValueType(0);
14555  if (N->getOpcode() == ISD::SHL) {
14556    SDValue V = PerformSHLCombine(N, DAG);
14557    if (V.getNode()) return V;
14558  }
14559
14560  // On X86 with SSE2 support, we can transform this to a vector shift if
14561  // all elements are shifted by the same amount.  We can't do this in legalize
14562  // because the a constant vector is typically transformed to a constant pool
14563  // so we have no knowledge of the shift amount.
14564  if (!Subtarget->hasSSE2())
14565    return SDValue();
14566
14567  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
14568      (!Subtarget->hasAVX2() ||
14569       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14570    return SDValue();
14571
14572  SDValue ShAmtOp = N->getOperand(1);
14573  EVT EltVT = VT.getVectorElementType();
14574  DebugLoc DL = N->getDebugLoc();
14575  SDValue BaseShAmt = SDValue();
14576  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14577    unsigned NumElts = VT.getVectorNumElements();
14578    unsigned i = 0;
14579    for (; i != NumElts; ++i) {
14580      SDValue Arg = ShAmtOp.getOperand(i);
14581      if (Arg.getOpcode() == ISD::UNDEF) continue;
14582      BaseShAmt = Arg;
14583      break;
14584    }
14585    // Handle the case where the build_vector is all undef
14586    // FIXME: Should DAG allow this?
14587    if (i == NumElts)
14588      return SDValue();
14589
14590    for (; i != NumElts; ++i) {
14591      SDValue Arg = ShAmtOp.getOperand(i);
14592      if (Arg.getOpcode() == ISD::UNDEF) continue;
14593      if (Arg != BaseShAmt) {
14594        return SDValue();
14595      }
14596    }
14597  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14598             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14599    SDValue InVec = ShAmtOp.getOperand(0);
14600    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14601      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14602      unsigned i = 0;
14603      for (; i != NumElts; ++i) {
14604        SDValue Arg = InVec.getOperand(i);
14605        if (Arg.getOpcode() == ISD::UNDEF) continue;
14606        BaseShAmt = Arg;
14607        break;
14608      }
14609    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14610       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14611         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14612         if (C->getZExtValue() == SplatIdx)
14613           BaseShAmt = InVec.getOperand(1);
14614       }
14615    }
14616    if (BaseShAmt.getNode() == 0) {
14617      // Don't create instructions with illegal types after legalize
14618      // types has run.
14619      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14620          !DCI.isBeforeLegalize())
14621        return SDValue();
14622
14623      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14624                              DAG.getIntPtrConstant(0));
14625    }
14626  } else
14627    return SDValue();
14628
14629  // The shift amount is an i32.
14630  if (EltVT.bitsGT(MVT::i32))
14631    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14632  else if (EltVT.bitsLT(MVT::i32))
14633    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14634
14635  // The shift amount is identical so we can do a vector shift.
14636  SDValue  ValOp = N->getOperand(0);
14637  switch (N->getOpcode()) {
14638  default:
14639    llvm_unreachable("Unknown shift opcode!");
14640  case ISD::SHL:
14641    switch (VT.getSimpleVT().SimpleTy) {
14642    default: return SDValue();
14643    case MVT::v2i64:
14644    case MVT::v4i32:
14645    case MVT::v8i16:
14646    case MVT::v4i64:
14647    case MVT::v8i32:
14648    case MVT::v16i16:
14649      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14650    }
14651  case ISD::SRA:
14652    switch (VT.getSimpleVT().SimpleTy) {
14653    default: return SDValue();
14654    case MVT::v4i32:
14655    case MVT::v8i16:
14656    case MVT::v8i32:
14657    case MVT::v16i16:
14658      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14659    }
14660  case ISD::SRL:
14661    switch (VT.getSimpleVT().SimpleTy) {
14662    default: return SDValue();
14663    case MVT::v2i64:
14664    case MVT::v4i32:
14665    case MVT::v8i16:
14666    case MVT::v4i64:
14667    case MVT::v8i32:
14668    case MVT::v16i16:
14669      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14670    }
14671  }
14672}
14673
14674
14675// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14676// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14677// and friends.  Likewise for OR -> CMPNEQSS.
14678static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14679                            TargetLowering::DAGCombinerInfo &DCI,
14680                            const X86Subtarget *Subtarget) {
14681  unsigned opcode;
14682
14683  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14684  // we're requiring SSE2 for both.
14685  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14686    SDValue N0 = N->getOperand(0);
14687    SDValue N1 = N->getOperand(1);
14688    SDValue CMP0 = N0->getOperand(1);
14689    SDValue CMP1 = N1->getOperand(1);
14690    DebugLoc DL = N->getDebugLoc();
14691
14692    // The SETCCs should both refer to the same CMP.
14693    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14694      return SDValue();
14695
14696    SDValue CMP00 = CMP0->getOperand(0);
14697    SDValue CMP01 = CMP0->getOperand(1);
14698    EVT     VT    = CMP00.getValueType();
14699
14700    if (VT == MVT::f32 || VT == MVT::f64) {
14701      bool ExpectingFlags = false;
14702      // Check for any users that want flags:
14703      for (SDNode::use_iterator UI = N->use_begin(),
14704             UE = N->use_end();
14705           !ExpectingFlags && UI != UE; ++UI)
14706        switch (UI->getOpcode()) {
14707        default:
14708        case ISD::BR_CC:
14709        case ISD::BRCOND:
14710        case ISD::SELECT:
14711          ExpectingFlags = true;
14712          break;
14713        case ISD::CopyToReg:
14714        case ISD::SIGN_EXTEND:
14715        case ISD::ZERO_EXTEND:
14716        case ISD::ANY_EXTEND:
14717          break;
14718        }
14719
14720      if (!ExpectingFlags) {
14721        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14722        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14723
14724        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14725          X86::CondCode tmp = cc0;
14726          cc0 = cc1;
14727          cc1 = tmp;
14728        }
14729
14730        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14731            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14732          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14733          X86ISD::NodeType NTOperator = is64BitFP ?
14734            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14735          // FIXME: need symbolic constants for these magic numbers.
14736          // See X86ATTInstPrinter.cpp:printSSECC().
14737          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14738          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14739                                              DAG.getConstant(x86cc, MVT::i8));
14740          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14741                                              OnesOrZeroesF);
14742          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14743                                      DAG.getConstant(1, MVT::i32));
14744          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14745          return OneBitOfTruth;
14746        }
14747      }
14748    }
14749  }
14750  return SDValue();
14751}
14752
14753/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14754/// so it can be folded inside ANDNP.
14755static bool CanFoldXORWithAllOnes(const SDNode *N) {
14756  EVT VT = N->getValueType(0);
14757
14758  // Match direct AllOnes for 128 and 256-bit vectors
14759  if (ISD::isBuildVectorAllOnes(N))
14760    return true;
14761
14762  // Look through a bit convert.
14763  if (N->getOpcode() == ISD::BITCAST)
14764    N = N->getOperand(0).getNode();
14765
14766  // Sometimes the operand may come from a insert_subvector building a 256-bit
14767  // allones vector
14768  if (VT.is256BitVector() &&
14769      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14770    SDValue V1 = N->getOperand(0);
14771    SDValue V2 = N->getOperand(1);
14772
14773    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14774        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14775        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14776        ISD::isBuildVectorAllOnes(V2.getNode()))
14777      return true;
14778  }
14779
14780  return false;
14781}
14782
14783static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14784                                 TargetLowering::DAGCombinerInfo &DCI,
14785                                 const X86Subtarget *Subtarget) {
14786  if (DCI.isBeforeLegalizeOps())
14787    return SDValue();
14788
14789  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14790  if (R.getNode())
14791    return R;
14792
14793  EVT VT = N->getValueType(0);
14794
14795  // Create ANDN, BLSI, and BLSR instructions
14796  // BLSI is X & (-X)
14797  // BLSR is X & (X-1)
14798  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14799    SDValue N0 = N->getOperand(0);
14800    SDValue N1 = N->getOperand(1);
14801    DebugLoc DL = N->getDebugLoc();
14802
14803    // Check LHS for not
14804    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14805      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14806    // Check RHS for not
14807    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14808      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14809
14810    // Check LHS for neg
14811    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14812        isZero(N0.getOperand(0)))
14813      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14814
14815    // Check RHS for neg
14816    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14817        isZero(N1.getOperand(0)))
14818      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14819
14820    // Check LHS for X-1
14821    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14822        isAllOnes(N0.getOperand(1)))
14823      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14824
14825    // Check RHS for X-1
14826    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14827        isAllOnes(N1.getOperand(1)))
14828      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14829
14830    return SDValue();
14831  }
14832
14833  // Want to form ANDNP nodes:
14834  // 1) In the hopes of then easily combining them with OR and AND nodes
14835  //    to form PBLEND/PSIGN.
14836  // 2) To match ANDN packed intrinsics
14837  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14838    return SDValue();
14839
14840  SDValue N0 = N->getOperand(0);
14841  SDValue N1 = N->getOperand(1);
14842  DebugLoc DL = N->getDebugLoc();
14843
14844  // Check LHS for vnot
14845  if (N0.getOpcode() == ISD::XOR &&
14846      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14847      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14848    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14849
14850  // Check RHS for vnot
14851  if (N1.getOpcode() == ISD::XOR &&
14852      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14853      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14854    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14855
14856  return SDValue();
14857}
14858
14859static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14860                                TargetLowering::DAGCombinerInfo &DCI,
14861                                const X86Subtarget *Subtarget) {
14862  if (DCI.isBeforeLegalizeOps())
14863    return SDValue();
14864
14865  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14866  if (R.getNode())
14867    return R;
14868
14869  EVT VT = N->getValueType(0);
14870
14871  SDValue N0 = N->getOperand(0);
14872  SDValue N1 = N->getOperand(1);
14873
14874  // look for psign/blend
14875  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14876    if (!Subtarget->hasSSSE3() ||
14877        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14878      return SDValue();
14879
14880    // Canonicalize pandn to RHS
14881    if (N0.getOpcode() == X86ISD::ANDNP)
14882      std::swap(N0, N1);
14883    // or (and (m, y), (pandn m, x))
14884    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14885      SDValue Mask = N1.getOperand(0);
14886      SDValue X    = N1.getOperand(1);
14887      SDValue Y;
14888      if (N0.getOperand(0) == Mask)
14889        Y = N0.getOperand(1);
14890      if (N0.getOperand(1) == Mask)
14891        Y = N0.getOperand(0);
14892
14893      // Check to see if the mask appeared in both the AND and ANDNP and
14894      if (!Y.getNode())
14895        return SDValue();
14896
14897      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14898      // Look through mask bitcast.
14899      if (Mask.getOpcode() == ISD::BITCAST)
14900        Mask = Mask.getOperand(0);
14901      if (X.getOpcode() == ISD::BITCAST)
14902        X = X.getOperand(0);
14903      if (Y.getOpcode() == ISD::BITCAST)
14904        Y = Y.getOperand(0);
14905
14906      EVT MaskVT = Mask.getValueType();
14907
14908      // Validate that the Mask operand is a vector sra node.
14909      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14910      // there is no psrai.b
14911      if (Mask.getOpcode() != X86ISD::VSRAI)
14912        return SDValue();
14913
14914      // Check that the SRA is all signbits.
14915      SDValue SraC = Mask.getOperand(1);
14916      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14917      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14918      if ((SraAmt + 1) != EltBits)
14919        return SDValue();
14920
14921      DebugLoc DL = N->getDebugLoc();
14922
14923      // Now we know we at least have a plendvb with the mask val.  See if
14924      // we can form a psignb/w/d.
14925      // psign = x.type == y.type == mask.type && y = sub(0, x);
14926      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14927          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14928          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14929        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14930               "Unsupported VT for PSIGN");
14931        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14932        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14933      }
14934      // PBLENDVB only available on SSE 4.1
14935      if (!Subtarget->hasSSE41())
14936        return SDValue();
14937
14938      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14939
14940      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14941      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14942      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14943      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14944      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14945    }
14946  }
14947
14948  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14949    return SDValue();
14950
14951  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14952  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14953    std::swap(N0, N1);
14954  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14955    return SDValue();
14956  if (!N0.hasOneUse() || !N1.hasOneUse())
14957    return SDValue();
14958
14959  SDValue ShAmt0 = N0.getOperand(1);
14960  if (ShAmt0.getValueType() != MVT::i8)
14961    return SDValue();
14962  SDValue ShAmt1 = N1.getOperand(1);
14963  if (ShAmt1.getValueType() != MVT::i8)
14964    return SDValue();
14965  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14966    ShAmt0 = ShAmt0.getOperand(0);
14967  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14968    ShAmt1 = ShAmt1.getOperand(0);
14969
14970  DebugLoc DL = N->getDebugLoc();
14971  unsigned Opc = X86ISD::SHLD;
14972  SDValue Op0 = N0.getOperand(0);
14973  SDValue Op1 = N1.getOperand(0);
14974  if (ShAmt0.getOpcode() == ISD::SUB) {
14975    Opc = X86ISD::SHRD;
14976    std::swap(Op0, Op1);
14977    std::swap(ShAmt0, ShAmt1);
14978  }
14979
14980  unsigned Bits = VT.getSizeInBits();
14981  if (ShAmt1.getOpcode() == ISD::SUB) {
14982    SDValue Sum = ShAmt1.getOperand(0);
14983    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14984      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14985      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14986        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14987      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14988        return DAG.getNode(Opc, DL, VT,
14989                           Op0, Op1,
14990                           DAG.getNode(ISD::TRUNCATE, DL,
14991                                       MVT::i8, ShAmt0));
14992    }
14993  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14994    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14995    if (ShAmt0C &&
14996        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14997      return DAG.getNode(Opc, DL, VT,
14998                         N0.getOperand(0), N1.getOperand(0),
14999                         DAG.getNode(ISD::TRUNCATE, DL,
15000                                       MVT::i8, ShAmt0));
15001  }
15002
15003  return SDValue();
15004}
15005
15006// Generate NEG and CMOV for integer abs.
15007static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
15008  EVT VT = N->getValueType(0);
15009
15010  // Since X86 does not have CMOV for 8-bit integer, we don't convert
15011  // 8-bit integer abs to NEG and CMOV.
15012  if (VT.isInteger() && VT.getSizeInBits() == 8)
15013    return SDValue();
15014
15015  SDValue N0 = N->getOperand(0);
15016  SDValue N1 = N->getOperand(1);
15017  DebugLoc DL = N->getDebugLoc();
15018
15019  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
15020  // and change it to SUB and CMOV.
15021  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
15022      N0.getOpcode() == ISD::ADD &&
15023      N0.getOperand(1) == N1 &&
15024      N1.getOpcode() == ISD::SRA &&
15025      N1.getOperand(0) == N0.getOperand(0))
15026    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
15027      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
15028        // Generate SUB & CMOV.
15029        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
15030                                  DAG.getConstant(0, VT), N0.getOperand(0));
15031
15032        SDValue Ops[] = { N0.getOperand(0), Neg,
15033                          DAG.getConstant(X86::COND_GE, MVT::i8),
15034                          SDValue(Neg.getNode(), 1) };
15035        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
15036                           Ops, array_lengthof(Ops));
15037      }
15038  return SDValue();
15039}
15040
15041// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
15042static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
15043                                 TargetLowering::DAGCombinerInfo &DCI,
15044                                 const X86Subtarget *Subtarget) {
15045  if (DCI.isBeforeLegalizeOps())
15046    return SDValue();
15047
15048  if (Subtarget->hasCMov()) {
15049    SDValue RV = performIntegerAbsCombine(N, DAG);
15050    if (RV.getNode())
15051      return RV;
15052  }
15053
15054  // Try forming BMI if it is available.
15055  if (!Subtarget->hasBMI())
15056    return SDValue();
15057
15058  EVT VT = N->getValueType(0);
15059
15060  if (VT != MVT::i32 && VT != MVT::i64)
15061    return SDValue();
15062
15063  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
15064
15065  // Create BLSMSK instructions by finding X ^ (X-1)
15066  SDValue N0 = N->getOperand(0);
15067  SDValue N1 = N->getOperand(1);
15068  DebugLoc DL = N->getDebugLoc();
15069
15070  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15071      isAllOnes(N0.getOperand(1)))
15072    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
15073
15074  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15075      isAllOnes(N1.getOperand(1)))
15076    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
15077
15078  return SDValue();
15079}
15080
15081/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
15082static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
15083                                  TargetLowering::DAGCombinerInfo &DCI,
15084                                  const X86Subtarget *Subtarget) {
15085  LoadSDNode *Ld = cast<LoadSDNode>(N);
15086  EVT RegVT = Ld->getValueType(0);
15087  EVT MemVT = Ld->getMemoryVT();
15088  DebugLoc dl = Ld->getDebugLoc();
15089  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15090
15091  ISD::LoadExtType Ext = Ld->getExtensionType();
15092
15093  // If this is a vector EXT Load then attempt to optimize it using a
15094  // shuffle. We need SSE4 for the shuffles.
15095  // TODO: It is possible to support ZExt by zeroing the undef values
15096  // during the shuffle phase or after the shuffle.
15097  if (RegVT.isVector() && RegVT.isInteger() &&
15098      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
15099    assert(MemVT != RegVT && "Cannot extend to the same type");
15100    assert(MemVT.isVector() && "Must load a vector from memory");
15101
15102    unsigned NumElems = RegVT.getVectorNumElements();
15103    unsigned RegSz = RegVT.getSizeInBits();
15104    unsigned MemSz = MemVT.getSizeInBits();
15105    assert(RegSz > MemSz && "Register size must be greater than the mem size");
15106
15107    // All sizes must be a power of two.
15108    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
15109      return SDValue();
15110
15111    // Attempt to load the original value using scalar loads.
15112    // Find the largest scalar type that divides the total loaded size.
15113    MVT SclrLoadTy = MVT::i8;
15114    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15115         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15116      MVT Tp = (MVT::SimpleValueType)tp;
15117      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15118        SclrLoadTy = Tp;
15119      }
15120    }
15121
15122    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15123    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15124        (64 <= MemSz))
15125      SclrLoadTy = MVT::f64;
15126
15127    // Calculate the number of scalar loads that we need to perform
15128    // in order to load our vector from memory.
15129    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15130
15131    // Represent our vector as a sequence of elements which are the
15132    // largest scalar that we can load.
15133    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15134      RegSz/SclrLoadTy.getSizeInBits());
15135
15136    // Represent the data using the same element type that is stored in
15137    // memory. In practice, we ''widen'' MemVT.
15138    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15139                                  RegSz/MemVT.getScalarType().getSizeInBits());
15140
15141    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15142      "Invalid vector type");
15143
15144    // We can't shuffle using an illegal type.
15145    if (!TLI.isTypeLegal(WideVecVT))
15146      return SDValue();
15147
15148    SmallVector<SDValue, 8> Chains;
15149    SDValue Ptr = Ld->getBasePtr();
15150    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15151                                        TLI.getPointerTy());
15152    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15153
15154    for (unsigned i = 0; i < NumLoads; ++i) {
15155      // Perform a single load.
15156      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15157                                       Ptr, Ld->getPointerInfo(),
15158                                       Ld->isVolatile(), Ld->isNonTemporal(),
15159                                       Ld->isInvariant(), Ld->getAlignment());
15160      Chains.push_back(ScalarLoad.getValue(1));
15161      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15162      // another round of DAGCombining.
15163      if (i == 0)
15164        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15165      else
15166        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15167                          ScalarLoad, DAG.getIntPtrConstant(i));
15168
15169      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15170    }
15171
15172    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15173                               Chains.size());
15174
15175    // Bitcast the loaded value to a vector of the original element type, in
15176    // the size of the target vector type.
15177    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15178    unsigned SizeRatio = RegSz/MemSz;
15179
15180    // Redistribute the loaded elements into the different locations.
15181    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15182    for (unsigned i = 0; i != NumElems; ++i)
15183      ShuffleVec[i*SizeRatio] = i;
15184
15185    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15186                                         DAG.getUNDEF(WideVecVT),
15187                                         &ShuffleVec[0]);
15188
15189    // Bitcast to the requested type.
15190    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15191    // Replace the original load with the new sequence
15192    // and return the new chain.
15193    return DCI.CombineTo(N, Shuff, TF, true);
15194  }
15195
15196  return SDValue();
15197}
15198
15199/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15200static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15201                                   const X86Subtarget *Subtarget) {
15202  StoreSDNode *St = cast<StoreSDNode>(N);
15203  EVT VT = St->getValue().getValueType();
15204  EVT StVT = St->getMemoryVT();
15205  DebugLoc dl = St->getDebugLoc();
15206  SDValue StoredVal = St->getOperand(1);
15207  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15208
15209  // If we are saving a concatenation of two XMM registers, perform two stores.
15210  // On Sandy Bridge, 256-bit memory operations are executed by two
15211  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15212  // memory  operation.
15213  if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
15214      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15215      StoredVal.getNumOperands() == 2) {
15216    SDValue Value0 = StoredVal.getOperand(0);
15217    SDValue Value1 = StoredVal.getOperand(1);
15218
15219    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15220    SDValue Ptr0 = St->getBasePtr();
15221    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15222
15223    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15224                                St->getPointerInfo(), St->isVolatile(),
15225                                St->isNonTemporal(), St->getAlignment());
15226    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15227                                St->getPointerInfo(), St->isVolatile(),
15228                                St->isNonTemporal(), St->getAlignment());
15229    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15230  }
15231
15232  // Optimize trunc store (of multiple scalars) to shuffle and store.
15233  // First, pack all of the elements in one place. Next, store to memory
15234  // in fewer chunks.
15235  if (St->isTruncatingStore() && VT.isVector()) {
15236    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15237    unsigned NumElems = VT.getVectorNumElements();
15238    assert(StVT != VT && "Cannot truncate to the same type");
15239    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
15240    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
15241
15242    // From, To sizes and ElemCount must be pow of two
15243    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
15244    // We are going to use the original vector elt for storing.
15245    // Accumulated smaller vector elements must be a multiple of the store size.
15246    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
15247
15248    unsigned SizeRatio  = FromSz / ToSz;
15249
15250    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
15251
15252    // Create a type on which we perform the shuffle
15253    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
15254            StVT.getScalarType(), NumElems*SizeRatio);
15255
15256    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15257
15258    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
15259    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15260    for (unsigned i = 0; i != NumElems; ++i)
15261      ShuffleVec[i] = i * SizeRatio;
15262
15263    // Can't shuffle using an illegal type.
15264    if (!TLI.isTypeLegal(WideVecVT))
15265      return SDValue();
15266
15267    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
15268                                         DAG.getUNDEF(WideVecVT),
15269                                         &ShuffleVec[0]);
15270    // At this point all of the data is stored at the bottom of the
15271    // register. We now need to save it to mem.
15272
15273    // Find the largest store unit
15274    MVT StoreType = MVT::i8;
15275    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15276         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15277      MVT Tp = (MVT::SimpleValueType)tp;
15278      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
15279        StoreType = Tp;
15280    }
15281
15282    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15283    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
15284        (64 <= NumElems * ToSz))
15285      StoreType = MVT::f64;
15286
15287    // Bitcast the original vector into a vector of store-size units
15288    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
15289            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
15290    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15291    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
15292    SmallVector<SDValue, 8> Chains;
15293    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
15294                                        TLI.getPointerTy());
15295    SDValue Ptr = St->getBasePtr();
15296
15297    // Perform one or more big stores into memory.
15298    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
15299      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
15300                                   StoreType, ShuffWide,
15301                                   DAG.getIntPtrConstant(i));
15302      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
15303                                St->getPointerInfo(), St->isVolatile(),
15304                                St->isNonTemporal(), St->getAlignment());
15305      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15306      Chains.push_back(Ch);
15307    }
15308
15309    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15310                               Chains.size());
15311  }
15312
15313
15314  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
15315  // the FP state in cases where an emms may be missing.
15316  // A preferable solution to the general problem is to figure out the right
15317  // places to insert EMMS.  This qualifies as a quick hack.
15318
15319  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
15320  if (VT.getSizeInBits() != 64)
15321    return SDValue();
15322
15323  const Function *F = DAG.getMachineFunction().getFunction();
15324  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
15325  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
15326                     && Subtarget->hasSSE2();
15327  if ((VT.isVector() ||
15328       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
15329      isa<LoadSDNode>(St->getValue()) &&
15330      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
15331      St->getChain().hasOneUse() && !St->isVolatile()) {
15332    SDNode* LdVal = St->getValue().getNode();
15333    LoadSDNode *Ld = 0;
15334    int TokenFactorIndex = -1;
15335    SmallVector<SDValue, 8> Ops;
15336    SDNode* ChainVal = St->getChain().getNode();
15337    // Must be a store of a load.  We currently handle two cases:  the load
15338    // is a direct child, and it's under an intervening TokenFactor.  It is
15339    // possible to dig deeper under nested TokenFactors.
15340    if (ChainVal == LdVal)
15341      Ld = cast<LoadSDNode>(St->getChain());
15342    else if (St->getValue().hasOneUse() &&
15343             ChainVal->getOpcode() == ISD::TokenFactor) {
15344      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
15345        if (ChainVal->getOperand(i).getNode() == LdVal) {
15346          TokenFactorIndex = i;
15347          Ld = cast<LoadSDNode>(St->getValue());
15348        } else
15349          Ops.push_back(ChainVal->getOperand(i));
15350      }
15351    }
15352
15353    if (!Ld || !ISD::isNormalLoad(Ld))
15354      return SDValue();
15355
15356    // If this is not the MMX case, i.e. we are just turning i64 load/store
15357    // into f64 load/store, avoid the transformation if there are multiple
15358    // uses of the loaded value.
15359    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
15360      return SDValue();
15361
15362    DebugLoc LdDL = Ld->getDebugLoc();
15363    DebugLoc StDL = N->getDebugLoc();
15364    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
15365    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
15366    // pair instead.
15367    if (Subtarget->is64Bit() || F64IsLegal) {
15368      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
15369      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
15370                                  Ld->getPointerInfo(), Ld->isVolatile(),
15371                                  Ld->isNonTemporal(), Ld->isInvariant(),
15372                                  Ld->getAlignment());
15373      SDValue NewChain = NewLd.getValue(1);
15374      if (TokenFactorIndex != -1) {
15375        Ops.push_back(NewChain);
15376        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15377                               Ops.size());
15378      }
15379      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
15380                          St->getPointerInfo(),
15381                          St->isVolatile(), St->isNonTemporal(),
15382                          St->getAlignment());
15383    }
15384
15385    // Otherwise, lower to two pairs of 32-bit loads / stores.
15386    SDValue LoAddr = Ld->getBasePtr();
15387    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
15388                                 DAG.getConstant(4, MVT::i32));
15389
15390    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
15391                               Ld->getPointerInfo(),
15392                               Ld->isVolatile(), Ld->isNonTemporal(),
15393                               Ld->isInvariant(), Ld->getAlignment());
15394    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
15395                               Ld->getPointerInfo().getWithOffset(4),
15396                               Ld->isVolatile(), Ld->isNonTemporal(),
15397                               Ld->isInvariant(),
15398                               MinAlign(Ld->getAlignment(), 4));
15399
15400    SDValue NewChain = LoLd.getValue(1);
15401    if (TokenFactorIndex != -1) {
15402      Ops.push_back(LoLd);
15403      Ops.push_back(HiLd);
15404      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15405                             Ops.size());
15406    }
15407
15408    LoAddr = St->getBasePtr();
15409    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
15410                         DAG.getConstant(4, MVT::i32));
15411
15412    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
15413                                St->getPointerInfo(),
15414                                St->isVolatile(), St->isNonTemporal(),
15415                                St->getAlignment());
15416    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
15417                                St->getPointerInfo().getWithOffset(4),
15418                                St->isVolatile(),
15419                                St->isNonTemporal(),
15420                                MinAlign(St->getAlignment(), 4));
15421    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
15422  }
15423  return SDValue();
15424}
15425
15426/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
15427/// and return the operands for the horizontal operation in LHS and RHS.  A
15428/// horizontal operation performs the binary operation on successive elements
15429/// of its first operand, then on successive elements of its second operand,
15430/// returning the resulting values in a vector.  For example, if
15431///   A = < float a0, float a1, float a2, float a3 >
15432/// and
15433///   B = < float b0, float b1, float b2, float b3 >
15434/// then the result of doing a horizontal operation on A and B is
15435///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
15436/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
15437/// A horizontal-op B, for some already available A and B, and if so then LHS is
15438/// set to A, RHS to B, and the routine returns 'true'.
15439/// Note that the binary operation should have the property that if one of the
15440/// operands is UNDEF then the result is UNDEF.
15441static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
15442  // Look for the following pattern: if
15443  //   A = < float a0, float a1, float a2, float a3 >
15444  //   B = < float b0, float b1, float b2, float b3 >
15445  // and
15446  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
15447  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
15448  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
15449  // which is A horizontal-op B.
15450
15451  // At least one of the operands should be a vector shuffle.
15452  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15453      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
15454    return false;
15455
15456  EVT VT = LHS.getValueType();
15457
15458  assert((VT.is128BitVector() || VT.is256BitVector()) &&
15459         "Unsupported vector type for horizontal add/sub");
15460
15461  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
15462  // operate independently on 128-bit lanes.
15463  unsigned NumElts = VT.getVectorNumElements();
15464  unsigned NumLanes = VT.getSizeInBits()/128;
15465  unsigned NumLaneElts = NumElts / NumLanes;
15466  assert((NumLaneElts % 2 == 0) &&
15467         "Vector type should have an even number of elements in each lane");
15468  unsigned HalfLaneElts = NumLaneElts/2;
15469
15470  // View LHS in the form
15471  //   LHS = VECTOR_SHUFFLE A, B, LMask
15472  // If LHS is not a shuffle then pretend it is the shuffle
15473  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
15474  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
15475  // type VT.
15476  SDValue A, B;
15477  SmallVector<int, 16> LMask(NumElts);
15478  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15479    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
15480      A = LHS.getOperand(0);
15481    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
15482      B = LHS.getOperand(1);
15483    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
15484    std::copy(Mask.begin(), Mask.end(), LMask.begin());
15485  } else {
15486    if (LHS.getOpcode() != ISD::UNDEF)
15487      A = LHS;
15488    for (unsigned i = 0; i != NumElts; ++i)
15489      LMask[i] = i;
15490  }
15491
15492  // Likewise, view RHS in the form
15493  //   RHS = VECTOR_SHUFFLE C, D, RMask
15494  SDValue C, D;
15495  SmallVector<int, 16> RMask(NumElts);
15496  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15497    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
15498      C = RHS.getOperand(0);
15499    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
15500      D = RHS.getOperand(1);
15501    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
15502    std::copy(Mask.begin(), Mask.end(), RMask.begin());
15503  } else {
15504    if (RHS.getOpcode() != ISD::UNDEF)
15505      C = RHS;
15506    for (unsigned i = 0; i != NumElts; ++i)
15507      RMask[i] = i;
15508  }
15509
15510  // Check that the shuffles are both shuffling the same vectors.
15511  if (!(A == C && B == D) && !(A == D && B == C))
15512    return false;
15513
15514  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
15515  if (!A.getNode() && !B.getNode())
15516    return false;
15517
15518  // If A and B occur in reverse order in RHS, then "swap" them (which means
15519  // rewriting the mask).
15520  if (A != C)
15521    CommuteVectorShuffleMask(RMask, NumElts);
15522
15523  // At this point LHS and RHS are equivalent to
15524  //   LHS = VECTOR_SHUFFLE A, B, LMask
15525  //   RHS = VECTOR_SHUFFLE A, B, RMask
15526  // Check that the masks correspond to performing a horizontal operation.
15527  for (unsigned i = 0; i != NumElts; ++i) {
15528    int LIdx = LMask[i], RIdx = RMask[i];
15529
15530    // Ignore any UNDEF components.
15531    if (LIdx < 0 || RIdx < 0 ||
15532        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
15533        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
15534      continue;
15535
15536    // Check that successive elements are being operated on.  If not, this is
15537    // not a horizontal operation.
15538    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
15539    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
15540    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
15541    if (!(LIdx == Index && RIdx == Index + 1) &&
15542        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
15543      return false;
15544  }
15545
15546  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
15547  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
15548  return true;
15549}
15550
15551/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
15552static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
15553                                  const X86Subtarget *Subtarget) {
15554  EVT VT = N->getValueType(0);
15555  SDValue LHS = N->getOperand(0);
15556  SDValue RHS = N->getOperand(1);
15557
15558  // Try to synthesize horizontal adds from adds of shuffles.
15559  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15560       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15561      isHorizontalBinOp(LHS, RHS, true))
15562    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
15563  return SDValue();
15564}
15565
15566/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
15567static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
15568                                  const X86Subtarget *Subtarget) {
15569  EVT VT = N->getValueType(0);
15570  SDValue LHS = N->getOperand(0);
15571  SDValue RHS = N->getOperand(1);
15572
15573  // Try to synthesize horizontal subs from subs of shuffles.
15574  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15575       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15576      isHorizontalBinOp(LHS, RHS, false))
15577    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15578  return SDValue();
15579}
15580
15581/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15582/// X86ISD::FXOR nodes.
15583static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15584  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15585  // F[X]OR(0.0, x) -> x
15586  // F[X]OR(x, 0.0) -> x
15587  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15588    if (C->getValueAPF().isPosZero())
15589      return N->getOperand(1);
15590  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15591    if (C->getValueAPF().isPosZero())
15592      return N->getOperand(0);
15593  return SDValue();
15594}
15595
15596/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
15597/// X86ISD::FMAX nodes.
15598static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
15599  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
15600
15601  // Only perform optimizations if UnsafeMath is used.
15602  if (!DAG.getTarget().Options.UnsafeFPMath)
15603    return SDValue();
15604
15605  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
15606  // into FMINC and FMAXC, which are Commutative operations.
15607  unsigned NewOp = 0;
15608  switch (N->getOpcode()) {
15609    default: llvm_unreachable("unknown opcode");
15610    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
15611    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
15612  }
15613
15614  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
15615                     N->getOperand(0), N->getOperand(1));
15616}
15617
15618
15619/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15620static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15621  // FAND(0.0, x) -> 0.0
15622  // FAND(x, 0.0) -> 0.0
15623  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15624    if (C->getValueAPF().isPosZero())
15625      return N->getOperand(0);
15626  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15627    if (C->getValueAPF().isPosZero())
15628      return N->getOperand(1);
15629  return SDValue();
15630}
15631
15632static SDValue PerformBTCombine(SDNode *N,
15633                                SelectionDAG &DAG,
15634                                TargetLowering::DAGCombinerInfo &DCI) {
15635  // BT ignores high bits in the bit index operand.
15636  SDValue Op1 = N->getOperand(1);
15637  if (Op1.hasOneUse()) {
15638    unsigned BitWidth = Op1.getValueSizeInBits();
15639    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15640    APInt KnownZero, KnownOne;
15641    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15642                                          !DCI.isBeforeLegalizeOps());
15643    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15644    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
15645        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
15646      DCI.CommitTargetLoweringOpt(TLO);
15647  }
15648  return SDValue();
15649}
15650
15651static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
15652  SDValue Op = N->getOperand(0);
15653  if (Op.getOpcode() == ISD::BITCAST)
15654    Op = Op.getOperand(0);
15655  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
15656  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
15657      VT.getVectorElementType().getSizeInBits() ==
15658      OpVT.getVectorElementType().getSizeInBits()) {
15659    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
15660  }
15661  return SDValue();
15662}
15663
15664static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
15665                                  TargetLowering::DAGCombinerInfo &DCI,
15666                                  const X86Subtarget *Subtarget) {
15667  if (!DCI.isBeforeLegalizeOps())
15668    return SDValue();
15669
15670  if (!Subtarget->hasAVX())
15671    return SDValue();
15672
15673  EVT VT = N->getValueType(0);
15674  SDValue Op = N->getOperand(0);
15675  EVT OpVT = Op.getValueType();
15676  DebugLoc dl = N->getDebugLoc();
15677
15678  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
15679      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
15680
15681    if (Subtarget->hasAVX2())
15682      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15683
15684    // Optimize vectors in AVX mode
15685    // Sign extend  v8i16 to v8i32 and
15686    //              v4i32 to v4i64
15687    //
15688    // Divide input vector into two parts
15689    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15690    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15691    // concat the vectors to original VT
15692
15693    unsigned NumElems = OpVT.getVectorNumElements();
15694    SDValue Undef = DAG.getUNDEF(OpVT);
15695
15696    SmallVector<int,8> ShufMask1(NumElems, -1);
15697    for (unsigned i = 0; i != NumElems/2; ++i)
15698      ShufMask1[i] = i;
15699
15700    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
15701
15702    SmallVector<int,8> ShufMask2(NumElems, -1);
15703    for (unsigned i = 0; i != NumElems/2; ++i)
15704      ShufMask2[i] = i + NumElems/2;
15705
15706    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
15707
15708    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15709                                  VT.getVectorNumElements()/2);
15710
15711    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15712    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15713
15714    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15715  }
15716  return SDValue();
15717}
15718
15719static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
15720                                 const X86Subtarget* Subtarget) {
15721  DebugLoc dl = N->getDebugLoc();
15722  EVT VT = N->getValueType(0);
15723
15724  // Let legalize expand this if it isn't a legal type yet.
15725  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
15726    return SDValue();
15727
15728  EVT ScalarVT = VT.getScalarType();
15729  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
15730      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
15731    return SDValue();
15732
15733  SDValue A = N->getOperand(0);
15734  SDValue B = N->getOperand(1);
15735  SDValue C = N->getOperand(2);
15736
15737  bool NegA = (A.getOpcode() == ISD::FNEG);
15738  bool NegB = (B.getOpcode() == ISD::FNEG);
15739  bool NegC = (C.getOpcode() == ISD::FNEG);
15740
15741  // Negative multiplication when NegA xor NegB
15742  bool NegMul = (NegA != NegB);
15743  if (NegA)
15744    A = A.getOperand(0);
15745  if (NegB)
15746    B = B.getOperand(0);
15747  if (NegC)
15748    C = C.getOperand(0);
15749
15750  unsigned Opcode;
15751  if (!NegMul)
15752    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
15753  else
15754    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
15755
15756  return DAG.getNode(Opcode, dl, VT, A, B, C);
15757}
15758
15759static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15760                                  TargetLowering::DAGCombinerInfo &DCI,
15761                                  const X86Subtarget *Subtarget) {
15762  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15763  //           (and (i32 x86isd::setcc_carry), 1)
15764  // This eliminates the zext. This transformation is necessary because
15765  // ISD::SETCC is always legalized to i8.
15766  DebugLoc dl = N->getDebugLoc();
15767  SDValue N0 = N->getOperand(0);
15768  EVT VT = N->getValueType(0);
15769  EVT OpVT = N0.getValueType();
15770
15771  if (N0.getOpcode() == ISD::AND &&
15772      N0.hasOneUse() &&
15773      N0.getOperand(0).hasOneUse()) {
15774    SDValue N00 = N0.getOperand(0);
15775    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15776      return SDValue();
15777    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15778    if (!C || C->getZExtValue() != 1)
15779      return SDValue();
15780    return DAG.getNode(ISD::AND, dl, VT,
15781                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15782                                   N00.getOperand(0), N00.getOperand(1)),
15783                       DAG.getConstant(1, VT));
15784  }
15785
15786  // Optimize vectors in AVX mode:
15787  //
15788  //   v8i16 -> v8i32
15789  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15790  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15791  //   Concat upper and lower parts.
15792  //
15793  //   v4i32 -> v4i64
15794  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15795  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15796  //   Concat upper and lower parts.
15797  //
15798  if (!DCI.isBeforeLegalizeOps())
15799    return SDValue();
15800
15801  if (!Subtarget->hasAVX())
15802    return SDValue();
15803
15804  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15805      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15806
15807    if (Subtarget->hasAVX2())
15808      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15809
15810    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15811    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15812    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15813
15814    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15815                               VT.getVectorNumElements()/2);
15816
15817    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15818    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15819
15820    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15821  }
15822
15823  return SDValue();
15824}
15825
15826// Optimize x == -y --> x+y == 0
15827//          x != -y --> x+y != 0
15828static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15829  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15830  SDValue LHS = N->getOperand(0);
15831  SDValue RHS = N->getOperand(1);
15832
15833  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15834    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15835      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15836        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15837                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15838        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15839                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15840      }
15841  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15842    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15843      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15844        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15845                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15846        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15847                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15848      }
15849  return SDValue();
15850}
15851
15852// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15853static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
15854                                   TargetLowering::DAGCombinerInfo &DCI,
15855                                   const X86Subtarget *Subtarget) {
15856  DebugLoc DL = N->getDebugLoc();
15857  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
15858  SDValue EFLAGS = N->getOperand(1);
15859
15860  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15861  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15862  // cases.
15863  if (CC == X86::COND_B)
15864    return DAG.getNode(ISD::AND, DL, MVT::i8,
15865                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15866                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
15867                       DAG.getConstant(1, MVT::i8));
15868
15869  SDValue Flags;
15870
15871  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15872  if (Flags.getNode()) {
15873    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15874    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
15875  }
15876
15877  return SDValue();
15878}
15879
15880// Optimize branch condition evaluation.
15881//
15882static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
15883                                    TargetLowering::DAGCombinerInfo &DCI,
15884                                    const X86Subtarget *Subtarget) {
15885  DebugLoc DL = N->getDebugLoc();
15886  SDValue Chain = N->getOperand(0);
15887  SDValue Dest = N->getOperand(1);
15888  SDValue EFLAGS = N->getOperand(3);
15889  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
15890
15891  SDValue Flags;
15892
15893  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15894  if (Flags.getNode()) {
15895    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15896    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
15897                       Flags);
15898  }
15899
15900  return SDValue();
15901}
15902
15903static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15904  SDValue Op0 = N->getOperand(0);
15905  EVT InVT = Op0->getValueType(0);
15906
15907  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15908  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15909    DebugLoc dl = N->getDebugLoc();
15910    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15911    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15912    // Notice that we use SINT_TO_FP because we know that the high bits
15913    // are zero and SINT_TO_FP is better supported by the hardware.
15914    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15915  }
15916
15917  return SDValue();
15918}
15919
15920static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15921                                        const X86TargetLowering *XTLI) {
15922  SDValue Op0 = N->getOperand(0);
15923  EVT InVT = Op0->getValueType(0);
15924
15925  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15926  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15927    DebugLoc dl = N->getDebugLoc();
15928    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15929    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15930    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15931  }
15932
15933  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15934  // a 32-bit target where SSE doesn't support i64->FP operations.
15935  if (Op0.getOpcode() == ISD::LOAD) {
15936    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15937    EVT VT = Ld->getValueType(0);
15938    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15939        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15940        !XTLI->getSubtarget()->is64Bit() &&
15941        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15942      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15943                                          Ld->getChain(), Op0, DAG);
15944      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15945      return FILDChain;
15946    }
15947  }
15948  return SDValue();
15949}
15950
15951static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15952  EVT VT = N->getValueType(0);
15953
15954  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15955  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15956    DebugLoc dl = N->getDebugLoc();
15957    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15958    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15959    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15960  }
15961
15962  return SDValue();
15963}
15964
15965// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15966static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15967                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15968  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15969  // the result is either zero or one (depending on the input carry bit).
15970  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15971  if (X86::isZeroNode(N->getOperand(0)) &&
15972      X86::isZeroNode(N->getOperand(1)) &&
15973      // We don't have a good way to replace an EFLAGS use, so only do this when
15974      // dead right now.
15975      SDValue(N, 1).use_empty()) {
15976    DebugLoc DL = N->getDebugLoc();
15977    EVT VT = N->getValueType(0);
15978    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15979    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15980                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15981                                           DAG.getConstant(X86::COND_B,MVT::i8),
15982                                           N->getOperand(2)),
15983                               DAG.getConstant(1, VT));
15984    return DCI.CombineTo(N, Res1, CarryOut);
15985  }
15986
15987  return SDValue();
15988}
15989
15990// fold (add Y, (sete  X, 0)) -> adc  0, Y
15991//      (add Y, (setne X, 0)) -> sbb -1, Y
15992//      (sub (sete  X, 0), Y) -> sbb  0, Y
15993//      (sub (setne X, 0), Y) -> adc -1, Y
15994static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15995  DebugLoc DL = N->getDebugLoc();
15996
15997  // Look through ZExts.
15998  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15999  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
16000    return SDValue();
16001
16002  SDValue SetCC = Ext.getOperand(0);
16003  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
16004    return SDValue();
16005
16006  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
16007  if (CC != X86::COND_E && CC != X86::COND_NE)
16008    return SDValue();
16009
16010  SDValue Cmp = SetCC.getOperand(1);
16011  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
16012      !X86::isZeroNode(Cmp.getOperand(1)) ||
16013      !Cmp.getOperand(0).getValueType().isInteger())
16014    return SDValue();
16015
16016  SDValue CmpOp0 = Cmp.getOperand(0);
16017  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
16018                               DAG.getConstant(1, CmpOp0.getValueType()));
16019
16020  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
16021  if (CC == X86::COND_NE)
16022    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
16023                       DL, OtherVal.getValueType(), OtherVal,
16024                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
16025  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
16026                     DL, OtherVal.getValueType(), OtherVal,
16027                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
16028}
16029
16030/// PerformADDCombine - Do target-specific dag combines on integer adds.
16031static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
16032                                 const X86Subtarget *Subtarget) {
16033  EVT VT = N->getValueType(0);
16034  SDValue Op0 = N->getOperand(0);
16035  SDValue Op1 = N->getOperand(1);
16036
16037  // Try to synthesize horizontal adds from adds of shuffles.
16038  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16039       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16040      isHorizontalBinOp(Op0, Op1, true))
16041    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
16042
16043  return OptimizeConditionalInDecrement(N, DAG);
16044}
16045
16046static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
16047                                 const X86Subtarget *Subtarget) {
16048  SDValue Op0 = N->getOperand(0);
16049  SDValue Op1 = N->getOperand(1);
16050
16051  // X86 can't encode an immediate LHS of a sub. See if we can push the
16052  // negation into a preceding instruction.
16053  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
16054    // If the RHS of the sub is a XOR with one use and a constant, invert the
16055    // immediate. Then add one to the LHS of the sub so we can turn
16056    // X-Y -> X+~Y+1, saving one register.
16057    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
16058        isa<ConstantSDNode>(Op1.getOperand(1))) {
16059      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
16060      EVT VT = Op0.getValueType();
16061      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
16062                                   Op1.getOperand(0),
16063                                   DAG.getConstant(~XorC, VT));
16064      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
16065                         DAG.getConstant(C->getAPIntValue()+1, VT));
16066    }
16067  }
16068
16069  // Try to synthesize horizontal adds from adds of shuffles.
16070  EVT VT = N->getValueType(0);
16071  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16072       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16073      isHorizontalBinOp(Op0, Op1, true))
16074    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
16075
16076  return OptimizeConditionalInDecrement(N, DAG);
16077}
16078
16079SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
16080                                             DAGCombinerInfo &DCI) const {
16081  SelectionDAG &DAG = DCI.DAG;
16082  switch (N->getOpcode()) {
16083  default: break;
16084  case ISD::EXTRACT_VECTOR_ELT:
16085    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
16086  case ISD::VSELECT:
16087  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
16088  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
16089  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
16090  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
16091  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
16092  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
16093  case ISD::SHL:
16094  case ISD::SRA:
16095  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
16096  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
16097  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
16098  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
16099  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
16100  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
16101  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
16102  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
16103  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
16104  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
16105  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
16106  case X86ISD::FXOR:
16107  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
16108  case X86ISD::FMIN:
16109  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
16110  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
16111  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
16112  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16113  case ISD::ANY_EXTEND:
16114  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16115  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16116  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
16117  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16118  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16119  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16120  case X86ISD::SHUFP:       // Handle all target specific shuffles
16121  case X86ISD::PALIGN:
16122  case X86ISD::UNPCKH:
16123  case X86ISD::UNPCKL:
16124  case X86ISD::MOVHLPS:
16125  case X86ISD::MOVLHPS:
16126  case X86ISD::PSHUFD:
16127  case X86ISD::PSHUFHW:
16128  case X86ISD::PSHUFLW:
16129  case X86ISD::MOVSS:
16130  case X86ISD::MOVSD:
16131  case X86ISD::VPERMILP:
16132  case X86ISD::VPERM2X128:
16133  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16134  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16135  }
16136
16137  return SDValue();
16138}
16139
16140/// isTypeDesirableForOp - Return true if the target has native support for
16141/// the specified value type and it is 'desirable' to use the type for the
16142/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16143/// instruction encodings are longer and some i16 instructions are slow.
16144bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16145  if (!isTypeLegal(VT))
16146    return false;
16147  if (VT != MVT::i16)
16148    return true;
16149
16150  switch (Opc) {
16151  default:
16152    return true;
16153  case ISD::LOAD:
16154  case ISD::SIGN_EXTEND:
16155  case ISD::ZERO_EXTEND:
16156  case ISD::ANY_EXTEND:
16157  case ISD::SHL:
16158  case ISD::SRL:
16159  case ISD::SUB:
16160  case ISD::ADD:
16161  case ISD::MUL:
16162  case ISD::AND:
16163  case ISD::OR:
16164  case ISD::XOR:
16165    return false;
16166  }
16167}
16168
16169/// IsDesirableToPromoteOp - This method query the target whether it is
16170/// beneficial for dag combiner to promote the specified node. If true, it
16171/// should return the desired promotion type by reference.
16172bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16173  EVT VT = Op.getValueType();
16174  if (VT != MVT::i16)
16175    return false;
16176
16177  bool Promote = false;
16178  bool Commute = false;
16179  switch (Op.getOpcode()) {
16180  default: break;
16181  case ISD::LOAD: {
16182    LoadSDNode *LD = cast<LoadSDNode>(Op);
16183    // If the non-extending load has a single use and it's not live out, then it
16184    // might be folded.
16185    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16186                                                     Op.hasOneUse()*/) {
16187      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16188             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16189        // The only case where we'd want to promote LOAD (rather then it being
16190        // promoted as an operand is when it's only use is liveout.
16191        if (UI->getOpcode() != ISD::CopyToReg)
16192          return false;
16193      }
16194    }
16195    Promote = true;
16196    break;
16197  }
16198  case ISD::SIGN_EXTEND:
16199  case ISD::ZERO_EXTEND:
16200  case ISD::ANY_EXTEND:
16201    Promote = true;
16202    break;
16203  case ISD::SHL:
16204  case ISD::SRL: {
16205    SDValue N0 = Op.getOperand(0);
16206    // Look out for (store (shl (load), x)).
16207    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16208      return false;
16209    Promote = true;
16210    break;
16211  }
16212  case ISD::ADD:
16213  case ISD::MUL:
16214  case ISD::AND:
16215  case ISD::OR:
16216  case ISD::XOR:
16217    Commute = true;
16218    // fallthrough
16219  case ISD::SUB: {
16220    SDValue N0 = Op.getOperand(0);
16221    SDValue N1 = Op.getOperand(1);
16222    if (!Commute && MayFoldLoad(N1))
16223      return false;
16224    // Avoid disabling potential load folding opportunities.
16225    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16226      return false;
16227    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16228      return false;
16229    Promote = true;
16230  }
16231  }
16232
16233  PVT = MVT::i32;
16234  return Promote;
16235}
16236
16237//===----------------------------------------------------------------------===//
16238//                           X86 Inline Assembly Support
16239//===----------------------------------------------------------------------===//
16240
16241namespace {
16242  // Helper to match a string separated by whitespace.
16243  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
16244    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
16245
16246    for (unsigned i = 0, e = args.size(); i != e; ++i) {
16247      StringRef piece(*args[i]);
16248      if (!s.startswith(piece)) // Check if the piece matches.
16249        return false;
16250
16251      s = s.substr(piece.size());
16252      StringRef::size_type pos = s.find_first_not_of(" \t");
16253      if (pos == 0) // We matched a prefix.
16254        return false;
16255
16256      s = s.substr(pos);
16257    }
16258
16259    return s.empty();
16260  }
16261  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
16262}
16263
16264bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
16265  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
16266
16267  std::string AsmStr = IA->getAsmString();
16268
16269  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
16270  if (!Ty || Ty->getBitWidth() % 16 != 0)
16271    return false;
16272
16273  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
16274  SmallVector<StringRef, 4> AsmPieces;
16275  SplitString(AsmStr, AsmPieces, ";\n");
16276
16277  switch (AsmPieces.size()) {
16278  default: return false;
16279  case 1:
16280    // FIXME: this should verify that we are targeting a 486 or better.  If not,
16281    // we will turn this bswap into something that will be lowered to logical
16282    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
16283    // lower so don't worry about this.
16284    // bswap $0
16285    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
16286        matchAsm(AsmPieces[0], "bswapl", "$0") ||
16287        matchAsm(AsmPieces[0], "bswapq", "$0") ||
16288        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
16289        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
16290        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
16291      // No need to check constraints, nothing other than the equivalent of
16292      // "=r,0" would be valid here.
16293      return IntrinsicLowering::LowerToByteSwap(CI);
16294    }
16295
16296    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
16297    if (CI->getType()->isIntegerTy(16) &&
16298        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16299        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
16300         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
16301      AsmPieces.clear();
16302      const std::string &ConstraintsStr = IA->getConstraintString();
16303      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16304      std::sort(AsmPieces.begin(), AsmPieces.end());
16305      if (AsmPieces.size() == 4 &&
16306          AsmPieces[0] == "~{cc}" &&
16307          AsmPieces[1] == "~{dirflag}" &&
16308          AsmPieces[2] == "~{flags}" &&
16309          AsmPieces[3] == "~{fpsr}")
16310      return IntrinsicLowering::LowerToByteSwap(CI);
16311    }
16312    break;
16313  case 3:
16314    if (CI->getType()->isIntegerTy(32) &&
16315        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16316        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
16317        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
16318        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
16319      AsmPieces.clear();
16320      const std::string &ConstraintsStr = IA->getConstraintString();
16321      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16322      std::sort(AsmPieces.begin(), AsmPieces.end());
16323      if (AsmPieces.size() == 4 &&
16324          AsmPieces[0] == "~{cc}" &&
16325          AsmPieces[1] == "~{dirflag}" &&
16326          AsmPieces[2] == "~{flags}" &&
16327          AsmPieces[3] == "~{fpsr}")
16328        return IntrinsicLowering::LowerToByteSwap(CI);
16329    }
16330
16331    if (CI->getType()->isIntegerTy(64)) {
16332      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
16333      if (Constraints.size() >= 2 &&
16334          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
16335          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
16336        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
16337        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
16338            matchAsm(AsmPieces[1], "bswap", "%edx") &&
16339            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
16340          return IntrinsicLowering::LowerToByteSwap(CI);
16341      }
16342    }
16343    break;
16344  }
16345  return false;
16346}
16347
16348
16349
16350/// getConstraintType - Given a constraint letter, return the type of
16351/// constraint it is for this target.
16352X86TargetLowering::ConstraintType
16353X86TargetLowering::getConstraintType(const std::string &Constraint) const {
16354  if (Constraint.size() == 1) {
16355    switch (Constraint[0]) {
16356    case 'R':
16357    case 'q':
16358    case 'Q':
16359    case 'f':
16360    case 't':
16361    case 'u':
16362    case 'y':
16363    case 'x':
16364    case 'Y':
16365    case 'l':
16366      return C_RegisterClass;
16367    case 'a':
16368    case 'b':
16369    case 'c':
16370    case 'd':
16371    case 'S':
16372    case 'D':
16373    case 'A':
16374      return C_Register;
16375    case 'I':
16376    case 'J':
16377    case 'K':
16378    case 'L':
16379    case 'M':
16380    case 'N':
16381    case 'G':
16382    case 'C':
16383    case 'e':
16384    case 'Z':
16385      return C_Other;
16386    default:
16387      break;
16388    }
16389  }
16390  return TargetLowering::getConstraintType(Constraint);
16391}
16392
16393/// Examine constraint type and operand type and determine a weight value.
16394/// This object must already have been set up with the operand type
16395/// and the current alternative constraint selected.
16396TargetLowering::ConstraintWeight
16397  X86TargetLowering::getSingleConstraintMatchWeight(
16398    AsmOperandInfo &info, const char *constraint) const {
16399  ConstraintWeight weight = CW_Invalid;
16400  Value *CallOperandVal = info.CallOperandVal;
16401    // If we don't have a value, we can't do a match,
16402    // but allow it at the lowest weight.
16403  if (CallOperandVal == NULL)
16404    return CW_Default;
16405  Type *type = CallOperandVal->getType();
16406  // Look at the constraint type.
16407  switch (*constraint) {
16408  default:
16409    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16410  case 'R':
16411  case 'q':
16412  case 'Q':
16413  case 'a':
16414  case 'b':
16415  case 'c':
16416  case 'd':
16417  case 'S':
16418  case 'D':
16419  case 'A':
16420    if (CallOperandVal->getType()->isIntegerTy())
16421      weight = CW_SpecificReg;
16422    break;
16423  case 'f':
16424  case 't':
16425  case 'u':
16426      if (type->isFloatingPointTy())
16427        weight = CW_SpecificReg;
16428      break;
16429  case 'y':
16430      if (type->isX86_MMXTy() && Subtarget->hasMMX())
16431        weight = CW_SpecificReg;
16432      break;
16433  case 'x':
16434  case 'Y':
16435    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
16436        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
16437      weight = CW_Register;
16438    break;
16439  case 'I':
16440    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
16441      if (C->getZExtValue() <= 31)
16442        weight = CW_Constant;
16443    }
16444    break;
16445  case 'J':
16446    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16447      if (C->getZExtValue() <= 63)
16448        weight = CW_Constant;
16449    }
16450    break;
16451  case 'K':
16452    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16453      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
16454        weight = CW_Constant;
16455    }
16456    break;
16457  case 'L':
16458    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16459      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
16460        weight = CW_Constant;
16461    }
16462    break;
16463  case 'M':
16464    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16465      if (C->getZExtValue() <= 3)
16466        weight = CW_Constant;
16467    }
16468    break;
16469  case 'N':
16470    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16471      if (C->getZExtValue() <= 0xff)
16472        weight = CW_Constant;
16473    }
16474    break;
16475  case 'G':
16476  case 'C':
16477    if (dyn_cast<ConstantFP>(CallOperandVal)) {
16478      weight = CW_Constant;
16479    }
16480    break;
16481  case 'e':
16482    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16483      if ((C->getSExtValue() >= -0x80000000LL) &&
16484          (C->getSExtValue() <= 0x7fffffffLL))
16485        weight = CW_Constant;
16486    }
16487    break;
16488  case 'Z':
16489    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16490      if (C->getZExtValue() <= 0xffffffff)
16491        weight = CW_Constant;
16492    }
16493    break;
16494  }
16495  return weight;
16496}
16497
16498/// LowerXConstraint - try to replace an X constraint, which matches anything,
16499/// with another that has more specific requirements based on the type of the
16500/// corresponding operand.
16501const char *X86TargetLowering::
16502LowerXConstraint(EVT ConstraintVT) const {
16503  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
16504  // 'f' like normal targets.
16505  if (ConstraintVT.isFloatingPoint()) {
16506    if (Subtarget->hasSSE2())
16507      return "Y";
16508    if (Subtarget->hasSSE1())
16509      return "x";
16510  }
16511
16512  return TargetLowering::LowerXConstraint(ConstraintVT);
16513}
16514
16515/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16516/// vector.  If it is invalid, don't add anything to Ops.
16517void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16518                                                     std::string &Constraint,
16519                                                     std::vector<SDValue>&Ops,
16520                                                     SelectionDAG &DAG) const {
16521  SDValue Result(0, 0);
16522
16523  // Only support length 1 constraints for now.
16524  if (Constraint.length() > 1) return;
16525
16526  char ConstraintLetter = Constraint[0];
16527  switch (ConstraintLetter) {
16528  default: break;
16529  case 'I':
16530    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16531      if (C->getZExtValue() <= 31) {
16532        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16533        break;
16534      }
16535    }
16536    return;
16537  case 'J':
16538    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16539      if (C->getZExtValue() <= 63) {
16540        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16541        break;
16542      }
16543    }
16544    return;
16545  case 'K':
16546    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16547      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
16548        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16549        break;
16550      }
16551    }
16552    return;
16553  case 'N':
16554    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16555      if (C->getZExtValue() <= 255) {
16556        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16557        break;
16558      }
16559    }
16560    return;
16561  case 'e': {
16562    // 32-bit signed value
16563    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16564      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16565                                           C->getSExtValue())) {
16566        // Widen to 64 bits here to get it sign extended.
16567        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
16568        break;
16569      }
16570    // FIXME gcc accepts some relocatable values here too, but only in certain
16571    // memory models; it's complicated.
16572    }
16573    return;
16574  }
16575  case 'Z': {
16576    // 32-bit unsigned value
16577    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16578      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16579                                           C->getZExtValue())) {
16580        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16581        break;
16582      }
16583    }
16584    // FIXME gcc accepts some relocatable values here too, but only in certain
16585    // memory models; it's complicated.
16586    return;
16587  }
16588  case 'i': {
16589    // Literal immediates are always ok.
16590    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
16591      // Widen to 64 bits here to get it sign extended.
16592      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
16593      break;
16594    }
16595
16596    // In any sort of PIC mode addresses need to be computed at runtime by
16597    // adding in a register or some sort of table lookup.  These can't
16598    // be used as immediates.
16599    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
16600      return;
16601
16602    // If we are in non-pic codegen mode, we allow the address of a global (with
16603    // an optional displacement) to be used with 'i'.
16604    GlobalAddressSDNode *GA = 0;
16605    int64_t Offset = 0;
16606
16607    // Match either (GA), (GA+C), (GA+C1+C2), etc.
16608    while (1) {
16609      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
16610        Offset += GA->getOffset();
16611        break;
16612      } else if (Op.getOpcode() == ISD::ADD) {
16613        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16614          Offset += C->getZExtValue();
16615          Op = Op.getOperand(0);
16616          continue;
16617        }
16618      } else if (Op.getOpcode() == ISD::SUB) {
16619        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16620          Offset += -C->getZExtValue();
16621          Op = Op.getOperand(0);
16622          continue;
16623        }
16624      }
16625
16626      // Otherwise, this isn't something we can handle, reject it.
16627      return;
16628    }
16629
16630    const GlobalValue *GV = GA->getGlobal();
16631    // If we require an extra load to get this address, as in PIC mode, we
16632    // can't accept it.
16633    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
16634                                                        getTargetMachine())))
16635      return;
16636
16637    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
16638                                        GA->getValueType(0), Offset);
16639    break;
16640  }
16641  }
16642
16643  if (Result.getNode()) {
16644    Ops.push_back(Result);
16645    return;
16646  }
16647  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16648}
16649
16650std::pair<unsigned, const TargetRegisterClass*>
16651X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
16652                                                EVT VT) const {
16653  // First, see if this is a constraint that directly corresponds to an LLVM
16654  // register class.
16655  if (Constraint.size() == 1) {
16656    // GCC Constraint Letters
16657    switch (Constraint[0]) {
16658    default: break;
16659      // TODO: Slight differences here in allocation order and leaving
16660      // RIP in the class. Do they matter any more here than they do
16661      // in the normal allocation?
16662    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
16663      if (Subtarget->is64Bit()) {
16664        if (VT == MVT::i32 || VT == MVT::f32)
16665          return std::make_pair(0U, &X86::GR32RegClass);
16666        if (VT == MVT::i16)
16667          return std::make_pair(0U, &X86::GR16RegClass);
16668        if (VT == MVT::i8 || VT == MVT::i1)
16669          return std::make_pair(0U, &X86::GR8RegClass);
16670        if (VT == MVT::i64 || VT == MVT::f64)
16671          return std::make_pair(0U, &X86::GR64RegClass);
16672        break;
16673      }
16674      // 32-bit fallthrough
16675    case 'Q':   // Q_REGS
16676      if (VT == MVT::i32 || VT == MVT::f32)
16677        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
16678      if (VT == MVT::i16)
16679        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
16680      if (VT == MVT::i8 || VT == MVT::i1)
16681        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
16682      if (VT == MVT::i64)
16683        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
16684      break;
16685    case 'r':   // GENERAL_REGS
16686    case 'l':   // INDEX_REGS
16687      if (VT == MVT::i8 || VT == MVT::i1)
16688        return std::make_pair(0U, &X86::GR8RegClass);
16689      if (VT == MVT::i16)
16690        return std::make_pair(0U, &X86::GR16RegClass);
16691      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
16692        return std::make_pair(0U, &X86::GR32RegClass);
16693      return std::make_pair(0U, &X86::GR64RegClass);
16694    case 'R':   // LEGACY_REGS
16695      if (VT == MVT::i8 || VT == MVT::i1)
16696        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
16697      if (VT == MVT::i16)
16698        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
16699      if (VT == MVT::i32 || !Subtarget->is64Bit())
16700        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
16701      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
16702    case 'f':  // FP Stack registers.
16703      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
16704      // value to the correct fpstack register class.
16705      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
16706        return std::make_pair(0U, &X86::RFP32RegClass);
16707      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
16708        return std::make_pair(0U, &X86::RFP64RegClass);
16709      return std::make_pair(0U, &X86::RFP80RegClass);
16710    case 'y':   // MMX_REGS if MMX allowed.
16711      if (!Subtarget->hasMMX()) break;
16712      return std::make_pair(0U, &X86::VR64RegClass);
16713    case 'Y':   // SSE_REGS if SSE2 allowed
16714      if (!Subtarget->hasSSE2()) break;
16715      // FALL THROUGH.
16716    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
16717      if (!Subtarget->hasSSE1()) break;
16718
16719      switch (VT.getSimpleVT().SimpleTy) {
16720      default: break;
16721      // Scalar SSE types.
16722      case MVT::f32:
16723      case MVT::i32:
16724        return std::make_pair(0U, &X86::FR32RegClass);
16725      case MVT::f64:
16726      case MVT::i64:
16727        return std::make_pair(0U, &X86::FR64RegClass);
16728      // Vector types.
16729      case MVT::v16i8:
16730      case MVT::v8i16:
16731      case MVT::v4i32:
16732      case MVT::v2i64:
16733      case MVT::v4f32:
16734      case MVT::v2f64:
16735        return std::make_pair(0U, &X86::VR128RegClass);
16736      // AVX types.
16737      case MVT::v32i8:
16738      case MVT::v16i16:
16739      case MVT::v8i32:
16740      case MVT::v4i64:
16741      case MVT::v8f32:
16742      case MVT::v4f64:
16743        return std::make_pair(0U, &X86::VR256RegClass);
16744      }
16745      break;
16746    }
16747  }
16748
16749  // Use the default implementation in TargetLowering to convert the register
16750  // constraint into a member of a register class.
16751  std::pair<unsigned, const TargetRegisterClass*> Res;
16752  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
16753
16754  // Not found as a standard register?
16755  if (Res.second == 0) {
16756    // Map st(0) -> st(7) -> ST0
16757    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16758        tolower(Constraint[1]) == 's' &&
16759        tolower(Constraint[2]) == 't' &&
16760        Constraint[3] == '(' &&
16761        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16762        Constraint[5] == ')' &&
16763        Constraint[6] == '}') {
16764
16765      Res.first = X86::ST0+Constraint[4]-'0';
16766      Res.second = &X86::RFP80RegClass;
16767      return Res;
16768    }
16769
16770    // GCC allows "st(0)" to be called just plain "st".
16771    if (StringRef("{st}").equals_lower(Constraint)) {
16772      Res.first = X86::ST0;
16773      Res.second = &X86::RFP80RegClass;
16774      return Res;
16775    }
16776
16777    // flags -> EFLAGS
16778    if (StringRef("{flags}").equals_lower(Constraint)) {
16779      Res.first = X86::EFLAGS;
16780      Res.second = &X86::CCRRegClass;
16781      return Res;
16782    }
16783
16784    // 'A' means EAX + EDX.
16785    if (Constraint == "A") {
16786      Res.first = X86::EAX;
16787      Res.second = &X86::GR32_ADRegClass;
16788      return Res;
16789    }
16790    return Res;
16791  }
16792
16793  // Otherwise, check to see if this is a register class of the wrong value
16794  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16795  // turn into {ax},{dx}.
16796  if (Res.second->hasType(VT))
16797    return Res;   // Correct type already, nothing to do.
16798
16799  // All of the single-register GCC register classes map their values onto
16800  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16801  // really want an 8-bit or 32-bit register, map to the appropriate register
16802  // class and return the appropriate register.
16803  if (Res.second == &X86::GR16RegClass) {
16804    if (VT == MVT::i8) {
16805      unsigned DestReg = 0;
16806      switch (Res.first) {
16807      default: break;
16808      case X86::AX: DestReg = X86::AL; break;
16809      case X86::DX: DestReg = X86::DL; break;
16810      case X86::CX: DestReg = X86::CL; break;
16811      case X86::BX: DestReg = X86::BL; break;
16812      }
16813      if (DestReg) {
16814        Res.first = DestReg;
16815        Res.second = &X86::GR8RegClass;
16816      }
16817    } else if (VT == MVT::i32) {
16818      unsigned DestReg = 0;
16819      switch (Res.first) {
16820      default: break;
16821      case X86::AX: DestReg = X86::EAX; break;
16822      case X86::DX: DestReg = X86::EDX; break;
16823      case X86::CX: DestReg = X86::ECX; break;
16824      case X86::BX: DestReg = X86::EBX; break;
16825      case X86::SI: DestReg = X86::ESI; break;
16826      case X86::DI: DestReg = X86::EDI; break;
16827      case X86::BP: DestReg = X86::EBP; break;
16828      case X86::SP: DestReg = X86::ESP; break;
16829      }
16830      if (DestReg) {
16831        Res.first = DestReg;
16832        Res.second = &X86::GR32RegClass;
16833      }
16834    } else if (VT == MVT::i64) {
16835      unsigned DestReg = 0;
16836      switch (Res.first) {
16837      default: break;
16838      case X86::AX: DestReg = X86::RAX; break;
16839      case X86::DX: DestReg = X86::RDX; break;
16840      case X86::CX: DestReg = X86::RCX; break;
16841      case X86::BX: DestReg = X86::RBX; break;
16842      case X86::SI: DestReg = X86::RSI; break;
16843      case X86::DI: DestReg = X86::RDI; break;
16844      case X86::BP: DestReg = X86::RBP; break;
16845      case X86::SP: DestReg = X86::RSP; break;
16846      }
16847      if (DestReg) {
16848        Res.first = DestReg;
16849        Res.second = &X86::GR64RegClass;
16850      }
16851    }
16852  } else if (Res.second == &X86::FR32RegClass ||
16853             Res.second == &X86::FR64RegClass ||
16854             Res.second == &X86::VR128RegClass) {
16855    // Handle references to XMM physical registers that got mapped into the
16856    // wrong class.  This can happen with constraints like {xmm0} where the
16857    // target independent register mapper will just pick the first match it can
16858    // find, ignoring the required type.
16859
16860    if (VT == MVT::f32 || VT == MVT::i32)
16861      Res.second = &X86::FR32RegClass;
16862    else if (VT == MVT::f64 || VT == MVT::i64)
16863      Res.second = &X86::FR64RegClass;
16864    else if (X86::VR128RegClass.hasType(VT))
16865      Res.second = &X86::VR128RegClass;
16866    else if (X86::VR256RegClass.hasType(VT))
16867      Res.second = &X86::VR256RegClass;
16868  }
16869
16870  return Res;
16871}
16872