X86ISelLowering.cpp revision 9df7dc52e8fd5c69a5d6464d02b7496091e18c29
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/StringExtras.h"
39#include "llvm/ParameterAttributes.h"
40using namespace llvm;
41
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43  : TargetLowering(TM) {
44  Subtarget = &TM.getSubtarget<X86Subtarget>();
45  X86ScalarSSEf64 = Subtarget->hasSSE2();
46  X86ScalarSSEf32 = Subtarget->hasSSE1();
47  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
48
49
50  RegInfo = TM.getRegisterInfo();
51
52  // Set up the TargetLowering object.
53
54  // X86 is weird, it always uses i8 for shift amounts and setcc results.
55  setShiftAmountType(MVT::i8);
56  setSetCCResultType(MVT::i8);
57  setSetCCResultContents(ZeroOrOneSetCCResult);
58  setSchedulingPreference(SchedulingForRegPressure);
59  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
60  setStackPointerRegisterToSaveRestore(X86StackPtr);
61
62  if (Subtarget->isTargetDarwin()) {
63    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
64    setUseUnderscoreSetJmp(false);
65    setUseUnderscoreLongJmp(false);
66  } else if (Subtarget->isTargetMingw()) {
67    // MS runtime is weird: it exports _setjmp, but longjmp!
68    setUseUnderscoreSetJmp(true);
69    setUseUnderscoreLongJmp(false);
70  } else {
71    setUseUnderscoreSetJmp(true);
72    setUseUnderscoreLongJmp(true);
73  }
74
75  // Set up the register classes.
76  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
77  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
78  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
79  if (Subtarget->is64Bit())
80    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
81
82  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
83
84  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
85  // operation.
86  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
87  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
88  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
89
90  if (Subtarget->is64Bit()) {
91    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
92    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
93  } else {
94    if (X86ScalarSSEf64)
95      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
96      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
97    else
98      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
99  }
100
101  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
102  // this operation.
103  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
104  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
105  // SSE has no i16 to fp conversion, only i32
106  if (X86ScalarSSEf32) {
107    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
108    // f32 and f64 cases are Legal, f80 case is not
109    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
110  } else {
111    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
112    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
113  }
114
115  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
116  // are Legal, f80 is custom lowered.
117  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
118  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
119
120  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
121  // this operation.
122  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
123  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
124
125  if (X86ScalarSSEf32) {
126    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
127    // f32 and f64 cases are Legal, f80 case is not
128    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
129  } else {
130    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
131    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
132  }
133
134  // Handle FP_TO_UINT by promoting the destination to a larger signed
135  // conversion.
136  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
137  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
138  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
139
140  if (Subtarget->is64Bit()) {
141    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
142    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
143  } else {
144    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
145      // Expand FP_TO_UINT into a select.
146      // FIXME: We would like to use a Custom expander here eventually to do
147      // the optimal thing for SSE vs. the default expansion in the legalizer.
148      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
149    else
150      // With SSE3 we can use fisttpll to convert to a signed i64.
151      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
152  }
153
154  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
155  if (!X86ScalarSSEf64) {
156    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
157    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
158  }
159
160  // Scalar integer multiply, multiply-high, divide, and remainder are
161  // lowered to use operations that produce two results, to match the
162  // available instructions. This exposes the two-result form to trivial
163  // CSE, which is able to combine x/y and x%y into a single instruction,
164  // for example. The single-result multiply instructions are introduced
165  // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
166  // is not needed.
167  setOperationAction(ISD::MUL             , MVT::i8    , Expand);
168  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
169  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
170  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
171  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
172  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
173  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
174  setOperationAction(ISD::MUL             , MVT::i16   , Expand);
175  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
176  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
177  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
178  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
179  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
180  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
181  setOperationAction(ISD::MUL             , MVT::i32   , Expand);
182  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
183  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
184  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
185  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
186  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
187  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
188  setOperationAction(ISD::MUL             , MVT::i64   , Expand);
189  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
190  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
191  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
192  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
193  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
194  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
195
196  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
197  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
198  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
199  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
200  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
201  if (Subtarget->is64Bit())
202    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
203  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
204  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
205  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
206  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
207  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
208
209  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
210  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
211  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
212  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
213  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
214  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
215  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
216  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
217  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
218  if (Subtarget->is64Bit()) {
219    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
220    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
221    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
222  }
223
224  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
225  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
226
227  // These should be promoted to a larger select which is supported.
228  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
229  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
230  // X86 wants to expand cmov itself.
231  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
232  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
233  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
234  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
235  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
236  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
237  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
238  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
239  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
240  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
241  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
242  if (Subtarget->is64Bit()) {
243    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
244    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
245  }
246  // X86 ret instruction may pop stack.
247  setOperationAction(ISD::RET             , MVT::Other, Custom);
248  if (!Subtarget->is64Bit())
249    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
250
251  // Darwin ABI issue.
252  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
253  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
254  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
255  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
256  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
257  if (Subtarget->is64Bit()) {
258    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
259    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
260    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
261    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
262  }
263  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
264  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
265  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
266  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
267  // X86 wants to expand memset / memcpy itself.
268  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
269  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
270
271  // Use the default ISD::LOCATION expansion.
272  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
273  // FIXME - use subtarget debug flags
274  if (!Subtarget->isTargetDarwin() &&
275      !Subtarget->isTargetELF() &&
276      !Subtarget->isTargetCygMing())
277    setOperationAction(ISD::LABEL, MVT::Other, Expand);
278
279  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
280  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
281  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
282  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
283  if (Subtarget->is64Bit()) {
284    // FIXME: Verify
285    setExceptionPointerRegister(X86::RAX);
286    setExceptionSelectorRegister(X86::RDX);
287  } else {
288    setExceptionPointerRegister(X86::EAX);
289    setExceptionSelectorRegister(X86::EDX);
290  }
291  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
292
293  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
294
295  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
296  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
297  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
298  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
299  if (Subtarget->is64Bit())
300    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
301  else
302    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
303
304  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
305  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
306  if (Subtarget->is64Bit())
307    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
308  if (Subtarget->isTargetCygMing())
309    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
310  else
311    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
312
313  if (X86ScalarSSEf64) {
314    // f32 and f64 use SSE.
315    // Set up the FP register classes.
316    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
317    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
318
319    // Use ANDPD to simulate FABS.
320    setOperationAction(ISD::FABS , MVT::f64, Custom);
321    setOperationAction(ISD::FABS , MVT::f32, Custom);
322
323    // Use XORP to simulate FNEG.
324    setOperationAction(ISD::FNEG , MVT::f64, Custom);
325    setOperationAction(ISD::FNEG , MVT::f32, Custom);
326
327    // Use ANDPD and ORPD to simulate FCOPYSIGN.
328    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330
331    // We don't support sin/cos/fmod
332    setOperationAction(ISD::FSIN , MVT::f64, Expand);
333    setOperationAction(ISD::FCOS , MVT::f64, Expand);
334    setOperationAction(ISD::FREM , MVT::f64, Expand);
335    setOperationAction(ISD::FSIN , MVT::f32, Expand);
336    setOperationAction(ISD::FCOS , MVT::f32, Expand);
337    setOperationAction(ISD::FREM , MVT::f32, Expand);
338
339    // Expand FP immediates into loads from the stack, except for the special
340    // cases we handle.
341    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
342    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
343    addLegalFPImmediate(APFloat(+0.0)); // xorpd
344    addLegalFPImmediate(APFloat(+0.0f)); // xorps
345
346    // Conversions to long double (in X87) go through memory.
347    setConvertAction(MVT::f32, MVT::f80, Expand);
348    setConvertAction(MVT::f64, MVT::f80, Expand);
349
350    // Conversions from long double (in X87) go through memory.
351    setConvertAction(MVT::f80, MVT::f32, Expand);
352    setConvertAction(MVT::f80, MVT::f64, Expand);
353  } else if (X86ScalarSSEf32) {
354    // Use SSE for f32, x87 for f64.
355    // Set up the FP register classes.
356    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
357    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
358
359    // Use ANDPS to simulate FABS.
360    setOperationAction(ISD::FABS , MVT::f32, Custom);
361
362    // Use XORP to simulate FNEG.
363    setOperationAction(ISD::FNEG , MVT::f32, Custom);
364
365    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
366
367    // Use ANDPS and ORPS to simulate FCOPYSIGN.
368    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
369    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
370
371    // We don't support sin/cos/fmod
372    setOperationAction(ISD::FSIN , MVT::f32, Expand);
373    setOperationAction(ISD::FCOS , MVT::f32, Expand);
374    setOperationAction(ISD::FREM , MVT::f32, Expand);
375
376    // Expand FP immediates into loads from the stack, except for the special
377    // cases we handle.
378    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
379    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
380    addLegalFPImmediate(APFloat(+0.0f)); // xorps
381    addLegalFPImmediate(APFloat(+0.0)); // FLD0
382    addLegalFPImmediate(APFloat(+1.0)); // FLD1
383    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
384    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
385
386    // SSE->x87 conversions go through memory.
387    setConvertAction(MVT::f32, MVT::f64, Expand);
388    setConvertAction(MVT::f32, MVT::f80, Expand);
389
390    // x87->SSE truncations need to go through memory.
391    setConvertAction(MVT::f80, MVT::f32, Expand);
392    setConvertAction(MVT::f64, MVT::f32, Expand);
393    // And x87->x87 truncations also.
394    setConvertAction(MVT::f80, MVT::f64, Expand);
395
396    if (!UnsafeFPMath) {
397      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
398      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
399    }
400  } else {
401    // f32 and f64 in x87.
402    // Set up the FP register classes.
403    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
404    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
405
406    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
407    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
408    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
409    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
410
411    // Floating truncations need to go through memory.
412    setConvertAction(MVT::f80, MVT::f32, Expand);
413    setConvertAction(MVT::f64, MVT::f32, Expand);
414    setConvertAction(MVT::f80, MVT::f64, Expand);
415
416    if (!UnsafeFPMath) {
417      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
418      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
419    }
420
421    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
422    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
423    addLegalFPImmediate(APFloat(+0.0)); // FLD0
424    addLegalFPImmediate(APFloat(+1.0)); // FLD1
425    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
426    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
427    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
428    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
429    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
430    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
431  }
432
433  // Long double always uses X87.
434  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
435  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
436  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
437  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
438  if (!UnsafeFPMath) {
439    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
440    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
441  }
442
443  // Always use a library call for pow.
444  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
445  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
446  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
447
448  // First set operation action for all vector types to expand. Then we
449  // will selectively turn on ones that can be effectively codegen'd.
450  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
451       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
452    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
453    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
454    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
455    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
456    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
457    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
458    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
459    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
460    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
461    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
462    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
463    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
464    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
465    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
466    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
467    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
468    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
469    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
470    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
471    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
472    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
473    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
474    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
475    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
476    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
477    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
478    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
479    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
480    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
481    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
482    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
483  }
484
485  if (Subtarget->hasMMX()) {
486    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
487    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
488    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
489    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
490
491    // FIXME: add MMX packed arithmetics
492
493    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
494    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
495    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
496    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
497
498    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
499    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
500    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
501    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
502
503    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
504    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
505
506    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
507    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
508    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
509    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
510    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
511    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
512    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
513
514    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
515    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
516    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
517    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
518    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
519    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
520    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
521
522    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
523    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
524    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
525    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
526    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
527    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
528    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
529
530    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
531    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
532    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
533    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
534    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
535    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
536    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
537
538    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
539    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
540    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
541    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
542
543    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
544    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
545    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
546    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
547
548    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
549    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
550    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
551    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
552  }
553
554  if (Subtarget->hasSSE1()) {
555    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
556
557    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
558    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
559    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
560    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
561    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
562    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
563    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
564    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
565    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
566    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
567    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
568  }
569
570  if (Subtarget->hasSSE2()) {
571    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
572    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
573    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
574    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
575    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
576
577    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
578    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
579    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
580    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
581    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
582    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
583    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
584    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
585    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
586    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
587    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
588    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
589    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
590    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
591    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
592
593    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
594    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
595    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
596    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
597    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
598    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
599
600    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
601    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
602      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
603      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
604      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
605    }
606    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
607    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
608    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
609    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
610    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
611    if (Subtarget->is64Bit())
612      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
613
614    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
615    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
616      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
617      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
618      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
619      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
620      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
621      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
622      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
623      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
624      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
625      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
626    }
627
628    // Custom lower v2i64 and v2f64 selects.
629    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
630    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
631    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
632    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
633  }
634
635  // We want to custom lower some of our intrinsics.
636  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
637
638  // We have target-specific dag combine patterns for the following nodes:
639  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640  setTargetDAGCombine(ISD::SELECT);
641
642  computeRegisterProperties();
643
644  // FIXME: These should be based on subtarget info. Plus, the values should
645  // be smaller when we are in optimizing for size mode.
646  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
647  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
648  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
649  allowUnalignedMemoryAccesses = true; // x86 supports it!
650}
651
652
653//===----------------------------------------------------------------------===//
654//               Return Value Calling Convention Implementation
655//===----------------------------------------------------------------------===//
656
657#include "X86GenCallingConv.inc"
658
659/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
660/// exists skip possible ISD:TokenFactor.
661static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
662  if (Chain.getOpcode()==X86ISD::TAILCALL) {
663    return Chain;
664  } else if (Chain.getOpcode()==ISD::TokenFactor) {
665    if (Chain.getNumOperands() &&
666        Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
667      return Chain.getOperand(0);
668  }
669  return Chain;
670}
671
672/// LowerRET - Lower an ISD::RET node.
673SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
674  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
675
676  SmallVector<CCValAssign, 16> RVLocs;
677  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
678  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
679  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
680  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
681
682  // If this is the first return lowered for this function, add the regs to the
683  // liveout set for the function.
684  if (DAG.getMachineFunction().liveout_empty()) {
685    for (unsigned i = 0; i != RVLocs.size(); ++i)
686      if (RVLocs[i].isRegLoc())
687        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
688  }
689  SDOperand Chain = Op.getOperand(0);
690
691  // Handle tail call return.
692  Chain = GetPossiblePreceedingTailCall(Chain);
693  if (Chain.getOpcode() == X86ISD::TAILCALL) {
694    SDOperand TailCall = Chain;
695    SDOperand TargetAddress = TailCall.getOperand(1);
696    SDOperand StackAdjustment = TailCall.getOperand(2);
697    assert ( ((TargetAddress.getOpcode() == ISD::Register &&
698               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
699                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
700              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
701              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
702             "Expecting an global address, external symbol, or register");
703    assert( StackAdjustment.getOpcode() == ISD::Constant &&
704            "Expecting a const value");
705
706    SmallVector<SDOperand,8> Operands;
707    Operands.push_back(Chain.getOperand(0));
708    Operands.push_back(TargetAddress);
709    Operands.push_back(StackAdjustment);
710    // Copy registers used by the call. Last operand is a flag so it is not
711    // copied.
712    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
713      Operands.push_back(Chain.getOperand(i));
714    }
715    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
716                       Operands.size());
717  }
718
719  // Regular return.
720  SDOperand Flag;
721
722  // Copy the result values into the output registers.
723  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
724      RVLocs[0].getLocReg() != X86::ST0) {
725    for (unsigned i = 0; i != RVLocs.size(); ++i) {
726      CCValAssign &VA = RVLocs[i];
727      assert(VA.isRegLoc() && "Can only return in registers!");
728      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
729                               Flag);
730      Flag = Chain.getValue(1);
731    }
732  } else {
733    // We need to handle a destination of ST0 specially, because it isn't really
734    // a register.
735    SDOperand Value = Op.getOperand(1);
736
737    // If this is an FP return with ScalarSSE, we need to move the value from
738    // an XMM register onto the fp-stack.
739    if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
740        (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
741      SDOperand MemLoc;
742
743      // If this is a load into a scalarsse value, don't store the loaded value
744      // back to the stack, only to reload it: just replace the scalar-sse load.
745      if (ISD::isNON_EXTLoad(Value.Val) &&
746          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
747        Chain  = Value.getOperand(0);
748        MemLoc = Value.getOperand(1);
749      } else {
750        // Spill the value to memory and reload it into top of stack.
751        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
752        MachineFunction &MF = DAG.getMachineFunction();
753        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
754        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
755        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
756      }
757      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
758      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
759      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
760      Chain = Value.getValue(1);
761    }
762
763    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
764    SDOperand Ops[] = { Chain, Value };
765    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
766    Flag = Chain.getValue(1);
767  }
768
769  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
770  if (Flag.Val)
771    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
772  else
773    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
774}
775
776
777/// LowerCallResult - Lower the result values of an ISD::CALL into the
778/// appropriate copies out of appropriate physical registers.  This assumes that
779/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
780/// being lowered.  The returns a SDNode with the same number of values as the
781/// ISD::CALL.
782SDNode *X86TargetLowering::
783LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
784                unsigned CallingConv, SelectionDAG &DAG) {
785
786  // Assign locations to each value returned by this call.
787  SmallVector<CCValAssign, 16> RVLocs;
788  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
789  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
790  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
791
792
793  SmallVector<SDOperand, 8> ResultVals;
794
795  // Copy all of the result registers out of their specified physreg.
796  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
797    for (unsigned i = 0; i != RVLocs.size(); ++i) {
798      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
799                                 RVLocs[i].getValVT(), InFlag).getValue(1);
800      InFlag = Chain.getValue(2);
801      ResultVals.push_back(Chain.getValue(0));
802    }
803  } else {
804    // Copies from the FP stack are special, as ST0 isn't a valid register
805    // before the fp stackifier runs.
806
807    // Copy ST0 into an RFP register with FP_GET_RESULT.
808    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
809    SDOperand GROps[] = { Chain, InFlag };
810    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
811    Chain  = RetVal.getValue(1);
812    InFlag = RetVal.getValue(2);
813
814    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
815    // an XMM register.
816    if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
817        (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
818      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
819      // shouldn't be necessary except that RFP cannot be live across
820      // multiple blocks. When stackifier is fixed, they can be uncoupled.
821      MachineFunction &MF = DAG.getMachineFunction();
822      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
823      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
824      SDOperand Ops[] = {
825        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
826      };
827      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
828      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
829      Chain = RetVal.getValue(1);
830    }
831    ResultVals.push_back(RetVal);
832  }
833
834  // Merge everything together with a MERGE_VALUES node.
835  ResultVals.push_back(Chain);
836  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
837                     &ResultVals[0], ResultVals.size()).Val;
838}
839
840
841//===----------------------------------------------------------------------===//
842//                C & StdCall & Fast Calling Convention implementation
843//===----------------------------------------------------------------------===//
844//  StdCall calling convention seems to be standard for many Windows' API
845//  routines and around. It differs from C calling convention just a little:
846//  callee should clean up the stack, not caller. Symbols should be also
847//  decorated in some fancy way :) It doesn't support any vector arguments.
848//  For info on fast calling convention see Fast Calling Convention (tail call)
849//  implementation LowerX86_32FastCCCallTo.
850
851/// AddLiveIn - This helper function adds the specified physical register to the
852/// MachineFunction as a live in value.  It also creates a corresponding virtual
853/// register for it.
854static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
855                          const TargetRegisterClass *RC) {
856  assert(RC->contains(PReg) && "Not the correct regclass!");
857  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
858  MF.addLiveIn(PReg, VReg);
859  return VReg;
860}
861
862// align stack arguments according to platform alignment needed for tail calls
863unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
864
865SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
866                                              const CCValAssign &VA,
867                                              MachineFrameInfo *MFI,
868                                              SDOperand Root, unsigned i) {
869  // Create the nodes corresponding to a load from this parameter slot.
870  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
871                                  VA.getLocMemOffset());
872  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
873
874  unsigned Flags =  cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
875
876  if (Flags & ISD::ParamFlags::ByVal)
877    return FIN;
878  else
879    return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
880}
881
882SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
883                                               bool isStdCall) {
884  unsigned NumArgs = Op.Val->getNumValues() - 1;
885  MachineFunction &MF = DAG.getMachineFunction();
886  MachineFrameInfo *MFI = MF.getFrameInfo();
887  SDOperand Root = Op.getOperand(0);
888  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
889  unsigned CC = MF.getFunction()->getCallingConv();
890  // Assign locations to all of the incoming arguments.
891  SmallVector<CCValAssign, 16> ArgLocs;
892  CCState CCInfo(CC, isVarArg,
893                 getTargetMachine(), ArgLocs);
894  // Check for possible tail call calling convention.
895  if (CC == CallingConv::Fast && PerformTailCallOpt)
896    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
897  else
898    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
899
900  SmallVector<SDOperand, 8> ArgValues;
901  unsigned LastVal = ~0U;
902  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
903    CCValAssign &VA = ArgLocs[i];
904    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
905    // places.
906    assert(VA.getValNo() != LastVal &&
907           "Don't support value assigned to multiple locs yet");
908    LastVal = VA.getValNo();
909
910    if (VA.isRegLoc()) {
911      MVT::ValueType RegVT = VA.getLocVT();
912      TargetRegisterClass *RC;
913      if (RegVT == MVT::i32)
914        RC = X86::GR32RegisterClass;
915      else {
916        assert(MVT::isVector(RegVT));
917        RC = X86::VR128RegisterClass;
918      }
919
920      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
921      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
922
923      // If this is an 8 or 16-bit value, it is really passed promoted to 32
924      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
925      // right size.
926      if (VA.getLocInfo() == CCValAssign::SExt)
927        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
928                               DAG.getValueType(VA.getValVT()));
929      else if (VA.getLocInfo() == CCValAssign::ZExt)
930        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
931                               DAG.getValueType(VA.getValVT()));
932
933      if (VA.getLocInfo() != CCValAssign::Full)
934        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
935
936      ArgValues.push_back(ArgValue);
937    } else {
938      assert(VA.isMemLoc());
939      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
940    }
941  }
942
943  unsigned StackSize = CCInfo.getNextStackOffset();
944  // align stack specially for tail calls
945  if (CC==CallingConv::Fast)
946    StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
947
948  ArgValues.push_back(Root);
949
950  // If the function takes variable number of arguments, make a frame index for
951  // the start of the first vararg value... for expansion of llvm.va_start.
952  if (isVarArg)
953    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
954
955  // Tail call calling convention (CallingConv::Fast) does not support varargs.
956  assert( !(isVarArg && CC == CallingConv::Fast) &&
957         "CallingConv::Fast does not support varargs.");
958
959  if (isStdCall && !isVarArg &&
960      (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
961    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
962    BytesCallerReserves = 0;
963  } else {
964    BytesToPopOnReturn  = 0; // Callee pops nothing.
965
966    // If this is an sret function, the return should pop the hidden pointer.
967    if (NumArgs &&
968        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
969         ISD::ParamFlags::StructReturn))
970      BytesToPopOnReturn = 4;
971
972    BytesCallerReserves = StackSize;
973  }
974
975  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
976
977  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
978  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
979
980  // Return the new list of results.
981  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
982                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
983}
984
985SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
986                                            unsigned CC) {
987  SDOperand Chain     = Op.getOperand(0);
988  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
989  SDOperand Callee    = Op.getOperand(4);
990  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
991
992  // Analyze operands of the call, assigning locations to each operand.
993  SmallVector<CCValAssign, 16> ArgLocs;
994  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
995  if(CC==CallingConv::Fast && PerformTailCallOpt)
996    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
997  else
998    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
999
1000  // Get a count of how many bytes are to be pushed on the stack.
1001  unsigned NumBytes = CCInfo.getNextStackOffset();
1002  if (CC==CallingConv::Fast)
1003    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1004
1005  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1006
1007  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1008  SmallVector<SDOperand, 8> MemOpChains;
1009
1010  SDOperand StackPtr;
1011
1012  // Walk the register/memloc assignments, inserting copies/loads.
1013  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1014    CCValAssign &VA = ArgLocs[i];
1015    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1016
1017    // Promote the value if needed.
1018    switch (VA.getLocInfo()) {
1019    default: assert(0 && "Unknown loc info!");
1020    case CCValAssign::Full: break;
1021    case CCValAssign::SExt:
1022      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1023      break;
1024    case CCValAssign::ZExt:
1025      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1026      break;
1027    case CCValAssign::AExt:
1028      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1029      break;
1030    }
1031
1032    if (VA.isRegLoc()) {
1033      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1034    } else {
1035      assert(VA.isMemLoc());
1036      if (StackPtr.Val == 0)
1037        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1038
1039      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1040                                             Arg));
1041    }
1042  }
1043
1044  // If the first argument is an sret pointer, remember it.
1045  bool isSRet = NumOps &&
1046    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1047     ISD::ParamFlags::StructReturn);
1048
1049  if (!MemOpChains.empty())
1050    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1051                        &MemOpChains[0], MemOpChains.size());
1052
1053  // Build a sequence of copy-to-reg nodes chained together with token chain
1054  // and flag operands which copy the outgoing args into registers.
1055  SDOperand InFlag;
1056  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1057    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1058                             InFlag);
1059    InFlag = Chain.getValue(1);
1060  }
1061
1062  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1063  // GOT pointer.
1064  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1065      Subtarget->isPICStyleGOT()) {
1066    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1067                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1068                             InFlag);
1069    InFlag = Chain.getValue(1);
1070  }
1071
1072  // If the callee is a GlobalAddress node (quite common, every direct call is)
1073  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1074  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1075    // We should use extra load for direct calls to dllimported functions in
1076    // non-JIT mode.
1077    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1078                                        getTargetMachine(), true))
1079      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1080  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1081    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1082
1083  // Returns a chain & a flag for retval copy to use.
1084  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1085  SmallVector<SDOperand, 8> Ops;
1086  Ops.push_back(Chain);
1087  Ops.push_back(Callee);
1088
1089  // Add argument registers to the end of the list so that they are known live
1090  // into the call.
1091  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1092    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1093                                  RegsToPass[i].second.getValueType()));
1094
1095  // Add an implicit use GOT pointer in EBX.
1096  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1097      Subtarget->isPICStyleGOT())
1098    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1099
1100  if (InFlag.Val)
1101    Ops.push_back(InFlag);
1102
1103  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1104  InFlag = Chain.getValue(1);
1105
1106  // Create the CALLSEQ_END node.
1107  unsigned NumBytesForCalleeToPush = 0;
1108
1109  if (CC == CallingConv::X86_StdCall ||
1110      (CC == CallingConv::Fast && PerformTailCallOpt)) {
1111    if (isVarArg)
1112      NumBytesForCalleeToPush = isSRet ? 4 : 0;
1113    else
1114      NumBytesForCalleeToPush = NumBytes;
1115    assert(!(isVarArg && CC==CallingConv::Fast) &&
1116            "CallingConv::Fast does not support varargs.");
1117  } else {
1118    // If this is is a call to a struct-return function, the callee
1119    // pops the hidden struct pointer, so we have to push it back.
1120    // This is common for Darwin/X86, Linux & Mingw32 targets.
1121    NumBytesForCalleeToPush = isSRet ? 4 : 0;
1122  }
1123
1124  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1125  Ops.clear();
1126  Ops.push_back(Chain);
1127  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1128  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1129  Ops.push_back(InFlag);
1130  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1131  InFlag = Chain.getValue(1);
1132
1133  // Handle result values, copying them out of physregs into vregs that we
1134  // return.
1135  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1136}
1137
1138
1139//===----------------------------------------------------------------------===//
1140//                   FastCall Calling Convention implementation
1141//===----------------------------------------------------------------------===//
1142//
1143// The X86 'fastcall' calling convention passes up to two integer arguments in
1144// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1145// and requires that the callee pop its arguments off the stack (allowing proper
1146// tail calls), and has the same return value conventions as C calling convs.
1147//
1148// This calling convention always arranges for the callee pop value to be 8n+4
1149// bytes, which is needed for tail recursion elimination and stack alignment
1150// reasons.
1151SDOperand
1152X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1153  MachineFunction &MF = DAG.getMachineFunction();
1154  MachineFrameInfo *MFI = MF.getFrameInfo();
1155  SDOperand Root = Op.getOperand(0);
1156  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1157
1158  // Assign locations to all of the incoming arguments.
1159  SmallVector<CCValAssign, 16> ArgLocs;
1160  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1161                 getTargetMachine(), ArgLocs);
1162  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1163
1164  SmallVector<SDOperand, 8> ArgValues;
1165  unsigned LastVal = ~0U;
1166  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1167    CCValAssign &VA = ArgLocs[i];
1168    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1169    // places.
1170    assert(VA.getValNo() != LastVal &&
1171           "Don't support value assigned to multiple locs yet");
1172    LastVal = VA.getValNo();
1173
1174    if (VA.isRegLoc()) {
1175      MVT::ValueType RegVT = VA.getLocVT();
1176      TargetRegisterClass *RC;
1177      if (RegVT == MVT::i32)
1178        RC = X86::GR32RegisterClass;
1179      else {
1180        assert(MVT::isVector(RegVT));
1181        RC = X86::VR128RegisterClass;
1182      }
1183
1184      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1185      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1186
1187      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1188      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1189      // right size.
1190      if (VA.getLocInfo() == CCValAssign::SExt)
1191        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1192                               DAG.getValueType(VA.getValVT()));
1193      else if (VA.getLocInfo() == CCValAssign::ZExt)
1194        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1195                               DAG.getValueType(VA.getValVT()));
1196
1197      if (VA.getLocInfo() != CCValAssign::Full)
1198        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1199
1200      ArgValues.push_back(ArgValue);
1201    } else {
1202      assert(VA.isMemLoc());
1203      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1204    }
1205  }
1206
1207  ArgValues.push_back(Root);
1208
1209  unsigned StackSize = CCInfo.getNextStackOffset();
1210
1211  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1212    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1213    // arguments and the arguments after the retaddr has been pushed are
1214    // aligned.
1215    if ((StackSize & 7) == 0)
1216      StackSize += 4;
1217  }
1218
1219  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1220  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1221  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
1222  BytesCallerReserves = 0;
1223
1224  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1225  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1226
1227  // Return the new list of results.
1228  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1229                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1230}
1231
1232SDOperand
1233X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1234                                    const SDOperand &StackPtr,
1235                                    const CCValAssign &VA,
1236                                    SDOperand Chain,
1237                                    SDOperand Arg) {
1238  SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1239  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1240  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1241  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1242  if (Flags & ISD::ParamFlags::ByVal) {
1243    unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1244                           ISD::ParamFlags::ByValAlignOffs);
1245
1246    unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1247        ISD::ParamFlags::ByValSizeOffs;
1248
1249    SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1250    SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1251    SDOperand AlwaysInline = DAG.getConstant(1, MVT::i1);
1252
1253    return DAG.getMemcpy(Chain, PtrOff, Arg, SizeNode, AlignNode,
1254                         AlwaysInline);
1255  } else {
1256    return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1257  }
1258}
1259
1260SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1261                                               unsigned CC) {
1262  SDOperand Chain     = Op.getOperand(0);
1263  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1264  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1265  SDOperand Callee    = Op.getOperand(4);
1266
1267  // Analyze operands of the call, assigning locations to each operand.
1268  SmallVector<CCValAssign, 16> ArgLocs;
1269  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1270  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1271
1272  // Get a count of how many bytes are to be pushed on the stack.
1273  unsigned NumBytes = CCInfo.getNextStackOffset();
1274
1275  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1276    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1277    // arguments and the arguments after the retaddr has been pushed are
1278    // aligned.
1279    if ((NumBytes & 7) == 0)
1280      NumBytes += 4;
1281  }
1282
1283  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1284
1285  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1286  SmallVector<SDOperand, 8> MemOpChains;
1287
1288  SDOperand StackPtr;
1289
1290  // Walk the register/memloc assignments, inserting copies/loads.
1291  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1292    CCValAssign &VA = ArgLocs[i];
1293    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1294
1295    // Promote the value if needed.
1296    switch (VA.getLocInfo()) {
1297      default: assert(0 && "Unknown loc info!");
1298      case CCValAssign::Full: break;
1299      case CCValAssign::SExt:
1300        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1301        break;
1302      case CCValAssign::ZExt:
1303        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1304        break;
1305      case CCValAssign::AExt:
1306        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1307        break;
1308    }
1309
1310    if (VA.isRegLoc()) {
1311      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1312    } else {
1313      assert(VA.isMemLoc());
1314      if (StackPtr.Val == 0)
1315        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1316
1317      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1318                                             Arg));
1319    }
1320  }
1321
1322  if (!MemOpChains.empty())
1323    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1324                        &MemOpChains[0], MemOpChains.size());
1325
1326  // Build a sequence of copy-to-reg nodes chained together with token chain
1327  // and flag operands which copy the outgoing args into registers.
1328  SDOperand InFlag;
1329  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1330    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1331                             InFlag);
1332    InFlag = Chain.getValue(1);
1333  }
1334
1335  // If the callee is a GlobalAddress node (quite common, every direct call is)
1336  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1337  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1338    // We should use extra load for direct calls to dllimported functions in
1339    // non-JIT mode.
1340    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1341                                        getTargetMachine(), true))
1342      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1343  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1344    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1345
1346  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1347  // GOT pointer.
1348  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1349      Subtarget->isPICStyleGOT()) {
1350    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1351                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1352                             InFlag);
1353    InFlag = Chain.getValue(1);
1354  }
1355
1356  // Returns a chain & a flag for retval copy to use.
1357  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1358  SmallVector<SDOperand, 8> Ops;
1359  Ops.push_back(Chain);
1360  Ops.push_back(Callee);
1361
1362  // Add argument registers to the end of the list so that they are known live
1363  // into the call.
1364  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1365    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1366                                  RegsToPass[i].second.getValueType()));
1367
1368  // Add an implicit use GOT pointer in EBX.
1369  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1370      Subtarget->isPICStyleGOT())
1371    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1372
1373  if (InFlag.Val)
1374    Ops.push_back(InFlag);
1375
1376  assert(isTailCall==false && "no tail call here");
1377  Chain = DAG.getNode(X86ISD::CALL,
1378                      NodeTys, &Ops[0], Ops.size());
1379  InFlag = Chain.getValue(1);
1380
1381  // Returns a flag for retval copy to use.
1382  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1383  Ops.clear();
1384  Ops.push_back(Chain);
1385  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1386  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1387  Ops.push_back(InFlag);
1388  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1389  InFlag = Chain.getValue(1);
1390
1391  // Handle result values, copying them out of physregs into vregs that we
1392  // return.
1393  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1394}
1395
1396//===----------------------------------------------------------------------===//
1397//                Fast Calling Convention (tail call) implementation
1398//===----------------------------------------------------------------------===//
1399
1400//  Like std call, callee cleans arguments, convention except that ECX is
1401//  reserved for storing the tail called function address. Only 2 registers are
1402//  free for argument passing (inreg). Tail call optimization is performed
1403//  provided:
1404//                * tailcallopt is enabled
1405//                * caller/callee are fastcc
1406//                * elf/pic is disabled OR
1407//                * elf/pic enabled + callee is in module + callee has
1408//                  visibility protected or hidden
1409//  To keep the stack aligned according to platform abi the function
1410//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1411//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1412//  If a tail called function callee has more arguments than the caller the
1413//  caller needs to make sure that there is room to move the RETADDR to. This is
1414//  achieved by reserving an area the size of the argument delta right after the
1415//  original REtADDR, but before the saved framepointer or the spilled registers
1416//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1417//  stack layout:
1418//    arg1
1419//    arg2
1420//    RETADDR
1421//    [ new RETADDR
1422//      move area ]
1423//    (possible EBP)
1424//    ESI
1425//    EDI
1426//    local1 ..
1427
1428/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1429/// for a 16 byte align requirement.
1430unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1431                                                        SelectionDAG& DAG) {
1432  if (PerformTailCallOpt) {
1433    MachineFunction &MF = DAG.getMachineFunction();
1434    const TargetMachine &TM = MF.getTarget();
1435    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1436    unsigned StackAlignment = TFI.getStackAlignment();
1437    uint64_t AlignMask = StackAlignment - 1;
1438    int64_t Offset = StackSize;
1439    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1440    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1441      // Number smaller than 12 so just add the difference.
1442      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1443    } else {
1444      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1445      Offset = ((~AlignMask) & Offset) + StackAlignment +
1446        (StackAlignment-SlotSize);
1447    }
1448    StackSize = Offset;
1449  }
1450  return StackSize;
1451}
1452
1453/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1454/// following the call is a return. A function is eligible if caller/callee
1455/// calling conventions match, currently only fastcc supports tail calls, and
1456/// the function CALL is immediatly followed by a RET.
1457bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1458                                                      SDOperand Ret,
1459                                                      SelectionDAG& DAG) const {
1460  if (!PerformTailCallOpt)
1461    return false;
1462
1463  // Check whether CALL node immediatly preceeds the RET node and whether the
1464  // return uses the result of the node or is a void return.
1465  unsigned NumOps = Ret.getNumOperands();
1466  if ((NumOps == 1 &&
1467       (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1468        Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
1469      (NumOps == 2 &&
1470       Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1471       Ret.getOperand(1) == SDOperand(Call.Val,0))) {
1472    MachineFunction &MF = DAG.getMachineFunction();
1473    unsigned CallerCC = MF.getFunction()->getCallingConv();
1474    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1475    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1476      SDOperand Callee = Call.getOperand(4);
1477      // On elf/pic %ebx needs to be livein.
1478      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1479          !Subtarget->isPICStyleGOT())
1480        return true;
1481
1482      // Can only do local tail calls with PIC.
1483      GlobalValue * GV = 0;
1484      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1485      if(G != 0 &&
1486         (GV = G->getGlobal()) &&
1487         (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1488        return true;
1489    }
1490  }
1491
1492  return false;
1493}
1494
1495SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1496                                                     SelectionDAG &DAG,
1497                                                     unsigned CC) {
1498  SDOperand Chain     = Op.getOperand(0);
1499  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1500  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1501  SDOperand Callee    = Op.getOperand(4);
1502  bool is64Bit        = Subtarget->is64Bit();
1503
1504  assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1505
1506  // Analyze operands of the call, assigning locations to each operand.
1507  SmallVector<CCValAssign, 16> ArgLocs;
1508  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1509  if (is64Bit)
1510    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1511  else
1512    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1513
1514
1515  // Lower arguments at fp - stackoffset + fpdiff.
1516  MachineFunction &MF = DAG.getMachineFunction();
1517
1518  unsigned NumBytesToBePushed =
1519    GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1520
1521  unsigned NumBytesCallerPushed =
1522    MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1523  int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1524
1525  // Set the delta of movement of the returnaddr stackslot.
1526  // But only set if delta is greater than previous delta.
1527  if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1528    MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1529
1530  Chain = DAG.
1531   getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1532
1533  // Adjust the Return address stack slot.
1534  SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
1535  if (FPDiff) {
1536    MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
1537    RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1538    // Load the "old" Return address.
1539    RetAddrFrIdx =
1540      DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1541    // Calculate the new stack slot for the return address.
1542    int SlotSize = is64Bit ? 8 : 4;
1543    int NewReturnAddrFI =
1544      MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1545    NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1546    Chain = SDOperand(RetAddrFrIdx.Val, 1);
1547  }
1548
1549  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1550  SmallVector<SDOperand, 8> MemOpChains;
1551  SmallVector<SDOperand, 8> MemOpChains2;
1552  SDOperand FramePtr, StackPtr;
1553  SDOperand PtrOff;
1554  SDOperand FIN;
1555  int FI = 0;
1556
1557  // Walk the register/memloc assignments, inserting copies/loads.  Lower
1558  // arguments first to the stack slot where they would normally - in case of a
1559  // normal function call - be.
1560  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1561    CCValAssign &VA = ArgLocs[i];
1562    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1563
1564    // Promote the value if needed.
1565    switch (VA.getLocInfo()) {
1566    default: assert(0 && "Unknown loc info!");
1567    case CCValAssign::Full: break;
1568    case CCValAssign::SExt:
1569      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1570      break;
1571    case CCValAssign::ZExt:
1572      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1573      break;
1574    case CCValAssign::AExt:
1575      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1576      break;
1577    }
1578
1579    if (VA.isRegLoc()) {
1580      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1581    } else {
1582      assert(VA.isMemLoc());
1583      if (StackPtr.Val == 0)
1584        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1585
1586      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1587                                             Arg));
1588    }
1589  }
1590
1591  if (!MemOpChains.empty())
1592    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1593                        &MemOpChains[0], MemOpChains.size());
1594
1595  // Build a sequence of copy-to-reg nodes chained together with token chain
1596  // and flag operands which copy the outgoing args into registers.
1597  SDOperand InFlag;
1598  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1599    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1600                             InFlag);
1601    InFlag = Chain.getValue(1);
1602  }
1603  InFlag = SDOperand();
1604
1605  // Copy from stack slots to stack slot of a tail called function. This needs
1606  // to be done because if we would lower the arguments directly to their real
1607  // stack slot we might end up overwriting each other.
1608  // TODO: To make this more efficient (sometimes saving a store/load) we could
1609  // analyse the arguments and emit this store/load/store sequence only for
1610  // arguments which would be overwritten otherwise.
1611  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1612    CCValAssign &VA = ArgLocs[i];
1613    if (!VA.isRegLoc()) {
1614      SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1615      unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1616
1617      // Get source stack slot.
1618      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1619      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1620      // Create frame index.
1621      int32_t Offset = VA.getLocMemOffset()+FPDiff;
1622      uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1623      FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1624      FIN = DAG.getFrameIndex(FI, MVT::i32);
1625      if (Flags & ISD::ParamFlags::ByVal) {
1626        // Copy relative to framepointer.
1627        unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1628                               ISD::ParamFlags::ByValAlignOffs);
1629
1630        unsigned  Size = (Flags & ISD::ParamFlags::ByValSize) >>
1631          ISD::ParamFlags::ByValSizeOffs;
1632
1633        SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1634        SDOperand  SizeNode = DAG.getConstant(Size, MVT::i32);
1635        // Copy relative to framepointer.
1636        MemOpChains2.push_back(DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, FIN,
1637                                           PtrOff, SizeNode, AlignNode));
1638      } else {
1639        SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1640        // Store relative to framepointer.
1641        MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1642      }
1643    }
1644  }
1645
1646  if (!MemOpChains2.empty())
1647    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1648                        &MemOpChains2[0], MemOpChains.size());
1649
1650  // Store the return address to the appropriate stack slot.
1651  if (FPDiff)
1652    Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1653
1654  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1655  // GOT pointer.
1656  // Does not work with tail call since ebx is not restored correctly by
1657  // tailcaller. TODO: at least for x86 - verify for x86-64
1658
1659  // If the callee is a GlobalAddress node (quite common, every direct call is)
1660  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1661  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1662    // We should use extra load for direct calls to dllimported functions in
1663    // non-JIT mode.
1664    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1665                                        getTargetMachine(), true))
1666      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1667  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1668    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1669  else {
1670    assert(Callee.getOpcode() == ISD::LOAD &&
1671           "Function destination must be loaded into virtual register");
1672    unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1673
1674    Chain = DAG.getCopyToReg(Chain,
1675                             DAG.getRegister(Opc, getPointerTy()) ,
1676                             Callee,InFlag);
1677    Callee = DAG.getRegister(Opc, getPointerTy());
1678    // Add register as live out.
1679    DAG.getMachineFunction().addLiveOut(Opc);
1680  }
1681
1682  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1683  SmallVector<SDOperand, 8> Ops;
1684
1685  Ops.push_back(Chain);
1686  Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1687  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1688  if (InFlag.Val)
1689    Ops.push_back(InFlag);
1690  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1691  InFlag = Chain.getValue(1);
1692
1693  // Returns a chain & a flag for retval copy to use.
1694  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1695  Ops.clear();
1696  Ops.push_back(Chain);
1697  Ops.push_back(Callee);
1698  Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1699  // Add argument registers to the end of the list so that they are known live
1700  // into the call.
1701  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1702    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1703                                  RegsToPass[i].second.getValueType()));
1704  if (InFlag.Val)
1705    Ops.push_back(InFlag);
1706  assert(InFlag.Val &&
1707         "Flag must be set. Depend on flag being set in LowerRET");
1708  Chain = DAG.getNode(X86ISD::TAILCALL,
1709                      Op.Val->getVTList(), &Ops[0], Ops.size());
1710
1711  return SDOperand(Chain.Val, Op.ResNo);
1712}
1713
1714//===----------------------------------------------------------------------===//
1715//                 X86-64 C Calling Convention implementation
1716//===----------------------------------------------------------------------===//
1717
1718SDOperand
1719X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1720  MachineFunction &MF = DAG.getMachineFunction();
1721  MachineFrameInfo *MFI = MF.getFrameInfo();
1722  SDOperand Root = Op.getOperand(0);
1723  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1724  unsigned CC= MF.getFunction()->getCallingConv();
1725
1726  static const unsigned GPR64ArgRegs[] = {
1727    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1728  };
1729  static const unsigned XMMArgRegs[] = {
1730    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1731    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1732  };
1733
1734
1735  // Assign locations to all of the incoming arguments.
1736  SmallVector<CCValAssign, 16> ArgLocs;
1737  CCState CCInfo(CC, isVarArg,
1738                 getTargetMachine(), ArgLocs);
1739  if (CC == CallingConv::Fast && PerformTailCallOpt)
1740    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1741  else
1742    CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1743
1744  SmallVector<SDOperand, 8> ArgValues;
1745  unsigned LastVal = ~0U;
1746  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1747    CCValAssign &VA = ArgLocs[i];
1748    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1749    // places.
1750    assert(VA.getValNo() != LastVal &&
1751           "Don't support value assigned to multiple locs yet");
1752    LastVal = VA.getValNo();
1753
1754    if (VA.isRegLoc()) {
1755      MVT::ValueType RegVT = VA.getLocVT();
1756      TargetRegisterClass *RC;
1757      if (RegVT == MVT::i32)
1758        RC = X86::GR32RegisterClass;
1759      else if (RegVT == MVT::i64)
1760        RC = X86::GR64RegisterClass;
1761      else if (RegVT == MVT::f32)
1762        RC = X86::FR32RegisterClass;
1763      else if (RegVT == MVT::f64)
1764        RC = X86::FR64RegisterClass;
1765      else {
1766        assert(MVT::isVector(RegVT));
1767        if (MVT::getSizeInBits(RegVT) == 64) {
1768          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1769          RegVT = MVT::i64;
1770        } else
1771          RC = X86::VR128RegisterClass;
1772      }
1773
1774      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1775      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1776
1777      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1778      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1779      // right size.
1780      if (VA.getLocInfo() == CCValAssign::SExt)
1781        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1782                               DAG.getValueType(VA.getValVT()));
1783      else if (VA.getLocInfo() == CCValAssign::ZExt)
1784        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1785                               DAG.getValueType(VA.getValVT()));
1786
1787      if (VA.getLocInfo() != CCValAssign::Full)
1788        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1789
1790      // Handle MMX values passed in GPRs.
1791      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1792          MVT::getSizeInBits(RegVT) == 64)
1793        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1794
1795      ArgValues.push_back(ArgValue);
1796    } else {
1797      assert(VA.isMemLoc());
1798      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1799    }
1800  }
1801
1802  unsigned StackSize = CCInfo.getNextStackOffset();
1803  if (CC==CallingConv::Fast)
1804    StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
1805
1806  // If the function takes variable number of arguments, make a frame index for
1807  // the start of the first vararg value... for expansion of llvm.va_start.
1808  if (isVarArg) {
1809    assert(CC!=CallingConv::Fast
1810           && "Var arg not supported with calling convention fastcc");
1811    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1812    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1813
1814    // For X86-64, if there are vararg parameters that are passed via
1815    // registers, then we must store them to their spots on the stack so they
1816    // may be loaded by deferencing the result of va_next.
1817    VarArgsGPOffset = NumIntRegs * 8;
1818    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1819    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1820    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1821
1822    // Store the integer parameter registers.
1823    SmallVector<SDOperand, 8> MemOps;
1824    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1825    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1826                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1827    for (; NumIntRegs != 6; ++NumIntRegs) {
1828      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1829                                X86::GR64RegisterClass);
1830      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1831      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1832      MemOps.push_back(Store);
1833      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1834                        DAG.getConstant(8, getPointerTy()));
1835    }
1836
1837    // Now store the XMM (fp + vector) parameter registers.
1838    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1839                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1840    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1841      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1842                                X86::VR128RegisterClass);
1843      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1844      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1845      MemOps.push_back(Store);
1846      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1847                        DAG.getConstant(16, getPointerTy()));
1848    }
1849    if (!MemOps.empty())
1850        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1851                           &MemOps[0], MemOps.size());
1852  }
1853
1854  ArgValues.push_back(Root);
1855  // Tail call convention (fastcc) needs callee pop.
1856  if (CC == CallingConv::Fast && PerformTailCallOpt) {
1857    BytesToPopOnReturn = StackSize;  // Callee pops everything.
1858    BytesCallerReserves = 0;
1859  } else {
1860    BytesToPopOnReturn = 0;  // Callee pops nothing.
1861    BytesCallerReserves = StackSize;
1862  }
1863  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1864  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1865
1866  // Return the new list of results.
1867  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1868                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1869}
1870
1871SDOperand
1872X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1873                                        unsigned CC) {
1874  SDOperand Chain     = Op.getOperand(0);
1875  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1876  SDOperand Callee    = Op.getOperand(4);
1877
1878  // Analyze operands of the call, assigning locations to each operand.
1879  SmallVector<CCValAssign, 16> ArgLocs;
1880  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1881  if (CC==CallingConv::Fast && PerformTailCallOpt)
1882    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1883  else
1884    CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1885
1886  // Get a count of how many bytes are to be pushed on the stack.
1887  unsigned NumBytes = CCInfo.getNextStackOffset();
1888  if (CC == CallingConv::Fast)
1889    NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1890
1891  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1892
1893  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1894  SmallVector<SDOperand, 8> MemOpChains;
1895
1896  SDOperand StackPtr;
1897
1898  // Walk the register/memloc assignments, inserting copies/loads.
1899  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1900    CCValAssign &VA = ArgLocs[i];
1901    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1902
1903    // Promote the value if needed.
1904    switch (VA.getLocInfo()) {
1905    default: assert(0 && "Unknown loc info!");
1906    case CCValAssign::Full: break;
1907    case CCValAssign::SExt:
1908      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1909      break;
1910    case CCValAssign::ZExt:
1911      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1912      break;
1913    case CCValAssign::AExt:
1914      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1915      break;
1916    }
1917
1918    if (VA.isRegLoc()) {
1919      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1920    } else {
1921      assert(VA.isMemLoc());
1922      if (StackPtr.Val == 0)
1923        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1924
1925      MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1926                                             Arg));
1927    }
1928  }
1929
1930  if (!MemOpChains.empty())
1931    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1932                        &MemOpChains[0], MemOpChains.size());
1933
1934  // Build a sequence of copy-to-reg nodes chained together with token chain
1935  // and flag operands which copy the outgoing args into registers.
1936  SDOperand InFlag;
1937  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1938    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1939                             InFlag);
1940    InFlag = Chain.getValue(1);
1941  }
1942
1943  if (isVarArg) {
1944    assert ( CallingConv::Fast != CC &&
1945             "Var args not supported with calling convention fastcc");
1946
1947    // From AMD64 ABI document:
1948    // For calls that may call functions that use varargs or stdargs
1949    // (prototype-less calls or calls to functions containing ellipsis (...) in
1950    // the declaration) %al is used as hidden argument to specify the number
1951    // of SSE registers used. The contents of %al do not need to match exactly
1952    // the number of registers, but must be an ubound on the number of SSE
1953    // registers used and is in the range 0 - 8 inclusive.
1954
1955    // Count the number of XMM registers allocated.
1956    static const unsigned XMMArgRegs[] = {
1957      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1958      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1959    };
1960    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1961
1962    Chain = DAG.getCopyToReg(Chain, X86::AL,
1963                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1964    InFlag = Chain.getValue(1);
1965  }
1966
1967  // If the callee is a GlobalAddress node (quite common, every direct call is)
1968  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1969  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1970    // We should use extra load for direct calls to dllimported functions in
1971    // non-JIT mode.
1972    if (getTargetMachine().getCodeModel() != CodeModel::Large
1973        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1974                                           getTargetMachine(), true))
1975      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1976  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1977    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1978      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1979
1980  // Returns a chain & a flag for retval copy to use.
1981  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1982  SmallVector<SDOperand, 8> Ops;
1983  Ops.push_back(Chain);
1984  Ops.push_back(Callee);
1985
1986  // Add argument registers to the end of the list so that they are known live
1987  // into the call.
1988  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1989    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1990                                  RegsToPass[i].second.getValueType()));
1991
1992  if (InFlag.Val)
1993    Ops.push_back(InFlag);
1994
1995  Chain = DAG.getNode(X86ISD::CALL,
1996                      NodeTys, &Ops[0], Ops.size());
1997  InFlag = Chain.getValue(1);
1998  int NumBytesForCalleeToPush = 0;
1999   if (CC==CallingConv::Fast && PerformTailCallOpt) {
2000    NumBytesForCalleeToPush = NumBytes;  // Callee pops everything
2001  } else {
2002    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2003  }
2004  // Returns a flag for retval copy to use.
2005  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2006  Ops.clear();
2007  Ops.push_back(Chain);
2008  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
2009  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
2010  Ops.push_back(InFlag);
2011  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2012  InFlag = Chain.getValue(1);
2013
2014  // Handle result values, copying them out of physregs into vregs that we
2015  // return.
2016  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2017}
2018
2019
2020//===----------------------------------------------------------------------===//
2021//                           Other Lowering Hooks
2022//===----------------------------------------------------------------------===//
2023
2024
2025SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2026  MachineFunction &MF = DAG.getMachineFunction();
2027  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2028  int ReturnAddrIndex = FuncInfo->getRAIndex();
2029
2030  if (ReturnAddrIndex == 0) {
2031    // Set up a frame object for the return address.
2032    if (Subtarget->is64Bit())
2033      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2034    else
2035      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2036
2037    FuncInfo->setRAIndex(ReturnAddrIndex);
2038  }
2039
2040  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2041}
2042
2043
2044
2045/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2046/// specific condition code. It returns a false if it cannot do a direct
2047/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2048/// needed.
2049static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2050                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2051                           SelectionDAG &DAG) {
2052  X86CC = X86::COND_INVALID;
2053  if (!isFP) {
2054    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2055      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2056        // X > -1   -> X == 0, jump !sign.
2057        RHS = DAG.getConstant(0, RHS.getValueType());
2058        X86CC = X86::COND_NS;
2059        return true;
2060      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2061        // X < 0   -> X == 0, jump on sign.
2062        X86CC = X86::COND_S;
2063        return true;
2064      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2065        // X < 1   -> X <= 0
2066        RHS = DAG.getConstant(0, RHS.getValueType());
2067        X86CC = X86::COND_LE;
2068        return true;
2069      }
2070    }
2071
2072    switch (SetCCOpcode) {
2073    default: break;
2074    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
2075    case ISD::SETGT:  X86CC = X86::COND_G;  break;
2076    case ISD::SETGE:  X86CC = X86::COND_GE; break;
2077    case ISD::SETLT:  X86CC = X86::COND_L;  break;
2078    case ISD::SETLE:  X86CC = X86::COND_LE; break;
2079    case ISD::SETNE:  X86CC = X86::COND_NE; break;
2080    case ISD::SETULT: X86CC = X86::COND_B;  break;
2081    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2082    case ISD::SETULE: X86CC = X86::COND_BE; break;
2083    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2084    }
2085  } else {
2086    // On a floating point condition, the flags are set as follows:
2087    // ZF  PF  CF   op
2088    //  0 | 0 | 0 | X > Y
2089    //  0 | 0 | 1 | X < Y
2090    //  1 | 0 | 0 | X == Y
2091    //  1 | 1 | 1 | unordered
2092    bool Flip = false;
2093    switch (SetCCOpcode) {
2094    default: break;
2095    case ISD::SETUEQ:
2096    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2097    case ISD::SETOLT: Flip = true; // Fallthrough
2098    case ISD::SETOGT:
2099    case ISD::SETGT: X86CC = X86::COND_A;  break;
2100    case ISD::SETOLE: Flip = true; // Fallthrough
2101    case ISD::SETOGE:
2102    case ISD::SETGE: X86CC = X86::COND_AE; break;
2103    case ISD::SETUGT: Flip = true; // Fallthrough
2104    case ISD::SETULT:
2105    case ISD::SETLT: X86CC = X86::COND_B;  break;
2106    case ISD::SETUGE: Flip = true; // Fallthrough
2107    case ISD::SETULE:
2108    case ISD::SETLE: X86CC = X86::COND_BE; break;
2109    case ISD::SETONE:
2110    case ISD::SETNE: X86CC = X86::COND_NE; break;
2111    case ISD::SETUO: X86CC = X86::COND_P;  break;
2112    case ISD::SETO:  X86CC = X86::COND_NP; break;
2113    }
2114    if (Flip)
2115      std::swap(LHS, RHS);
2116  }
2117
2118  return X86CC != X86::COND_INVALID;
2119}
2120
2121/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2122/// code. Current x86 isa includes the following FP cmov instructions:
2123/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2124static bool hasFPCMov(unsigned X86CC) {
2125  switch (X86CC) {
2126  default:
2127    return false;
2128  case X86::COND_B:
2129  case X86::COND_BE:
2130  case X86::COND_E:
2131  case X86::COND_P:
2132  case X86::COND_A:
2133  case X86::COND_AE:
2134  case X86::COND_NE:
2135  case X86::COND_NP:
2136    return true;
2137  }
2138}
2139
2140/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2141/// true if Op is undef or if its value falls within the specified range (L, H].
2142static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2143  if (Op.getOpcode() == ISD::UNDEF)
2144    return true;
2145
2146  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2147  return (Val >= Low && Val < Hi);
2148}
2149
2150/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2151/// true if Op is undef or if its value equal to the specified value.
2152static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2153  if (Op.getOpcode() == ISD::UNDEF)
2154    return true;
2155  return cast<ConstantSDNode>(Op)->getValue() == Val;
2156}
2157
2158/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2159/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2160bool X86::isPSHUFDMask(SDNode *N) {
2161  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2162
2163  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2164    return false;
2165
2166  // Check if the value doesn't reference the second vector.
2167  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2168    SDOperand Arg = N->getOperand(i);
2169    if (Arg.getOpcode() == ISD::UNDEF) continue;
2170    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2171    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2172      return false;
2173  }
2174
2175  return true;
2176}
2177
2178/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2179/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2180bool X86::isPSHUFHWMask(SDNode *N) {
2181  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2182
2183  if (N->getNumOperands() != 8)
2184    return false;
2185
2186  // Lower quadword copied in order.
2187  for (unsigned i = 0; i != 4; ++i) {
2188    SDOperand Arg = N->getOperand(i);
2189    if (Arg.getOpcode() == ISD::UNDEF) continue;
2190    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2191    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2192      return false;
2193  }
2194
2195  // Upper quadword shuffled.
2196  for (unsigned i = 4; i != 8; ++i) {
2197    SDOperand Arg = N->getOperand(i);
2198    if (Arg.getOpcode() == ISD::UNDEF) continue;
2199    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2200    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2201    if (Val < 4 || Val > 7)
2202      return false;
2203  }
2204
2205  return true;
2206}
2207
2208/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2209/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2210bool X86::isPSHUFLWMask(SDNode *N) {
2211  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2212
2213  if (N->getNumOperands() != 8)
2214    return false;
2215
2216  // Upper quadword copied in order.
2217  for (unsigned i = 4; i != 8; ++i)
2218    if (!isUndefOrEqual(N->getOperand(i), i))
2219      return false;
2220
2221  // Lower quadword shuffled.
2222  for (unsigned i = 0; i != 4; ++i)
2223    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2224      return false;
2225
2226  return true;
2227}
2228
2229/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2230/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2231static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2232  if (NumElems != 2 && NumElems != 4) return false;
2233
2234  unsigned Half = NumElems / 2;
2235  for (unsigned i = 0; i < Half; ++i)
2236    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2237      return false;
2238  for (unsigned i = Half; i < NumElems; ++i)
2239    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2240      return false;
2241
2242  return true;
2243}
2244
2245bool X86::isSHUFPMask(SDNode *N) {
2246  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2247  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2248}
2249
2250/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2251/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2252/// half elements to come from vector 1 (which would equal the dest.) and
2253/// the upper half to come from vector 2.
2254static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2255  if (NumOps != 2 && NumOps != 4) return false;
2256
2257  unsigned Half = NumOps / 2;
2258  for (unsigned i = 0; i < Half; ++i)
2259    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2260      return false;
2261  for (unsigned i = Half; i < NumOps; ++i)
2262    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2263      return false;
2264  return true;
2265}
2266
2267static bool isCommutedSHUFP(SDNode *N) {
2268  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2269  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2270}
2271
2272/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2273/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2274bool X86::isMOVHLPSMask(SDNode *N) {
2275  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2276
2277  if (N->getNumOperands() != 4)
2278    return false;
2279
2280  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2281  return isUndefOrEqual(N->getOperand(0), 6) &&
2282         isUndefOrEqual(N->getOperand(1), 7) &&
2283         isUndefOrEqual(N->getOperand(2), 2) &&
2284         isUndefOrEqual(N->getOperand(3), 3);
2285}
2286
2287/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2288/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2289/// <2, 3, 2, 3>
2290bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2291  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2292
2293  if (N->getNumOperands() != 4)
2294    return false;
2295
2296  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2297  return isUndefOrEqual(N->getOperand(0), 2) &&
2298         isUndefOrEqual(N->getOperand(1), 3) &&
2299         isUndefOrEqual(N->getOperand(2), 2) &&
2300         isUndefOrEqual(N->getOperand(3), 3);
2301}
2302
2303/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2304/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2305bool X86::isMOVLPMask(SDNode *N) {
2306  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2307
2308  unsigned NumElems = N->getNumOperands();
2309  if (NumElems != 2 && NumElems != 4)
2310    return false;
2311
2312  for (unsigned i = 0; i < NumElems/2; ++i)
2313    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2314      return false;
2315
2316  for (unsigned i = NumElems/2; i < NumElems; ++i)
2317    if (!isUndefOrEqual(N->getOperand(i), i))
2318      return false;
2319
2320  return true;
2321}
2322
2323/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2324/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2325/// and MOVLHPS.
2326bool X86::isMOVHPMask(SDNode *N) {
2327  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2328
2329  unsigned NumElems = N->getNumOperands();
2330  if (NumElems != 2 && NumElems != 4)
2331    return false;
2332
2333  for (unsigned i = 0; i < NumElems/2; ++i)
2334    if (!isUndefOrEqual(N->getOperand(i), i))
2335      return false;
2336
2337  for (unsigned i = 0; i < NumElems/2; ++i) {
2338    SDOperand Arg = N->getOperand(i + NumElems/2);
2339    if (!isUndefOrEqual(Arg, i + NumElems))
2340      return false;
2341  }
2342
2343  return true;
2344}
2345
2346/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2347/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2348bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2349                         bool V2IsSplat = false) {
2350  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2351    return false;
2352
2353  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2354    SDOperand BitI  = Elts[i];
2355    SDOperand BitI1 = Elts[i+1];
2356    if (!isUndefOrEqual(BitI, j))
2357      return false;
2358    if (V2IsSplat) {
2359      if (isUndefOrEqual(BitI1, NumElts))
2360        return false;
2361    } else {
2362      if (!isUndefOrEqual(BitI1, j + NumElts))
2363        return false;
2364    }
2365  }
2366
2367  return true;
2368}
2369
2370bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2371  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2372  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2373}
2374
2375/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2376/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2377bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2378                         bool V2IsSplat = false) {
2379  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2380    return false;
2381
2382  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2383    SDOperand BitI  = Elts[i];
2384    SDOperand BitI1 = Elts[i+1];
2385    if (!isUndefOrEqual(BitI, j + NumElts/2))
2386      return false;
2387    if (V2IsSplat) {
2388      if (isUndefOrEqual(BitI1, NumElts))
2389        return false;
2390    } else {
2391      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2392        return false;
2393    }
2394  }
2395
2396  return true;
2397}
2398
2399bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2400  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2401  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2402}
2403
2404/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2405/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2406/// <0, 0, 1, 1>
2407bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2408  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2409
2410  unsigned NumElems = N->getNumOperands();
2411  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2412    return false;
2413
2414  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2415    SDOperand BitI  = N->getOperand(i);
2416    SDOperand BitI1 = N->getOperand(i+1);
2417
2418    if (!isUndefOrEqual(BitI, j))
2419      return false;
2420    if (!isUndefOrEqual(BitI1, j))
2421      return false;
2422  }
2423
2424  return true;
2425}
2426
2427/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2428/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2429/// <2, 2, 3, 3>
2430bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2431  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2432
2433  unsigned NumElems = N->getNumOperands();
2434  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2435    return false;
2436
2437  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2438    SDOperand BitI  = N->getOperand(i);
2439    SDOperand BitI1 = N->getOperand(i + 1);
2440
2441    if (!isUndefOrEqual(BitI, j))
2442      return false;
2443    if (!isUndefOrEqual(BitI1, j))
2444      return false;
2445  }
2446
2447  return true;
2448}
2449
2450/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2451/// specifies a shuffle of elements that is suitable for input to MOVSS,
2452/// MOVSD, and MOVD, i.e. setting the lowest element.
2453static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2454  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2455    return false;
2456
2457  if (!isUndefOrEqual(Elts[0], NumElts))
2458    return false;
2459
2460  for (unsigned i = 1; i < NumElts; ++i) {
2461    if (!isUndefOrEqual(Elts[i], i))
2462      return false;
2463  }
2464
2465  return true;
2466}
2467
2468bool X86::isMOVLMask(SDNode *N) {
2469  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2470  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2471}
2472
2473/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2474/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2475/// element of vector 2 and the other elements to come from vector 1 in order.
2476static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2477                           bool V2IsSplat = false,
2478                           bool V2IsUndef = false) {
2479  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2480    return false;
2481
2482  if (!isUndefOrEqual(Ops[0], 0))
2483    return false;
2484
2485  for (unsigned i = 1; i < NumOps; ++i) {
2486    SDOperand Arg = Ops[i];
2487    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2488          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2489          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2490      return false;
2491  }
2492
2493  return true;
2494}
2495
2496static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2497                           bool V2IsUndef = false) {
2498  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2499  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2500                        V2IsSplat, V2IsUndef);
2501}
2502
2503/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2504/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2505bool X86::isMOVSHDUPMask(SDNode *N) {
2506  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2507
2508  if (N->getNumOperands() != 4)
2509    return false;
2510
2511  // Expect 1, 1, 3, 3
2512  for (unsigned i = 0; i < 2; ++i) {
2513    SDOperand Arg = N->getOperand(i);
2514    if (Arg.getOpcode() == ISD::UNDEF) continue;
2515    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2516    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2517    if (Val != 1) return false;
2518  }
2519
2520  bool HasHi = false;
2521  for (unsigned i = 2; i < 4; ++i) {
2522    SDOperand Arg = N->getOperand(i);
2523    if (Arg.getOpcode() == ISD::UNDEF) continue;
2524    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2525    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2526    if (Val != 3) return false;
2527    HasHi = true;
2528  }
2529
2530  // Don't use movshdup if it can be done with a shufps.
2531  return HasHi;
2532}
2533
2534/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2535/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2536bool X86::isMOVSLDUPMask(SDNode *N) {
2537  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2538
2539  if (N->getNumOperands() != 4)
2540    return false;
2541
2542  // Expect 0, 0, 2, 2
2543  for (unsigned i = 0; i < 2; ++i) {
2544    SDOperand Arg = N->getOperand(i);
2545    if (Arg.getOpcode() == ISD::UNDEF) continue;
2546    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2547    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2548    if (Val != 0) return false;
2549  }
2550
2551  bool HasHi = false;
2552  for (unsigned i = 2; i < 4; ++i) {
2553    SDOperand Arg = N->getOperand(i);
2554    if (Arg.getOpcode() == ISD::UNDEF) continue;
2555    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2556    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2557    if (Val != 2) return false;
2558    HasHi = true;
2559  }
2560
2561  // Don't use movshdup if it can be done with a shufps.
2562  return HasHi;
2563}
2564
2565/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2566/// specifies a identity operation on the LHS or RHS.
2567static bool isIdentityMask(SDNode *N, bool RHS = false) {
2568  unsigned NumElems = N->getNumOperands();
2569  for (unsigned i = 0; i < NumElems; ++i)
2570    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2571      return false;
2572  return true;
2573}
2574
2575/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2576/// a splat of a single element.
2577static bool isSplatMask(SDNode *N) {
2578  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2579
2580  // This is a splat operation if each element of the permute is the same, and
2581  // if the value doesn't reference the second vector.
2582  unsigned NumElems = N->getNumOperands();
2583  SDOperand ElementBase;
2584  unsigned i = 0;
2585  for (; i != NumElems; ++i) {
2586    SDOperand Elt = N->getOperand(i);
2587    if (isa<ConstantSDNode>(Elt)) {
2588      ElementBase = Elt;
2589      break;
2590    }
2591  }
2592
2593  if (!ElementBase.Val)
2594    return false;
2595
2596  for (; i != NumElems; ++i) {
2597    SDOperand Arg = N->getOperand(i);
2598    if (Arg.getOpcode() == ISD::UNDEF) continue;
2599    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2600    if (Arg != ElementBase) return false;
2601  }
2602
2603  // Make sure it is a splat of the first vector operand.
2604  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2605}
2606
2607/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2608/// a splat of a single element and it's a 2 or 4 element mask.
2609bool X86::isSplatMask(SDNode *N) {
2610  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2611
2612  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2613  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2614    return false;
2615  return ::isSplatMask(N);
2616}
2617
2618/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2619/// specifies a splat of zero element.
2620bool X86::isSplatLoMask(SDNode *N) {
2621  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2622
2623  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2624    if (!isUndefOrEqual(N->getOperand(i), 0))
2625      return false;
2626  return true;
2627}
2628
2629/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2630/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2631/// instructions.
2632unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2633  unsigned NumOperands = N->getNumOperands();
2634  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2635  unsigned Mask = 0;
2636  for (unsigned i = 0; i < NumOperands; ++i) {
2637    unsigned Val = 0;
2638    SDOperand Arg = N->getOperand(NumOperands-i-1);
2639    if (Arg.getOpcode() != ISD::UNDEF)
2640      Val = cast<ConstantSDNode>(Arg)->getValue();
2641    if (Val >= NumOperands) Val -= NumOperands;
2642    Mask |= Val;
2643    if (i != NumOperands - 1)
2644      Mask <<= Shift;
2645  }
2646
2647  return Mask;
2648}
2649
2650/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2651/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2652/// instructions.
2653unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2654  unsigned Mask = 0;
2655  // 8 nodes, but we only care about the last 4.
2656  for (unsigned i = 7; i >= 4; --i) {
2657    unsigned Val = 0;
2658    SDOperand Arg = N->getOperand(i);
2659    if (Arg.getOpcode() != ISD::UNDEF)
2660      Val = cast<ConstantSDNode>(Arg)->getValue();
2661    Mask |= (Val - 4);
2662    if (i != 4)
2663      Mask <<= 2;
2664  }
2665
2666  return Mask;
2667}
2668
2669/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2670/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2671/// instructions.
2672unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2673  unsigned Mask = 0;
2674  // 8 nodes, but we only care about the first 4.
2675  for (int i = 3; i >= 0; --i) {
2676    unsigned Val = 0;
2677    SDOperand Arg = N->getOperand(i);
2678    if (Arg.getOpcode() != ISD::UNDEF)
2679      Val = cast<ConstantSDNode>(Arg)->getValue();
2680    Mask |= Val;
2681    if (i != 0)
2682      Mask <<= 2;
2683  }
2684
2685  return Mask;
2686}
2687
2688/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2689/// specifies a 8 element shuffle that can be broken into a pair of
2690/// PSHUFHW and PSHUFLW.
2691static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2692  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2693
2694  if (N->getNumOperands() != 8)
2695    return false;
2696
2697  // Lower quadword shuffled.
2698  for (unsigned i = 0; i != 4; ++i) {
2699    SDOperand Arg = N->getOperand(i);
2700    if (Arg.getOpcode() == ISD::UNDEF) continue;
2701    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2702    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2703    if (Val > 4)
2704      return false;
2705  }
2706
2707  // Upper quadword shuffled.
2708  for (unsigned i = 4; i != 8; ++i) {
2709    SDOperand Arg = N->getOperand(i);
2710    if (Arg.getOpcode() == ISD::UNDEF) continue;
2711    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2712    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2713    if (Val < 4 || Val > 7)
2714      return false;
2715  }
2716
2717  return true;
2718}
2719
2720/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2721/// values in ther permute mask.
2722static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2723                                      SDOperand &V2, SDOperand &Mask,
2724                                      SelectionDAG &DAG) {
2725  MVT::ValueType VT = Op.getValueType();
2726  MVT::ValueType MaskVT = Mask.getValueType();
2727  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2728  unsigned NumElems = Mask.getNumOperands();
2729  SmallVector<SDOperand, 8> MaskVec;
2730
2731  for (unsigned i = 0; i != NumElems; ++i) {
2732    SDOperand Arg = Mask.getOperand(i);
2733    if (Arg.getOpcode() == ISD::UNDEF) {
2734      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2735      continue;
2736    }
2737    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2738    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2739    if (Val < NumElems)
2740      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2741    else
2742      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2743  }
2744
2745  std::swap(V1, V2);
2746  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2747  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2748}
2749
2750/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2751/// match movhlps. The lower half elements should come from upper half of
2752/// V1 (and in order), and the upper half elements should come from the upper
2753/// half of V2 (and in order).
2754static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2755  unsigned NumElems = Mask->getNumOperands();
2756  if (NumElems != 4)
2757    return false;
2758  for (unsigned i = 0, e = 2; i != e; ++i)
2759    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2760      return false;
2761  for (unsigned i = 2; i != 4; ++i)
2762    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2763      return false;
2764  return true;
2765}
2766
2767/// isScalarLoadToVector - Returns true if the node is a scalar load that
2768/// is promoted to a vector.
2769static inline bool isScalarLoadToVector(SDNode *N) {
2770  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2771    N = N->getOperand(0).Val;
2772    return ISD::isNON_EXTLoad(N);
2773  }
2774  return false;
2775}
2776
2777/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2778/// match movlp{s|d}. The lower half elements should come from lower half of
2779/// V1 (and in order), and the upper half elements should come from the upper
2780/// half of V2 (and in order). And since V1 will become the source of the
2781/// MOVLP, it must be either a vector load or a scalar load to vector.
2782static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2783  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2784    return false;
2785  // Is V2 is a vector load, don't do this transformation. We will try to use
2786  // load folding shufps op.
2787  if (ISD::isNON_EXTLoad(V2))
2788    return false;
2789
2790  unsigned NumElems = Mask->getNumOperands();
2791  if (NumElems != 2 && NumElems != 4)
2792    return false;
2793  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2794    if (!isUndefOrEqual(Mask->getOperand(i), i))
2795      return false;
2796  for (unsigned i = NumElems/2; i != NumElems; ++i)
2797    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2798      return false;
2799  return true;
2800}
2801
2802/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2803/// all the same.
2804static bool isSplatVector(SDNode *N) {
2805  if (N->getOpcode() != ISD::BUILD_VECTOR)
2806    return false;
2807
2808  SDOperand SplatValue = N->getOperand(0);
2809  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2810    if (N->getOperand(i) != SplatValue)
2811      return false;
2812  return true;
2813}
2814
2815/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2816/// to an undef.
2817static bool isUndefShuffle(SDNode *N) {
2818  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2819    return false;
2820
2821  SDOperand V1 = N->getOperand(0);
2822  SDOperand V2 = N->getOperand(1);
2823  SDOperand Mask = N->getOperand(2);
2824  unsigned NumElems = Mask.getNumOperands();
2825  for (unsigned i = 0; i != NumElems; ++i) {
2826    SDOperand Arg = Mask.getOperand(i);
2827    if (Arg.getOpcode() != ISD::UNDEF) {
2828      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2829      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2830        return false;
2831      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2832        return false;
2833    }
2834  }
2835  return true;
2836}
2837
2838/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2839/// constant +0.0.
2840static inline bool isZeroNode(SDOperand Elt) {
2841  return ((isa<ConstantSDNode>(Elt) &&
2842           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2843          (isa<ConstantFPSDNode>(Elt) &&
2844           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2845}
2846
2847/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2848/// to an zero vector.
2849static bool isZeroShuffle(SDNode *N) {
2850  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2851    return false;
2852
2853  SDOperand V1 = N->getOperand(0);
2854  SDOperand V2 = N->getOperand(1);
2855  SDOperand Mask = N->getOperand(2);
2856  unsigned NumElems = Mask.getNumOperands();
2857  for (unsigned i = 0; i != NumElems; ++i) {
2858    SDOperand Arg = Mask.getOperand(i);
2859    if (Arg.getOpcode() != ISD::UNDEF) {
2860      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2861      if (Idx < NumElems) {
2862        unsigned Opc = V1.Val->getOpcode();
2863        if (Opc == ISD::UNDEF)
2864          continue;
2865        if (Opc != ISD::BUILD_VECTOR ||
2866            !isZeroNode(V1.Val->getOperand(Idx)))
2867          return false;
2868      } else if (Idx >= NumElems) {
2869        unsigned Opc = V2.Val->getOpcode();
2870        if (Opc == ISD::UNDEF)
2871          continue;
2872        if (Opc != ISD::BUILD_VECTOR ||
2873            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2874          return false;
2875      }
2876    }
2877  }
2878  return true;
2879}
2880
2881/// getZeroVector - Returns a vector of specified type with all zero elements.
2882///
2883static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2884  assert(MVT::isVector(VT) && "Expected a vector type");
2885  unsigned NumElems = MVT::getVectorNumElements(VT);
2886  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2887  bool isFP = MVT::isFloatingPoint(EVT);
2888  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2889  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2890  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2891}
2892
2893/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2894/// that point to V2 points to its first element.
2895static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2896  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2897
2898  bool Changed = false;
2899  SmallVector<SDOperand, 8> MaskVec;
2900  unsigned NumElems = Mask.getNumOperands();
2901  for (unsigned i = 0; i != NumElems; ++i) {
2902    SDOperand Arg = Mask.getOperand(i);
2903    if (Arg.getOpcode() != ISD::UNDEF) {
2904      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2905      if (Val > NumElems) {
2906        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2907        Changed = true;
2908      }
2909    }
2910    MaskVec.push_back(Arg);
2911  }
2912
2913  if (Changed)
2914    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2915                       &MaskVec[0], MaskVec.size());
2916  return Mask;
2917}
2918
2919/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2920/// operation of specified width.
2921static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2922  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2923  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2924
2925  SmallVector<SDOperand, 8> MaskVec;
2926  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2927  for (unsigned i = 1; i != NumElems; ++i)
2928    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2929  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2930}
2931
2932/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2933/// of specified width.
2934static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2935  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2936  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2937  SmallVector<SDOperand, 8> MaskVec;
2938  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2939    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2940    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2941  }
2942  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2943}
2944
2945/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2946/// of specified width.
2947static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2948  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2949  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2950  unsigned Half = NumElems/2;
2951  SmallVector<SDOperand, 8> MaskVec;
2952  for (unsigned i = 0; i != Half; ++i) {
2953    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2954    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2955  }
2956  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2957}
2958
2959/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2960///
2961static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2962  SDOperand V1 = Op.getOperand(0);
2963  SDOperand Mask = Op.getOperand(2);
2964  MVT::ValueType VT = Op.getValueType();
2965  unsigned NumElems = Mask.getNumOperands();
2966  Mask = getUnpacklMask(NumElems, DAG);
2967  while (NumElems != 4) {
2968    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2969    NumElems >>= 1;
2970  }
2971  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2972
2973  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2974  Mask = getZeroVector(MaskVT, DAG);
2975  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2976                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2977  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2978}
2979
2980/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2981/// vector of zero or undef vector.
2982static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2983                                             unsigned NumElems, unsigned Idx,
2984                                             bool isZero, SelectionDAG &DAG) {
2985  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2986  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2987  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2988  SDOperand Zero = DAG.getConstant(0, EVT);
2989  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2990  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2991  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2992                               &MaskVec[0], MaskVec.size());
2993  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2994}
2995
2996/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2997///
2998static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2999                                       unsigned NumNonZero, unsigned NumZero,
3000                                       SelectionDAG &DAG, TargetLowering &TLI) {
3001  if (NumNonZero > 8)
3002    return SDOperand();
3003
3004  SDOperand V(0, 0);
3005  bool First = true;
3006  for (unsigned i = 0; i < 16; ++i) {
3007    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3008    if (ThisIsNonZero && First) {
3009      if (NumZero)
3010        V = getZeroVector(MVT::v8i16, DAG);
3011      else
3012        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3013      First = false;
3014    }
3015
3016    if ((i & 1) != 0) {
3017      SDOperand ThisElt(0, 0), LastElt(0, 0);
3018      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3019      if (LastIsNonZero) {
3020        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3021      }
3022      if (ThisIsNonZero) {
3023        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3024        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3025                              ThisElt, DAG.getConstant(8, MVT::i8));
3026        if (LastIsNonZero)
3027          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3028      } else
3029        ThisElt = LastElt;
3030
3031      if (ThisElt.Val)
3032        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3033                        DAG.getConstant(i/2, TLI.getPointerTy()));
3034    }
3035  }
3036
3037  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3038}
3039
3040/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3041///
3042static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3043                                       unsigned NumNonZero, unsigned NumZero,
3044                                       SelectionDAG &DAG, TargetLowering &TLI) {
3045  if (NumNonZero > 4)
3046    return SDOperand();
3047
3048  SDOperand V(0, 0);
3049  bool First = true;
3050  for (unsigned i = 0; i < 8; ++i) {
3051    bool isNonZero = (NonZeros & (1 << i)) != 0;
3052    if (isNonZero) {
3053      if (First) {
3054        if (NumZero)
3055          V = getZeroVector(MVT::v8i16, DAG);
3056        else
3057          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3058        First = false;
3059      }
3060      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3061                      DAG.getConstant(i, TLI.getPointerTy()));
3062    }
3063  }
3064
3065  return V;
3066}
3067
3068SDOperand
3069X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3070  // All zero's are handled with pxor.
3071  if (ISD::isBuildVectorAllZeros(Op.Val))
3072    return Op;
3073
3074  // All one's are handled with pcmpeqd.
3075  if (ISD::isBuildVectorAllOnes(Op.Val))
3076    return Op;
3077
3078  MVT::ValueType VT = Op.getValueType();
3079  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3080  unsigned EVTBits = MVT::getSizeInBits(EVT);
3081
3082  unsigned NumElems = Op.getNumOperands();
3083  unsigned NumZero  = 0;
3084  unsigned NumNonZero = 0;
3085  unsigned NonZeros = 0;
3086  unsigned NumNonZeroImms = 0;
3087  std::set<SDOperand> Values;
3088  for (unsigned i = 0; i < NumElems; ++i) {
3089    SDOperand Elt = Op.getOperand(i);
3090    if (Elt.getOpcode() != ISD::UNDEF) {
3091      Values.insert(Elt);
3092      if (isZeroNode(Elt))
3093        NumZero++;
3094      else {
3095        NonZeros |= (1 << i);
3096        NumNonZero++;
3097        if (Elt.getOpcode() == ISD::Constant ||
3098            Elt.getOpcode() == ISD::ConstantFP)
3099          NumNonZeroImms++;
3100      }
3101    }
3102  }
3103
3104  if (NumNonZero == 0) {
3105    if (NumZero == 0)
3106      // All undef vector. Return an UNDEF.
3107      return DAG.getNode(ISD::UNDEF, VT);
3108    else
3109      // A mix of zero and undef. Return a zero vector.
3110      return getZeroVector(VT, DAG);
3111  }
3112
3113  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3114  if (Values.size() == 1)
3115    return SDOperand();
3116
3117  // Special case for single non-zero element.
3118  if (NumNonZero == 1) {
3119    unsigned Idx = CountTrailingZeros_32(NonZeros);
3120    SDOperand Item = Op.getOperand(Idx);
3121    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3122    if (Idx == 0)
3123      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3124      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3125                                         NumZero > 0, DAG);
3126
3127    if (EVTBits == 32) {
3128      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3129      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3130                                         DAG);
3131      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3132      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3133      SmallVector<SDOperand, 8> MaskVec;
3134      for (unsigned i = 0; i < NumElems; i++)
3135        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3136      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3137                                   &MaskVec[0], MaskVec.size());
3138      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3139                         DAG.getNode(ISD::UNDEF, VT), Mask);
3140    }
3141  }
3142
3143  // A vector full of immediates; various special cases are already
3144  // handled, so this is best done with a single constant-pool load.
3145  if (NumNonZero == NumNonZeroImms)
3146    return SDOperand();
3147
3148  // Let legalizer expand 2-wide build_vectors.
3149  if (EVTBits == 64)
3150    return SDOperand();
3151
3152  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3153  if (EVTBits == 8 && NumElems == 16) {
3154    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3155                                        *this);
3156    if (V.Val) return V;
3157  }
3158
3159  if (EVTBits == 16 && NumElems == 8) {
3160    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3161                                        *this);
3162    if (V.Val) return V;
3163  }
3164
3165  // If element VT is == 32 bits, turn it into a number of shuffles.
3166  SmallVector<SDOperand, 8> V;
3167  V.resize(NumElems);
3168  if (NumElems == 4 && NumZero > 0) {
3169    for (unsigned i = 0; i < 4; ++i) {
3170      bool isZero = !(NonZeros & (1 << i));
3171      if (isZero)
3172        V[i] = getZeroVector(VT, DAG);
3173      else
3174        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3175    }
3176
3177    for (unsigned i = 0; i < 2; ++i) {
3178      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3179        default: break;
3180        case 0:
3181          V[i] = V[i*2];  // Must be a zero vector.
3182          break;
3183        case 1:
3184          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3185                             getMOVLMask(NumElems, DAG));
3186          break;
3187        case 2:
3188          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3189                             getMOVLMask(NumElems, DAG));
3190          break;
3191        case 3:
3192          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3193                             getUnpacklMask(NumElems, DAG));
3194          break;
3195      }
3196    }
3197
3198    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3199    // clears the upper bits.
3200    // FIXME: we can do the same for v4f32 case when we know both parts of
3201    // the lower half come from scalar_to_vector (loadf32). We should do
3202    // that in post legalizer dag combiner with target specific hooks.
3203    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3204      return V[0];
3205    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3206    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3207    SmallVector<SDOperand, 8> MaskVec;
3208    bool Reverse = (NonZeros & 0x3) == 2;
3209    for (unsigned i = 0; i < 2; ++i)
3210      if (Reverse)
3211        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3212      else
3213        MaskVec.push_back(DAG.getConstant(i, EVT));
3214    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3215    for (unsigned i = 0; i < 2; ++i)
3216      if (Reverse)
3217        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3218      else
3219        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3220    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3221                                     &MaskVec[0], MaskVec.size());
3222    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3223  }
3224
3225  if (Values.size() > 2) {
3226    // Expand into a number of unpckl*.
3227    // e.g. for v4f32
3228    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3229    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3230    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3231    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3232    for (unsigned i = 0; i < NumElems; ++i)
3233      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3234    NumElems >>= 1;
3235    while (NumElems != 0) {
3236      for (unsigned i = 0; i < NumElems; ++i)
3237        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3238                           UnpckMask);
3239      NumElems >>= 1;
3240    }
3241    return V[0];
3242  }
3243
3244  return SDOperand();
3245}
3246
3247SDOperand
3248X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3249  SDOperand V1 = Op.getOperand(0);
3250  SDOperand V2 = Op.getOperand(1);
3251  SDOperand PermMask = Op.getOperand(2);
3252  MVT::ValueType VT = Op.getValueType();
3253  unsigned NumElems = PermMask.getNumOperands();
3254  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3255  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3256  bool V1IsSplat = false;
3257  bool V2IsSplat = false;
3258
3259  if (isUndefShuffle(Op.Val))
3260    return DAG.getNode(ISD::UNDEF, VT);
3261
3262  if (isZeroShuffle(Op.Val))
3263    return getZeroVector(VT, DAG);
3264
3265  if (isIdentityMask(PermMask.Val))
3266    return V1;
3267  else if (isIdentityMask(PermMask.Val, true))
3268    return V2;
3269
3270  if (isSplatMask(PermMask.Val)) {
3271    if (NumElems <= 4) return Op;
3272    // Promote it to a v4i32 splat.
3273    return PromoteSplat(Op, DAG);
3274  }
3275
3276  if (X86::isMOVLMask(PermMask.Val))
3277    return (V1IsUndef) ? V2 : Op;
3278
3279  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3280      X86::isMOVSLDUPMask(PermMask.Val) ||
3281      X86::isMOVHLPSMask(PermMask.Val) ||
3282      X86::isMOVHPMask(PermMask.Val) ||
3283      X86::isMOVLPMask(PermMask.Val))
3284    return Op;
3285
3286  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3287      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3288    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3289
3290  bool Commuted = false;
3291  V1IsSplat = isSplatVector(V1.Val);
3292  V2IsSplat = isSplatVector(V2.Val);
3293  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3294    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3295    std::swap(V1IsSplat, V2IsSplat);
3296    std::swap(V1IsUndef, V2IsUndef);
3297    Commuted = true;
3298  }
3299
3300  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3301    if (V2IsUndef) return V1;
3302    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3303    if (V2IsSplat) {
3304      // V2 is a splat, so the mask may be malformed. That is, it may point
3305      // to any V2 element. The instruction selectior won't like this. Get
3306      // a corrected mask and commute to form a proper MOVS{S|D}.
3307      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3308      if (NewMask.Val != PermMask.Val)
3309        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3310    }
3311    return Op;
3312  }
3313
3314  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3315      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3316      X86::isUNPCKLMask(PermMask.Val) ||
3317      X86::isUNPCKHMask(PermMask.Val))
3318    return Op;
3319
3320  if (V2IsSplat) {
3321    // Normalize mask so all entries that point to V2 points to its first
3322    // element then try to match unpck{h|l} again. If match, return a
3323    // new vector_shuffle with the corrected mask.
3324    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3325    if (NewMask.Val != PermMask.Val) {
3326      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3327        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3328        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3329      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3330        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3331        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3332      }
3333    }
3334  }
3335
3336  // Normalize the node to match x86 shuffle ops if needed
3337  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3338      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3339
3340  if (Commuted) {
3341    // Commute is back and try unpck* again.
3342    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3343    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3344        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3345        X86::isUNPCKLMask(PermMask.Val) ||
3346        X86::isUNPCKHMask(PermMask.Val))
3347      return Op;
3348  }
3349
3350  // If VT is integer, try PSHUF* first, then SHUFP*.
3351  if (MVT::isInteger(VT)) {
3352    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3353    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3354    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3355         X86::isPSHUFDMask(PermMask.Val)) ||
3356        X86::isPSHUFHWMask(PermMask.Val) ||
3357        X86::isPSHUFLWMask(PermMask.Val)) {
3358      if (V2.getOpcode() != ISD::UNDEF)
3359        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3360                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3361      return Op;
3362    }
3363
3364    if (X86::isSHUFPMask(PermMask.Val) &&
3365        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3366      return Op;
3367
3368    // Handle v8i16 shuffle high / low shuffle node pair.
3369    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3370      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3371      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3372      SmallVector<SDOperand, 8> MaskVec;
3373      for (unsigned i = 0; i != 4; ++i)
3374        MaskVec.push_back(PermMask.getOperand(i));
3375      for (unsigned i = 4; i != 8; ++i)
3376        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3377      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3378                                   &MaskVec[0], MaskVec.size());
3379      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3380      MaskVec.clear();
3381      for (unsigned i = 0; i != 4; ++i)
3382        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3383      for (unsigned i = 4; i != 8; ++i)
3384        MaskVec.push_back(PermMask.getOperand(i));
3385      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3386      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3387    }
3388  } else {
3389    // Floating point cases in the other order.
3390    if (X86::isSHUFPMask(PermMask.Val))
3391      return Op;
3392    if (X86::isPSHUFDMask(PermMask.Val) ||
3393        X86::isPSHUFHWMask(PermMask.Val) ||
3394        X86::isPSHUFLWMask(PermMask.Val)) {
3395      if (V2.getOpcode() != ISD::UNDEF)
3396        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3397                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3398      return Op;
3399    }
3400  }
3401
3402  if (NumElems == 4 &&
3403      // Don't do this for MMX.
3404      MVT::getSizeInBits(VT) != 64) {
3405    MVT::ValueType MaskVT = PermMask.getValueType();
3406    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3407    SmallVector<std::pair<int, int>, 8> Locs;
3408    Locs.reserve(NumElems);
3409    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3410    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3411    unsigned NumHi = 0;
3412    unsigned NumLo = 0;
3413    // If no more than two elements come from either vector. This can be
3414    // implemented with two shuffles. First shuffle gather the elements.
3415    // The second shuffle, which takes the first shuffle as both of its
3416    // vector operands, put the elements into the right order.
3417    for (unsigned i = 0; i != NumElems; ++i) {
3418      SDOperand Elt = PermMask.getOperand(i);
3419      if (Elt.getOpcode() == ISD::UNDEF) {
3420        Locs[i] = std::make_pair(-1, -1);
3421      } else {
3422        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3423        if (Val < NumElems) {
3424          Locs[i] = std::make_pair(0, NumLo);
3425          Mask1[NumLo] = Elt;
3426          NumLo++;
3427        } else {
3428          Locs[i] = std::make_pair(1, NumHi);
3429          if (2+NumHi < NumElems)
3430            Mask1[2+NumHi] = Elt;
3431          NumHi++;
3432        }
3433      }
3434    }
3435    if (NumLo <= 2 && NumHi <= 2) {
3436      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3437                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3438                                   &Mask1[0], Mask1.size()));
3439      for (unsigned i = 0; i != NumElems; ++i) {
3440        if (Locs[i].first == -1)
3441          continue;
3442        else {
3443          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3444          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3445          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3446        }
3447      }
3448
3449      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3450                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3451                                     &Mask2[0], Mask2.size()));
3452    }
3453
3454    // Break it into (shuffle shuffle_hi, shuffle_lo).
3455    Locs.clear();
3456    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3457    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3458    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3459    unsigned MaskIdx = 0;
3460    unsigned LoIdx = 0;
3461    unsigned HiIdx = NumElems/2;
3462    for (unsigned i = 0; i != NumElems; ++i) {
3463      if (i == NumElems/2) {
3464        MaskPtr = &HiMask;
3465        MaskIdx = 1;
3466        LoIdx = 0;
3467        HiIdx = NumElems/2;
3468      }
3469      SDOperand Elt = PermMask.getOperand(i);
3470      if (Elt.getOpcode() == ISD::UNDEF) {
3471        Locs[i] = std::make_pair(-1, -1);
3472      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3473        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3474        (*MaskPtr)[LoIdx] = Elt;
3475        LoIdx++;
3476      } else {
3477        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3478        (*MaskPtr)[HiIdx] = Elt;
3479        HiIdx++;
3480      }
3481    }
3482
3483    SDOperand LoShuffle =
3484      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3485                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3486                              &LoMask[0], LoMask.size()));
3487    SDOperand HiShuffle =
3488      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3489                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3490                              &HiMask[0], HiMask.size()));
3491    SmallVector<SDOperand, 8> MaskOps;
3492    for (unsigned i = 0; i != NumElems; ++i) {
3493      if (Locs[i].first == -1) {
3494        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3495      } else {
3496        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3497        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3498      }
3499    }
3500    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3501                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3502                                   &MaskOps[0], MaskOps.size()));
3503  }
3504
3505  return SDOperand();
3506}
3507
3508SDOperand
3509X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3510  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3511    return SDOperand();
3512
3513  MVT::ValueType VT = Op.getValueType();
3514  // TODO: handle v16i8.
3515  if (MVT::getSizeInBits(VT) == 16) {
3516    // Transform it so it match pextrw which produces a 32-bit result.
3517    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3518    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3519                                    Op.getOperand(0), Op.getOperand(1));
3520    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3521                                    DAG.getValueType(VT));
3522    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3523  } else if (MVT::getSizeInBits(VT) == 32) {
3524    SDOperand Vec = Op.getOperand(0);
3525    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3526    if (Idx == 0)
3527      return Op;
3528    // SHUFPS the element to the lowest double word, then movss.
3529    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3530    SmallVector<SDOperand, 8> IdxVec;
3531    IdxVec.
3532      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3533    IdxVec.
3534      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3535    IdxVec.
3536      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3537    IdxVec.
3538      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3539    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3540                                 &IdxVec[0], IdxVec.size());
3541    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3542                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3543    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3544                       DAG.getConstant(0, getPointerTy()));
3545  } else if (MVT::getSizeInBits(VT) == 64) {
3546    SDOperand Vec = Op.getOperand(0);
3547    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3548    if (Idx == 0)
3549      return Op;
3550
3551    // UNPCKHPD the element to the lowest double word, then movsd.
3552    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3553    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3554    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3555    SmallVector<SDOperand, 8> IdxVec;
3556    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3557    IdxVec.
3558      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3559    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3560                                 &IdxVec[0], IdxVec.size());
3561    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3562                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3563    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3564                       DAG.getConstant(0, getPointerTy()));
3565  }
3566
3567  return SDOperand();
3568}
3569
3570SDOperand
3571X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3572  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3573  // as its second argument.
3574  MVT::ValueType VT = Op.getValueType();
3575  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3576  SDOperand N0 = Op.getOperand(0);
3577  SDOperand N1 = Op.getOperand(1);
3578  SDOperand N2 = Op.getOperand(2);
3579  if (MVT::getSizeInBits(BaseVT) == 16) {
3580    if (N1.getValueType() != MVT::i32)
3581      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3582    if (N2.getValueType() != MVT::i32)
3583      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3584    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3585  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3586    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3587    if (Idx == 0) {
3588      // Use a movss.
3589      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3590      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3591      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3592      SmallVector<SDOperand, 8> MaskVec;
3593      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3594      for (unsigned i = 1; i <= 3; ++i)
3595        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3596      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3597                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3598                                     &MaskVec[0], MaskVec.size()));
3599    } else {
3600      // Use two pinsrw instructions to insert a 32 bit value.
3601      Idx <<= 1;
3602      if (MVT::isFloatingPoint(N1.getValueType())) {
3603        N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3604        N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3605        N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3606                         DAG.getConstant(0, getPointerTy()));
3607      }
3608      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3609      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3610                       DAG.getConstant(Idx, getPointerTy()));
3611      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3612      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3613                       DAG.getConstant(Idx+1, getPointerTy()));
3614      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3615    }
3616  }
3617
3618  return SDOperand();
3619}
3620
3621SDOperand
3622X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3623  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3624  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3625}
3626
3627// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3628// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3629// one of the above mentioned nodes. It has to be wrapped because otherwise
3630// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3631// be used to form addressing mode. These wrapped nodes will be selected
3632// into MOV32ri.
3633SDOperand
3634X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3635  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3636  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3637                                               getPointerTy(),
3638                                               CP->getAlignment());
3639  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3640  // With PIC, the address is actually $g + Offset.
3641  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3642      !Subtarget->isPICStyleRIPRel()) {
3643    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3644                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3645                         Result);
3646  }
3647
3648  return Result;
3649}
3650
3651SDOperand
3652X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3653  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3654  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3655  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3656  // With PIC, the address is actually $g + Offset.
3657  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3658      !Subtarget->isPICStyleRIPRel()) {
3659    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3660                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3661                         Result);
3662  }
3663
3664  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3665  // load the value at address GV, not the value of GV itself. This means that
3666  // the GlobalAddress must be in the base or index register of the address, not
3667  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3668  // The same applies for external symbols during PIC codegen
3669  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3670    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3671
3672  return Result;
3673}
3674
3675// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3676static SDOperand
3677LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3678                              const MVT::ValueType PtrVT) {
3679  SDOperand InFlag;
3680  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3681                                     DAG.getNode(X86ISD::GlobalBaseReg,
3682                                                 PtrVT), InFlag);
3683  InFlag = Chain.getValue(1);
3684
3685  // emit leal symbol@TLSGD(,%ebx,1), %eax
3686  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3687  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3688                                             GA->getValueType(0),
3689                                             GA->getOffset());
3690  SDOperand Ops[] = { Chain,  TGA, InFlag };
3691  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3692  InFlag = Result.getValue(2);
3693  Chain = Result.getValue(1);
3694
3695  // call ___tls_get_addr. This function receives its argument in
3696  // the register EAX.
3697  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3698  InFlag = Chain.getValue(1);
3699
3700  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3701  SDOperand Ops1[] = { Chain,
3702                      DAG.getTargetExternalSymbol("___tls_get_addr",
3703                                                  PtrVT),
3704                      DAG.getRegister(X86::EAX, PtrVT),
3705                      DAG.getRegister(X86::EBX, PtrVT),
3706                      InFlag };
3707  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3708  InFlag = Chain.getValue(1);
3709
3710  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3711}
3712
3713// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3714// "local exec" model.
3715static SDOperand
3716LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3717                         const MVT::ValueType PtrVT) {
3718  // Get the Thread Pointer
3719  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3720  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3721  // exec)
3722  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3723                                             GA->getValueType(0),
3724                                             GA->getOffset());
3725  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3726
3727  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3728    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3729
3730  // The address of the thread local variable is the add of the thread
3731  // pointer with the offset of the variable.
3732  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3733}
3734
3735SDOperand
3736X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3737  // TODO: implement the "local dynamic" model
3738  // TODO: implement the "initial exec"model for pic executables
3739  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3740         "TLS not implemented for non-ELF and 64-bit targets");
3741  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3742  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3743  // otherwise use the "Local Exec"TLS Model
3744  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3745    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3746  else
3747    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3748}
3749
3750SDOperand
3751X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3752  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3753  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3754  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3755  // With PIC, the address is actually $g + Offset.
3756  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3757      !Subtarget->isPICStyleRIPRel()) {
3758    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3759                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3760                         Result);
3761  }
3762
3763  return Result;
3764}
3765
3766SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3767  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3768  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3769  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3770  // With PIC, the address is actually $g + Offset.
3771  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3772      !Subtarget->isPICStyleRIPRel()) {
3773    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3774                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3775                         Result);
3776  }
3777
3778  return Result;
3779}
3780
3781/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
3782/// take a 2 x i32 value to shift plus a shift amount.
3783SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3784  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3785         "Not an i64 shift!");
3786  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3787  SDOperand ShOpLo = Op.getOperand(0);
3788  SDOperand ShOpHi = Op.getOperand(1);
3789  SDOperand ShAmt  = Op.getOperand(2);
3790  SDOperand Tmp1 = isSRA ?
3791    DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3792    DAG.getConstant(0, MVT::i32);
3793
3794  SDOperand Tmp2, Tmp3;
3795  if (Op.getOpcode() == ISD::SHL_PARTS) {
3796    Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3797    Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3798  } else {
3799    Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3800    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3801  }
3802
3803  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3804  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3805                                  DAG.getConstant(32, MVT::i8));
3806  SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3807                               AndNode, DAG.getConstant(0, MVT::i8));
3808
3809  SDOperand Hi, Lo;
3810  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3811  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3812  SmallVector<SDOperand, 4> Ops;
3813  if (Op.getOpcode() == ISD::SHL_PARTS) {
3814    Ops.push_back(Tmp2);
3815    Ops.push_back(Tmp3);
3816    Ops.push_back(CC);
3817    Ops.push_back(Cond);
3818    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3819
3820    Ops.clear();
3821    Ops.push_back(Tmp3);
3822    Ops.push_back(Tmp1);
3823    Ops.push_back(CC);
3824    Ops.push_back(Cond);
3825    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3826  } else {
3827    Ops.push_back(Tmp2);
3828    Ops.push_back(Tmp3);
3829    Ops.push_back(CC);
3830    Ops.push_back(Cond);
3831    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3832
3833    Ops.clear();
3834    Ops.push_back(Tmp3);
3835    Ops.push_back(Tmp1);
3836    Ops.push_back(CC);
3837    Ops.push_back(Cond);
3838    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3839  }
3840
3841  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3842  Ops.clear();
3843  Ops.push_back(Lo);
3844  Ops.push_back(Hi);
3845  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3846}
3847
3848SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3849  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3850         Op.getOperand(0).getValueType() >= MVT::i16 &&
3851         "Unknown SINT_TO_FP to lower!");
3852
3853  SDOperand Result;
3854  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3855  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3856  MachineFunction &MF = DAG.getMachineFunction();
3857  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3858  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3859  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3860                                 StackSlot, NULL, 0);
3861
3862  // These are really Legal; caller falls through into that case.
3863  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3864    return Result;
3865  if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
3866    return Result;
3867  if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3868      Subtarget->is64Bit())
3869    return Result;
3870
3871  // Build the FILD
3872  SDVTList Tys;
3873  bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3874                (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
3875  if (useSSE)
3876    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3877  else
3878    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3879  SmallVector<SDOperand, 8> Ops;
3880  Ops.push_back(Chain);
3881  Ops.push_back(StackSlot);
3882  Ops.push_back(DAG.getValueType(SrcVT));
3883  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3884                       Tys, &Ops[0], Ops.size());
3885
3886  if (useSSE) {
3887    Chain = Result.getValue(1);
3888    SDOperand InFlag = Result.getValue(2);
3889
3890    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3891    // shouldn't be necessary except that RFP cannot be live across
3892    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3893    MachineFunction &MF = DAG.getMachineFunction();
3894    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3895    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3896    Tys = DAG.getVTList(MVT::Other);
3897    SmallVector<SDOperand, 8> Ops;
3898    Ops.push_back(Chain);
3899    Ops.push_back(Result);
3900    Ops.push_back(StackSlot);
3901    Ops.push_back(DAG.getValueType(Op.getValueType()));
3902    Ops.push_back(InFlag);
3903    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3904    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3905  }
3906
3907  return Result;
3908}
3909
3910SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3911  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3912         "Unknown FP_TO_SINT to lower!");
3913  SDOperand Result;
3914
3915  // These are really Legal.
3916  if (Op.getValueType() == MVT::i32 &&
3917      X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3918    return Result;
3919  if (Op.getValueType() == MVT::i32 &&
3920      X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
3921    return Result;
3922  if (Subtarget->is64Bit() &&
3923      Op.getValueType() == MVT::i64 &&
3924      Op.getOperand(0).getValueType() != MVT::f80)
3925    return Result;
3926
3927  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3928  // stack slot.
3929  MachineFunction &MF = DAG.getMachineFunction();
3930  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3931  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3932  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3933  unsigned Opc;
3934  switch (Op.getValueType()) {
3935    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3936    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3937    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3938    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3939  }
3940
3941  SDOperand Chain = DAG.getEntryNode();
3942  SDOperand Value = Op.getOperand(0);
3943  if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3944      (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
3945    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3946    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3947    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3948    SDOperand Ops[] = {
3949      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3950    };
3951    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3952    Chain = Value.getValue(1);
3953    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3954    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3955  }
3956
3957  // Build the FP_TO_INT*_IN_MEM
3958  SDOperand Ops[] = { Chain, Value, StackSlot };
3959  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3960
3961  // Load the result.  If this is an i64 load on an x86-32 host, expand the
3962  // load.
3963  if (Op.getValueType() != MVT::i64 || Subtarget->is64Bit())
3964    return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3965
3966  SDOperand Lo = DAG.getLoad(MVT::i32, FIST, StackSlot, NULL, 0);
3967  StackSlot = DAG.getNode(ISD::ADD, StackSlot.getValueType(), StackSlot,
3968                          DAG.getConstant(StackSlot.getValueType(), 4));
3969  SDOperand Hi = DAG.getLoad(MVT::i32, FIST, StackSlot, NULL, 0);
3970
3971
3972  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
3973}
3974
3975SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3976  MVT::ValueType VT = Op.getValueType();
3977  MVT::ValueType EltVT = VT;
3978  if (MVT::isVector(VT))
3979    EltVT = MVT::getVectorElementType(VT);
3980  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
3981  std::vector<Constant*> CV;
3982  if (EltVT == MVT::f64) {
3983    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
3984    CV.push_back(C);
3985    CV.push_back(C);
3986  } else {
3987    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
3988    CV.push_back(C);
3989    CV.push_back(C);
3990    CV.push_back(C);
3991    CV.push_back(C);
3992  }
3993  Constant *C = ConstantVector::get(CV);
3994  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3995  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3996                               false, 16);
3997  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3998}
3999
4000SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4001  MVT::ValueType VT = Op.getValueType();
4002  MVT::ValueType EltVT = VT;
4003  unsigned EltNum = 1;
4004  if (MVT::isVector(VT)) {
4005    EltVT = MVT::getVectorElementType(VT);
4006    EltNum = MVT::getVectorNumElements(VT);
4007  }
4008  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4009  std::vector<Constant*> CV;
4010  if (EltVT == MVT::f64) {
4011    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
4012    CV.push_back(C);
4013    CV.push_back(C);
4014  } else {
4015    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
4016    CV.push_back(C);
4017    CV.push_back(C);
4018    CV.push_back(C);
4019    CV.push_back(C);
4020  }
4021  Constant *C = ConstantVector::get(CV);
4022  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4023  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4024                               false, 16);
4025  if (MVT::isVector(VT)) {
4026    return DAG.getNode(ISD::BIT_CONVERT, VT,
4027                       DAG.getNode(ISD::XOR, MVT::v2i64,
4028                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4029                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4030  } else {
4031    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4032  }
4033}
4034
4035SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4036  SDOperand Op0 = Op.getOperand(0);
4037  SDOperand Op1 = Op.getOperand(1);
4038  MVT::ValueType VT = Op.getValueType();
4039  MVT::ValueType SrcVT = Op1.getValueType();
4040  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4041
4042  // If second operand is smaller, extend it first.
4043  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4044    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4045    SrcVT = VT;
4046    SrcTy = MVT::getTypeForValueType(SrcVT);
4047  }
4048  // And if it is bigger, shrink it first.
4049  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4050    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1);
4051    SrcVT = VT;
4052    SrcTy = MVT::getTypeForValueType(SrcVT);
4053  }
4054
4055  // At this point the operands and the result should have the same
4056  // type, and that won't be f80 since that is not custom lowered.
4057
4058  // First get the sign bit of second operand.
4059  std::vector<Constant*> CV;
4060  if (SrcVT == MVT::f64) {
4061    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4062    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4063  } else {
4064    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4065    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4066    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4067    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4068  }
4069  Constant *C = ConstantVector::get(CV);
4070  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4071  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4072                                false, 16);
4073  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4074
4075  // Shift sign bit right or left if the two operands have different types.
4076  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4077    // Op0 is MVT::f32, Op1 is MVT::f64.
4078    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4079    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4080                          DAG.getConstant(32, MVT::i32));
4081    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4082    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4083                          DAG.getConstant(0, getPointerTy()));
4084  }
4085
4086  // Clear first operand sign bit.
4087  CV.clear();
4088  if (VT == MVT::f64) {
4089    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4090    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4091  } else {
4092    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4093    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4094    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4095    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4096  }
4097  C = ConstantVector::get(CV);
4098  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4099  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4100                                false, 16);
4101  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4102
4103  // Or the value with the sign bit.
4104  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4105}
4106
4107SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4108  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4109  SDOperand Cond;
4110  SDOperand Op0 = Op.getOperand(0);
4111  SDOperand Op1 = Op.getOperand(1);
4112  SDOperand CC = Op.getOperand(2);
4113  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4114  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4115  unsigned X86CC;
4116
4117  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4118                     Op0, Op1, DAG)) {
4119    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4120    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4121                       DAG.getConstant(X86CC, MVT::i8), Cond);
4122  }
4123
4124  assert(isFP && "Illegal integer SetCC!");
4125
4126  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4127  switch (SetCCOpcode) {
4128  default: assert(false && "Illegal floating point SetCC!");
4129  case ISD::SETOEQ: {  // !PF & ZF
4130    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4131                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4132    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4133                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4134    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4135  }
4136  case ISD::SETUNE: {  // PF | !ZF
4137    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4138                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4139    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4140                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4141    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4142  }
4143  }
4144}
4145
4146
4147SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4148  bool addTest = true;
4149  SDOperand Cond  = Op.getOperand(0);
4150  SDOperand CC;
4151
4152  if (Cond.getOpcode() == ISD::SETCC)
4153    Cond = LowerSETCC(Cond, DAG);
4154
4155  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4156  // setting operand in place of the X86ISD::SETCC.
4157  if (Cond.getOpcode() == X86ISD::SETCC) {
4158    CC = Cond.getOperand(0);
4159
4160    SDOperand Cmp = Cond.getOperand(1);
4161    unsigned Opc = Cmp.getOpcode();
4162    MVT::ValueType VT = Op.getValueType();
4163    bool IllegalFPCMov = false;
4164    if (VT == MVT::f32 && !X86ScalarSSEf32)
4165      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4166    else if (VT == MVT::f64 && !X86ScalarSSEf64)
4167      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4168    else if (VT == MVT::f80)
4169      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4170    if ((Opc == X86ISD::CMP ||
4171         Opc == X86ISD::COMI ||
4172         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4173      Cond = Cmp;
4174      addTest = false;
4175    }
4176  }
4177
4178  if (addTest) {
4179    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4180    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4181  }
4182
4183  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4184                                                    MVT::Flag);
4185  SmallVector<SDOperand, 4> Ops;
4186  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4187  // condition is true.
4188  Ops.push_back(Op.getOperand(2));
4189  Ops.push_back(Op.getOperand(1));
4190  Ops.push_back(CC);
4191  Ops.push_back(Cond);
4192  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4193}
4194
4195SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4196  bool addTest = true;
4197  SDOperand Chain = Op.getOperand(0);
4198  SDOperand Cond  = Op.getOperand(1);
4199  SDOperand Dest  = Op.getOperand(2);
4200  SDOperand CC;
4201
4202  if (Cond.getOpcode() == ISD::SETCC)
4203    Cond = LowerSETCC(Cond, DAG);
4204
4205  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4206  // setting operand in place of the X86ISD::SETCC.
4207  if (Cond.getOpcode() == X86ISD::SETCC) {
4208    CC = Cond.getOperand(0);
4209
4210    SDOperand Cmp = Cond.getOperand(1);
4211    unsigned Opc = Cmp.getOpcode();
4212    if (Opc == X86ISD::CMP ||
4213        Opc == X86ISD::COMI ||
4214        Opc == X86ISD::UCOMI) {
4215      Cond = Cmp;
4216      addTest = false;
4217    }
4218  }
4219
4220  if (addTest) {
4221    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4222    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4223  }
4224  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4225                     Chain, Op.getOperand(2), CC, Cond);
4226}
4227
4228SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4229  unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4230  bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
4231
4232   if (Subtarget->is64Bit())
4233     if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4234       return LowerX86_TailCallTo(Op, DAG, CallingConv);
4235     else
4236       return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
4237  else
4238    switch (CallingConv) {
4239    default:
4240      assert(0 && "Unsupported calling convention");
4241    case CallingConv::Fast:
4242      if (isTailCall && PerformTailCallOpt)
4243        return LowerX86_TailCallTo(Op, DAG, CallingConv);
4244      else
4245        return LowerCCCCallTo(Op,DAG, CallingConv);
4246    case CallingConv::C:
4247    case CallingConv::X86_StdCall:
4248      return LowerCCCCallTo(Op, DAG, CallingConv);
4249    case CallingConv::X86_FastCall:
4250      return LowerFastCCCallTo(Op, DAG, CallingConv);
4251    }
4252}
4253
4254
4255// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4256// Calls to _alloca is needed to probe the stack when allocating more than 4k
4257// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4258// that the guard pages used by the OS virtual memory manager are allocated in
4259// correct sequence.
4260SDOperand
4261X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4262                                           SelectionDAG &DAG) {
4263  assert(Subtarget->isTargetCygMing() &&
4264         "This should be used only on Cygwin/Mingw targets");
4265
4266  // Get the inputs.
4267  SDOperand Chain = Op.getOperand(0);
4268  SDOperand Size  = Op.getOperand(1);
4269  // FIXME: Ensure alignment here
4270
4271  SDOperand Flag;
4272
4273  MVT::ValueType IntPtr = getPointerTy();
4274  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4275
4276  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4277  Flag = Chain.getValue(1);
4278
4279  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4280  SDOperand Ops[] = { Chain,
4281                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4282                      DAG.getRegister(X86::EAX, IntPtr),
4283                      Flag };
4284  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4285  Flag = Chain.getValue(1);
4286
4287  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4288
4289  std::vector<MVT::ValueType> Tys;
4290  Tys.push_back(SPTy);
4291  Tys.push_back(MVT::Other);
4292  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4293  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4294}
4295
4296SDOperand
4297X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4298  MachineFunction &MF = DAG.getMachineFunction();
4299  const Function* Fn = MF.getFunction();
4300  if (Fn->hasExternalLinkage() &&
4301      Subtarget->isTargetCygMing() &&
4302      Fn->getName() == "main")
4303    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4304
4305  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4306  if (Subtarget->is64Bit())
4307    return LowerX86_64CCCArguments(Op, DAG);
4308  else
4309    switch(CC) {
4310    default:
4311      assert(0 && "Unsupported calling convention");
4312    case CallingConv::Fast:
4313      return LowerCCCArguments(Op,DAG, true);
4314      // Falls through
4315    case CallingConv::C:
4316      return LowerCCCArguments(Op, DAG);
4317    case CallingConv::X86_StdCall:
4318      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4319      return LowerCCCArguments(Op, DAG, true);
4320    case CallingConv::X86_FastCall:
4321      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4322      return LowerFastCCArguments(Op, DAG);
4323    }
4324}
4325
4326SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4327  SDOperand InFlag(0, 0);
4328  SDOperand Chain = Op.getOperand(0);
4329  unsigned Align =
4330    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4331  if (Align == 0) Align = 1;
4332
4333  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4334  // If not DWORD aligned or size is more than the threshold, call memset.
4335  // The libc version is likely to be faster for these cases. It can use the
4336  // address value and run time information about the CPU.
4337  if ((Align & 3) != 0 ||
4338      (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
4339    MVT::ValueType IntPtr = getPointerTy();
4340    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4341    TargetLowering::ArgListTy Args;
4342    TargetLowering::ArgListEntry Entry;
4343    Entry.Node = Op.getOperand(1);
4344    Entry.Ty = IntPtrTy;
4345    Args.push_back(Entry);
4346    // Extend the unsigned i8 argument to be an int value for the call.
4347    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4348    Entry.Ty = IntPtrTy;
4349    Args.push_back(Entry);
4350    Entry.Node = Op.getOperand(3);
4351    Args.push_back(Entry);
4352    std::pair<SDOperand,SDOperand> CallResult =
4353      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4354                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4355    return CallResult.second;
4356  }
4357
4358  MVT::ValueType AVT;
4359  SDOperand Count;
4360  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4361  unsigned BytesLeft = 0;
4362  bool TwoRepStos = false;
4363  if (ValC) {
4364    unsigned ValReg;
4365    uint64_t Val = ValC->getValue() & 255;
4366
4367    // If the value is a constant, then we can potentially use larger sets.
4368    switch (Align & 3) {
4369      case 2:   // WORD aligned
4370        AVT = MVT::i16;
4371        ValReg = X86::AX;
4372        Val = (Val << 8) | Val;
4373        break;
4374      case 0:  // DWORD aligned
4375        AVT = MVT::i32;
4376        ValReg = X86::EAX;
4377        Val = (Val << 8)  | Val;
4378        Val = (Val << 16) | Val;
4379        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4380          AVT = MVT::i64;
4381          ValReg = X86::RAX;
4382          Val = (Val << 32) | Val;
4383        }
4384        break;
4385      default:  // Byte aligned
4386        AVT = MVT::i8;
4387        ValReg = X86::AL;
4388        Count = Op.getOperand(3);
4389        break;
4390    }
4391
4392    if (AVT > MVT::i8) {
4393      if (I) {
4394        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4395        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4396        BytesLeft = I->getValue() % UBytes;
4397      } else {
4398        assert(AVT >= MVT::i32 &&
4399               "Do not use rep;stos if not at least DWORD aligned");
4400        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4401                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4402        TwoRepStos = true;
4403      }
4404    }
4405
4406    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4407                              InFlag);
4408    InFlag = Chain.getValue(1);
4409  } else {
4410    AVT = MVT::i8;
4411    Count  = Op.getOperand(3);
4412    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4413    InFlag = Chain.getValue(1);
4414  }
4415
4416  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4417                            Count, InFlag);
4418  InFlag = Chain.getValue(1);
4419  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4420                            Op.getOperand(1), InFlag);
4421  InFlag = Chain.getValue(1);
4422
4423  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4424  SmallVector<SDOperand, 8> Ops;
4425  Ops.push_back(Chain);
4426  Ops.push_back(DAG.getValueType(AVT));
4427  Ops.push_back(InFlag);
4428  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4429
4430  if (TwoRepStos) {
4431    InFlag = Chain.getValue(1);
4432    Count = Op.getOperand(3);
4433    MVT::ValueType CVT = Count.getValueType();
4434    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4435                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4436    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4437                              Left, InFlag);
4438    InFlag = Chain.getValue(1);
4439    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4440    Ops.clear();
4441    Ops.push_back(Chain);
4442    Ops.push_back(DAG.getValueType(MVT::i8));
4443    Ops.push_back(InFlag);
4444    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4445  } else if (BytesLeft) {
4446    // Issue stores for the last 1 - 7 bytes.
4447    SDOperand Value;
4448    unsigned Val = ValC->getValue() & 255;
4449    unsigned Offset = I->getValue() - BytesLeft;
4450    SDOperand DstAddr = Op.getOperand(1);
4451    MVT::ValueType AddrVT = DstAddr.getValueType();
4452    if (BytesLeft >= 4) {
4453      Val = (Val << 8)  | Val;
4454      Val = (Val << 16) | Val;
4455      Value = DAG.getConstant(Val, MVT::i32);
4456      Chain = DAG.getStore(Chain, Value,
4457                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4458                                       DAG.getConstant(Offset, AddrVT)),
4459                           NULL, 0);
4460      BytesLeft -= 4;
4461      Offset += 4;
4462    }
4463    if (BytesLeft >= 2) {
4464      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4465      Chain = DAG.getStore(Chain, Value,
4466                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4467                                       DAG.getConstant(Offset, AddrVT)),
4468                           NULL, 0);
4469      BytesLeft -= 2;
4470      Offset += 2;
4471    }
4472    if (BytesLeft == 1) {
4473      Value = DAG.getConstant(Val, MVT::i8);
4474      Chain = DAG.getStore(Chain, Value,
4475                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4476                                       DAG.getConstant(Offset, AddrVT)),
4477                           NULL, 0);
4478    }
4479  }
4480
4481  return Chain;
4482}
4483
4484SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4485  SDOperand ChainOp = Op.getOperand(0);
4486  SDOperand DestOp = Op.getOperand(1);
4487  SDOperand SourceOp = Op.getOperand(2);
4488  SDOperand CountOp = Op.getOperand(3);
4489  SDOperand AlignOp = Op.getOperand(4);
4490  SDOperand AlwaysInlineOp = Op.getOperand(5);
4491
4492  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
4493  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
4494  if (Align == 0) Align = 1;
4495
4496  // If size is unknown, call memcpy.
4497  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4498  if (!I) {
4499    assert(!AlwaysInline && "Cannot inline copy of unknown size");
4500    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4501  }
4502
4503  // If not DWORD aligned or if size is more than threshold, then call memcpy.
4504  // The libc version is likely to be faster for the following cases. It can
4505  // use the address value and run time information about the CPU.
4506  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
4507  unsigned Size = I->getValue();
4508  if (AlwaysInline ||
4509      (Size <= Subtarget->getMaxInlineSizeThreshold() &&
4510       (Align & 3) == 0))
4511    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4512  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4513}
4514
4515SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4516                                             SDOperand Dest,
4517                                             SDOperand Source,
4518                                             SDOperand Count,
4519                                             SelectionDAG &DAG) {
4520  MVT::ValueType IntPtr = getPointerTy();
4521  TargetLowering::ArgListTy Args;
4522  TargetLowering::ArgListEntry Entry;
4523  Entry.Ty = getTargetData()->getIntPtrType();
4524  Entry.Node = Dest; Args.push_back(Entry);
4525  Entry.Node = Source; Args.push_back(Entry);
4526  Entry.Node = Count; Args.push_back(Entry);
4527  std::pair<SDOperand,SDOperand> CallResult =
4528      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4529                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4530  return CallResult.second;
4531}
4532
4533SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4534                                               SDOperand Dest,
4535                                               SDOperand Source,
4536                                               unsigned Size,
4537                                               unsigned Align,
4538                                               SelectionDAG &DAG) {
4539  MVT::ValueType AVT;
4540  unsigned BytesLeft = 0;
4541  switch (Align & 3) {
4542    case 2:   // WORD aligned
4543      AVT = MVT::i16;
4544      break;
4545    case 0:  // DWORD aligned
4546      AVT = MVT::i32;
4547      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4548        AVT = MVT::i64;
4549      break;
4550    default:  // Byte aligned
4551      AVT = MVT::i8;
4552      break;
4553  }
4554
4555  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4556  SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4557  BytesLeft = Size % UBytes;
4558
4559  SDOperand InFlag(0, 0);
4560  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4561                            Count, InFlag);
4562  InFlag = Chain.getValue(1);
4563  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4564                            Dest, InFlag);
4565  InFlag = Chain.getValue(1);
4566  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4567                            Source, InFlag);
4568  InFlag = Chain.getValue(1);
4569
4570  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4571  SmallVector<SDOperand, 8> Ops;
4572  Ops.push_back(Chain);
4573  Ops.push_back(DAG.getValueType(AVT));
4574  Ops.push_back(InFlag);
4575  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4576
4577  if (BytesLeft) {
4578    // Issue loads and stores for the last 1 - 7 bytes.
4579    unsigned Offset = Size - BytesLeft;
4580    SDOperand DstAddr = Dest;
4581    MVT::ValueType DstVT = DstAddr.getValueType();
4582    SDOperand SrcAddr = Source;
4583    MVT::ValueType SrcVT = SrcAddr.getValueType();
4584    SDOperand Value;
4585    if (BytesLeft >= 4) {
4586      Value = DAG.getLoad(MVT::i32, Chain,
4587                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4588                                      DAG.getConstant(Offset, SrcVT)),
4589                          NULL, 0);
4590      Chain = Value.getValue(1);
4591      Chain = DAG.getStore(Chain, Value,
4592                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4593                                       DAG.getConstant(Offset, DstVT)),
4594                           NULL, 0);
4595      BytesLeft -= 4;
4596      Offset += 4;
4597    }
4598    if (BytesLeft >= 2) {
4599      Value = DAG.getLoad(MVT::i16, Chain,
4600                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4601                                      DAG.getConstant(Offset, SrcVT)),
4602                          NULL, 0);
4603      Chain = Value.getValue(1);
4604      Chain = DAG.getStore(Chain, Value,
4605                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4606                                       DAG.getConstant(Offset, DstVT)),
4607                           NULL, 0);
4608      BytesLeft -= 2;
4609      Offset += 2;
4610    }
4611
4612    if (BytesLeft == 1) {
4613      Value = DAG.getLoad(MVT::i8, Chain,
4614                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4615                                      DAG.getConstant(Offset, SrcVT)),
4616                          NULL, 0);
4617      Chain = Value.getValue(1);
4618      Chain = DAG.getStore(Chain, Value,
4619                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4620                                       DAG.getConstant(Offset, DstVT)),
4621                           NULL, 0);
4622    }
4623  }
4624
4625  return Chain;
4626}
4627
4628SDOperand
4629X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4630  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4631  SDOperand TheOp = Op.getOperand(0);
4632  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4633  if (Subtarget->is64Bit()) {
4634    SDOperand Copy1 =
4635      DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4636    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4637                                         MVT::i64, Copy1.getValue(2));
4638    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4639                                DAG.getConstant(32, MVT::i8));
4640    SDOperand Ops[] = {
4641      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4642    };
4643
4644    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4645    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4646  }
4647
4648  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4649  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4650                                       MVT::i32, Copy1.getValue(2));
4651  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4652  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4653  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4654}
4655
4656SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4657  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4658
4659  if (!Subtarget->is64Bit()) {
4660    // vastart just stores the address of the VarArgsFrameIndex slot into the
4661    // memory location argument.
4662    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4663    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4664                        SV->getOffset());
4665  }
4666
4667  // __va_list_tag:
4668  //   gp_offset         (0 - 6 * 8)
4669  //   fp_offset         (48 - 48 + 8 * 16)
4670  //   overflow_arg_area (point to parameters coming in memory).
4671  //   reg_save_area
4672  SmallVector<SDOperand, 8> MemOps;
4673  SDOperand FIN = Op.getOperand(1);
4674  // Store gp_offset
4675  SDOperand Store = DAG.getStore(Op.getOperand(0),
4676                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4677                                 FIN, SV->getValue(), SV->getOffset());
4678  MemOps.push_back(Store);
4679
4680  // Store fp_offset
4681  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4682                    DAG.getConstant(4, getPointerTy()));
4683  Store = DAG.getStore(Op.getOperand(0),
4684                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4685                       FIN, SV->getValue(), SV->getOffset());
4686  MemOps.push_back(Store);
4687
4688  // Store ptr to overflow_arg_area
4689  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4690                    DAG.getConstant(4, getPointerTy()));
4691  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4692  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4693                       SV->getOffset());
4694  MemOps.push_back(Store);
4695
4696  // Store ptr to reg_save_area.
4697  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4698                    DAG.getConstant(8, getPointerTy()));
4699  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4700  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4701                       SV->getOffset());
4702  MemOps.push_back(Store);
4703  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4704}
4705
4706SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4707  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4708  SDOperand Chain = Op.getOperand(0);
4709  SDOperand DstPtr = Op.getOperand(1);
4710  SDOperand SrcPtr = Op.getOperand(2);
4711  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4712  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4713
4714  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4715                       SrcSV->getValue(), SrcSV->getOffset());
4716  Chain = SrcPtr.getValue(1);
4717  for (unsigned i = 0; i < 3; ++i) {
4718    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4719                                SrcSV->getValue(), SrcSV->getOffset());
4720    Chain = Val.getValue(1);
4721    Chain = DAG.getStore(Chain, Val, DstPtr,
4722                         DstSV->getValue(), DstSV->getOffset());
4723    if (i == 2)
4724      break;
4725    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4726                         DAG.getConstant(8, getPointerTy()));
4727    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4728                         DAG.getConstant(8, getPointerTy()));
4729  }
4730  return Chain;
4731}
4732
4733SDOperand
4734X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4735  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4736  switch (IntNo) {
4737  default: return SDOperand();    // Don't custom lower most intrinsics.
4738    // Comparison intrinsics.
4739  case Intrinsic::x86_sse_comieq_ss:
4740  case Intrinsic::x86_sse_comilt_ss:
4741  case Intrinsic::x86_sse_comile_ss:
4742  case Intrinsic::x86_sse_comigt_ss:
4743  case Intrinsic::x86_sse_comige_ss:
4744  case Intrinsic::x86_sse_comineq_ss:
4745  case Intrinsic::x86_sse_ucomieq_ss:
4746  case Intrinsic::x86_sse_ucomilt_ss:
4747  case Intrinsic::x86_sse_ucomile_ss:
4748  case Intrinsic::x86_sse_ucomigt_ss:
4749  case Intrinsic::x86_sse_ucomige_ss:
4750  case Intrinsic::x86_sse_ucomineq_ss:
4751  case Intrinsic::x86_sse2_comieq_sd:
4752  case Intrinsic::x86_sse2_comilt_sd:
4753  case Intrinsic::x86_sse2_comile_sd:
4754  case Intrinsic::x86_sse2_comigt_sd:
4755  case Intrinsic::x86_sse2_comige_sd:
4756  case Intrinsic::x86_sse2_comineq_sd:
4757  case Intrinsic::x86_sse2_ucomieq_sd:
4758  case Intrinsic::x86_sse2_ucomilt_sd:
4759  case Intrinsic::x86_sse2_ucomile_sd:
4760  case Intrinsic::x86_sse2_ucomigt_sd:
4761  case Intrinsic::x86_sse2_ucomige_sd:
4762  case Intrinsic::x86_sse2_ucomineq_sd: {
4763    unsigned Opc = 0;
4764    ISD::CondCode CC = ISD::SETCC_INVALID;
4765    switch (IntNo) {
4766    default: break;
4767    case Intrinsic::x86_sse_comieq_ss:
4768    case Intrinsic::x86_sse2_comieq_sd:
4769      Opc = X86ISD::COMI;
4770      CC = ISD::SETEQ;
4771      break;
4772    case Intrinsic::x86_sse_comilt_ss:
4773    case Intrinsic::x86_sse2_comilt_sd:
4774      Opc = X86ISD::COMI;
4775      CC = ISD::SETLT;
4776      break;
4777    case Intrinsic::x86_sse_comile_ss:
4778    case Intrinsic::x86_sse2_comile_sd:
4779      Opc = X86ISD::COMI;
4780      CC = ISD::SETLE;
4781      break;
4782    case Intrinsic::x86_sse_comigt_ss:
4783    case Intrinsic::x86_sse2_comigt_sd:
4784      Opc = X86ISD::COMI;
4785      CC = ISD::SETGT;
4786      break;
4787    case Intrinsic::x86_sse_comige_ss:
4788    case Intrinsic::x86_sse2_comige_sd:
4789      Opc = X86ISD::COMI;
4790      CC = ISD::SETGE;
4791      break;
4792    case Intrinsic::x86_sse_comineq_ss:
4793    case Intrinsic::x86_sse2_comineq_sd:
4794      Opc = X86ISD::COMI;
4795      CC = ISD::SETNE;
4796      break;
4797    case Intrinsic::x86_sse_ucomieq_ss:
4798    case Intrinsic::x86_sse2_ucomieq_sd:
4799      Opc = X86ISD::UCOMI;
4800      CC = ISD::SETEQ;
4801      break;
4802    case Intrinsic::x86_sse_ucomilt_ss:
4803    case Intrinsic::x86_sse2_ucomilt_sd:
4804      Opc = X86ISD::UCOMI;
4805      CC = ISD::SETLT;
4806      break;
4807    case Intrinsic::x86_sse_ucomile_ss:
4808    case Intrinsic::x86_sse2_ucomile_sd:
4809      Opc = X86ISD::UCOMI;
4810      CC = ISD::SETLE;
4811      break;
4812    case Intrinsic::x86_sse_ucomigt_ss:
4813    case Intrinsic::x86_sse2_ucomigt_sd:
4814      Opc = X86ISD::UCOMI;
4815      CC = ISD::SETGT;
4816      break;
4817    case Intrinsic::x86_sse_ucomige_ss:
4818    case Intrinsic::x86_sse2_ucomige_sd:
4819      Opc = X86ISD::UCOMI;
4820      CC = ISD::SETGE;
4821      break;
4822    case Intrinsic::x86_sse_ucomineq_ss:
4823    case Intrinsic::x86_sse2_ucomineq_sd:
4824      Opc = X86ISD::UCOMI;
4825      CC = ISD::SETNE;
4826      break;
4827    }
4828
4829    unsigned X86CC;
4830    SDOperand LHS = Op.getOperand(1);
4831    SDOperand RHS = Op.getOperand(2);
4832    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4833
4834    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4835    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4836                                  DAG.getConstant(X86CC, MVT::i8), Cond);
4837    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4838  }
4839  }
4840}
4841
4842SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4843  // Depths > 0 not supported yet!
4844  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4845    return SDOperand();
4846
4847  // Just load the return address
4848  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4849  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4850}
4851
4852SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4853  // Depths > 0 not supported yet!
4854  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4855    return SDOperand();
4856
4857  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4858  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4859                     DAG.getConstant(4, getPointerTy()));
4860}
4861
4862SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4863                                                       SelectionDAG &DAG) {
4864  // Is not yet supported on x86-64
4865  if (Subtarget->is64Bit())
4866    return SDOperand();
4867
4868  return DAG.getConstant(8, getPointerTy());
4869}
4870
4871SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4872{
4873  assert(!Subtarget->is64Bit() &&
4874         "Lowering of eh_return builtin is not supported yet on x86-64");
4875
4876  MachineFunction &MF = DAG.getMachineFunction();
4877  SDOperand Chain     = Op.getOperand(0);
4878  SDOperand Offset    = Op.getOperand(1);
4879  SDOperand Handler   = Op.getOperand(2);
4880
4881  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4882                                    getPointerTy());
4883
4884  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4885                                    DAG.getConstant(-4UL, getPointerTy()));
4886  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4887  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4888  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4889  MF.addLiveOut(X86::ECX);
4890
4891  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4892                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4893}
4894
4895SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4896                                             SelectionDAG &DAG) {
4897  SDOperand Root = Op.getOperand(0);
4898  SDOperand Trmp = Op.getOperand(1); // trampoline
4899  SDOperand FPtr = Op.getOperand(2); // nested function
4900  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4901
4902  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4903
4904  if (Subtarget->is64Bit()) {
4905    return SDOperand(); // not yet supported
4906  } else {
4907    Function *Func = (Function *)
4908      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4909    unsigned CC = Func->getCallingConv();
4910    unsigned NestReg;
4911
4912    switch (CC) {
4913    default:
4914      assert(0 && "Unsupported calling convention");
4915    case CallingConv::C:
4916    case CallingConv::X86_StdCall: {
4917      // Pass 'nest' parameter in ECX.
4918      // Must be kept in sync with X86CallingConv.td
4919      NestReg = X86::ECX;
4920
4921      // Check that ECX wasn't needed by an 'inreg' parameter.
4922      const FunctionType *FTy = Func->getFunctionType();
4923      const ParamAttrsList *Attrs = FTy->getParamAttrs();
4924
4925      if (Attrs && !Func->isVarArg()) {
4926        unsigned InRegCount = 0;
4927        unsigned Idx = 1;
4928
4929        for (FunctionType::param_iterator I = FTy->param_begin(),
4930             E = FTy->param_end(); I != E; ++I, ++Idx)
4931          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4932            // FIXME: should only count parameters that are lowered to integers.
4933            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4934
4935        if (InRegCount > 2) {
4936          cerr << "Nest register in use - reduce number of inreg parameters!\n";
4937          abort();
4938        }
4939      }
4940      break;
4941    }
4942    case CallingConv::X86_FastCall:
4943      // Pass 'nest' parameter in EAX.
4944      // Must be kept in sync with X86CallingConv.td
4945      NestReg = X86::EAX;
4946      break;
4947    }
4948
4949    const X86InstrInfo *TII =
4950      ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4951
4952    SDOperand OutChains[4];
4953    SDOperand Addr, Disp;
4954
4955    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4956    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4957
4958    unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4959    unsigned char N86Reg  = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4960    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
4961                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4962
4963    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4964    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4965                                TrmpSV->getOffset() + 1, false, 1);
4966
4967    unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
4968    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4969    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4970                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
4971
4972    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4973    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4974                                TrmpSV->getOffset() + 6, false, 1);
4975
4976    SDOperand Ops[] =
4977      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4978    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4979  }
4980}
4981
4982/// LowerOperation - Provide custom lowering hooks for some operations.
4983///
4984SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4985  switch (Op.getOpcode()) {
4986  default: assert(0 && "Should not custom lower this!");
4987  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4988  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4989  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4990  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4991  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4992  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4993  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4994  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4995  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4996  case ISD::SHL_PARTS:
4997  case ISD::SRA_PARTS:
4998  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4999  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5000  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5001  case ISD::FABS:               return LowerFABS(Op, DAG);
5002  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5003  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5004  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5005  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5006  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5007  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5008  case ISD::CALL:               return LowerCALL(Op, DAG);
5009  case ISD::RET:                return LowerRET(Op, DAG);
5010  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5011  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
5012  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
5013  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
5014  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5015  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5016  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5017  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5018  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5019  case ISD::FRAME_TO_ARGS_OFFSET:
5020                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5021  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5022  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5023  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5024  }
5025  return SDOperand();
5026}
5027
5028const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5029  switch (Opcode) {
5030  default: return NULL;
5031  case X86ISD::SHLD:               return "X86ISD::SHLD";
5032  case X86ISD::SHRD:               return "X86ISD::SHRD";
5033  case X86ISD::FAND:               return "X86ISD::FAND";
5034  case X86ISD::FOR:                return "X86ISD::FOR";
5035  case X86ISD::FXOR:               return "X86ISD::FXOR";
5036  case X86ISD::FSRL:               return "X86ISD::FSRL";
5037  case X86ISD::FILD:               return "X86ISD::FILD";
5038  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5039  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5040  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5041  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5042  case X86ISD::FLD:                return "X86ISD::FLD";
5043  case X86ISD::FST:                return "X86ISD::FST";
5044  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
5045  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
5046  case X86ISD::CALL:               return "X86ISD::CALL";
5047  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5048  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5049  case X86ISD::CMP:                return "X86ISD::CMP";
5050  case X86ISD::COMI:               return "X86ISD::COMI";
5051  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5052  case X86ISD::SETCC:              return "X86ISD::SETCC";
5053  case X86ISD::CMOV:               return "X86ISD::CMOV";
5054  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5055  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5056  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5057  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5058  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5059  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5060  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
5061  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5062  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5063  case X86ISD::FMAX:               return "X86ISD::FMAX";
5064  case X86ISD::FMIN:               return "X86ISD::FMIN";
5065  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5066  case X86ISD::FRCP:               return "X86ISD::FRCP";
5067  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5068  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5069  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5070  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5071  }
5072}
5073
5074// isLegalAddressingMode - Return true if the addressing mode represented
5075// by AM is legal for this target, for a load/store of the specified type.
5076bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5077                                              const Type *Ty) const {
5078  // X86 supports extremely general addressing modes.
5079
5080  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5081  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5082    return false;
5083
5084  if (AM.BaseGV) {
5085    // We can only fold this if we don't need an extra load.
5086    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5087      return false;
5088
5089    // X86-64 only supports addr of globals in small code model.
5090    if (Subtarget->is64Bit()) {
5091      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5092        return false;
5093      // If lower 4G is not available, then we must use rip-relative addressing.
5094      if (AM.BaseOffs || AM.Scale > 1)
5095        return false;
5096    }
5097  }
5098
5099  switch (AM.Scale) {
5100  case 0:
5101  case 1:
5102  case 2:
5103  case 4:
5104  case 8:
5105    // These scales always work.
5106    break;
5107  case 3:
5108  case 5:
5109  case 9:
5110    // These scales are formed with basereg+scalereg.  Only accept if there is
5111    // no basereg yet.
5112    if (AM.HasBaseReg)
5113      return false;
5114    break;
5115  default:  // Other stuff never works.
5116    return false;
5117  }
5118
5119  return true;
5120}
5121
5122
5123bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5124  if (!Ty1->isInteger() || !Ty2->isInteger())
5125    return false;
5126  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5127  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5128  if (NumBits1 <= NumBits2)
5129    return false;
5130  return Subtarget->is64Bit() || NumBits1 < 64;
5131}
5132
5133bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5134                                       MVT::ValueType VT2) const {
5135  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5136    return false;
5137  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5138  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5139  if (NumBits1 <= NumBits2)
5140    return false;
5141  return Subtarget->is64Bit() || NumBits1 < 64;
5142}
5143
5144/// isShuffleMaskLegal - Targets can use this to indicate that they only
5145/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5146/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5147/// are assumed to be legal.
5148bool
5149X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5150  // Only do shuffles on 128-bit vector types for now.
5151  if (MVT::getSizeInBits(VT) == 64) return false;
5152  return (Mask.Val->getNumOperands() <= 4 ||
5153          isIdentityMask(Mask.Val) ||
5154          isIdentityMask(Mask.Val, true) ||
5155          isSplatMask(Mask.Val)  ||
5156          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5157          X86::isUNPCKLMask(Mask.Val) ||
5158          X86::isUNPCKHMask(Mask.Val) ||
5159          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5160          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5161}
5162
5163bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5164                                               MVT::ValueType EVT,
5165                                               SelectionDAG &DAG) const {
5166  unsigned NumElts = BVOps.size();
5167  // Only do shuffles on 128-bit vector types for now.
5168  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5169  if (NumElts == 2) return true;
5170  if (NumElts == 4) {
5171    return (isMOVLMask(&BVOps[0], 4)  ||
5172            isCommutedMOVL(&BVOps[0], 4, true) ||
5173            isSHUFPMask(&BVOps[0], 4) ||
5174            isCommutedSHUFP(&BVOps[0], 4));
5175  }
5176  return false;
5177}
5178
5179//===----------------------------------------------------------------------===//
5180//                           X86 Scheduler Hooks
5181//===----------------------------------------------------------------------===//
5182
5183MachineBasicBlock *
5184X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5185                                           MachineBasicBlock *BB) {
5186  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5187  switch (MI->getOpcode()) {
5188  default: assert(false && "Unexpected instr type to insert");
5189  case X86::CMOV_FR32:
5190  case X86::CMOV_FR64:
5191  case X86::CMOV_V4F32:
5192  case X86::CMOV_V2F64:
5193  case X86::CMOV_V2I64: {
5194    // To "insert" a SELECT_CC instruction, we actually have to insert the
5195    // diamond control-flow pattern.  The incoming instruction knows the
5196    // destination vreg to set, the condition code register to branch on, the
5197    // true/false values to select between, and a branch opcode to use.
5198    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5199    ilist<MachineBasicBlock>::iterator It = BB;
5200    ++It;
5201
5202    //  thisMBB:
5203    //  ...
5204    //   TrueVal = ...
5205    //   cmpTY ccX, r1, r2
5206    //   bCC copy1MBB
5207    //   fallthrough --> copy0MBB
5208    MachineBasicBlock *thisMBB = BB;
5209    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5210    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5211    unsigned Opc =
5212      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5213    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5214    MachineFunction *F = BB->getParent();
5215    F->getBasicBlockList().insert(It, copy0MBB);
5216    F->getBasicBlockList().insert(It, sinkMBB);
5217    // Update machine-CFG edges by first adding all successors of the current
5218    // block to the new block which will contain the Phi node for the select.
5219    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5220        e = BB->succ_end(); i != e; ++i)
5221      sinkMBB->addSuccessor(*i);
5222    // Next, remove all successors of the current block, and add the true
5223    // and fallthrough blocks as its successors.
5224    while(!BB->succ_empty())
5225      BB->removeSuccessor(BB->succ_begin());
5226    BB->addSuccessor(copy0MBB);
5227    BB->addSuccessor(sinkMBB);
5228
5229    //  copy0MBB:
5230    //   %FalseValue = ...
5231    //   # fallthrough to sinkMBB
5232    BB = copy0MBB;
5233
5234    // Update machine-CFG edges
5235    BB->addSuccessor(sinkMBB);
5236
5237    //  sinkMBB:
5238    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5239    //  ...
5240    BB = sinkMBB;
5241    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5242      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5243      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5244
5245    delete MI;   // The pseudo instruction is gone now.
5246    return BB;
5247  }
5248
5249  case X86::FP32_TO_INT16_IN_MEM:
5250  case X86::FP32_TO_INT32_IN_MEM:
5251  case X86::FP32_TO_INT64_IN_MEM:
5252  case X86::FP64_TO_INT16_IN_MEM:
5253  case X86::FP64_TO_INT32_IN_MEM:
5254  case X86::FP64_TO_INT64_IN_MEM:
5255  case X86::FP80_TO_INT16_IN_MEM:
5256  case X86::FP80_TO_INT32_IN_MEM:
5257  case X86::FP80_TO_INT64_IN_MEM: {
5258    // Change the floating point control register to use "round towards zero"
5259    // mode when truncating to an integer value.
5260    MachineFunction *F = BB->getParent();
5261    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5262    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5263
5264    // Load the old value of the high byte of the control word...
5265    unsigned OldCW =
5266      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5267    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5268
5269    // Set the high part to be round to zero...
5270    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5271      .addImm(0xC7F);
5272
5273    // Reload the modified control word now...
5274    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5275
5276    // Restore the memory image of control word to original value
5277    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5278      .addReg(OldCW);
5279
5280    // Get the X86 opcode to use.
5281    unsigned Opc;
5282    switch (MI->getOpcode()) {
5283    default: assert(0 && "illegal opcode!");
5284    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5285    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5286    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5287    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5288    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5289    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5290    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5291    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5292    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5293    }
5294
5295    X86AddressMode AM;
5296    MachineOperand &Op = MI->getOperand(0);
5297    if (Op.isRegister()) {
5298      AM.BaseType = X86AddressMode::RegBase;
5299      AM.Base.Reg = Op.getReg();
5300    } else {
5301      AM.BaseType = X86AddressMode::FrameIndexBase;
5302      AM.Base.FrameIndex = Op.getFrameIndex();
5303    }
5304    Op = MI->getOperand(1);
5305    if (Op.isImmediate())
5306      AM.Scale = Op.getImm();
5307    Op = MI->getOperand(2);
5308    if (Op.isImmediate())
5309      AM.IndexReg = Op.getImm();
5310    Op = MI->getOperand(3);
5311    if (Op.isGlobalAddress()) {
5312      AM.GV = Op.getGlobal();
5313    } else {
5314      AM.Disp = Op.getImm();
5315    }
5316    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5317                      .addReg(MI->getOperand(4).getReg());
5318
5319    // Reload the original control word now.
5320    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5321
5322    delete MI;   // The pseudo instruction is gone now.
5323    return BB;
5324  }
5325  }
5326}
5327
5328//===----------------------------------------------------------------------===//
5329//                           X86 Optimization Hooks
5330//===----------------------------------------------------------------------===//
5331
5332void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5333                                                       uint64_t Mask,
5334                                                       uint64_t &KnownZero,
5335                                                       uint64_t &KnownOne,
5336                                                       const SelectionDAG &DAG,
5337                                                       unsigned Depth) const {
5338  unsigned Opc = Op.getOpcode();
5339  assert((Opc >= ISD::BUILTIN_OP_END ||
5340          Opc == ISD::INTRINSIC_WO_CHAIN ||
5341          Opc == ISD::INTRINSIC_W_CHAIN ||
5342          Opc == ISD::INTRINSIC_VOID) &&
5343         "Should use MaskedValueIsZero if you don't know whether Op"
5344         " is a target node!");
5345
5346  KnownZero = KnownOne = 0;   // Don't know anything.
5347  switch (Opc) {
5348  default: break;
5349  case X86ISD::SETCC:
5350    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5351    break;
5352  }
5353}
5354
5355/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5356/// element of the result of the vector shuffle.
5357static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5358  MVT::ValueType VT = N->getValueType(0);
5359  SDOperand PermMask = N->getOperand(2);
5360  unsigned NumElems = PermMask.getNumOperands();
5361  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5362  i %= NumElems;
5363  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5364    return (i == 0)
5365     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5366  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5367    SDOperand Idx = PermMask.getOperand(i);
5368    if (Idx.getOpcode() == ISD::UNDEF)
5369      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5370    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5371  }
5372  return SDOperand();
5373}
5374
5375/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5376/// node is a GlobalAddress + an offset.
5377static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5378  unsigned Opc = N->getOpcode();
5379  if (Opc == X86ISD::Wrapper) {
5380    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5381      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5382      return true;
5383    }
5384  } else if (Opc == ISD::ADD) {
5385    SDOperand N1 = N->getOperand(0);
5386    SDOperand N2 = N->getOperand(1);
5387    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5388      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5389      if (V) {
5390        Offset += V->getSignExtended();
5391        return true;
5392      }
5393    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5394      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5395      if (V) {
5396        Offset += V->getSignExtended();
5397        return true;
5398      }
5399    }
5400  }
5401  return false;
5402}
5403
5404/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5405/// + Dist * Size.
5406static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5407                              MachineFrameInfo *MFI) {
5408  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5409    return false;
5410
5411  SDOperand Loc = N->getOperand(1);
5412  SDOperand BaseLoc = Base->getOperand(1);
5413  if (Loc.getOpcode() == ISD::FrameIndex) {
5414    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5415      return false;
5416    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5417    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5418    int FS  = MFI->getObjectSize(FI);
5419    int BFS = MFI->getObjectSize(BFI);
5420    if (FS != BFS || FS != Size) return false;
5421    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5422  } else {
5423    GlobalValue *GV1 = NULL;
5424    GlobalValue *GV2 = NULL;
5425    int64_t Offset1 = 0;
5426    int64_t Offset2 = 0;
5427    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5428    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5429    if (isGA1 && isGA2 && GV1 == GV2)
5430      return Offset1 == (Offset2 + Dist*Size);
5431  }
5432
5433  return false;
5434}
5435
5436static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5437                              const X86Subtarget *Subtarget) {
5438  GlobalValue *GV;
5439  int64_t Offset;
5440  if (isGAPlusOffset(Base, GV, Offset))
5441    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5442  else {
5443    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5444    int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
5445    if (BFI < 0)
5446      // Fixed objects do not specify alignment, however the offsets are known.
5447      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5448              (MFI->getObjectOffset(BFI) % 16) == 0);
5449    else
5450      return MFI->getObjectAlignment(BFI) >= 16;
5451  }
5452  return false;
5453}
5454
5455
5456/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5457/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5458/// if the load addresses are consecutive, non-overlapping, and in the right
5459/// order.
5460static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5461                                       const X86Subtarget *Subtarget) {
5462  MachineFunction &MF = DAG.getMachineFunction();
5463  MachineFrameInfo *MFI = MF.getFrameInfo();
5464  MVT::ValueType VT = N->getValueType(0);
5465  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5466  SDOperand PermMask = N->getOperand(2);
5467  int NumElems = (int)PermMask.getNumOperands();
5468  SDNode *Base = NULL;
5469  for (int i = 0; i < NumElems; ++i) {
5470    SDOperand Idx = PermMask.getOperand(i);
5471    if (Idx.getOpcode() == ISD::UNDEF) {
5472      if (!Base) return SDOperand();
5473    } else {
5474      SDOperand Arg =
5475        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5476      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5477        return SDOperand();
5478      if (!Base)
5479        Base = Arg.Val;
5480      else if (!isConsecutiveLoad(Arg.Val, Base,
5481                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5482        return SDOperand();
5483    }
5484  }
5485
5486  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5487  LoadSDNode *LD = cast<LoadSDNode>(Base);
5488  if (isAlign16) {
5489    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5490                       LD->getSrcValueOffset(), LD->isVolatile());
5491  } else {
5492    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5493                       LD->getSrcValueOffset(), LD->isVolatile(),
5494                       LD->getAlignment());
5495  }
5496}
5497
5498/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5499static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5500                                      const X86Subtarget *Subtarget) {
5501  SDOperand Cond = N->getOperand(0);
5502
5503  // If we have SSE[12] support, try to form min/max nodes.
5504  if (Subtarget->hasSSE2() &&
5505      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5506    if (Cond.getOpcode() == ISD::SETCC) {
5507      // Get the LHS/RHS of the select.
5508      SDOperand LHS = N->getOperand(1);
5509      SDOperand RHS = N->getOperand(2);
5510      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5511
5512      unsigned Opcode = 0;
5513      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5514        switch (CC) {
5515        default: break;
5516        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5517        case ISD::SETULE:
5518        case ISD::SETLE:
5519          if (!UnsafeFPMath) break;
5520          // FALL THROUGH.
5521        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5522        case ISD::SETLT:
5523          Opcode = X86ISD::FMIN;
5524          break;
5525
5526        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5527        case ISD::SETUGT:
5528        case ISD::SETGT:
5529          if (!UnsafeFPMath) break;
5530          // FALL THROUGH.
5531        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5532        case ISD::SETGE:
5533          Opcode = X86ISD::FMAX;
5534          break;
5535        }
5536      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5537        switch (CC) {
5538        default: break;
5539        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5540        case ISD::SETUGT:
5541        case ISD::SETGT:
5542          if (!UnsafeFPMath) break;
5543          // FALL THROUGH.
5544        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5545        case ISD::SETGE:
5546          Opcode = X86ISD::FMIN;
5547          break;
5548
5549        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5550        case ISD::SETULE:
5551        case ISD::SETLE:
5552          if (!UnsafeFPMath) break;
5553          // FALL THROUGH.
5554        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5555        case ISD::SETLT:
5556          Opcode = X86ISD::FMAX;
5557          break;
5558        }
5559      }
5560
5561      if (Opcode)
5562        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5563    }
5564
5565  }
5566
5567  return SDOperand();
5568}
5569
5570
5571SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5572                                               DAGCombinerInfo &DCI) const {
5573  SelectionDAG &DAG = DCI.DAG;
5574  switch (N->getOpcode()) {
5575  default: break;
5576  case ISD::VECTOR_SHUFFLE:
5577    return PerformShuffleCombine(N, DAG, Subtarget);
5578  case ISD::SELECT:
5579    return PerformSELECTCombine(N, DAG, Subtarget);
5580  }
5581
5582  return SDOperand();
5583}
5584
5585//===----------------------------------------------------------------------===//
5586//                           X86 Inline Assembly Support
5587//===----------------------------------------------------------------------===//
5588
5589/// getConstraintType - Given a constraint letter, return the type of
5590/// constraint it is for this target.
5591X86TargetLowering::ConstraintType
5592X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5593  if (Constraint.size() == 1) {
5594    switch (Constraint[0]) {
5595    case 'A':
5596    case 'r':
5597    case 'R':
5598    case 'l':
5599    case 'q':
5600    case 'Q':
5601    case 'x':
5602    case 'Y':
5603      return C_RegisterClass;
5604    default:
5605      break;
5606    }
5607  }
5608  return TargetLowering::getConstraintType(Constraint);
5609}
5610
5611/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5612/// vector.  If it is invalid, don't add anything to Ops.
5613void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5614                                                     char Constraint,
5615                                                     std::vector<SDOperand>&Ops,
5616                                                     SelectionDAG &DAG) {
5617  SDOperand Result(0, 0);
5618
5619  switch (Constraint) {
5620  default: break;
5621  case 'I':
5622    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5623      if (C->getValue() <= 31) {
5624        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5625        break;
5626      }
5627    }
5628    return;
5629  case 'N':
5630    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5631      if (C->getValue() <= 255) {
5632        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5633        break;
5634      }
5635    }
5636    return;
5637  case 'i': {
5638    // Literal immediates are always ok.
5639    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5640      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5641      break;
5642    }
5643
5644    // If we are in non-pic codegen mode, we allow the address of a global (with
5645    // an optional displacement) to be used with 'i'.
5646    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5647    int64_t Offset = 0;
5648
5649    // Match either (GA) or (GA+C)
5650    if (GA) {
5651      Offset = GA->getOffset();
5652    } else if (Op.getOpcode() == ISD::ADD) {
5653      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5654      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5655      if (C && GA) {
5656        Offset = GA->getOffset()+C->getValue();
5657      } else {
5658        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5659        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5660        if (C && GA)
5661          Offset = GA->getOffset()+C->getValue();
5662        else
5663          C = 0, GA = 0;
5664      }
5665    }
5666
5667    if (GA) {
5668      // If addressing this global requires a load (e.g. in PIC mode), we can't
5669      // match.
5670      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5671                                         false))
5672        return;
5673
5674      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5675                                      Offset);
5676      Result = Op;
5677      break;
5678    }
5679
5680    // Otherwise, not valid for this mode.
5681    return;
5682  }
5683  }
5684
5685  if (Result.Val) {
5686    Ops.push_back(Result);
5687    return;
5688  }
5689  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5690}
5691
5692std::vector<unsigned> X86TargetLowering::
5693getRegClassForInlineAsmConstraint(const std::string &Constraint,
5694                                  MVT::ValueType VT) const {
5695  if (Constraint.size() == 1) {
5696    // FIXME: not handling fp-stack yet!
5697    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5698    default: break;  // Unknown constraint letter
5699    case 'A':   // EAX/EDX
5700      if (VT == MVT::i32 || VT == MVT::i64)
5701        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5702      break;
5703    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5704    case 'Q':   // Q_REGS
5705      if (VT == MVT::i32)
5706        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5707      else if (VT == MVT::i16)
5708        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5709      else if (VT == MVT::i8)
5710        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5711        break;
5712    }
5713  }
5714
5715  return std::vector<unsigned>();
5716}
5717
5718std::pair<unsigned, const TargetRegisterClass*>
5719X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5720                                                MVT::ValueType VT) const {
5721  // First, see if this is a constraint that directly corresponds to an LLVM
5722  // register class.
5723  if (Constraint.size() == 1) {
5724    // GCC Constraint Letters
5725    switch (Constraint[0]) {
5726    default: break;
5727    case 'r':   // GENERAL_REGS
5728    case 'R':   // LEGACY_REGS
5729    case 'l':   // INDEX_REGS
5730      if (VT == MVT::i64 && Subtarget->is64Bit())
5731        return std::make_pair(0U, X86::GR64RegisterClass);
5732      if (VT == MVT::i32)
5733        return std::make_pair(0U, X86::GR32RegisterClass);
5734      else if (VT == MVT::i16)
5735        return std::make_pair(0U, X86::GR16RegisterClass);
5736      else if (VT == MVT::i8)
5737        return std::make_pair(0U, X86::GR8RegisterClass);
5738      break;
5739    case 'y':   // MMX_REGS if MMX allowed.
5740      if (!Subtarget->hasMMX()) break;
5741      return std::make_pair(0U, X86::VR64RegisterClass);
5742      break;
5743    case 'Y':   // SSE_REGS if SSE2 allowed
5744      if (!Subtarget->hasSSE2()) break;
5745      // FALL THROUGH.
5746    case 'x':   // SSE_REGS if SSE1 allowed
5747      if (!Subtarget->hasSSE1()) break;
5748
5749      switch (VT) {
5750      default: break;
5751      // Scalar SSE types.
5752      case MVT::f32:
5753      case MVT::i32:
5754        return std::make_pair(0U, X86::FR32RegisterClass);
5755      case MVT::f64:
5756      case MVT::i64:
5757        return std::make_pair(0U, X86::FR64RegisterClass);
5758      // Vector types.
5759      case MVT::v16i8:
5760      case MVT::v8i16:
5761      case MVT::v4i32:
5762      case MVT::v2i64:
5763      case MVT::v4f32:
5764      case MVT::v2f64:
5765        return std::make_pair(0U, X86::VR128RegisterClass);
5766      }
5767      break;
5768    }
5769  }
5770
5771  // Use the default implementation in TargetLowering to convert the register
5772  // constraint into a member of a register class.
5773  std::pair<unsigned, const TargetRegisterClass*> Res;
5774  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5775
5776  // Not found as a standard register?
5777  if (Res.second == 0) {
5778    // GCC calls "st(0)" just plain "st".
5779    if (StringsEqualNoCase("{st}", Constraint)) {
5780      Res.first = X86::ST0;
5781      Res.second = X86::RFP80RegisterClass;
5782    }
5783
5784    return Res;
5785  }
5786
5787  // Otherwise, check to see if this is a register class of the wrong value
5788  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5789  // turn into {ax},{dx}.
5790  if (Res.second->hasType(VT))
5791    return Res;   // Correct type already, nothing to do.
5792
5793  // All of the single-register GCC register classes map their values onto
5794  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5795  // really want an 8-bit or 32-bit register, map to the appropriate register
5796  // class and return the appropriate register.
5797  if (Res.second != X86::GR16RegisterClass)
5798    return Res;
5799
5800  if (VT == MVT::i8) {
5801    unsigned DestReg = 0;
5802    switch (Res.first) {
5803    default: break;
5804    case X86::AX: DestReg = X86::AL; break;
5805    case X86::DX: DestReg = X86::DL; break;
5806    case X86::CX: DestReg = X86::CL; break;
5807    case X86::BX: DestReg = X86::BL; break;
5808    }
5809    if (DestReg) {
5810      Res.first = DestReg;
5811      Res.second = Res.second = X86::GR8RegisterClass;
5812    }
5813  } else if (VT == MVT::i32) {
5814    unsigned DestReg = 0;
5815    switch (Res.first) {
5816    default: break;
5817    case X86::AX: DestReg = X86::EAX; break;
5818    case X86::DX: DestReg = X86::EDX; break;
5819    case X86::CX: DestReg = X86::ECX; break;
5820    case X86::BX: DestReg = X86::EBX; break;
5821    case X86::SI: DestReg = X86::ESI; break;
5822    case X86::DI: DestReg = X86::EDI; break;
5823    case X86::BP: DestReg = X86::EBP; break;
5824    case X86::SP: DestReg = X86::ESP; break;
5825    }
5826    if (DestReg) {
5827      Res.first = DestReg;
5828      Res.second = Res.second = X86::GR32RegisterClass;
5829    }
5830  } else if (VT == MVT::i64) {
5831    unsigned DestReg = 0;
5832    switch (Res.first) {
5833    default: break;
5834    case X86::AX: DestReg = X86::RAX; break;
5835    case X86::DX: DestReg = X86::RDX; break;
5836    case X86::CX: DestReg = X86::RCX; break;
5837    case X86::BX: DestReg = X86::RBX; break;
5838    case X86::SI: DestReg = X86::RSI; break;
5839    case X86::DI: DestReg = X86::RDI; break;
5840    case X86::BP: DestReg = X86::RBP; break;
5841    case X86::SP: DestReg = X86::RSP; break;
5842    }
5843    if (DestReg) {
5844      Res.first = DestReg;
5845      Res.second = Res.second = X86::GR64RegisterClass;
5846    }
5847  }
5848
5849  return Res;
5850}
5851