X86ISelLowering.cpp revision 9b4baf169299141692e07adedeff691b71e95fda
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/ParameterAttributes.h"
38using namespace llvm;
39
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41  : TargetLowering(TM) {
42  Subtarget = &TM.getSubtarget<X86Subtarget>();
43  X86ScalarSSEf64 = Subtarget->hasSSE2();
44  X86ScalarSSEf32 = Subtarget->hasSSE1();
45  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
46
47  RegInfo = TM.getRegisterInfo();
48
49  // Set up the TargetLowering object.
50
51  // X86 is weird, it always uses i8 for shift amounts and setcc results.
52  setShiftAmountType(MVT::i8);
53  setSetCCResultType(MVT::i8);
54  setSetCCResultContents(ZeroOrOneSetCCResult);
55  setSchedulingPreference(SchedulingForRegPressure);
56  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
57  setStackPointerRegisterToSaveRestore(X86StackPtr);
58
59  if (Subtarget->isTargetDarwin()) {
60    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
61    setUseUnderscoreSetJmp(false);
62    setUseUnderscoreLongJmp(false);
63  } else if (Subtarget->isTargetMingw()) {
64    // MS runtime is weird: it exports _setjmp, but longjmp!
65    setUseUnderscoreSetJmp(true);
66    setUseUnderscoreLongJmp(false);
67  } else {
68    setUseUnderscoreSetJmp(true);
69    setUseUnderscoreLongJmp(true);
70  }
71
72  // Set up the register classes.
73  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
74  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
75  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
76  if (Subtarget->is64Bit())
77    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
78
79  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
80
81  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
82  // operation.
83  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
84  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
85  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
86
87  if (Subtarget->is64Bit()) {
88    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
89    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
90  } else {
91    if (X86ScalarSSEf64)
92      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
93      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
94    else
95      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
96  }
97
98  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
99  // this operation.
100  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
101  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
102  // SSE has no i16 to fp conversion, only i32
103  if (X86ScalarSSEf32) {
104    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
105    // f32 and f64 cases are Legal, f80 case is not
106    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
107  } else {
108    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
109    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
110  }
111
112  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
113  // are Legal, f80 is custom lowered.
114  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
115  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
116
117  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
118  // this operation.
119  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
120  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
121
122  if (X86ScalarSSEf32) {
123    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
124    // f32 and f64 cases are Legal, f80 case is not
125    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
126  } else {
127    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
128    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
129  }
130
131  // Handle FP_TO_UINT by promoting the destination to a larger signed
132  // conversion.
133  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
134  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
135  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
136
137  if (Subtarget->is64Bit()) {
138    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
139    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
140  } else {
141    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
142      // Expand FP_TO_UINT into a select.
143      // FIXME: We would like to use a Custom expander here eventually to do
144      // the optimal thing for SSE vs. the default expansion in the legalizer.
145      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
146    else
147      // With SSE3 we can use fisttpll to convert to a signed i64.
148      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
149  }
150
151  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
152  if (!X86ScalarSSEf64) {
153    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
154    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
155  }
156
157  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
158  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
159  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
160  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
161  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
162  if (Subtarget->is64Bit())
163    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
164  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
165  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
166  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
167  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
168  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
169
170  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
171  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
172  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
173  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
174  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
175  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
176  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
177  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
178  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
179  if (Subtarget->is64Bit()) {
180    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
181    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
182    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
183  }
184
185  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
186  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
187
188  // These should be promoted to a larger select which is supported.
189  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
190  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
191  // X86 wants to expand cmov itself.
192  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
193  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
194  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
195  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
196  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
197  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
198  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
199  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
200  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
201  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
202  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
203  if (Subtarget->is64Bit()) {
204    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
205    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
206  }
207  // X86 ret instruction may pop stack.
208  setOperationAction(ISD::RET             , MVT::Other, Custom);
209  if (!Subtarget->is64Bit())
210    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
211
212  // Darwin ABI issue.
213  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
214  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
215  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
216  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
217  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
218  if (Subtarget->is64Bit()) {
219    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
220    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
221    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
222    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
223  }
224  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
225  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
226  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
227  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
228  // X86 wants to expand memset / memcpy itself.
229  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
230  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
231
232  // We don't have line number support yet.
233  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
234  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
235  // FIXME - use subtarget debug flags
236  if (!Subtarget->isTargetDarwin() &&
237      !Subtarget->isTargetELF() &&
238      !Subtarget->isTargetCygMing())
239    setOperationAction(ISD::LABEL, MVT::Other, Expand);
240
241  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
242  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
243  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
244  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
245  if (Subtarget->is64Bit()) {
246    // FIXME: Verify
247    setExceptionPointerRegister(X86::RAX);
248    setExceptionSelectorRegister(X86::RDX);
249  } else {
250    setExceptionPointerRegister(X86::EAX);
251    setExceptionSelectorRegister(X86::EDX);
252  }
253  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
254
255  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
256
257  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
258  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
259  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
260  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
261  if (Subtarget->is64Bit())
262    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
263  else
264    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
265
266  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
267  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
268  if (Subtarget->is64Bit())
269    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
270  if (Subtarget->isTargetCygMing())
271    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
272  else
273    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
274
275  if (X86ScalarSSEf64) {
276    // f32 and f64 use SSE.
277    // Set up the FP register classes.
278    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
279    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
280
281    // Use ANDPD to simulate FABS.
282    setOperationAction(ISD::FABS , MVT::f64, Custom);
283    setOperationAction(ISD::FABS , MVT::f32, Custom);
284
285    // Use XORP to simulate FNEG.
286    setOperationAction(ISD::FNEG , MVT::f64, Custom);
287    setOperationAction(ISD::FNEG , MVT::f32, Custom);
288
289    // Use ANDPD and ORPD to simulate FCOPYSIGN.
290    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
291    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
292
293    // We don't support sin/cos/fmod
294    setOperationAction(ISD::FSIN , MVT::f64, Expand);
295    setOperationAction(ISD::FCOS , MVT::f64, Expand);
296    setOperationAction(ISD::FREM , MVT::f64, Expand);
297    setOperationAction(ISD::FSIN , MVT::f32, Expand);
298    setOperationAction(ISD::FCOS , MVT::f32, Expand);
299    setOperationAction(ISD::FREM , MVT::f32, Expand);
300
301    // Expand FP immediates into loads from the stack, except for the special
302    // cases we handle.
303    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
304    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
305    addLegalFPImmediate(APFloat(+0.0)); // xorpd
306    addLegalFPImmediate(APFloat(+0.0f)); // xorps
307
308    // Conversions to long double (in X87) go through memory.
309    setConvertAction(MVT::f32, MVT::f80, Expand);
310    setConvertAction(MVT::f64, MVT::f80, Expand);
311
312    // Conversions from long double (in X87) go through memory.
313    setConvertAction(MVT::f80, MVT::f32, Expand);
314    setConvertAction(MVT::f80, MVT::f64, Expand);
315  } else if (X86ScalarSSEf32) {
316    // Use SSE for f32, x87 for f64.
317    // Set up the FP register classes.
318    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
319    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
320
321    // Use ANDPS to simulate FABS.
322    setOperationAction(ISD::FABS , MVT::f32, Custom);
323
324    // Use XORP to simulate FNEG.
325    setOperationAction(ISD::FNEG , MVT::f32, Custom);
326
327    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
328
329    // Use ANDPS and ORPS to simulate FCOPYSIGN.
330    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
331    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
332
333    // We don't support sin/cos/fmod
334    setOperationAction(ISD::FSIN , MVT::f32, Expand);
335    setOperationAction(ISD::FCOS , MVT::f32, Expand);
336    setOperationAction(ISD::FREM , MVT::f32, Expand);
337
338    // Expand FP immediates into loads from the stack, except for the special
339    // cases we handle.
340    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
341    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
342    addLegalFPImmediate(APFloat(+0.0f)); // xorps
343    addLegalFPImmediate(APFloat(+0.0)); // FLD0
344    addLegalFPImmediate(APFloat(+1.0)); // FLD1
345    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
346    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
347
348    // SSE->x87 conversions go through memory.
349    setConvertAction(MVT::f32, MVT::f64, Expand);
350    setConvertAction(MVT::f32, MVT::f80, Expand);
351
352    // x87->SSE truncations need to go through memory.
353    setConvertAction(MVT::f80, MVT::f32, Expand);
354    setConvertAction(MVT::f64, MVT::f32, Expand);
355    // And x87->x87 truncations also.
356    setConvertAction(MVT::f80, MVT::f64, Expand);
357
358    if (!UnsafeFPMath) {
359      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
360      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
361    }
362  } else {
363    // f32 and f64 in x87.
364    // Set up the FP register classes.
365    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
366    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
367
368    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
369    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
370    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
371    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
372
373    // Floating truncations need to go through memory.
374    setConvertAction(MVT::f80, MVT::f32, Expand);
375    setConvertAction(MVT::f64, MVT::f32, Expand);
376    setConvertAction(MVT::f80, MVT::f64, Expand);
377
378    if (!UnsafeFPMath) {
379      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
380      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
381    }
382
383    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
384    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
385    addLegalFPImmediate(APFloat(+0.0)); // FLD0
386    addLegalFPImmediate(APFloat(+1.0)); // FLD1
387    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
388    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
389    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
390    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
391    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
392    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
393  }
394
395  // Long double always uses X87.
396  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
397  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
398  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
399  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
400
401  // First set operation action for all vector types to expand. Then we
402  // will selectively turn on ones that can be effectively codegen'd.
403  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
404       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
405    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
406    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
407    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
408    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
409    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
410    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
411    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
412    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
413    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
414    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
415    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
416    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
417    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
418    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
419    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
420    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
421    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
422    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
423    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
424    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
425    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
426    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
427    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
428  }
429
430  if (Subtarget->hasMMX()) {
431    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
432    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
433    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
434    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
435
436    // FIXME: add MMX packed arithmetics
437
438    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
439    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
440    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
441    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
442
443    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
444    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
445    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
446
447    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
448    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
449
450    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
451    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
452    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
453    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
454    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
455    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
456    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
457
458    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
459    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
460    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
461    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
462    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
463    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
464    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
465
466    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
467    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
468    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
469    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
470    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
471    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
472    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
473
474    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
475    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
476    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
477    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
478    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
479    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
480    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
481
482    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
483    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
484    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
485    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
486
487    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
488    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
489    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
490    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
491
492    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
493    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
494    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
495    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
496  }
497
498  if (Subtarget->hasSSE1()) {
499    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
500
501    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
502    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
503    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
504    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
505    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
506    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
507    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
508    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
509    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
510    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
511    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
512  }
513
514  if (Subtarget->hasSSE2()) {
515    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
516    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
517    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
518    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
519    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
520
521    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
522    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
523    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
524    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
525    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
526    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
527    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
528    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
529    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
530    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
531    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
532    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
533    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
534    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
535    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
536
537    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
538    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
539    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
540    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
541    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
542    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
543
544    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
545    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
546      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
547      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
548      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
549    }
550    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
551    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
552    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
553    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
554    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
555    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
556
557    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
558    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
559      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
560      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
561      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
562      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
563      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
564      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
565      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
566      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
567      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
568      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
569    }
570
571    // Custom lower v2i64 and v2f64 selects.
572    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
573    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
574    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
575    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
576  }
577
578  // We want to custom lower some of our intrinsics.
579  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
580
581  // We have target-specific dag combine patterns for the following nodes:
582  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
583  setTargetDAGCombine(ISD::SELECT);
584
585  computeRegisterProperties();
586
587  // FIXME: These should be based on subtarget info. Plus, the values should
588  // be smaller when we are in optimizing for size mode.
589  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
590  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
591  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
592  allowUnalignedMemoryAccesses = true; // x86 supports it!
593}
594
595
596//===----------------------------------------------------------------------===//
597//               Return Value Calling Convention Implementation
598//===----------------------------------------------------------------------===//
599
600#include "X86GenCallingConv.inc"
601
602/// LowerRET - Lower an ISD::RET node.
603SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
604  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
605
606  SmallVector<CCValAssign, 16> RVLocs;
607  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
608  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
609  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
610  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
611
612
613  // If this is the first return lowered for this function, add the regs to the
614  // liveout set for the function.
615  if (DAG.getMachineFunction().liveout_empty()) {
616    for (unsigned i = 0; i != RVLocs.size(); ++i)
617      if (RVLocs[i].isRegLoc())
618        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
619  }
620
621  SDOperand Chain = Op.getOperand(0);
622  SDOperand Flag;
623
624  // Copy the result values into the output registers.
625  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
626      RVLocs[0].getLocReg() != X86::ST0) {
627    for (unsigned i = 0; i != RVLocs.size(); ++i) {
628      CCValAssign &VA = RVLocs[i];
629      assert(VA.isRegLoc() && "Can only return in registers!");
630      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
631                               Flag);
632      Flag = Chain.getValue(1);
633    }
634  } else {
635    // We need to handle a destination of ST0 specially, because it isn't really
636    // a register.
637    SDOperand Value = Op.getOperand(1);
638
639    // If this is an FP return with ScalarSSE, we need to move the value from
640    // an XMM register onto the fp-stack.
641    if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
642        (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
643      SDOperand MemLoc;
644
645      // If this is a load into a scalarsse value, don't store the loaded value
646      // back to the stack, only to reload it: just replace the scalar-sse load.
647      if (ISD::isNON_EXTLoad(Value.Val) &&
648          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
649        Chain  = Value.getOperand(0);
650        MemLoc = Value.getOperand(1);
651      } else {
652        // Spill the value to memory and reload it into top of stack.
653        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
654        MachineFunction &MF = DAG.getMachineFunction();
655        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
656        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
657        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
658      }
659      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
660      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
661      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
662      Chain = Value.getValue(1);
663    }
664
665    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
666    SDOperand Ops[] = { Chain, Value };
667    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
668    Flag = Chain.getValue(1);
669  }
670
671  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
672  if (Flag.Val)
673    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
674  else
675    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
676}
677
678
679/// LowerCallResult - Lower the result values of an ISD::CALL into the
680/// appropriate copies out of appropriate physical registers.  This assumes that
681/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
682/// being lowered.  The returns a SDNode with the same number of values as the
683/// ISD::CALL.
684SDNode *X86TargetLowering::
685LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
686                unsigned CallingConv, SelectionDAG &DAG) {
687
688  // Assign locations to each value returned by this call.
689  SmallVector<CCValAssign, 16> RVLocs;
690  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
691  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
692  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
693
694
695  SmallVector<SDOperand, 8> ResultVals;
696
697  // Copy all of the result registers out of their specified physreg.
698  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
699    for (unsigned i = 0; i != RVLocs.size(); ++i) {
700      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
701                                 RVLocs[i].getValVT(), InFlag).getValue(1);
702      InFlag = Chain.getValue(2);
703      ResultVals.push_back(Chain.getValue(0));
704    }
705  } else {
706    // Copies from the FP stack are special, as ST0 isn't a valid register
707    // before the fp stackifier runs.
708
709    // Copy ST0 into an RFP register with FP_GET_RESULT.
710    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
711    SDOperand GROps[] = { Chain, InFlag };
712    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
713    Chain  = RetVal.getValue(1);
714    InFlag = RetVal.getValue(2);
715
716    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
717    // an XMM register.
718    if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
719        (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
720      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
721      // shouldn't be necessary except that RFP cannot be live across
722      // multiple blocks. When stackifier is fixed, they can be uncoupled.
723      MachineFunction &MF = DAG.getMachineFunction();
724      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
725      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
726      SDOperand Ops[] = {
727        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
728      };
729      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
730      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
731      Chain = RetVal.getValue(1);
732    }
733    ResultVals.push_back(RetVal);
734  }
735
736  // Merge everything together with a MERGE_VALUES node.
737  ResultVals.push_back(Chain);
738  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
739                     &ResultVals[0], ResultVals.size()).Val;
740}
741
742
743//===----------------------------------------------------------------------===//
744//                C & StdCall Calling Convention implementation
745//===----------------------------------------------------------------------===//
746//  StdCall calling convention seems to be standard for many Windows' API
747//  routines and around. It differs from C calling convention just a little:
748//  callee should clean up the stack, not caller. Symbols should be also
749//  decorated in some fancy way :) It doesn't support any vector arguments.
750
751/// AddLiveIn - This helper function adds the specified physical register to the
752/// MachineFunction as a live in value.  It also creates a corresponding virtual
753/// register for it.
754static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
755                          const TargetRegisterClass *RC) {
756  assert(RC->contains(PReg) && "Not the correct regclass!");
757  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
758  MF.addLiveIn(PReg, VReg);
759  return VReg;
760}
761
762SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
763                                              const CCValAssign &VA,
764                                              MachineFrameInfo *MFI,
765                                              SDOperand Root, unsigned i) {
766  // Create the nodes corresponding to a load from this parameter slot.
767  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
768                                  VA.getLocMemOffset());
769  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
770
771  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
772
773  if (Flags & ISD::ParamFlags::ByVal)
774    return FIN;
775  else
776    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
777}
778
779SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
780                                               bool isStdCall) {
781  unsigned NumArgs = Op.Val->getNumValues() - 1;
782  MachineFunction &MF = DAG.getMachineFunction();
783  MachineFrameInfo *MFI = MF.getFrameInfo();
784  SDOperand Root = Op.getOperand(0);
785  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
786
787  // Assign locations to all of the incoming arguments.
788  SmallVector<CCValAssign, 16> ArgLocs;
789  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
790                 getTargetMachine(), ArgLocs);
791  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
792
793  SmallVector<SDOperand, 8> ArgValues;
794  unsigned LastVal = ~0U;
795  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
796    CCValAssign &VA = ArgLocs[i];
797    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
798    // places.
799    assert(VA.getValNo() != LastVal &&
800           "Don't support value assigned to multiple locs yet");
801    LastVal = VA.getValNo();
802
803    if (VA.isRegLoc()) {
804      MVT::ValueType RegVT = VA.getLocVT();
805      TargetRegisterClass *RC;
806      if (RegVT == MVT::i32)
807        RC = X86::GR32RegisterClass;
808      else {
809        assert(MVT::isVector(RegVT));
810        RC = X86::VR128RegisterClass;
811      }
812
813      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
814      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
815
816      // If this is an 8 or 16-bit value, it is really passed promoted to 32
817      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
818      // right size.
819      if (VA.getLocInfo() == CCValAssign::SExt)
820        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
821                               DAG.getValueType(VA.getValVT()));
822      else if (VA.getLocInfo() == CCValAssign::ZExt)
823        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
824                               DAG.getValueType(VA.getValVT()));
825
826      if (VA.getLocInfo() != CCValAssign::Full)
827        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
828
829      ArgValues.push_back(ArgValue);
830    } else {
831      assert(VA.isMemLoc());
832      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
833    }
834  }
835
836  unsigned StackSize = CCInfo.getNextStackOffset();
837
838  ArgValues.push_back(Root);
839
840  // If the function takes variable number of arguments, make a frame index for
841  // the start of the first vararg value... for expansion of llvm.va_start.
842  if (isVarArg)
843    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
844
845  if (isStdCall && !isVarArg) {
846    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
847    BytesCallerReserves = 0;
848  } else {
849    BytesToPopOnReturn  = 0; // Callee pops nothing.
850
851    // If this is an sret function, the return should pop the hidden pointer.
852    if (NumArgs &&
853        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
854         ISD::ParamFlags::StructReturn))
855      BytesToPopOnReturn = 4;
856
857    BytesCallerReserves = StackSize;
858  }
859
860  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
861
862  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
863  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
864
865  // Return the new list of results.
866  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
867                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
868}
869
870SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
871                                            unsigned CC) {
872  SDOperand Chain     = Op.getOperand(0);
873  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
874  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
875  SDOperand Callee    = Op.getOperand(4);
876  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
877
878  // Analyze operands of the call, assigning locations to each operand.
879  SmallVector<CCValAssign, 16> ArgLocs;
880  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
881  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
882
883  // Get a count of how many bytes are to be pushed on the stack.
884  unsigned NumBytes = CCInfo.getNextStackOffset();
885
886  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
887
888  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
889  SmallVector<SDOperand, 8> MemOpChains;
890
891  SDOperand StackPtr;
892
893  // Walk the register/memloc assignments, inserting copies/loads.
894  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
895    CCValAssign &VA = ArgLocs[i];
896    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
897
898    // Promote the value if needed.
899    switch (VA.getLocInfo()) {
900    default: assert(0 && "Unknown loc info!");
901    case CCValAssign::Full: break;
902    case CCValAssign::SExt:
903      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
904      break;
905    case CCValAssign::ZExt:
906      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
907      break;
908    case CCValAssign::AExt:
909      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
910      break;
911    }
912
913    if (VA.isRegLoc()) {
914      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
915    } else {
916      assert(VA.isMemLoc());
917      if (StackPtr.Val == 0)
918        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
919
920      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
921                                             Arg));
922    }
923  }
924
925  // If the first argument is an sret pointer, remember it.
926  bool isSRet = NumOps &&
927    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
928     ISD::ParamFlags::StructReturn);
929
930  if (!MemOpChains.empty())
931    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
932                        &MemOpChains[0], MemOpChains.size());
933
934  // Build a sequence of copy-to-reg nodes chained together with token chain
935  // and flag operands which copy the outgoing args into registers.
936  SDOperand InFlag;
937  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
938    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
939                             InFlag);
940    InFlag = Chain.getValue(1);
941  }
942
943  // ELF / PIC requires GOT in the EBX register before function calls via PLT
944  // GOT pointer.
945  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
946      Subtarget->isPICStyleGOT()) {
947    Chain = DAG.getCopyToReg(Chain, X86::EBX,
948                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
949                             InFlag);
950    InFlag = Chain.getValue(1);
951  }
952
953  // If the callee is a GlobalAddress node (quite common, every direct call is)
954  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
955  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
956    // We should use extra load for direct calls to dllimported functions in
957    // non-JIT mode.
958    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
959                                        getTargetMachine(), true))
960      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
961  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
962    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
963
964  // Returns a chain & a flag for retval copy to use.
965  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
966  SmallVector<SDOperand, 8> Ops;
967  Ops.push_back(Chain);
968  Ops.push_back(Callee);
969
970  // Add argument registers to the end of the list so that they are known live
971  // into the call.
972  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
973    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
974                                  RegsToPass[i].second.getValueType()));
975
976  // Add an implicit use GOT pointer in EBX.
977  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
978      Subtarget->isPICStyleGOT())
979    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
980
981  if (InFlag.Val)
982    Ops.push_back(InFlag);
983
984  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
985                      NodeTys, &Ops[0], Ops.size());
986  InFlag = Chain.getValue(1);
987
988  // Create the CALLSEQ_END node.
989  unsigned NumBytesForCalleeToPush = 0;
990
991  if (CC == CallingConv::X86_StdCall) {
992    if (isVarArg)
993      NumBytesForCalleeToPush = isSRet ? 4 : 0;
994    else
995      NumBytesForCalleeToPush = NumBytes;
996  } else {
997    // If this is is a call to a struct-return function, the callee
998    // pops the hidden struct pointer, so we have to push it back.
999    // This is common for Darwin/X86, Linux & Mingw32 targets.
1000    NumBytesForCalleeToPush = isSRet ? 4 : 0;
1001  }
1002
1003  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1004  Ops.clear();
1005  Ops.push_back(Chain);
1006  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1007  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1008  Ops.push_back(InFlag);
1009  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1010  InFlag = Chain.getValue(1);
1011
1012  // Handle result values, copying them out of physregs into vregs that we
1013  // return.
1014  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1015}
1016
1017
1018//===----------------------------------------------------------------------===//
1019//                   FastCall Calling Convention implementation
1020//===----------------------------------------------------------------------===//
1021//
1022// The X86 'fastcall' calling convention passes up to two integer arguments in
1023// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1024// and requires that the callee pop its arguments off the stack (allowing proper
1025// tail calls), and has the same return value conventions as C calling convs.
1026//
1027// This calling convention always arranges for the callee pop value to be 8n+4
1028// bytes, which is needed for tail recursion elimination and stack alignment
1029// reasons.
1030SDOperand
1031X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1032  MachineFunction &MF = DAG.getMachineFunction();
1033  MachineFrameInfo *MFI = MF.getFrameInfo();
1034  SDOperand Root = Op.getOperand(0);
1035  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1036
1037  // Assign locations to all of the incoming arguments.
1038  SmallVector<CCValAssign, 16> ArgLocs;
1039  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1040                 getTargetMachine(), ArgLocs);
1041  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1042
1043  SmallVector<SDOperand, 8> ArgValues;
1044  unsigned LastVal = ~0U;
1045  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1046    CCValAssign &VA = ArgLocs[i];
1047    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1048    // places.
1049    assert(VA.getValNo() != LastVal &&
1050           "Don't support value assigned to multiple locs yet");
1051    LastVal = VA.getValNo();
1052
1053    if (VA.isRegLoc()) {
1054      MVT::ValueType RegVT = VA.getLocVT();
1055      TargetRegisterClass *RC;
1056      if (RegVT == MVT::i32)
1057        RC = X86::GR32RegisterClass;
1058      else {
1059        assert(MVT::isVector(RegVT));
1060        RC = X86::VR128RegisterClass;
1061      }
1062
1063      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1064      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1065
1066      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1067      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1068      // right size.
1069      if (VA.getLocInfo() == CCValAssign::SExt)
1070        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1071                               DAG.getValueType(VA.getValVT()));
1072      else if (VA.getLocInfo() == CCValAssign::ZExt)
1073        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1074                               DAG.getValueType(VA.getValVT()));
1075
1076      if (VA.getLocInfo() != CCValAssign::Full)
1077        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1078
1079      ArgValues.push_back(ArgValue);
1080    } else {
1081      assert(VA.isMemLoc());
1082      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1083    }
1084  }
1085
1086  ArgValues.push_back(Root);
1087
1088  unsigned StackSize = CCInfo.getNextStackOffset();
1089
1090  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1091    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1092    // arguments and the arguments after the retaddr has been pushed are aligned.
1093    if ((StackSize & 7) == 0)
1094      StackSize += 4;
1095  }
1096
1097  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1098  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1099  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1100  BytesCallerReserves = 0;
1101
1102  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1103  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1104
1105  // Return the new list of results.
1106  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1107                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1108}
1109
1110SDOperand
1111X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1112                                    const SDOperand &StackPtr,
1113                                    const CCValAssign &VA,
1114                                    SDOperand Chain,
1115                                    SDOperand Arg) {
1116  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1117  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1118  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1119  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1120  if (Flags & ISD::ParamFlags::ByVal) {
1121    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1122                           ISD::ParamFlags::ByValAlignOffs);
1123
1124    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1125        ISD::ParamFlags::ByValSizeOffs;
1126
1127    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1128    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1129
1130    return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1131                       AlignNode);
1132  } else {
1133    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1134  }
1135}
1136
1137SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1138                                               unsigned CC) {
1139  SDOperand Chain     = Op.getOperand(0);
1140  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1141  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1142  SDOperand Callee    = Op.getOperand(4);
1143
1144  // Analyze operands of the call, assigning locations to each operand.
1145  SmallVector<CCValAssign, 16> ArgLocs;
1146  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1147  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1148
1149  // Get a count of how many bytes are to be pushed on the stack.
1150  unsigned NumBytes = CCInfo.getNextStackOffset();
1151
1152  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1153    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1154    // arguments and the arguments after the retaddr has been pushed are aligned.
1155    if ((NumBytes & 7) == 0)
1156      NumBytes += 4;
1157  }
1158
1159  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1160
1161  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1162  SmallVector<SDOperand, 8> MemOpChains;
1163
1164  SDOperand StackPtr;
1165
1166  // Walk the register/memloc assignments, inserting copies/loads.
1167  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1168    CCValAssign &VA = ArgLocs[i];
1169    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1170
1171    // Promote the value if needed.
1172    switch (VA.getLocInfo()) {
1173      default: assert(0 && "Unknown loc info!");
1174      case CCValAssign::Full: break;
1175      case CCValAssign::SExt:
1176        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1177        break;
1178      case CCValAssign::ZExt:
1179        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1180        break;
1181      case CCValAssign::AExt:
1182        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1183        break;
1184    }
1185
1186    if (VA.isRegLoc()) {
1187      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1188    } else {
1189      assert(VA.isMemLoc());
1190      if (StackPtr.Val == 0)
1191        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1192
1193      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1194                                             Arg));
1195    }
1196  }
1197
1198  if (!MemOpChains.empty())
1199    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1200                        &MemOpChains[0], MemOpChains.size());
1201
1202  // Build a sequence of copy-to-reg nodes chained together with token chain
1203  // and flag operands which copy the outgoing args into registers.
1204  SDOperand InFlag;
1205  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1206    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1207                             InFlag);
1208    InFlag = Chain.getValue(1);
1209  }
1210
1211  // If the callee is a GlobalAddress node (quite common, every direct call is)
1212  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1213  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1214    // We should use extra load for direct calls to dllimported functions in
1215    // non-JIT mode.
1216    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1217                                        getTargetMachine(), true))
1218      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1219  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1220    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1221
1222  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1223  // GOT pointer.
1224  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1225      Subtarget->isPICStyleGOT()) {
1226    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1227                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1228                             InFlag);
1229    InFlag = Chain.getValue(1);
1230  }
1231
1232  // Returns a chain & a flag for retval copy to use.
1233  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1234  SmallVector<SDOperand, 8> Ops;
1235  Ops.push_back(Chain);
1236  Ops.push_back(Callee);
1237
1238  // Add argument registers to the end of the list so that they are known live
1239  // into the call.
1240  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1241    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1242                                  RegsToPass[i].second.getValueType()));
1243
1244  // Add an implicit use GOT pointer in EBX.
1245  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1246      Subtarget->isPICStyleGOT())
1247    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1248
1249  if (InFlag.Val)
1250    Ops.push_back(InFlag);
1251
1252  // FIXME: Do not generate X86ISD::TAILCALL for now.
1253  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1254                      NodeTys, &Ops[0], Ops.size());
1255  InFlag = Chain.getValue(1);
1256
1257  // Returns a flag for retval copy to use.
1258  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1259  Ops.clear();
1260  Ops.push_back(Chain);
1261  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1262  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1263  Ops.push_back(InFlag);
1264  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1265  InFlag = Chain.getValue(1);
1266
1267  // Handle result values, copying them out of physregs into vregs that we
1268  // return.
1269  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1270}
1271
1272
1273//===----------------------------------------------------------------------===//
1274//                 X86-64 C Calling Convention implementation
1275//===----------------------------------------------------------------------===//
1276
1277SDOperand
1278X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1279  MachineFunction &MF = DAG.getMachineFunction();
1280  MachineFrameInfo *MFI = MF.getFrameInfo();
1281  SDOperand Root = Op.getOperand(0);
1282  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1283
1284  static const unsigned GPR64ArgRegs[] = {
1285    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1286  };
1287  static const unsigned XMMArgRegs[] = {
1288    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1289    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1290  };
1291
1292
1293  // Assign locations to all of the incoming arguments.
1294  SmallVector<CCValAssign, 16> ArgLocs;
1295  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1296                 getTargetMachine(), ArgLocs);
1297  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1298
1299  SmallVector<SDOperand, 8> ArgValues;
1300  unsigned LastVal = ~0U;
1301  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1302    CCValAssign &VA = ArgLocs[i];
1303    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1304    // places.
1305    assert(VA.getValNo() != LastVal &&
1306           "Don't support value assigned to multiple locs yet");
1307    LastVal = VA.getValNo();
1308
1309    if (VA.isRegLoc()) {
1310      MVT::ValueType RegVT = VA.getLocVT();
1311      TargetRegisterClass *RC;
1312      if (RegVT == MVT::i32)
1313        RC = X86::GR32RegisterClass;
1314      else if (RegVT == MVT::i64)
1315        RC = X86::GR64RegisterClass;
1316      else if (RegVT == MVT::f32)
1317        RC = X86::FR32RegisterClass;
1318      else if (RegVT == MVT::f64)
1319        RC = X86::FR64RegisterClass;
1320      else {
1321        assert(MVT::isVector(RegVT));
1322        if (MVT::getSizeInBits(RegVT) == 64) {
1323          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1324          RegVT = MVT::i64;
1325        } else
1326          RC = X86::VR128RegisterClass;
1327      }
1328
1329      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1330      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1331
1332      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1333      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1334      // right size.
1335      if (VA.getLocInfo() == CCValAssign::SExt)
1336        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1337                               DAG.getValueType(VA.getValVT()));
1338      else if (VA.getLocInfo() == CCValAssign::ZExt)
1339        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1340                               DAG.getValueType(VA.getValVT()));
1341
1342      if (VA.getLocInfo() != CCValAssign::Full)
1343        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1344
1345      // Handle MMX values passed in GPRs.
1346      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1347          MVT::getSizeInBits(RegVT) == 64)
1348        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1349
1350      ArgValues.push_back(ArgValue);
1351    } else {
1352      assert(VA.isMemLoc());
1353      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1354    }
1355  }
1356
1357  unsigned StackSize = CCInfo.getNextStackOffset();
1358
1359  // If the function takes variable number of arguments, make a frame index for
1360  // the start of the first vararg value... for expansion of llvm.va_start.
1361  if (isVarArg) {
1362    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1363    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1364
1365    // For X86-64, if there are vararg parameters that are passed via
1366    // registers, then we must store them to their spots on the stack so they
1367    // may be loaded by deferencing the result of va_next.
1368    VarArgsGPOffset = NumIntRegs * 8;
1369    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1370    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1371    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1372
1373    // Store the integer parameter registers.
1374    SmallVector<SDOperand, 8> MemOps;
1375    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1376    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1377                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1378    for (; NumIntRegs != 6; ++NumIntRegs) {
1379      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1380                                X86::GR64RegisterClass);
1381      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1382      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1383      MemOps.push_back(Store);
1384      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1385                        DAG.getConstant(8, getPointerTy()));
1386    }
1387
1388    // Now store the XMM (fp + vector) parameter registers.
1389    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1390                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1391    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1392      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1393                                X86::VR128RegisterClass);
1394      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1395      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1396      MemOps.push_back(Store);
1397      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1398                        DAG.getConstant(16, getPointerTy()));
1399    }
1400    if (!MemOps.empty())
1401        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1402                           &MemOps[0], MemOps.size());
1403  }
1404
1405  ArgValues.push_back(Root);
1406
1407  BytesToPopOnReturn = 0;  // Callee pops nothing.
1408  BytesCallerReserves = StackSize;
1409
1410  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1411  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1412
1413  // Return the new list of results.
1414  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1415                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1416}
1417
1418SDOperand
1419X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1420                                        unsigned CC) {
1421  SDOperand Chain     = Op.getOperand(0);
1422  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1423  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1424  SDOperand Callee    = Op.getOperand(4);
1425
1426  // Analyze operands of the call, assigning locations to each operand.
1427  SmallVector<CCValAssign, 16> ArgLocs;
1428  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1429  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1430
1431  // Get a count of how many bytes are to be pushed on the stack.
1432  unsigned NumBytes = CCInfo.getNextStackOffset();
1433  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1434
1435  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1436  SmallVector<SDOperand, 8> MemOpChains;
1437
1438  SDOperand StackPtr;
1439
1440  // Walk the register/memloc assignments, inserting copies/loads.
1441  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1442    CCValAssign &VA = ArgLocs[i];
1443    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1444
1445    // Promote the value if needed.
1446    switch (VA.getLocInfo()) {
1447    default: assert(0 && "Unknown loc info!");
1448    case CCValAssign::Full: break;
1449    case CCValAssign::SExt:
1450      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1451      break;
1452    case CCValAssign::ZExt:
1453      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1454      break;
1455    case CCValAssign::AExt:
1456      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1457      break;
1458    }
1459
1460    if (VA.isRegLoc()) {
1461      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1462    } else {
1463      assert(VA.isMemLoc());
1464      if (StackPtr.Val == 0)
1465        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1466
1467      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1468                                             Arg));
1469    }
1470  }
1471
1472  if (!MemOpChains.empty())
1473    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1474                        &MemOpChains[0], MemOpChains.size());
1475
1476  // Build a sequence of copy-to-reg nodes chained together with token chain
1477  // and flag operands which copy the outgoing args into registers.
1478  SDOperand InFlag;
1479  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1480    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1481                             InFlag);
1482    InFlag = Chain.getValue(1);
1483  }
1484
1485  if (isVarArg) {
1486    // From AMD64 ABI document:
1487    // For calls that may call functions that use varargs or stdargs
1488    // (prototype-less calls or calls to functions containing ellipsis (...) in
1489    // the declaration) %al is used as hidden argument to specify the number
1490    // of SSE registers used. The contents of %al do not need to match exactly
1491    // the number of registers, but must be an ubound on the number of SSE
1492    // registers used and is in the range 0 - 8 inclusive.
1493
1494    // Count the number of XMM registers allocated.
1495    static const unsigned XMMArgRegs[] = {
1496      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1497      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1498    };
1499    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1500
1501    Chain = DAG.getCopyToReg(Chain, X86::AL,
1502                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1503    InFlag = Chain.getValue(1);
1504  }
1505
1506  // If the callee is a GlobalAddress node (quite common, every direct call is)
1507  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1508  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1509    // We should use extra load for direct calls to dllimported functions in
1510    // non-JIT mode.
1511    if (getTargetMachine().getCodeModel() != CodeModel::Large
1512        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1513                                           getTargetMachine(), true))
1514      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1515  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1516    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1517      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1518
1519  // Returns a chain & a flag for retval copy to use.
1520  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1521  SmallVector<SDOperand, 8> Ops;
1522  Ops.push_back(Chain);
1523  Ops.push_back(Callee);
1524
1525  // Add argument registers to the end of the list so that they are known live
1526  // into the call.
1527  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1528    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1529                                  RegsToPass[i].second.getValueType()));
1530
1531  if (InFlag.Val)
1532    Ops.push_back(InFlag);
1533
1534  // FIXME: Do not generate X86ISD::TAILCALL for now.
1535  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1536                      NodeTys, &Ops[0], Ops.size());
1537  InFlag = Chain.getValue(1);
1538
1539  // Returns a flag for retval copy to use.
1540  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1541  Ops.clear();
1542  Ops.push_back(Chain);
1543  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1544  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1545  Ops.push_back(InFlag);
1546  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1547  InFlag = Chain.getValue(1);
1548
1549  // Handle result values, copying them out of physregs into vregs that we
1550  // return.
1551  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1552}
1553
1554
1555//===----------------------------------------------------------------------===//
1556//                           Other Lowering Hooks
1557//===----------------------------------------------------------------------===//
1558
1559
1560SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1561  MachineFunction &MF = DAG.getMachineFunction();
1562  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1563  int ReturnAddrIndex = FuncInfo->getRAIndex();
1564
1565  if (ReturnAddrIndex == 0) {
1566    // Set up a frame object for the return address.
1567    if (Subtarget->is64Bit())
1568      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1569    else
1570      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1571
1572    FuncInfo->setRAIndex(ReturnAddrIndex);
1573  }
1574
1575  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1576}
1577
1578
1579
1580/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1581/// specific condition code. It returns a false if it cannot do a direct
1582/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1583/// needed.
1584static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1585                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1586                           SelectionDAG &DAG) {
1587  X86CC = X86::COND_INVALID;
1588  if (!isFP) {
1589    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1590      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1591        // X > -1   -> X == 0, jump !sign.
1592        RHS = DAG.getConstant(0, RHS.getValueType());
1593        X86CC = X86::COND_NS;
1594        return true;
1595      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1596        // X < 0   -> X == 0, jump on sign.
1597        X86CC = X86::COND_S;
1598        return true;
1599      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1600        // X < 1   -> X <= 0
1601        RHS = DAG.getConstant(0, RHS.getValueType());
1602        X86CC = X86::COND_LE;
1603        return true;
1604      }
1605    }
1606
1607    switch (SetCCOpcode) {
1608    default: break;
1609    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1610    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1611    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1612    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1613    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1614    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1615    case ISD::SETULT: X86CC = X86::COND_B;  break;
1616    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1617    case ISD::SETULE: X86CC = X86::COND_BE; break;
1618    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1619    }
1620  } else {
1621    // On a floating point condition, the flags are set as follows:
1622    // ZF  PF  CF   op
1623    //  0 | 0 | 0 | X > Y
1624    //  0 | 0 | 1 | X < Y
1625    //  1 | 0 | 0 | X == Y
1626    //  1 | 1 | 1 | unordered
1627    bool Flip = false;
1628    switch (SetCCOpcode) {
1629    default: break;
1630    case ISD::SETUEQ:
1631    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1632    case ISD::SETOLT: Flip = true; // Fallthrough
1633    case ISD::SETOGT:
1634    case ISD::SETGT: X86CC = X86::COND_A;  break;
1635    case ISD::SETOLE: Flip = true; // Fallthrough
1636    case ISD::SETOGE:
1637    case ISD::SETGE: X86CC = X86::COND_AE; break;
1638    case ISD::SETUGT: Flip = true; // Fallthrough
1639    case ISD::SETULT:
1640    case ISD::SETLT: X86CC = X86::COND_B;  break;
1641    case ISD::SETUGE: Flip = true; // Fallthrough
1642    case ISD::SETULE:
1643    case ISD::SETLE: X86CC = X86::COND_BE; break;
1644    case ISD::SETONE:
1645    case ISD::SETNE: X86CC = X86::COND_NE; break;
1646    case ISD::SETUO: X86CC = X86::COND_P;  break;
1647    case ISD::SETO:  X86CC = X86::COND_NP; break;
1648    }
1649    if (Flip)
1650      std::swap(LHS, RHS);
1651  }
1652
1653  return X86CC != X86::COND_INVALID;
1654}
1655
1656/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1657/// code. Current x86 isa includes the following FP cmov instructions:
1658/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1659static bool hasFPCMov(unsigned X86CC) {
1660  switch (X86CC) {
1661  default:
1662    return false;
1663  case X86::COND_B:
1664  case X86::COND_BE:
1665  case X86::COND_E:
1666  case X86::COND_P:
1667  case X86::COND_A:
1668  case X86::COND_AE:
1669  case X86::COND_NE:
1670  case X86::COND_NP:
1671    return true;
1672  }
1673}
1674
1675/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1676/// true if Op is undef or if its value falls within the specified range (L, H].
1677static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1678  if (Op.getOpcode() == ISD::UNDEF)
1679    return true;
1680
1681  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1682  return (Val >= Low && Val < Hi);
1683}
1684
1685/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1686/// true if Op is undef or if its value equal to the specified value.
1687static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1688  if (Op.getOpcode() == ISD::UNDEF)
1689    return true;
1690  return cast<ConstantSDNode>(Op)->getValue() == Val;
1691}
1692
1693/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1694/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1695bool X86::isPSHUFDMask(SDNode *N) {
1696  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1697
1698  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1699    return false;
1700
1701  // Check if the value doesn't reference the second vector.
1702  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1703    SDOperand Arg = N->getOperand(i);
1704    if (Arg.getOpcode() == ISD::UNDEF) continue;
1705    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1706    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1707      return false;
1708  }
1709
1710  return true;
1711}
1712
1713/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1714/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1715bool X86::isPSHUFHWMask(SDNode *N) {
1716  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1717
1718  if (N->getNumOperands() != 8)
1719    return false;
1720
1721  // Lower quadword copied in order.
1722  for (unsigned i = 0; i != 4; ++i) {
1723    SDOperand Arg = N->getOperand(i);
1724    if (Arg.getOpcode() == ISD::UNDEF) continue;
1725    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1726    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1727      return false;
1728  }
1729
1730  // Upper quadword shuffled.
1731  for (unsigned i = 4; i != 8; ++i) {
1732    SDOperand Arg = N->getOperand(i);
1733    if (Arg.getOpcode() == ISD::UNDEF) continue;
1734    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1735    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1736    if (Val < 4 || Val > 7)
1737      return false;
1738  }
1739
1740  return true;
1741}
1742
1743/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1744/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1745bool X86::isPSHUFLWMask(SDNode *N) {
1746  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1747
1748  if (N->getNumOperands() != 8)
1749    return false;
1750
1751  // Upper quadword copied in order.
1752  for (unsigned i = 4; i != 8; ++i)
1753    if (!isUndefOrEqual(N->getOperand(i), i))
1754      return false;
1755
1756  // Lower quadword shuffled.
1757  for (unsigned i = 0; i != 4; ++i)
1758    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1759      return false;
1760
1761  return true;
1762}
1763
1764/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1765/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1766static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1767  if (NumElems != 2 && NumElems != 4) return false;
1768
1769  unsigned Half = NumElems / 2;
1770  for (unsigned i = 0; i < Half; ++i)
1771    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1772      return false;
1773  for (unsigned i = Half; i < NumElems; ++i)
1774    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1775      return false;
1776
1777  return true;
1778}
1779
1780bool X86::isSHUFPMask(SDNode *N) {
1781  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1782  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1783}
1784
1785/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1786/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1787/// half elements to come from vector 1 (which would equal the dest.) and
1788/// the upper half to come from vector 2.
1789static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1790  if (NumOps != 2 && NumOps != 4) return false;
1791
1792  unsigned Half = NumOps / 2;
1793  for (unsigned i = 0; i < Half; ++i)
1794    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1795      return false;
1796  for (unsigned i = Half; i < NumOps; ++i)
1797    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1798      return false;
1799  return true;
1800}
1801
1802static bool isCommutedSHUFP(SDNode *N) {
1803  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1804  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1805}
1806
1807/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1808/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1809bool X86::isMOVHLPSMask(SDNode *N) {
1810  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1811
1812  if (N->getNumOperands() != 4)
1813    return false;
1814
1815  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1816  return isUndefOrEqual(N->getOperand(0), 6) &&
1817         isUndefOrEqual(N->getOperand(1), 7) &&
1818         isUndefOrEqual(N->getOperand(2), 2) &&
1819         isUndefOrEqual(N->getOperand(3), 3);
1820}
1821
1822/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1823/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1824/// <2, 3, 2, 3>
1825bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1826  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1827
1828  if (N->getNumOperands() != 4)
1829    return false;
1830
1831  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1832  return isUndefOrEqual(N->getOperand(0), 2) &&
1833         isUndefOrEqual(N->getOperand(1), 3) &&
1834         isUndefOrEqual(N->getOperand(2), 2) &&
1835         isUndefOrEqual(N->getOperand(3), 3);
1836}
1837
1838/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1839/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1840bool X86::isMOVLPMask(SDNode *N) {
1841  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1842
1843  unsigned NumElems = N->getNumOperands();
1844  if (NumElems != 2 && NumElems != 4)
1845    return false;
1846
1847  for (unsigned i = 0; i < NumElems/2; ++i)
1848    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1849      return false;
1850
1851  for (unsigned i = NumElems/2; i < NumElems; ++i)
1852    if (!isUndefOrEqual(N->getOperand(i), i))
1853      return false;
1854
1855  return true;
1856}
1857
1858/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1859/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1860/// and MOVLHPS.
1861bool X86::isMOVHPMask(SDNode *N) {
1862  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1863
1864  unsigned NumElems = N->getNumOperands();
1865  if (NumElems != 2 && NumElems != 4)
1866    return false;
1867
1868  for (unsigned i = 0; i < NumElems/2; ++i)
1869    if (!isUndefOrEqual(N->getOperand(i), i))
1870      return false;
1871
1872  for (unsigned i = 0; i < NumElems/2; ++i) {
1873    SDOperand Arg = N->getOperand(i + NumElems/2);
1874    if (!isUndefOrEqual(Arg, i + NumElems))
1875      return false;
1876  }
1877
1878  return true;
1879}
1880
1881/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1882/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1883bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1884                         bool V2IsSplat = false) {
1885  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1886    return false;
1887
1888  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1889    SDOperand BitI  = Elts[i];
1890    SDOperand BitI1 = Elts[i+1];
1891    if (!isUndefOrEqual(BitI, j))
1892      return false;
1893    if (V2IsSplat) {
1894      if (isUndefOrEqual(BitI1, NumElts))
1895        return false;
1896    } else {
1897      if (!isUndefOrEqual(BitI1, j + NumElts))
1898        return false;
1899    }
1900  }
1901
1902  return true;
1903}
1904
1905bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1906  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1907  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1908}
1909
1910/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1911/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1912bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1913                         bool V2IsSplat = false) {
1914  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1915    return false;
1916
1917  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1918    SDOperand BitI  = Elts[i];
1919    SDOperand BitI1 = Elts[i+1];
1920    if (!isUndefOrEqual(BitI, j + NumElts/2))
1921      return false;
1922    if (V2IsSplat) {
1923      if (isUndefOrEqual(BitI1, NumElts))
1924        return false;
1925    } else {
1926      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1927        return false;
1928    }
1929  }
1930
1931  return true;
1932}
1933
1934bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1935  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1936  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1937}
1938
1939/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1940/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1941/// <0, 0, 1, 1>
1942bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1943  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1944
1945  unsigned NumElems = N->getNumOperands();
1946  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1947    return false;
1948
1949  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1950    SDOperand BitI  = N->getOperand(i);
1951    SDOperand BitI1 = N->getOperand(i+1);
1952
1953    if (!isUndefOrEqual(BitI, j))
1954      return false;
1955    if (!isUndefOrEqual(BitI1, j))
1956      return false;
1957  }
1958
1959  return true;
1960}
1961
1962/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1963/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1964/// <2, 2, 3, 3>
1965bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1966  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1967
1968  unsigned NumElems = N->getNumOperands();
1969  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1970    return false;
1971
1972  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1973    SDOperand BitI  = N->getOperand(i);
1974    SDOperand BitI1 = N->getOperand(i + 1);
1975
1976    if (!isUndefOrEqual(BitI, j))
1977      return false;
1978    if (!isUndefOrEqual(BitI1, j))
1979      return false;
1980  }
1981
1982  return true;
1983}
1984
1985/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1986/// specifies a shuffle of elements that is suitable for input to MOVSS,
1987/// MOVSD, and MOVD, i.e. setting the lowest element.
1988static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1989  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1990    return false;
1991
1992  if (!isUndefOrEqual(Elts[0], NumElts))
1993    return false;
1994
1995  for (unsigned i = 1; i < NumElts; ++i) {
1996    if (!isUndefOrEqual(Elts[i], i))
1997      return false;
1998  }
1999
2000  return true;
2001}
2002
2003bool X86::isMOVLMask(SDNode *N) {
2004  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2005  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2006}
2007
2008/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2009/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2010/// element of vector 2 and the other elements to come from vector 1 in order.
2011static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2012                           bool V2IsSplat = false,
2013                           bool V2IsUndef = false) {
2014  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2015    return false;
2016
2017  if (!isUndefOrEqual(Ops[0], 0))
2018    return false;
2019
2020  for (unsigned i = 1; i < NumOps; ++i) {
2021    SDOperand Arg = Ops[i];
2022    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2023          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2024          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2025      return false;
2026  }
2027
2028  return true;
2029}
2030
2031static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2032                           bool V2IsUndef = false) {
2033  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2034  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2035                        V2IsSplat, V2IsUndef);
2036}
2037
2038/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2039/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2040bool X86::isMOVSHDUPMask(SDNode *N) {
2041  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2042
2043  if (N->getNumOperands() != 4)
2044    return false;
2045
2046  // Expect 1, 1, 3, 3
2047  for (unsigned i = 0; i < 2; ++i) {
2048    SDOperand Arg = N->getOperand(i);
2049    if (Arg.getOpcode() == ISD::UNDEF) continue;
2050    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2051    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2052    if (Val != 1) return false;
2053  }
2054
2055  bool HasHi = false;
2056  for (unsigned i = 2; i < 4; ++i) {
2057    SDOperand Arg = N->getOperand(i);
2058    if (Arg.getOpcode() == ISD::UNDEF) continue;
2059    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2060    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2061    if (Val != 3) return false;
2062    HasHi = true;
2063  }
2064
2065  // Don't use movshdup if it can be done with a shufps.
2066  return HasHi;
2067}
2068
2069/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2070/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2071bool X86::isMOVSLDUPMask(SDNode *N) {
2072  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2073
2074  if (N->getNumOperands() != 4)
2075    return false;
2076
2077  // Expect 0, 0, 2, 2
2078  for (unsigned i = 0; i < 2; ++i) {
2079    SDOperand Arg = N->getOperand(i);
2080    if (Arg.getOpcode() == ISD::UNDEF) continue;
2081    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2082    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2083    if (Val != 0) return false;
2084  }
2085
2086  bool HasHi = false;
2087  for (unsigned i = 2; i < 4; ++i) {
2088    SDOperand Arg = N->getOperand(i);
2089    if (Arg.getOpcode() == ISD::UNDEF) continue;
2090    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2091    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2092    if (Val != 2) return false;
2093    HasHi = true;
2094  }
2095
2096  // Don't use movshdup if it can be done with a shufps.
2097  return HasHi;
2098}
2099
2100/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2101/// specifies a identity operation on the LHS or RHS.
2102static bool isIdentityMask(SDNode *N, bool RHS = false) {
2103  unsigned NumElems = N->getNumOperands();
2104  for (unsigned i = 0; i < NumElems; ++i)
2105    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2106      return false;
2107  return true;
2108}
2109
2110/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2111/// a splat of a single element.
2112static bool isSplatMask(SDNode *N) {
2113  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2114
2115  // This is a splat operation if each element of the permute is the same, and
2116  // if the value doesn't reference the second vector.
2117  unsigned NumElems = N->getNumOperands();
2118  SDOperand ElementBase;
2119  unsigned i = 0;
2120  for (; i != NumElems; ++i) {
2121    SDOperand Elt = N->getOperand(i);
2122    if (isa<ConstantSDNode>(Elt)) {
2123      ElementBase = Elt;
2124      break;
2125    }
2126  }
2127
2128  if (!ElementBase.Val)
2129    return false;
2130
2131  for (; i != NumElems; ++i) {
2132    SDOperand Arg = N->getOperand(i);
2133    if (Arg.getOpcode() == ISD::UNDEF) continue;
2134    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2135    if (Arg != ElementBase) return false;
2136  }
2137
2138  // Make sure it is a splat of the first vector operand.
2139  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2140}
2141
2142/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2143/// a splat of a single element and it's a 2 or 4 element mask.
2144bool X86::isSplatMask(SDNode *N) {
2145  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2146
2147  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2148  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2149    return false;
2150  return ::isSplatMask(N);
2151}
2152
2153/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2154/// specifies a splat of zero element.
2155bool X86::isSplatLoMask(SDNode *N) {
2156  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2157
2158  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2159    if (!isUndefOrEqual(N->getOperand(i), 0))
2160      return false;
2161  return true;
2162}
2163
2164/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2165/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2166/// instructions.
2167unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2168  unsigned NumOperands = N->getNumOperands();
2169  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2170  unsigned Mask = 0;
2171  for (unsigned i = 0; i < NumOperands; ++i) {
2172    unsigned Val = 0;
2173    SDOperand Arg = N->getOperand(NumOperands-i-1);
2174    if (Arg.getOpcode() != ISD::UNDEF)
2175      Val = cast<ConstantSDNode>(Arg)->getValue();
2176    if (Val >= NumOperands) Val -= NumOperands;
2177    Mask |= Val;
2178    if (i != NumOperands - 1)
2179      Mask <<= Shift;
2180  }
2181
2182  return Mask;
2183}
2184
2185/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2186/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2187/// instructions.
2188unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2189  unsigned Mask = 0;
2190  // 8 nodes, but we only care about the last 4.
2191  for (unsigned i = 7; i >= 4; --i) {
2192    unsigned Val = 0;
2193    SDOperand Arg = N->getOperand(i);
2194    if (Arg.getOpcode() != ISD::UNDEF)
2195      Val = cast<ConstantSDNode>(Arg)->getValue();
2196    Mask |= (Val - 4);
2197    if (i != 4)
2198      Mask <<= 2;
2199  }
2200
2201  return Mask;
2202}
2203
2204/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2205/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2206/// instructions.
2207unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2208  unsigned Mask = 0;
2209  // 8 nodes, but we only care about the first 4.
2210  for (int i = 3; i >= 0; --i) {
2211    unsigned Val = 0;
2212    SDOperand Arg = N->getOperand(i);
2213    if (Arg.getOpcode() != ISD::UNDEF)
2214      Val = cast<ConstantSDNode>(Arg)->getValue();
2215    Mask |= Val;
2216    if (i != 0)
2217      Mask <<= 2;
2218  }
2219
2220  return Mask;
2221}
2222
2223/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2224/// specifies a 8 element shuffle that can be broken into a pair of
2225/// PSHUFHW and PSHUFLW.
2226static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2227  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2228
2229  if (N->getNumOperands() != 8)
2230    return false;
2231
2232  // Lower quadword shuffled.
2233  for (unsigned i = 0; i != 4; ++i) {
2234    SDOperand Arg = N->getOperand(i);
2235    if (Arg.getOpcode() == ISD::UNDEF) continue;
2236    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2237    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2238    if (Val > 4)
2239      return false;
2240  }
2241
2242  // Upper quadword shuffled.
2243  for (unsigned i = 4; i != 8; ++i) {
2244    SDOperand Arg = N->getOperand(i);
2245    if (Arg.getOpcode() == ISD::UNDEF) continue;
2246    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2247    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2248    if (Val < 4 || Val > 7)
2249      return false;
2250  }
2251
2252  return true;
2253}
2254
2255/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2256/// values in ther permute mask.
2257static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2258                                      SDOperand &V2, SDOperand &Mask,
2259                                      SelectionDAG &DAG) {
2260  MVT::ValueType VT = Op.getValueType();
2261  MVT::ValueType MaskVT = Mask.getValueType();
2262  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2263  unsigned NumElems = Mask.getNumOperands();
2264  SmallVector<SDOperand, 8> MaskVec;
2265
2266  for (unsigned i = 0; i != NumElems; ++i) {
2267    SDOperand Arg = Mask.getOperand(i);
2268    if (Arg.getOpcode() == ISD::UNDEF) {
2269      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2270      continue;
2271    }
2272    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2273    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2274    if (Val < NumElems)
2275      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2276    else
2277      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2278  }
2279
2280  std::swap(V1, V2);
2281  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2282  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2283}
2284
2285/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2286/// match movhlps. The lower half elements should come from upper half of
2287/// V1 (and in order), and the upper half elements should come from the upper
2288/// half of V2 (and in order).
2289static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2290  unsigned NumElems = Mask->getNumOperands();
2291  if (NumElems != 4)
2292    return false;
2293  for (unsigned i = 0, e = 2; i != e; ++i)
2294    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2295      return false;
2296  for (unsigned i = 2; i != 4; ++i)
2297    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2298      return false;
2299  return true;
2300}
2301
2302/// isScalarLoadToVector - Returns true if the node is a scalar load that
2303/// is promoted to a vector.
2304static inline bool isScalarLoadToVector(SDNode *N) {
2305  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2306    N = N->getOperand(0).Val;
2307    return ISD::isNON_EXTLoad(N);
2308  }
2309  return false;
2310}
2311
2312/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2313/// match movlp{s|d}. The lower half elements should come from lower half of
2314/// V1 (and in order), and the upper half elements should come from the upper
2315/// half of V2 (and in order). And since V1 will become the source of the
2316/// MOVLP, it must be either a vector load or a scalar load to vector.
2317static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2318  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2319    return false;
2320  // Is V2 is a vector load, don't do this transformation. We will try to use
2321  // load folding shufps op.
2322  if (ISD::isNON_EXTLoad(V2))
2323    return false;
2324
2325  unsigned NumElems = Mask->getNumOperands();
2326  if (NumElems != 2 && NumElems != 4)
2327    return false;
2328  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2329    if (!isUndefOrEqual(Mask->getOperand(i), i))
2330      return false;
2331  for (unsigned i = NumElems/2; i != NumElems; ++i)
2332    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2333      return false;
2334  return true;
2335}
2336
2337/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2338/// all the same.
2339static bool isSplatVector(SDNode *N) {
2340  if (N->getOpcode() != ISD::BUILD_VECTOR)
2341    return false;
2342
2343  SDOperand SplatValue = N->getOperand(0);
2344  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2345    if (N->getOperand(i) != SplatValue)
2346      return false;
2347  return true;
2348}
2349
2350/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2351/// to an undef.
2352static bool isUndefShuffle(SDNode *N) {
2353  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2354    return false;
2355
2356  SDOperand V1 = N->getOperand(0);
2357  SDOperand V2 = N->getOperand(1);
2358  SDOperand Mask = N->getOperand(2);
2359  unsigned NumElems = Mask.getNumOperands();
2360  for (unsigned i = 0; i != NumElems; ++i) {
2361    SDOperand Arg = Mask.getOperand(i);
2362    if (Arg.getOpcode() != ISD::UNDEF) {
2363      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2364      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2365        return false;
2366      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2367        return false;
2368    }
2369  }
2370  return true;
2371}
2372
2373/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2374/// constant +0.0.
2375static inline bool isZeroNode(SDOperand Elt) {
2376  return ((isa<ConstantSDNode>(Elt) &&
2377           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2378          (isa<ConstantFPSDNode>(Elt) &&
2379           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2380}
2381
2382/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2383/// to an zero vector.
2384static bool isZeroShuffle(SDNode *N) {
2385  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2386    return false;
2387
2388  SDOperand V1 = N->getOperand(0);
2389  SDOperand V2 = N->getOperand(1);
2390  SDOperand Mask = N->getOperand(2);
2391  unsigned NumElems = Mask.getNumOperands();
2392  for (unsigned i = 0; i != NumElems; ++i) {
2393    SDOperand Arg = Mask.getOperand(i);
2394    if (Arg.getOpcode() != ISD::UNDEF) {
2395      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2396      if (Idx < NumElems) {
2397        unsigned Opc = V1.Val->getOpcode();
2398        if (Opc == ISD::UNDEF)
2399          continue;
2400        if (Opc != ISD::BUILD_VECTOR ||
2401            !isZeroNode(V1.Val->getOperand(Idx)))
2402          return false;
2403      } else if (Idx >= NumElems) {
2404        unsigned Opc = V2.Val->getOpcode();
2405        if (Opc == ISD::UNDEF)
2406          continue;
2407        if (Opc != ISD::BUILD_VECTOR ||
2408            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2409          return false;
2410      }
2411    }
2412  }
2413  return true;
2414}
2415
2416/// getZeroVector - Returns a vector of specified type with all zero elements.
2417///
2418static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2419  assert(MVT::isVector(VT) && "Expected a vector type");
2420  unsigned NumElems = MVT::getVectorNumElements(VT);
2421  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2422  bool isFP = MVT::isFloatingPoint(EVT);
2423  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2424  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2425  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2426}
2427
2428/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2429/// that point to V2 points to its first element.
2430static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2431  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2432
2433  bool Changed = false;
2434  SmallVector<SDOperand, 8> MaskVec;
2435  unsigned NumElems = Mask.getNumOperands();
2436  for (unsigned i = 0; i != NumElems; ++i) {
2437    SDOperand Arg = Mask.getOperand(i);
2438    if (Arg.getOpcode() != ISD::UNDEF) {
2439      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2440      if (Val > NumElems) {
2441        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2442        Changed = true;
2443      }
2444    }
2445    MaskVec.push_back(Arg);
2446  }
2447
2448  if (Changed)
2449    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2450                       &MaskVec[0], MaskVec.size());
2451  return Mask;
2452}
2453
2454/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2455/// operation of specified width.
2456static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2457  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2458  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2459
2460  SmallVector<SDOperand, 8> MaskVec;
2461  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2462  for (unsigned i = 1; i != NumElems; ++i)
2463    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2464  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2465}
2466
2467/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2468/// of specified width.
2469static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2470  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2471  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2472  SmallVector<SDOperand, 8> MaskVec;
2473  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2474    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2475    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2476  }
2477  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2478}
2479
2480/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2481/// of specified width.
2482static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2483  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2484  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2485  unsigned Half = NumElems/2;
2486  SmallVector<SDOperand, 8> MaskVec;
2487  for (unsigned i = 0; i != Half; ++i) {
2488    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2489    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2490  }
2491  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2492}
2493
2494/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2495///
2496static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2497  SDOperand V1 = Op.getOperand(0);
2498  SDOperand Mask = Op.getOperand(2);
2499  MVT::ValueType VT = Op.getValueType();
2500  unsigned NumElems = Mask.getNumOperands();
2501  Mask = getUnpacklMask(NumElems, DAG);
2502  while (NumElems != 4) {
2503    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2504    NumElems >>= 1;
2505  }
2506  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2507
2508  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2509  Mask = getZeroVector(MaskVT, DAG);
2510  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2511                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2512  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2513}
2514
2515/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2516/// vector of zero or undef vector.
2517static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2518                                             unsigned NumElems, unsigned Idx,
2519                                             bool isZero, SelectionDAG &DAG) {
2520  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2521  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2522  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2523  SDOperand Zero = DAG.getConstant(0, EVT);
2524  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2525  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2526  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2527                               &MaskVec[0], MaskVec.size());
2528  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2529}
2530
2531/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2532///
2533static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2534                                       unsigned NumNonZero, unsigned NumZero,
2535                                       SelectionDAG &DAG, TargetLowering &TLI) {
2536  if (NumNonZero > 8)
2537    return SDOperand();
2538
2539  SDOperand V(0, 0);
2540  bool First = true;
2541  for (unsigned i = 0; i < 16; ++i) {
2542    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2543    if (ThisIsNonZero && First) {
2544      if (NumZero)
2545        V = getZeroVector(MVT::v8i16, DAG);
2546      else
2547        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2548      First = false;
2549    }
2550
2551    if ((i & 1) != 0) {
2552      SDOperand ThisElt(0, 0), LastElt(0, 0);
2553      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2554      if (LastIsNonZero) {
2555        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2556      }
2557      if (ThisIsNonZero) {
2558        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2559        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2560                              ThisElt, DAG.getConstant(8, MVT::i8));
2561        if (LastIsNonZero)
2562          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2563      } else
2564        ThisElt = LastElt;
2565
2566      if (ThisElt.Val)
2567        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2568                        DAG.getConstant(i/2, TLI.getPointerTy()));
2569    }
2570  }
2571
2572  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2573}
2574
2575/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2576///
2577static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2578                                       unsigned NumNonZero, unsigned NumZero,
2579                                       SelectionDAG &DAG, TargetLowering &TLI) {
2580  if (NumNonZero > 4)
2581    return SDOperand();
2582
2583  SDOperand V(0, 0);
2584  bool First = true;
2585  for (unsigned i = 0; i < 8; ++i) {
2586    bool isNonZero = (NonZeros & (1 << i)) != 0;
2587    if (isNonZero) {
2588      if (First) {
2589        if (NumZero)
2590          V = getZeroVector(MVT::v8i16, DAG);
2591        else
2592          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2593        First = false;
2594      }
2595      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2596                      DAG.getConstant(i, TLI.getPointerTy()));
2597    }
2598  }
2599
2600  return V;
2601}
2602
2603SDOperand
2604X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2605  // All zero's are handled with pxor.
2606  if (ISD::isBuildVectorAllZeros(Op.Val))
2607    return Op;
2608
2609  // All one's are handled with pcmpeqd.
2610  if (ISD::isBuildVectorAllOnes(Op.Val))
2611    return Op;
2612
2613  MVT::ValueType VT = Op.getValueType();
2614  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2615  unsigned EVTBits = MVT::getSizeInBits(EVT);
2616
2617  unsigned NumElems = Op.getNumOperands();
2618  unsigned NumZero  = 0;
2619  unsigned NumNonZero = 0;
2620  unsigned NonZeros = 0;
2621  unsigned NumNonZeroImms = 0;
2622  std::set<SDOperand> Values;
2623  for (unsigned i = 0; i < NumElems; ++i) {
2624    SDOperand Elt = Op.getOperand(i);
2625    if (Elt.getOpcode() != ISD::UNDEF) {
2626      Values.insert(Elt);
2627      if (isZeroNode(Elt))
2628        NumZero++;
2629      else {
2630        NonZeros |= (1 << i);
2631        NumNonZero++;
2632        if (Elt.getOpcode() == ISD::Constant ||
2633            Elt.getOpcode() == ISD::ConstantFP)
2634          NumNonZeroImms++;
2635      }
2636    }
2637  }
2638
2639  if (NumNonZero == 0) {
2640    if (NumZero == 0)
2641      // All undef vector. Return an UNDEF.
2642      return DAG.getNode(ISD::UNDEF, VT);
2643    else
2644      // A mix of zero and undef. Return a zero vector.
2645      return getZeroVector(VT, DAG);
2646  }
2647
2648  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2649  if (Values.size() == 1)
2650    return SDOperand();
2651
2652  // Special case for single non-zero element.
2653  if (NumNonZero == 1) {
2654    unsigned Idx = CountTrailingZeros_32(NonZeros);
2655    SDOperand Item = Op.getOperand(Idx);
2656    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2657    if (Idx == 0)
2658      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2659      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2660                                         NumZero > 0, DAG);
2661
2662    if (EVTBits == 32) {
2663      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2664      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2665                                         DAG);
2666      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2667      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2668      SmallVector<SDOperand, 8> MaskVec;
2669      for (unsigned i = 0; i < NumElems; i++)
2670        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2671      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2672                                   &MaskVec[0], MaskVec.size());
2673      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2674                         DAG.getNode(ISD::UNDEF, VT), Mask);
2675    }
2676  }
2677
2678  // A vector full of immediates; various special cases are already
2679  // handled, so this is best done with a single constant-pool load.
2680  if (NumNonZero == NumNonZeroImms)
2681    return SDOperand();
2682
2683  // Let legalizer expand 2-wide build_vectors.
2684  if (EVTBits == 64)
2685    return SDOperand();
2686
2687  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2688  if (EVTBits == 8 && NumElems == 16) {
2689    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2690                                        *this);
2691    if (V.Val) return V;
2692  }
2693
2694  if (EVTBits == 16 && NumElems == 8) {
2695    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2696                                        *this);
2697    if (V.Val) return V;
2698  }
2699
2700  // If element VT is == 32 bits, turn it into a number of shuffles.
2701  SmallVector<SDOperand, 8> V;
2702  V.resize(NumElems);
2703  if (NumElems == 4 && NumZero > 0) {
2704    for (unsigned i = 0; i < 4; ++i) {
2705      bool isZero = !(NonZeros & (1 << i));
2706      if (isZero)
2707        V[i] = getZeroVector(VT, DAG);
2708      else
2709        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2710    }
2711
2712    for (unsigned i = 0; i < 2; ++i) {
2713      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2714        default: break;
2715        case 0:
2716          V[i] = V[i*2];  // Must be a zero vector.
2717          break;
2718        case 1:
2719          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2720                             getMOVLMask(NumElems, DAG));
2721          break;
2722        case 2:
2723          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2724                             getMOVLMask(NumElems, DAG));
2725          break;
2726        case 3:
2727          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2728                             getUnpacklMask(NumElems, DAG));
2729          break;
2730      }
2731    }
2732
2733    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2734    // clears the upper bits.
2735    // FIXME: we can do the same for v4f32 case when we know both parts of
2736    // the lower half come from scalar_to_vector (loadf32). We should do
2737    // that in post legalizer dag combiner with target specific hooks.
2738    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2739      return V[0];
2740    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2741    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2742    SmallVector<SDOperand, 8> MaskVec;
2743    bool Reverse = (NonZeros & 0x3) == 2;
2744    for (unsigned i = 0; i < 2; ++i)
2745      if (Reverse)
2746        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2747      else
2748        MaskVec.push_back(DAG.getConstant(i, EVT));
2749    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2750    for (unsigned i = 0; i < 2; ++i)
2751      if (Reverse)
2752        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2753      else
2754        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2755    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2756                                     &MaskVec[0], MaskVec.size());
2757    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2758  }
2759
2760  if (Values.size() > 2) {
2761    // Expand into a number of unpckl*.
2762    // e.g. for v4f32
2763    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2764    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2765    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2766    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2767    for (unsigned i = 0; i < NumElems; ++i)
2768      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2769    NumElems >>= 1;
2770    while (NumElems != 0) {
2771      for (unsigned i = 0; i < NumElems; ++i)
2772        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2773                           UnpckMask);
2774      NumElems >>= 1;
2775    }
2776    return V[0];
2777  }
2778
2779  return SDOperand();
2780}
2781
2782SDOperand
2783X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2784  SDOperand V1 = Op.getOperand(0);
2785  SDOperand V2 = Op.getOperand(1);
2786  SDOperand PermMask = Op.getOperand(2);
2787  MVT::ValueType VT = Op.getValueType();
2788  unsigned NumElems = PermMask.getNumOperands();
2789  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2790  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2791  bool V1IsSplat = false;
2792  bool V2IsSplat = false;
2793
2794  if (isUndefShuffle(Op.Val))
2795    return DAG.getNode(ISD::UNDEF, VT);
2796
2797  if (isZeroShuffle(Op.Val))
2798    return getZeroVector(VT, DAG);
2799
2800  if (isIdentityMask(PermMask.Val))
2801    return V1;
2802  else if (isIdentityMask(PermMask.Val, true))
2803    return V2;
2804
2805  if (isSplatMask(PermMask.Val)) {
2806    if (NumElems <= 4) return Op;
2807    // Promote it to a v4i32 splat.
2808    return PromoteSplat(Op, DAG);
2809  }
2810
2811  if (X86::isMOVLMask(PermMask.Val))
2812    return (V1IsUndef) ? V2 : Op;
2813
2814  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2815      X86::isMOVSLDUPMask(PermMask.Val) ||
2816      X86::isMOVHLPSMask(PermMask.Val) ||
2817      X86::isMOVHPMask(PermMask.Val) ||
2818      X86::isMOVLPMask(PermMask.Val))
2819    return Op;
2820
2821  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2822      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2823    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2824
2825  bool Commuted = false;
2826  V1IsSplat = isSplatVector(V1.Val);
2827  V2IsSplat = isSplatVector(V2.Val);
2828  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2829    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2830    std::swap(V1IsSplat, V2IsSplat);
2831    std::swap(V1IsUndef, V2IsUndef);
2832    Commuted = true;
2833  }
2834
2835  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2836    if (V2IsUndef) return V1;
2837    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2838    if (V2IsSplat) {
2839      // V2 is a splat, so the mask may be malformed. That is, it may point
2840      // to any V2 element. The instruction selectior won't like this. Get
2841      // a corrected mask and commute to form a proper MOVS{S|D}.
2842      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2843      if (NewMask.Val != PermMask.Val)
2844        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2845    }
2846    return Op;
2847  }
2848
2849  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2850      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2851      X86::isUNPCKLMask(PermMask.Val) ||
2852      X86::isUNPCKHMask(PermMask.Val))
2853    return Op;
2854
2855  if (V2IsSplat) {
2856    // Normalize mask so all entries that point to V2 points to its first
2857    // element then try to match unpck{h|l} again. If match, return a
2858    // new vector_shuffle with the corrected mask.
2859    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2860    if (NewMask.Val != PermMask.Val) {
2861      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2862        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2863        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2864      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2865        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2866        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2867      }
2868    }
2869  }
2870
2871  // Normalize the node to match x86 shuffle ops if needed
2872  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2873      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2874
2875  if (Commuted) {
2876    // Commute is back and try unpck* again.
2877    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2878    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2879        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2880        X86::isUNPCKLMask(PermMask.Val) ||
2881        X86::isUNPCKHMask(PermMask.Val))
2882      return Op;
2883  }
2884
2885  // If VT is integer, try PSHUF* first, then SHUFP*.
2886  if (MVT::isInteger(VT)) {
2887    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
2888    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
2889    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
2890         X86::isPSHUFDMask(PermMask.Val)) ||
2891        X86::isPSHUFHWMask(PermMask.Val) ||
2892        X86::isPSHUFLWMask(PermMask.Val)) {
2893      if (V2.getOpcode() != ISD::UNDEF)
2894        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2895                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2896      return Op;
2897    }
2898
2899    if (X86::isSHUFPMask(PermMask.Val) &&
2900        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
2901      return Op;
2902
2903    // Handle v8i16 shuffle high / low shuffle node pair.
2904    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2905      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2906      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2907      SmallVector<SDOperand, 8> MaskVec;
2908      for (unsigned i = 0; i != 4; ++i)
2909        MaskVec.push_back(PermMask.getOperand(i));
2910      for (unsigned i = 4; i != 8; ++i)
2911        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2912      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2913                                   &MaskVec[0], MaskVec.size());
2914      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2915      MaskVec.clear();
2916      for (unsigned i = 0; i != 4; ++i)
2917        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2918      for (unsigned i = 4; i != 8; ++i)
2919        MaskVec.push_back(PermMask.getOperand(i));
2920      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2921      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2922    }
2923  } else {
2924    // Floating point cases in the other order.
2925    if (X86::isSHUFPMask(PermMask.Val))
2926      return Op;
2927    if (X86::isPSHUFDMask(PermMask.Val) ||
2928        X86::isPSHUFHWMask(PermMask.Val) ||
2929        X86::isPSHUFLWMask(PermMask.Val)) {
2930      if (V2.getOpcode() != ISD::UNDEF)
2931        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2932                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2933      return Op;
2934    }
2935  }
2936
2937  if (NumElems == 4 &&
2938      // Don't do this for MMX.
2939      MVT::getSizeInBits(VT) != 64) {
2940    MVT::ValueType MaskVT = PermMask.getValueType();
2941    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2942    SmallVector<std::pair<int, int>, 8> Locs;
2943    Locs.reserve(NumElems);
2944    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2945    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2946    unsigned NumHi = 0;
2947    unsigned NumLo = 0;
2948    // If no more than two elements come from either vector. This can be
2949    // implemented with two shuffles. First shuffle gather the elements.
2950    // The second shuffle, which takes the first shuffle as both of its
2951    // vector operands, put the elements into the right order.
2952    for (unsigned i = 0; i != NumElems; ++i) {
2953      SDOperand Elt = PermMask.getOperand(i);
2954      if (Elt.getOpcode() == ISD::UNDEF) {
2955        Locs[i] = std::make_pair(-1, -1);
2956      } else {
2957        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2958        if (Val < NumElems) {
2959          Locs[i] = std::make_pair(0, NumLo);
2960          Mask1[NumLo] = Elt;
2961          NumLo++;
2962        } else {
2963          Locs[i] = std::make_pair(1, NumHi);
2964          if (2+NumHi < NumElems)
2965            Mask1[2+NumHi] = Elt;
2966          NumHi++;
2967        }
2968      }
2969    }
2970    if (NumLo <= 2 && NumHi <= 2) {
2971      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2972                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2973                                   &Mask1[0], Mask1.size()));
2974      for (unsigned i = 0; i != NumElems; ++i) {
2975        if (Locs[i].first == -1)
2976          continue;
2977        else {
2978          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2979          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2980          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2981        }
2982      }
2983
2984      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2985                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2986                                     &Mask2[0], Mask2.size()));
2987    }
2988
2989    // Break it into (shuffle shuffle_hi, shuffle_lo).
2990    Locs.clear();
2991    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2992    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2993    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2994    unsigned MaskIdx = 0;
2995    unsigned LoIdx = 0;
2996    unsigned HiIdx = NumElems/2;
2997    for (unsigned i = 0; i != NumElems; ++i) {
2998      if (i == NumElems/2) {
2999        MaskPtr = &HiMask;
3000        MaskIdx = 1;
3001        LoIdx = 0;
3002        HiIdx = NumElems/2;
3003      }
3004      SDOperand Elt = PermMask.getOperand(i);
3005      if (Elt.getOpcode() == ISD::UNDEF) {
3006        Locs[i] = std::make_pair(-1, -1);
3007      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3008        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3009        (*MaskPtr)[LoIdx] = Elt;
3010        LoIdx++;
3011      } else {
3012        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3013        (*MaskPtr)[HiIdx] = Elt;
3014        HiIdx++;
3015      }
3016    }
3017
3018    SDOperand LoShuffle =
3019      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3020                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3021                              &LoMask[0], LoMask.size()));
3022    SDOperand HiShuffle =
3023      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3024                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3025                              &HiMask[0], HiMask.size()));
3026    SmallVector<SDOperand, 8> MaskOps;
3027    for (unsigned i = 0; i != NumElems; ++i) {
3028      if (Locs[i].first == -1) {
3029        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3030      } else {
3031        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3032        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3033      }
3034    }
3035    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3036                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3037                                   &MaskOps[0], MaskOps.size()));
3038  }
3039
3040  return SDOperand();
3041}
3042
3043SDOperand
3044X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3045  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3046    return SDOperand();
3047
3048  MVT::ValueType VT = Op.getValueType();
3049  // TODO: handle v16i8.
3050  if (MVT::getSizeInBits(VT) == 16) {
3051    // Transform it so it match pextrw which produces a 32-bit result.
3052    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3053    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3054                                    Op.getOperand(0), Op.getOperand(1));
3055    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3056                                    DAG.getValueType(VT));
3057    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3058  } else if (MVT::getSizeInBits(VT) == 32) {
3059    SDOperand Vec = Op.getOperand(0);
3060    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3061    if (Idx == 0)
3062      return Op;
3063    // SHUFPS the element to the lowest double word, then movss.
3064    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3065    SmallVector<SDOperand, 8> IdxVec;
3066    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3067    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3068    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3069    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3070    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3071                                 &IdxVec[0], IdxVec.size());
3072    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3073                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3074    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3075                       DAG.getConstant(0, getPointerTy()));
3076  } else if (MVT::getSizeInBits(VT) == 64) {
3077    SDOperand Vec = Op.getOperand(0);
3078    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3079    if (Idx == 0)
3080      return Op;
3081
3082    // UNPCKHPD the element to the lowest double word, then movsd.
3083    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3084    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3085    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3086    SmallVector<SDOperand, 8> IdxVec;
3087    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3088    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3089    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3090                                 &IdxVec[0], IdxVec.size());
3091    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3092                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3093    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3094                       DAG.getConstant(0, getPointerTy()));
3095  }
3096
3097  return SDOperand();
3098}
3099
3100SDOperand
3101X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3102  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3103  // as its second argument.
3104  MVT::ValueType VT = Op.getValueType();
3105  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3106  SDOperand N0 = Op.getOperand(0);
3107  SDOperand N1 = Op.getOperand(1);
3108  SDOperand N2 = Op.getOperand(2);
3109  if (MVT::getSizeInBits(BaseVT) == 16) {
3110    if (N1.getValueType() != MVT::i32)
3111      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3112    if (N2.getValueType() != MVT::i32)
3113      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3114    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3115  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3116    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3117    if (Idx == 0) {
3118      // Use a movss.
3119      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3120      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3121      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3122      SmallVector<SDOperand, 8> MaskVec;
3123      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3124      for (unsigned i = 1; i <= 3; ++i)
3125        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3126      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3127                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3128                                     &MaskVec[0], MaskVec.size()));
3129    } else {
3130      // Use two pinsrw instructions to insert a 32 bit value.
3131      Idx <<= 1;
3132      if (MVT::isFloatingPoint(N1.getValueType())) {
3133        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3134        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3135        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3136                         DAG.getConstant(0, getPointerTy()));
3137      }
3138      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3139      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3140                       DAG.getConstant(Idx, getPointerTy()));
3141      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3142      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3143                       DAG.getConstant(Idx+1, getPointerTy()));
3144      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3145    }
3146  }
3147
3148  return SDOperand();
3149}
3150
3151SDOperand
3152X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3153  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3154  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3155}
3156
3157// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3158// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3159// one of the above mentioned nodes. It has to be wrapped because otherwise
3160// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3161// be used to form addressing mode. These wrapped nodes will be selected
3162// into MOV32ri.
3163SDOperand
3164X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3165  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3166  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3167                                               getPointerTy(),
3168                                               CP->getAlignment());
3169  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3170  // With PIC, the address is actually $g + Offset.
3171  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3172      !Subtarget->isPICStyleRIPRel()) {
3173    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3174                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3175                         Result);
3176  }
3177
3178  return Result;
3179}
3180
3181SDOperand
3182X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3183  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3184  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3185  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3186  // With PIC, the address is actually $g + Offset.
3187  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3188      !Subtarget->isPICStyleRIPRel()) {
3189    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3190                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3191                         Result);
3192  }
3193
3194  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3195  // load the value at address GV, not the value of GV itself. This means that
3196  // the GlobalAddress must be in the base or index register of the address, not
3197  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3198  // The same applies for external symbols during PIC codegen
3199  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3200    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3201
3202  return Result;
3203}
3204
3205// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3206static SDOperand
3207LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3208                              const MVT::ValueType PtrVT) {
3209  SDOperand InFlag;
3210  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3211                                     DAG.getNode(X86ISD::GlobalBaseReg,
3212                                                 PtrVT), InFlag);
3213  InFlag = Chain.getValue(1);
3214
3215  // emit leal symbol@TLSGD(,%ebx,1), %eax
3216  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3217  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3218                                             GA->getValueType(0),
3219                                             GA->getOffset());
3220  SDOperand Ops[] = { Chain,  TGA, InFlag };
3221  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3222  InFlag = Result.getValue(2);
3223  Chain = Result.getValue(1);
3224
3225  // call ___tls_get_addr. This function receives its argument in
3226  // the register EAX.
3227  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3228  InFlag = Chain.getValue(1);
3229
3230  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3231  SDOperand Ops1[] = { Chain,
3232                      DAG.getTargetExternalSymbol("___tls_get_addr",
3233                                                  PtrVT),
3234                      DAG.getRegister(X86::EAX, PtrVT),
3235                      DAG.getRegister(X86::EBX, PtrVT),
3236                      InFlag };
3237  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3238  InFlag = Chain.getValue(1);
3239
3240  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3241}
3242
3243// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3244// "local exec" model.
3245static SDOperand
3246LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3247                         const MVT::ValueType PtrVT) {
3248  // Get the Thread Pointer
3249  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3250  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3251  // exec)
3252  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3253                                             GA->getValueType(0),
3254                                             GA->getOffset());
3255  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3256
3257  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3258    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3259
3260  // The address of the thread local variable is the add of the thread
3261  // pointer with the offset of the variable.
3262  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3263}
3264
3265SDOperand
3266X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3267  // TODO: implement the "local dynamic" model
3268  // TODO: implement the "initial exec"model for pic executables
3269  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3270         "TLS not implemented for non-ELF and 64-bit targets");
3271  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3272  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3273  // otherwise use the "Local Exec"TLS Model
3274  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3275    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3276  else
3277    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3278}
3279
3280SDOperand
3281X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3282  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3283  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3284  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3285  // With PIC, the address is actually $g + Offset.
3286  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3287      !Subtarget->isPICStyleRIPRel()) {
3288    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3289                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3290                         Result);
3291  }
3292
3293  return Result;
3294}
3295
3296SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3297  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3298  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3299  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3300  // With PIC, the address is actually $g + Offset.
3301  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3302      !Subtarget->isPICStyleRIPRel()) {
3303    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3304                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3305                         Result);
3306  }
3307
3308  return Result;
3309}
3310
3311SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3312    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3313           "Not an i64 shift!");
3314    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3315    SDOperand ShOpLo = Op.getOperand(0);
3316    SDOperand ShOpHi = Op.getOperand(1);
3317    SDOperand ShAmt  = Op.getOperand(2);
3318    SDOperand Tmp1 = isSRA ?
3319      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3320      DAG.getConstant(0, MVT::i32);
3321
3322    SDOperand Tmp2, Tmp3;
3323    if (Op.getOpcode() == ISD::SHL_PARTS) {
3324      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3325      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3326    } else {
3327      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3328      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3329    }
3330
3331    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3332    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3333                                    DAG.getConstant(32, MVT::i8));
3334    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3335    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3336
3337    SDOperand Hi, Lo;
3338    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3339
3340    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3341    SmallVector<SDOperand, 4> Ops;
3342    if (Op.getOpcode() == ISD::SHL_PARTS) {
3343      Ops.push_back(Tmp2);
3344      Ops.push_back(Tmp3);
3345      Ops.push_back(CC);
3346      Ops.push_back(InFlag);
3347      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3348      InFlag = Hi.getValue(1);
3349
3350      Ops.clear();
3351      Ops.push_back(Tmp3);
3352      Ops.push_back(Tmp1);
3353      Ops.push_back(CC);
3354      Ops.push_back(InFlag);
3355      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3356    } else {
3357      Ops.push_back(Tmp2);
3358      Ops.push_back(Tmp3);
3359      Ops.push_back(CC);
3360      Ops.push_back(InFlag);
3361      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3362      InFlag = Lo.getValue(1);
3363
3364      Ops.clear();
3365      Ops.push_back(Tmp3);
3366      Ops.push_back(Tmp1);
3367      Ops.push_back(CC);
3368      Ops.push_back(InFlag);
3369      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3370    }
3371
3372    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3373    Ops.clear();
3374    Ops.push_back(Lo);
3375    Ops.push_back(Hi);
3376    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3377}
3378
3379SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3380  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3381         Op.getOperand(0).getValueType() >= MVT::i16 &&
3382         "Unknown SINT_TO_FP to lower!");
3383
3384  SDOperand Result;
3385  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3386  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3387  MachineFunction &MF = DAG.getMachineFunction();
3388  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3389  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3390  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3391                                 StackSlot, NULL, 0);
3392
3393  // These are really Legal; caller falls through into that case.
3394  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3395    return Result;
3396  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
3397    return Result;
3398  if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3399      Subtarget->is64Bit())
3400    return Result;
3401
3402  // Build the FILD
3403  SDVTList Tys;
3404  bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3405                (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
3406  if (useSSE)
3407    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3408  else
3409    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3410  SmallVector<SDOperand, 8> Ops;
3411  Ops.push_back(Chain);
3412  Ops.push_back(StackSlot);
3413  Ops.push_back(DAG.getValueType(SrcVT));
3414  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3415                       Tys, &Ops[0], Ops.size());
3416
3417  if (useSSE) {
3418    Chain = Result.getValue(1);
3419    SDOperand InFlag = Result.getValue(2);
3420
3421    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3422    // shouldn't be necessary except that RFP cannot be live across
3423    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3424    MachineFunction &MF = DAG.getMachineFunction();
3425    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3426    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3427    Tys = DAG.getVTList(MVT::Other);
3428    SmallVector<SDOperand, 8> Ops;
3429    Ops.push_back(Chain);
3430    Ops.push_back(Result);
3431    Ops.push_back(StackSlot);
3432    Ops.push_back(DAG.getValueType(Op.getValueType()));
3433    Ops.push_back(InFlag);
3434    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3435    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3436  }
3437
3438  return Result;
3439}
3440
3441SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3442  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3443         "Unknown FP_TO_SINT to lower!");
3444  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3445  // stack slot.
3446  SDOperand Result;
3447  MachineFunction &MF = DAG.getMachineFunction();
3448  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3449  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3450  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3451
3452  // These are really Legal.
3453  if (Op.getValueType() == MVT::i32 &&
3454      X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3455    return Result;
3456  if (Op.getValueType() == MVT::i32 &&
3457      X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
3458    return Result;
3459  if (Subtarget->is64Bit() &&
3460      Op.getValueType() == MVT::i64 &&
3461      Op.getOperand(0).getValueType() != MVT::f80)
3462    return Result;
3463
3464  unsigned Opc;
3465  switch (Op.getValueType()) {
3466    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3467    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3468    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3469    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3470  }
3471
3472  SDOperand Chain = DAG.getEntryNode();
3473  SDOperand Value = Op.getOperand(0);
3474  if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3475      (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
3476    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3477    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3478    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3479    SDOperand Ops[] = {
3480      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3481    };
3482    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3483    Chain = Value.getValue(1);
3484    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3485    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3486  }
3487
3488  // Build the FP_TO_INT*_IN_MEM
3489  SDOperand Ops[] = { Chain, Value, StackSlot };
3490  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3491
3492  // Load the result.
3493  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3494}
3495
3496SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3497  MVT::ValueType VT = Op.getValueType();
3498  MVT::ValueType EltVT = VT;
3499  if (MVT::isVector(VT))
3500    EltVT = MVT::getVectorElementType(VT);
3501  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3502  std::vector<Constant*> CV;
3503  if (EltVT == MVT::f64) {
3504    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
3505    CV.push_back(C);
3506    CV.push_back(C);
3507  } else {
3508    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
3509    CV.push_back(C);
3510    CV.push_back(C);
3511    CV.push_back(C);
3512    CV.push_back(C);
3513  }
3514  Constant *C = ConstantVector::get(CV);
3515  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3516  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3517                               false, 16);
3518  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3519}
3520
3521SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3522  MVT::ValueType VT = Op.getValueType();
3523  MVT::ValueType EltVT = VT;
3524  unsigned EltNum = 1;
3525  if (MVT::isVector(VT)) {
3526    EltVT = MVT::getVectorElementType(VT);
3527    EltNum = MVT::getVectorNumElements(VT);
3528  }
3529  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3530  std::vector<Constant*> CV;
3531  if (EltVT == MVT::f64) {
3532    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
3533    CV.push_back(C);
3534    CV.push_back(C);
3535  } else {
3536    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
3537    CV.push_back(C);
3538    CV.push_back(C);
3539    CV.push_back(C);
3540    CV.push_back(C);
3541  }
3542  Constant *C = ConstantVector::get(CV);
3543  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3544  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3545                               false, 16);
3546  if (MVT::isVector(VT)) {
3547    return DAG.getNode(ISD::BIT_CONVERT, VT,
3548                       DAG.getNode(ISD::XOR, MVT::v2i64,
3549                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
3550                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
3551  } else {
3552    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3553  }
3554}
3555
3556SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3557  SDOperand Op0 = Op.getOperand(0);
3558  SDOperand Op1 = Op.getOperand(1);
3559  MVT::ValueType VT = Op.getValueType();
3560  MVT::ValueType SrcVT = Op1.getValueType();
3561  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3562
3563  // If second operand is smaller, extend it first.
3564  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3565    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3566    SrcVT = VT;
3567    SrcTy = MVT::getTypeForValueType(SrcVT);
3568  }
3569
3570  // First get the sign bit of second operand.
3571  std::vector<Constant*> CV;
3572  if (SrcVT == MVT::f64) {
3573    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
3574    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3575  } else {
3576    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
3577    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3578    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3579    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3580  }
3581  Constant *C = ConstantVector::get(CV);
3582  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3583  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
3584                                false, 16);
3585  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3586
3587  // Shift sign bit right or left if the two operands have different types.
3588  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3589    // Op0 is MVT::f32, Op1 is MVT::f64.
3590    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3591    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3592                          DAG.getConstant(32, MVT::i32));
3593    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3594    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3595                          DAG.getConstant(0, getPointerTy()));
3596  }
3597
3598  // Clear first operand sign bit.
3599  CV.clear();
3600  if (VT == MVT::f64) {
3601    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
3602    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
3603  } else {
3604    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
3605    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3606    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3607    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
3608  }
3609  C = ConstantVector::get(CV);
3610  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3611  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3612                                false, 16);
3613  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3614
3615  // Or the value with the sign bit.
3616  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3617}
3618
3619SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3620                                        SDOperand Chain) {
3621  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3622  SDOperand Cond;
3623  SDOperand Op0 = Op.getOperand(0);
3624  SDOperand Op1 = Op.getOperand(1);
3625  SDOperand CC = Op.getOperand(2);
3626  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3627  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3628  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3629  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3630  unsigned X86CC;
3631
3632  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3633                     Op0, Op1, DAG)) {
3634    SDOperand Ops1[] = { Chain, Op0, Op1 };
3635    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3636    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3637    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3638  }
3639
3640  assert(isFP && "Illegal integer SetCC!");
3641
3642  SDOperand COps[] = { Chain, Op0, Op1 };
3643  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3644
3645  switch (SetCCOpcode) {
3646  default: assert(false && "Illegal floating point SetCC!");
3647  case ISD::SETOEQ: {  // !PF & ZF
3648    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3649    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3650    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3651                         Tmp1.getValue(1) };
3652    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3653    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3654  }
3655  case ISD::SETUNE: {  // PF | !ZF
3656    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3657    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3658    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3659                         Tmp1.getValue(1) };
3660    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3661    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3662  }
3663  }
3664}
3665
3666SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3667  bool addTest = true;
3668  SDOperand Chain = DAG.getEntryNode();
3669  SDOperand Cond  = Op.getOperand(0);
3670  SDOperand CC;
3671  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3672
3673  if (Cond.getOpcode() == ISD::SETCC)
3674    Cond = LowerSETCC(Cond, DAG, Chain);
3675
3676  if (Cond.getOpcode() == X86ISD::SETCC) {
3677    CC = Cond.getOperand(0);
3678
3679    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3680    // (since flag operand cannot be shared). Use it as the condition setting
3681    // operand in place of the X86ISD::SETCC.
3682    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3683    // to use a test instead of duplicating the X86ISD::CMP (for register
3684    // pressure reason)?
3685    SDOperand Cmp = Cond.getOperand(1);
3686    unsigned Opc = Cmp.getOpcode();
3687    bool IllegalFPCMov =
3688      ! ((X86ScalarSSEf32 && Op.getValueType()==MVT::f32) ||
3689         (X86ScalarSSEf64 && Op.getValueType()==MVT::f64)) &&
3690      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3691    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3692        !IllegalFPCMov) {
3693      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3694      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3695      addTest = false;
3696    }
3697  }
3698
3699  if (addTest) {
3700    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3701    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3702    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3703  }
3704
3705  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3706  SmallVector<SDOperand, 4> Ops;
3707  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3708  // condition is true.
3709  Ops.push_back(Op.getOperand(2));
3710  Ops.push_back(Op.getOperand(1));
3711  Ops.push_back(CC);
3712  Ops.push_back(Cond.getValue(1));
3713  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3714}
3715
3716SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3717  bool addTest = true;
3718  SDOperand Chain = Op.getOperand(0);
3719  SDOperand Cond  = Op.getOperand(1);
3720  SDOperand Dest  = Op.getOperand(2);
3721  SDOperand CC;
3722  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3723
3724  if (Cond.getOpcode() == ISD::SETCC)
3725    Cond = LowerSETCC(Cond, DAG, Chain);
3726
3727  if (Cond.getOpcode() == X86ISD::SETCC) {
3728    CC = Cond.getOperand(0);
3729
3730    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3731    // (since flag operand cannot be shared). Use it as the condition setting
3732    // operand in place of the X86ISD::SETCC.
3733    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3734    // to use a test instead of duplicating the X86ISD::CMP (for register
3735    // pressure reason)?
3736    SDOperand Cmp = Cond.getOperand(1);
3737    unsigned Opc = Cmp.getOpcode();
3738    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3739      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3740      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3741      addTest = false;
3742    }
3743  }
3744
3745  if (addTest) {
3746    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3747    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3748    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3749  }
3750  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3751                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3752}
3753
3754SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3755  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3756
3757  if (Subtarget->is64Bit())
3758    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3759  else
3760    switch (CallingConv) {
3761    default:
3762      assert(0 && "Unsupported calling convention");
3763    case CallingConv::Fast:
3764      // TODO: Implement fastcc
3765      // Falls through
3766    case CallingConv::C:
3767    case CallingConv::X86_StdCall:
3768      return LowerCCCCallTo(Op, DAG, CallingConv);
3769    case CallingConv::X86_FastCall:
3770      return LowerFastCCCallTo(Op, DAG, CallingConv);
3771    }
3772}
3773
3774
3775// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3776// Calls to _alloca is needed to probe the stack when allocating more than 4k
3777// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3778// that the guard pages used by the OS virtual memory manager are allocated in
3779// correct sequence.
3780SDOperand
3781X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3782                                           SelectionDAG &DAG) {
3783  assert(Subtarget->isTargetCygMing() &&
3784         "This should be used only on Cygwin/Mingw targets");
3785
3786  // Get the inputs.
3787  SDOperand Chain = Op.getOperand(0);
3788  SDOperand Size  = Op.getOperand(1);
3789  // FIXME: Ensure alignment here
3790
3791  SDOperand Flag;
3792
3793  MVT::ValueType IntPtr = getPointerTy();
3794  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3795
3796  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
3797  Flag = Chain.getValue(1);
3798
3799  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3800  SDOperand Ops[] = { Chain,
3801                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
3802                      DAG.getRegister(X86::EAX, IntPtr),
3803                      Flag };
3804  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
3805  Flag = Chain.getValue(1);
3806
3807  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
3808
3809  std::vector<MVT::ValueType> Tys;
3810  Tys.push_back(SPTy);
3811  Tys.push_back(MVT::Other);
3812  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
3813  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
3814}
3815
3816SDOperand
3817X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3818  MachineFunction &MF = DAG.getMachineFunction();
3819  const Function* Fn = MF.getFunction();
3820  if (Fn->hasExternalLinkage() &&
3821      Subtarget->isTargetCygMing() &&
3822      Fn->getName() == "main")
3823    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3824
3825  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3826  if (Subtarget->is64Bit())
3827    return LowerX86_64CCCArguments(Op, DAG);
3828  else
3829    switch(CC) {
3830    default:
3831      assert(0 && "Unsupported calling convention");
3832    case CallingConv::Fast:
3833      // TODO: implement fastcc.
3834
3835      // Falls through
3836    case CallingConv::C:
3837      return LowerCCCArguments(Op, DAG);
3838    case CallingConv::X86_StdCall:
3839      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3840      return LowerCCCArguments(Op, DAG, true);
3841    case CallingConv::X86_FastCall:
3842      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3843      return LowerFastCCArguments(Op, DAG);
3844    }
3845}
3846
3847SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3848  SDOperand InFlag(0, 0);
3849  SDOperand Chain = Op.getOperand(0);
3850  unsigned Align =
3851    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3852  if (Align == 0) Align = 1;
3853
3854  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3855  // If not DWORD aligned or size is more than the threshold, call memset.
3856  // The libc version is likely to be faster for these cases. It can use the
3857  // address value and run time information about the CPU.
3858  if ((Align & 3) != 0 ||
3859      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
3860    MVT::ValueType IntPtr = getPointerTy();
3861    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3862    TargetLowering::ArgListTy Args;
3863    TargetLowering::ArgListEntry Entry;
3864    Entry.Node = Op.getOperand(1);
3865    Entry.Ty = IntPtrTy;
3866    Args.push_back(Entry);
3867    // Extend the unsigned i8 argument to be an int value for the call.
3868    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3869    Entry.Ty = IntPtrTy;
3870    Args.push_back(Entry);
3871    Entry.Node = Op.getOperand(3);
3872    Args.push_back(Entry);
3873    std::pair<SDOperand,SDOperand> CallResult =
3874      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3875                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3876    return CallResult.second;
3877  }
3878
3879  MVT::ValueType AVT;
3880  SDOperand Count;
3881  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3882  unsigned BytesLeft = 0;
3883  bool TwoRepStos = false;
3884  if (ValC) {
3885    unsigned ValReg;
3886    uint64_t Val = ValC->getValue() & 255;
3887
3888    // If the value is a constant, then we can potentially use larger sets.
3889    switch (Align & 3) {
3890      case 2:   // WORD aligned
3891        AVT = MVT::i16;
3892        ValReg = X86::AX;
3893        Val = (Val << 8) | Val;
3894        break;
3895      case 0:  // DWORD aligned
3896        AVT = MVT::i32;
3897        ValReg = X86::EAX;
3898        Val = (Val << 8)  | Val;
3899        Val = (Val << 16) | Val;
3900        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3901          AVT = MVT::i64;
3902          ValReg = X86::RAX;
3903          Val = (Val << 32) | Val;
3904        }
3905        break;
3906      default:  // Byte aligned
3907        AVT = MVT::i8;
3908        ValReg = X86::AL;
3909        Count = Op.getOperand(3);
3910        break;
3911    }
3912
3913    if (AVT > MVT::i8) {
3914      if (I) {
3915        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3916        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3917        BytesLeft = I->getValue() % UBytes;
3918      } else {
3919        assert(AVT >= MVT::i32 &&
3920               "Do not use rep;stos if not at least DWORD aligned");
3921        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3922                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3923        TwoRepStos = true;
3924      }
3925    }
3926
3927    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3928                              InFlag);
3929    InFlag = Chain.getValue(1);
3930  } else {
3931    AVT = MVT::i8;
3932    Count  = Op.getOperand(3);
3933    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3934    InFlag = Chain.getValue(1);
3935  }
3936
3937  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3938                            Count, InFlag);
3939  InFlag = Chain.getValue(1);
3940  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3941                            Op.getOperand(1), InFlag);
3942  InFlag = Chain.getValue(1);
3943
3944  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3945  SmallVector<SDOperand, 8> Ops;
3946  Ops.push_back(Chain);
3947  Ops.push_back(DAG.getValueType(AVT));
3948  Ops.push_back(InFlag);
3949  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3950
3951  if (TwoRepStos) {
3952    InFlag = Chain.getValue(1);
3953    Count = Op.getOperand(3);
3954    MVT::ValueType CVT = Count.getValueType();
3955    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3956                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3957    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3958                              Left, InFlag);
3959    InFlag = Chain.getValue(1);
3960    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3961    Ops.clear();
3962    Ops.push_back(Chain);
3963    Ops.push_back(DAG.getValueType(MVT::i8));
3964    Ops.push_back(InFlag);
3965    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3966  } else if (BytesLeft) {
3967    // Issue stores for the last 1 - 7 bytes.
3968    SDOperand Value;
3969    unsigned Val = ValC->getValue() & 255;
3970    unsigned Offset = I->getValue() - BytesLeft;
3971    SDOperand DstAddr = Op.getOperand(1);
3972    MVT::ValueType AddrVT = DstAddr.getValueType();
3973    if (BytesLeft >= 4) {
3974      Val = (Val << 8)  | Val;
3975      Val = (Val << 16) | Val;
3976      Value = DAG.getConstant(Val, MVT::i32);
3977      Chain = DAG.getStore(Chain, Value,
3978                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3979                                       DAG.getConstant(Offset, AddrVT)),
3980                           NULL, 0);
3981      BytesLeft -= 4;
3982      Offset += 4;
3983    }
3984    if (BytesLeft >= 2) {
3985      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3986      Chain = DAG.getStore(Chain, Value,
3987                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3988                                       DAG.getConstant(Offset, AddrVT)),
3989                           NULL, 0);
3990      BytesLeft -= 2;
3991      Offset += 2;
3992    }
3993    if (BytesLeft == 1) {
3994      Value = DAG.getConstant(Val, MVT::i8);
3995      Chain = DAG.getStore(Chain, Value,
3996                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3997                                       DAG.getConstant(Offset, AddrVT)),
3998                           NULL, 0);
3999    }
4000  }
4001
4002  return Chain;
4003}
4004
4005SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4006  SDOperand Chain = Op.getOperand(0);
4007  unsigned Align =
4008    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4009  if (Align == 0) Align = 1;
4010
4011  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4012  // If not DWORD aligned or size is more than the threshold, call memcpy.
4013  // The libc version is likely to be faster for these cases. It can use the
4014  // address value and run time information about the CPU.
4015  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
4016  if ((Align & 3) != 0 ||
4017      (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
4018    MVT::ValueType IntPtr = getPointerTy();
4019    TargetLowering::ArgListTy Args;
4020    TargetLowering::ArgListEntry Entry;
4021    Entry.Ty = getTargetData()->getIntPtrType();
4022    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
4023    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
4024    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
4025    std::pair<SDOperand,SDOperand> CallResult =
4026      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4027                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4028    return CallResult.second;
4029  }
4030
4031  MVT::ValueType AVT;
4032  SDOperand Count;
4033  unsigned BytesLeft = 0;
4034  bool TwoRepMovs = false;
4035  switch (Align & 3) {
4036    case 2:   // WORD aligned
4037      AVT = MVT::i16;
4038      break;
4039    case 0:  // DWORD aligned
4040      AVT = MVT::i32;
4041      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4042        AVT = MVT::i64;
4043      break;
4044    default:  // Byte aligned
4045      AVT = MVT::i8;
4046      Count = Op.getOperand(3);
4047      break;
4048  }
4049
4050  if (AVT > MVT::i8) {
4051    if (I) {
4052      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4053      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4054      BytesLeft = I->getValue() % UBytes;
4055    } else {
4056      assert(AVT >= MVT::i32 &&
4057             "Do not use rep;movs if not at least DWORD aligned");
4058      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4059                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4060      TwoRepMovs = true;
4061    }
4062  }
4063
4064  SDOperand InFlag(0, 0);
4065  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4066                            Count, InFlag);
4067  InFlag = Chain.getValue(1);
4068  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4069                            Op.getOperand(1), InFlag);
4070  InFlag = Chain.getValue(1);
4071  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4072                            Op.getOperand(2), InFlag);
4073  InFlag = Chain.getValue(1);
4074
4075  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4076  SmallVector<SDOperand, 8> Ops;
4077  Ops.push_back(Chain);
4078  Ops.push_back(DAG.getValueType(AVT));
4079  Ops.push_back(InFlag);
4080  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4081
4082  if (TwoRepMovs) {
4083    InFlag = Chain.getValue(1);
4084    Count = Op.getOperand(3);
4085    MVT::ValueType CVT = Count.getValueType();
4086    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4087                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4088    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4089                              Left, InFlag);
4090    InFlag = Chain.getValue(1);
4091    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4092    Ops.clear();
4093    Ops.push_back(Chain);
4094    Ops.push_back(DAG.getValueType(MVT::i8));
4095    Ops.push_back(InFlag);
4096    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4097  } else if (BytesLeft) {
4098    // Issue loads and stores for the last 1 - 7 bytes.
4099    unsigned Offset = I->getValue() - BytesLeft;
4100    SDOperand DstAddr = Op.getOperand(1);
4101    MVT::ValueType DstVT = DstAddr.getValueType();
4102    SDOperand SrcAddr = Op.getOperand(2);
4103    MVT::ValueType SrcVT = SrcAddr.getValueType();
4104    SDOperand Value;
4105    if (BytesLeft >= 4) {
4106      Value = DAG.getLoad(MVT::i32, Chain,
4107                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4108                                      DAG.getConstant(Offset, SrcVT)),
4109                          NULL, 0);
4110      Chain = Value.getValue(1);
4111      Chain = DAG.getStore(Chain, Value,
4112                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4113                                       DAG.getConstant(Offset, DstVT)),
4114                           NULL, 0);
4115      BytesLeft -= 4;
4116      Offset += 4;
4117    }
4118    if (BytesLeft >= 2) {
4119      Value = DAG.getLoad(MVT::i16, Chain,
4120                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4121                                      DAG.getConstant(Offset, SrcVT)),
4122                          NULL, 0);
4123      Chain = Value.getValue(1);
4124      Chain = DAG.getStore(Chain, Value,
4125                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4126                                       DAG.getConstant(Offset, DstVT)),
4127                           NULL, 0);
4128      BytesLeft -= 2;
4129      Offset += 2;
4130    }
4131
4132    if (BytesLeft == 1) {
4133      Value = DAG.getLoad(MVT::i8, Chain,
4134                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4135                                      DAG.getConstant(Offset, SrcVT)),
4136                          NULL, 0);
4137      Chain = Value.getValue(1);
4138      Chain = DAG.getStore(Chain, Value,
4139                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4140                                       DAG.getConstant(Offset, DstVT)),
4141                           NULL, 0);
4142    }
4143  }
4144
4145  return Chain;
4146}
4147
4148SDOperand
4149X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4150  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4151  SDOperand TheOp = Op.getOperand(0);
4152  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4153  if (Subtarget->is64Bit()) {
4154    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4155    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4156                                         MVT::i64, Copy1.getValue(2));
4157    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4158                                DAG.getConstant(32, MVT::i8));
4159    SDOperand Ops[] = {
4160      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4161    };
4162
4163    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4164    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4165  }
4166
4167  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4168  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4169                                       MVT::i32, Copy1.getValue(2));
4170  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4171  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4172  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4173}
4174
4175SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4176  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4177
4178  if (!Subtarget->is64Bit()) {
4179    // vastart just stores the address of the VarArgsFrameIndex slot into the
4180    // memory location argument.
4181    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4182    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4183                        SV->getOffset());
4184  }
4185
4186  // __va_list_tag:
4187  //   gp_offset         (0 - 6 * 8)
4188  //   fp_offset         (48 - 48 + 8 * 16)
4189  //   overflow_arg_area (point to parameters coming in memory).
4190  //   reg_save_area
4191  SmallVector<SDOperand, 8> MemOps;
4192  SDOperand FIN = Op.getOperand(1);
4193  // Store gp_offset
4194  SDOperand Store = DAG.getStore(Op.getOperand(0),
4195                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4196                                 FIN, SV->getValue(), SV->getOffset());
4197  MemOps.push_back(Store);
4198
4199  // Store fp_offset
4200  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4201                    DAG.getConstant(4, getPointerTy()));
4202  Store = DAG.getStore(Op.getOperand(0),
4203                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4204                       FIN, SV->getValue(), SV->getOffset());
4205  MemOps.push_back(Store);
4206
4207  // Store ptr to overflow_arg_area
4208  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4209                    DAG.getConstant(4, getPointerTy()));
4210  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4211  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4212                       SV->getOffset());
4213  MemOps.push_back(Store);
4214
4215  // Store ptr to reg_save_area.
4216  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4217                    DAG.getConstant(8, getPointerTy()));
4218  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4219  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4220                       SV->getOffset());
4221  MemOps.push_back(Store);
4222  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4223}
4224
4225SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4226  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4227  SDOperand Chain = Op.getOperand(0);
4228  SDOperand DstPtr = Op.getOperand(1);
4229  SDOperand SrcPtr = Op.getOperand(2);
4230  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4231  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4232
4233  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4234                       SrcSV->getValue(), SrcSV->getOffset());
4235  Chain = SrcPtr.getValue(1);
4236  for (unsigned i = 0; i < 3; ++i) {
4237    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4238                                SrcSV->getValue(), SrcSV->getOffset());
4239    Chain = Val.getValue(1);
4240    Chain = DAG.getStore(Chain, Val, DstPtr,
4241                         DstSV->getValue(), DstSV->getOffset());
4242    if (i == 2)
4243      break;
4244    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4245                         DAG.getConstant(8, getPointerTy()));
4246    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4247                         DAG.getConstant(8, getPointerTy()));
4248  }
4249  return Chain;
4250}
4251
4252SDOperand
4253X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4254  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4255  switch (IntNo) {
4256  default: return SDOperand();    // Don't custom lower most intrinsics.
4257    // Comparison intrinsics.
4258  case Intrinsic::x86_sse_comieq_ss:
4259  case Intrinsic::x86_sse_comilt_ss:
4260  case Intrinsic::x86_sse_comile_ss:
4261  case Intrinsic::x86_sse_comigt_ss:
4262  case Intrinsic::x86_sse_comige_ss:
4263  case Intrinsic::x86_sse_comineq_ss:
4264  case Intrinsic::x86_sse_ucomieq_ss:
4265  case Intrinsic::x86_sse_ucomilt_ss:
4266  case Intrinsic::x86_sse_ucomile_ss:
4267  case Intrinsic::x86_sse_ucomigt_ss:
4268  case Intrinsic::x86_sse_ucomige_ss:
4269  case Intrinsic::x86_sse_ucomineq_ss:
4270  case Intrinsic::x86_sse2_comieq_sd:
4271  case Intrinsic::x86_sse2_comilt_sd:
4272  case Intrinsic::x86_sse2_comile_sd:
4273  case Intrinsic::x86_sse2_comigt_sd:
4274  case Intrinsic::x86_sse2_comige_sd:
4275  case Intrinsic::x86_sse2_comineq_sd:
4276  case Intrinsic::x86_sse2_ucomieq_sd:
4277  case Intrinsic::x86_sse2_ucomilt_sd:
4278  case Intrinsic::x86_sse2_ucomile_sd:
4279  case Intrinsic::x86_sse2_ucomigt_sd:
4280  case Intrinsic::x86_sse2_ucomige_sd:
4281  case Intrinsic::x86_sse2_ucomineq_sd: {
4282    unsigned Opc = 0;
4283    ISD::CondCode CC = ISD::SETCC_INVALID;
4284    switch (IntNo) {
4285    default: break;
4286    case Intrinsic::x86_sse_comieq_ss:
4287    case Intrinsic::x86_sse2_comieq_sd:
4288      Opc = X86ISD::COMI;
4289      CC = ISD::SETEQ;
4290      break;
4291    case Intrinsic::x86_sse_comilt_ss:
4292    case Intrinsic::x86_sse2_comilt_sd:
4293      Opc = X86ISD::COMI;
4294      CC = ISD::SETLT;
4295      break;
4296    case Intrinsic::x86_sse_comile_ss:
4297    case Intrinsic::x86_sse2_comile_sd:
4298      Opc = X86ISD::COMI;
4299      CC = ISD::SETLE;
4300      break;
4301    case Intrinsic::x86_sse_comigt_ss:
4302    case Intrinsic::x86_sse2_comigt_sd:
4303      Opc = X86ISD::COMI;
4304      CC = ISD::SETGT;
4305      break;
4306    case Intrinsic::x86_sse_comige_ss:
4307    case Intrinsic::x86_sse2_comige_sd:
4308      Opc = X86ISD::COMI;
4309      CC = ISD::SETGE;
4310      break;
4311    case Intrinsic::x86_sse_comineq_ss:
4312    case Intrinsic::x86_sse2_comineq_sd:
4313      Opc = X86ISD::COMI;
4314      CC = ISD::SETNE;
4315      break;
4316    case Intrinsic::x86_sse_ucomieq_ss:
4317    case Intrinsic::x86_sse2_ucomieq_sd:
4318      Opc = X86ISD::UCOMI;
4319      CC = ISD::SETEQ;
4320      break;
4321    case Intrinsic::x86_sse_ucomilt_ss:
4322    case Intrinsic::x86_sse2_ucomilt_sd:
4323      Opc = X86ISD::UCOMI;
4324      CC = ISD::SETLT;
4325      break;
4326    case Intrinsic::x86_sse_ucomile_ss:
4327    case Intrinsic::x86_sse2_ucomile_sd:
4328      Opc = X86ISD::UCOMI;
4329      CC = ISD::SETLE;
4330      break;
4331    case Intrinsic::x86_sse_ucomigt_ss:
4332    case Intrinsic::x86_sse2_ucomigt_sd:
4333      Opc = X86ISD::UCOMI;
4334      CC = ISD::SETGT;
4335      break;
4336    case Intrinsic::x86_sse_ucomige_ss:
4337    case Intrinsic::x86_sse2_ucomige_sd:
4338      Opc = X86ISD::UCOMI;
4339      CC = ISD::SETGE;
4340      break;
4341    case Intrinsic::x86_sse_ucomineq_ss:
4342    case Intrinsic::x86_sse2_ucomineq_sd:
4343      Opc = X86ISD::UCOMI;
4344      CC = ISD::SETNE;
4345      break;
4346    }
4347
4348    unsigned X86CC;
4349    SDOperand LHS = Op.getOperand(1);
4350    SDOperand RHS = Op.getOperand(2);
4351    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4352
4353    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4354    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4355    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4356    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4357    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4358    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4359    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4360  }
4361  }
4362}
4363
4364SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4365  // Depths > 0 not supported yet!
4366  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4367    return SDOperand();
4368
4369  // Just load the return address
4370  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4371  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4372}
4373
4374SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4375  // Depths > 0 not supported yet!
4376  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4377    return SDOperand();
4378
4379  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4380  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4381                     DAG.getConstant(4, getPointerTy()));
4382}
4383
4384SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4385                                                       SelectionDAG &DAG) {
4386  // Is not yet supported on x86-64
4387  if (Subtarget->is64Bit())
4388    return SDOperand();
4389
4390  return DAG.getConstant(8, getPointerTy());
4391}
4392
4393SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4394{
4395  assert(!Subtarget->is64Bit() &&
4396         "Lowering of eh_return builtin is not supported yet on x86-64");
4397
4398  MachineFunction &MF = DAG.getMachineFunction();
4399  SDOperand Chain     = Op.getOperand(0);
4400  SDOperand Offset    = Op.getOperand(1);
4401  SDOperand Handler   = Op.getOperand(2);
4402
4403  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4404                                    getPointerTy());
4405
4406  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4407                                    DAG.getConstant(-4UL, getPointerTy()));
4408  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4409  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4410  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4411  MF.addLiveOut(X86::ECX);
4412
4413  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4414                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4415}
4416
4417SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4418                                             SelectionDAG &DAG) {
4419  SDOperand Root = Op.getOperand(0);
4420  SDOperand Trmp = Op.getOperand(1); // trampoline
4421  SDOperand FPtr = Op.getOperand(2); // nested function
4422  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4423
4424  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4425
4426  if (Subtarget->is64Bit()) {
4427    return SDOperand(); // not yet supported
4428  } else {
4429    Function *Func = (Function *)
4430      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4431    unsigned CC = Func->getCallingConv();
4432    unsigned NestReg;
4433
4434    switch (CC) {
4435    default:
4436      assert(0 && "Unsupported calling convention");
4437    case CallingConv::C:
4438    case CallingConv::Fast:
4439    case CallingConv::X86_StdCall: {
4440      // Pass 'nest' parameter in ECX.
4441      // Must be kept in sync with X86CallingConv.td
4442      NestReg = X86::ECX;
4443
4444      // Check that ECX wasn't needed by an 'inreg' parameter.
4445      const FunctionType *FTy = Func->getFunctionType();
4446      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4447
4448      if (Attrs && !Func->isVarArg()) {
4449        unsigned InRegCount = 0;
4450        unsigned Idx = 1;
4451
4452        for (FunctionType::param_iterator I = FTy->param_begin(),
4453             E = FTy->param_end(); I != E; ++I, ++Idx)
4454          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4455            // FIXME: should only count parameters that are lowered to integers.
4456            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4457
4458        if (InRegCount > 2) {
4459          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4460          abort();
4461        }
4462      }
4463      break;
4464    }
4465    case CallingConv::X86_FastCall:
4466      // Pass 'nest' parameter in EAX.
4467      // Must be kept in sync with X86CallingConv.td
4468      NestReg = X86::EAX;
4469      break;
4470    }
4471
4472    const X86InstrInfo *TII =
4473      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4474
4475    SDOperand OutChains[4];
4476    SDOperand Addr, Disp;
4477
4478    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4479    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4480
4481    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4482    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4483    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4484                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4485
4486    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4487    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4488                                TrmpSV->getOffset() + 1, false, 1);
4489
4490    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4491    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4492    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4493                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4494
4495    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4496    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4497                                TrmpSV->getOffset() + 6, false, 1);
4498
4499    SDOperand Ops[] =
4500      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4501    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4502  }
4503}
4504
4505/// LowerOperation - Provide custom lowering hooks for some operations.
4506///
4507SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4508  switch (Op.getOpcode()) {
4509  default: assert(0 && "Should not custom lower this!");
4510  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4511  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4512  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4513  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4514  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4515  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4516  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4517  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4518  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4519  case ISD::SHL_PARTS:
4520  case ISD::SRA_PARTS:
4521  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4522  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4523  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4524  case ISD::FABS:               return LowerFABS(Op, DAG);
4525  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4526  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4527  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4528  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4529  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4530  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4531  case ISD::CALL:               return LowerCALL(Op, DAG);
4532  case ISD::RET:                return LowerRET(Op, DAG);
4533  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4534  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4535  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4536  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4537  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4538  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4539  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4540  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4541  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4542  case ISD::FRAME_TO_ARGS_OFFSET:
4543                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4544  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4545  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
4546  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4547  }
4548  return SDOperand();
4549}
4550
4551const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4552  switch (Opcode) {
4553  default: return NULL;
4554  case X86ISD::SHLD:               return "X86ISD::SHLD";
4555  case X86ISD::SHRD:               return "X86ISD::SHRD";
4556  case X86ISD::FAND:               return "X86ISD::FAND";
4557  case X86ISD::FOR:                return "X86ISD::FOR";
4558  case X86ISD::FXOR:               return "X86ISD::FXOR";
4559  case X86ISD::FSRL:               return "X86ISD::FSRL";
4560  case X86ISD::FILD:               return "X86ISD::FILD";
4561  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4562  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4563  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4564  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4565  case X86ISD::FLD:                return "X86ISD::FLD";
4566  case X86ISD::FST:                return "X86ISD::FST";
4567  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4568  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4569  case X86ISD::CALL:               return "X86ISD::CALL";
4570  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4571  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4572  case X86ISD::CMP:                return "X86ISD::CMP";
4573  case X86ISD::COMI:               return "X86ISD::COMI";
4574  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4575  case X86ISD::SETCC:              return "X86ISD::SETCC";
4576  case X86ISD::CMOV:               return "X86ISD::CMOV";
4577  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4578  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4579  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4580  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4581  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4582  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4583  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4584  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4585  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4586  case X86ISD::FMAX:               return "X86ISD::FMAX";
4587  case X86ISD::FMIN:               return "X86ISD::FMIN";
4588  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
4589  case X86ISD::FRCP:               return "X86ISD::FRCP";
4590  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4591  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4592  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
4593  }
4594}
4595
4596// isLegalAddressingMode - Return true if the addressing mode represented
4597// by AM is legal for this target, for a load/store of the specified type.
4598bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4599                                              const Type *Ty) const {
4600  // X86 supports extremely general addressing modes.
4601
4602  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4603  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4604    return false;
4605
4606  if (AM.BaseGV) {
4607    // We can only fold this if we don't need an extra load.
4608    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4609      return false;
4610
4611    // X86-64 only supports addr of globals in small code model.
4612    if (Subtarget->is64Bit()) {
4613      if (getTargetMachine().getCodeModel() != CodeModel::Small)
4614        return false;
4615      // If lower 4G is not available, then we must use rip-relative addressing.
4616      if (AM.BaseOffs || AM.Scale > 1)
4617        return false;
4618    }
4619  }
4620
4621  switch (AM.Scale) {
4622  case 0:
4623  case 1:
4624  case 2:
4625  case 4:
4626  case 8:
4627    // These scales always work.
4628    break;
4629  case 3:
4630  case 5:
4631  case 9:
4632    // These scales are formed with basereg+scalereg.  Only accept if there is
4633    // no basereg yet.
4634    if (AM.HasBaseReg)
4635      return false;
4636    break;
4637  default:  // Other stuff never works.
4638    return false;
4639  }
4640
4641  return true;
4642}
4643
4644
4645/// isShuffleMaskLegal - Targets can use this to indicate that they only
4646/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4647/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4648/// are assumed to be legal.
4649bool
4650X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4651  // Only do shuffles on 128-bit vector types for now.
4652  if (MVT::getSizeInBits(VT) == 64) return false;
4653  return (Mask.Val->getNumOperands() <= 4 ||
4654          isIdentityMask(Mask.Val) ||
4655          isIdentityMask(Mask.Val, true) ||
4656          isSplatMask(Mask.Val)  ||
4657          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4658          X86::isUNPCKLMask(Mask.Val) ||
4659          X86::isUNPCKHMask(Mask.Val) ||
4660          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4661          X86::isUNPCKH_v_undef_Mask(Mask.Val));
4662}
4663
4664bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4665                                               MVT::ValueType EVT,
4666                                               SelectionDAG &DAG) const {
4667  unsigned NumElts = BVOps.size();
4668  // Only do shuffles on 128-bit vector types for now.
4669  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4670  if (NumElts == 2) return true;
4671  if (NumElts == 4) {
4672    return (isMOVLMask(&BVOps[0], 4)  ||
4673            isCommutedMOVL(&BVOps[0], 4, true) ||
4674            isSHUFPMask(&BVOps[0], 4) ||
4675            isCommutedSHUFP(&BVOps[0], 4));
4676  }
4677  return false;
4678}
4679
4680//===----------------------------------------------------------------------===//
4681//                           X86 Scheduler Hooks
4682//===----------------------------------------------------------------------===//
4683
4684MachineBasicBlock *
4685X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4686                                           MachineBasicBlock *BB) {
4687  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4688  switch (MI->getOpcode()) {
4689  default: assert(false && "Unexpected instr type to insert");
4690  case X86::CMOV_FR32:
4691  case X86::CMOV_FR64:
4692  case X86::CMOV_V4F32:
4693  case X86::CMOV_V2F64:
4694  case X86::CMOV_V2I64: {
4695    // To "insert" a SELECT_CC instruction, we actually have to insert the
4696    // diamond control-flow pattern.  The incoming instruction knows the
4697    // destination vreg to set, the condition code register to branch on, the
4698    // true/false values to select between, and a branch opcode to use.
4699    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4700    ilist<MachineBasicBlock>::iterator It = BB;
4701    ++It;
4702
4703    //  thisMBB:
4704    //  ...
4705    //   TrueVal = ...
4706    //   cmpTY ccX, r1, r2
4707    //   bCC copy1MBB
4708    //   fallthrough --> copy0MBB
4709    MachineBasicBlock *thisMBB = BB;
4710    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4711    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4712    unsigned Opc =
4713      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4714    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4715    MachineFunction *F = BB->getParent();
4716    F->getBasicBlockList().insert(It, copy0MBB);
4717    F->getBasicBlockList().insert(It, sinkMBB);
4718    // Update machine-CFG edges by first adding all successors of the current
4719    // block to the new block which will contain the Phi node for the select.
4720    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4721        e = BB->succ_end(); i != e; ++i)
4722      sinkMBB->addSuccessor(*i);
4723    // Next, remove all successors of the current block, and add the true
4724    // and fallthrough blocks as its successors.
4725    while(!BB->succ_empty())
4726      BB->removeSuccessor(BB->succ_begin());
4727    BB->addSuccessor(copy0MBB);
4728    BB->addSuccessor(sinkMBB);
4729
4730    //  copy0MBB:
4731    //   %FalseValue = ...
4732    //   # fallthrough to sinkMBB
4733    BB = copy0MBB;
4734
4735    // Update machine-CFG edges
4736    BB->addSuccessor(sinkMBB);
4737
4738    //  sinkMBB:
4739    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4740    //  ...
4741    BB = sinkMBB;
4742    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4743      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4744      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4745
4746    delete MI;   // The pseudo instruction is gone now.
4747    return BB;
4748  }
4749
4750  case X86::FP32_TO_INT16_IN_MEM:
4751  case X86::FP32_TO_INT32_IN_MEM:
4752  case X86::FP32_TO_INT64_IN_MEM:
4753  case X86::FP64_TO_INT16_IN_MEM:
4754  case X86::FP64_TO_INT32_IN_MEM:
4755  case X86::FP64_TO_INT64_IN_MEM:
4756  case X86::FP80_TO_INT16_IN_MEM:
4757  case X86::FP80_TO_INT32_IN_MEM:
4758  case X86::FP80_TO_INT64_IN_MEM: {
4759    // Change the floating point control register to use "round towards zero"
4760    // mode when truncating to an integer value.
4761    MachineFunction *F = BB->getParent();
4762    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4763    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4764
4765    // Load the old value of the high byte of the control word...
4766    unsigned OldCW =
4767      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4768    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4769
4770    // Set the high part to be round to zero...
4771    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4772      .addImm(0xC7F);
4773
4774    // Reload the modified control word now...
4775    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4776
4777    // Restore the memory image of control word to original value
4778    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4779      .addReg(OldCW);
4780
4781    // Get the X86 opcode to use.
4782    unsigned Opc;
4783    switch (MI->getOpcode()) {
4784    default: assert(0 && "illegal opcode!");
4785    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
4786    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
4787    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
4788    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
4789    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
4790    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
4791    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
4792    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
4793    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
4794    }
4795
4796    X86AddressMode AM;
4797    MachineOperand &Op = MI->getOperand(0);
4798    if (Op.isRegister()) {
4799      AM.BaseType = X86AddressMode::RegBase;
4800      AM.Base.Reg = Op.getReg();
4801    } else {
4802      AM.BaseType = X86AddressMode::FrameIndexBase;
4803      AM.Base.FrameIndex = Op.getFrameIndex();
4804    }
4805    Op = MI->getOperand(1);
4806    if (Op.isImmediate())
4807      AM.Scale = Op.getImm();
4808    Op = MI->getOperand(2);
4809    if (Op.isImmediate())
4810      AM.IndexReg = Op.getImm();
4811    Op = MI->getOperand(3);
4812    if (Op.isGlobalAddress()) {
4813      AM.GV = Op.getGlobal();
4814    } else {
4815      AM.Disp = Op.getImm();
4816    }
4817    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4818                      .addReg(MI->getOperand(4).getReg());
4819
4820    // Reload the original control word now.
4821    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4822
4823    delete MI;   // The pseudo instruction is gone now.
4824    return BB;
4825  }
4826  }
4827}
4828
4829//===----------------------------------------------------------------------===//
4830//                           X86 Optimization Hooks
4831//===----------------------------------------------------------------------===//
4832
4833void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4834                                                       uint64_t Mask,
4835                                                       uint64_t &KnownZero,
4836                                                       uint64_t &KnownOne,
4837                                                       const SelectionDAG &DAG,
4838                                                       unsigned Depth) const {
4839  unsigned Opc = Op.getOpcode();
4840  assert((Opc >= ISD::BUILTIN_OP_END ||
4841          Opc == ISD::INTRINSIC_WO_CHAIN ||
4842          Opc == ISD::INTRINSIC_W_CHAIN ||
4843          Opc == ISD::INTRINSIC_VOID) &&
4844         "Should use MaskedValueIsZero if you don't know whether Op"
4845         " is a target node!");
4846
4847  KnownZero = KnownOne = 0;   // Don't know anything.
4848  switch (Opc) {
4849  default: break;
4850  case X86ISD::SETCC:
4851    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4852    break;
4853  }
4854}
4855
4856/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4857/// element of the result of the vector shuffle.
4858static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4859  MVT::ValueType VT = N->getValueType(0);
4860  SDOperand PermMask = N->getOperand(2);
4861  unsigned NumElems = PermMask.getNumOperands();
4862  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4863  i %= NumElems;
4864  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4865    return (i == 0)
4866      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4867  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4868    SDOperand Idx = PermMask.getOperand(i);
4869    if (Idx.getOpcode() == ISD::UNDEF)
4870      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4871    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4872  }
4873  return SDOperand();
4874}
4875
4876/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4877/// node is a GlobalAddress + an offset.
4878static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4879  unsigned Opc = N->getOpcode();
4880  if (Opc == X86ISD::Wrapper) {
4881    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4882      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4883      return true;
4884    }
4885  } else if (Opc == ISD::ADD) {
4886    SDOperand N1 = N->getOperand(0);
4887    SDOperand N2 = N->getOperand(1);
4888    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4889      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4890      if (V) {
4891        Offset += V->getSignExtended();
4892        return true;
4893      }
4894    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4895      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4896      if (V) {
4897        Offset += V->getSignExtended();
4898        return true;
4899      }
4900    }
4901  }
4902  return false;
4903}
4904
4905/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4906/// + Dist * Size.
4907static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4908                              MachineFrameInfo *MFI) {
4909  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4910    return false;
4911
4912  SDOperand Loc = N->getOperand(1);
4913  SDOperand BaseLoc = Base->getOperand(1);
4914  if (Loc.getOpcode() == ISD::FrameIndex) {
4915    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4916      return false;
4917    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
4918    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4919    int FS  = MFI->getObjectSize(FI);
4920    int BFS = MFI->getObjectSize(BFI);
4921    if (FS != BFS || FS != Size) return false;
4922    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4923  } else {
4924    GlobalValue *GV1 = NULL;
4925    GlobalValue *GV2 = NULL;
4926    int64_t Offset1 = 0;
4927    int64_t Offset2 = 0;
4928    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4929    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4930    if (isGA1 && isGA2 && GV1 == GV2)
4931      return Offset1 == (Offset2 + Dist*Size);
4932  }
4933
4934  return false;
4935}
4936
4937static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4938                              const X86Subtarget *Subtarget) {
4939  GlobalValue *GV;
4940  int64_t Offset;
4941  if (isGAPlusOffset(Base, GV, Offset))
4942    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4943  else {
4944    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4945    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
4946    if (BFI < 0)
4947      // Fixed objects do not specify alignment, however the offsets are known.
4948      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4949              (MFI->getObjectOffset(BFI) % 16) == 0);
4950    else
4951      return MFI->getObjectAlignment(BFI) >= 16;
4952  }
4953  return false;
4954}
4955
4956
4957/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4958/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4959/// if the load addresses are consecutive, non-overlapping, and in the right
4960/// order.
4961static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4962                                       const X86Subtarget *Subtarget) {
4963  MachineFunction &MF = DAG.getMachineFunction();
4964  MachineFrameInfo *MFI = MF.getFrameInfo();
4965  MVT::ValueType VT = N->getValueType(0);
4966  MVT::ValueType EVT = MVT::getVectorElementType(VT);
4967  SDOperand PermMask = N->getOperand(2);
4968  int NumElems = (int)PermMask.getNumOperands();
4969  SDNode *Base = NULL;
4970  for (int i = 0; i < NumElems; ++i) {
4971    SDOperand Idx = PermMask.getOperand(i);
4972    if (Idx.getOpcode() == ISD::UNDEF) {
4973      if (!Base) return SDOperand();
4974    } else {
4975      SDOperand Arg =
4976        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4977      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4978        return SDOperand();
4979      if (!Base)
4980        Base = Arg.Val;
4981      else if (!isConsecutiveLoad(Arg.Val, Base,
4982                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4983        return SDOperand();
4984    }
4985  }
4986
4987  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4988  LoadSDNode *LD = cast<LoadSDNode>(Base);
4989  if (isAlign16) {
4990    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4991                       LD->getSrcValueOffset(), LD->isVolatile());
4992  } else {
4993    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4994                       LD->getSrcValueOffset(), LD->isVolatile(),
4995                       LD->getAlignment());
4996  }
4997}
4998
4999/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5000static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5001                                      const X86Subtarget *Subtarget) {
5002  SDOperand Cond = N->getOperand(0);
5003
5004  // If we have SSE[12] support, try to form min/max nodes.
5005  if (Subtarget->hasSSE2() &&
5006      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5007    if (Cond.getOpcode() == ISD::SETCC) {
5008      // Get the LHS/RHS of the select.
5009      SDOperand LHS = N->getOperand(1);
5010      SDOperand RHS = N->getOperand(2);
5011      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5012
5013      unsigned Opcode = 0;
5014      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5015        switch (CC) {
5016        default: break;
5017        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5018        case ISD::SETULE:
5019        case ISD::SETLE:
5020          if (!UnsafeFPMath) break;
5021          // FALL THROUGH.
5022        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5023        case ISD::SETLT:
5024          Opcode = X86ISD::FMIN;
5025          break;
5026
5027        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5028        case ISD::SETUGT:
5029        case ISD::SETGT:
5030          if (!UnsafeFPMath) break;
5031          // FALL THROUGH.
5032        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5033        case ISD::SETGE:
5034          Opcode = X86ISD::FMAX;
5035          break;
5036        }
5037      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5038        switch (CC) {
5039        default: break;
5040        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5041        case ISD::SETUGT:
5042        case ISD::SETGT:
5043          if (!UnsafeFPMath) break;
5044          // FALL THROUGH.
5045        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5046        case ISD::SETGE:
5047          Opcode = X86ISD::FMIN;
5048          break;
5049
5050        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5051        case ISD::SETULE:
5052        case ISD::SETLE:
5053          if (!UnsafeFPMath) break;
5054          // FALL THROUGH.
5055        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5056        case ISD::SETLT:
5057          Opcode = X86ISD::FMAX;
5058          break;
5059        }
5060      }
5061
5062      if (Opcode)
5063        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5064    }
5065
5066  }
5067
5068  return SDOperand();
5069}
5070
5071
5072SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5073                                               DAGCombinerInfo &DCI) const {
5074  SelectionDAG &DAG = DCI.DAG;
5075  switch (N->getOpcode()) {
5076  default: break;
5077  case ISD::VECTOR_SHUFFLE:
5078    return PerformShuffleCombine(N, DAG, Subtarget);
5079  case ISD::SELECT:
5080    return PerformSELECTCombine(N, DAG, Subtarget);
5081  }
5082
5083  return SDOperand();
5084}
5085
5086//===----------------------------------------------------------------------===//
5087//                           X86 Inline Assembly Support
5088//===----------------------------------------------------------------------===//
5089
5090/// getConstraintType - Given a constraint letter, return the type of
5091/// constraint it is for this target.
5092X86TargetLowering::ConstraintType
5093X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5094  if (Constraint.size() == 1) {
5095    switch (Constraint[0]) {
5096    case 'A':
5097    case 'r':
5098    case 'R':
5099    case 'l':
5100    case 'q':
5101    case 'Q':
5102    case 'x':
5103    case 'Y':
5104      return C_RegisterClass;
5105    default:
5106      break;
5107    }
5108  }
5109  return TargetLowering::getConstraintType(Constraint);
5110}
5111
5112/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5113/// vector.  If it is invalid, don't add anything to Ops.
5114void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5115                                                     char Constraint,
5116                                                     std::vector<SDOperand>&Ops,
5117                                                     SelectionDAG &DAG) {
5118  SDOperand Result(0, 0);
5119
5120  switch (Constraint) {
5121  default: break;
5122  case 'I':
5123    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5124      if (C->getValue() <= 31) {
5125        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5126        break;
5127      }
5128    }
5129    return;
5130  case 'N':
5131    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5132      if (C->getValue() <= 255) {
5133        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5134        break;
5135      }
5136    }
5137    return;
5138  case 'i': {
5139    // Literal immediates are always ok.
5140    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5141      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5142      break;
5143    }
5144
5145    // If we are in non-pic codegen mode, we allow the address of a global (with
5146    // an optional displacement) to be used with 'i'.
5147    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5148    int64_t Offset = 0;
5149
5150    // Match either (GA) or (GA+C)
5151    if (GA) {
5152      Offset = GA->getOffset();
5153    } else if (Op.getOpcode() == ISD::ADD) {
5154      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5155      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5156      if (C && GA) {
5157        Offset = GA->getOffset()+C->getValue();
5158      } else {
5159        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5160        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5161        if (C && GA)
5162          Offset = GA->getOffset()+C->getValue();
5163        else
5164          C = 0, GA = 0;
5165      }
5166    }
5167
5168    if (GA) {
5169      // If addressing this global requires a load (e.g. in PIC mode), we can't
5170      // match.
5171      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5172                                         false))
5173        return;
5174
5175      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5176                                      Offset);
5177      Result = Op;
5178      break;
5179    }
5180
5181    // Otherwise, not valid for this mode.
5182    return;
5183  }
5184  }
5185
5186  if (Result.Val) {
5187    Ops.push_back(Result);
5188    return;
5189  }
5190  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5191}
5192
5193std::vector<unsigned> X86TargetLowering::
5194getRegClassForInlineAsmConstraint(const std::string &Constraint,
5195                                  MVT::ValueType VT) const {
5196  if (Constraint.size() == 1) {
5197    // FIXME: not handling fp-stack yet!
5198    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5199    default: break;  // Unknown constraint letter
5200    case 'A':   // EAX/EDX
5201      if (VT == MVT::i32 || VT == MVT::i64)
5202        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5203      break;
5204    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5205    case 'Q':   // Q_REGS
5206      if (VT == MVT::i32)
5207        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5208      else if (VT == MVT::i16)
5209        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5210      else if (VT == MVT::i8)
5211        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5212        break;
5213    }
5214  }
5215
5216  return std::vector<unsigned>();
5217}
5218
5219std::pair<unsigned, const TargetRegisterClass*>
5220X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5221                                                MVT::ValueType VT) const {
5222  // First, see if this is a constraint that directly corresponds to an LLVM
5223  // register class.
5224  if (Constraint.size() == 1) {
5225    // GCC Constraint Letters
5226    switch (Constraint[0]) {
5227    default: break;
5228    case 'r':   // GENERAL_REGS
5229    case 'R':   // LEGACY_REGS
5230    case 'l':   // INDEX_REGS
5231      if (VT == MVT::i64 && Subtarget->is64Bit())
5232        return std::make_pair(0U, X86::GR64RegisterClass);
5233      if (VT == MVT::i32)
5234        return std::make_pair(0U, X86::GR32RegisterClass);
5235      else if (VT == MVT::i16)
5236        return std::make_pair(0U, X86::GR16RegisterClass);
5237      else if (VT == MVT::i8)
5238        return std::make_pair(0U, X86::GR8RegisterClass);
5239      break;
5240    case 'y':   // MMX_REGS if MMX allowed.
5241      if (!Subtarget->hasMMX()) break;
5242      return std::make_pair(0U, X86::VR64RegisterClass);
5243      break;
5244    case 'Y':   // SSE_REGS if SSE2 allowed
5245      if (!Subtarget->hasSSE2()) break;
5246      // FALL THROUGH.
5247    case 'x':   // SSE_REGS if SSE1 allowed
5248      if (!Subtarget->hasSSE1()) break;
5249
5250      switch (VT) {
5251      default: break;
5252      // Scalar SSE types.
5253      case MVT::f32:
5254      case MVT::i32:
5255        return std::make_pair(0U, X86::FR32RegisterClass);
5256      case MVT::f64:
5257      case MVT::i64:
5258        return std::make_pair(0U, X86::FR64RegisterClass);
5259      // Vector types.
5260      case MVT::v16i8:
5261      case MVT::v8i16:
5262      case MVT::v4i32:
5263      case MVT::v2i64:
5264      case MVT::v4f32:
5265      case MVT::v2f64:
5266        return std::make_pair(0U, X86::VR128RegisterClass);
5267      }
5268      break;
5269    }
5270  }
5271
5272  // Use the default implementation in TargetLowering to convert the register
5273  // constraint into a member of a register class.
5274  std::pair<unsigned, const TargetRegisterClass*> Res;
5275  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5276
5277  // Not found as a standard register?
5278  if (Res.second == 0) {
5279    // GCC calls "st(0)" just plain "st".
5280    if (StringsEqualNoCase("{st}", Constraint)) {
5281      Res.first = X86::ST0;
5282      Res.second = X86::RFP80RegisterClass;
5283    }
5284
5285    return Res;
5286  }
5287
5288  // Otherwise, check to see if this is a register class of the wrong value
5289  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5290  // turn into {ax},{dx}.
5291  if (Res.second->hasType(VT))
5292    return Res;   // Correct type already, nothing to do.
5293
5294  // All of the single-register GCC register classes map their values onto
5295  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5296  // really want an 8-bit or 32-bit register, map to the appropriate register
5297  // class and return the appropriate register.
5298  if (Res.second != X86::GR16RegisterClass)
5299    return Res;
5300
5301  if (VT == MVT::i8) {
5302    unsigned DestReg = 0;
5303    switch (Res.first) {
5304    default: break;
5305    case X86::AX: DestReg = X86::AL; break;
5306    case X86::DX: DestReg = X86::DL; break;
5307    case X86::CX: DestReg = X86::CL; break;
5308    case X86::BX: DestReg = X86::BL; break;
5309    }
5310    if (DestReg) {
5311      Res.first = DestReg;
5312      Res.second = Res.second = X86::GR8RegisterClass;
5313    }
5314  } else if (VT == MVT::i32) {
5315    unsigned DestReg = 0;
5316    switch (Res.first) {
5317    default: break;
5318    case X86::AX: DestReg = X86::EAX; break;
5319    case X86::DX: DestReg = X86::EDX; break;
5320    case X86::CX: DestReg = X86::ECX; break;
5321    case X86::BX: DestReg = X86::EBX; break;
5322    case X86::SI: DestReg = X86::ESI; break;
5323    case X86::DI: DestReg = X86::EDI; break;
5324    case X86::BP: DestReg = X86::EBP; break;
5325    case X86::SP: DestReg = X86::ESP; break;
5326    }
5327    if (DestReg) {
5328      Res.first = DestReg;
5329      Res.second = Res.second = X86::GR32RegisterClass;
5330    }
5331  } else if (VT == MVT::i64) {
5332    unsigned DestReg = 0;
5333    switch (Res.first) {
5334    default: break;
5335    case X86::AX: DestReg = X86::RAX; break;
5336    case X86::DX: DestReg = X86::RDX; break;
5337    case X86::CX: DestReg = X86::RCX; break;
5338    case X86::BX: DestReg = X86::RBX; break;
5339    case X86::SI: DestReg = X86::RSI; break;
5340    case X86::DI: DestReg = X86::RDI; break;
5341    case X86::BP: DestReg = X86::RBP; break;
5342    case X86::SP: DestReg = X86::RSP; break;
5343    }
5344    if (DestReg) {
5345      Res.first = DestReg;
5346      Res.second = Res.second = X86::GR64RegisterClass;
5347    }
5348  }
5349
5350  return Res;
5351}
5352