X86ISelLowering.cpp revision 9dd93b36b8b33281774c6257ad07a3e7d0d1c660
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43// Forward declarations.
44static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
45
46X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
47  : TargetLowering(TM) {
48  Subtarget = &TM.getSubtarget<X86Subtarget>();
49  X86ScalarSSEf64 = Subtarget->hasSSE2();
50  X86ScalarSSEf32 = Subtarget->hasSSE1();
51  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
52
53  bool Fast = false;
54
55  RegInfo = TM.getRegisterInfo();
56  TD = getTargetData();
57
58  // Set up the TargetLowering object.
59
60  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61  setShiftAmountType(MVT::i8);
62  setSetCCResultContents(ZeroOrOneSetCCResult);
63  setSchedulingPreference(SchedulingForRegPressure);
64  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65  setStackPointerRegisterToSaveRestore(X86StackPtr);
66
67  if (Subtarget->isTargetDarwin()) {
68    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69    setUseUnderscoreSetJmp(false);
70    setUseUnderscoreLongJmp(false);
71  } else if (Subtarget->isTargetMingw()) {
72    // MS runtime is weird: it exports _setjmp, but longjmp!
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(false);
75  } else {
76    setUseUnderscoreSetJmp(true);
77    setUseUnderscoreLongJmp(true);
78  }
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
88
89  // We don't accept any truncstore of integer registers.
90  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
96
97  // SETOEQ and SETUNE require checking two conditions.
98  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
99  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
100  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
101  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
102  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
103  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
104
105  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
106  // operation.
107  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
108  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
109  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
110
111  if (Subtarget->is64Bit()) {
112    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
113    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
114  } else {
115    if (X86ScalarSSEf64) {
116      // We have an impenetrably clever algorithm for ui64->double only.
117      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
118      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
119      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
120    } else
121      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
122  }
123
124  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
125  // this operation.
126  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
127  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
128  // SSE has no i16 to fp conversion, only i32
129  if (X86ScalarSSEf32) {
130    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
131    // f32 and f64 cases are Legal, f80 case is not
132    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
133  } else {
134    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
135    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
136  }
137
138  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
139  // are Legal, f80 is custom lowered.
140  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
141  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
142
143  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
144  // this operation.
145  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
146  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
147
148  if (X86ScalarSSEf32) {
149    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
150    // f32 and f64 cases are Legal, f80 case is not
151    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
152  } else {
153    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
154    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
155  }
156
157  // Handle FP_TO_UINT by promoting the destination to a larger signed
158  // conversion.
159  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
160  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
161  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
162
163  if (Subtarget->is64Bit()) {
164    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
165    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
166  } else {
167    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
168      // Expand FP_TO_UINT into a select.
169      // FIXME: We would like to use a Custom expander here eventually to do
170      // the optimal thing for SSE vs. the default expansion in the legalizer.
171      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
172    else
173      // With SSE3 we can use fisttpll to convert to a signed i64.
174      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
175  }
176
177  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
178  if (!X86ScalarSSEf64) {
179    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
180    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
181  }
182
183  // Scalar integer divide and remainder are lowered to use operations that
184  // produce two results, to match the available instructions. This exposes
185  // the two-result form to trivial CSE, which is able to combine x/y and x%y
186  // into a single instruction.
187  //
188  // Scalar integer multiply-high is also lowered to use two-result
189  // operations, to match the available instructions. However, plain multiply
190  // (low) operations are left as Legal, as there are single-result
191  // instructions for this in x86. Using the two-result multiply instructions
192  // when both high and low results are needed must be arranged by dagcombine.
193  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
194  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
195  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
196  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
197  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
198  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
199  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
200  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
201  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
202  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
203  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
204  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
205  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
206  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
207  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
208  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
209  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
210  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
211  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
212  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
213  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
214  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
215  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
216  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
217
218  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
219  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
220  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
221  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
222  if (Subtarget->is64Bit())
223    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
224  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
225  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
226  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
227  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
228  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
229  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
230  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
231  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
232
233  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
234  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
235  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
236  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
237  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
238  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
239  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
240  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
241  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
242  if (Subtarget->is64Bit()) {
243    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
244    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
245    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
246  }
247
248  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
249  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
250
251  // These should be promoted to a larger select which is supported.
252  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
253  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
254  // X86 wants to expand cmov itself.
255  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
256  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
257  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
258  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
259  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
260  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
261  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
262  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
263  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
264  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
265  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
266  if (Subtarget->is64Bit()) {
267    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
268    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
269  }
270  // X86 ret instruction may pop stack.
271  setOperationAction(ISD::RET             , MVT::Other, Custom);
272  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
273
274  // Darwin ABI issue.
275  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
276  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
277  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
278  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
279  if (Subtarget->is64Bit())
280    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
281  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
282  if (Subtarget->is64Bit()) {
283    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
284    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
285    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
286    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
287  }
288  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
289  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
290  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
291  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
292  if (Subtarget->is64Bit()) {
293    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
294    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
295    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
296  }
297
298  if (Subtarget->hasSSE1())
299    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
300
301  if (!Subtarget->hasSSE2())
302    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
303
304  // Expand certain atomics
305  setOperationAction(ISD::ATOMIC_CMP_SWAP_8 , MVT::i8, Custom);
306  setOperationAction(ISD::ATOMIC_CMP_SWAP_16, MVT::i16, Custom);
307  setOperationAction(ISD::ATOMIC_CMP_SWAP_32, MVT::i32, Custom);
308  setOperationAction(ISD::ATOMIC_CMP_SWAP_64, MVT::i64, Custom);
309
310  setOperationAction(ISD::ATOMIC_LOAD_SUB_8 , MVT::i8, Custom);
311  setOperationAction(ISD::ATOMIC_LOAD_SUB_16, MVT::i16, Custom);
312  setOperationAction(ISD::ATOMIC_LOAD_SUB_32, MVT::i32, Custom);
313  setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Custom);
314
315  if (!Subtarget->is64Bit()) {
316    setOperationAction(ISD::ATOMIC_LOAD_ADD_64, MVT::i64, Custom);
317    setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Custom);
318    setOperationAction(ISD::ATOMIC_LOAD_AND_64, MVT::i64, Custom);
319    setOperationAction(ISD::ATOMIC_LOAD_OR_64, MVT::i64, Custom);
320    setOperationAction(ISD::ATOMIC_LOAD_XOR_64, MVT::i64, Custom);
321    setOperationAction(ISD::ATOMIC_LOAD_NAND_64, MVT::i64, Custom);
322    setOperationAction(ISD::ATOMIC_SWAP_64, MVT::i64, Custom);
323  }
324
325  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
326  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
327  // FIXME - use subtarget debug flags
328  if (!Subtarget->isTargetDarwin() &&
329      !Subtarget->isTargetELF() &&
330      !Subtarget->isTargetCygMing()) {
331    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
332    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
333  }
334
335  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
336  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
337  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
338  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
339  if (Subtarget->is64Bit()) {
340    setExceptionPointerRegister(X86::RAX);
341    setExceptionSelectorRegister(X86::RDX);
342  } else {
343    setExceptionPointerRegister(X86::EAX);
344    setExceptionSelectorRegister(X86::EDX);
345  }
346  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
347  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
348
349  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
350
351  setOperationAction(ISD::TRAP, MVT::Other, Legal);
352
353  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
354  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
355  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
356  if (Subtarget->is64Bit()) {
357    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
358    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
359  } else {
360    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
361    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
362  }
363
364  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
365  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
366  if (Subtarget->is64Bit())
367    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
368  if (Subtarget->isTargetCygMing())
369    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
370  else
371    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
372
373  if (X86ScalarSSEf64) {
374    // f32 and f64 use SSE.
375    // Set up the FP register classes.
376    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
377    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
378
379    // Use ANDPD to simulate FABS.
380    setOperationAction(ISD::FABS , MVT::f64, Custom);
381    setOperationAction(ISD::FABS , MVT::f32, Custom);
382
383    // Use XORP to simulate FNEG.
384    setOperationAction(ISD::FNEG , MVT::f64, Custom);
385    setOperationAction(ISD::FNEG , MVT::f32, Custom);
386
387    // Use ANDPD and ORPD to simulate FCOPYSIGN.
388    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
389    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
390
391    // We don't support sin/cos/fmod
392    setOperationAction(ISD::FSIN , MVT::f64, Expand);
393    setOperationAction(ISD::FCOS , MVT::f64, Expand);
394    setOperationAction(ISD::FSIN , MVT::f32, Expand);
395    setOperationAction(ISD::FCOS , MVT::f32, Expand);
396
397    // Expand FP immediates into loads from the stack, except for the special
398    // cases we handle.
399    addLegalFPImmediate(APFloat(+0.0)); // xorpd
400    addLegalFPImmediate(APFloat(+0.0f)); // xorps
401
402    // Floating truncations from f80 and extensions to f80 go through memory.
403    // If optimizing, we lie about this though and handle it in
404    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
405    if (Fast) {
406      setConvertAction(MVT::f32, MVT::f80, Expand);
407      setConvertAction(MVT::f64, MVT::f80, Expand);
408      setConvertAction(MVT::f80, MVT::f32, Expand);
409      setConvertAction(MVT::f80, MVT::f64, Expand);
410    }
411  } else if (X86ScalarSSEf32) {
412    // Use SSE for f32, x87 for f64.
413    // Set up the FP register classes.
414    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
415    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
416
417    // Use ANDPS to simulate FABS.
418    setOperationAction(ISD::FABS , MVT::f32, Custom);
419
420    // Use XORP to simulate FNEG.
421    setOperationAction(ISD::FNEG , MVT::f32, Custom);
422
423    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
424
425    // Use ANDPS and ORPS to simulate FCOPYSIGN.
426    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
427    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
428
429    // We don't support sin/cos/fmod
430    setOperationAction(ISD::FSIN , MVT::f32, Expand);
431    setOperationAction(ISD::FCOS , MVT::f32, Expand);
432
433    // Special cases we handle for FP constants.
434    addLegalFPImmediate(APFloat(+0.0f)); // xorps
435    addLegalFPImmediate(APFloat(+0.0)); // FLD0
436    addLegalFPImmediate(APFloat(+1.0)); // FLD1
437    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
438    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
439
440    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
441    // this though and handle it in InstructionSelectPreprocess so that
442    // dagcombine2 can hack on these.
443    if (Fast) {
444      setConvertAction(MVT::f32, MVT::f64, Expand);
445      setConvertAction(MVT::f32, MVT::f80, Expand);
446      setConvertAction(MVT::f80, MVT::f32, Expand);
447      setConvertAction(MVT::f64, MVT::f32, Expand);
448      // And x87->x87 truncations also.
449      setConvertAction(MVT::f80, MVT::f64, Expand);
450    }
451
452    if (!UnsafeFPMath) {
453      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
454      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
455    }
456  } else {
457    // f32 and f64 in x87.
458    // Set up the FP register classes.
459    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
460    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
464    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
465    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
466
467    // Floating truncations go through memory.  If optimizing, we lie about
468    // this though and handle it in InstructionSelectPreprocess so that
469    // dagcombine2 can hack on these.
470    if (Fast) {
471      setConvertAction(MVT::f80, MVT::f32, Expand);
472      setConvertAction(MVT::f64, MVT::f32, Expand);
473      setConvertAction(MVT::f80, MVT::f64, Expand);
474    }
475
476    if (!UnsafeFPMath) {
477      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
478      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
479    }
480    addLegalFPImmediate(APFloat(+0.0)); // FLD0
481    addLegalFPImmediate(APFloat(+1.0)); // FLD1
482    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
483    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
484    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
488  }
489
490  // Long double always uses X87.
491  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
492  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
493  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
494  {
495    bool ignored;
496    APFloat TmpFlt(+0.0);
497    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
498                   &ignored);
499    addLegalFPImmediate(TmpFlt);  // FLD0
500    TmpFlt.changeSign();
501    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
502    APFloat TmpFlt2(+1.0);
503    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
504                    &ignored);
505    addLegalFPImmediate(TmpFlt2);  // FLD1
506    TmpFlt2.changeSign();
507    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
508  }
509
510  if (!UnsafeFPMath) {
511    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
512    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
513  }
514
515  // Always use a library call for pow.
516  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
517  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
518  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
519
520  setOperationAction(ISD::FLOG, MVT::f80, Expand);
521  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
522  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
523  setOperationAction(ISD::FEXP, MVT::f80, Expand);
524  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
525
526  // First set operation action for all vector types to either to promote
527  // (for widening) or expand (for scalarization). Then we will selectively
528  // turn on ones that can be effectively codegen'd.
529  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
530       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
531    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
532    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
533    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
534    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
546    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::CONCAT_VECTORS,(MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
576  }
577
578  if (Subtarget->hasMMX()) {
579    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
580    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
581    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
582    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
583    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
584
585    // FIXME: add MMX packed arithmetics
586
587    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
588    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
589    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
590    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
591
592    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
593    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
594    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
595    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
596
597    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
598    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
599
600    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
601    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
602    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
603    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
604    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
605    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
606    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
607
608    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
609    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
610    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
611    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
612    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
613    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
614    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
615
616    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
617    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
618    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
619    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
620    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
621    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
622    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
623
624    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
625    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
626    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
627    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
628    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
629    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
630    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
631    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
632    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
633
634    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
635    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
636    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
637    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
638    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
639
640    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
641    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
642    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
643    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
644
645    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
646    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
647    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
648    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
649
650    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
651  }
652
653  if (Subtarget->hasSSE1()) {
654    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
655
656    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
657    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
658    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
659    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
660    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
661    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
662    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
663    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
664    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
665    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
666    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
667    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
668  }
669
670  if (Subtarget->hasSSE2()) {
671    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
672    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
673    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
674    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
675    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
676
677    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
678    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
679    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
680    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
681    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
682    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
683    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
684    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
685    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
686    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
687    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
688    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
689    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
690    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
691    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
692
693    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
694    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
695    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
696    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
697
698    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
699    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
700    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
701    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
702    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
703
704    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
705    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
706      MVT VT = (MVT::SimpleValueType)i;
707      // Do not attempt to custom lower non-power-of-2 vectors
708      if (!isPowerOf2_32(VT.getVectorNumElements()))
709        continue;
710      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
711      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
712      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
713    }
714    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
715    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
716    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
717    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
718    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
719    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
720    if (Subtarget->is64Bit()) {
721      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
722      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
723    }
724
725    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
726    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
727      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
728      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
729      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
730      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
731      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
732      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
733      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
734      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
735      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
736      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
737    }
738
739    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
740
741    // Custom lower v2i64 and v2f64 selects.
742    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
743    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
744    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
745    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
746
747  }
748
749  if (Subtarget->hasSSE41()) {
750    // FIXME: Do we need to handle scalar-to-vector here?
751    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
752    setOperationAction(ISD::MUL,                MVT::v2i64, Legal);
753
754    // i8 and i16 vectors are custom , because the source register and source
755    // source memory operand types are not the same width.  f32 vectors are
756    // custom since the immediate controlling the insert encodes additional
757    // information.
758    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
759    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
760    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
761    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
762
763    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
764    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
765    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
766    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
767
768    if (Subtarget->is64Bit()) {
769      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
770      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
771    }
772  }
773
774  if (Subtarget->hasSSE42()) {
775    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
776  }
777
778  // We want to custom lower some of our intrinsics.
779  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
780
781  // We have target-specific dag combine patterns for the following nodes:
782  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
783  setTargetDAGCombine(ISD::BUILD_VECTOR);
784  setTargetDAGCombine(ISD::SELECT);
785  setTargetDAGCombine(ISD::STORE);
786
787  computeRegisterProperties();
788
789  // FIXME: These should be based on subtarget info. Plus, the values should
790  // be smaller when we are in optimizing for size mode.
791  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
792  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
793  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
794  allowUnalignedMemoryAccesses = true; // x86 supports it!
795  setPrefLoopAlignment(16);
796}
797
798
799MVT X86TargetLowering::getSetCCResultType(const SDValue &) const {
800  return MVT::i8;
801}
802
803
804/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
805/// the desired ByVal argument alignment.
806static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
807  if (MaxAlign == 16)
808    return;
809  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
810    if (VTy->getBitWidth() == 128)
811      MaxAlign = 16;
812  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
813    unsigned EltAlign = 0;
814    getMaxByValAlign(ATy->getElementType(), EltAlign);
815    if (EltAlign > MaxAlign)
816      MaxAlign = EltAlign;
817  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
818    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
819      unsigned EltAlign = 0;
820      getMaxByValAlign(STy->getElementType(i), EltAlign);
821      if (EltAlign > MaxAlign)
822        MaxAlign = EltAlign;
823      if (MaxAlign == 16)
824        break;
825    }
826  }
827  return;
828}
829
830/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
831/// function arguments in the caller parameter area. For X86, aggregates
832/// that contain SSE vectors are placed at 16-byte boundaries while the rest
833/// are at 4-byte boundaries.
834unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
835  if (Subtarget->is64Bit()) {
836    // Max of 8 and alignment of type.
837    unsigned TyAlign = TD->getABITypeAlignment(Ty);
838    if (TyAlign > 8)
839      return TyAlign;
840    return 8;
841  }
842
843  unsigned Align = 4;
844  if (Subtarget->hasSSE1())
845    getMaxByValAlign(Ty, Align);
846  return Align;
847}
848
849/// getOptimalMemOpType - Returns the target specific optimal type for load
850/// and store operations as a result of memset, memcpy, and memmove
851/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
852/// determining it.
853MVT
854X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
855                                       bool isSrcConst, bool isSrcStr) const {
856  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
857  // linux.  This is because the stack realignment code can't handle certain
858  // cases like PR2962.  This should be removed when PR2962 is fixed.
859  if (Subtarget->getStackAlignment() >= 16) {
860    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
861      return MVT::v4i32;
862    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
863      return MVT::v4f32;
864  }
865  if (Subtarget->is64Bit() && Size >= 8)
866    return MVT::i64;
867  return MVT::i32;
868}
869
870
871/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
872/// jumptable.
873SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
874                                                      SelectionDAG &DAG) const {
875  if (usesGlobalOffsetTable())
876    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
877  if (!Subtarget->isPICStyleRIPRel())
878    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
879  return Table;
880}
881
882//===----------------------------------------------------------------------===//
883//               Return Value Calling Convention Implementation
884//===----------------------------------------------------------------------===//
885
886#include "X86GenCallingConv.inc"
887
888/// LowerRET - Lower an ISD::RET node.
889SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
890  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
891
892  SmallVector<CCValAssign, 16> RVLocs;
893  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
894  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
895  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
896  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
897
898  // If this is the first return lowered for this function, add the regs to the
899  // liveout set for the function.
900  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
901    for (unsigned i = 0; i != RVLocs.size(); ++i)
902      if (RVLocs[i].isRegLoc())
903        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
904  }
905  SDValue Chain = Op.getOperand(0);
906
907  // Handle tail call return.
908  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
909  if (Chain.getOpcode() == X86ISD::TAILCALL) {
910    SDValue TailCall = Chain;
911    SDValue TargetAddress = TailCall.getOperand(1);
912    SDValue StackAdjustment = TailCall.getOperand(2);
913    assert(((TargetAddress.getOpcode() == ISD::Register &&
914               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
915                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
916              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
917              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
918             "Expecting an global address, external symbol, or register");
919    assert(StackAdjustment.getOpcode() == ISD::Constant &&
920           "Expecting a const value");
921
922    SmallVector<SDValue,8> Operands;
923    Operands.push_back(Chain.getOperand(0));
924    Operands.push_back(TargetAddress);
925    Operands.push_back(StackAdjustment);
926    // Copy registers used by the call. Last operand is a flag so it is not
927    // copied.
928    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
929      Operands.push_back(Chain.getOperand(i));
930    }
931    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
932                       Operands.size());
933  }
934
935  // Regular return.
936  SDValue Flag;
937
938  SmallVector<SDValue, 6> RetOps;
939  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
940  // Operand #1 = Bytes To Pop
941  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
942
943  // Copy the result values into the output registers.
944  for (unsigned i = 0; i != RVLocs.size(); ++i) {
945    CCValAssign &VA = RVLocs[i];
946    assert(VA.isRegLoc() && "Can only return in registers!");
947    SDValue ValToCopy = Op.getOperand(i*2+1);
948
949    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
950    // the RET instruction and handled by the FP Stackifier.
951    if (RVLocs[i].getLocReg() == X86::ST0 ||
952        RVLocs[i].getLocReg() == X86::ST1) {
953      // If this is a copy from an xmm register to ST(0), use an FPExtend to
954      // change the value to the FP stack register class.
955      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
956        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
957      RetOps.push_back(ValToCopy);
958      // Don't emit a copytoreg.
959      continue;
960    }
961
962    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
963    Flag = Chain.getValue(1);
964  }
965
966  // The x86-64 ABI for returning structs by value requires that we copy
967  // the sret argument into %rax for the return. We saved the argument into
968  // a virtual register in the entry block, so now we copy the value out
969  // and into %rax.
970  if (Subtarget->is64Bit() &&
971      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
972    MachineFunction &MF = DAG.getMachineFunction();
973    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
974    unsigned Reg = FuncInfo->getSRetReturnReg();
975    if (!Reg) {
976      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
977      FuncInfo->setSRetReturnReg(Reg);
978    }
979    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
980
981    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
982    Flag = Chain.getValue(1);
983  }
984
985  RetOps[0] = Chain;  // Update chain.
986
987  // Add the flag if we have it.
988  if (Flag.getNode())
989    RetOps.push_back(Flag);
990
991  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
992}
993
994
995/// LowerCallResult - Lower the result values of an ISD::CALL into the
996/// appropriate copies out of appropriate physical registers.  This assumes that
997/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
998/// being lowered.  The returns a SDNode with the same number of values as the
999/// ISD::CALL.
1000SDNode *X86TargetLowering::
1001LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1002                unsigned CallingConv, SelectionDAG &DAG) {
1003
1004  // Assign locations to each value returned by this call.
1005  SmallVector<CCValAssign, 16> RVLocs;
1006  bool isVarArg = TheCall->isVarArg();
1007  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1008  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1009
1010  SmallVector<SDValue, 8> ResultVals;
1011
1012  // Copy all of the result registers out of their specified physreg.
1013  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1014    MVT CopyVT = RVLocs[i].getValVT();
1015
1016    // If this is a call to a function that returns an fp value on the floating
1017    // point stack, but where we prefer to use the value in xmm registers, copy
1018    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1019    if ((RVLocs[i].getLocReg() == X86::ST0 ||
1020         RVLocs[i].getLocReg() == X86::ST1) &&
1021        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1022      CopyVT = MVT::f80;
1023    }
1024
1025    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
1026                               CopyVT, InFlag).getValue(1);
1027    SDValue Val = Chain.getValue(0);
1028    InFlag = Chain.getValue(2);
1029
1030    if (CopyVT != RVLocs[i].getValVT()) {
1031      // Round the F80 the right size, which also moves to the appropriate xmm
1032      // register.
1033      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
1034                        // This truncation won't change the value.
1035                        DAG.getIntPtrConstant(1));
1036    }
1037
1038    ResultVals.push_back(Val);
1039  }
1040
1041  // Merge everything together with a MERGE_VALUES node.
1042  ResultVals.push_back(Chain);
1043  return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0],
1044                            ResultVals.size()).getNode();
1045}
1046
1047
1048//===----------------------------------------------------------------------===//
1049//                C & StdCall & Fast Calling Convention implementation
1050//===----------------------------------------------------------------------===//
1051//  StdCall calling convention seems to be standard for many Windows' API
1052//  routines and around. It differs from C calling convention just a little:
1053//  callee should clean up the stack, not caller. Symbols should be also
1054//  decorated in some fancy way :) It doesn't support any vector arguments.
1055//  For info on fast calling convention see Fast Calling Convention (tail call)
1056//  implementation LowerX86_32FastCCCallTo.
1057
1058/// AddLiveIn - This helper function adds the specified physical register to the
1059/// MachineFunction as a live in value.  It also creates a corresponding virtual
1060/// register for it.
1061static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1062                          const TargetRegisterClass *RC) {
1063  assert(RC->contains(PReg) && "Not the correct regclass!");
1064  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1065  MF.getRegInfo().addLiveIn(PReg, VReg);
1066  return VReg;
1067}
1068
1069/// CallIsStructReturn - Determines whether a CALL node uses struct return
1070/// semantics.
1071static bool CallIsStructReturn(CallSDNode *TheCall) {
1072  unsigned NumOps = TheCall->getNumArgs();
1073  if (!NumOps)
1074    return false;
1075
1076  return TheCall->getArgFlags(0).isSRet();
1077}
1078
1079/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1080/// return semantics.
1081static bool ArgsAreStructReturn(SDValue Op) {
1082  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1083  if (!NumArgs)
1084    return false;
1085
1086  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1087}
1088
1089/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1090/// the callee to pop its own arguments. Callee pop is necessary to support tail
1091/// calls.
1092bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1093  if (IsVarArg)
1094    return false;
1095
1096  switch (CallingConv) {
1097  default:
1098    return false;
1099  case CallingConv::X86_StdCall:
1100    return !Subtarget->is64Bit();
1101  case CallingConv::X86_FastCall:
1102    return !Subtarget->is64Bit();
1103  case CallingConv::Fast:
1104    return PerformTailCallOpt;
1105  }
1106}
1107
1108/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1109/// given CallingConvention value.
1110CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1111  if (Subtarget->is64Bit()) {
1112    if (Subtarget->isTargetWin64())
1113      return CC_X86_Win64_C;
1114    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1115      return CC_X86_64_TailCall;
1116    else
1117      return CC_X86_64_C;
1118  }
1119
1120  if (CC == CallingConv::X86_FastCall)
1121    return CC_X86_32_FastCall;
1122  else if (CC == CallingConv::Fast)
1123    return CC_X86_32_FastCC;
1124  else
1125    return CC_X86_32_C;
1126}
1127
1128/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1129/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1130NameDecorationStyle
1131X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1132  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1133  if (CC == CallingConv::X86_FastCall)
1134    return FastCall;
1135  else if (CC == CallingConv::X86_StdCall)
1136    return StdCall;
1137  return None;
1138}
1139
1140
1141/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1142/// in a register before calling.
1143bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1144  return !IsTailCall && !Is64Bit &&
1145    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1146    Subtarget->isPICStyleGOT();
1147}
1148
1149/// CallRequiresFnAddressInReg - Check whether the call requires the function
1150/// address to be loaded in a register.
1151bool
1152X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1153  return !Is64Bit && IsTailCall &&
1154    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1155    Subtarget->isPICStyleGOT();
1156}
1157
1158/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1159/// by "Src" to address "Dst" with size and alignment information specified by
1160/// the specific parameter attribute. The copy will be passed as a byval
1161/// function parameter.
1162static SDValue
1163CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1164                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1165  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1166  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1167                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1168}
1169
1170SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1171                                              const CCValAssign &VA,
1172                                              MachineFrameInfo *MFI,
1173                                              unsigned CC,
1174                                              SDValue Root, unsigned i) {
1175  // Create the nodes corresponding to a load from this parameter slot.
1176  ISD::ArgFlagsTy Flags =
1177    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1178  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1179  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1180
1181  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1182  // changed with more analysis.
1183  // In case of tail call optimization mark all arguments mutable. Since they
1184  // could be overwritten by lowering of arguments in case of a tail call.
1185  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1186                                  VA.getLocMemOffset(), isImmutable);
1187  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1188  if (Flags.isByVal())
1189    return FIN;
1190  return DAG.getLoad(VA.getValVT(), Root, FIN,
1191                     PseudoSourceValue::getFixedStack(FI), 0);
1192}
1193
1194SDValue
1195X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1196  MachineFunction &MF = DAG.getMachineFunction();
1197  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1198
1199  const Function* Fn = MF.getFunction();
1200  if (Fn->hasExternalLinkage() &&
1201      Subtarget->isTargetCygMing() &&
1202      Fn->getName() == "main")
1203    FuncInfo->setForceFramePointer(true);
1204
1205  // Decorate the function name.
1206  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1207
1208  MachineFrameInfo *MFI = MF.getFrameInfo();
1209  SDValue Root = Op.getOperand(0);
1210  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1211  unsigned CC = MF.getFunction()->getCallingConv();
1212  bool Is64Bit = Subtarget->is64Bit();
1213  bool IsWin64 = Subtarget->isTargetWin64();
1214
1215  assert(!(isVarArg && CC == CallingConv::Fast) &&
1216         "Var args not supported with calling convention fastcc");
1217
1218  // Assign locations to all of the incoming arguments.
1219  SmallVector<CCValAssign, 16> ArgLocs;
1220  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1221  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1222
1223  SmallVector<SDValue, 8> ArgValues;
1224  unsigned LastVal = ~0U;
1225  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1226    CCValAssign &VA = ArgLocs[i];
1227    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1228    // places.
1229    assert(VA.getValNo() != LastVal &&
1230           "Don't support value assigned to multiple locs yet");
1231    LastVal = VA.getValNo();
1232
1233    if (VA.isRegLoc()) {
1234      MVT RegVT = VA.getLocVT();
1235      TargetRegisterClass *RC;
1236      if (RegVT == MVT::i32)
1237        RC = X86::GR32RegisterClass;
1238      else if (Is64Bit && RegVT == MVT::i64)
1239        RC = X86::GR64RegisterClass;
1240      else if (RegVT == MVT::f32)
1241        RC = X86::FR32RegisterClass;
1242      else if (RegVT == MVT::f64)
1243        RC = X86::FR64RegisterClass;
1244      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1245        RC = X86::VR128RegisterClass;
1246      else if (RegVT.isVector()) {
1247        assert(RegVT.getSizeInBits() == 64);
1248        if (!Is64Bit)
1249          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1250        else {
1251          // Darwin calling convention passes MMX values in either GPRs or
1252          // XMMs in x86-64. Other targets pass them in memory.
1253          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1254            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1255            RegVT = MVT::v2i64;
1256          } else {
1257            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1258            RegVT = MVT::i64;
1259          }
1260        }
1261      } else {
1262        assert(0 && "Unknown argument type!");
1263      }
1264
1265      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1266      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1267
1268      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1269      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1270      // right size.
1271      if (VA.getLocInfo() == CCValAssign::SExt)
1272        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1273                               DAG.getValueType(VA.getValVT()));
1274      else if (VA.getLocInfo() == CCValAssign::ZExt)
1275        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1276                               DAG.getValueType(VA.getValVT()));
1277
1278      if (VA.getLocInfo() != CCValAssign::Full)
1279        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1280
1281      // Handle MMX values passed in GPRs.
1282      if (Is64Bit && RegVT != VA.getLocVT()) {
1283        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1284          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1285        else if (RC == X86::VR128RegisterClass) {
1286          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1287                                 DAG.getConstant(0, MVT::i64));
1288          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1289        }
1290      }
1291
1292      ArgValues.push_back(ArgValue);
1293    } else {
1294      assert(VA.isMemLoc());
1295      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1296    }
1297  }
1298
1299  // The x86-64 ABI for returning structs by value requires that we copy
1300  // the sret argument into %rax for the return. Save the argument into
1301  // a virtual register so that we can access it from the return points.
1302  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1303    MachineFunction &MF = DAG.getMachineFunction();
1304    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1305    unsigned Reg = FuncInfo->getSRetReturnReg();
1306    if (!Reg) {
1307      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1308      FuncInfo->setSRetReturnReg(Reg);
1309    }
1310    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1311    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1312  }
1313
1314  unsigned StackSize = CCInfo.getNextStackOffset();
1315  // align stack specially for tail calls
1316  if (PerformTailCallOpt && CC == CallingConv::Fast)
1317    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1318
1319  // If the function takes variable number of arguments, make a frame index for
1320  // the start of the first vararg value... for expansion of llvm.va_start.
1321  if (isVarArg) {
1322    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1323      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1324    }
1325    if (Is64Bit) {
1326      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1327
1328      // FIXME: We should really autogenerate these arrays
1329      static const unsigned GPR64ArgRegsWin64[] = {
1330        X86::RCX, X86::RDX, X86::R8,  X86::R9
1331      };
1332      static const unsigned XMMArgRegsWin64[] = {
1333        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1334      };
1335      static const unsigned GPR64ArgRegs64Bit[] = {
1336        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1337      };
1338      static const unsigned XMMArgRegs64Bit[] = {
1339        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1340        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1341      };
1342      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1343
1344      if (IsWin64) {
1345        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1346        GPR64ArgRegs = GPR64ArgRegsWin64;
1347        XMMArgRegs = XMMArgRegsWin64;
1348      } else {
1349        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1350        GPR64ArgRegs = GPR64ArgRegs64Bit;
1351        XMMArgRegs = XMMArgRegs64Bit;
1352      }
1353      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1354                                                       TotalNumIntRegs);
1355      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1356                                                       TotalNumXMMRegs);
1357
1358      // For X86-64, if there are vararg parameters that are passed via
1359      // registers, then we must store them to their spots on the stack so they
1360      // may be loaded by deferencing the result of va_next.
1361      VarArgsGPOffset = NumIntRegs * 8;
1362      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1363      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1364                                                 TotalNumXMMRegs * 16, 16);
1365
1366      // Store the integer parameter registers.
1367      SmallVector<SDValue, 8> MemOps;
1368      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1369      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1370                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1371      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1372        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1373                                  X86::GR64RegisterClass);
1374        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1375        SDValue Store =
1376          DAG.getStore(Val.getValue(1), Val, FIN,
1377                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1378        MemOps.push_back(Store);
1379        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1380                          DAG.getIntPtrConstant(8));
1381      }
1382
1383      // Now store the XMM (fp + vector) parameter registers.
1384      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1385                        DAG.getIntPtrConstant(VarArgsFPOffset));
1386      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1387        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1388                                  X86::VR128RegisterClass);
1389        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1390        SDValue Store =
1391          DAG.getStore(Val.getValue(1), Val, FIN,
1392                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1393        MemOps.push_back(Store);
1394        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1395                          DAG.getIntPtrConstant(16));
1396      }
1397      if (!MemOps.empty())
1398          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1399                             &MemOps[0], MemOps.size());
1400    }
1401  }
1402
1403  ArgValues.push_back(Root);
1404
1405  // Some CCs need callee pop.
1406  if (IsCalleePop(isVarArg, CC)) {
1407    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1408    BytesCallerReserves = 0;
1409  } else {
1410    BytesToPopOnReturn  = 0; // Callee pops nothing.
1411    // If this is an sret function, the return should pop the hidden pointer.
1412    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1413      BytesToPopOnReturn = 4;
1414    BytesCallerReserves = StackSize;
1415  }
1416
1417  if (!Is64Bit) {
1418    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1419    if (CC == CallingConv::X86_FastCall)
1420      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1421  }
1422
1423  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1424
1425  // Return the new list of results.
1426  return DAG.getMergeValues(Op.getNode()->getVTList(), &ArgValues[0],
1427                            ArgValues.size()).getValue(Op.getResNo());
1428}
1429
1430SDValue
1431X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1432                                    const SDValue &StackPtr,
1433                                    const CCValAssign &VA,
1434                                    SDValue Chain,
1435                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1436  unsigned LocMemOffset = VA.getLocMemOffset();
1437  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1438  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1439  if (Flags.isByVal()) {
1440    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1441  }
1442  return DAG.getStore(Chain, Arg, PtrOff,
1443                      PseudoSourceValue::getStack(), LocMemOffset);
1444}
1445
1446/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1447/// optimization is performed and it is required.
1448SDValue
1449X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1450                                           SDValue &OutRetAddr,
1451                                           SDValue Chain,
1452                                           bool IsTailCall,
1453                                           bool Is64Bit,
1454                                           int FPDiff) {
1455  if (!IsTailCall || FPDiff==0) return Chain;
1456
1457  // Adjust the Return address stack slot.
1458  MVT VT = getPointerTy();
1459  OutRetAddr = getReturnAddressFrameIndex(DAG);
1460  // Load the "old" Return address.
1461  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1462  return SDValue(OutRetAddr.getNode(), 1);
1463}
1464
1465/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1466/// optimization is performed and it is required (FPDiff!=0).
1467static SDValue
1468EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1469                         SDValue Chain, SDValue RetAddrFrIdx,
1470                         bool Is64Bit, int FPDiff) {
1471  // Store the return address to the appropriate stack slot.
1472  if (!FPDiff) return Chain;
1473  // Calculate the new stack slot for the return address.
1474  int SlotSize = Is64Bit ? 8 : 4;
1475  int NewReturnAddrFI =
1476    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1477  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1478  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1479  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1480                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1481  return Chain;
1482}
1483
1484SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1485  MachineFunction &MF = DAG.getMachineFunction();
1486  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1487  SDValue Chain       = TheCall->getChain();
1488  unsigned CC         = TheCall->getCallingConv();
1489  bool isVarArg       = TheCall->isVarArg();
1490  bool IsTailCall     = TheCall->isTailCall() &&
1491                        CC == CallingConv::Fast && PerformTailCallOpt;
1492  SDValue Callee      = TheCall->getCallee();
1493  bool Is64Bit        = Subtarget->is64Bit();
1494  bool IsStructRet    = CallIsStructReturn(TheCall);
1495
1496  assert(!(isVarArg && CC == CallingConv::Fast) &&
1497         "Var args not supported with calling convention fastcc");
1498
1499  // Analyze operands of the call, assigning locations to each operand.
1500  SmallVector<CCValAssign, 16> ArgLocs;
1501  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1502  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1503
1504  // Get a count of how many bytes are to be pushed on the stack.
1505  unsigned NumBytes = CCInfo.getNextStackOffset();
1506  if (PerformTailCallOpt && CC == CallingConv::Fast)
1507    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1508
1509  int FPDiff = 0;
1510  if (IsTailCall) {
1511    // Lower arguments at fp - stackoffset + fpdiff.
1512    unsigned NumBytesCallerPushed =
1513      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1514    FPDiff = NumBytesCallerPushed - NumBytes;
1515
1516    // Set the delta of movement of the returnaddr stackslot.
1517    // But only set if delta is greater than previous delta.
1518    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1519      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1520  }
1521
1522  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1523
1524  SDValue RetAddrFrIdx;
1525  // Load return adress for tail calls.
1526  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1527                                  FPDiff);
1528
1529  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1530  SmallVector<SDValue, 8> MemOpChains;
1531  SDValue StackPtr;
1532
1533  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1534  // of tail call optimization arguments are handle later.
1535  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1536    CCValAssign &VA = ArgLocs[i];
1537    SDValue Arg = TheCall->getArg(i);
1538    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1539    bool isByVal = Flags.isByVal();
1540
1541    // Promote the value if needed.
1542    switch (VA.getLocInfo()) {
1543    default: assert(0 && "Unknown loc info!");
1544    case CCValAssign::Full: break;
1545    case CCValAssign::SExt:
1546      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1547      break;
1548    case CCValAssign::ZExt:
1549      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1550      break;
1551    case CCValAssign::AExt:
1552      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1553      break;
1554    }
1555
1556    if (VA.isRegLoc()) {
1557      if (Is64Bit) {
1558        MVT RegVT = VA.getLocVT();
1559        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1560          switch (VA.getLocReg()) {
1561          default:
1562            break;
1563          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1564          case X86::R8: {
1565            // Special case: passing MMX values in GPR registers.
1566            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1567            break;
1568          }
1569          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1570          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1571            // Special case: passing MMX values in XMM registers.
1572            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1573            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1574            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1575                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1576                              getMOVLMask(2, DAG));
1577            break;
1578          }
1579          }
1580      }
1581      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1582    } else {
1583      if (!IsTailCall || (IsTailCall && isByVal)) {
1584        assert(VA.isMemLoc());
1585        if (StackPtr.getNode() == 0)
1586          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1587
1588        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1589                                               Chain, Arg, Flags));
1590      }
1591    }
1592  }
1593
1594  if (!MemOpChains.empty())
1595    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1596                        &MemOpChains[0], MemOpChains.size());
1597
1598  // Build a sequence of copy-to-reg nodes chained together with token chain
1599  // and flag operands which copy the outgoing args into registers.
1600  SDValue InFlag;
1601  // Tail call byval lowering might overwrite argument registers so in case of
1602  // tail call optimization the copies to registers are lowered later.
1603  if (!IsTailCall)
1604    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1605      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1606                               InFlag);
1607      InFlag = Chain.getValue(1);
1608    }
1609
1610  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1611  // GOT pointer.
1612  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1613    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1614                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1615                             InFlag);
1616    InFlag = Chain.getValue(1);
1617  }
1618  // If we are tail calling and generating PIC/GOT style code load the address
1619  // of the callee into ecx. The value in ecx is used as target of the tail
1620  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1621  // calls on PIC/GOT architectures. Normally we would just put the address of
1622  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1623  // restored (since ebx is callee saved) before jumping to the target@PLT.
1624  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1625    // Note: The actual moving to ecx is done further down.
1626    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1627    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1628        !G->getGlobal()->hasProtectedVisibility())
1629      Callee =  LowerGlobalAddress(Callee, DAG);
1630    else if (isa<ExternalSymbolSDNode>(Callee))
1631      Callee = LowerExternalSymbol(Callee,DAG);
1632  }
1633
1634  if (Is64Bit && isVarArg) {
1635    // From AMD64 ABI document:
1636    // For calls that may call functions that use varargs or stdargs
1637    // (prototype-less calls or calls to functions containing ellipsis (...) in
1638    // the declaration) %al is used as hidden argument to specify the number
1639    // of SSE registers used. The contents of %al do not need to match exactly
1640    // the number of registers, but must be an ubound on the number of SSE
1641    // registers used and is in the range 0 - 8 inclusive.
1642
1643    // FIXME: Verify this on Win64
1644    // Count the number of XMM registers allocated.
1645    static const unsigned XMMArgRegs[] = {
1646      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1647      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1648    };
1649    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1650
1651    Chain = DAG.getCopyToReg(Chain, X86::AL,
1652                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1653    InFlag = Chain.getValue(1);
1654  }
1655
1656
1657  // For tail calls lower the arguments to the 'real' stack slot.
1658  if (IsTailCall) {
1659    SmallVector<SDValue, 8> MemOpChains2;
1660    SDValue FIN;
1661    int FI = 0;
1662    // Do not flag preceeding copytoreg stuff together with the following stuff.
1663    InFlag = SDValue();
1664    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1665      CCValAssign &VA = ArgLocs[i];
1666      if (!VA.isRegLoc()) {
1667        assert(VA.isMemLoc());
1668        SDValue Arg = TheCall->getArg(i);
1669        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1670        // Create frame index.
1671        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1672        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1673        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1674        FIN = DAG.getFrameIndex(FI, getPointerTy());
1675
1676        if (Flags.isByVal()) {
1677          // Copy relative to framepointer.
1678          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1679          if (StackPtr.getNode() == 0)
1680            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1681          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1682
1683          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1684                                                           Flags, DAG));
1685        } else {
1686          // Store relative to framepointer.
1687          MemOpChains2.push_back(
1688            DAG.getStore(Chain, Arg, FIN,
1689                         PseudoSourceValue::getFixedStack(FI), 0));
1690        }
1691      }
1692    }
1693
1694    if (!MemOpChains2.empty())
1695      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1696                          &MemOpChains2[0], MemOpChains2.size());
1697
1698    // Copy arguments to their registers.
1699    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1700      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1701                               InFlag);
1702      InFlag = Chain.getValue(1);
1703    }
1704    InFlag =SDValue();
1705
1706    // Store the return address to the appropriate stack slot.
1707    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1708                                     FPDiff);
1709  }
1710
1711  // If the callee is a GlobalAddress node (quite common, every direct call is)
1712  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1713  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1714    // We should use extra load for direct calls to dllimported functions in
1715    // non-JIT mode.
1716    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1717                                        getTargetMachine(), true))
1718      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1719                                          G->getOffset());
1720  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1721    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1722  } else if (IsTailCall) {
1723    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1724
1725    Chain = DAG.getCopyToReg(Chain,
1726                             DAG.getRegister(Opc, getPointerTy()),
1727                             Callee,InFlag);
1728    Callee = DAG.getRegister(Opc, getPointerTy());
1729    // Add register as live out.
1730    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1731  }
1732
1733  // Returns a chain & a flag for retval copy to use.
1734  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1735  SmallVector<SDValue, 8> Ops;
1736
1737  if (IsTailCall) {
1738    Ops.push_back(Chain);
1739    Ops.push_back(DAG.getIntPtrConstant(NumBytes, true));
1740    Ops.push_back(DAG.getIntPtrConstant(0, true));
1741    if (InFlag.getNode())
1742      Ops.push_back(InFlag);
1743    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1744    InFlag = Chain.getValue(1);
1745
1746    // Returns a chain & a flag for retval copy to use.
1747    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1748    Ops.clear();
1749  }
1750
1751  Ops.push_back(Chain);
1752  Ops.push_back(Callee);
1753
1754  if (IsTailCall)
1755    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1756
1757  // Add argument registers to the end of the list so that they are known live
1758  // into the call.
1759  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1760    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1761                                  RegsToPass[i].second.getValueType()));
1762
1763  // Add an implicit use GOT pointer in EBX.
1764  if (!IsTailCall && !Is64Bit &&
1765      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1766      Subtarget->isPICStyleGOT())
1767    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1768
1769  // Add an implicit use of AL for x86 vararg functions.
1770  if (Is64Bit && isVarArg)
1771    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1772
1773  if (InFlag.getNode())
1774    Ops.push_back(InFlag);
1775
1776  if (IsTailCall) {
1777    assert(InFlag.getNode() &&
1778           "Flag must be set. Depend on flag being set in LowerRET");
1779    Chain = DAG.getNode(X86ISD::TAILCALL,
1780                        TheCall->getVTList(), &Ops[0], Ops.size());
1781
1782    return SDValue(Chain.getNode(), Op.getResNo());
1783  }
1784
1785  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1786  InFlag = Chain.getValue(1);
1787
1788  // Create the CALLSEQ_END node.
1789  unsigned NumBytesForCalleeToPush;
1790  if (IsCalleePop(isVarArg, CC))
1791    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1792  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1793    // If this is is a call to a struct-return function, the callee
1794    // pops the hidden struct pointer, so we have to push it back.
1795    // This is common for Darwin/X86, Linux & Mingw32 targets.
1796    NumBytesForCalleeToPush = 4;
1797  else
1798    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1799
1800  // Returns a flag for retval copy to use.
1801  Chain = DAG.getCALLSEQ_END(Chain,
1802                             DAG.getIntPtrConstant(NumBytes, true),
1803                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1804                                                   true),
1805                             InFlag);
1806  InFlag = Chain.getValue(1);
1807
1808  // Handle result values, copying them out of physregs into vregs that we
1809  // return.
1810  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1811                 Op.getResNo());
1812}
1813
1814
1815//===----------------------------------------------------------------------===//
1816//                Fast Calling Convention (tail call) implementation
1817//===----------------------------------------------------------------------===//
1818
1819//  Like std call, callee cleans arguments, convention except that ECX is
1820//  reserved for storing the tail called function address. Only 2 registers are
1821//  free for argument passing (inreg). Tail call optimization is performed
1822//  provided:
1823//                * tailcallopt is enabled
1824//                * caller/callee are fastcc
1825//  On X86_64 architecture with GOT-style position independent code only local
1826//  (within module) calls are supported at the moment.
1827//  To keep the stack aligned according to platform abi the function
1828//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1829//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1830//  If a tail called function callee has more arguments than the caller the
1831//  caller needs to make sure that there is room to move the RETADDR to. This is
1832//  achieved by reserving an area the size of the argument delta right after the
1833//  original REtADDR, but before the saved framepointer or the spilled registers
1834//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1835//  stack layout:
1836//    arg1
1837//    arg2
1838//    RETADDR
1839//    [ new RETADDR
1840//      move area ]
1841//    (possible EBP)
1842//    ESI
1843//    EDI
1844//    local1 ..
1845
1846/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1847/// for a 16 byte align requirement.
1848unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1849                                                        SelectionDAG& DAG) {
1850  MachineFunction &MF = DAG.getMachineFunction();
1851  const TargetMachine &TM = MF.getTarget();
1852  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1853  unsigned StackAlignment = TFI.getStackAlignment();
1854  uint64_t AlignMask = StackAlignment - 1;
1855  int64_t Offset = StackSize;
1856  uint64_t SlotSize = TD->getPointerSize();
1857  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1858    // Number smaller than 12 so just add the difference.
1859    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1860  } else {
1861    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1862    Offset = ((~AlignMask) & Offset) + StackAlignment +
1863      (StackAlignment-SlotSize);
1864  }
1865  return Offset;
1866}
1867
1868/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1869/// following the call is a return. A function is eligible if caller/callee
1870/// calling conventions match, currently only fastcc supports tail calls, and
1871/// the function CALL is immediatly followed by a RET.
1872bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1873                                                      SDValue Ret,
1874                                                      SelectionDAG& DAG) const {
1875  if (!PerformTailCallOpt)
1876    return false;
1877
1878  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1879    MachineFunction &MF = DAG.getMachineFunction();
1880    unsigned CallerCC = MF.getFunction()->getCallingConv();
1881    unsigned CalleeCC= TheCall->getCallingConv();
1882    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1883      SDValue Callee = TheCall->getCallee();
1884      // On x86/32Bit PIC/GOT  tail calls are supported.
1885      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1886          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1887        return true;
1888
1889      // Can only do local tail calls (in same module, hidden or protected) on
1890      // x86_64 PIC/GOT at the moment.
1891      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1892        return G->getGlobal()->hasHiddenVisibility()
1893            || G->getGlobal()->hasProtectedVisibility();
1894    }
1895  }
1896
1897  return false;
1898}
1899
1900FastISel *
1901X86TargetLowering::createFastISel(MachineFunction &mf,
1902                                  MachineModuleInfo *mmo,
1903                                  DenseMap<const Value *, unsigned> &vm,
1904                                  DenseMap<const BasicBlock *,
1905                                           MachineBasicBlock *> &bm,
1906                                  DenseMap<const AllocaInst *, int> &am
1907#ifndef NDEBUG
1908                                  , SmallSet<Instruction*, 8> &cil
1909#endif
1910                                  ) {
1911  return X86::createFastISel(mf, mmo, vm, bm, am
1912#ifndef NDEBUG
1913                             , cil
1914#endif
1915                             );
1916}
1917
1918
1919//===----------------------------------------------------------------------===//
1920//                           Other Lowering Hooks
1921//===----------------------------------------------------------------------===//
1922
1923
1924SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1925  MachineFunction &MF = DAG.getMachineFunction();
1926  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1927  int ReturnAddrIndex = FuncInfo->getRAIndex();
1928  uint64_t SlotSize = TD->getPointerSize();
1929
1930  if (ReturnAddrIndex == 0) {
1931    // Set up a frame object for the return address.
1932    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
1933    FuncInfo->setRAIndex(ReturnAddrIndex);
1934  }
1935
1936  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1937}
1938
1939
1940/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1941/// specific condition code. It returns a false if it cannot do a direct
1942/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1943/// needed.
1944static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1945                           unsigned &X86CC, SDValue &LHS, SDValue &RHS,
1946                           SelectionDAG &DAG) {
1947  X86CC = X86::COND_INVALID;
1948  if (!isFP) {
1949    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1950      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1951        // X > -1   -> X == 0, jump !sign.
1952        RHS = DAG.getConstant(0, RHS.getValueType());
1953        X86CC = X86::COND_NS;
1954        return true;
1955      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1956        // X < 0   -> X == 0, jump on sign.
1957        X86CC = X86::COND_S;
1958        return true;
1959      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1960        // X < 1   -> X <= 0
1961        RHS = DAG.getConstant(0, RHS.getValueType());
1962        X86CC = X86::COND_LE;
1963        return true;
1964      }
1965    }
1966
1967    switch (SetCCOpcode) {
1968    default: break;
1969    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1970    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1971    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1972    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1973    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1974    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1975    case ISD::SETULT: X86CC = X86::COND_B;  break;
1976    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1977    case ISD::SETULE: X86CC = X86::COND_BE; break;
1978    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1979    }
1980  } else {
1981    // First determine if it is required or is profitable to flip the operands.
1982
1983    // If LHS is a foldable load, but RHS is not, flip the condition.
1984    if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
1985        !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
1986      SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
1987      std::swap(LHS, RHS);
1988    }
1989
1990    switch (SetCCOpcode) {
1991    default: break;
1992    case ISD::SETOLT:
1993    case ISD::SETOLE:
1994    case ISD::SETUGT:
1995    case ISD::SETUGE:
1996      std::swap(LHS, RHS);
1997      break;
1998    }
1999
2000    // On a floating point condition, the flags are set as follows:
2001    // ZF  PF  CF   op
2002    //  0 | 0 | 0 | X > Y
2003    //  0 | 0 | 1 | X < Y
2004    //  1 | 0 | 0 | X == Y
2005    //  1 | 1 | 1 | unordered
2006    switch (SetCCOpcode) {
2007    default: break;
2008    case ISD::SETUEQ:
2009    case ISD::SETEQ:
2010      X86CC = X86::COND_E;
2011      break;
2012    case ISD::SETOLT:              // flipped
2013    case ISD::SETOGT:
2014    case ISD::SETGT:
2015      X86CC = X86::COND_A;
2016      break;
2017    case ISD::SETOLE:              // flipped
2018    case ISD::SETOGE:
2019    case ISD::SETGE:
2020      X86CC = X86::COND_AE;
2021      break;
2022    case ISD::SETUGT:              // flipped
2023    case ISD::SETULT:
2024    case ISD::SETLT:
2025      X86CC = X86::COND_B;
2026      break;
2027    case ISD::SETUGE:              // flipped
2028    case ISD::SETULE:
2029    case ISD::SETLE:
2030      X86CC = X86::COND_BE;
2031      break;
2032    case ISD::SETONE:
2033    case ISD::SETNE:
2034      X86CC = X86::COND_NE;
2035      break;
2036    case ISD::SETUO:
2037      X86CC = X86::COND_P;
2038      break;
2039    case ISD::SETO:
2040      X86CC = X86::COND_NP;
2041      break;
2042    }
2043  }
2044
2045  return X86CC != X86::COND_INVALID;
2046}
2047
2048/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2049/// code. Current x86 isa includes the following FP cmov instructions:
2050/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2051static bool hasFPCMov(unsigned X86CC) {
2052  switch (X86CC) {
2053  default:
2054    return false;
2055  case X86::COND_B:
2056  case X86::COND_BE:
2057  case X86::COND_E:
2058  case X86::COND_P:
2059  case X86::COND_A:
2060  case X86::COND_AE:
2061  case X86::COND_NE:
2062  case X86::COND_NP:
2063    return true;
2064  }
2065}
2066
2067/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2068/// true if Op is undef or if its value falls within the specified range (L, H].
2069static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2070  if (Op.getOpcode() == ISD::UNDEF)
2071    return true;
2072
2073  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2074  return (Val >= Low && Val < Hi);
2075}
2076
2077/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2078/// true if Op is undef or if its value equal to the specified value.
2079static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2080  if (Op.getOpcode() == ISD::UNDEF)
2081    return true;
2082  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2083}
2084
2085/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2086/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2087bool X86::isPSHUFDMask(SDNode *N) {
2088  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2089
2090  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2091    return false;
2092
2093  // Check if the value doesn't reference the second vector.
2094  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2095    SDValue Arg = N->getOperand(i);
2096    if (Arg.getOpcode() == ISD::UNDEF) continue;
2097    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2098    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2099      return false;
2100  }
2101
2102  return true;
2103}
2104
2105/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2106/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2107bool X86::isPSHUFHWMask(SDNode *N) {
2108  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2109
2110  if (N->getNumOperands() != 8)
2111    return false;
2112
2113  // Lower quadword copied in order.
2114  for (unsigned i = 0; i != 4; ++i) {
2115    SDValue Arg = N->getOperand(i);
2116    if (Arg.getOpcode() == ISD::UNDEF) continue;
2117    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2118    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2119      return false;
2120  }
2121
2122  // Upper quadword shuffled.
2123  for (unsigned i = 4; i != 8; ++i) {
2124    SDValue Arg = N->getOperand(i);
2125    if (Arg.getOpcode() == ISD::UNDEF) continue;
2126    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2127    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2128    if (Val < 4 || Val > 7)
2129      return false;
2130  }
2131
2132  return true;
2133}
2134
2135/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2136/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2137bool X86::isPSHUFLWMask(SDNode *N) {
2138  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2139
2140  if (N->getNumOperands() != 8)
2141    return false;
2142
2143  // Upper quadword copied in order.
2144  for (unsigned i = 4; i != 8; ++i)
2145    if (!isUndefOrEqual(N->getOperand(i), i))
2146      return false;
2147
2148  // Lower quadword shuffled.
2149  for (unsigned i = 0; i != 4; ++i)
2150    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2151      return false;
2152
2153  return true;
2154}
2155
2156/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2157/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2158static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2159  if (NumElems != 2 && NumElems != 4) return false;
2160
2161  unsigned Half = NumElems / 2;
2162  for (unsigned i = 0; i < Half; ++i)
2163    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2164      return false;
2165  for (unsigned i = Half; i < NumElems; ++i)
2166    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2167      return false;
2168
2169  return true;
2170}
2171
2172bool X86::isSHUFPMask(SDNode *N) {
2173  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2174  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2175}
2176
2177/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2178/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2179/// half elements to come from vector 1 (which would equal the dest.) and
2180/// the upper half to come from vector 2.
2181static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2182  if (NumOps != 2 && NumOps != 4) return false;
2183
2184  unsigned Half = NumOps / 2;
2185  for (unsigned i = 0; i < Half; ++i)
2186    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2187      return false;
2188  for (unsigned i = Half; i < NumOps; ++i)
2189    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2190      return false;
2191  return true;
2192}
2193
2194static bool isCommutedSHUFP(SDNode *N) {
2195  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2196  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2197}
2198
2199/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2200/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2201bool X86::isMOVHLPSMask(SDNode *N) {
2202  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2203
2204  if (N->getNumOperands() != 4)
2205    return false;
2206
2207  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2208  return isUndefOrEqual(N->getOperand(0), 6) &&
2209         isUndefOrEqual(N->getOperand(1), 7) &&
2210         isUndefOrEqual(N->getOperand(2), 2) &&
2211         isUndefOrEqual(N->getOperand(3), 3);
2212}
2213
2214/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2215/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2216/// <2, 3, 2, 3>
2217bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2218  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2219
2220  if (N->getNumOperands() != 4)
2221    return false;
2222
2223  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2224  return isUndefOrEqual(N->getOperand(0), 2) &&
2225         isUndefOrEqual(N->getOperand(1), 3) &&
2226         isUndefOrEqual(N->getOperand(2), 2) &&
2227         isUndefOrEqual(N->getOperand(3), 3);
2228}
2229
2230/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2231/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2232bool X86::isMOVLPMask(SDNode *N) {
2233  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2234
2235  unsigned NumElems = N->getNumOperands();
2236  if (NumElems != 2 && NumElems != 4)
2237    return false;
2238
2239  for (unsigned i = 0; i < NumElems/2; ++i)
2240    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2241      return false;
2242
2243  for (unsigned i = NumElems/2; i < NumElems; ++i)
2244    if (!isUndefOrEqual(N->getOperand(i), i))
2245      return false;
2246
2247  return true;
2248}
2249
2250/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2251/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2252/// and MOVLHPS.
2253bool X86::isMOVHPMask(SDNode *N) {
2254  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2255
2256  unsigned NumElems = N->getNumOperands();
2257  if (NumElems != 2 && NumElems != 4)
2258    return false;
2259
2260  for (unsigned i = 0; i < NumElems/2; ++i)
2261    if (!isUndefOrEqual(N->getOperand(i), i))
2262      return false;
2263
2264  for (unsigned i = 0; i < NumElems/2; ++i) {
2265    SDValue Arg = N->getOperand(i + NumElems/2);
2266    if (!isUndefOrEqual(Arg, i + NumElems))
2267      return false;
2268  }
2269
2270  return true;
2271}
2272
2273/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2274/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2275bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2276                         bool V2IsSplat = false) {
2277  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2278    return false;
2279
2280  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2281    SDValue BitI  = Elts[i];
2282    SDValue BitI1 = Elts[i+1];
2283    if (!isUndefOrEqual(BitI, j))
2284      return false;
2285    if (V2IsSplat) {
2286      if (isUndefOrEqual(BitI1, NumElts))
2287        return false;
2288    } else {
2289      if (!isUndefOrEqual(BitI1, j + NumElts))
2290        return false;
2291    }
2292  }
2293
2294  return true;
2295}
2296
2297bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2298  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2299  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2300}
2301
2302/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2303/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2304bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2305                         bool V2IsSplat = false) {
2306  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2307    return false;
2308
2309  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2310    SDValue BitI  = Elts[i];
2311    SDValue BitI1 = Elts[i+1];
2312    if (!isUndefOrEqual(BitI, j + NumElts/2))
2313      return false;
2314    if (V2IsSplat) {
2315      if (isUndefOrEqual(BitI1, NumElts))
2316        return false;
2317    } else {
2318      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2319        return false;
2320    }
2321  }
2322
2323  return true;
2324}
2325
2326bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2327  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2328  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2329}
2330
2331/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2332/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2333/// <0, 0, 1, 1>
2334bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2335  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2336
2337  unsigned NumElems = N->getNumOperands();
2338  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2339    return false;
2340
2341  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2342    SDValue BitI  = N->getOperand(i);
2343    SDValue BitI1 = N->getOperand(i+1);
2344
2345    if (!isUndefOrEqual(BitI, j))
2346      return false;
2347    if (!isUndefOrEqual(BitI1, j))
2348      return false;
2349  }
2350
2351  return true;
2352}
2353
2354/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2355/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2356/// <2, 2, 3, 3>
2357bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2358  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2359
2360  unsigned NumElems = N->getNumOperands();
2361  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2362    return false;
2363
2364  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2365    SDValue BitI  = N->getOperand(i);
2366    SDValue BitI1 = N->getOperand(i + 1);
2367
2368    if (!isUndefOrEqual(BitI, j))
2369      return false;
2370    if (!isUndefOrEqual(BitI1, j))
2371      return false;
2372  }
2373
2374  return true;
2375}
2376
2377/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2378/// specifies a shuffle of elements that is suitable for input to MOVSS,
2379/// MOVSD, and MOVD, i.e. setting the lowest element.
2380static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2381  if (NumElts != 2 && NumElts != 4)
2382    return false;
2383
2384  if (!isUndefOrEqual(Elts[0], NumElts))
2385    return false;
2386
2387  for (unsigned i = 1; i < NumElts; ++i) {
2388    if (!isUndefOrEqual(Elts[i], i))
2389      return false;
2390  }
2391
2392  return true;
2393}
2394
2395bool X86::isMOVLMask(SDNode *N) {
2396  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2397  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2398}
2399
2400/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2401/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2402/// element of vector 2 and the other elements to come from vector 1 in order.
2403static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2404                           bool V2IsSplat = false,
2405                           bool V2IsUndef = false) {
2406  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2407    return false;
2408
2409  if (!isUndefOrEqual(Ops[0], 0))
2410    return false;
2411
2412  for (unsigned i = 1; i < NumOps; ++i) {
2413    SDValue Arg = Ops[i];
2414    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2415          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2416          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2417      return false;
2418  }
2419
2420  return true;
2421}
2422
2423static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2424                           bool V2IsUndef = false) {
2425  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2426  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2427                        V2IsSplat, V2IsUndef);
2428}
2429
2430/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2431/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2432bool X86::isMOVSHDUPMask(SDNode *N) {
2433  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2434
2435  if (N->getNumOperands() != 4)
2436    return false;
2437
2438  // Expect 1, 1, 3, 3
2439  for (unsigned i = 0; i < 2; ++i) {
2440    SDValue Arg = N->getOperand(i);
2441    if (Arg.getOpcode() == ISD::UNDEF) continue;
2442    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2443    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2444    if (Val != 1) return false;
2445  }
2446
2447  bool HasHi = false;
2448  for (unsigned i = 2; i < 4; ++i) {
2449    SDValue Arg = N->getOperand(i);
2450    if (Arg.getOpcode() == ISD::UNDEF) continue;
2451    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2452    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2453    if (Val != 3) return false;
2454    HasHi = true;
2455  }
2456
2457  // Don't use movshdup if it can be done with a shufps.
2458  return HasHi;
2459}
2460
2461/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2462/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2463bool X86::isMOVSLDUPMask(SDNode *N) {
2464  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2465
2466  if (N->getNumOperands() != 4)
2467    return false;
2468
2469  // Expect 0, 0, 2, 2
2470  for (unsigned i = 0; i < 2; ++i) {
2471    SDValue Arg = N->getOperand(i);
2472    if (Arg.getOpcode() == ISD::UNDEF) continue;
2473    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2474    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2475    if (Val != 0) return false;
2476  }
2477
2478  bool HasHi = false;
2479  for (unsigned i = 2; i < 4; ++i) {
2480    SDValue Arg = N->getOperand(i);
2481    if (Arg.getOpcode() == ISD::UNDEF) continue;
2482    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2483    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2484    if (Val != 2) return false;
2485    HasHi = true;
2486  }
2487
2488  // Don't use movshdup if it can be done with a shufps.
2489  return HasHi;
2490}
2491
2492/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2493/// specifies a identity operation on the LHS or RHS.
2494static bool isIdentityMask(SDNode *N, bool RHS = false) {
2495  unsigned NumElems = N->getNumOperands();
2496  for (unsigned i = 0; i < NumElems; ++i)
2497    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2498      return false;
2499  return true;
2500}
2501
2502/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2503/// a splat of a single element.
2504static bool isSplatMask(SDNode *N) {
2505  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2506
2507  // This is a splat operation if each element of the permute is the same, and
2508  // if the value doesn't reference the second vector.
2509  unsigned NumElems = N->getNumOperands();
2510  SDValue ElementBase;
2511  unsigned i = 0;
2512  for (; i != NumElems; ++i) {
2513    SDValue Elt = N->getOperand(i);
2514    if (isa<ConstantSDNode>(Elt)) {
2515      ElementBase = Elt;
2516      break;
2517    }
2518  }
2519
2520  if (!ElementBase.getNode())
2521    return false;
2522
2523  for (; i != NumElems; ++i) {
2524    SDValue Arg = N->getOperand(i);
2525    if (Arg.getOpcode() == ISD::UNDEF) continue;
2526    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2527    if (Arg != ElementBase) return false;
2528  }
2529
2530  // Make sure it is a splat of the first vector operand.
2531  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2532}
2533
2534/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2535/// a splat of a single element and it's a 2 or 4 element mask.
2536bool X86::isSplatMask(SDNode *N) {
2537  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2538
2539  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2540  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2541    return false;
2542  return ::isSplatMask(N);
2543}
2544
2545/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2546/// specifies a splat of zero element.
2547bool X86::isSplatLoMask(SDNode *N) {
2548  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2549
2550  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2551    if (!isUndefOrEqual(N->getOperand(i), 0))
2552      return false;
2553  return true;
2554}
2555
2556/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2557/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2558bool X86::isMOVDDUPMask(SDNode *N) {
2559  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2560
2561  unsigned e = N->getNumOperands() / 2;
2562  for (unsigned i = 0; i < e; ++i)
2563    if (!isUndefOrEqual(N->getOperand(i), i))
2564      return false;
2565  for (unsigned i = 0; i < e; ++i)
2566    if (!isUndefOrEqual(N->getOperand(e+i), i))
2567      return false;
2568  return true;
2569}
2570
2571/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2572/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2573/// instructions.
2574unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2575  unsigned NumOperands = N->getNumOperands();
2576  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2577  unsigned Mask = 0;
2578  for (unsigned i = 0; i < NumOperands; ++i) {
2579    unsigned Val = 0;
2580    SDValue Arg = N->getOperand(NumOperands-i-1);
2581    if (Arg.getOpcode() != ISD::UNDEF)
2582      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2583    if (Val >= NumOperands) Val -= NumOperands;
2584    Mask |= Val;
2585    if (i != NumOperands - 1)
2586      Mask <<= Shift;
2587  }
2588
2589  return Mask;
2590}
2591
2592/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2593/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2594/// instructions.
2595unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2596  unsigned Mask = 0;
2597  // 8 nodes, but we only care about the last 4.
2598  for (unsigned i = 7; i >= 4; --i) {
2599    unsigned Val = 0;
2600    SDValue Arg = N->getOperand(i);
2601    if (Arg.getOpcode() != ISD::UNDEF)
2602      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2603    Mask |= (Val - 4);
2604    if (i != 4)
2605      Mask <<= 2;
2606  }
2607
2608  return Mask;
2609}
2610
2611/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2612/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2613/// instructions.
2614unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2615  unsigned Mask = 0;
2616  // 8 nodes, but we only care about the first 4.
2617  for (int i = 3; i >= 0; --i) {
2618    unsigned Val = 0;
2619    SDValue Arg = N->getOperand(i);
2620    if (Arg.getOpcode() != ISD::UNDEF)
2621      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2622    Mask |= Val;
2623    if (i != 0)
2624      Mask <<= 2;
2625  }
2626
2627  return Mask;
2628}
2629
2630/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2631/// specifies a 8 element shuffle that can be broken into a pair of
2632/// PSHUFHW and PSHUFLW.
2633static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2634  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2635
2636  if (N->getNumOperands() != 8)
2637    return false;
2638
2639  // Lower quadword shuffled.
2640  for (unsigned i = 0; i != 4; ++i) {
2641    SDValue Arg = N->getOperand(i);
2642    if (Arg.getOpcode() == ISD::UNDEF) continue;
2643    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2644    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2645    if (Val >= 4)
2646      return false;
2647  }
2648
2649  // Upper quadword shuffled.
2650  for (unsigned i = 4; i != 8; ++i) {
2651    SDValue Arg = N->getOperand(i);
2652    if (Arg.getOpcode() == ISD::UNDEF) continue;
2653    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2654    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2655    if (Val < 4 || Val > 7)
2656      return false;
2657  }
2658
2659  return true;
2660}
2661
2662/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2663/// values in ther permute mask.
2664static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2665                                      SDValue &V2, SDValue &Mask,
2666                                      SelectionDAG &DAG) {
2667  MVT VT = Op.getValueType();
2668  MVT MaskVT = Mask.getValueType();
2669  MVT EltVT = MaskVT.getVectorElementType();
2670  unsigned NumElems = Mask.getNumOperands();
2671  SmallVector<SDValue, 8> MaskVec;
2672
2673  for (unsigned i = 0; i != NumElems; ++i) {
2674    SDValue Arg = Mask.getOperand(i);
2675    if (Arg.getOpcode() == ISD::UNDEF) {
2676      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2677      continue;
2678    }
2679    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2680    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2681    if (Val < NumElems)
2682      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2683    else
2684      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2685  }
2686
2687  std::swap(V1, V2);
2688  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2689  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2690}
2691
2692/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2693/// the two vector operands have swapped position.
2694static
2695SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2696  MVT MaskVT = Mask.getValueType();
2697  MVT EltVT = MaskVT.getVectorElementType();
2698  unsigned NumElems = Mask.getNumOperands();
2699  SmallVector<SDValue, 8> MaskVec;
2700  for (unsigned i = 0; i != NumElems; ++i) {
2701    SDValue Arg = Mask.getOperand(i);
2702    if (Arg.getOpcode() == ISD::UNDEF) {
2703      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2704      continue;
2705    }
2706    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2707    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2708    if (Val < NumElems)
2709      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2710    else
2711      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2712  }
2713  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2714}
2715
2716
2717/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2718/// match movhlps. The lower half elements should come from upper half of
2719/// V1 (and in order), and the upper half elements should come from the upper
2720/// half of V2 (and in order).
2721static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2722  unsigned NumElems = Mask->getNumOperands();
2723  if (NumElems != 4)
2724    return false;
2725  for (unsigned i = 0, e = 2; i != e; ++i)
2726    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2727      return false;
2728  for (unsigned i = 2; i != 4; ++i)
2729    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2730      return false;
2731  return true;
2732}
2733
2734/// isScalarLoadToVector - Returns true if the node is a scalar load that
2735/// is promoted to a vector. It also returns the LoadSDNode by reference if
2736/// required.
2737static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2738  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2739    return false;
2740  N = N->getOperand(0).getNode();
2741  if (!ISD::isNON_EXTLoad(N))
2742    return false;
2743  if (LD)
2744    *LD = cast<LoadSDNode>(N);
2745  return true;
2746}
2747
2748/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2749/// match movlp{s|d}. The lower half elements should come from lower half of
2750/// V1 (and in order), and the upper half elements should come from the upper
2751/// half of V2 (and in order). And since V1 will become the source of the
2752/// MOVLP, it must be either a vector load or a scalar load to vector.
2753static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2754  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2755    return false;
2756  // Is V2 is a vector load, don't do this transformation. We will try to use
2757  // load folding shufps op.
2758  if (ISD::isNON_EXTLoad(V2))
2759    return false;
2760
2761  unsigned NumElems = Mask->getNumOperands();
2762  if (NumElems != 2 && NumElems != 4)
2763    return false;
2764  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2765    if (!isUndefOrEqual(Mask->getOperand(i), i))
2766      return false;
2767  for (unsigned i = NumElems/2; i != NumElems; ++i)
2768    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2769      return false;
2770  return true;
2771}
2772
2773/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2774/// all the same.
2775static bool isSplatVector(SDNode *N) {
2776  if (N->getOpcode() != ISD::BUILD_VECTOR)
2777    return false;
2778
2779  SDValue SplatValue = N->getOperand(0);
2780  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2781    if (N->getOperand(i) != SplatValue)
2782      return false;
2783  return true;
2784}
2785
2786/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2787/// to an undef.
2788static bool isUndefShuffle(SDNode *N) {
2789  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2790    return false;
2791
2792  SDValue V1 = N->getOperand(0);
2793  SDValue V2 = N->getOperand(1);
2794  SDValue Mask = N->getOperand(2);
2795  unsigned NumElems = Mask.getNumOperands();
2796  for (unsigned i = 0; i != NumElems; ++i) {
2797    SDValue Arg = Mask.getOperand(i);
2798    if (Arg.getOpcode() != ISD::UNDEF) {
2799      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2800      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2801        return false;
2802      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2803        return false;
2804    }
2805  }
2806  return true;
2807}
2808
2809/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2810/// constant +0.0.
2811static inline bool isZeroNode(SDValue Elt) {
2812  return ((isa<ConstantSDNode>(Elt) &&
2813           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2814          (isa<ConstantFPSDNode>(Elt) &&
2815           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2816}
2817
2818/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2819/// to an zero vector.
2820static bool isZeroShuffle(SDNode *N) {
2821  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2822    return false;
2823
2824  SDValue V1 = N->getOperand(0);
2825  SDValue V2 = N->getOperand(1);
2826  SDValue Mask = N->getOperand(2);
2827  unsigned NumElems = Mask.getNumOperands();
2828  for (unsigned i = 0; i != NumElems; ++i) {
2829    SDValue Arg = Mask.getOperand(i);
2830    if (Arg.getOpcode() == ISD::UNDEF)
2831      continue;
2832
2833    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2834    if (Idx < NumElems) {
2835      unsigned Opc = V1.getNode()->getOpcode();
2836      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2837        continue;
2838      if (Opc != ISD::BUILD_VECTOR ||
2839          !isZeroNode(V1.getNode()->getOperand(Idx)))
2840        return false;
2841    } else if (Idx >= NumElems) {
2842      unsigned Opc = V2.getNode()->getOpcode();
2843      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2844        continue;
2845      if (Opc != ISD::BUILD_VECTOR ||
2846          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2847        return false;
2848    }
2849  }
2850  return true;
2851}
2852
2853/// getZeroVector - Returns a vector of specified type with all zero elements.
2854///
2855static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2856  assert(VT.isVector() && "Expected a vector type");
2857
2858  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2859  // type.  This ensures they get CSE'd.
2860  SDValue Vec;
2861  if (VT.getSizeInBits() == 64) { // MMX
2862    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2863    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2864  } else if (HasSSE2) {  // SSE2
2865    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2866    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2867  } else { // SSE1
2868    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2869    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2870  }
2871  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2872}
2873
2874/// getOnesVector - Returns a vector of specified type with all bits set.
2875///
2876static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2877  assert(VT.isVector() && "Expected a vector type");
2878
2879  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2880  // type.  This ensures they get CSE'd.
2881  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2882  SDValue Vec;
2883  if (VT.getSizeInBits() == 64)  // MMX
2884    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2885  else                                              // SSE
2886    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2887  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2888}
2889
2890
2891/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2892/// that point to V2 points to its first element.
2893static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2894  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2895
2896  bool Changed = false;
2897  SmallVector<SDValue, 8> MaskVec;
2898  unsigned NumElems = Mask.getNumOperands();
2899  for (unsigned i = 0; i != NumElems; ++i) {
2900    SDValue Arg = Mask.getOperand(i);
2901    if (Arg.getOpcode() != ISD::UNDEF) {
2902      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2903      if (Val > NumElems) {
2904        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2905        Changed = true;
2906      }
2907    }
2908    MaskVec.push_back(Arg);
2909  }
2910
2911  if (Changed)
2912    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2913                       &MaskVec[0], MaskVec.size());
2914  return Mask;
2915}
2916
2917/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2918/// operation of specified width.
2919static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2920  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2921  MVT BaseVT = MaskVT.getVectorElementType();
2922
2923  SmallVector<SDValue, 8> MaskVec;
2924  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2925  for (unsigned i = 1; i != NumElems; ++i)
2926    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2927  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2928}
2929
2930/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2931/// of specified width.
2932static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2933  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2934  MVT BaseVT = MaskVT.getVectorElementType();
2935  SmallVector<SDValue, 8> MaskVec;
2936  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2937    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2938    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2939  }
2940  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2941}
2942
2943/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2944/// of specified width.
2945static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2946  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2947  MVT BaseVT = MaskVT.getVectorElementType();
2948  unsigned Half = NumElems/2;
2949  SmallVector<SDValue, 8> MaskVec;
2950  for (unsigned i = 0; i != Half; ++i) {
2951    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2952    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2953  }
2954  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2955}
2956
2957/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2958/// element #0 of a vector with the specified index, leaving the rest of the
2959/// elements in place.
2960static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2961                                   SelectionDAG &DAG) {
2962  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2963  MVT BaseVT = MaskVT.getVectorElementType();
2964  SmallVector<SDValue, 8> MaskVec;
2965  // Element #0 of the result gets the elt we are replacing.
2966  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2967  for (unsigned i = 1; i != NumElems; ++i)
2968    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2969  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2970}
2971
2972/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2973static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
2974  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2975  MVT VT = Op.getValueType();
2976  if (PVT == VT)
2977    return Op;
2978  SDValue V1 = Op.getOperand(0);
2979  SDValue Mask = Op.getOperand(2);
2980  unsigned NumElems = Mask.getNumOperands();
2981  // Special handling of v4f32 -> v4i32.
2982  if (VT != MVT::v4f32) {
2983    Mask = getUnpacklMask(NumElems, DAG);
2984    while (NumElems > 4) {
2985      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2986      NumElems >>= 1;
2987    }
2988    Mask = getZeroVector(MVT::v4i32, true, DAG);
2989  }
2990
2991  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2992  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2993                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2994  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2995}
2996
2997/// isVectorLoad - Returns true if the node is a vector load, a scalar
2998/// load that's promoted to vector, or a load bitcasted.
2999static bool isVectorLoad(SDValue Op) {
3000  assert(Op.getValueType().isVector() && "Expected a vector type");
3001  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
3002      Op.getOpcode() == ISD::BIT_CONVERT) {
3003    return isa<LoadSDNode>(Op.getOperand(0));
3004  }
3005  return isa<LoadSDNode>(Op);
3006}
3007
3008
3009/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3010///
3011static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3012                                   SelectionDAG &DAG, bool HasSSE3) {
3013  // If we have sse3 and shuffle has more than one use or input is a load, then
3014  // use movddup. Otherwise, use movlhps.
3015  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3016  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3017  MVT VT = Op.getValueType();
3018  if (VT == PVT)
3019    return Op;
3020  unsigned NumElems = PVT.getVectorNumElements();
3021  if (NumElems == 2) {
3022    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3023    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
3024  } else {
3025    assert(NumElems == 4);
3026    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3027    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3028    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst0, Cst1, Cst0, Cst1);
3029  }
3030
3031  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3032  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3033                                DAG.getNode(ISD::UNDEF, PVT), Mask);
3034  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3035}
3036
3037/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3038/// vector of zero or undef vector.  This produces a shuffle where the low
3039/// element of V2 is swizzled into the zero/undef vector, landing at element
3040/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3041static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3042                                             bool isZero, bool HasSSE2,
3043                                             SelectionDAG &DAG) {
3044  MVT VT = V2.getValueType();
3045  SDValue V1 = isZero
3046    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
3047  unsigned NumElems = V2.getValueType().getVectorNumElements();
3048  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3049  MVT EVT = MaskVT.getVectorElementType();
3050  SmallVector<SDValue, 16> MaskVec;
3051  for (unsigned i = 0; i != NumElems; ++i)
3052    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3053      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3054    else
3055      MaskVec.push_back(DAG.getConstant(i, EVT));
3056  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3057                               &MaskVec[0], MaskVec.size());
3058  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3059}
3060
3061/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3062/// a shuffle that is zero.
3063static
3064unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3065                                  unsigned NumElems, bool Low,
3066                                  SelectionDAG &DAG) {
3067  unsigned NumZeros = 0;
3068  for (unsigned i = 0; i < NumElems; ++i) {
3069    unsigned Index = Low ? i : NumElems-i-1;
3070    SDValue Idx = Mask.getOperand(Index);
3071    if (Idx.getOpcode() == ISD::UNDEF) {
3072      ++NumZeros;
3073      continue;
3074    }
3075    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3076    if (Elt.getNode() && isZeroNode(Elt))
3077      ++NumZeros;
3078    else
3079      break;
3080  }
3081  return NumZeros;
3082}
3083
3084/// isVectorShift - Returns true if the shuffle can be implemented as a
3085/// logical left or right shift of a vector.
3086static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3087                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3088  unsigned NumElems = Mask.getNumOperands();
3089
3090  isLeft = true;
3091  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3092  if (!NumZeros) {
3093    isLeft = false;
3094    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3095    if (!NumZeros)
3096      return false;
3097  }
3098
3099  bool SeenV1 = false;
3100  bool SeenV2 = false;
3101  for (unsigned i = NumZeros; i < NumElems; ++i) {
3102    unsigned Val = isLeft ? (i - NumZeros) : i;
3103    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3104    if (Idx.getOpcode() == ISD::UNDEF)
3105      continue;
3106    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3107    if (Index < NumElems)
3108      SeenV1 = true;
3109    else {
3110      Index -= NumElems;
3111      SeenV2 = true;
3112    }
3113    if (Index != Val)
3114      return false;
3115  }
3116  if (SeenV1 && SeenV2)
3117    return false;
3118
3119  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3120  ShAmt = NumZeros;
3121  return true;
3122}
3123
3124
3125/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3126///
3127static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3128                                       unsigned NumNonZero, unsigned NumZero,
3129                                       SelectionDAG &DAG, TargetLowering &TLI) {
3130  if (NumNonZero > 8)
3131    return SDValue();
3132
3133  SDValue V(0, 0);
3134  bool First = true;
3135  for (unsigned i = 0; i < 16; ++i) {
3136    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3137    if (ThisIsNonZero && First) {
3138      if (NumZero)
3139        V = getZeroVector(MVT::v8i16, true, DAG);
3140      else
3141        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3142      First = false;
3143    }
3144
3145    if ((i & 1) != 0) {
3146      SDValue ThisElt(0, 0), LastElt(0, 0);
3147      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3148      if (LastIsNonZero) {
3149        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3150      }
3151      if (ThisIsNonZero) {
3152        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3153        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3154                              ThisElt, DAG.getConstant(8, MVT::i8));
3155        if (LastIsNonZero)
3156          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3157      } else
3158        ThisElt = LastElt;
3159
3160      if (ThisElt.getNode())
3161        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3162                        DAG.getIntPtrConstant(i/2));
3163    }
3164  }
3165
3166  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3167}
3168
3169/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3170///
3171static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3172                                       unsigned NumNonZero, unsigned NumZero,
3173                                       SelectionDAG &DAG, TargetLowering &TLI) {
3174  if (NumNonZero > 4)
3175    return SDValue();
3176
3177  SDValue V(0, 0);
3178  bool First = true;
3179  for (unsigned i = 0; i < 8; ++i) {
3180    bool isNonZero = (NonZeros & (1 << i)) != 0;
3181    if (isNonZero) {
3182      if (First) {
3183        if (NumZero)
3184          V = getZeroVector(MVT::v8i16, true, DAG);
3185        else
3186          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3187        First = false;
3188      }
3189      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3190                      DAG.getIntPtrConstant(i));
3191    }
3192  }
3193
3194  return V;
3195}
3196
3197/// getVShift - Return a vector logical shift node.
3198///
3199static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3200                           unsigned NumBits, SelectionDAG &DAG,
3201                           const TargetLowering &TLI) {
3202  bool isMMX = VT.getSizeInBits() == 64;
3203  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3204  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3205  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3206  return DAG.getNode(ISD::BIT_CONVERT, VT,
3207                     DAG.getNode(Opc, ShVT, SrcOp,
3208                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3209}
3210
3211SDValue
3212X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3213  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3214  if (ISD::isBuildVectorAllZeros(Op.getNode())
3215      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3216    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3217    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3218    // eliminated on x86-32 hosts.
3219    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3220      return Op;
3221
3222    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3223      return getOnesVector(Op.getValueType(), DAG);
3224    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3225  }
3226
3227  MVT VT = Op.getValueType();
3228  MVT EVT = VT.getVectorElementType();
3229  unsigned EVTBits = EVT.getSizeInBits();
3230
3231  unsigned NumElems = Op.getNumOperands();
3232  unsigned NumZero  = 0;
3233  unsigned NumNonZero = 0;
3234  unsigned NonZeros = 0;
3235  bool IsAllConstants = true;
3236  SmallSet<SDValue, 8> Values;
3237  for (unsigned i = 0; i < NumElems; ++i) {
3238    SDValue Elt = Op.getOperand(i);
3239    if (Elt.getOpcode() == ISD::UNDEF)
3240      continue;
3241    Values.insert(Elt);
3242    if (Elt.getOpcode() != ISD::Constant &&
3243        Elt.getOpcode() != ISD::ConstantFP)
3244      IsAllConstants = false;
3245    if (isZeroNode(Elt))
3246      NumZero++;
3247    else {
3248      NonZeros |= (1 << i);
3249      NumNonZero++;
3250    }
3251  }
3252
3253  if (NumNonZero == 0) {
3254    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3255    return DAG.getNode(ISD::UNDEF, VT);
3256  }
3257
3258  // Special case for single non-zero, non-undef, element.
3259  if (NumNonZero == 1 && NumElems <= 4) {
3260    unsigned Idx = CountTrailingZeros_32(NonZeros);
3261    SDValue Item = Op.getOperand(Idx);
3262
3263    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3264    // the value are obviously zero, truncate the value to i32 and do the
3265    // insertion that way.  Only do this if the value is non-constant or if the
3266    // value is a constant being inserted into element 0.  It is cheaper to do
3267    // a constant pool load than it is to do a movd + shuffle.
3268    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3269        (!IsAllConstants || Idx == 0)) {
3270      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3271        // Handle MMX and SSE both.
3272        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3273        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3274
3275        // Truncate the value (which may itself be a constant) to i32, and
3276        // convert it to a vector with movd (S2V+shuffle to zero extend).
3277        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3278        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3279        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3280                                           Subtarget->hasSSE2(), DAG);
3281
3282        // Now we have our 32-bit value zero extended in the low element of
3283        // a vector.  If Idx != 0, swizzle it into place.
3284        if (Idx != 0) {
3285          SDValue Ops[] = {
3286            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3287            getSwapEltZeroMask(VecElts, Idx, DAG)
3288          };
3289          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3290        }
3291        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3292      }
3293    }
3294
3295    // If we have a constant or non-constant insertion into the low element of
3296    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3297    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3298    // depending on what the source datatype is.  Because we can only get here
3299    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3300    if (Idx == 0 &&
3301        // Don't do this for i64 values on x86-32.
3302        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3303      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3304      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3305      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3306                                         Subtarget->hasSSE2(), DAG);
3307    }
3308
3309    // Is it a vector logical left shift?
3310    if (NumElems == 2 && Idx == 1 &&
3311        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3312      unsigned NumBits = VT.getSizeInBits();
3313      return getVShift(true, VT,
3314                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3315                       NumBits/2, DAG, *this);
3316    }
3317
3318    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3319      return SDValue();
3320
3321    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3322    // is a non-constant being inserted into an element other than the low one,
3323    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3324    // movd/movss) to move this into the low element, then shuffle it into
3325    // place.
3326    if (EVTBits == 32) {
3327      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3328
3329      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3330      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3331                                         Subtarget->hasSSE2(), DAG);
3332      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3333      MVT MaskEVT = MaskVT.getVectorElementType();
3334      SmallVector<SDValue, 8> MaskVec;
3335      for (unsigned i = 0; i < NumElems; i++)
3336        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3337      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3338                                   &MaskVec[0], MaskVec.size());
3339      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3340                         DAG.getNode(ISD::UNDEF, VT), Mask);
3341    }
3342  }
3343
3344  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3345  if (Values.size() == 1)
3346    return SDValue();
3347
3348  // A vector full of immediates; various special cases are already
3349  // handled, so this is best done with a single constant-pool load.
3350  if (IsAllConstants)
3351    return SDValue();
3352
3353  // Let legalizer expand 2-wide build_vectors.
3354  if (EVTBits == 64) {
3355    if (NumNonZero == 1) {
3356      // One half is zero or undef.
3357      unsigned Idx = CountTrailingZeros_32(NonZeros);
3358      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3359                                 Op.getOperand(Idx));
3360      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3361                                         Subtarget->hasSSE2(), DAG);
3362    }
3363    return SDValue();
3364  }
3365
3366  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3367  if (EVTBits == 8 && NumElems == 16) {
3368    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3369                                        *this);
3370    if (V.getNode()) return V;
3371  }
3372
3373  if (EVTBits == 16 && NumElems == 8) {
3374    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3375                                        *this);
3376    if (V.getNode()) return V;
3377  }
3378
3379  // If element VT is == 32 bits, turn it into a number of shuffles.
3380  SmallVector<SDValue, 8> V;
3381  V.resize(NumElems);
3382  if (NumElems == 4 && NumZero > 0) {
3383    for (unsigned i = 0; i < 4; ++i) {
3384      bool isZero = !(NonZeros & (1 << i));
3385      if (isZero)
3386        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3387      else
3388        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3389    }
3390
3391    for (unsigned i = 0; i < 2; ++i) {
3392      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3393        default: break;
3394        case 0:
3395          V[i] = V[i*2];  // Must be a zero vector.
3396          break;
3397        case 1:
3398          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3399                             getMOVLMask(NumElems, DAG));
3400          break;
3401        case 2:
3402          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3403                             getMOVLMask(NumElems, DAG));
3404          break;
3405        case 3:
3406          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3407                             getUnpacklMask(NumElems, DAG));
3408          break;
3409      }
3410    }
3411
3412    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3413    MVT EVT = MaskVT.getVectorElementType();
3414    SmallVector<SDValue, 8> MaskVec;
3415    bool Reverse = (NonZeros & 0x3) == 2;
3416    for (unsigned i = 0; i < 2; ++i)
3417      if (Reverse)
3418        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3419      else
3420        MaskVec.push_back(DAG.getConstant(i, EVT));
3421    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3422    for (unsigned i = 0; i < 2; ++i)
3423      if (Reverse)
3424        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3425      else
3426        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3427    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3428                                     &MaskVec[0], MaskVec.size());
3429    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3430  }
3431
3432  if (Values.size() > 2) {
3433    // Expand into a number of unpckl*.
3434    // e.g. for v4f32
3435    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3436    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3437    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3438    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3439    for (unsigned i = 0; i < NumElems; ++i)
3440      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3441    NumElems >>= 1;
3442    while (NumElems != 0) {
3443      for (unsigned i = 0; i < NumElems; ++i)
3444        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3445                           UnpckMask);
3446      NumElems >>= 1;
3447    }
3448    return V[0];
3449  }
3450
3451  return SDValue();
3452}
3453
3454static
3455SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3456                                 SDValue PermMask, SelectionDAG &DAG,
3457                                 TargetLowering &TLI) {
3458  SDValue NewV;
3459  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3460  MVT MaskEVT = MaskVT.getVectorElementType();
3461  MVT PtrVT = TLI.getPointerTy();
3462  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3463                                   PermMask.getNode()->op_end());
3464
3465  // First record which half of which vector the low elements come from.
3466  SmallVector<unsigned, 4> LowQuad(4);
3467  for (unsigned i = 0; i < 4; ++i) {
3468    SDValue Elt = MaskElts[i];
3469    if (Elt.getOpcode() == ISD::UNDEF)
3470      continue;
3471    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3472    int QuadIdx = EltIdx / 4;
3473    ++LowQuad[QuadIdx];
3474  }
3475
3476  int BestLowQuad = -1;
3477  unsigned MaxQuad = 1;
3478  for (unsigned i = 0; i < 4; ++i) {
3479    if (LowQuad[i] > MaxQuad) {
3480      BestLowQuad = i;
3481      MaxQuad = LowQuad[i];
3482    }
3483  }
3484
3485  // Record which half of which vector the high elements come from.
3486  SmallVector<unsigned, 4> HighQuad(4);
3487  for (unsigned i = 4; i < 8; ++i) {
3488    SDValue Elt = MaskElts[i];
3489    if (Elt.getOpcode() == ISD::UNDEF)
3490      continue;
3491    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3492    int QuadIdx = EltIdx / 4;
3493    ++HighQuad[QuadIdx];
3494  }
3495
3496  int BestHighQuad = -1;
3497  MaxQuad = 1;
3498  for (unsigned i = 0; i < 4; ++i) {
3499    if (HighQuad[i] > MaxQuad) {
3500      BestHighQuad = i;
3501      MaxQuad = HighQuad[i];
3502    }
3503  }
3504
3505  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3506  if (BestLowQuad != -1 || BestHighQuad != -1) {
3507    // First sort the 4 chunks in order using shufpd.
3508    SmallVector<SDValue, 8> MaskVec;
3509
3510    if (BestLowQuad != -1)
3511      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3512    else
3513      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3514
3515    if (BestHighQuad != -1)
3516      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3517    else
3518      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3519
3520    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3521    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3522                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3523                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3524    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3525
3526    // Now sort high and low parts separately.
3527    BitVector InOrder(8);
3528    if (BestLowQuad != -1) {
3529      // Sort lower half in order using PSHUFLW.
3530      MaskVec.clear();
3531      bool AnyOutOrder = false;
3532
3533      for (unsigned i = 0; i != 4; ++i) {
3534        SDValue Elt = MaskElts[i];
3535        if (Elt.getOpcode() == ISD::UNDEF) {
3536          MaskVec.push_back(Elt);
3537          InOrder.set(i);
3538        } else {
3539          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3540          if (EltIdx != i)
3541            AnyOutOrder = true;
3542
3543          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3544
3545          // If this element is in the right place after this shuffle, then
3546          // remember it.
3547          if ((int)(EltIdx / 4) == BestLowQuad)
3548            InOrder.set(i);
3549        }
3550      }
3551      if (AnyOutOrder) {
3552        for (unsigned i = 4; i != 8; ++i)
3553          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3554        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3555        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3556      }
3557    }
3558
3559    if (BestHighQuad != -1) {
3560      // Sort high half in order using PSHUFHW if possible.
3561      MaskVec.clear();
3562
3563      for (unsigned i = 0; i != 4; ++i)
3564        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3565
3566      bool AnyOutOrder = false;
3567      for (unsigned i = 4; i != 8; ++i) {
3568        SDValue Elt = MaskElts[i];
3569        if (Elt.getOpcode() == ISD::UNDEF) {
3570          MaskVec.push_back(Elt);
3571          InOrder.set(i);
3572        } else {
3573          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3574          if (EltIdx != i)
3575            AnyOutOrder = true;
3576
3577          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3578
3579          // If this element is in the right place after this shuffle, then
3580          // remember it.
3581          if ((int)(EltIdx / 4) == BestHighQuad)
3582            InOrder.set(i);
3583        }
3584      }
3585
3586      if (AnyOutOrder) {
3587        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3588        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3589      }
3590    }
3591
3592    // The other elements are put in the right place using pextrw and pinsrw.
3593    for (unsigned i = 0; i != 8; ++i) {
3594      if (InOrder[i])
3595        continue;
3596      SDValue Elt = MaskElts[i];
3597      if (Elt.getOpcode() == ISD::UNDEF)
3598        continue;
3599      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3600      SDValue ExtOp = (EltIdx < 8)
3601        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3602                      DAG.getConstant(EltIdx, PtrVT))
3603        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3604                      DAG.getConstant(EltIdx - 8, PtrVT));
3605      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3606                         DAG.getConstant(i, PtrVT));
3607    }
3608
3609    return NewV;
3610  }
3611
3612  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
3613  // few as possible. First, let's find out how many elements are already in the
3614  // right order.
3615  unsigned V1InOrder = 0;
3616  unsigned V1FromV1 = 0;
3617  unsigned V2InOrder = 0;
3618  unsigned V2FromV2 = 0;
3619  SmallVector<SDValue, 8> V1Elts;
3620  SmallVector<SDValue, 8> V2Elts;
3621  for (unsigned i = 0; i < 8; ++i) {
3622    SDValue Elt = MaskElts[i];
3623    if (Elt.getOpcode() == ISD::UNDEF) {
3624      V1Elts.push_back(Elt);
3625      V2Elts.push_back(Elt);
3626      ++V1InOrder;
3627      ++V2InOrder;
3628      continue;
3629    }
3630    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3631    if (EltIdx == i) {
3632      V1Elts.push_back(Elt);
3633      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3634      ++V1InOrder;
3635    } else if (EltIdx == i+8) {
3636      V1Elts.push_back(Elt);
3637      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3638      ++V2InOrder;
3639    } else if (EltIdx < 8) {
3640      V1Elts.push_back(Elt);
3641      ++V1FromV1;
3642    } else {
3643      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3644      ++V2FromV2;
3645    }
3646  }
3647
3648  if (V2InOrder > V1InOrder) {
3649    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3650    std::swap(V1, V2);
3651    std::swap(V1Elts, V2Elts);
3652    std::swap(V1FromV1, V2FromV2);
3653  }
3654
3655  if ((V1FromV1 + V1InOrder) != 8) {
3656    // Some elements are from V2.
3657    if (V1FromV1) {
3658      // If there are elements that are from V1 but out of place,
3659      // then first sort them in place
3660      SmallVector<SDValue, 8> MaskVec;
3661      for (unsigned i = 0; i < 8; ++i) {
3662        SDValue Elt = V1Elts[i];
3663        if (Elt.getOpcode() == ISD::UNDEF) {
3664          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3665          continue;
3666        }
3667        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3668        if (EltIdx >= 8)
3669          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3670        else
3671          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3672      }
3673      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3674      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3675    }
3676
3677    NewV = V1;
3678    for (unsigned i = 0; i < 8; ++i) {
3679      SDValue Elt = V1Elts[i];
3680      if (Elt.getOpcode() == ISD::UNDEF)
3681        continue;
3682      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3683      if (EltIdx < 8)
3684        continue;
3685      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3686                                    DAG.getConstant(EltIdx - 8, PtrVT));
3687      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3688                         DAG.getConstant(i, PtrVT));
3689    }
3690    return NewV;
3691  } else {
3692    // All elements are from V1.
3693    NewV = V1;
3694    for (unsigned i = 0; i < 8; ++i) {
3695      SDValue Elt = V1Elts[i];
3696      if (Elt.getOpcode() == ISD::UNDEF)
3697        continue;
3698      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3699      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3700                                    DAG.getConstant(EltIdx, PtrVT));
3701      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3702                         DAG.getConstant(i, PtrVT));
3703    }
3704    return NewV;
3705  }
3706}
3707
3708/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3709/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3710/// done when every pair / quad of shuffle mask elements point to elements in
3711/// the right sequence. e.g.
3712/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3713static
3714SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3715                                MVT VT,
3716                                SDValue PermMask, SelectionDAG &DAG,
3717                                TargetLowering &TLI) {
3718  unsigned NumElems = PermMask.getNumOperands();
3719  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3720  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3721  MVT MaskEltVT = MaskVT.getVectorElementType();
3722  MVT NewVT = MaskVT;
3723  switch (VT.getSimpleVT()) {
3724  default: assert(false && "Unexpected!");
3725  case MVT::v4f32: NewVT = MVT::v2f64; break;
3726  case MVT::v4i32: NewVT = MVT::v2i64; break;
3727  case MVT::v8i16: NewVT = MVT::v4i32; break;
3728  case MVT::v16i8: NewVT = MVT::v4i32; break;
3729  }
3730
3731  if (NewWidth == 2) {
3732    if (VT.isInteger())
3733      NewVT = MVT::v2i64;
3734    else
3735      NewVT = MVT::v2f64;
3736  }
3737  unsigned Scale = NumElems / NewWidth;
3738  SmallVector<SDValue, 8> MaskVec;
3739  for (unsigned i = 0; i < NumElems; i += Scale) {
3740    unsigned StartIdx = ~0U;
3741    for (unsigned j = 0; j < Scale; ++j) {
3742      SDValue Elt = PermMask.getOperand(i+j);
3743      if (Elt.getOpcode() == ISD::UNDEF)
3744        continue;
3745      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3746      if (StartIdx == ~0U)
3747        StartIdx = EltIdx - (EltIdx % Scale);
3748      if (EltIdx != StartIdx + j)
3749        return SDValue();
3750    }
3751    if (StartIdx == ~0U)
3752      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3753    else
3754      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3755  }
3756
3757  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3758  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3759  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3760                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3761                                 &MaskVec[0], MaskVec.size()));
3762}
3763
3764/// getVZextMovL - Return a zero-extending vector move low node.
3765///
3766static SDValue getVZextMovL(MVT VT, MVT OpVT,
3767                              SDValue SrcOp, SelectionDAG &DAG,
3768                              const X86Subtarget *Subtarget) {
3769  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3770    LoadSDNode *LD = NULL;
3771    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3772      LD = dyn_cast<LoadSDNode>(SrcOp);
3773    if (!LD) {
3774      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3775      // instead.
3776      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3777      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3778          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3779          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3780          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3781        // PR2108
3782        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3783        return DAG.getNode(ISD::BIT_CONVERT, VT,
3784                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3785                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3786                                                   SrcOp.getOperand(0)
3787                                                          .getOperand(0))));
3788      }
3789    }
3790  }
3791
3792  return DAG.getNode(ISD::BIT_CONVERT, VT,
3793                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3794                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3795}
3796
3797/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3798/// shuffles.
3799static SDValue
3800LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3801                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3802  MVT MaskVT = PermMask.getValueType();
3803  MVT MaskEVT = MaskVT.getVectorElementType();
3804  SmallVector<std::pair<int, int>, 8> Locs;
3805  Locs.resize(4);
3806  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3807  unsigned NumHi = 0;
3808  unsigned NumLo = 0;
3809  for (unsigned i = 0; i != 4; ++i) {
3810    SDValue Elt = PermMask.getOperand(i);
3811    if (Elt.getOpcode() == ISD::UNDEF) {
3812      Locs[i] = std::make_pair(-1, -1);
3813    } else {
3814      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3815      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3816      if (Val < 4) {
3817        Locs[i] = std::make_pair(0, NumLo);
3818        Mask1[NumLo] = Elt;
3819        NumLo++;
3820      } else {
3821        Locs[i] = std::make_pair(1, NumHi);
3822        if (2+NumHi < 4)
3823          Mask1[2+NumHi] = Elt;
3824        NumHi++;
3825      }
3826    }
3827  }
3828
3829  if (NumLo <= 2 && NumHi <= 2) {
3830    // If no more than two elements come from either vector. This can be
3831    // implemented with two shuffles. First shuffle gather the elements.
3832    // The second shuffle, which takes the first shuffle as both of its
3833    // vector operands, put the elements into the right order.
3834    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3835                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3836                                 &Mask1[0], Mask1.size()));
3837
3838    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3839    for (unsigned i = 0; i != 4; ++i) {
3840      if (Locs[i].first == -1)
3841        continue;
3842      else {
3843        unsigned Idx = (i < 2) ? 0 : 4;
3844        Idx += Locs[i].first * 2 + Locs[i].second;
3845        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3846      }
3847    }
3848
3849    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3850                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3851                                   &Mask2[0], Mask2.size()));
3852  } else if (NumLo == 3 || NumHi == 3) {
3853    // Otherwise, we must have three elements from one vector, call it X, and
3854    // one element from the other, call it Y.  First, use a shufps to build an
3855    // intermediate vector with the one element from Y and the element from X
3856    // that will be in the same half in the final destination (the indexes don't
3857    // matter). Then, use a shufps to build the final vector, taking the half
3858    // containing the element from Y from the intermediate, and the other half
3859    // from X.
3860    if (NumHi == 3) {
3861      // Normalize it so the 3 elements come from V1.
3862      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3863      std::swap(V1, V2);
3864    }
3865
3866    // Find the element from V2.
3867    unsigned HiIndex;
3868    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3869      SDValue Elt = PermMask.getOperand(HiIndex);
3870      if (Elt.getOpcode() == ISD::UNDEF)
3871        continue;
3872      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3873      if (Val >= 4)
3874        break;
3875    }
3876
3877    Mask1[0] = PermMask.getOperand(HiIndex);
3878    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3879    Mask1[2] = PermMask.getOperand(HiIndex^1);
3880    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3881    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3882                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3883
3884    if (HiIndex >= 2) {
3885      Mask1[0] = PermMask.getOperand(0);
3886      Mask1[1] = PermMask.getOperand(1);
3887      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3888      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3889      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3890                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3891    } else {
3892      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3893      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3894      Mask1[2] = PermMask.getOperand(2);
3895      Mask1[3] = PermMask.getOperand(3);
3896      if (Mask1[2].getOpcode() != ISD::UNDEF)
3897        Mask1[2] =
3898          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
3899                          MaskEVT);
3900      if (Mask1[3].getOpcode() != ISD::UNDEF)
3901        Mask1[3] =
3902          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
3903                          MaskEVT);
3904      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3905                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3906    }
3907  }
3908
3909  // Break it into (shuffle shuffle_hi, shuffle_lo).
3910  Locs.clear();
3911  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3912  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3913  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3914  unsigned MaskIdx = 0;
3915  unsigned LoIdx = 0;
3916  unsigned HiIdx = 2;
3917  for (unsigned i = 0; i != 4; ++i) {
3918    if (i == 2) {
3919      MaskPtr = &HiMask;
3920      MaskIdx = 1;
3921      LoIdx = 0;
3922      HiIdx = 2;
3923    }
3924    SDValue Elt = PermMask.getOperand(i);
3925    if (Elt.getOpcode() == ISD::UNDEF) {
3926      Locs[i] = std::make_pair(-1, -1);
3927    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
3928      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3929      (*MaskPtr)[LoIdx] = Elt;
3930      LoIdx++;
3931    } else {
3932      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3933      (*MaskPtr)[HiIdx] = Elt;
3934      HiIdx++;
3935    }
3936  }
3937
3938  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3939                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3940                                                &LoMask[0], LoMask.size()));
3941  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3942                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3943                                                &HiMask[0], HiMask.size()));
3944  SmallVector<SDValue, 8> MaskOps;
3945  for (unsigned i = 0; i != 4; ++i) {
3946    if (Locs[i].first == -1) {
3947      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3948    } else {
3949      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3950      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3951    }
3952  }
3953  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3954                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3955                                 &MaskOps[0], MaskOps.size()));
3956}
3957
3958SDValue
3959X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3960  SDValue V1 = Op.getOperand(0);
3961  SDValue V2 = Op.getOperand(1);
3962  SDValue PermMask = Op.getOperand(2);
3963  MVT VT = Op.getValueType();
3964  unsigned NumElems = PermMask.getNumOperands();
3965  bool isMMX = VT.getSizeInBits() == 64;
3966  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3967  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3968  bool V1IsSplat = false;
3969  bool V2IsSplat = false;
3970
3971  if (isUndefShuffle(Op.getNode()))
3972    return DAG.getNode(ISD::UNDEF, VT);
3973
3974  if (isZeroShuffle(Op.getNode()))
3975    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3976
3977  if (isIdentityMask(PermMask.getNode()))
3978    return V1;
3979  else if (isIdentityMask(PermMask.getNode(), true))
3980    return V2;
3981
3982  // Canonicalize movddup shuffles.
3983  if (V2IsUndef && Subtarget->hasSSE2() &&
3984      VT.getSizeInBits() == 128 &&
3985      X86::isMOVDDUPMask(PermMask.getNode()))
3986    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
3987
3988  if (isSplatMask(PermMask.getNode())) {
3989    if (isMMX || NumElems < 4) return Op;
3990    // Promote it to a v4{if}32 splat.
3991    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3992  }
3993
3994  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3995  // do it!
3996  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3997    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3998    if (NewOp.getNode())
3999      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
4000  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4001    // FIXME: Figure out a cleaner way to do this.
4002    // Try to make use of movq to zero out the top part.
4003    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4004      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4005                                                 DAG, *this);
4006      if (NewOp.getNode()) {
4007        SDValue NewV1 = NewOp.getOperand(0);
4008        SDValue NewV2 = NewOp.getOperand(1);
4009        SDValue NewMask = NewOp.getOperand(2);
4010        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4011          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4012          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
4013        }
4014      }
4015    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4016      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4017                                                DAG, *this);
4018      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4019        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4020                             DAG, Subtarget);
4021    }
4022  }
4023
4024  // Check if this can be converted into a logical shift.
4025  bool isLeft = false;
4026  unsigned ShAmt = 0;
4027  SDValue ShVal;
4028  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4029  if (isShift && ShVal.hasOneUse()) {
4030    // If the shifted value has multiple uses, it may be cheaper to use
4031    // v_set0 + movlhps or movhlps, etc.
4032    MVT EVT = VT.getVectorElementType();
4033    ShAmt *= EVT.getSizeInBits();
4034    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4035  }
4036
4037  if (X86::isMOVLMask(PermMask.getNode())) {
4038    if (V1IsUndef)
4039      return V2;
4040    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4041      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
4042    if (!isMMX)
4043      return Op;
4044  }
4045
4046  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4047                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4048                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4049                 X86::isMOVHPMask(PermMask.getNode()) ||
4050                 X86::isMOVLPMask(PermMask.getNode())))
4051    return Op;
4052
4053  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4054      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4055    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4056
4057  if (isShift) {
4058    // No better options. Use a vshl / vsrl.
4059    MVT EVT = VT.getVectorElementType();
4060    ShAmt *= EVT.getSizeInBits();
4061    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4062  }
4063
4064  bool Commuted = false;
4065  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4066  // 1,1,1,1 -> v8i16 though.
4067  V1IsSplat = isSplatVector(V1.getNode());
4068  V2IsSplat = isSplatVector(V2.getNode());
4069
4070  // Canonicalize the splat or undef, if present, to be on the RHS.
4071  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4072    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4073    std::swap(V1IsSplat, V2IsSplat);
4074    std::swap(V1IsUndef, V2IsUndef);
4075    Commuted = true;
4076  }
4077
4078  // FIXME: Figure out a cleaner way to do this.
4079  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4080    if (V2IsUndef) return V1;
4081    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4082    if (V2IsSplat) {
4083      // V2 is a splat, so the mask may be malformed. That is, it may point
4084      // to any V2 element. The instruction selectior won't like this. Get
4085      // a corrected mask and commute to form a proper MOVS{S|D}.
4086      SDValue NewMask = getMOVLMask(NumElems, DAG);
4087      if (NewMask.getNode() != PermMask.getNode())
4088        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4089    }
4090    return Op;
4091  }
4092
4093  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4094      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4095      X86::isUNPCKLMask(PermMask.getNode()) ||
4096      X86::isUNPCKHMask(PermMask.getNode()))
4097    return Op;
4098
4099  if (V2IsSplat) {
4100    // Normalize mask so all entries that point to V2 points to its first
4101    // element then try to match unpck{h|l} again. If match, return a
4102    // new vector_shuffle with the corrected mask.
4103    SDValue NewMask = NormalizeMask(PermMask, DAG);
4104    if (NewMask.getNode() != PermMask.getNode()) {
4105      if (X86::isUNPCKLMask(PermMask.getNode(), true)) {
4106        SDValue NewMask = getUnpacklMask(NumElems, DAG);
4107        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4108      } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) {
4109        SDValue NewMask = getUnpackhMask(NumElems, DAG);
4110        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4111      }
4112    }
4113  }
4114
4115  // Normalize the node to match x86 shuffle ops if needed
4116  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4117      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4118
4119  if (Commuted) {
4120    // Commute is back and try unpck* again.
4121    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4122    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4123        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4124        X86::isUNPCKLMask(PermMask.getNode()) ||
4125        X86::isUNPCKHMask(PermMask.getNode()))
4126      return Op;
4127  }
4128
4129  // Try PSHUF* first, then SHUFP*.
4130  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4131  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4132  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4133    if (V2.getOpcode() != ISD::UNDEF)
4134      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
4135                         DAG.getNode(ISD::UNDEF, VT), PermMask);
4136    return Op;
4137  }
4138
4139  if (!isMMX) {
4140    if (Subtarget->hasSSE2() &&
4141        (X86::isPSHUFDMask(PermMask.getNode()) ||
4142         X86::isPSHUFHWMask(PermMask.getNode()) ||
4143         X86::isPSHUFLWMask(PermMask.getNode()))) {
4144      MVT RVT = VT;
4145      if (VT == MVT::v4f32) {
4146        RVT = MVT::v4i32;
4147        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4148                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4149                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4150      } else if (V2.getOpcode() != ISD::UNDEF)
4151        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4152                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4153      if (RVT != VT)
4154        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4155      return Op;
4156    }
4157
4158    // Binary or unary shufps.
4159    if (X86::isSHUFPMask(PermMask.getNode()) ||
4160        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4161      return Op;
4162  }
4163
4164  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4165  if (VT == MVT::v8i16) {
4166    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4167    if (NewOp.getNode())
4168      return NewOp;
4169  }
4170
4171  // Handle all 4 wide cases with a number of shuffles except for MMX.
4172  if (NumElems == 4 && !isMMX)
4173    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4174
4175  return SDValue();
4176}
4177
4178SDValue
4179X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4180                                                SelectionDAG &DAG) {
4181  MVT VT = Op.getValueType();
4182  if (VT.getSizeInBits() == 8) {
4183    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4184                                    Op.getOperand(0), Op.getOperand(1));
4185    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4186                                    DAG.getValueType(VT));
4187    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4188  } else if (VT.getSizeInBits() == 16) {
4189    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4190                                    Op.getOperand(0), Op.getOperand(1));
4191    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4192                                    DAG.getValueType(VT));
4193    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4194  } else if (VT == MVT::f32) {
4195    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4196    // the result back to FR32 register. It's only worth matching if the
4197    // result has a single use which is a store or a bitcast to i32.  And in
4198    // the case of a store, it's not worth it if the index is a constant 0,
4199    // because a MOVSSmr can be used instead, which is smaller and faster.
4200    if (!Op.hasOneUse())
4201      return SDValue();
4202    SDNode *User = *Op.getNode()->use_begin();
4203    if ((User->getOpcode() != ISD::STORE ||
4204         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4205          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4206        (User->getOpcode() != ISD::BIT_CONVERT ||
4207         User->getValueType(0) != MVT::i32))
4208      return SDValue();
4209    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4210                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4211                                    Op.getOperand(1));
4212    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4213  }
4214  return SDValue();
4215}
4216
4217
4218SDValue
4219X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4220  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4221    return SDValue();
4222
4223  if (Subtarget->hasSSE41()) {
4224    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4225    if (Res.getNode())
4226      return Res;
4227  }
4228
4229  MVT VT = Op.getValueType();
4230  // TODO: handle v16i8.
4231  if (VT.getSizeInBits() == 16) {
4232    SDValue Vec = Op.getOperand(0);
4233    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4234    if (Idx == 0)
4235      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4236                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4237                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4238                                     Op.getOperand(1)));
4239    // Transform it so it match pextrw which produces a 32-bit result.
4240    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4241    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4242                                    Op.getOperand(0), Op.getOperand(1));
4243    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4244                                    DAG.getValueType(VT));
4245    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4246  } else if (VT.getSizeInBits() == 32) {
4247    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4248    if (Idx == 0)
4249      return Op;
4250    // SHUFPS the element to the lowest double word, then movss.
4251    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4252    SmallVector<SDValue, 8> IdxVec;
4253    IdxVec.
4254      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4255    IdxVec.
4256      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4257    IdxVec.
4258      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4259    IdxVec.
4260      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4261    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4262                                 &IdxVec[0], IdxVec.size());
4263    SDValue Vec = Op.getOperand(0);
4264    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4265                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4266    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4267                       DAG.getIntPtrConstant(0));
4268  } else if (VT.getSizeInBits() == 64) {
4269    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4270    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4271    //        to match extract_elt for f64.
4272    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4273    if (Idx == 0)
4274      return Op;
4275
4276    // UNPCKHPD the element to the lowest double word, then movsd.
4277    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4278    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4279    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4280    SmallVector<SDValue, 8> IdxVec;
4281    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4282    IdxVec.
4283      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4284    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4285                                 &IdxVec[0], IdxVec.size());
4286    SDValue Vec = Op.getOperand(0);
4287    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4288                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4289    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4290                       DAG.getIntPtrConstant(0));
4291  }
4292
4293  return SDValue();
4294}
4295
4296SDValue
4297X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4298  MVT VT = Op.getValueType();
4299  MVT EVT = VT.getVectorElementType();
4300
4301  SDValue N0 = Op.getOperand(0);
4302  SDValue N1 = Op.getOperand(1);
4303  SDValue N2 = Op.getOperand(2);
4304
4305  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4306      isa<ConstantSDNode>(N2)) {
4307    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4308                                                  : X86ISD::PINSRW;
4309    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4310    // argument.
4311    if (N1.getValueType() != MVT::i32)
4312      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4313    if (N2.getValueType() != MVT::i32)
4314      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4315    return DAG.getNode(Opc, VT, N0, N1, N2);
4316  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4317    // Bits [7:6] of the constant are the source select.  This will always be
4318    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4319    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4320    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4321    // Bits [5:4] of the constant are the destination select.  This is the
4322    //  value of the incoming immediate.
4323    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4324    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4325    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4326    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4327  }
4328  return SDValue();
4329}
4330
4331SDValue
4332X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4333  MVT VT = Op.getValueType();
4334  MVT EVT = VT.getVectorElementType();
4335
4336  if (Subtarget->hasSSE41())
4337    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4338
4339  if (EVT == MVT::i8)
4340    return SDValue();
4341
4342  SDValue N0 = Op.getOperand(0);
4343  SDValue N1 = Op.getOperand(1);
4344  SDValue N2 = Op.getOperand(2);
4345
4346  if (EVT.getSizeInBits() == 16) {
4347    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4348    // as its second argument.
4349    if (N1.getValueType() != MVT::i32)
4350      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4351    if (N2.getValueType() != MVT::i32)
4352      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4353    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4354  }
4355  return SDValue();
4356}
4357
4358SDValue
4359X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4360  if (Op.getValueType() == MVT::v2f32)
4361    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4362                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4363                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4364                                               Op.getOperand(0))));
4365
4366  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4367  MVT VT = MVT::v2i32;
4368  switch (Op.getValueType().getSimpleVT()) {
4369  default: break;
4370  case MVT::v16i8:
4371  case MVT::v8i16:
4372    VT = MVT::v4i32;
4373    break;
4374  }
4375  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4376                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4377}
4378
4379// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4380// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4381// one of the above mentioned nodes. It has to be wrapped because otherwise
4382// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4383// be used to form addressing mode. These wrapped nodes will be selected
4384// into MOV32ri.
4385SDValue
4386X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4387  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4388  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4389                                               getPointerTy(),
4390                                               CP->getAlignment());
4391  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4392  // With PIC, the address is actually $g + Offset.
4393  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4394      !Subtarget->isPICStyleRIPRel()) {
4395    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4396                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4397                         Result);
4398  }
4399
4400  return Result;
4401}
4402
4403SDValue
4404X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
4405                                      int64_t Offset,
4406                                      SelectionDAG &DAG) const {
4407  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4408  bool ExtraLoadRequired =
4409    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4410
4411  // Create the TargetGlobalAddress node, folding in the constant
4412  // offset if it is legal.
4413  SDValue Result;
4414  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4415    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4416    Offset = 0;
4417  } else
4418    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4419  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4420
4421  // With PIC, the address is actually $g + Offset.
4422  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4423    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4424                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4425                         Result);
4426  }
4427
4428  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4429  // load the value at address GV, not the value of GV itself. This means that
4430  // the GlobalAddress must be in the base or index register of the address, not
4431  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4432  // The same applies for external symbols during PIC codegen
4433  if (ExtraLoadRequired)
4434    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4435                         PseudoSourceValue::getGOT(), 0);
4436
4437  // If there was a non-zero offset that we didn't fold, create an explicit
4438  // addition for it.
4439  if (Offset != 0)
4440    Result = DAG.getNode(ISD::ADD, getPointerTy(), Result,
4441                         DAG.getConstant(Offset, getPointerTy()));
4442
4443  return Result;
4444}
4445
4446SDValue
4447X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4448  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4449  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4450  return LowerGlobalAddress(GV, Offset, DAG);
4451}
4452
4453// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4454static SDValue
4455LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4456                                const MVT PtrVT) {
4457  SDValue InFlag;
4458  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4459                                     DAG.getNode(X86ISD::GlobalBaseReg,
4460                                                 PtrVT), InFlag);
4461  InFlag = Chain.getValue(1);
4462
4463  // emit leal symbol@TLSGD(,%ebx,1), %eax
4464  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4465  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4466                                             GA->getValueType(0),
4467                                             GA->getOffset());
4468  SDValue Ops[] = { Chain,  TGA, InFlag };
4469  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4470  InFlag = Result.getValue(2);
4471  Chain = Result.getValue(1);
4472
4473  // call ___tls_get_addr. This function receives its argument in
4474  // the register EAX.
4475  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4476  InFlag = Chain.getValue(1);
4477
4478  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4479  SDValue Ops1[] = { Chain,
4480                      DAG.getTargetExternalSymbol("___tls_get_addr",
4481                                                  PtrVT),
4482                      DAG.getRegister(X86::EAX, PtrVT),
4483                      DAG.getRegister(X86::EBX, PtrVT),
4484                      InFlag };
4485  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4486  InFlag = Chain.getValue(1);
4487
4488  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4489}
4490
4491// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4492static SDValue
4493LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4494                                const MVT PtrVT) {
4495  SDValue InFlag, Chain;
4496
4497  // emit leaq symbol@TLSGD(%rip), %rdi
4498  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4499  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4500                                             GA->getValueType(0),
4501                                             GA->getOffset());
4502  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4503  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4504  Chain  = Result.getValue(1);
4505  InFlag = Result.getValue(2);
4506
4507  // call __tls_get_addr. This function receives its argument in
4508  // the register RDI.
4509  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4510  InFlag = Chain.getValue(1);
4511
4512  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4513  SDValue Ops1[] = { Chain,
4514                      DAG.getTargetExternalSymbol("__tls_get_addr",
4515                                                  PtrVT),
4516                      DAG.getRegister(X86::RDI, PtrVT),
4517                      InFlag };
4518  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4519  InFlag = Chain.getValue(1);
4520
4521  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4522}
4523
4524// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4525// "local exec" model.
4526static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4527                                     const MVT PtrVT) {
4528  // Get the Thread Pointer
4529  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4530  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4531  // exec)
4532  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4533                                             GA->getValueType(0),
4534                                             GA->getOffset());
4535  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4536
4537  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4538    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4539                         PseudoSourceValue::getGOT(), 0);
4540
4541  // The address of the thread local variable is the add of the thread
4542  // pointer with the offset of the variable.
4543  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4544}
4545
4546SDValue
4547X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4548  // TODO: implement the "local dynamic" model
4549  // TODO: implement the "initial exec"model for pic executables
4550  assert(Subtarget->isTargetELF() &&
4551         "TLS not implemented for non-ELF targets");
4552  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4553  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4554  // otherwise use the "Local Exec"TLS Model
4555  if (Subtarget->is64Bit()) {
4556    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4557  } else {
4558    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4559      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4560    else
4561      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4562  }
4563}
4564
4565SDValue
4566X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4567  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4568  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4569  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4570  // With PIC, the address is actually $g + Offset.
4571  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4572      !Subtarget->isPICStyleRIPRel()) {
4573    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4574                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4575                         Result);
4576  }
4577
4578  return Result;
4579}
4580
4581SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4582  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4583  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4584  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4585  // With PIC, the address is actually $g + Offset.
4586  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4587      !Subtarget->isPICStyleRIPRel()) {
4588    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4589                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4590                         Result);
4591  }
4592
4593  return Result;
4594}
4595
4596/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4597/// take a 2 x i32 value to shift plus a shift amount.
4598SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4599  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4600  MVT VT = Op.getValueType();
4601  unsigned VTBits = VT.getSizeInBits();
4602  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4603  SDValue ShOpLo = Op.getOperand(0);
4604  SDValue ShOpHi = Op.getOperand(1);
4605  SDValue ShAmt  = Op.getOperand(2);
4606  SDValue Tmp1 = isSRA ?
4607    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4608    DAG.getConstant(0, VT);
4609
4610  SDValue Tmp2, Tmp3;
4611  if (Op.getOpcode() == ISD::SHL_PARTS) {
4612    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4613    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4614  } else {
4615    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4616    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4617  }
4618
4619  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4620                                  DAG.getConstant(VTBits, MVT::i8));
4621  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4622                               AndNode, DAG.getConstant(0, MVT::i8));
4623
4624  SDValue Hi, Lo;
4625  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4626  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4627  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4628
4629  if (Op.getOpcode() == ISD::SHL_PARTS) {
4630    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4631    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4632  } else {
4633    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4634    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4635  }
4636
4637  SDValue Ops[2] = { Lo, Hi };
4638  return DAG.getMergeValues(Ops, 2);
4639}
4640
4641SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4642  MVT SrcVT = Op.getOperand(0).getValueType();
4643  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4644         "Unknown SINT_TO_FP to lower!");
4645
4646  // These are really Legal; caller falls through into that case.
4647  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4648    return SDValue();
4649  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4650      Subtarget->is64Bit())
4651    return SDValue();
4652
4653  unsigned Size = SrcVT.getSizeInBits()/8;
4654  MachineFunction &MF = DAG.getMachineFunction();
4655  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4656  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4657  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4658                                 StackSlot,
4659                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4660
4661  // Build the FILD
4662  SDVTList Tys;
4663  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4664  if (useSSE)
4665    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4666  else
4667    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4668  SmallVector<SDValue, 8> Ops;
4669  Ops.push_back(Chain);
4670  Ops.push_back(StackSlot);
4671  Ops.push_back(DAG.getValueType(SrcVT));
4672  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4673                                 Tys, &Ops[0], Ops.size());
4674
4675  if (useSSE) {
4676    Chain = Result.getValue(1);
4677    SDValue InFlag = Result.getValue(2);
4678
4679    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4680    // shouldn't be necessary except that RFP cannot be live across
4681    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4682    MachineFunction &MF = DAG.getMachineFunction();
4683    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4684    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4685    Tys = DAG.getVTList(MVT::Other);
4686    SmallVector<SDValue, 8> Ops;
4687    Ops.push_back(Chain);
4688    Ops.push_back(Result);
4689    Ops.push_back(StackSlot);
4690    Ops.push_back(DAG.getValueType(Op.getValueType()));
4691    Ops.push_back(InFlag);
4692    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4693    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4694                         PseudoSourceValue::getFixedStack(SSFI), 0);
4695  }
4696
4697  return Result;
4698}
4699
4700SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4701  MVT SrcVT = Op.getOperand(0).getValueType();
4702  assert(SrcVT.getSimpleVT() == MVT::i64 && "Unknown UINT_TO_FP to lower!");
4703
4704  // We only handle SSE2 f64 target here; caller can handle the rest.
4705  if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4706    return SDValue();
4707
4708  // This algorithm is not obvious.  Here it is in C code, more or less:
4709/*
4710 double uint64_to_double( uint32_t hi, uint32_t lo )
4711  {
4712    static const __m128i exp = { 0x4330000045300000ULL, 0 };
4713    static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4714
4715    // copy ints to xmm registers
4716    __m128i xh = _mm_cvtsi32_si128( hi );
4717    __m128i xl = _mm_cvtsi32_si128( lo );
4718
4719    // combine into low half of a single xmm register
4720    __m128i x = _mm_unpacklo_epi32( xh, xl );
4721    __m128d d;
4722    double sd;
4723
4724    // merge in appropriate exponents to give the integer bits the
4725    // right magnitude
4726    x = _mm_unpacklo_epi32( x, exp );
4727
4728    // subtract away the biases to deal with the IEEE-754 double precision
4729    // implicit 1
4730    d = _mm_sub_pd( (__m128d) x, bias );
4731
4732    // All conversions up to here are exact. The correctly rounded result is
4733    // calculated using the
4734    // current rounding mode using the following horizontal add.
4735    d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4736    _mm_store_sd( &sd, d );   //since we are returning doubles in XMM, this
4737    // store doesn't really need to be here (except maybe to zero the other
4738    // double)
4739    return sd;
4740  }
4741*/
4742
4743  // Build some magic constants.
4744  std::vector<Constant*>CV0;
4745  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4746  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4747  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4748  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4749  Constant *C0 = ConstantVector::get(CV0);
4750  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
4751
4752  std::vector<Constant*>CV1;
4753  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4754  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4755  Constant *C1 = ConstantVector::get(CV1);
4756  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 4);
4757
4758  SmallVector<SDValue, 4> MaskVec;
4759  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
4760  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
4761  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
4762  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
4763  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, &MaskVec[0],
4764                                   MaskVec.size());
4765  SmallVector<SDValue, 4> MaskVec2;
4766  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
4767  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
4768  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec2[0],
4769                                 MaskVec2.size());
4770
4771  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4772                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4773                                        Op.getOperand(0),
4774                                        DAG.getIntPtrConstant(1)));
4775  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4776                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4777                                        Op.getOperand(0),
4778                                        DAG.getIntPtrConstant(0)));
4779  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4780                                XR1, XR2, UnpcklMask);
4781  SDValue CLod0 = DAG.getLoad(MVT::v4i32, DAG.getEntryNode(), CPIdx0,
4782                         PseudoSourceValue::getConstantPool(), 0, false, 16);
4783  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4784                                Unpck1, CLod0, UnpcklMask);
4785  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Unpck2);
4786  SDValue CLod1 = DAG.getLoad(MVT::v2f64, CLod0.getValue(1), CPIdx1,
4787                         PseudoSourceValue::getConstantPool(), 0, false, 16);
4788  SDValue Sub = DAG.getNode(ISD::FSUB, MVT::v2f64, XR2F, CLod1);
4789  // Add the halves; easiest way is to swap them into another reg first.
4790  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2f64,
4791                             Sub, Sub, ShufMask);
4792  SDValue Add = DAG.getNode(ISD::FADD, MVT::v2f64, Shuf, Sub);
4793  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64, Add,
4794                     DAG.getIntPtrConstant(0));
4795}
4796
4797std::pair<SDValue,SDValue> X86TargetLowering::
4798FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4799  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4800         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4801         "Unknown FP_TO_SINT to lower!");
4802
4803  // These are really Legal.
4804  if (Op.getValueType() == MVT::i32 &&
4805      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4806    return std::make_pair(SDValue(), SDValue());
4807  if (Subtarget->is64Bit() &&
4808      Op.getValueType() == MVT::i64 &&
4809      Op.getOperand(0).getValueType() != MVT::f80)
4810    return std::make_pair(SDValue(), SDValue());
4811
4812  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4813  // stack slot.
4814  MachineFunction &MF = DAG.getMachineFunction();
4815  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4816  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4817  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4818  unsigned Opc;
4819  switch (Op.getValueType().getSimpleVT()) {
4820  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4821  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4822  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4823  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4824  }
4825
4826  SDValue Chain = DAG.getEntryNode();
4827  SDValue Value = Op.getOperand(0);
4828  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4829    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4830    Chain = DAG.getStore(Chain, Value, StackSlot,
4831                         PseudoSourceValue::getFixedStack(SSFI), 0);
4832    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4833    SDValue Ops[] = {
4834      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4835    };
4836    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4837    Chain = Value.getValue(1);
4838    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4839    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4840  }
4841
4842  // Build the FP_TO_INT*_IN_MEM
4843  SDValue Ops[] = { Chain, Value, StackSlot };
4844  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4845
4846  return std::make_pair(FIST, StackSlot);
4847}
4848
4849SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4850  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4851  SDValue FIST = Vals.first, StackSlot = Vals.second;
4852  if (FIST.getNode() == 0) return SDValue();
4853
4854  // Load the result.
4855  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4856}
4857
4858SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4859  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
4860  SDValue FIST = Vals.first, StackSlot = Vals.second;
4861  if (FIST.getNode() == 0) return 0;
4862
4863  MVT VT = N->getValueType(0);
4864
4865  // Return a load from the stack slot.
4866  SDValue Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0);
4867
4868  // Use MERGE_VALUES to drop the chain result value and get a node with one
4869  // result.  This requires turning off getMergeValues simplification, since
4870  // otherwise it will give us Res back.
4871  return DAG.getMergeValues(&Res, 1, false).getNode();
4872}
4873
4874SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4875  MVT VT = Op.getValueType();
4876  MVT EltVT = VT;
4877  if (VT.isVector())
4878    EltVT = VT.getVectorElementType();
4879  std::vector<Constant*> CV;
4880  if (EltVT == MVT::f64) {
4881    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4882    CV.push_back(C);
4883    CV.push_back(C);
4884  } else {
4885    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4886    CV.push_back(C);
4887    CV.push_back(C);
4888    CV.push_back(C);
4889    CV.push_back(C);
4890  }
4891  Constant *C = ConstantVector::get(CV);
4892  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4893  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4894                               PseudoSourceValue::getConstantPool(), 0,
4895                               false, 16);
4896  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4897}
4898
4899SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4900  MVT VT = Op.getValueType();
4901  MVT EltVT = VT;
4902  unsigned EltNum = 1;
4903  if (VT.isVector()) {
4904    EltVT = VT.getVectorElementType();
4905    EltNum = VT.getVectorNumElements();
4906  }
4907  std::vector<Constant*> CV;
4908  if (EltVT == MVT::f64) {
4909    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4910    CV.push_back(C);
4911    CV.push_back(C);
4912  } else {
4913    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4914    CV.push_back(C);
4915    CV.push_back(C);
4916    CV.push_back(C);
4917    CV.push_back(C);
4918  }
4919  Constant *C = ConstantVector::get(CV);
4920  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4921  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4922                               PseudoSourceValue::getConstantPool(), 0,
4923                               false, 16);
4924  if (VT.isVector()) {
4925    return DAG.getNode(ISD::BIT_CONVERT, VT,
4926                       DAG.getNode(ISD::XOR, MVT::v2i64,
4927                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4928                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4929  } else {
4930    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4931  }
4932}
4933
4934SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4935  SDValue Op0 = Op.getOperand(0);
4936  SDValue Op1 = Op.getOperand(1);
4937  MVT VT = Op.getValueType();
4938  MVT SrcVT = Op1.getValueType();
4939
4940  // If second operand is smaller, extend it first.
4941  if (SrcVT.bitsLT(VT)) {
4942    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4943    SrcVT = VT;
4944  }
4945  // And if it is bigger, shrink it first.
4946  if (SrcVT.bitsGT(VT)) {
4947    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4948    SrcVT = VT;
4949  }
4950
4951  // At this point the operands and the result should have the same
4952  // type, and that won't be f80 since that is not custom lowered.
4953
4954  // First get the sign bit of second operand.
4955  std::vector<Constant*> CV;
4956  if (SrcVT == MVT::f64) {
4957    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4958    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4959  } else {
4960    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4961    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4962    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4963    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4964  }
4965  Constant *C = ConstantVector::get(CV);
4966  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4967  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4968                                PseudoSourceValue::getConstantPool(), 0,
4969                                false, 16);
4970  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4971
4972  // Shift sign bit right or left if the two operands have different types.
4973  if (SrcVT.bitsGT(VT)) {
4974    // Op0 is MVT::f32, Op1 is MVT::f64.
4975    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4976    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4977                          DAG.getConstant(32, MVT::i32));
4978    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4979    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4980                          DAG.getIntPtrConstant(0));
4981  }
4982
4983  // Clear first operand sign bit.
4984  CV.clear();
4985  if (VT == MVT::f64) {
4986    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4987    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4988  } else {
4989    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4990    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4991    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4992    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4993  }
4994  C = ConstantVector::get(CV);
4995  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4996  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4997                                PseudoSourceValue::getConstantPool(), 0,
4998                                false, 16);
4999  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
5000
5001  // Or the value with the sign bit.
5002  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
5003}
5004
5005SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5006  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5007  SDValue Cond;
5008  SDValue Op0 = Op.getOperand(0);
5009  SDValue Op1 = Op.getOperand(1);
5010  SDValue CC = Op.getOperand(2);
5011  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5012  unsigned X86CC;
5013
5014  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
5015                     Op0, Op1, DAG)) {
5016    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
5017    return DAG.getNode(X86ISD::SETCC, MVT::i8,
5018                       DAG.getConstant(X86CC, MVT::i8), Cond);
5019  }
5020
5021  assert(0 && "Illegal SetCC!");
5022  return SDValue();
5023}
5024
5025SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5026  SDValue Cond;
5027  SDValue Op0 = Op.getOperand(0);
5028  SDValue Op1 = Op.getOperand(1);
5029  SDValue CC = Op.getOperand(2);
5030  MVT VT = Op.getValueType();
5031  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5032  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5033
5034  if (isFP) {
5035    unsigned SSECC = 8;
5036    MVT VT0 = Op0.getValueType();
5037    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5038    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5039    bool Swap = false;
5040
5041    switch (SetCCOpcode) {
5042    default: break;
5043    case ISD::SETOEQ:
5044    case ISD::SETEQ:  SSECC = 0; break;
5045    case ISD::SETOGT:
5046    case ISD::SETGT: Swap = true; // Fallthrough
5047    case ISD::SETLT:
5048    case ISD::SETOLT: SSECC = 1; break;
5049    case ISD::SETOGE:
5050    case ISD::SETGE: Swap = true; // Fallthrough
5051    case ISD::SETLE:
5052    case ISD::SETOLE: SSECC = 2; break;
5053    case ISD::SETUO:  SSECC = 3; break;
5054    case ISD::SETUNE:
5055    case ISD::SETNE:  SSECC = 4; break;
5056    case ISD::SETULE: Swap = true;
5057    case ISD::SETUGE: SSECC = 5; break;
5058    case ISD::SETULT: Swap = true;
5059    case ISD::SETUGT: SSECC = 6; break;
5060    case ISD::SETO:   SSECC = 7; break;
5061    }
5062    if (Swap)
5063      std::swap(Op0, Op1);
5064
5065    // In the two special cases we can't handle, emit two comparisons.
5066    if (SSECC == 8) {
5067      if (SetCCOpcode == ISD::SETUEQ) {
5068        SDValue UNORD, EQ;
5069        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5070        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5071        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
5072      }
5073      else if (SetCCOpcode == ISD::SETONE) {
5074        SDValue ORD, NEQ;
5075        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5076        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5077        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
5078      }
5079      assert(0 && "Illegal FP comparison");
5080    }
5081    // Handle all other FP comparisons here.
5082    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5083  }
5084
5085  // We are handling one of the integer comparisons here.  Since SSE only has
5086  // GT and EQ comparisons for integer, swapping operands and multiple
5087  // operations may be required for some comparisons.
5088  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5089  bool Swap = false, Invert = false, FlipSigns = false;
5090
5091  switch (VT.getSimpleVT()) {
5092  default: break;
5093  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5094  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5095  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5096  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5097  }
5098
5099  switch (SetCCOpcode) {
5100  default: break;
5101  case ISD::SETNE:  Invert = true;
5102  case ISD::SETEQ:  Opc = EQOpc; break;
5103  case ISD::SETLT:  Swap = true;
5104  case ISD::SETGT:  Opc = GTOpc; break;
5105  case ISD::SETGE:  Swap = true;
5106  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5107  case ISD::SETULT: Swap = true;
5108  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5109  case ISD::SETUGE: Swap = true;
5110  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5111  }
5112  if (Swap)
5113    std::swap(Op0, Op1);
5114
5115  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5116  // bits of the inputs before performing those operations.
5117  if (FlipSigns) {
5118    MVT EltVT = VT.getVectorElementType();
5119    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
5120    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5121    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
5122                                    SignBits.size());
5123    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
5124    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
5125  }
5126
5127  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
5128
5129  // If the logical-not of the result is required, perform that now.
5130  if (Invert) {
5131    MVT EltVT = VT.getVectorElementType();
5132    SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
5133    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne);
5134    SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
5135                                    NegOnes.size());
5136    Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
5137  }
5138  return Result;
5139}
5140
5141SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5142  bool addTest = true;
5143  SDValue Cond  = Op.getOperand(0);
5144  SDValue CC;
5145
5146  if (Cond.getOpcode() == ISD::SETCC)
5147    Cond = LowerSETCC(Cond, DAG);
5148
5149  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5150  // setting operand in place of the X86ISD::SETCC.
5151  if (Cond.getOpcode() == X86ISD::SETCC) {
5152    CC = Cond.getOperand(0);
5153
5154    SDValue Cmp = Cond.getOperand(1);
5155    unsigned Opc = Cmp.getOpcode();
5156    MVT VT = Op.getValueType();
5157
5158    bool IllegalFPCMov = false;
5159    if (VT.isFloatingPoint() && !VT.isVector() &&
5160        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5161      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5162
5163    if ((Opc == X86ISD::CMP ||
5164         Opc == X86ISD::COMI ||
5165         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
5166      Cond = Cmp;
5167      addTest = false;
5168    }
5169  }
5170
5171  if (addTest) {
5172    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5173    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5174  }
5175
5176  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5177                                                    MVT::Flag);
5178  SmallVector<SDValue, 4> Ops;
5179  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5180  // condition is true.
5181  Ops.push_back(Op.getOperand(2));
5182  Ops.push_back(Op.getOperand(1));
5183  Ops.push_back(CC);
5184  Ops.push_back(Cond);
5185  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
5186}
5187
5188SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5189  bool addTest = true;
5190  SDValue Chain = Op.getOperand(0);
5191  SDValue Cond  = Op.getOperand(1);
5192  SDValue Dest  = Op.getOperand(2);
5193  SDValue CC;
5194
5195  if (Cond.getOpcode() == ISD::SETCC)
5196    Cond = LowerSETCC(Cond, DAG);
5197
5198  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5199  // setting operand in place of the X86ISD::SETCC.
5200  if (Cond.getOpcode() == X86ISD::SETCC) {
5201    CC = Cond.getOperand(0);
5202
5203    SDValue Cmp = Cond.getOperand(1);
5204    unsigned Opc = Cmp.getOpcode();
5205    if (Opc == X86ISD::CMP ||
5206        Opc == X86ISD::COMI ||
5207        Opc == X86ISD::UCOMI) {
5208      Cond = Cmp;
5209      addTest = false;
5210    }
5211  // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5212  // two branches instead of an explicit OR instruction with a
5213  // separate test.
5214  } else if (Cond.getOpcode() == ISD::OR &&
5215             Cond.hasOneUse() &&
5216             Cond.getOperand(0).getOpcode() == X86ISD::SETCC &&
5217             Cond.getOperand(0).hasOneUse() &&
5218             Cond.getOperand(1).getOpcode() == X86ISD::SETCC &&
5219             Cond.getOperand(1).hasOneUse()) {
5220    SDValue Cmp = Cond.getOperand(0).getOperand(1);
5221    unsigned Opc = Cmp.getOpcode();
5222    if (Cmp == Cond.getOperand(1).getOperand(1) &&
5223        (Opc == X86ISD::CMP ||
5224         Opc == X86ISD::COMI ||
5225         Opc == X86ISD::UCOMI)) {
5226      CC = Cond.getOperand(0).getOperand(0);
5227      Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5228                          Chain, Dest, CC, Cmp);
5229      CC = Cond.getOperand(1).getOperand(0);
5230      Cond = Cmp;
5231      addTest = false;
5232    }
5233  // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5234  // two branches instead of an explicit AND instruction with a
5235  // separate test. However, we only do this if this block doesn't
5236  // have a fall-through edge, because this requires an explicit
5237  // jmp when the condition is false.
5238  } else if (Cond.getOpcode() == ISD::AND &&
5239             Cond.hasOneUse() &&
5240             Cond.getOperand(0).getOpcode() == X86ISD::SETCC &&
5241             Cond.getOperand(0).hasOneUse() &&
5242             Cond.getOperand(1).getOpcode() == X86ISD::SETCC &&
5243             Cond.getOperand(1).hasOneUse()) {
5244    SDValue Cmp = Cond.getOperand(0).getOperand(1);
5245    unsigned Opc = Cmp.getOpcode();
5246    if (Cmp == Cond.getOperand(1).getOperand(1) &&
5247        (Opc == X86ISD::CMP ||
5248         Opc == X86ISD::COMI ||
5249         Opc == X86ISD::UCOMI) &&
5250        Op.getNode()->hasOneUse()) {
5251      X86::CondCode CCode =
5252        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5253      CCode = X86::GetOppositeBranchCondition(CCode);
5254      CC = DAG.getConstant(CCode, MVT::i8);
5255      SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5256      // Look for an unconditional branch following this conditional branch.
5257      // We need this because we need to reverse the successors in order
5258      // to implement FCMP_OEQ.
5259      if (User.getOpcode() == ISD::BR) {
5260        SDValue FalseBB = User.getOperand(1);
5261        SDValue NewBR =
5262          DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5263        assert(NewBR == User);
5264        Dest = FalseBB;
5265
5266        Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5267                            Chain, Dest, CC, Cmp);
5268        X86::CondCode CCode =
5269          (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5270        CCode = X86::GetOppositeBranchCondition(CCode);
5271        CC = DAG.getConstant(CCode, MVT::i8);
5272        Cond = Cmp;
5273        addTest = false;
5274      }
5275    }
5276  }
5277
5278  if (addTest) {
5279    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5280    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5281  }
5282  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5283                     Chain, Dest, CC, Cond);
5284}
5285
5286
5287// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5288// Calls to _alloca is needed to probe the stack when allocating more than 4k
5289// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5290// that the guard pages used by the OS virtual memory manager are allocated in
5291// correct sequence.
5292SDValue
5293X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5294                                           SelectionDAG &DAG) {
5295  assert(Subtarget->isTargetCygMing() &&
5296         "This should be used only on Cygwin/Mingw targets");
5297
5298  // Get the inputs.
5299  SDValue Chain = Op.getOperand(0);
5300  SDValue Size  = Op.getOperand(1);
5301  // FIXME: Ensure alignment here
5302
5303  SDValue Flag;
5304
5305  MVT IntPtr = getPointerTy();
5306  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5307
5308  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5309
5310  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
5311  Flag = Chain.getValue(1);
5312
5313  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5314  SDValue Ops[] = { Chain,
5315                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5316                      DAG.getRegister(X86::EAX, IntPtr),
5317                      DAG.getRegister(X86StackPtr, SPTy),
5318                      Flag };
5319  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5320  Flag = Chain.getValue(1);
5321
5322  Chain = DAG.getCALLSEQ_END(Chain,
5323                             DAG.getIntPtrConstant(0, true),
5324                             DAG.getIntPtrConstant(0, true),
5325                             Flag);
5326
5327  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5328
5329  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5330  return DAG.getMergeValues(Ops1, 2);
5331}
5332
5333SDValue
5334X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5335                                           SDValue Chain,
5336                                           SDValue Dst, SDValue Src,
5337                                           SDValue Size, unsigned Align,
5338                                           const Value *DstSV,
5339                                           uint64_t DstSVOff) {
5340  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5341
5342  // If not DWORD aligned or size is more than the threshold, call the library.
5343  // The libc version is likely to be faster for these cases. It can use the
5344  // address value and run time information about the CPU.
5345  if ((Align & 3) != 0 ||
5346      !ConstantSize ||
5347      ConstantSize->getZExtValue() >
5348        getSubtarget()->getMaxInlineSizeThreshold()) {
5349    SDValue InFlag(0, 0);
5350
5351    // Check to see if there is a specialized entry-point for memory zeroing.
5352    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5353
5354    if (const char *bzeroEntry =  V &&
5355        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5356      MVT IntPtr = getPointerTy();
5357      const Type *IntPtrTy = TD->getIntPtrType();
5358      TargetLowering::ArgListTy Args;
5359      TargetLowering::ArgListEntry Entry;
5360      Entry.Node = Dst;
5361      Entry.Ty = IntPtrTy;
5362      Args.push_back(Entry);
5363      Entry.Node = Size;
5364      Args.push_back(Entry);
5365      std::pair<SDValue,SDValue> CallResult =
5366        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5367                    CallingConv::C, false,
5368                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG);
5369      return CallResult.second;
5370    }
5371
5372    // Otherwise have the target-independent code call memset.
5373    return SDValue();
5374  }
5375
5376  uint64_t SizeVal = ConstantSize->getZExtValue();
5377  SDValue InFlag(0, 0);
5378  MVT AVT;
5379  SDValue Count;
5380  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5381  unsigned BytesLeft = 0;
5382  bool TwoRepStos = false;
5383  if (ValC) {
5384    unsigned ValReg;
5385    uint64_t Val = ValC->getZExtValue() & 255;
5386
5387    // If the value is a constant, then we can potentially use larger sets.
5388    switch (Align & 3) {
5389    case 2:   // WORD aligned
5390      AVT = MVT::i16;
5391      ValReg = X86::AX;
5392      Val = (Val << 8) | Val;
5393      break;
5394    case 0:  // DWORD aligned
5395      AVT = MVT::i32;
5396      ValReg = X86::EAX;
5397      Val = (Val << 8)  | Val;
5398      Val = (Val << 16) | Val;
5399      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5400        AVT = MVT::i64;
5401        ValReg = X86::RAX;
5402        Val = (Val << 32) | Val;
5403      }
5404      break;
5405    default:  // Byte aligned
5406      AVT = MVT::i8;
5407      ValReg = X86::AL;
5408      Count = DAG.getIntPtrConstant(SizeVal);
5409      break;
5410    }
5411
5412    if (AVT.bitsGT(MVT::i8)) {
5413      unsigned UBytes = AVT.getSizeInBits() / 8;
5414      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5415      BytesLeft = SizeVal % UBytes;
5416    }
5417
5418    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5419                              InFlag);
5420    InFlag = Chain.getValue(1);
5421  } else {
5422    AVT = MVT::i8;
5423    Count  = DAG.getIntPtrConstant(SizeVal);
5424    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5425    InFlag = Chain.getValue(1);
5426  }
5427
5428  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5429                            Count, InFlag);
5430  InFlag = Chain.getValue(1);
5431  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5432                            Dst, InFlag);
5433  InFlag = Chain.getValue(1);
5434
5435  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5436  SmallVector<SDValue, 8> Ops;
5437  Ops.push_back(Chain);
5438  Ops.push_back(DAG.getValueType(AVT));
5439  Ops.push_back(InFlag);
5440  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5441
5442  if (TwoRepStos) {
5443    InFlag = Chain.getValue(1);
5444    Count  = Size;
5445    MVT CVT = Count.getValueType();
5446    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5447                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5448    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5449                              Left, InFlag);
5450    InFlag = Chain.getValue(1);
5451    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5452    Ops.clear();
5453    Ops.push_back(Chain);
5454    Ops.push_back(DAG.getValueType(MVT::i8));
5455    Ops.push_back(InFlag);
5456    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5457  } else if (BytesLeft) {
5458    // Handle the last 1 - 7 bytes.
5459    unsigned Offset = SizeVal - BytesLeft;
5460    MVT AddrVT = Dst.getValueType();
5461    MVT SizeVT = Size.getValueType();
5462
5463    Chain = DAG.getMemset(Chain,
5464                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5465                                      DAG.getConstant(Offset, AddrVT)),
5466                          Src,
5467                          DAG.getConstant(BytesLeft, SizeVT),
5468                          Align, DstSV, DstSVOff + Offset);
5469  }
5470
5471  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5472  return Chain;
5473}
5474
5475SDValue
5476X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5477                                      SDValue Chain, SDValue Dst, SDValue Src,
5478                                      SDValue Size, unsigned Align,
5479                                      bool AlwaysInline,
5480                                      const Value *DstSV, uint64_t DstSVOff,
5481                                      const Value *SrcSV, uint64_t SrcSVOff) {
5482  // This requires the copy size to be a constant, preferrably
5483  // within a subtarget-specific limit.
5484  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5485  if (!ConstantSize)
5486    return SDValue();
5487  uint64_t SizeVal = ConstantSize->getZExtValue();
5488  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5489    return SDValue();
5490
5491  /// If not DWORD aligned, call the library.
5492  if ((Align & 3) != 0)
5493    return SDValue();
5494
5495  // DWORD aligned
5496  MVT AVT = MVT::i32;
5497  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5498    AVT = MVT::i64;
5499
5500  unsigned UBytes = AVT.getSizeInBits() / 8;
5501  unsigned CountVal = SizeVal / UBytes;
5502  SDValue Count = DAG.getIntPtrConstant(CountVal);
5503  unsigned BytesLeft = SizeVal % UBytes;
5504
5505  SDValue InFlag(0, 0);
5506  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5507                            Count, InFlag);
5508  InFlag = Chain.getValue(1);
5509  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5510                            Dst, InFlag);
5511  InFlag = Chain.getValue(1);
5512  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5513                            Src, InFlag);
5514  InFlag = Chain.getValue(1);
5515
5516  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5517  SmallVector<SDValue, 8> Ops;
5518  Ops.push_back(Chain);
5519  Ops.push_back(DAG.getValueType(AVT));
5520  Ops.push_back(InFlag);
5521  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5522
5523  SmallVector<SDValue, 4> Results;
5524  Results.push_back(RepMovs);
5525  if (BytesLeft) {
5526    // Handle the last 1 - 7 bytes.
5527    unsigned Offset = SizeVal - BytesLeft;
5528    MVT DstVT = Dst.getValueType();
5529    MVT SrcVT = Src.getValueType();
5530    MVT SizeVT = Size.getValueType();
5531    Results.push_back(DAG.getMemcpy(Chain,
5532                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5533                                                DAG.getConstant(Offset, DstVT)),
5534                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5535                                                DAG.getConstant(Offset, SrcVT)),
5536                                    DAG.getConstant(BytesLeft, SizeVT),
5537                                    Align, AlwaysInline,
5538                                    DstSV, DstSVOff + Offset,
5539                                    SrcSV, SrcSVOff + Offset));
5540  }
5541
5542  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5543}
5544
5545/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
5546SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
5547  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5548  SDValue TheChain = N->getOperand(0);
5549  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
5550  if (Subtarget->is64Bit()) {
5551    SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
5552    SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
5553                                       MVT::i64, rax.getValue(2));
5554    SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
5555                                DAG.getConstant(32, MVT::i8));
5556    SDValue Ops[] = {
5557      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
5558    };
5559
5560    return DAG.getMergeValues(Ops, 2).getNode();
5561  }
5562
5563  SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
5564  SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
5565                                       MVT::i32, eax.getValue(2));
5566  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
5567  SDValue Ops[] = { eax, edx };
5568  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
5569
5570  // Use a MERGE_VALUES to return the value and chain.
5571  Ops[1] = edx.getValue(1);
5572  return DAG.getMergeValues(Ops, 2).getNode();
5573}
5574
5575SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5576  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5577
5578  if (!Subtarget->is64Bit()) {
5579    // vastart just stores the address of the VarArgsFrameIndex slot into the
5580    // memory location argument.
5581    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5582    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5583  }
5584
5585  // __va_list_tag:
5586  //   gp_offset         (0 - 6 * 8)
5587  //   fp_offset         (48 - 48 + 8 * 16)
5588  //   overflow_arg_area (point to parameters coming in memory).
5589  //   reg_save_area
5590  SmallVector<SDValue, 8> MemOps;
5591  SDValue FIN = Op.getOperand(1);
5592  // Store gp_offset
5593  SDValue Store = DAG.getStore(Op.getOperand(0),
5594                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5595                                 FIN, SV, 0);
5596  MemOps.push_back(Store);
5597
5598  // Store fp_offset
5599  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5600  Store = DAG.getStore(Op.getOperand(0),
5601                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5602                       FIN, SV, 0);
5603  MemOps.push_back(Store);
5604
5605  // Store ptr to overflow_arg_area
5606  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5607  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5608  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5609  MemOps.push_back(Store);
5610
5611  // Store ptr to reg_save_area.
5612  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5613  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5614  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5615  MemOps.push_back(Store);
5616  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5617}
5618
5619SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5620  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5621  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5622  SDValue Chain = Op.getOperand(0);
5623  SDValue SrcPtr = Op.getOperand(1);
5624  SDValue SrcSV = Op.getOperand(2);
5625
5626  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5627  abort();
5628  return SDValue();
5629}
5630
5631SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5632  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5633  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5634  SDValue Chain = Op.getOperand(0);
5635  SDValue DstPtr = Op.getOperand(1);
5636  SDValue SrcPtr = Op.getOperand(2);
5637  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5638  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5639
5640  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5641                       DAG.getIntPtrConstant(24), 8, false,
5642                       DstSV, 0, SrcSV, 0);
5643}
5644
5645SDValue
5646X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5647  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5648  switch (IntNo) {
5649  default: return SDValue();    // Don't custom lower most intrinsics.
5650  // Comparison intrinsics.
5651  case Intrinsic::x86_sse_comieq_ss:
5652  case Intrinsic::x86_sse_comilt_ss:
5653  case Intrinsic::x86_sse_comile_ss:
5654  case Intrinsic::x86_sse_comigt_ss:
5655  case Intrinsic::x86_sse_comige_ss:
5656  case Intrinsic::x86_sse_comineq_ss:
5657  case Intrinsic::x86_sse_ucomieq_ss:
5658  case Intrinsic::x86_sse_ucomilt_ss:
5659  case Intrinsic::x86_sse_ucomile_ss:
5660  case Intrinsic::x86_sse_ucomigt_ss:
5661  case Intrinsic::x86_sse_ucomige_ss:
5662  case Intrinsic::x86_sse_ucomineq_ss:
5663  case Intrinsic::x86_sse2_comieq_sd:
5664  case Intrinsic::x86_sse2_comilt_sd:
5665  case Intrinsic::x86_sse2_comile_sd:
5666  case Intrinsic::x86_sse2_comigt_sd:
5667  case Intrinsic::x86_sse2_comige_sd:
5668  case Intrinsic::x86_sse2_comineq_sd:
5669  case Intrinsic::x86_sse2_ucomieq_sd:
5670  case Intrinsic::x86_sse2_ucomilt_sd:
5671  case Intrinsic::x86_sse2_ucomile_sd:
5672  case Intrinsic::x86_sse2_ucomigt_sd:
5673  case Intrinsic::x86_sse2_ucomige_sd:
5674  case Intrinsic::x86_sse2_ucomineq_sd: {
5675    unsigned Opc = 0;
5676    ISD::CondCode CC = ISD::SETCC_INVALID;
5677    switch (IntNo) {
5678    default: break;
5679    case Intrinsic::x86_sse_comieq_ss:
5680    case Intrinsic::x86_sse2_comieq_sd:
5681      Opc = X86ISD::COMI;
5682      CC = ISD::SETEQ;
5683      break;
5684    case Intrinsic::x86_sse_comilt_ss:
5685    case Intrinsic::x86_sse2_comilt_sd:
5686      Opc = X86ISD::COMI;
5687      CC = ISD::SETLT;
5688      break;
5689    case Intrinsic::x86_sse_comile_ss:
5690    case Intrinsic::x86_sse2_comile_sd:
5691      Opc = X86ISD::COMI;
5692      CC = ISD::SETLE;
5693      break;
5694    case Intrinsic::x86_sse_comigt_ss:
5695    case Intrinsic::x86_sse2_comigt_sd:
5696      Opc = X86ISD::COMI;
5697      CC = ISD::SETGT;
5698      break;
5699    case Intrinsic::x86_sse_comige_ss:
5700    case Intrinsic::x86_sse2_comige_sd:
5701      Opc = X86ISD::COMI;
5702      CC = ISD::SETGE;
5703      break;
5704    case Intrinsic::x86_sse_comineq_ss:
5705    case Intrinsic::x86_sse2_comineq_sd:
5706      Opc = X86ISD::COMI;
5707      CC = ISD::SETNE;
5708      break;
5709    case Intrinsic::x86_sse_ucomieq_ss:
5710    case Intrinsic::x86_sse2_ucomieq_sd:
5711      Opc = X86ISD::UCOMI;
5712      CC = ISD::SETEQ;
5713      break;
5714    case Intrinsic::x86_sse_ucomilt_ss:
5715    case Intrinsic::x86_sse2_ucomilt_sd:
5716      Opc = X86ISD::UCOMI;
5717      CC = ISD::SETLT;
5718      break;
5719    case Intrinsic::x86_sse_ucomile_ss:
5720    case Intrinsic::x86_sse2_ucomile_sd:
5721      Opc = X86ISD::UCOMI;
5722      CC = ISD::SETLE;
5723      break;
5724    case Intrinsic::x86_sse_ucomigt_ss:
5725    case Intrinsic::x86_sse2_ucomigt_sd:
5726      Opc = X86ISD::UCOMI;
5727      CC = ISD::SETGT;
5728      break;
5729    case Intrinsic::x86_sse_ucomige_ss:
5730    case Intrinsic::x86_sse2_ucomige_sd:
5731      Opc = X86ISD::UCOMI;
5732      CC = ISD::SETGE;
5733      break;
5734    case Intrinsic::x86_sse_ucomineq_ss:
5735    case Intrinsic::x86_sse2_ucomineq_sd:
5736      Opc = X86ISD::UCOMI;
5737      CC = ISD::SETNE;
5738      break;
5739    }
5740
5741    unsigned X86CC;
5742    SDValue LHS = Op.getOperand(1);
5743    SDValue RHS = Op.getOperand(2);
5744    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5745
5746    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5747    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5748                                DAG.getConstant(X86CC, MVT::i8), Cond);
5749    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5750  }
5751
5752  // Fix vector shift instructions where the last operand is a non-immediate
5753  // i32 value.
5754  case Intrinsic::x86_sse2_pslli_w:
5755  case Intrinsic::x86_sse2_pslli_d:
5756  case Intrinsic::x86_sse2_pslli_q:
5757  case Intrinsic::x86_sse2_psrli_w:
5758  case Intrinsic::x86_sse2_psrli_d:
5759  case Intrinsic::x86_sse2_psrli_q:
5760  case Intrinsic::x86_sse2_psrai_w:
5761  case Intrinsic::x86_sse2_psrai_d:
5762  case Intrinsic::x86_mmx_pslli_w:
5763  case Intrinsic::x86_mmx_pslli_d:
5764  case Intrinsic::x86_mmx_pslli_q:
5765  case Intrinsic::x86_mmx_psrli_w:
5766  case Intrinsic::x86_mmx_psrli_d:
5767  case Intrinsic::x86_mmx_psrli_q:
5768  case Intrinsic::x86_mmx_psrai_w:
5769  case Intrinsic::x86_mmx_psrai_d: {
5770    SDValue ShAmt = Op.getOperand(2);
5771    if (isa<ConstantSDNode>(ShAmt))
5772      return SDValue();
5773
5774    unsigned NewIntNo = 0;
5775    MVT ShAmtVT = MVT::v4i32;
5776    switch (IntNo) {
5777    case Intrinsic::x86_sse2_pslli_w:
5778      NewIntNo = Intrinsic::x86_sse2_psll_w;
5779      break;
5780    case Intrinsic::x86_sse2_pslli_d:
5781      NewIntNo = Intrinsic::x86_sse2_psll_d;
5782      break;
5783    case Intrinsic::x86_sse2_pslli_q:
5784      NewIntNo = Intrinsic::x86_sse2_psll_q;
5785      break;
5786    case Intrinsic::x86_sse2_psrli_w:
5787      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5788      break;
5789    case Intrinsic::x86_sse2_psrli_d:
5790      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5791      break;
5792    case Intrinsic::x86_sse2_psrli_q:
5793      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5794      break;
5795    case Intrinsic::x86_sse2_psrai_w:
5796      NewIntNo = Intrinsic::x86_sse2_psra_w;
5797      break;
5798    case Intrinsic::x86_sse2_psrai_d:
5799      NewIntNo = Intrinsic::x86_sse2_psra_d;
5800      break;
5801    default: {
5802      ShAmtVT = MVT::v2i32;
5803      switch (IntNo) {
5804      case Intrinsic::x86_mmx_pslli_w:
5805        NewIntNo = Intrinsic::x86_mmx_psll_w;
5806        break;
5807      case Intrinsic::x86_mmx_pslli_d:
5808        NewIntNo = Intrinsic::x86_mmx_psll_d;
5809        break;
5810      case Intrinsic::x86_mmx_pslli_q:
5811        NewIntNo = Intrinsic::x86_mmx_psll_q;
5812        break;
5813      case Intrinsic::x86_mmx_psrli_w:
5814        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5815        break;
5816      case Intrinsic::x86_mmx_psrli_d:
5817        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5818        break;
5819      case Intrinsic::x86_mmx_psrli_q:
5820        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5821        break;
5822      case Intrinsic::x86_mmx_psrai_w:
5823        NewIntNo = Intrinsic::x86_mmx_psra_w;
5824        break;
5825      case Intrinsic::x86_mmx_psrai_d:
5826        NewIntNo = Intrinsic::x86_mmx_psra_d;
5827        break;
5828      default: abort();  // Can't reach here.
5829      }
5830      break;
5831    }
5832    }
5833    MVT VT = Op.getValueType();
5834    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5835                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5836    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5837                       DAG.getConstant(NewIntNo, MVT::i32),
5838                       Op.getOperand(1), ShAmt);
5839  }
5840  }
5841}
5842
5843SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5844  // Depths > 0 not supported yet!
5845  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5846    return SDValue();
5847
5848  // Just load the return address
5849  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5850  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5851}
5852
5853SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5854  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5855  MFI->setFrameAddressIsTaken(true);
5856  MVT VT = Op.getValueType();
5857  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5858  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
5859  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), FrameReg, VT);
5860  while (Depth--)
5861    FrameAddr = DAG.getLoad(VT, DAG.getEntryNode(), FrameAddr, NULL, 0);
5862  return FrameAddr;
5863}
5864
5865SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5866                                                     SelectionDAG &DAG) {
5867  return DAG.getIntPtrConstant(2*TD->getPointerSize());
5868}
5869
5870SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
5871{
5872  MachineFunction &MF = DAG.getMachineFunction();
5873  SDValue Chain     = Op.getOperand(0);
5874  SDValue Offset    = Op.getOperand(1);
5875  SDValue Handler   = Op.getOperand(2);
5876
5877  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
5878                                  getPointerTy());
5879  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
5880
5881  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5882                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
5883  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5884  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5885  Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr);
5886  MF.getRegInfo().addLiveOut(StoreAddrReg);
5887
5888  return DAG.getNode(X86ISD::EH_RETURN,
5889                     MVT::Other,
5890                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
5891}
5892
5893SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
5894                                             SelectionDAG &DAG) {
5895  SDValue Root = Op.getOperand(0);
5896  SDValue Trmp = Op.getOperand(1); // trampoline
5897  SDValue FPtr = Op.getOperand(2); // nested function
5898  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
5899
5900  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5901
5902  const X86InstrInfo *TII =
5903    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5904
5905  if (Subtarget->is64Bit()) {
5906    SDValue OutChains[6];
5907
5908    // Large code-model.
5909
5910    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5911    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5912
5913    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5914    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5915
5916    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5917
5918    // Load the pointer to the nested function into R11.
5919    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5920    SDValue Addr = Trmp;
5921    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5922                                TrmpAddr, 0);
5923
5924    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5925    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5926
5927    // Load the 'nest' parameter value into R10.
5928    // R10 is specified in X86CallingConv.td
5929    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5930    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5931    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5932                                TrmpAddr, 10);
5933
5934    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5935    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5936
5937    // Jump to the nested function.
5938    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5939    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5940    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5941                                TrmpAddr, 20);
5942
5943    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5944    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5945    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5946                                TrmpAddr, 22);
5947
5948    SDValue Ops[] =
5949      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5950    return DAG.getMergeValues(Ops, 2);
5951  } else {
5952    const Function *Func =
5953      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5954    unsigned CC = Func->getCallingConv();
5955    unsigned NestReg;
5956
5957    switch (CC) {
5958    default:
5959      assert(0 && "Unsupported calling convention");
5960    case CallingConv::C:
5961    case CallingConv::X86_StdCall: {
5962      // Pass 'nest' parameter in ECX.
5963      // Must be kept in sync with X86CallingConv.td
5964      NestReg = X86::ECX;
5965
5966      // Check that ECX wasn't needed by an 'inreg' parameter.
5967      const FunctionType *FTy = Func->getFunctionType();
5968      const AttrListPtr &Attrs = Func->getAttributes();
5969
5970      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5971        unsigned InRegCount = 0;
5972        unsigned Idx = 1;
5973
5974        for (FunctionType::param_iterator I = FTy->param_begin(),
5975             E = FTy->param_end(); I != E; ++I, ++Idx)
5976          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
5977            // FIXME: should only count parameters that are lowered to integers.
5978            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
5979
5980        if (InRegCount > 2) {
5981          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5982          abort();
5983        }
5984      }
5985      break;
5986    }
5987    case CallingConv::X86_FastCall:
5988    case CallingConv::Fast:
5989      // Pass 'nest' parameter in EAX.
5990      // Must be kept in sync with X86CallingConv.td
5991      NestReg = X86::EAX;
5992      break;
5993    }
5994
5995    SDValue OutChains[4];
5996    SDValue Addr, Disp;
5997
5998    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5999    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
6000
6001    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6002    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6003    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6004                                Trmp, TrmpAddr, 0);
6005
6006    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
6007    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
6008
6009    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6010    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
6011    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
6012                                TrmpAddr, 5, false, 1);
6013
6014    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
6015    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
6016
6017    SDValue Ops[] =
6018      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
6019    return DAG.getMergeValues(Ops, 2);
6020  }
6021}
6022
6023SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6024  /*
6025   The rounding mode is in bits 11:10 of FPSR, and has the following
6026   settings:
6027     00 Round to nearest
6028     01 Round to -inf
6029     10 Round to +inf
6030     11 Round to 0
6031
6032  FLT_ROUNDS, on the other hand, expects the following:
6033    -1 Undefined
6034     0 Round to 0
6035     1 Round to nearest
6036     2 Round to +inf
6037     3 Round to -inf
6038
6039  To perform the conversion, we do:
6040    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6041  */
6042
6043  MachineFunction &MF = DAG.getMachineFunction();
6044  const TargetMachine &TM = MF.getTarget();
6045  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6046  unsigned StackAlignment = TFI.getStackAlignment();
6047  MVT VT = Op.getValueType();
6048
6049  // Save FP Control Word to stack slot
6050  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6051  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6052
6053  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
6054                              DAG.getEntryNode(), StackSlot);
6055
6056  // Load FP Control Word from stack slot
6057  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
6058
6059  // Transform as necessary
6060  SDValue CWD1 =
6061    DAG.getNode(ISD::SRL, MVT::i16,
6062                DAG.getNode(ISD::AND, MVT::i16,
6063                            CWD, DAG.getConstant(0x800, MVT::i16)),
6064                DAG.getConstant(11, MVT::i8));
6065  SDValue CWD2 =
6066    DAG.getNode(ISD::SRL, MVT::i16,
6067                DAG.getNode(ISD::AND, MVT::i16,
6068                            CWD, DAG.getConstant(0x400, MVT::i16)),
6069                DAG.getConstant(9, MVT::i8));
6070
6071  SDValue RetVal =
6072    DAG.getNode(ISD::AND, MVT::i16,
6073                DAG.getNode(ISD::ADD, MVT::i16,
6074                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
6075                            DAG.getConstant(1, MVT::i16)),
6076                DAG.getConstant(3, MVT::i16));
6077
6078
6079  return DAG.getNode((VT.getSizeInBits() < 16 ?
6080                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
6081}
6082
6083SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6084  MVT VT = Op.getValueType();
6085  MVT OpVT = VT;
6086  unsigned NumBits = VT.getSizeInBits();
6087
6088  Op = Op.getOperand(0);
6089  if (VT == MVT::i8) {
6090    // Zero extend to i32 since there is not an i8 bsr.
6091    OpVT = MVT::i32;
6092    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6093  }
6094
6095  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6096  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6097  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
6098
6099  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6100  SmallVector<SDValue, 4> Ops;
6101  Ops.push_back(Op);
6102  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6103  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6104  Ops.push_back(Op.getValue(1));
6105  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6106
6107  // Finally xor with NumBits-1.
6108  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6109
6110  if (VT == MVT::i8)
6111    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6112  return Op;
6113}
6114
6115SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6116  MVT VT = Op.getValueType();
6117  MVT OpVT = VT;
6118  unsigned NumBits = VT.getSizeInBits();
6119
6120  Op = Op.getOperand(0);
6121  if (VT == MVT::i8) {
6122    OpVT = MVT::i32;
6123    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6124  }
6125
6126  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6127  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6128  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
6129
6130  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6131  SmallVector<SDValue, 4> Ops;
6132  Ops.push_back(Op);
6133  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6134  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6135  Ops.push_back(Op.getValue(1));
6136  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6137
6138  if (VT == MVT::i8)
6139    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6140  return Op;
6141}
6142
6143SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6144  MVT T = Op.getValueType();
6145  unsigned Reg = 0;
6146  unsigned size = 0;
6147  switch(T.getSimpleVT()) {
6148  default:
6149    assert(false && "Invalid value type!");
6150  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6151  case MVT::i16: Reg = X86::AX;  size = 2; break;
6152  case MVT::i32: Reg = X86::EAX; size = 4; break;
6153  case MVT::i64:
6154    if (Subtarget->is64Bit()) {
6155      Reg = X86::RAX; size = 8;
6156    } else //Should go away when LegalizeType stuff lands
6157      return SDValue(ExpandATOMIC_CMP_SWAP(Op.getNode(), DAG), 0);
6158    break;
6159  };
6160  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
6161                                    Op.getOperand(2), SDValue());
6162  SDValue Ops[] = { cpIn.getValue(0),
6163                    Op.getOperand(1),
6164                    Op.getOperand(3),
6165                    DAG.getTargetConstant(size, MVT::i8),
6166                    cpIn.getValue(1) };
6167  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6168  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
6169  SDValue cpOut =
6170    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
6171  return cpOut;
6172}
6173
6174SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op,
6175                                                 SelectionDAG &DAG) {
6176  MVT T = Op->getValueType(0);
6177  assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6178  SDValue cpInL, cpInH;
6179  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
6180                      DAG.getConstant(0, MVT::i32));
6181  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
6182                      DAG.getConstant(1, MVT::i32));
6183  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
6184                           cpInL, SDValue());
6185  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
6186                           cpInH, cpInL.getValue(1));
6187  SDValue swapInL, swapInH;
6188  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
6189                        DAG.getConstant(0, MVT::i32));
6190  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
6191                        DAG.getConstant(1, MVT::i32));
6192  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
6193                             swapInL, cpInH.getValue(1));
6194  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
6195                             swapInH, swapInL.getValue(1));
6196  SDValue Ops[] = { swapInH.getValue(0),
6197                    Op->getOperand(1),
6198                    swapInH.getValue(1) };
6199  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6200  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
6201  SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
6202                                        Result.getValue(1));
6203  SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
6204                                        cpOutL.getValue(2));
6205  SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6206  SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
6207  SDValue Vals[2] = { ResultVal, cpOutH.getValue(1) };
6208  return DAG.getMergeValues(Vals, 2).getNode();
6209}
6210
6211SDValue X86TargetLowering::LowerATOMIC_BINARY_64(SDValue Op,
6212                                                 SelectionDAG &DAG,
6213                                                 unsigned NewOp) {
6214  SDNode *Node = Op.getNode();
6215  MVT T = Node->getValueType(0);
6216  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6217
6218  SDValue Chain = Node->getOperand(0);
6219  SDValue In1 = Node->getOperand(1);
6220  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6221                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6222  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6223                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6224  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6225  // have a MemOperand.  Pass the info through as a normal operand.
6226  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6227  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6228  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6229  SDValue Result = DAG.getNode(NewOp, Tys, Ops, 5);
6230  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6231  SDValue ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
6232  SDValue Vals[2] = { ResultVal, Result.getValue(2) };
6233  return SDValue(DAG.getMergeValues(Vals, 2).getNode(), 0);
6234}
6235
6236SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6237  SDNode *Node = Op.getNode();
6238  MVT T = Node->getValueType(0);
6239  SDValue negOp = DAG.getNode(ISD::SUB, T,
6240                                DAG.getConstant(0, T), Node->getOperand(2));
6241  return DAG.getAtomic((Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_8 ?
6242                                        ISD::ATOMIC_LOAD_ADD_8 :
6243                        Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_16 ?
6244                                        ISD::ATOMIC_LOAD_ADD_16 :
6245                        Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_32 ?
6246                                        ISD::ATOMIC_LOAD_ADD_32 :
6247                                        ISD::ATOMIC_LOAD_ADD_64),
6248                       Node->getOperand(0),
6249                       Node->getOperand(1), negOp,
6250                       cast<AtomicSDNode>(Node)->getSrcValue(),
6251                       cast<AtomicSDNode>(Node)->getAlignment());
6252}
6253
6254/// LowerOperation - Provide custom lowering hooks for some operations.
6255///
6256SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6257  switch (Op.getOpcode()) {
6258  default: assert(0 && "Should not custom lower this!");
6259  case ISD::ATOMIC_CMP_SWAP_8:
6260  case ISD::ATOMIC_CMP_SWAP_16:
6261  case ISD::ATOMIC_CMP_SWAP_32:
6262  case ISD::ATOMIC_CMP_SWAP_64: return LowerCMP_SWAP(Op,DAG);
6263  case ISD::ATOMIC_LOAD_SUB_8:
6264  case ISD::ATOMIC_LOAD_SUB_16:
6265  case ISD::ATOMIC_LOAD_SUB_32: return LowerLOAD_SUB(Op,DAG);
6266  case ISD::ATOMIC_LOAD_SUB_64: return (Subtarget->is64Bit()) ?
6267                                        LowerLOAD_SUB(Op,DAG) :
6268                                        LowerATOMIC_BINARY_64(Op,DAG,
6269                                        X86ISD::ATOMSUB64_DAG);
6270  case ISD::ATOMIC_LOAD_AND_64: return LowerATOMIC_BINARY_64(Op,DAG,
6271                                        X86ISD::ATOMAND64_DAG);
6272  case ISD::ATOMIC_LOAD_OR_64:  return LowerATOMIC_BINARY_64(Op, DAG,
6273                                        X86ISD::ATOMOR64_DAG);
6274  case ISD::ATOMIC_LOAD_XOR_64: return LowerATOMIC_BINARY_64(Op,DAG,
6275                                        X86ISD::ATOMXOR64_DAG);
6276  case ISD::ATOMIC_LOAD_NAND_64:return LowerATOMIC_BINARY_64(Op,DAG,
6277                                        X86ISD::ATOMNAND64_DAG);
6278  case ISD::ATOMIC_LOAD_ADD_64: return LowerATOMIC_BINARY_64(Op,DAG,
6279                                        X86ISD::ATOMADD64_DAG);
6280  case ISD::ATOMIC_SWAP_64:     return LowerATOMIC_BINARY_64(Op,DAG,
6281                                        X86ISD::ATOMSWAP64_DAG);
6282  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6283  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6284  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6285  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6286  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6287  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6288  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6289  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6290  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6291  case ISD::SHL_PARTS:
6292  case ISD::SRA_PARTS:
6293  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6294  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6295  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6296  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6297  case ISD::FABS:               return LowerFABS(Op, DAG);
6298  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6299  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6300  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6301  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6302  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6303  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6304  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6305  case ISD::CALL:               return LowerCALL(Op, DAG);
6306  case ISD::RET:                return LowerRET(Op, DAG);
6307  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6308  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6309  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6310  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6311  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6312  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6313  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6314  case ISD::FRAME_TO_ARGS_OFFSET:
6315                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6316  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6317  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6318  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6319  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6320  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6321  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6322
6323  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
6324  case ISD::READCYCLECOUNTER:
6325    return SDValue(ExpandREADCYCLECOUNTER(Op.getNode(), DAG), 0);
6326  }
6327}
6328
6329/// ReplaceNodeResults - Replace a node with an illegal result type
6330/// with a new node built out of custom code.
6331SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
6332  switch (N->getOpcode()) {
6333  default:
6334    return X86TargetLowering::LowerOperation(SDValue (N, 0), DAG).getNode();
6335  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
6336  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
6337  case ISD::ATOMIC_CMP_SWAP_64: return ExpandATOMIC_CMP_SWAP(N, DAG);
6338  }
6339}
6340
6341const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6342  switch (Opcode) {
6343  default: return NULL;
6344  case X86ISD::BSF:                return "X86ISD::BSF";
6345  case X86ISD::BSR:                return "X86ISD::BSR";
6346  case X86ISD::SHLD:               return "X86ISD::SHLD";
6347  case X86ISD::SHRD:               return "X86ISD::SHRD";
6348  case X86ISD::FAND:               return "X86ISD::FAND";
6349  case X86ISD::FOR:                return "X86ISD::FOR";
6350  case X86ISD::FXOR:               return "X86ISD::FXOR";
6351  case X86ISD::FSRL:               return "X86ISD::FSRL";
6352  case X86ISD::FILD:               return "X86ISD::FILD";
6353  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6354  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6355  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6356  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6357  case X86ISD::FLD:                return "X86ISD::FLD";
6358  case X86ISD::FST:                return "X86ISD::FST";
6359  case X86ISD::CALL:               return "X86ISD::CALL";
6360  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6361  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6362  case X86ISD::CMP:                return "X86ISD::CMP";
6363  case X86ISD::COMI:               return "X86ISD::COMI";
6364  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6365  case X86ISD::SETCC:              return "X86ISD::SETCC";
6366  case X86ISD::CMOV:               return "X86ISD::CMOV";
6367  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6368  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6369  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6370  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6371  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6372  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6373  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6374  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6375  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6376  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6377  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6378  case X86ISD::FMAX:               return "X86ISD::FMAX";
6379  case X86ISD::FMIN:               return "X86ISD::FMIN";
6380  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6381  case X86ISD::FRCP:               return "X86ISD::FRCP";
6382  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6383  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6384  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6385  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6386  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6387  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6388  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6389  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6390  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6391  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6392  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6393  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6394  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6395  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6396  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6397  case X86ISD::VSHL:               return "X86ISD::VSHL";
6398  case X86ISD::VSRL:               return "X86ISD::VSRL";
6399  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6400  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6401  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6402  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6403  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6404  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6405  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6406  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6407  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6408  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6409  }
6410}
6411
6412// isLegalAddressingMode - Return true if the addressing mode represented
6413// by AM is legal for this target, for a load/store of the specified type.
6414bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6415                                              const Type *Ty) const {
6416  // X86 supports extremely general addressing modes.
6417
6418  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6419  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6420    return false;
6421
6422  if (AM.BaseGV) {
6423    // We can only fold this if we don't need an extra load.
6424    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6425      return false;
6426
6427    // X86-64 only supports addr of globals in small code model.
6428    if (Subtarget->is64Bit()) {
6429      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6430        return false;
6431      // If lower 4G is not available, then we must use rip-relative addressing.
6432      if (AM.BaseOffs || AM.Scale > 1)
6433        return false;
6434    }
6435  }
6436
6437  switch (AM.Scale) {
6438  case 0:
6439  case 1:
6440  case 2:
6441  case 4:
6442  case 8:
6443    // These scales always work.
6444    break;
6445  case 3:
6446  case 5:
6447  case 9:
6448    // These scales are formed with basereg+scalereg.  Only accept if there is
6449    // no basereg yet.
6450    if (AM.HasBaseReg)
6451      return false;
6452    break;
6453  default:  // Other stuff never works.
6454    return false;
6455  }
6456
6457  return true;
6458}
6459
6460
6461bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6462  if (!Ty1->isInteger() || !Ty2->isInteger())
6463    return false;
6464  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6465  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6466  if (NumBits1 <= NumBits2)
6467    return false;
6468  return Subtarget->is64Bit() || NumBits1 < 64;
6469}
6470
6471bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6472  if (!VT1.isInteger() || !VT2.isInteger())
6473    return false;
6474  unsigned NumBits1 = VT1.getSizeInBits();
6475  unsigned NumBits2 = VT2.getSizeInBits();
6476  if (NumBits1 <= NumBits2)
6477    return false;
6478  return Subtarget->is64Bit() || NumBits1 < 64;
6479}
6480
6481/// isShuffleMaskLegal - Targets can use this to indicate that they only
6482/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6483/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6484/// are assumed to be legal.
6485bool
6486X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6487  // Only do shuffles on 128-bit vector types for now.
6488  if (VT.getSizeInBits() == 64) return false;
6489  return (Mask.getNode()->getNumOperands() <= 4 ||
6490          isIdentityMask(Mask.getNode()) ||
6491          isIdentityMask(Mask.getNode(), true) ||
6492          isSplatMask(Mask.getNode())  ||
6493          isPSHUFHW_PSHUFLWMask(Mask.getNode()) ||
6494          X86::isUNPCKLMask(Mask.getNode()) ||
6495          X86::isUNPCKHMask(Mask.getNode()) ||
6496          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
6497          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
6498}
6499
6500bool
6501X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6502                                          MVT EVT, SelectionDAG &DAG) const {
6503  unsigned NumElts = BVOps.size();
6504  // Only do shuffles on 128-bit vector types for now.
6505  if (EVT.getSizeInBits() * NumElts == 64) return false;
6506  if (NumElts == 2) return true;
6507  if (NumElts == 4) {
6508    return (isMOVLMask(&BVOps[0], 4)  ||
6509            isCommutedMOVL(&BVOps[0], 4, true) ||
6510            isSHUFPMask(&BVOps[0], 4) ||
6511            isCommutedSHUFP(&BVOps[0], 4));
6512  }
6513  return false;
6514}
6515
6516//===----------------------------------------------------------------------===//
6517//                           X86 Scheduler Hooks
6518//===----------------------------------------------------------------------===//
6519
6520// private utility function
6521MachineBasicBlock *
6522X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6523                                                       MachineBasicBlock *MBB,
6524                                                       unsigned regOpc,
6525                                                       unsigned immOpc,
6526                                                       unsigned LoadOpc,
6527                                                       unsigned CXchgOpc,
6528                                                       unsigned copyOpc,
6529                                                       unsigned notOpc,
6530                                                       unsigned EAXreg,
6531                                                       TargetRegisterClass *RC,
6532                                                       bool invSrc) {
6533  // For the atomic bitwise operator, we generate
6534  //   thisMBB:
6535  //   newMBB:
6536  //     ld  t1 = [bitinstr.addr]
6537  //     op  t2 = t1, [bitinstr.val]
6538  //     mov EAX = t1
6539  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6540  //     bz  newMBB
6541  //     fallthrough -->nextMBB
6542  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6543  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6544  MachineFunction::iterator MBBIter = MBB;
6545  ++MBBIter;
6546
6547  /// First build the CFG
6548  MachineFunction *F = MBB->getParent();
6549  MachineBasicBlock *thisMBB = MBB;
6550  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6551  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6552  F->insert(MBBIter, newMBB);
6553  F->insert(MBBIter, nextMBB);
6554
6555  // Move all successors to thisMBB to nextMBB
6556  nextMBB->transferSuccessors(thisMBB);
6557
6558  // Update thisMBB to fall through to newMBB
6559  thisMBB->addSuccessor(newMBB);
6560
6561  // newMBB jumps to itself and fall through to nextMBB
6562  newMBB->addSuccessor(nextMBB);
6563  newMBB->addSuccessor(newMBB);
6564
6565  // Insert instructions into newMBB based on incoming instruction
6566  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6567  MachineOperand& destOper = bInstr->getOperand(0);
6568  MachineOperand* argOpers[6];
6569  int numArgs = bInstr->getNumOperands() - 1;
6570  for (int i=0; i < numArgs; ++i)
6571    argOpers[i] = &bInstr->getOperand(i+1);
6572
6573  // x86 address has 4 operands: base, index, scale, and displacement
6574  int lastAddrIndx = 3; // [0,3]
6575  int valArgIndx = 4;
6576
6577  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6578  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6579  for (int i=0; i <= lastAddrIndx; ++i)
6580    (*MIB).addOperand(*argOpers[i]);
6581
6582  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6583  if (invSrc) {
6584    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6585  }
6586  else
6587    tt = t1;
6588
6589  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6590  assert((argOpers[valArgIndx]->isReg() ||
6591          argOpers[valArgIndx]->isImm()) &&
6592         "invalid operand");
6593  if (argOpers[valArgIndx]->isReg())
6594    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6595  else
6596    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6597  MIB.addReg(tt);
6598  (*MIB).addOperand(*argOpers[valArgIndx]);
6599
6600  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6601  MIB.addReg(t1);
6602
6603  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6604  for (int i=0; i <= lastAddrIndx; ++i)
6605    (*MIB).addOperand(*argOpers[i]);
6606  MIB.addReg(t2);
6607  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6608  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6609
6610  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6611  MIB.addReg(EAXreg);
6612
6613  // insert branch
6614  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6615
6616  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6617  return nextMBB;
6618}
6619
6620// private utility function:  64 bit atomics on 32 bit host.
6621MachineBasicBlock *
6622X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
6623                                                       MachineBasicBlock *MBB,
6624                                                       unsigned regOpcL,
6625                                                       unsigned regOpcH,
6626                                                       unsigned immOpcL,
6627                                                       unsigned immOpcH,
6628                                                       bool invSrc) {
6629  // For the atomic bitwise operator, we generate
6630  //   thisMBB (instructions are in pairs, except cmpxchg8b)
6631  //     ld t1,t2 = [bitinstr.addr]
6632  //   newMBB:
6633  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
6634  //     op  t5, t6 <- out1, out2, [bitinstr.val]
6635  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
6636  //     mov ECX, EBX <- t5, t6
6637  //     mov EAX, EDX <- t1, t2
6638  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
6639  //     mov t3, t4 <- EAX, EDX
6640  //     bz  newMBB
6641  //     result in out1, out2
6642  //     fallthrough -->nextMBB
6643
6644  const TargetRegisterClass *RC = X86::GR32RegisterClass;
6645  const unsigned LoadOpc = X86::MOV32rm;
6646  const unsigned copyOpc = X86::MOV32rr;
6647  const unsigned NotOpc = X86::NOT32r;
6648  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6649  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6650  MachineFunction::iterator MBBIter = MBB;
6651  ++MBBIter;
6652
6653  /// First build the CFG
6654  MachineFunction *F = MBB->getParent();
6655  MachineBasicBlock *thisMBB = MBB;
6656  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6657  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6658  F->insert(MBBIter, newMBB);
6659  F->insert(MBBIter, nextMBB);
6660
6661  // Move all successors to thisMBB to nextMBB
6662  nextMBB->transferSuccessors(thisMBB);
6663
6664  // Update thisMBB to fall through to newMBB
6665  thisMBB->addSuccessor(newMBB);
6666
6667  // newMBB jumps to itself and fall through to nextMBB
6668  newMBB->addSuccessor(nextMBB);
6669  newMBB->addSuccessor(newMBB);
6670
6671  // Insert instructions into newMBB based on incoming instruction
6672  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
6673  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
6674  MachineOperand& dest1Oper = bInstr->getOperand(0);
6675  MachineOperand& dest2Oper = bInstr->getOperand(1);
6676  MachineOperand* argOpers[6];
6677  for (int i=0; i < 6; ++i)
6678    argOpers[i] = &bInstr->getOperand(i+2);
6679
6680  // x86 address has 4 operands: base, index, scale, and displacement
6681  int lastAddrIndx = 3; // [0,3]
6682
6683  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6684  MachineInstrBuilder MIB = BuildMI(thisMBB, TII->get(LoadOpc), t1);
6685  for (int i=0; i <= lastAddrIndx; ++i)
6686    (*MIB).addOperand(*argOpers[i]);
6687  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6688  MIB = BuildMI(thisMBB, TII->get(LoadOpc), t2);
6689  // add 4 to displacement.
6690  for (int i=0; i <= lastAddrIndx-1; ++i)
6691    (*MIB).addOperand(*argOpers[i]);
6692  MachineOperand newOp3 = *(argOpers[3]);
6693  if (newOp3.isImm())
6694    newOp3.setImm(newOp3.getImm()+4);
6695  else
6696    newOp3.setOffset(newOp3.getOffset()+4);
6697  (*MIB).addOperand(newOp3);
6698
6699  // t3/4 are defined later, at the bottom of the loop
6700  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
6701  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
6702  BuildMI(newMBB, TII->get(X86::PHI), dest1Oper.getReg())
6703    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
6704  BuildMI(newMBB, TII->get(X86::PHI), dest2Oper.getReg())
6705    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
6706
6707  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
6708  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
6709  if (invSrc) {
6710    MIB = BuildMI(newMBB, TII->get(NotOpc), tt1).addReg(t1);
6711    MIB = BuildMI(newMBB, TII->get(NotOpc), tt2).addReg(t2);
6712  } else {
6713    tt1 = t1;
6714    tt2 = t2;
6715  }
6716
6717  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
6718         "invalid operand");
6719  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
6720  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
6721  if (argOpers[4]->isReg())
6722    MIB = BuildMI(newMBB, TII->get(regOpcL), t5);
6723  else
6724    MIB = BuildMI(newMBB, TII->get(immOpcL), t5);
6725  if (regOpcL != X86::MOV32rr)
6726    MIB.addReg(tt1);
6727  (*MIB).addOperand(*argOpers[4]);
6728  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
6729  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
6730  if (argOpers[5]->isReg())
6731    MIB = BuildMI(newMBB, TII->get(regOpcH), t6);
6732  else
6733    MIB = BuildMI(newMBB, TII->get(immOpcH), t6);
6734  if (regOpcH != X86::MOV32rr)
6735    MIB.addReg(tt2);
6736  (*MIB).addOperand(*argOpers[5]);
6737
6738  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EAX);
6739  MIB.addReg(t1);
6740  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EDX);
6741  MIB.addReg(t2);
6742
6743  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EBX);
6744  MIB.addReg(t5);
6745  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::ECX);
6746  MIB.addReg(t6);
6747
6748  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG8B));
6749  for (int i=0; i <= lastAddrIndx; ++i)
6750    (*MIB).addOperand(*argOpers[i]);
6751
6752  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6753  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6754
6755  MIB = BuildMI(newMBB, TII->get(copyOpc), t3);
6756  MIB.addReg(X86::EAX);
6757  MIB = BuildMI(newMBB, TII->get(copyOpc), t4);
6758  MIB.addReg(X86::EDX);
6759
6760  // insert branch
6761  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6762
6763  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6764  return nextMBB;
6765}
6766
6767// private utility function
6768MachineBasicBlock *
6769X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6770                                                      MachineBasicBlock *MBB,
6771                                                      unsigned cmovOpc) {
6772  // For the atomic min/max operator, we generate
6773  //   thisMBB:
6774  //   newMBB:
6775  //     ld t1 = [min/max.addr]
6776  //     mov t2 = [min/max.val]
6777  //     cmp  t1, t2
6778  //     cmov[cond] t2 = t1
6779  //     mov EAX = t1
6780  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6781  //     bz   newMBB
6782  //     fallthrough -->nextMBB
6783  //
6784  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6785  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6786  MachineFunction::iterator MBBIter = MBB;
6787  ++MBBIter;
6788
6789  /// First build the CFG
6790  MachineFunction *F = MBB->getParent();
6791  MachineBasicBlock *thisMBB = MBB;
6792  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6793  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6794  F->insert(MBBIter, newMBB);
6795  F->insert(MBBIter, nextMBB);
6796
6797  // Move all successors to thisMBB to nextMBB
6798  nextMBB->transferSuccessors(thisMBB);
6799
6800  // Update thisMBB to fall through to newMBB
6801  thisMBB->addSuccessor(newMBB);
6802
6803  // newMBB jumps to newMBB and fall through to nextMBB
6804  newMBB->addSuccessor(nextMBB);
6805  newMBB->addSuccessor(newMBB);
6806
6807  // Insert instructions into newMBB based on incoming instruction
6808  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6809  MachineOperand& destOper = mInstr->getOperand(0);
6810  MachineOperand* argOpers[6];
6811  int numArgs = mInstr->getNumOperands() - 1;
6812  for (int i=0; i < numArgs; ++i)
6813    argOpers[i] = &mInstr->getOperand(i+1);
6814
6815  // x86 address has 4 operands: base, index, scale, and displacement
6816  int lastAddrIndx = 3; // [0,3]
6817  int valArgIndx = 4;
6818
6819  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6820  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6821  for (int i=0; i <= lastAddrIndx; ++i)
6822    (*MIB).addOperand(*argOpers[i]);
6823
6824  // We only support register and immediate values
6825  assert((argOpers[valArgIndx]->isReg() ||
6826          argOpers[valArgIndx]->isImm()) &&
6827         "invalid operand");
6828
6829  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6830  if (argOpers[valArgIndx]->isReg())
6831    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6832  else
6833    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6834  (*MIB).addOperand(*argOpers[valArgIndx]);
6835
6836  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6837  MIB.addReg(t1);
6838
6839  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6840  MIB.addReg(t1);
6841  MIB.addReg(t2);
6842
6843  // Generate movc
6844  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6845  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6846  MIB.addReg(t2);
6847  MIB.addReg(t1);
6848
6849  // Cmp and exchange if none has modified the memory location
6850  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6851  for (int i=0; i <= lastAddrIndx; ++i)
6852    (*MIB).addOperand(*argOpers[i]);
6853  MIB.addReg(t3);
6854  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6855  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6856
6857  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
6858  MIB.addReg(X86::EAX);
6859
6860  // insert branch
6861  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6862
6863  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
6864  return nextMBB;
6865}
6866
6867
6868MachineBasicBlock *
6869X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6870                                               MachineBasicBlock *BB) {
6871  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6872  switch (MI->getOpcode()) {
6873  default: assert(false && "Unexpected instr type to insert");
6874  case X86::CMOV_FR32:
6875  case X86::CMOV_FR64:
6876  case X86::CMOV_V4F32:
6877  case X86::CMOV_V2F64:
6878  case X86::CMOV_V2I64: {
6879    // To "insert" a SELECT_CC instruction, we actually have to insert the
6880    // diamond control-flow pattern.  The incoming instruction knows the
6881    // destination vreg to set, the condition code register to branch on, the
6882    // true/false values to select between, and a branch opcode to use.
6883    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6884    MachineFunction::iterator It = BB;
6885    ++It;
6886
6887    //  thisMBB:
6888    //  ...
6889    //   TrueVal = ...
6890    //   cmpTY ccX, r1, r2
6891    //   bCC copy1MBB
6892    //   fallthrough --> copy0MBB
6893    MachineBasicBlock *thisMBB = BB;
6894    MachineFunction *F = BB->getParent();
6895    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6896    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6897    unsigned Opc =
6898      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6899    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6900    F->insert(It, copy0MBB);
6901    F->insert(It, sinkMBB);
6902    // Update machine-CFG edges by transferring all successors of the current
6903    // block to the new block which will contain the Phi node for the select.
6904    sinkMBB->transferSuccessors(BB);
6905
6906    // Add the true and fallthrough blocks as its successors.
6907    BB->addSuccessor(copy0MBB);
6908    BB->addSuccessor(sinkMBB);
6909
6910    //  copy0MBB:
6911    //   %FalseValue = ...
6912    //   # fallthrough to sinkMBB
6913    BB = copy0MBB;
6914
6915    // Update machine-CFG edges
6916    BB->addSuccessor(sinkMBB);
6917
6918    //  sinkMBB:
6919    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6920    //  ...
6921    BB = sinkMBB;
6922    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6923      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6924      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6925
6926    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
6927    return BB;
6928  }
6929
6930  case X86::FP32_TO_INT16_IN_MEM:
6931  case X86::FP32_TO_INT32_IN_MEM:
6932  case X86::FP32_TO_INT64_IN_MEM:
6933  case X86::FP64_TO_INT16_IN_MEM:
6934  case X86::FP64_TO_INT32_IN_MEM:
6935  case X86::FP64_TO_INT64_IN_MEM:
6936  case X86::FP80_TO_INT16_IN_MEM:
6937  case X86::FP80_TO_INT32_IN_MEM:
6938  case X86::FP80_TO_INT64_IN_MEM: {
6939    // Change the floating point control register to use "round towards zero"
6940    // mode when truncating to an integer value.
6941    MachineFunction *F = BB->getParent();
6942    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6943    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6944
6945    // Load the old value of the high byte of the control word...
6946    unsigned OldCW =
6947      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6948    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6949
6950    // Set the high part to be round to zero...
6951    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6952      .addImm(0xC7F);
6953
6954    // Reload the modified control word now...
6955    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6956
6957    // Restore the memory image of control word to original value
6958    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6959      .addReg(OldCW);
6960
6961    // Get the X86 opcode to use.
6962    unsigned Opc;
6963    switch (MI->getOpcode()) {
6964    default: assert(0 && "illegal opcode!");
6965    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6966    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6967    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6968    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6969    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6970    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6971    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6972    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6973    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6974    }
6975
6976    X86AddressMode AM;
6977    MachineOperand &Op = MI->getOperand(0);
6978    if (Op.isReg()) {
6979      AM.BaseType = X86AddressMode::RegBase;
6980      AM.Base.Reg = Op.getReg();
6981    } else {
6982      AM.BaseType = X86AddressMode::FrameIndexBase;
6983      AM.Base.FrameIndex = Op.getIndex();
6984    }
6985    Op = MI->getOperand(1);
6986    if (Op.isImm())
6987      AM.Scale = Op.getImm();
6988    Op = MI->getOperand(2);
6989    if (Op.isImm())
6990      AM.IndexReg = Op.getImm();
6991    Op = MI->getOperand(3);
6992    if (Op.isGlobal()) {
6993      AM.GV = Op.getGlobal();
6994    } else {
6995      AM.Disp = Op.getImm();
6996    }
6997    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6998                      .addReg(MI->getOperand(4).getReg());
6999
7000    // Reload the original control word now.
7001    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7002
7003    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7004    return BB;
7005  }
7006  case X86::ATOMAND32:
7007    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7008                                               X86::AND32ri, X86::MOV32rm,
7009                                               X86::LCMPXCHG32, X86::MOV32rr,
7010                                               X86::NOT32r, X86::EAX,
7011                                               X86::GR32RegisterClass);
7012  case X86::ATOMOR32:
7013    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7014                                               X86::OR32ri, X86::MOV32rm,
7015                                               X86::LCMPXCHG32, X86::MOV32rr,
7016                                               X86::NOT32r, X86::EAX,
7017                                               X86::GR32RegisterClass);
7018  case X86::ATOMXOR32:
7019    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7020                                               X86::XOR32ri, X86::MOV32rm,
7021                                               X86::LCMPXCHG32, X86::MOV32rr,
7022                                               X86::NOT32r, X86::EAX,
7023                                               X86::GR32RegisterClass);
7024  case X86::ATOMNAND32:
7025    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7026                                               X86::AND32ri, X86::MOV32rm,
7027                                               X86::LCMPXCHG32, X86::MOV32rr,
7028                                               X86::NOT32r, X86::EAX,
7029                                               X86::GR32RegisterClass, true);
7030  case X86::ATOMMIN32:
7031    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7032  case X86::ATOMMAX32:
7033    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7034  case X86::ATOMUMIN32:
7035    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7036  case X86::ATOMUMAX32:
7037    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7038
7039  case X86::ATOMAND16:
7040    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7041                                               X86::AND16ri, X86::MOV16rm,
7042                                               X86::LCMPXCHG16, X86::MOV16rr,
7043                                               X86::NOT16r, X86::AX,
7044                                               X86::GR16RegisterClass);
7045  case X86::ATOMOR16:
7046    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7047                                               X86::OR16ri, X86::MOV16rm,
7048                                               X86::LCMPXCHG16, X86::MOV16rr,
7049                                               X86::NOT16r, X86::AX,
7050                                               X86::GR16RegisterClass);
7051  case X86::ATOMXOR16:
7052    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7053                                               X86::XOR16ri, X86::MOV16rm,
7054                                               X86::LCMPXCHG16, X86::MOV16rr,
7055                                               X86::NOT16r, X86::AX,
7056                                               X86::GR16RegisterClass);
7057  case X86::ATOMNAND16:
7058    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7059                                               X86::AND16ri, X86::MOV16rm,
7060                                               X86::LCMPXCHG16, X86::MOV16rr,
7061                                               X86::NOT16r, X86::AX,
7062                                               X86::GR16RegisterClass, true);
7063  case X86::ATOMMIN16:
7064    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7065  case X86::ATOMMAX16:
7066    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7067  case X86::ATOMUMIN16:
7068    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7069  case X86::ATOMUMAX16:
7070    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7071
7072  case X86::ATOMAND8:
7073    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7074                                               X86::AND8ri, X86::MOV8rm,
7075                                               X86::LCMPXCHG8, X86::MOV8rr,
7076                                               X86::NOT8r, X86::AL,
7077                                               X86::GR8RegisterClass);
7078  case X86::ATOMOR8:
7079    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7080                                               X86::OR8ri, X86::MOV8rm,
7081                                               X86::LCMPXCHG8, X86::MOV8rr,
7082                                               X86::NOT8r, X86::AL,
7083                                               X86::GR8RegisterClass);
7084  case X86::ATOMXOR8:
7085    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7086                                               X86::XOR8ri, X86::MOV8rm,
7087                                               X86::LCMPXCHG8, X86::MOV8rr,
7088                                               X86::NOT8r, X86::AL,
7089                                               X86::GR8RegisterClass);
7090  case X86::ATOMNAND8:
7091    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7092                                               X86::AND8ri, X86::MOV8rm,
7093                                               X86::LCMPXCHG8, X86::MOV8rr,
7094                                               X86::NOT8r, X86::AL,
7095                                               X86::GR8RegisterClass, true);
7096  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7097  // This group is for 64-bit host.
7098  case X86::ATOMAND64:
7099    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7100                                               X86::AND64ri32, X86::MOV64rm,
7101                                               X86::LCMPXCHG64, X86::MOV64rr,
7102                                               X86::NOT64r, X86::RAX,
7103                                               X86::GR64RegisterClass);
7104  case X86::ATOMOR64:
7105    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7106                                               X86::OR64ri32, X86::MOV64rm,
7107                                               X86::LCMPXCHG64, X86::MOV64rr,
7108                                               X86::NOT64r, X86::RAX,
7109                                               X86::GR64RegisterClass);
7110  case X86::ATOMXOR64:
7111    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7112                                               X86::XOR64ri32, X86::MOV64rm,
7113                                               X86::LCMPXCHG64, X86::MOV64rr,
7114                                               X86::NOT64r, X86::RAX,
7115                                               X86::GR64RegisterClass);
7116  case X86::ATOMNAND64:
7117    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7118                                               X86::AND64ri32, X86::MOV64rm,
7119                                               X86::LCMPXCHG64, X86::MOV64rr,
7120                                               X86::NOT64r, X86::RAX,
7121                                               X86::GR64RegisterClass, true);
7122  case X86::ATOMMIN64:
7123    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7124  case X86::ATOMMAX64:
7125    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7126  case X86::ATOMUMIN64:
7127    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7128  case X86::ATOMUMAX64:
7129    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7130
7131  // This group does 64-bit operations on a 32-bit host.
7132  case X86::ATOMAND6432:
7133    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7134                                               X86::AND32rr, X86::AND32rr,
7135                                               X86::AND32ri, X86::AND32ri,
7136                                               false);
7137  case X86::ATOMOR6432:
7138    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7139                                               X86::OR32rr, X86::OR32rr,
7140                                               X86::OR32ri, X86::OR32ri,
7141                                               false);
7142  case X86::ATOMXOR6432:
7143    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7144                                               X86::XOR32rr, X86::XOR32rr,
7145                                               X86::XOR32ri, X86::XOR32ri,
7146                                               false);
7147  case X86::ATOMNAND6432:
7148    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7149                                               X86::AND32rr, X86::AND32rr,
7150                                               X86::AND32ri, X86::AND32ri,
7151                                               true);
7152  case X86::ATOMADD6432:
7153    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7154                                               X86::ADD32rr, X86::ADC32rr,
7155                                               X86::ADD32ri, X86::ADC32ri,
7156                                               false);
7157  case X86::ATOMSUB6432:
7158    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7159                                               X86::SUB32rr, X86::SBB32rr,
7160                                               X86::SUB32ri, X86::SBB32ri,
7161                                               false);
7162  case X86::ATOMSWAP6432:
7163    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7164                                               X86::MOV32rr, X86::MOV32rr,
7165                                               X86::MOV32ri, X86::MOV32ri,
7166                                               false);
7167  }
7168}
7169
7170//===----------------------------------------------------------------------===//
7171//                           X86 Optimization Hooks
7172//===----------------------------------------------------------------------===//
7173
7174void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7175                                                       const APInt &Mask,
7176                                                       APInt &KnownZero,
7177                                                       APInt &KnownOne,
7178                                                       const SelectionDAG &DAG,
7179                                                       unsigned Depth) const {
7180  unsigned Opc = Op.getOpcode();
7181  assert((Opc >= ISD::BUILTIN_OP_END ||
7182          Opc == ISD::INTRINSIC_WO_CHAIN ||
7183          Opc == ISD::INTRINSIC_W_CHAIN ||
7184          Opc == ISD::INTRINSIC_VOID) &&
7185         "Should use MaskedValueIsZero if you don't know whether Op"
7186         " is a target node!");
7187
7188  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7189  switch (Opc) {
7190  default: break;
7191  case X86ISD::SETCC:
7192    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7193                                       Mask.getBitWidth() - 1);
7194    break;
7195  }
7196}
7197
7198/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7199/// node is a GlobalAddress + offset.
7200bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7201                                       GlobalValue* &GA, int64_t &Offset) const{
7202  if (N->getOpcode() == X86ISD::Wrapper) {
7203    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7204      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7205      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7206      return true;
7207    }
7208  }
7209  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7210}
7211
7212static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7213                               const TargetLowering &TLI) {
7214  GlobalValue *GV;
7215  int64_t Offset = 0;
7216  if (TLI.isGAPlusOffset(Base, GV, Offset))
7217    return (GV->getAlignment() >= N && (Offset % N) == 0);
7218  // DAG combine handles the stack object case.
7219  return false;
7220}
7221
7222static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
7223                                     unsigned NumElems, MVT EVT,
7224                                     SDNode *&Base,
7225                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7226                                     const TargetLowering &TLI) {
7227  Base = NULL;
7228  for (unsigned i = 0; i < NumElems; ++i) {
7229    SDValue Idx = PermMask.getOperand(i);
7230    if (Idx.getOpcode() == ISD::UNDEF) {
7231      if (!Base)
7232        return false;
7233      continue;
7234    }
7235
7236    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7237    if (!Elt.getNode() ||
7238        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7239      return false;
7240    if (!Base) {
7241      Base = Elt.getNode();
7242      if (Base->getOpcode() == ISD::UNDEF)
7243        return false;
7244      continue;
7245    }
7246    if (Elt.getOpcode() == ISD::UNDEF)
7247      continue;
7248
7249    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7250                               EVT.getSizeInBits()/8, i, MFI))
7251      return false;
7252  }
7253  return true;
7254}
7255
7256/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7257/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7258/// if the load addresses are consecutive, non-overlapping, and in the right
7259/// order.
7260static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7261                                       const TargetLowering &TLI) {
7262  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7263  MVT VT = N->getValueType(0);
7264  MVT EVT = VT.getVectorElementType();
7265  SDValue PermMask = N->getOperand(2);
7266  unsigned NumElems = PermMask.getNumOperands();
7267  SDNode *Base = NULL;
7268  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
7269                                DAG, MFI, TLI))
7270    return SDValue();
7271
7272  LoadSDNode *LD = cast<LoadSDNode>(Base);
7273  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7274    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7275                       LD->getSrcValueOffset(), LD->isVolatile());
7276  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7277                     LD->getSrcValueOffset(), LD->isVolatile(),
7278                     LD->getAlignment());
7279}
7280
7281/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7282static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7283                                         const X86Subtarget *Subtarget,
7284                                         const TargetLowering &TLI) {
7285  unsigned NumOps = N->getNumOperands();
7286
7287  // Ignore single operand BUILD_VECTOR.
7288  if (NumOps == 1)
7289    return SDValue();
7290
7291  MVT VT = N->getValueType(0);
7292  MVT EVT = VT.getVectorElementType();
7293  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7294    // We are looking for load i64 and zero extend. We want to transform
7295    // it before legalizer has a chance to expand it. Also look for i64
7296    // BUILD_PAIR bit casted to f64.
7297    return SDValue();
7298  // This must be an insertion into a zero vector.
7299  SDValue HighElt = N->getOperand(1);
7300  if (!isZeroNode(HighElt))
7301    return SDValue();
7302
7303  // Value must be a load.
7304  SDNode *Base = N->getOperand(0).getNode();
7305  if (!isa<LoadSDNode>(Base)) {
7306    if (Base->getOpcode() != ISD::BIT_CONVERT)
7307      return SDValue();
7308    Base = Base->getOperand(0).getNode();
7309    if (!isa<LoadSDNode>(Base))
7310      return SDValue();
7311  }
7312
7313  // Transform it into VZEXT_LOAD addr.
7314  LoadSDNode *LD = cast<LoadSDNode>(Base);
7315
7316  // Load must not be an extload.
7317  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7318    return SDValue();
7319
7320  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7321  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7322  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, Tys, Ops, 2);
7323  DAG.ReplaceAllUsesOfValueWith(SDValue(Base, 1), ResNode.getValue(1));
7324  return ResNode;
7325}
7326
7327/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7328static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7329                                      const X86Subtarget *Subtarget) {
7330  SDValue Cond = N->getOperand(0);
7331
7332  // If we have SSE[12] support, try to form min/max nodes.
7333  if (Subtarget->hasSSE2() &&
7334      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
7335    if (Cond.getOpcode() == ISD::SETCC) {
7336      // Get the LHS/RHS of the select.
7337      SDValue LHS = N->getOperand(1);
7338      SDValue RHS = N->getOperand(2);
7339      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7340
7341      unsigned Opcode = 0;
7342      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7343        switch (CC) {
7344        default: break;
7345        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7346        case ISD::SETULE:
7347        case ISD::SETLE:
7348          if (!UnsafeFPMath) break;
7349          // FALL THROUGH.
7350        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7351        case ISD::SETLT:
7352          Opcode = X86ISD::FMIN;
7353          break;
7354
7355        case ISD::SETOGT: // (X > Y) ? X : Y -> max
7356        case ISD::SETUGT:
7357        case ISD::SETGT:
7358          if (!UnsafeFPMath) break;
7359          // FALL THROUGH.
7360        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7361        case ISD::SETGE:
7362          Opcode = X86ISD::FMAX;
7363          break;
7364        }
7365      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7366        switch (CC) {
7367        default: break;
7368        case ISD::SETOGT: // (X > Y) ? Y : X -> min
7369        case ISD::SETUGT:
7370        case ISD::SETGT:
7371          if (!UnsafeFPMath) break;
7372          // FALL THROUGH.
7373        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7374        case ISD::SETGE:
7375          Opcode = X86ISD::FMIN;
7376          break;
7377
7378        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7379        case ISD::SETULE:
7380        case ISD::SETLE:
7381          if (!UnsafeFPMath) break;
7382          // FALL THROUGH.
7383        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7384        case ISD::SETLT:
7385          Opcode = X86ISD::FMAX;
7386          break;
7387        }
7388      }
7389
7390      if (Opcode)
7391        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
7392    }
7393
7394  }
7395
7396  return SDValue();
7397}
7398
7399/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
7400static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
7401                                     const X86Subtarget *Subtarget) {
7402  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
7403  // the FP state in cases where an emms may be missing.
7404  // A preferable solution to the general problem is to figure out the right
7405  // places to insert EMMS.  This qualifies as a quick hack.
7406  StoreSDNode *St = cast<StoreSDNode>(N);
7407  if (St->getValue().getValueType().isVector() &&
7408      St->getValue().getValueType().getSizeInBits() == 64 &&
7409      isa<LoadSDNode>(St->getValue()) &&
7410      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
7411      St->getChain().hasOneUse() && !St->isVolatile()) {
7412    SDNode* LdVal = St->getValue().getNode();
7413    LoadSDNode *Ld = 0;
7414    int TokenFactorIndex = -1;
7415    SmallVector<SDValue, 8> Ops;
7416    SDNode* ChainVal = St->getChain().getNode();
7417    // Must be a store of a load.  We currently handle two cases:  the load
7418    // is a direct child, and it's under an intervening TokenFactor.  It is
7419    // possible to dig deeper under nested TokenFactors.
7420    if (ChainVal == LdVal)
7421      Ld = cast<LoadSDNode>(St->getChain());
7422    else if (St->getValue().hasOneUse() &&
7423             ChainVal->getOpcode() == ISD::TokenFactor) {
7424      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
7425        if (ChainVal->getOperand(i).getNode() == LdVal) {
7426          TokenFactorIndex = i;
7427          Ld = cast<LoadSDNode>(St->getValue());
7428        } else
7429          Ops.push_back(ChainVal->getOperand(i));
7430      }
7431    }
7432    if (Ld) {
7433      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
7434      if (Subtarget->is64Bit()) {
7435        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
7436                                      Ld->getBasePtr(), Ld->getSrcValue(),
7437                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
7438                                      Ld->getAlignment());
7439        SDValue NewChain = NewLd.getValue(1);
7440        if (TokenFactorIndex != -1) {
7441          Ops.push_back(NewChain);
7442          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7443                                 Ops.size());
7444        }
7445        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
7446                            St->getSrcValue(), St->getSrcValueOffset(),
7447                            St->isVolatile(), St->getAlignment());
7448      }
7449
7450      // Otherwise, lower to two 32-bit copies.
7451      SDValue LoAddr = Ld->getBasePtr();
7452      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7453                                     DAG.getConstant(4, MVT::i32));
7454
7455      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
7456                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
7457                                   Ld->isVolatile(), Ld->getAlignment());
7458      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
7459                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
7460                                   Ld->isVolatile(),
7461                                   MinAlign(Ld->getAlignment(), 4));
7462
7463      SDValue NewChain = LoLd.getValue(1);
7464      if (TokenFactorIndex != -1) {
7465        Ops.push_back(LoLd);
7466        Ops.push_back(HiLd);
7467        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7468                               Ops.size());
7469      }
7470
7471      LoAddr = St->getBasePtr();
7472      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7473                           DAG.getConstant(4, MVT::i32));
7474
7475      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
7476                          St->getSrcValue(), St->getSrcValueOffset(),
7477                          St->isVolatile(), St->getAlignment());
7478      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
7479                                    St->getSrcValue(),
7480                                    St->getSrcValueOffset() + 4,
7481                                    St->isVolatile(),
7482                                    MinAlign(St->getAlignment(), 4));
7483      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
7484    }
7485  }
7486  return SDValue();
7487}
7488
7489/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
7490/// X86ISD::FXOR nodes.
7491static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
7492  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
7493  // F[X]OR(0.0, x) -> x
7494  // F[X]OR(x, 0.0) -> x
7495  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7496    if (C->getValueAPF().isPosZero())
7497      return N->getOperand(1);
7498  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7499    if (C->getValueAPF().isPosZero())
7500      return N->getOperand(0);
7501  return SDValue();
7502}
7503
7504/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
7505static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
7506  // FAND(0.0, x) -> 0.0
7507  // FAND(x, 0.0) -> 0.0
7508  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7509    if (C->getValueAPF().isPosZero())
7510      return N->getOperand(0);
7511  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7512    if (C->getValueAPF().isPosZero())
7513      return N->getOperand(1);
7514  return SDValue();
7515}
7516
7517
7518SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
7519                                             DAGCombinerInfo &DCI) const {
7520  SelectionDAG &DAG = DCI.DAG;
7521  switch (N->getOpcode()) {
7522  default: break;
7523  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
7524  case ISD::BUILD_VECTOR:
7525    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
7526  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
7527  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
7528  case X86ISD::FXOR:
7529  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
7530  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
7531  }
7532
7533  return SDValue();
7534}
7535
7536//===----------------------------------------------------------------------===//
7537//                           X86 Inline Assembly Support
7538//===----------------------------------------------------------------------===//
7539
7540/// getConstraintType - Given a constraint letter, return the type of
7541/// constraint it is for this target.
7542X86TargetLowering::ConstraintType
7543X86TargetLowering::getConstraintType(const std::string &Constraint) const {
7544  if (Constraint.size() == 1) {
7545    switch (Constraint[0]) {
7546    case 'A':
7547    case 'f':
7548    case 'r':
7549    case 'R':
7550    case 'l':
7551    case 'q':
7552    case 'Q':
7553    case 'x':
7554    case 'y':
7555    case 'Y':
7556      return C_RegisterClass;
7557    default:
7558      break;
7559    }
7560  }
7561  return TargetLowering::getConstraintType(Constraint);
7562}
7563
7564/// LowerXConstraint - try to replace an X constraint, which matches anything,
7565/// with another that has more specific requirements based on the type of the
7566/// corresponding operand.
7567const char *X86TargetLowering::
7568LowerXConstraint(MVT ConstraintVT) const {
7569  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
7570  // 'f' like normal targets.
7571  if (ConstraintVT.isFloatingPoint()) {
7572    if (Subtarget->hasSSE2())
7573      return "Y";
7574    if (Subtarget->hasSSE1())
7575      return "x";
7576  }
7577
7578  return TargetLowering::LowerXConstraint(ConstraintVT);
7579}
7580
7581/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7582/// vector.  If it is invalid, don't add anything to Ops.
7583void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7584                                                     char Constraint,
7585                                                     bool hasMemory,
7586                                                     std::vector<SDValue>&Ops,
7587                                                     SelectionDAG &DAG) const {
7588  SDValue Result(0, 0);
7589
7590  switch (Constraint) {
7591  default: break;
7592  case 'I':
7593    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7594      if (C->getZExtValue() <= 31) {
7595        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7596        break;
7597      }
7598    }
7599    return;
7600  case 'J':
7601    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7602      if (C->getZExtValue() <= 63) {
7603        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7604        break;
7605      }
7606    }
7607    return;
7608  case 'N':
7609    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7610      if (C->getZExtValue() <= 255) {
7611        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7612        break;
7613      }
7614    }
7615    return;
7616  case 'i': {
7617    // Literal immediates are always ok.
7618    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7619      Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType());
7620      break;
7621    }
7622
7623    // If we are in non-pic codegen mode, we allow the address of a global (with
7624    // an optional displacement) to be used with 'i'.
7625    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7626    int64_t Offset = 0;
7627
7628    // Match either (GA) or (GA+C)
7629    if (GA) {
7630      Offset = GA->getOffset();
7631    } else if (Op.getOpcode() == ISD::ADD) {
7632      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7633      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7634      if (C && GA) {
7635        Offset = GA->getOffset()+C->getZExtValue();
7636      } else {
7637        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7638        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7639        if (C && GA)
7640          Offset = GA->getOffset()+C->getZExtValue();
7641        else
7642          C = 0, GA = 0;
7643      }
7644    }
7645
7646    if (GA) {
7647      if (hasMemory)
7648        Op = LowerGlobalAddress(GA->getGlobal(), Offset, DAG);
7649      else
7650        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
7651                                        Offset);
7652      Result = Op;
7653      break;
7654    }
7655
7656    // Otherwise, not valid for this mode.
7657    return;
7658  }
7659  }
7660
7661  if (Result.getNode()) {
7662    Ops.push_back(Result);
7663    return;
7664  }
7665  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
7666                                                      Ops, DAG);
7667}
7668
7669std::vector<unsigned> X86TargetLowering::
7670getRegClassForInlineAsmConstraint(const std::string &Constraint,
7671                                  MVT VT) const {
7672  if (Constraint.size() == 1) {
7673    // FIXME: not handling fp-stack yet!
7674    switch (Constraint[0]) {      // GCC X86 Constraint Letters
7675    default: break;  // Unknown constraint letter
7676    case 'A':   // EAX/EDX
7677      if (VT == MVT::i32 || VT == MVT::i64)
7678        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
7679      break;
7680    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
7681    case 'Q':   // Q_REGS
7682      if (VT == MVT::i32)
7683        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
7684      else if (VT == MVT::i16)
7685        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
7686      else if (VT == MVT::i8)
7687        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
7688      else if (VT == MVT::i64)
7689        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
7690      break;
7691    }
7692  }
7693
7694  return std::vector<unsigned>();
7695}
7696
7697std::pair<unsigned, const TargetRegisterClass*>
7698X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7699                                                MVT VT) const {
7700  // First, see if this is a constraint that directly corresponds to an LLVM
7701  // register class.
7702  if (Constraint.size() == 1) {
7703    // GCC Constraint Letters
7704    switch (Constraint[0]) {
7705    default: break;
7706    case 'r':   // GENERAL_REGS
7707    case 'R':   // LEGACY_REGS
7708    case 'l':   // INDEX_REGS
7709      if (VT == MVT::i8)
7710        return std::make_pair(0U, X86::GR8RegisterClass);
7711      if (VT == MVT::i16)
7712        return std::make_pair(0U, X86::GR16RegisterClass);
7713      if (VT == MVT::i32 || !Subtarget->is64Bit())
7714        return std::make_pair(0U, X86::GR32RegisterClass);
7715      return std::make_pair(0U, X86::GR64RegisterClass);
7716    case 'f':  // FP Stack registers.
7717      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7718      // value to the correct fpstack register class.
7719      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7720        return std::make_pair(0U, X86::RFP32RegisterClass);
7721      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7722        return std::make_pair(0U, X86::RFP64RegisterClass);
7723      return std::make_pair(0U, X86::RFP80RegisterClass);
7724    case 'y':   // MMX_REGS if MMX allowed.
7725      if (!Subtarget->hasMMX()) break;
7726      return std::make_pair(0U, X86::VR64RegisterClass);
7727    case 'Y':   // SSE_REGS if SSE2 allowed
7728      if (!Subtarget->hasSSE2()) break;
7729      // FALL THROUGH.
7730    case 'x':   // SSE_REGS if SSE1 allowed
7731      if (!Subtarget->hasSSE1()) break;
7732
7733      switch (VT.getSimpleVT()) {
7734      default: break;
7735      // Scalar SSE types.
7736      case MVT::f32:
7737      case MVT::i32:
7738        return std::make_pair(0U, X86::FR32RegisterClass);
7739      case MVT::f64:
7740      case MVT::i64:
7741        return std::make_pair(0U, X86::FR64RegisterClass);
7742      // Vector types.
7743      case MVT::v16i8:
7744      case MVT::v8i16:
7745      case MVT::v4i32:
7746      case MVT::v2i64:
7747      case MVT::v4f32:
7748      case MVT::v2f64:
7749        return std::make_pair(0U, X86::VR128RegisterClass);
7750      }
7751      break;
7752    }
7753  }
7754
7755  // Use the default implementation in TargetLowering to convert the register
7756  // constraint into a member of a register class.
7757  std::pair<unsigned, const TargetRegisterClass*> Res;
7758  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7759
7760  // Not found as a standard register?
7761  if (Res.second == 0) {
7762    // GCC calls "st(0)" just plain "st".
7763    if (StringsEqualNoCase("{st}", Constraint)) {
7764      Res.first = X86::ST0;
7765      Res.second = X86::RFP80RegisterClass;
7766    }
7767
7768    return Res;
7769  }
7770
7771  // Otherwise, check to see if this is a register class of the wrong value
7772  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
7773  // turn into {ax},{dx}.
7774  if (Res.second->hasType(VT))
7775    return Res;   // Correct type already, nothing to do.
7776
7777  // All of the single-register GCC register classes map their values onto
7778  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
7779  // really want an 8-bit or 32-bit register, map to the appropriate register
7780  // class and return the appropriate register.
7781  if (Res.second == X86::GR16RegisterClass) {
7782    if (VT == MVT::i8) {
7783      unsigned DestReg = 0;
7784      switch (Res.first) {
7785      default: break;
7786      case X86::AX: DestReg = X86::AL; break;
7787      case X86::DX: DestReg = X86::DL; break;
7788      case X86::CX: DestReg = X86::CL; break;
7789      case X86::BX: DestReg = X86::BL; break;
7790      }
7791      if (DestReg) {
7792        Res.first = DestReg;
7793        Res.second = Res.second = X86::GR8RegisterClass;
7794      }
7795    } else if (VT == MVT::i32) {
7796      unsigned DestReg = 0;
7797      switch (Res.first) {
7798      default: break;
7799      case X86::AX: DestReg = X86::EAX; break;
7800      case X86::DX: DestReg = X86::EDX; break;
7801      case X86::CX: DestReg = X86::ECX; break;
7802      case X86::BX: DestReg = X86::EBX; break;
7803      case X86::SI: DestReg = X86::ESI; break;
7804      case X86::DI: DestReg = X86::EDI; break;
7805      case X86::BP: DestReg = X86::EBP; break;
7806      case X86::SP: DestReg = X86::ESP; break;
7807      }
7808      if (DestReg) {
7809        Res.first = DestReg;
7810        Res.second = Res.second = X86::GR32RegisterClass;
7811      }
7812    } else if (VT == MVT::i64) {
7813      unsigned DestReg = 0;
7814      switch (Res.first) {
7815      default: break;
7816      case X86::AX: DestReg = X86::RAX; break;
7817      case X86::DX: DestReg = X86::RDX; break;
7818      case X86::CX: DestReg = X86::RCX; break;
7819      case X86::BX: DestReg = X86::RBX; break;
7820      case X86::SI: DestReg = X86::RSI; break;
7821      case X86::DI: DestReg = X86::RDI; break;
7822      case X86::BP: DestReg = X86::RBP; break;
7823      case X86::SP: DestReg = X86::RSP; break;
7824      }
7825      if (DestReg) {
7826        Res.first = DestReg;
7827        Res.second = Res.second = X86::GR64RegisterClass;
7828      }
7829    }
7830  } else if (Res.second == X86::FR32RegisterClass ||
7831             Res.second == X86::FR64RegisterClass ||
7832             Res.second == X86::VR128RegisterClass) {
7833    // Handle references to XMM physical registers that got mapped into the
7834    // wrong class.  This can happen with constraints like {xmm0} where the
7835    // target independent register mapper will just pick the first match it can
7836    // find, ignoring the required type.
7837    if (VT == MVT::f32)
7838      Res.second = X86::FR32RegisterClass;
7839    else if (VT == MVT::f64)
7840      Res.second = X86::FR64RegisterClass;
7841    else if (X86::VR128RegisterClass->hasType(VT))
7842      Res.second = X86::VR128RegisterClass;
7843  }
7844
7845  return Res;
7846}
7847
7848//===----------------------------------------------------------------------===//
7849//                           X86 Widen vector type
7850//===----------------------------------------------------------------------===//
7851
7852/// getWidenVectorType: given a vector type, returns the type to widen
7853/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
7854/// If there is no vector type that we want to widen to, returns MVT::Other
7855/// When and were to widen is target dependent based on the cost of
7856/// scalarizing vs using the wider vector type.
7857
7858MVT X86TargetLowering::getWidenVectorType(MVT VT) {
7859  assert(VT.isVector());
7860  if (isTypeLegal(VT))
7861    return VT;
7862
7863  // TODO: In computeRegisterProperty, we can compute the list of legal vector
7864  //       type based on element type.  This would speed up our search (though
7865  //       it may not be worth it since the size of the list is relatively
7866  //       small).
7867  MVT EltVT = VT.getVectorElementType();
7868  unsigned NElts = VT.getVectorNumElements();
7869
7870  // On X86, it make sense to widen any vector wider than 1
7871  if (NElts <= 1)
7872    return MVT::Other;
7873
7874  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
7875       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
7876    MVT SVT = (MVT::SimpleValueType)nVT;
7877
7878    if (isTypeLegal(SVT) &&
7879        SVT.getVectorElementType() == EltVT &&
7880        SVT.getVectorNumElements() > NElts)
7881      return SVT;
7882  }
7883  return MVT::Other;
7884}
7885