X86ISelLowering.cpp revision 9eac20ac88b82d39aaac9838631f268f3ef69d2c
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getTargetData();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
186    // Setup Windows compiler runtime calls.
187    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
188    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
189    setLibcallName(RTLIB::SREM_I64, "_allrem");
190    setLibcallName(RTLIB::UREM_I64, "_aullrem");
191    setLibcallName(RTLIB::MUL_I64, "_allmul");
192    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
195    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
196    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
197
198    // The _ftol2 runtime function has an unusual calling conv, which
199    // is modeled by a special pseudo-instruction.
200    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
202    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
203    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
204  }
205
206  if (Subtarget->isTargetDarwin()) {
207    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
208    setUseUnderscoreSetJmp(false);
209    setUseUnderscoreLongJmp(false);
210  } else if (Subtarget->isTargetMingw()) {
211    // MS runtime is weird: it exports _setjmp, but longjmp!
212    setUseUnderscoreSetJmp(true);
213    setUseUnderscoreLongJmp(false);
214  } else {
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(true);
217  }
218
219  // Set up the register classes.
220  addRegisterClass(MVT::i8, &X86::GR8RegClass);
221  addRegisterClass(MVT::i16, &X86::GR16RegClass);
222  addRegisterClass(MVT::i32, &X86::GR32RegClass);
223  if (Subtarget->is64Bit())
224    addRegisterClass(MVT::i64, &X86::GR64RegClass);
225
226  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
227
228  // We don't accept any truncstore of integer registers.
229  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
230  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
233  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
234  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
235
236  // SETOEQ and SETUNE require checking two conditions.
237  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
238  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
239  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
243
244  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
245  // operation.
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
247  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
248  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
249
250  if (Subtarget->is64Bit()) {
251    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
252    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
253  } else if (!TM.Options.UseSoftFloat) {
254    // We have an algorithm for SSE2->double, and we turn this into a
255    // 64-bit FILD followed by conditional FADD for other targets.
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257    // We have an algorithm for SSE2, and we turn this into a 64-bit
258    // FILD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
260  }
261
262  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
263  // this operation.
264  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
265  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
266
267  if (!TM.Options.UseSoftFloat) {
268    // SSE has no i16 to fp conversion, only i32
269    if (X86ScalarSSEf32) {
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
271      // f32 and f64 cases are Legal, f80 case is not
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
273    } else {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    }
277  } else {
278    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
279    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
280  }
281
282  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
283  // are Legal, f80 is custom lowered.
284  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
285  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
286
287  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
288  // this operation.
289  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
290  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
291
292  if (X86ScalarSSEf32) {
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
294    // f32 and f64 cases are Legal, f80 case is not
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
296  } else {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  }
300
301  // Handle FP_TO_UINT by promoting the destination to a larger signed
302  // conversion.
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
304  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
305  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
306
307  if (Subtarget->is64Bit()) {
308    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
309    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
310  } else if (!TM.Options.UseSoftFloat) {
311    // Since AVX is a superset of SSE3, only check for SSE here.
312    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
313      // Expand FP_TO_UINT into a select.
314      // FIXME: We would like to use a Custom expander here eventually to do
315      // the optimal thing for SSE vs. the default expansion in the legalizer.
316      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
317    else
318      // With SSE3 we can use fisttpll to convert to a signed i64; without
319      // SSE, we're stuck with a fistpll.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
321  }
322
323  if (isTargetFTOL()) {
324    // Use the _ftol2 runtime function, which has a pseudo-instruction
325    // to handle its weird calling convention.
326    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  // Promote the i8 variants and force them on up to i32 which has a shorter
382  // encoding.
383  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
385  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
386  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
387  if (Subtarget->hasBMI()) {
388    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
389    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
390    if (Subtarget->is64Bit())
391      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
392  } else {
393    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
394    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
397  }
398
399  if (Subtarget->hasLZCNT()) {
400    // When promoting the i8 variants, force them to i32 for a shorter
401    // encoding.
402    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
405    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
408    if (Subtarget->is64Bit())
409      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
410  } else {
411    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
412    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
413    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
417    if (Subtarget->is64Bit()) {
418      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
419      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
420    }
421  }
422
423  if (Subtarget->hasPOPCNT()) {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
425  } else {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
427    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
428    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
429    if (Subtarget->is64Bit())
430      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
431  }
432
433  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
434  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
435
436  // These should be promoted to a larger select which is supported.
437  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
438  // X86 wants to expand cmov itself.
439  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
440  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
451  if (Subtarget->is64Bit()) {
452    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
453    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
454  }
455  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
456
457  // Darwin ABI issue.
458  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
459  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
460  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
461  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
462  if (Subtarget->is64Bit())
463    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
464  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
465  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
466  if (Subtarget->is64Bit()) {
467    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
468    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
469    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
470    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
471    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
472  }
473  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
474  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
475  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
476  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
479    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
480    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
481  }
482
483  if (Subtarget->hasSSE1())
484    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
485
486  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
487  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
488
489  // On X86 and X86-64, atomic operations are lowered to locked instructions.
490  // Locked instructions, in turn, have implicit fence semantics (all memory
491  // operations are flushed before issuing the locked instruction, and they
492  // are not buffered), so we can fold away the common pattern of
493  // fence-atomic-fence.
494  setShouldFoldAtomicFences(true);
495
496  // Expand certain atomics
497  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
498    MVT VT = IntVTs[i];
499    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
501    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
502  }
503
504  if (!Subtarget->is64Bit()) {
505    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  if (Subtarget->hasCmpxchg16b()) {
516    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
517  }
518
519  // FIXME - use subtarget debug flags
520  if (!Subtarget->isTargetDarwin() &&
521      !Subtarget->isTargetELF() &&
522      !Subtarget->isTargetCygMing()) {
523    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
524  }
525
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
528  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
529  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
530  if (Subtarget->is64Bit()) {
531    setExceptionPointerRegister(X86::RAX);
532    setExceptionSelectorRegister(X86::RDX);
533  } else {
534    setExceptionPointerRegister(X86::EAX);
535    setExceptionSelectorRegister(X86::EDX);
536  }
537  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
538  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
539
540  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
541  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
542
543  setOperationAction(ISD::TRAP, MVT::Other, Legal);
544
545  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
546  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
547  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
548  if (Subtarget->is64Bit()) {
549    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
550    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
551  } else {
552    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
553    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
554  }
555
556  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
557  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
558
559  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Custom);
562  else if (TM.Options.EnableSegmentedStacks)
563    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
564                       MVT::i64 : MVT::i32, Custom);
565  else
566    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
567                       MVT::i64 : MVT::i32, Expand);
568
569  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
570    // f32 and f64 use SSE.
571    // Set up the FP register classes.
572    addRegisterClass(MVT::f32, &X86::FR32RegClass);
573    addRegisterClass(MVT::f64, &X86::FR64RegClass);
574
575    // Use ANDPD to simulate FABS.
576    setOperationAction(ISD::FABS , MVT::f64, Custom);
577    setOperationAction(ISD::FABS , MVT::f32, Custom);
578
579    // Use XORP to simulate FNEG.
580    setOperationAction(ISD::FNEG , MVT::f64, Custom);
581    setOperationAction(ISD::FNEG , MVT::f32, Custom);
582
583    // Use ANDPD and ORPD to simulate FCOPYSIGN.
584    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
585    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
586
587    // Lower this to FGETSIGNx86 plus an AND.
588    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
589    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
590
591    // We don't support sin/cos/fmod
592    setOperationAction(ISD::FSIN , MVT::f64, Expand);
593    setOperationAction(ISD::FCOS , MVT::f64, Expand);
594    setOperationAction(ISD::FSIN , MVT::f32, Expand);
595    setOperationAction(ISD::FCOS , MVT::f32, Expand);
596
597    // Expand FP immediates into loads from the stack, except for the special
598    // cases we handle.
599    addLegalFPImmediate(APFloat(+0.0)); // xorpd
600    addLegalFPImmediate(APFloat(+0.0f)); // xorps
601  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
602    // Use SSE for f32, x87 for f64.
603    // Set up the FP register classes.
604    addRegisterClass(MVT::f32, &X86::FR32RegClass);
605    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
606
607    // Use ANDPS to simulate FABS.
608    setOperationAction(ISD::FABS , MVT::f32, Custom);
609
610    // Use XORP to simulate FNEG.
611    setOperationAction(ISD::FNEG , MVT::f32, Custom);
612
613    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
614
615    // Use ANDPS and ORPS to simulate FCOPYSIGN.
616    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
617    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
618
619    // We don't support sin/cos/fmod
620    setOperationAction(ISD::FSIN , MVT::f32, Expand);
621    setOperationAction(ISD::FCOS , MVT::f32, Expand);
622
623    // Special cases we handle for FP constants.
624    addLegalFPImmediate(APFloat(+0.0f)); // xorps
625    addLegalFPImmediate(APFloat(+0.0)); // FLD0
626    addLegalFPImmediate(APFloat(+1.0)); // FLD1
627    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
628    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
629
630    if (!TM.Options.UnsafeFPMath) {
631      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
632      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
633    }
634  } else if (!TM.Options.UseSoftFloat) {
635    // f32 and f64 in x87.
636    // Set up the FP register classes.
637    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
638    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
639
640    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
641    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
644
645    if (!TM.Options.UnsafeFPMath) {
646      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
647      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
648    }
649    addLegalFPImmediate(APFloat(+0.0)); // FLD0
650    addLegalFPImmediate(APFloat(+1.0)); // FLD1
651    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
652    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
653    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
654    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
655    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
656    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
657  }
658
659  // We don't support FMA.
660  setOperationAction(ISD::FMA, MVT::f64, Expand);
661  setOperationAction(ISD::FMA, MVT::f32, Expand);
662
663  // Long double always uses X87.
664  if (!TM.Options.UseSoftFloat) {
665    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
666    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
667    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
668    {
669      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
670      addLegalFPImmediate(TmpFlt);  // FLD0
671      TmpFlt.changeSign();
672      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
673
674      bool ignored;
675      APFloat TmpFlt2(+1.0);
676      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
677                      &ignored);
678      addLegalFPImmediate(TmpFlt2);  // FLD1
679      TmpFlt2.changeSign();
680      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
681    }
682
683    if (!TM.Options.UnsafeFPMath) {
684      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
685      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
686    }
687
688    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
689    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
690    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
691    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
692    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
693    setOperationAction(ISD::FMA, MVT::f80, Expand);
694  }
695
696  // Always use a library call for pow.
697  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
698  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
699  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
700
701  setOperationAction(ISD::FLOG, MVT::f80, Expand);
702  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
703  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
704  setOperationAction(ISD::FEXP, MVT::f80, Expand);
705  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
706
707  // First set operation action for all vector types to either promote
708  // (for widening) or expand (for scalarization). Then we will selectively
709  // turn on ones that can be effectively codegen'd.
710  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
711           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
712    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
729    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
730    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
765    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
770    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
771             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
772      setTruncStoreAction((MVT::SimpleValueType)VT,
773                          (MVT::SimpleValueType)InnerVT, Expand);
774    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
775    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
776    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
777  }
778
779  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
780  // with -msoft-float, disable use of MMX as well.
781  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
782    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
783    // No operations on x86mmx supported, everything uses intrinsics.
784  }
785
786  // MMX-sized vectors (other than x86mmx) are expected to be expanded
787  // into smaller operations.
788  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
789  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
790  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
791  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
792  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
793  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
794  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
795  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
796  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
797  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
798  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
799  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
800  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
801  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
802  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
803  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
806  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
807  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
808  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
810  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
811  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
812  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
815  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
816  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
817
818  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
819    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
820
821    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
824    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
825    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
826    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
827    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
828    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
829    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
830    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
831    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
832    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
833  }
834
835  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
836    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
837
838    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
839    // registers cannot be used even for integer operations.
840    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
841    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
842    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
843    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
844
845    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
846    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
847    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
848    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
849    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
850    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
851    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
852    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
853    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
854    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
855    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
858    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
859    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
860    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
861
862    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
864    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
865    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
866
867    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
868    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
871    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
872
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
875    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
876    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
877    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
878
879    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
880    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
881      EVT VT = (MVT::SimpleValueType)i;
882      // Do not attempt to custom lower non-power-of-2 vectors
883      if (!isPowerOf2_32(VT.getVectorNumElements()))
884        continue;
885      // Do not attempt to custom lower non-128-bit vectors
886      if (!VT.is128BitVector())
887        continue;
888      setOperationAction(ISD::BUILD_VECTOR,
889                         VT.getSimpleVT().SimpleTy, Custom);
890      setOperationAction(ISD::VECTOR_SHUFFLE,
891                         VT.getSimpleVT().SimpleTy, Custom);
892      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
893                         VT.getSimpleVT().SimpleTy, Custom);
894    }
895
896    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
897    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
898    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
899    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
900    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
901    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
902
903    if (Subtarget->is64Bit()) {
904      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
906    }
907
908    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
909    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
910      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
911      EVT VT = SVT;
912
913      // Do not attempt to promote non-128-bit vectors
914      if (!VT.is128BitVector())
915        continue;
916
917      setOperationAction(ISD::AND,    SVT, Promote);
918      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
919      setOperationAction(ISD::OR,     SVT, Promote);
920      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
921      setOperationAction(ISD::XOR,    SVT, Promote);
922      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
923      setOperationAction(ISD::LOAD,   SVT, Promote);
924      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
925      setOperationAction(ISD::SELECT, SVT, Promote);
926      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
927    }
928
929    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
930
931    // Custom lower v2i64 and v2f64 selects.
932    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
933    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
934    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
935    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
936
937    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
938    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
939  }
940
941  if (Subtarget->hasSSE41()) {
942    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
943    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
944    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
945    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
946    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
947    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
948    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
949    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
950    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
951    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
952
953    // FIXME: Do we need to handle scalar-to-vector here?
954    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
955
956    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
959    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
960    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
961
962    // i8 and i16 vectors are custom , because the source register and source
963    // source memory operand types are not the same width.  f32 vectors are
964    // custom since the immediate controlling the insert encodes additional
965    // information.
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
968    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
969    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
970
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
973    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
974    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
975
976    // FIXME: these should be Legal but thats only for the case where
977    // the index is constant.  For now custom expand to deal with that.
978    if (Subtarget->is64Bit()) {
979      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
980      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
981    }
982  }
983
984  if (Subtarget->hasSSE2()) {
985    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
990
991    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
992    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
993
994    if (Subtarget->hasAVX2()) {
995      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
999      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1000
1001      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1002    } else {
1003      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1007      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1008
1009      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1010    }
1011  }
1012
1013  if (Subtarget->hasSSE42())
1014    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1015
1016  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1017    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1018    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1019    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1020    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1021    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1022    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1023
1024    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1026    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1027
1028    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1033    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1034
1035    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1038    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1039    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1040    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1041
1042    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1043    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1044    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1045
1046    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1047    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1048
1049    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1050    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1051
1052    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1057    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1058    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1059
1060    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1061    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1062    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1063
1064    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1066    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1067    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1068
1069    if (Subtarget->hasFMA()) {
1070      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1071      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1072      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1073      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1074      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1075      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1076    }
1077
1078    if (Subtarget->hasAVX2()) {
1079      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1085      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1087      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1088
1089      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1090      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1091      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1092      // Don't lower v32i8 because there is no 128-bit byte mul
1093
1094      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1095
1096      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1097      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1098
1099      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1100      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1101
1102      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1103    } else {
1104      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1112      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1113
1114      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1116      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1117      // Don't lower v32i8 because there is no 128-bit byte mul
1118
1119      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1120      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1121
1122      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1123      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1124
1125      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1126    }
1127
1128    // Custom lower several nodes for 256-bit types.
1129    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1130             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1131      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1132      EVT VT = SVT;
1133
1134      // Extract subvector is special because the value type
1135      // (result) is 128-bit but the source is 256-bit wide.
1136      if (VT.is128BitVector())
1137        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1138
1139      // Do not attempt to custom lower other non-256-bit vectors
1140      if (!VT.is256BitVector())
1141        continue;
1142
1143      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1144      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1145      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1146      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1147      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1148      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1149      setOperationAction(ISD::CONCAT_VECTORS,     SVT, Custom);
1150    }
1151
1152    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1153    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1154      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1155      EVT VT = SVT;
1156
1157      // Do not attempt to promote non-256-bit vectors
1158      if (!VT.is256BitVector())
1159        continue;
1160
1161      setOperationAction(ISD::AND,    SVT, Promote);
1162      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1163      setOperationAction(ISD::OR,     SVT, Promote);
1164      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1165      setOperationAction(ISD::XOR,    SVT, Promote);
1166      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1167      setOperationAction(ISD::LOAD,   SVT, Promote);
1168      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1169      setOperationAction(ISD::SELECT, SVT, Promote);
1170      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1171    }
1172  }
1173
1174  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1175  // of this type with custom code.
1176  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1177           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1178    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1179                       Custom);
1180  }
1181
1182  // We want to custom lower some of our intrinsics.
1183  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1184  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1185
1186
1187  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1188  // handle type legalization for these operations here.
1189  //
1190  // FIXME: We really should do custom legalization for addition and
1191  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1192  // than generic legalization for 64-bit multiplication-with-overflow, though.
1193  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1194    // Add/Sub/Mul with overflow operations are custom lowered.
1195    MVT VT = IntVTs[i];
1196    setOperationAction(ISD::SADDO, VT, Custom);
1197    setOperationAction(ISD::UADDO, VT, Custom);
1198    setOperationAction(ISD::SSUBO, VT, Custom);
1199    setOperationAction(ISD::USUBO, VT, Custom);
1200    setOperationAction(ISD::SMULO, VT, Custom);
1201    setOperationAction(ISD::UMULO, VT, Custom);
1202  }
1203
1204  // There are no 8-bit 3-address imul/mul instructions
1205  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1206  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1207
1208  if (!Subtarget->is64Bit()) {
1209    // These libcalls are not available in 32-bit.
1210    setLibcallName(RTLIB::SHL_I128, 0);
1211    setLibcallName(RTLIB::SRL_I128, 0);
1212    setLibcallName(RTLIB::SRA_I128, 0);
1213  }
1214
1215  // We have target-specific dag combine patterns for the following nodes:
1216  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1217  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1218  setTargetDAGCombine(ISD::VSELECT);
1219  setTargetDAGCombine(ISD::SELECT);
1220  setTargetDAGCombine(ISD::SHL);
1221  setTargetDAGCombine(ISD::SRA);
1222  setTargetDAGCombine(ISD::SRL);
1223  setTargetDAGCombine(ISD::OR);
1224  setTargetDAGCombine(ISD::AND);
1225  setTargetDAGCombine(ISD::ADD);
1226  setTargetDAGCombine(ISD::FADD);
1227  setTargetDAGCombine(ISD::FSUB);
1228  setTargetDAGCombine(ISD::FMA);
1229  setTargetDAGCombine(ISD::SUB);
1230  setTargetDAGCombine(ISD::LOAD);
1231  setTargetDAGCombine(ISD::STORE);
1232  setTargetDAGCombine(ISD::ZERO_EXTEND);
1233  setTargetDAGCombine(ISD::ANY_EXTEND);
1234  setTargetDAGCombine(ISD::SIGN_EXTEND);
1235  setTargetDAGCombine(ISD::TRUNCATE);
1236  setTargetDAGCombine(ISD::UINT_TO_FP);
1237  setTargetDAGCombine(ISD::SINT_TO_FP);
1238  setTargetDAGCombine(ISD::SETCC);
1239  setTargetDAGCombine(ISD::FP_TO_SINT);
1240  if (Subtarget->is64Bit())
1241    setTargetDAGCombine(ISD::MUL);
1242  setTargetDAGCombine(ISD::XOR);
1243
1244  computeRegisterProperties();
1245
1246  // On Darwin, -Os means optimize for size without hurting performance,
1247  // do not reduce the limit.
1248  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1249  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1250  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1251  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1252  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1253  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1254  setPrefLoopAlignment(4); // 2^4 bytes.
1255  benefitFromCodePlacementOpt = true;
1256
1257  // Predictable cmov don't hurt on atom because it's in-order.
1258  predictableSelectIsExpensive = !Subtarget->isAtom();
1259
1260  setPrefFunctionAlignment(4); // 2^4 bytes.
1261}
1262
1263
1264EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1265  if (!VT.isVector()) return MVT::i8;
1266  return VT.changeVectorElementTypeToInteger();
1267}
1268
1269
1270/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1271/// the desired ByVal argument alignment.
1272static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1273  if (MaxAlign == 16)
1274    return;
1275  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1276    if (VTy->getBitWidth() == 128)
1277      MaxAlign = 16;
1278  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1279    unsigned EltAlign = 0;
1280    getMaxByValAlign(ATy->getElementType(), EltAlign);
1281    if (EltAlign > MaxAlign)
1282      MaxAlign = EltAlign;
1283  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1284    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1285      unsigned EltAlign = 0;
1286      getMaxByValAlign(STy->getElementType(i), EltAlign);
1287      if (EltAlign > MaxAlign)
1288        MaxAlign = EltAlign;
1289      if (MaxAlign == 16)
1290        break;
1291    }
1292  }
1293}
1294
1295/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1296/// function arguments in the caller parameter area. For X86, aggregates
1297/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1298/// are at 4-byte boundaries.
1299unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1300  if (Subtarget->is64Bit()) {
1301    // Max of 8 and alignment of type.
1302    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1303    if (TyAlign > 8)
1304      return TyAlign;
1305    return 8;
1306  }
1307
1308  unsigned Align = 4;
1309  if (Subtarget->hasSSE1())
1310    getMaxByValAlign(Ty, Align);
1311  return Align;
1312}
1313
1314/// getOptimalMemOpType - Returns the target specific optimal type for load
1315/// and store operations as a result of memset, memcpy, and memmove
1316/// lowering. If DstAlign is zero that means it's safe to destination
1317/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1318/// means there isn't a need to check it against alignment requirement,
1319/// probably because the source does not need to be loaded. If
1320/// 'IsZeroVal' is true, that means it's safe to return a
1321/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1322/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1323/// constant so it does not need to be loaded.
1324/// It returns EVT::Other if the type should be determined using generic
1325/// target-independent logic.
1326EVT
1327X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1328                                       unsigned DstAlign, unsigned SrcAlign,
1329                                       bool IsZeroVal,
1330                                       bool MemcpyStrSrc,
1331                                       MachineFunction &MF) const {
1332  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1333  // linux.  This is because the stack realignment code can't handle certain
1334  // cases like PR2962.  This should be removed when PR2962 is fixed.
1335  const Function *F = MF.getFunction();
1336  if (IsZeroVal &&
1337      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1338    if (Size >= 16 &&
1339        (Subtarget->isUnalignedMemAccessFast() ||
1340         ((DstAlign == 0 || DstAlign >= 16) &&
1341          (SrcAlign == 0 || SrcAlign >= 16))) &&
1342        Subtarget->getStackAlignment() >= 16) {
1343      if (Subtarget->getStackAlignment() >= 32) {
1344        if (Subtarget->hasAVX2())
1345          return MVT::v8i32;
1346        if (Subtarget->hasAVX())
1347          return MVT::v8f32;
1348      }
1349      if (Subtarget->hasSSE2())
1350        return MVT::v4i32;
1351      if (Subtarget->hasSSE1())
1352        return MVT::v4f32;
1353    } else if (!MemcpyStrSrc && Size >= 8 &&
1354               !Subtarget->is64Bit() &&
1355               Subtarget->getStackAlignment() >= 8 &&
1356               Subtarget->hasSSE2()) {
1357      // Do not use f64 to lower memcpy if source is string constant. It's
1358      // better to use i32 to avoid the loads.
1359      return MVT::f64;
1360    }
1361  }
1362  if (Subtarget->is64Bit() && Size >= 8)
1363    return MVT::i64;
1364  return MVT::i32;
1365}
1366
1367/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1368/// current function.  The returned value is a member of the
1369/// MachineJumpTableInfo::JTEntryKind enum.
1370unsigned X86TargetLowering::getJumpTableEncoding() const {
1371  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1372  // symbol.
1373  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1374      Subtarget->isPICStyleGOT())
1375    return MachineJumpTableInfo::EK_Custom32;
1376
1377  // Otherwise, use the normal jump table encoding heuristics.
1378  return TargetLowering::getJumpTableEncoding();
1379}
1380
1381const MCExpr *
1382X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1383                                             const MachineBasicBlock *MBB,
1384                                             unsigned uid,MCContext &Ctx) const{
1385  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1386         Subtarget->isPICStyleGOT());
1387  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1388  // entries.
1389  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1390                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1391}
1392
1393/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1394/// jumptable.
1395SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1396                                                    SelectionDAG &DAG) const {
1397  if (!Subtarget->is64Bit())
1398    // This doesn't have DebugLoc associated with it, but is not really the
1399    // same as a Register.
1400    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1401  return Table;
1402}
1403
1404/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1405/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1406/// MCExpr.
1407const MCExpr *X86TargetLowering::
1408getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1409                             MCContext &Ctx) const {
1410  // X86-64 uses RIP relative addressing based on the jump table label.
1411  if (Subtarget->isPICStyleRIPRel())
1412    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1413
1414  // Otherwise, the reference is relative to the PIC base.
1415  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1416}
1417
1418// FIXME: Why this routine is here? Move to RegInfo!
1419std::pair<const TargetRegisterClass*, uint8_t>
1420X86TargetLowering::findRepresentativeClass(EVT VT) const{
1421  const TargetRegisterClass *RRC = 0;
1422  uint8_t Cost = 1;
1423  switch (VT.getSimpleVT().SimpleTy) {
1424  default:
1425    return TargetLowering::findRepresentativeClass(VT);
1426  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1427    RRC = Subtarget->is64Bit() ?
1428      (const TargetRegisterClass*)&X86::GR64RegClass :
1429      (const TargetRegisterClass*)&X86::GR32RegClass;
1430    break;
1431  case MVT::x86mmx:
1432    RRC = &X86::VR64RegClass;
1433    break;
1434  case MVT::f32: case MVT::f64:
1435  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1436  case MVT::v4f32: case MVT::v2f64:
1437  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1438  case MVT::v4f64:
1439    RRC = &X86::VR128RegClass;
1440    break;
1441  }
1442  return std::make_pair(RRC, Cost);
1443}
1444
1445bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1446                                               unsigned &Offset) const {
1447  if (!Subtarget->isTargetLinux())
1448    return false;
1449
1450  if (Subtarget->is64Bit()) {
1451    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1452    Offset = 0x28;
1453    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1454      AddressSpace = 256;
1455    else
1456      AddressSpace = 257;
1457  } else {
1458    // %gs:0x14 on i386
1459    Offset = 0x14;
1460    AddressSpace = 256;
1461  }
1462  return true;
1463}
1464
1465
1466//===----------------------------------------------------------------------===//
1467//               Return Value Calling Convention Implementation
1468//===----------------------------------------------------------------------===//
1469
1470#include "X86GenCallingConv.inc"
1471
1472bool
1473X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1474                                  MachineFunction &MF, bool isVarArg,
1475                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1476                        LLVMContext &Context) const {
1477  SmallVector<CCValAssign, 16> RVLocs;
1478  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1479                 RVLocs, Context);
1480  return CCInfo.CheckReturn(Outs, RetCC_X86);
1481}
1482
1483SDValue
1484X86TargetLowering::LowerReturn(SDValue Chain,
1485                               CallingConv::ID CallConv, bool isVarArg,
1486                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1487                               const SmallVectorImpl<SDValue> &OutVals,
1488                               DebugLoc dl, SelectionDAG &DAG) const {
1489  MachineFunction &MF = DAG.getMachineFunction();
1490  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1491
1492  SmallVector<CCValAssign, 16> RVLocs;
1493  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1494                 RVLocs, *DAG.getContext());
1495  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1496
1497  // Add the regs to the liveout set for the function.
1498  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1499  for (unsigned i = 0; i != RVLocs.size(); ++i)
1500    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1501      MRI.addLiveOut(RVLocs[i].getLocReg());
1502
1503  SDValue Flag;
1504
1505  SmallVector<SDValue, 6> RetOps;
1506  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1507  // Operand #1 = Bytes To Pop
1508  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1509                   MVT::i16));
1510
1511  // Copy the result values into the output registers.
1512  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1513    CCValAssign &VA = RVLocs[i];
1514    assert(VA.isRegLoc() && "Can only return in registers!");
1515    SDValue ValToCopy = OutVals[i];
1516    EVT ValVT = ValToCopy.getValueType();
1517
1518    // Promote values to the appropriate types
1519    if (VA.getLocInfo() == CCValAssign::SExt)
1520      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1521    else if (VA.getLocInfo() == CCValAssign::ZExt)
1522      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1523    else if (VA.getLocInfo() == CCValAssign::AExt)
1524      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1525    else if (VA.getLocInfo() == CCValAssign::BCvt)
1526      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1527
1528    // If this is x86-64, and we disabled SSE, we can't return FP values,
1529    // or SSE or MMX vectors.
1530    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1531         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1532          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1533      report_fatal_error("SSE register return with SSE disabled");
1534    }
1535    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1536    // llvm-gcc has never done it right and no one has noticed, so this
1537    // should be OK for now.
1538    if (ValVT == MVT::f64 &&
1539        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1540      report_fatal_error("SSE2 register return with SSE2 disabled");
1541
1542    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1543    // the RET instruction and handled by the FP Stackifier.
1544    if (VA.getLocReg() == X86::ST0 ||
1545        VA.getLocReg() == X86::ST1) {
1546      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1547      // change the value to the FP stack register class.
1548      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1549        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1550      RetOps.push_back(ValToCopy);
1551      // Don't emit a copytoreg.
1552      continue;
1553    }
1554
1555    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1556    // which is returned in RAX / RDX.
1557    if (Subtarget->is64Bit()) {
1558      if (ValVT == MVT::x86mmx) {
1559        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1560          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1561          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1562                                  ValToCopy);
1563          // If we don't have SSE2 available, convert to v4f32 so the generated
1564          // register is legal.
1565          if (!Subtarget->hasSSE2())
1566            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1567        }
1568      }
1569    }
1570
1571    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1572    Flag = Chain.getValue(1);
1573  }
1574
1575  // The x86-64 ABI for returning structs by value requires that we copy
1576  // the sret argument into %rax for the return. We saved the argument into
1577  // a virtual register in the entry block, so now we copy the value out
1578  // and into %rax.
1579  if (Subtarget->is64Bit() &&
1580      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1581    MachineFunction &MF = DAG.getMachineFunction();
1582    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1583    unsigned Reg = FuncInfo->getSRetReturnReg();
1584    assert(Reg &&
1585           "SRetReturnReg should have been set in LowerFormalArguments().");
1586    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1587
1588    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1589    Flag = Chain.getValue(1);
1590
1591    // RAX now acts like a return value.
1592    MRI.addLiveOut(X86::RAX);
1593  }
1594
1595  RetOps[0] = Chain;  // Update chain.
1596
1597  // Add the flag if we have it.
1598  if (Flag.getNode())
1599    RetOps.push_back(Flag);
1600
1601  return DAG.getNode(X86ISD::RET_FLAG, dl,
1602                     MVT::Other, &RetOps[0], RetOps.size());
1603}
1604
1605bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1606  if (N->getNumValues() != 1)
1607    return false;
1608  if (!N->hasNUsesOfValue(1, 0))
1609    return false;
1610
1611  SDValue TCChain = Chain;
1612  SDNode *Copy = *N->use_begin();
1613  if (Copy->getOpcode() == ISD::CopyToReg) {
1614    // If the copy has a glue operand, we conservatively assume it isn't safe to
1615    // perform a tail call.
1616    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1617      return false;
1618    TCChain = Copy->getOperand(0);
1619  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1620    return false;
1621
1622  bool HasRet = false;
1623  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1624       UI != UE; ++UI) {
1625    if (UI->getOpcode() != X86ISD::RET_FLAG)
1626      return false;
1627    HasRet = true;
1628  }
1629
1630  if (!HasRet)
1631    return false;
1632
1633  Chain = TCChain;
1634  return true;
1635}
1636
1637EVT
1638X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1639                                            ISD::NodeType ExtendKind) const {
1640  MVT ReturnMVT;
1641  // TODO: Is this also valid on 32-bit?
1642  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1643    ReturnMVT = MVT::i8;
1644  else
1645    ReturnMVT = MVT::i32;
1646
1647  EVT MinVT = getRegisterType(Context, ReturnMVT);
1648  return VT.bitsLT(MinVT) ? MinVT : VT;
1649}
1650
1651/// LowerCallResult - Lower the result values of a call into the
1652/// appropriate copies out of appropriate physical registers.
1653///
1654SDValue
1655X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1656                                   CallingConv::ID CallConv, bool isVarArg,
1657                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1658                                   DebugLoc dl, SelectionDAG &DAG,
1659                                   SmallVectorImpl<SDValue> &InVals) const {
1660
1661  // Assign locations to each value returned by this call.
1662  SmallVector<CCValAssign, 16> RVLocs;
1663  bool Is64Bit = Subtarget->is64Bit();
1664  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1665                 getTargetMachine(), RVLocs, *DAG.getContext());
1666  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1667
1668  // Copy all of the result registers out of their specified physreg.
1669  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1670    CCValAssign &VA = RVLocs[i];
1671    EVT CopyVT = VA.getValVT();
1672
1673    // If this is x86-64, and we disabled SSE, we can't return FP values
1674    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1675        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1676      report_fatal_error("SSE register return with SSE disabled");
1677    }
1678
1679    SDValue Val;
1680
1681    // If this is a call to a function that returns an fp value on the floating
1682    // point stack, we must guarantee the value is popped from the stack, so
1683    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1684    // if the return value is not used. We use the FpPOP_RETVAL instruction
1685    // instead.
1686    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1687      // If we prefer to use the value in xmm registers, copy it out as f80 and
1688      // use a truncate to move it from fp stack reg to xmm reg.
1689      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1690      SDValue Ops[] = { Chain, InFlag };
1691      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1692                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1693      Val = Chain.getValue(0);
1694
1695      // Round the f80 to the right size, which also moves it to the appropriate
1696      // xmm register.
1697      if (CopyVT != VA.getValVT())
1698        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1699                          // This truncation won't change the value.
1700                          DAG.getIntPtrConstant(1));
1701    } else {
1702      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1703                                 CopyVT, InFlag).getValue(1);
1704      Val = Chain.getValue(0);
1705    }
1706    InFlag = Chain.getValue(2);
1707    InVals.push_back(Val);
1708  }
1709
1710  return Chain;
1711}
1712
1713
1714//===----------------------------------------------------------------------===//
1715//                C & StdCall & Fast Calling Convention implementation
1716//===----------------------------------------------------------------------===//
1717//  StdCall calling convention seems to be standard for many Windows' API
1718//  routines and around. It differs from C calling convention just a little:
1719//  callee should clean up the stack, not caller. Symbols should be also
1720//  decorated in some fancy way :) It doesn't support any vector arguments.
1721//  For info on fast calling convention see Fast Calling Convention (tail call)
1722//  implementation LowerX86_32FastCCCallTo.
1723
1724/// CallIsStructReturn - Determines whether a call uses struct return
1725/// semantics.
1726enum StructReturnType {
1727  NotStructReturn,
1728  RegStructReturn,
1729  StackStructReturn
1730};
1731static StructReturnType
1732callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1733  if (Outs.empty())
1734    return NotStructReturn;
1735
1736  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1737  if (!Flags.isSRet())
1738    return NotStructReturn;
1739  if (Flags.isInReg())
1740    return RegStructReturn;
1741  return StackStructReturn;
1742}
1743
1744/// ArgsAreStructReturn - Determines whether a function uses struct
1745/// return semantics.
1746static StructReturnType
1747argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1748  if (Ins.empty())
1749    return NotStructReturn;
1750
1751  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1752  if (!Flags.isSRet())
1753    return NotStructReturn;
1754  if (Flags.isInReg())
1755    return RegStructReturn;
1756  return StackStructReturn;
1757}
1758
1759/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1760/// by "Src" to address "Dst" with size and alignment information specified by
1761/// the specific parameter attribute. The copy will be passed as a byval
1762/// function parameter.
1763static SDValue
1764CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1765                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1766                          DebugLoc dl) {
1767  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1768
1769  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1770                       /*isVolatile*/false, /*AlwaysInline=*/true,
1771                       MachinePointerInfo(), MachinePointerInfo());
1772}
1773
1774/// IsTailCallConvention - Return true if the calling convention is one that
1775/// supports tail call optimization.
1776static bool IsTailCallConvention(CallingConv::ID CC) {
1777  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1778}
1779
1780bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1781  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1782    return false;
1783
1784  CallSite CS(CI);
1785  CallingConv::ID CalleeCC = CS.getCallingConv();
1786  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1787    return false;
1788
1789  return true;
1790}
1791
1792/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1793/// a tailcall target by changing its ABI.
1794static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1795                                   bool GuaranteedTailCallOpt) {
1796  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1797}
1798
1799SDValue
1800X86TargetLowering::LowerMemArgument(SDValue Chain,
1801                                    CallingConv::ID CallConv,
1802                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1803                                    DebugLoc dl, SelectionDAG &DAG,
1804                                    const CCValAssign &VA,
1805                                    MachineFrameInfo *MFI,
1806                                    unsigned i) const {
1807  // Create the nodes corresponding to a load from this parameter slot.
1808  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1809  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1810                              getTargetMachine().Options.GuaranteedTailCallOpt);
1811  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1812  EVT ValVT;
1813
1814  // If value is passed by pointer we have address passed instead of the value
1815  // itself.
1816  if (VA.getLocInfo() == CCValAssign::Indirect)
1817    ValVT = VA.getLocVT();
1818  else
1819    ValVT = VA.getValVT();
1820
1821  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1822  // changed with more analysis.
1823  // In case of tail call optimization mark all arguments mutable. Since they
1824  // could be overwritten by lowering of arguments in case of a tail call.
1825  if (Flags.isByVal()) {
1826    unsigned Bytes = Flags.getByValSize();
1827    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1828    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1829    return DAG.getFrameIndex(FI, getPointerTy());
1830  } else {
1831    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1832                                    VA.getLocMemOffset(), isImmutable);
1833    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1834    return DAG.getLoad(ValVT, dl, Chain, FIN,
1835                       MachinePointerInfo::getFixedStack(FI),
1836                       false, false, false, 0);
1837  }
1838}
1839
1840SDValue
1841X86TargetLowering::LowerFormalArguments(SDValue Chain,
1842                                        CallingConv::ID CallConv,
1843                                        bool isVarArg,
1844                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1845                                        DebugLoc dl,
1846                                        SelectionDAG &DAG,
1847                                        SmallVectorImpl<SDValue> &InVals)
1848                                          const {
1849  MachineFunction &MF = DAG.getMachineFunction();
1850  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1851
1852  const Function* Fn = MF.getFunction();
1853  if (Fn->hasExternalLinkage() &&
1854      Subtarget->isTargetCygMing() &&
1855      Fn->getName() == "main")
1856    FuncInfo->setForceFramePointer(true);
1857
1858  MachineFrameInfo *MFI = MF.getFrameInfo();
1859  bool Is64Bit = Subtarget->is64Bit();
1860  bool IsWindows = Subtarget->isTargetWindows();
1861  bool IsWin64 = Subtarget->isTargetWin64();
1862
1863  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1864         "Var args not supported with calling convention fastcc or ghc");
1865
1866  // Assign locations to all of the incoming arguments.
1867  SmallVector<CCValAssign, 16> ArgLocs;
1868  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1869                 ArgLocs, *DAG.getContext());
1870
1871  // Allocate shadow area for Win64
1872  if (IsWin64) {
1873    CCInfo.AllocateStack(32, 8);
1874  }
1875
1876  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1877
1878  unsigned LastVal = ~0U;
1879  SDValue ArgValue;
1880  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1881    CCValAssign &VA = ArgLocs[i];
1882    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1883    // places.
1884    assert(VA.getValNo() != LastVal &&
1885           "Don't support value assigned to multiple locs yet");
1886    (void)LastVal;
1887    LastVal = VA.getValNo();
1888
1889    if (VA.isRegLoc()) {
1890      EVT RegVT = VA.getLocVT();
1891      const TargetRegisterClass *RC;
1892      if (RegVT == MVT::i32)
1893        RC = &X86::GR32RegClass;
1894      else if (Is64Bit && RegVT == MVT::i64)
1895        RC = &X86::GR64RegClass;
1896      else if (RegVT == MVT::f32)
1897        RC = &X86::FR32RegClass;
1898      else if (RegVT == MVT::f64)
1899        RC = &X86::FR64RegClass;
1900      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1901        RC = &X86::VR256RegClass;
1902      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1903        RC = &X86::VR128RegClass;
1904      else if (RegVT == MVT::x86mmx)
1905        RC = &X86::VR64RegClass;
1906      else
1907        llvm_unreachable("Unknown argument type!");
1908
1909      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1910      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1911
1912      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1913      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1914      // right size.
1915      if (VA.getLocInfo() == CCValAssign::SExt)
1916        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1917                               DAG.getValueType(VA.getValVT()));
1918      else if (VA.getLocInfo() == CCValAssign::ZExt)
1919        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1920                               DAG.getValueType(VA.getValVT()));
1921      else if (VA.getLocInfo() == CCValAssign::BCvt)
1922        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1923
1924      if (VA.isExtInLoc()) {
1925        // Handle MMX values passed in XMM regs.
1926        if (RegVT.isVector()) {
1927          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1928                                 ArgValue);
1929        } else
1930          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1931      }
1932    } else {
1933      assert(VA.isMemLoc());
1934      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1935    }
1936
1937    // If value is passed via pointer - do a load.
1938    if (VA.getLocInfo() == CCValAssign::Indirect)
1939      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1940                             MachinePointerInfo(), false, false, false, 0);
1941
1942    InVals.push_back(ArgValue);
1943  }
1944
1945  // The x86-64 ABI for returning structs by value requires that we copy
1946  // the sret argument into %rax for the return. Save the argument into
1947  // a virtual register so that we can access it from the return points.
1948  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1949    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1950    unsigned Reg = FuncInfo->getSRetReturnReg();
1951    if (!Reg) {
1952      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1953      FuncInfo->setSRetReturnReg(Reg);
1954    }
1955    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1956    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1957  }
1958
1959  unsigned StackSize = CCInfo.getNextStackOffset();
1960  // Align stack specially for tail calls.
1961  if (FuncIsMadeTailCallSafe(CallConv,
1962                             MF.getTarget().Options.GuaranteedTailCallOpt))
1963    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1964
1965  // If the function takes variable number of arguments, make a frame index for
1966  // the start of the first vararg value... for expansion of llvm.va_start.
1967  if (isVarArg) {
1968    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1969                    CallConv != CallingConv::X86_ThisCall)) {
1970      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1971    }
1972    if (Is64Bit) {
1973      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1974
1975      // FIXME: We should really autogenerate these arrays
1976      static const uint16_t GPR64ArgRegsWin64[] = {
1977        X86::RCX, X86::RDX, X86::R8,  X86::R9
1978      };
1979      static const uint16_t GPR64ArgRegs64Bit[] = {
1980        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1981      };
1982      static const uint16_t XMMArgRegs64Bit[] = {
1983        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1984        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1985      };
1986      const uint16_t *GPR64ArgRegs;
1987      unsigned NumXMMRegs = 0;
1988
1989      if (IsWin64) {
1990        // The XMM registers which might contain var arg parameters are shadowed
1991        // in their paired GPR.  So we only need to save the GPR to their home
1992        // slots.
1993        TotalNumIntRegs = 4;
1994        GPR64ArgRegs = GPR64ArgRegsWin64;
1995      } else {
1996        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1997        GPR64ArgRegs = GPR64ArgRegs64Bit;
1998
1999        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2000                                                TotalNumXMMRegs);
2001      }
2002      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2003                                                       TotalNumIntRegs);
2004
2005      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
2006      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2007             "SSE register cannot be used when SSE is disabled!");
2008      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2009               NoImplicitFloatOps) &&
2010             "SSE register cannot be used when SSE is disabled!");
2011      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2012          !Subtarget->hasSSE1())
2013        // Kernel mode asks for SSE to be disabled, so don't push them
2014        // on the stack.
2015        TotalNumXMMRegs = 0;
2016
2017      if (IsWin64) {
2018        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2019        // Get to the caller-allocated home save location.  Add 8 to account
2020        // for the return address.
2021        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2022        FuncInfo->setRegSaveFrameIndex(
2023          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2024        // Fixup to set vararg frame on shadow area (4 x i64).
2025        if (NumIntRegs < 4)
2026          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2027      } else {
2028        // For X86-64, if there are vararg parameters that are passed via
2029        // registers, then we must store them to their spots on the stack so
2030        // they may be loaded by deferencing the result of va_next.
2031        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2032        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2033        FuncInfo->setRegSaveFrameIndex(
2034          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2035                               false));
2036      }
2037
2038      // Store the integer parameter registers.
2039      SmallVector<SDValue, 8> MemOps;
2040      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2041                                        getPointerTy());
2042      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2043      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2044        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2045                                  DAG.getIntPtrConstant(Offset));
2046        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2047                                     &X86::GR64RegClass);
2048        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2049        SDValue Store =
2050          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2051                       MachinePointerInfo::getFixedStack(
2052                         FuncInfo->getRegSaveFrameIndex(), Offset),
2053                       false, false, 0);
2054        MemOps.push_back(Store);
2055        Offset += 8;
2056      }
2057
2058      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2059        // Now store the XMM (fp + vector) parameter registers.
2060        SmallVector<SDValue, 11> SaveXMMOps;
2061        SaveXMMOps.push_back(Chain);
2062
2063        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2064        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2065        SaveXMMOps.push_back(ALVal);
2066
2067        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2068                               FuncInfo->getRegSaveFrameIndex()));
2069        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2070                               FuncInfo->getVarArgsFPOffset()));
2071
2072        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2073          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2074                                       &X86::VR128RegClass);
2075          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2076          SaveXMMOps.push_back(Val);
2077        }
2078        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2079                                     MVT::Other,
2080                                     &SaveXMMOps[0], SaveXMMOps.size()));
2081      }
2082
2083      if (!MemOps.empty())
2084        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2085                            &MemOps[0], MemOps.size());
2086    }
2087  }
2088
2089  // Some CCs need callee pop.
2090  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2091                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2092    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2093  } else {
2094    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2095    // If this is an sret function, the return should pop the hidden pointer.
2096    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2097        argsAreStructReturn(Ins) == StackStructReturn)
2098      FuncInfo->setBytesToPopOnReturn(4);
2099  }
2100
2101  if (!Is64Bit) {
2102    // RegSaveFrameIndex is X86-64 only.
2103    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2104    if (CallConv == CallingConv::X86_FastCall ||
2105        CallConv == CallingConv::X86_ThisCall)
2106      // fastcc functions can't have varargs.
2107      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2108  }
2109
2110  FuncInfo->setArgumentStackSize(StackSize);
2111
2112  return Chain;
2113}
2114
2115SDValue
2116X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2117                                    SDValue StackPtr, SDValue Arg,
2118                                    DebugLoc dl, SelectionDAG &DAG,
2119                                    const CCValAssign &VA,
2120                                    ISD::ArgFlagsTy Flags) const {
2121  unsigned LocMemOffset = VA.getLocMemOffset();
2122  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2123  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2124  if (Flags.isByVal())
2125    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2126
2127  return DAG.getStore(Chain, dl, Arg, PtrOff,
2128                      MachinePointerInfo::getStack(LocMemOffset),
2129                      false, false, 0);
2130}
2131
2132/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2133/// optimization is performed and it is required.
2134SDValue
2135X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2136                                           SDValue &OutRetAddr, SDValue Chain,
2137                                           bool IsTailCall, bool Is64Bit,
2138                                           int FPDiff, DebugLoc dl) const {
2139  // Adjust the Return address stack slot.
2140  EVT VT = getPointerTy();
2141  OutRetAddr = getReturnAddressFrameIndex(DAG);
2142
2143  // Load the "old" Return address.
2144  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2145                           false, false, false, 0);
2146  return SDValue(OutRetAddr.getNode(), 1);
2147}
2148
2149/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2150/// optimization is performed and it is required (FPDiff!=0).
2151static SDValue
2152EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2153                         SDValue Chain, SDValue RetAddrFrIdx,
2154                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2155  // Store the return address to the appropriate stack slot.
2156  if (!FPDiff) return Chain;
2157  // Calculate the new stack slot for the return address.
2158  int SlotSize = Is64Bit ? 8 : 4;
2159  int NewReturnAddrFI =
2160    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2161  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2162  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2163  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2164                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2165                       false, false, 0);
2166  return Chain;
2167}
2168
2169SDValue
2170X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2171                             SmallVectorImpl<SDValue> &InVals) const {
2172  SelectionDAG &DAG                     = CLI.DAG;
2173  DebugLoc &dl                          = CLI.DL;
2174  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2175  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2176  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2177  SDValue Chain                         = CLI.Chain;
2178  SDValue Callee                        = CLI.Callee;
2179  CallingConv::ID CallConv              = CLI.CallConv;
2180  bool &isTailCall                      = CLI.IsTailCall;
2181  bool isVarArg                         = CLI.IsVarArg;
2182
2183  MachineFunction &MF = DAG.getMachineFunction();
2184  bool Is64Bit        = Subtarget->is64Bit();
2185  bool IsWin64        = Subtarget->isTargetWin64();
2186  bool IsWindows      = Subtarget->isTargetWindows();
2187  StructReturnType SR = callIsStructReturn(Outs);
2188  bool IsSibcall      = false;
2189
2190  if (MF.getTarget().Options.DisableTailCalls)
2191    isTailCall = false;
2192
2193  if (isTailCall) {
2194    // Check if it's really possible to do a tail call.
2195    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2196                    isVarArg, SR != NotStructReturn,
2197                    MF.getFunction()->hasStructRetAttr(),
2198                    Outs, OutVals, Ins, DAG);
2199
2200    // Sibcalls are automatically detected tailcalls which do not require
2201    // ABI changes.
2202    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2203      IsSibcall = true;
2204
2205    if (isTailCall)
2206      ++NumTailCalls;
2207  }
2208
2209  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2210         "Var args not supported with calling convention fastcc or ghc");
2211
2212  // Analyze operands of the call, assigning locations to each operand.
2213  SmallVector<CCValAssign, 16> ArgLocs;
2214  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2215                 ArgLocs, *DAG.getContext());
2216
2217  // Allocate shadow area for Win64
2218  if (IsWin64) {
2219    CCInfo.AllocateStack(32, 8);
2220  }
2221
2222  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2223
2224  // Get a count of how many bytes are to be pushed on the stack.
2225  unsigned NumBytes = CCInfo.getNextStackOffset();
2226  if (IsSibcall)
2227    // This is a sibcall. The memory operands are available in caller's
2228    // own caller's stack.
2229    NumBytes = 0;
2230  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2231           IsTailCallConvention(CallConv))
2232    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2233
2234  int FPDiff = 0;
2235  if (isTailCall && !IsSibcall) {
2236    // Lower arguments at fp - stackoffset + fpdiff.
2237    unsigned NumBytesCallerPushed =
2238      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2239    FPDiff = NumBytesCallerPushed - NumBytes;
2240
2241    // Set the delta of movement of the returnaddr stackslot.
2242    // But only set if delta is greater than previous delta.
2243    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2244      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2245  }
2246
2247  if (!IsSibcall)
2248    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2249
2250  SDValue RetAddrFrIdx;
2251  // Load return address for tail calls.
2252  if (isTailCall && FPDiff)
2253    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2254                                    Is64Bit, FPDiff, dl);
2255
2256  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2257  SmallVector<SDValue, 8> MemOpChains;
2258  SDValue StackPtr;
2259
2260  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2261  // of tail call optimization arguments are handle later.
2262  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2263    CCValAssign &VA = ArgLocs[i];
2264    EVT RegVT = VA.getLocVT();
2265    SDValue Arg = OutVals[i];
2266    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2267    bool isByVal = Flags.isByVal();
2268
2269    // Promote the value if needed.
2270    switch (VA.getLocInfo()) {
2271    default: llvm_unreachable("Unknown loc info!");
2272    case CCValAssign::Full: break;
2273    case CCValAssign::SExt:
2274      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2275      break;
2276    case CCValAssign::ZExt:
2277      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2278      break;
2279    case CCValAssign::AExt:
2280      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2281        // Special case: passing MMX values in XMM registers.
2282        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2283        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2284        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2285      } else
2286        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2287      break;
2288    case CCValAssign::BCvt:
2289      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2290      break;
2291    case CCValAssign::Indirect: {
2292      // Store the argument.
2293      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2294      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2295      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2296                           MachinePointerInfo::getFixedStack(FI),
2297                           false, false, 0);
2298      Arg = SpillSlot;
2299      break;
2300    }
2301    }
2302
2303    if (VA.isRegLoc()) {
2304      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2305      if (isVarArg && IsWin64) {
2306        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2307        // shadow reg if callee is a varargs function.
2308        unsigned ShadowReg = 0;
2309        switch (VA.getLocReg()) {
2310        case X86::XMM0: ShadowReg = X86::RCX; break;
2311        case X86::XMM1: ShadowReg = X86::RDX; break;
2312        case X86::XMM2: ShadowReg = X86::R8; break;
2313        case X86::XMM3: ShadowReg = X86::R9; break;
2314        }
2315        if (ShadowReg)
2316          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2317      }
2318    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2319      assert(VA.isMemLoc());
2320      if (StackPtr.getNode() == 0)
2321        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2322      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2323                                             dl, DAG, VA, Flags));
2324    }
2325  }
2326
2327  if (!MemOpChains.empty())
2328    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2329                        &MemOpChains[0], MemOpChains.size());
2330
2331  if (Subtarget->isPICStyleGOT()) {
2332    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2333    // GOT pointer.
2334    if (!isTailCall) {
2335      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2336               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2337    } else {
2338      // If we are tail calling and generating PIC/GOT style code load the
2339      // address of the callee into ECX. The value in ecx is used as target of
2340      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2341      // for tail calls on PIC/GOT architectures. Normally we would just put the
2342      // address of GOT into ebx and then call target@PLT. But for tail calls
2343      // ebx would be restored (since ebx is callee saved) before jumping to the
2344      // target@PLT.
2345
2346      // Note: The actual moving to ECX is done further down.
2347      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2348      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2349          !G->getGlobal()->hasProtectedVisibility())
2350        Callee = LowerGlobalAddress(Callee, DAG);
2351      else if (isa<ExternalSymbolSDNode>(Callee))
2352        Callee = LowerExternalSymbol(Callee, DAG);
2353    }
2354  }
2355
2356  if (Is64Bit && isVarArg && !IsWin64) {
2357    // From AMD64 ABI document:
2358    // For calls that may call functions that use varargs or stdargs
2359    // (prototype-less calls or calls to functions containing ellipsis (...) in
2360    // the declaration) %al is used as hidden argument to specify the number
2361    // of SSE registers used. The contents of %al do not need to match exactly
2362    // the number of registers, but must be an ubound on the number of SSE
2363    // registers used and is in the range 0 - 8 inclusive.
2364
2365    // Count the number of XMM registers allocated.
2366    static const uint16_t XMMArgRegs[] = {
2367      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2368      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2369    };
2370    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2371    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2372           && "SSE registers cannot be used when SSE is disabled");
2373
2374    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2375                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2376  }
2377
2378  // For tail calls lower the arguments to the 'real' stack slot.
2379  if (isTailCall) {
2380    // Force all the incoming stack arguments to be loaded from the stack
2381    // before any new outgoing arguments are stored to the stack, because the
2382    // outgoing stack slots may alias the incoming argument stack slots, and
2383    // the alias isn't otherwise explicit. This is slightly more conservative
2384    // than necessary, because it means that each store effectively depends
2385    // on every argument instead of just those arguments it would clobber.
2386    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2387
2388    SmallVector<SDValue, 8> MemOpChains2;
2389    SDValue FIN;
2390    int FI = 0;
2391    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2392      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2393        CCValAssign &VA = ArgLocs[i];
2394        if (VA.isRegLoc())
2395          continue;
2396        assert(VA.isMemLoc());
2397        SDValue Arg = OutVals[i];
2398        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2399        // Create frame index.
2400        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2401        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2402        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2403        FIN = DAG.getFrameIndex(FI, getPointerTy());
2404
2405        if (Flags.isByVal()) {
2406          // Copy relative to framepointer.
2407          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2408          if (StackPtr.getNode() == 0)
2409            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2410                                          getPointerTy());
2411          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2412
2413          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2414                                                           ArgChain,
2415                                                           Flags, DAG, dl));
2416        } else {
2417          // Store relative to framepointer.
2418          MemOpChains2.push_back(
2419            DAG.getStore(ArgChain, dl, Arg, FIN,
2420                         MachinePointerInfo::getFixedStack(FI),
2421                         false, false, 0));
2422        }
2423      }
2424    }
2425
2426    if (!MemOpChains2.empty())
2427      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2428                          &MemOpChains2[0], MemOpChains2.size());
2429
2430    // Store the return address to the appropriate stack slot.
2431    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2432                                     FPDiff, dl);
2433  }
2434
2435  // Build a sequence of copy-to-reg nodes chained together with token chain
2436  // and flag operands which copy the outgoing args into registers.
2437  SDValue InFlag;
2438  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2439    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2440                             RegsToPass[i].second, InFlag);
2441    InFlag = Chain.getValue(1);
2442  }
2443
2444  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2445    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2446    // In the 64-bit large code model, we have to make all calls
2447    // through a register, since the call instruction's 32-bit
2448    // pc-relative offset may not be large enough to hold the whole
2449    // address.
2450  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2451    // If the callee is a GlobalAddress node (quite common, every direct call
2452    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2453    // it.
2454
2455    // We should use extra load for direct calls to dllimported functions in
2456    // non-JIT mode.
2457    const GlobalValue *GV = G->getGlobal();
2458    if (!GV->hasDLLImportLinkage()) {
2459      unsigned char OpFlags = 0;
2460      bool ExtraLoad = false;
2461      unsigned WrapperKind = ISD::DELETED_NODE;
2462
2463      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2464      // external symbols most go through the PLT in PIC mode.  If the symbol
2465      // has hidden or protected visibility, or if it is static or local, then
2466      // we don't need to use the PLT - we can directly call it.
2467      if (Subtarget->isTargetELF() &&
2468          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2469          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2470        OpFlags = X86II::MO_PLT;
2471      } else if (Subtarget->isPICStyleStubAny() &&
2472                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2473                 (!Subtarget->getTargetTriple().isMacOSX() ||
2474                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2475        // PC-relative references to external symbols should go through $stub,
2476        // unless we're building with the leopard linker or later, which
2477        // automatically synthesizes these stubs.
2478        OpFlags = X86II::MO_DARWIN_STUB;
2479      } else if (Subtarget->isPICStyleRIPRel() &&
2480                 isa<Function>(GV) &&
2481                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2482        // If the function is marked as non-lazy, generate an indirect call
2483        // which loads from the GOT directly. This avoids runtime overhead
2484        // at the cost of eager binding (and one extra byte of encoding).
2485        OpFlags = X86II::MO_GOTPCREL;
2486        WrapperKind = X86ISD::WrapperRIP;
2487        ExtraLoad = true;
2488      }
2489
2490      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2491                                          G->getOffset(), OpFlags);
2492
2493      // Add a wrapper if needed.
2494      if (WrapperKind != ISD::DELETED_NODE)
2495        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2496      // Add extra indirection if needed.
2497      if (ExtraLoad)
2498        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2499                             MachinePointerInfo::getGOT(),
2500                             false, false, false, 0);
2501    }
2502  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2503    unsigned char OpFlags = 0;
2504
2505    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2506    // external symbols should go through the PLT.
2507    if (Subtarget->isTargetELF() &&
2508        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2509      OpFlags = X86II::MO_PLT;
2510    } else if (Subtarget->isPICStyleStubAny() &&
2511               (!Subtarget->getTargetTriple().isMacOSX() ||
2512                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2513      // PC-relative references to external symbols should go through $stub,
2514      // unless we're building with the leopard linker or later, which
2515      // automatically synthesizes these stubs.
2516      OpFlags = X86II::MO_DARWIN_STUB;
2517    }
2518
2519    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2520                                         OpFlags);
2521  }
2522
2523  // Returns a chain & a flag for retval copy to use.
2524  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2525  SmallVector<SDValue, 8> Ops;
2526
2527  if (!IsSibcall && isTailCall) {
2528    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2529                           DAG.getIntPtrConstant(0, true), InFlag);
2530    InFlag = Chain.getValue(1);
2531  }
2532
2533  Ops.push_back(Chain);
2534  Ops.push_back(Callee);
2535
2536  if (isTailCall)
2537    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2538
2539  // Add argument registers to the end of the list so that they are known live
2540  // into the call.
2541  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2542    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2543                                  RegsToPass[i].second.getValueType()));
2544
2545  // Add a register mask operand representing the call-preserved registers.
2546  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2547  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2548  assert(Mask && "Missing call preserved mask for calling convention");
2549  Ops.push_back(DAG.getRegisterMask(Mask));
2550
2551  if (InFlag.getNode())
2552    Ops.push_back(InFlag);
2553
2554  if (isTailCall) {
2555    // We used to do:
2556    //// If this is the first return lowered for this function, add the regs
2557    //// to the liveout set for the function.
2558    // This isn't right, although it's probably harmless on x86; liveouts
2559    // should be computed from returns not tail calls.  Consider a void
2560    // function making a tail call to a function returning int.
2561    return DAG.getNode(X86ISD::TC_RETURN, dl,
2562                       NodeTys, &Ops[0], Ops.size());
2563  }
2564
2565  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2566  InFlag = Chain.getValue(1);
2567
2568  // Create the CALLSEQ_END node.
2569  unsigned NumBytesForCalleeToPush;
2570  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2571                       getTargetMachine().Options.GuaranteedTailCallOpt))
2572    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2573  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2574           SR == StackStructReturn)
2575    // If this is a call to a struct-return function, the callee
2576    // pops the hidden struct pointer, so we have to push it back.
2577    // This is common for Darwin/X86, Linux & Mingw32 targets.
2578    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2579    NumBytesForCalleeToPush = 4;
2580  else
2581    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2582
2583  // Returns a flag for retval copy to use.
2584  if (!IsSibcall) {
2585    Chain = DAG.getCALLSEQ_END(Chain,
2586                               DAG.getIntPtrConstant(NumBytes, true),
2587                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2588                                                     true),
2589                               InFlag);
2590    InFlag = Chain.getValue(1);
2591  }
2592
2593  // Handle result values, copying them out of physregs into vregs that we
2594  // return.
2595  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2596                         Ins, dl, DAG, InVals);
2597}
2598
2599
2600//===----------------------------------------------------------------------===//
2601//                Fast Calling Convention (tail call) implementation
2602//===----------------------------------------------------------------------===//
2603
2604//  Like std call, callee cleans arguments, convention except that ECX is
2605//  reserved for storing the tail called function address. Only 2 registers are
2606//  free for argument passing (inreg). Tail call optimization is performed
2607//  provided:
2608//                * tailcallopt is enabled
2609//                * caller/callee are fastcc
2610//  On X86_64 architecture with GOT-style position independent code only local
2611//  (within module) calls are supported at the moment.
2612//  To keep the stack aligned according to platform abi the function
2613//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2614//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2615//  If a tail called function callee has more arguments than the caller the
2616//  caller needs to make sure that there is room to move the RETADDR to. This is
2617//  achieved by reserving an area the size of the argument delta right after the
2618//  original REtADDR, but before the saved framepointer or the spilled registers
2619//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2620//  stack layout:
2621//    arg1
2622//    arg2
2623//    RETADDR
2624//    [ new RETADDR
2625//      move area ]
2626//    (possible EBP)
2627//    ESI
2628//    EDI
2629//    local1 ..
2630
2631/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2632/// for a 16 byte align requirement.
2633unsigned
2634X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2635                                               SelectionDAG& DAG) const {
2636  MachineFunction &MF = DAG.getMachineFunction();
2637  const TargetMachine &TM = MF.getTarget();
2638  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2639  unsigned StackAlignment = TFI.getStackAlignment();
2640  uint64_t AlignMask = StackAlignment - 1;
2641  int64_t Offset = StackSize;
2642  uint64_t SlotSize = TD->getPointerSize();
2643  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2644    // Number smaller than 12 so just add the difference.
2645    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2646  } else {
2647    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2648    Offset = ((~AlignMask) & Offset) + StackAlignment +
2649      (StackAlignment-SlotSize);
2650  }
2651  return Offset;
2652}
2653
2654/// MatchingStackOffset - Return true if the given stack call argument is
2655/// already available in the same position (relatively) of the caller's
2656/// incoming argument stack.
2657static
2658bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2659                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2660                         const X86InstrInfo *TII) {
2661  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2662  int FI = INT_MAX;
2663  if (Arg.getOpcode() == ISD::CopyFromReg) {
2664    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2665    if (!TargetRegisterInfo::isVirtualRegister(VR))
2666      return false;
2667    MachineInstr *Def = MRI->getVRegDef(VR);
2668    if (!Def)
2669      return false;
2670    if (!Flags.isByVal()) {
2671      if (!TII->isLoadFromStackSlot(Def, FI))
2672        return false;
2673    } else {
2674      unsigned Opcode = Def->getOpcode();
2675      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2676          Def->getOperand(1).isFI()) {
2677        FI = Def->getOperand(1).getIndex();
2678        Bytes = Flags.getByValSize();
2679      } else
2680        return false;
2681    }
2682  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2683    if (Flags.isByVal())
2684      // ByVal argument is passed in as a pointer but it's now being
2685      // dereferenced. e.g.
2686      // define @foo(%struct.X* %A) {
2687      //   tail call @bar(%struct.X* byval %A)
2688      // }
2689      return false;
2690    SDValue Ptr = Ld->getBasePtr();
2691    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2692    if (!FINode)
2693      return false;
2694    FI = FINode->getIndex();
2695  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2696    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2697    FI = FINode->getIndex();
2698    Bytes = Flags.getByValSize();
2699  } else
2700    return false;
2701
2702  assert(FI != INT_MAX);
2703  if (!MFI->isFixedObjectIndex(FI))
2704    return false;
2705  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2706}
2707
2708/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2709/// for tail call optimization. Targets which want to do tail call
2710/// optimization should implement this function.
2711bool
2712X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2713                                                     CallingConv::ID CalleeCC,
2714                                                     bool isVarArg,
2715                                                     bool isCalleeStructRet,
2716                                                     bool isCallerStructRet,
2717                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2718                                    const SmallVectorImpl<SDValue> &OutVals,
2719                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2720                                                     SelectionDAG& DAG) const {
2721  if (!IsTailCallConvention(CalleeCC) &&
2722      CalleeCC != CallingConv::C)
2723    return false;
2724
2725  // If -tailcallopt is specified, make fastcc functions tail-callable.
2726  const MachineFunction &MF = DAG.getMachineFunction();
2727  const Function *CallerF = DAG.getMachineFunction().getFunction();
2728  CallingConv::ID CallerCC = CallerF->getCallingConv();
2729  bool CCMatch = CallerCC == CalleeCC;
2730
2731  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2732    if (IsTailCallConvention(CalleeCC) && CCMatch)
2733      return true;
2734    return false;
2735  }
2736
2737  // Look for obvious safe cases to perform tail call optimization that do not
2738  // require ABI changes. This is what gcc calls sibcall.
2739
2740  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2741  // emit a special epilogue.
2742  if (RegInfo->needsStackRealignment(MF))
2743    return false;
2744
2745  // Also avoid sibcall optimization if either caller or callee uses struct
2746  // return semantics.
2747  if (isCalleeStructRet || isCallerStructRet)
2748    return false;
2749
2750  // An stdcall caller is expected to clean up its arguments; the callee
2751  // isn't going to do that.
2752  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2753    return false;
2754
2755  // Do not sibcall optimize vararg calls unless all arguments are passed via
2756  // registers.
2757  if (isVarArg && !Outs.empty()) {
2758
2759    // Optimizing for varargs on Win64 is unlikely to be safe without
2760    // additional testing.
2761    if (Subtarget->isTargetWin64())
2762      return false;
2763
2764    SmallVector<CCValAssign, 16> ArgLocs;
2765    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2766                   getTargetMachine(), ArgLocs, *DAG.getContext());
2767
2768    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2769    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2770      if (!ArgLocs[i].isRegLoc())
2771        return false;
2772  }
2773
2774  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2775  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2776  // this into a sibcall.
2777  bool Unused = false;
2778  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2779    if (!Ins[i].Used) {
2780      Unused = true;
2781      break;
2782    }
2783  }
2784  if (Unused) {
2785    SmallVector<CCValAssign, 16> RVLocs;
2786    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2787                   getTargetMachine(), RVLocs, *DAG.getContext());
2788    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2789    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2790      CCValAssign &VA = RVLocs[i];
2791      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2792        return false;
2793    }
2794  }
2795
2796  // If the calling conventions do not match, then we'd better make sure the
2797  // results are returned in the same way as what the caller expects.
2798  if (!CCMatch) {
2799    SmallVector<CCValAssign, 16> RVLocs1;
2800    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2801                    getTargetMachine(), RVLocs1, *DAG.getContext());
2802    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2803
2804    SmallVector<CCValAssign, 16> RVLocs2;
2805    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2806                    getTargetMachine(), RVLocs2, *DAG.getContext());
2807    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2808
2809    if (RVLocs1.size() != RVLocs2.size())
2810      return false;
2811    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2812      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2813        return false;
2814      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2815        return false;
2816      if (RVLocs1[i].isRegLoc()) {
2817        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2818          return false;
2819      } else {
2820        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2821          return false;
2822      }
2823    }
2824  }
2825
2826  // If the callee takes no arguments then go on to check the results of the
2827  // call.
2828  if (!Outs.empty()) {
2829    // Check if stack adjustment is needed. For now, do not do this if any
2830    // argument is passed on the stack.
2831    SmallVector<CCValAssign, 16> ArgLocs;
2832    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2833                   getTargetMachine(), ArgLocs, *DAG.getContext());
2834
2835    // Allocate shadow area for Win64
2836    if (Subtarget->isTargetWin64()) {
2837      CCInfo.AllocateStack(32, 8);
2838    }
2839
2840    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2841    if (CCInfo.getNextStackOffset()) {
2842      MachineFunction &MF = DAG.getMachineFunction();
2843      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2844        return false;
2845
2846      // Check if the arguments are already laid out in the right way as
2847      // the caller's fixed stack objects.
2848      MachineFrameInfo *MFI = MF.getFrameInfo();
2849      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2850      const X86InstrInfo *TII =
2851        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2852      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2853        CCValAssign &VA = ArgLocs[i];
2854        SDValue Arg = OutVals[i];
2855        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2856        if (VA.getLocInfo() == CCValAssign::Indirect)
2857          return false;
2858        if (!VA.isRegLoc()) {
2859          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2860                                   MFI, MRI, TII))
2861            return false;
2862        }
2863      }
2864    }
2865
2866    // If the tailcall address may be in a register, then make sure it's
2867    // possible to register allocate for it. In 32-bit, the call address can
2868    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2869    // callee-saved registers are restored. These happen to be the same
2870    // registers used to pass 'inreg' arguments so watch out for those.
2871    if (!Subtarget->is64Bit() &&
2872        !isa<GlobalAddressSDNode>(Callee) &&
2873        !isa<ExternalSymbolSDNode>(Callee)) {
2874      unsigned NumInRegs = 0;
2875      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2876        CCValAssign &VA = ArgLocs[i];
2877        if (!VA.isRegLoc())
2878          continue;
2879        unsigned Reg = VA.getLocReg();
2880        switch (Reg) {
2881        default: break;
2882        case X86::EAX: case X86::EDX: case X86::ECX:
2883          if (++NumInRegs == 3)
2884            return false;
2885          break;
2886        }
2887      }
2888    }
2889  }
2890
2891  return true;
2892}
2893
2894FastISel *
2895X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2896                                  const TargetLibraryInfo *libInfo) const {
2897  return X86::createFastISel(funcInfo, libInfo);
2898}
2899
2900
2901//===----------------------------------------------------------------------===//
2902//                           Other Lowering Hooks
2903//===----------------------------------------------------------------------===//
2904
2905static bool MayFoldLoad(SDValue Op) {
2906  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2907}
2908
2909static bool MayFoldIntoStore(SDValue Op) {
2910  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2911}
2912
2913static bool isTargetShuffle(unsigned Opcode) {
2914  switch(Opcode) {
2915  default: return false;
2916  case X86ISD::PSHUFD:
2917  case X86ISD::PSHUFHW:
2918  case X86ISD::PSHUFLW:
2919  case X86ISD::SHUFP:
2920  case X86ISD::PALIGN:
2921  case X86ISD::MOVLHPS:
2922  case X86ISD::MOVLHPD:
2923  case X86ISD::MOVHLPS:
2924  case X86ISD::MOVLPS:
2925  case X86ISD::MOVLPD:
2926  case X86ISD::MOVSHDUP:
2927  case X86ISD::MOVSLDUP:
2928  case X86ISD::MOVDDUP:
2929  case X86ISD::MOVSS:
2930  case X86ISD::MOVSD:
2931  case X86ISD::UNPCKL:
2932  case X86ISD::UNPCKH:
2933  case X86ISD::VPERMILP:
2934  case X86ISD::VPERM2X128:
2935  case X86ISD::VPERMI:
2936    return true;
2937  }
2938}
2939
2940static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2941                                    SDValue V1, SelectionDAG &DAG) {
2942  switch(Opc) {
2943  default: llvm_unreachable("Unknown x86 shuffle node");
2944  case X86ISD::MOVSHDUP:
2945  case X86ISD::MOVSLDUP:
2946  case X86ISD::MOVDDUP:
2947    return DAG.getNode(Opc, dl, VT, V1);
2948  }
2949}
2950
2951static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2952                                    SDValue V1, unsigned TargetMask,
2953                                    SelectionDAG &DAG) {
2954  switch(Opc) {
2955  default: llvm_unreachable("Unknown x86 shuffle node");
2956  case X86ISD::PSHUFD:
2957  case X86ISD::PSHUFHW:
2958  case X86ISD::PSHUFLW:
2959  case X86ISD::VPERMILP:
2960  case X86ISD::VPERMI:
2961    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2962  }
2963}
2964
2965static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2966                                    SDValue V1, SDValue V2, unsigned TargetMask,
2967                                    SelectionDAG &DAG) {
2968  switch(Opc) {
2969  default: llvm_unreachable("Unknown x86 shuffle node");
2970  case X86ISD::PALIGN:
2971  case X86ISD::SHUFP:
2972  case X86ISD::VPERM2X128:
2973    return DAG.getNode(Opc, dl, VT, V1, V2,
2974                       DAG.getConstant(TargetMask, MVT::i8));
2975  }
2976}
2977
2978static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2979                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2980  switch(Opc) {
2981  default: llvm_unreachable("Unknown x86 shuffle node");
2982  case X86ISD::MOVLHPS:
2983  case X86ISD::MOVLHPD:
2984  case X86ISD::MOVHLPS:
2985  case X86ISD::MOVLPS:
2986  case X86ISD::MOVLPD:
2987  case X86ISD::MOVSS:
2988  case X86ISD::MOVSD:
2989  case X86ISD::UNPCKL:
2990  case X86ISD::UNPCKH:
2991    return DAG.getNode(Opc, dl, VT, V1, V2);
2992  }
2993}
2994
2995SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2996  MachineFunction &MF = DAG.getMachineFunction();
2997  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2998  int ReturnAddrIndex = FuncInfo->getRAIndex();
2999
3000  if (ReturnAddrIndex == 0) {
3001    // Set up a frame object for the return address.
3002    uint64_t SlotSize = TD->getPointerSize();
3003    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3004                                                           false);
3005    FuncInfo->setRAIndex(ReturnAddrIndex);
3006  }
3007
3008  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3009}
3010
3011
3012bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3013                                       bool hasSymbolicDisplacement) {
3014  // Offset should fit into 32 bit immediate field.
3015  if (!isInt<32>(Offset))
3016    return false;
3017
3018  // If we don't have a symbolic displacement - we don't have any extra
3019  // restrictions.
3020  if (!hasSymbolicDisplacement)
3021    return true;
3022
3023  // FIXME: Some tweaks might be needed for medium code model.
3024  if (M != CodeModel::Small && M != CodeModel::Kernel)
3025    return false;
3026
3027  // For small code model we assume that latest object is 16MB before end of 31
3028  // bits boundary. We may also accept pretty large negative constants knowing
3029  // that all objects are in the positive half of address space.
3030  if (M == CodeModel::Small && Offset < 16*1024*1024)
3031    return true;
3032
3033  // For kernel code model we know that all object resist in the negative half
3034  // of 32bits address space. We may not accept negative offsets, since they may
3035  // be just off and we may accept pretty large positive ones.
3036  if (M == CodeModel::Kernel && Offset > 0)
3037    return true;
3038
3039  return false;
3040}
3041
3042/// isCalleePop - Determines whether the callee is required to pop its
3043/// own arguments. Callee pop is necessary to support tail calls.
3044bool X86::isCalleePop(CallingConv::ID CallingConv,
3045                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3046  if (IsVarArg)
3047    return false;
3048
3049  switch (CallingConv) {
3050  default:
3051    return false;
3052  case CallingConv::X86_StdCall:
3053    return !is64Bit;
3054  case CallingConv::X86_FastCall:
3055    return !is64Bit;
3056  case CallingConv::X86_ThisCall:
3057    return !is64Bit;
3058  case CallingConv::Fast:
3059    return TailCallOpt;
3060  case CallingConv::GHC:
3061    return TailCallOpt;
3062  }
3063}
3064
3065/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3066/// specific condition code, returning the condition code and the LHS/RHS of the
3067/// comparison to make.
3068static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3069                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3070  if (!isFP) {
3071    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3072      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3073        // X > -1   -> X == 0, jump !sign.
3074        RHS = DAG.getConstant(0, RHS.getValueType());
3075        return X86::COND_NS;
3076      }
3077      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3078        // X < 0   -> X == 0, jump on sign.
3079        return X86::COND_S;
3080      }
3081      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3082        // X < 1   -> X <= 0
3083        RHS = DAG.getConstant(0, RHS.getValueType());
3084        return X86::COND_LE;
3085      }
3086    }
3087
3088    switch (SetCCOpcode) {
3089    default: llvm_unreachable("Invalid integer condition!");
3090    case ISD::SETEQ:  return X86::COND_E;
3091    case ISD::SETGT:  return X86::COND_G;
3092    case ISD::SETGE:  return X86::COND_GE;
3093    case ISD::SETLT:  return X86::COND_L;
3094    case ISD::SETLE:  return X86::COND_LE;
3095    case ISD::SETNE:  return X86::COND_NE;
3096    case ISD::SETULT: return X86::COND_B;
3097    case ISD::SETUGT: return X86::COND_A;
3098    case ISD::SETULE: return X86::COND_BE;
3099    case ISD::SETUGE: return X86::COND_AE;
3100    }
3101  }
3102
3103  // First determine if it is required or is profitable to flip the operands.
3104
3105  // If LHS is a foldable load, but RHS is not, flip the condition.
3106  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3107      !ISD::isNON_EXTLoad(RHS.getNode())) {
3108    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3109    std::swap(LHS, RHS);
3110  }
3111
3112  switch (SetCCOpcode) {
3113  default: break;
3114  case ISD::SETOLT:
3115  case ISD::SETOLE:
3116  case ISD::SETUGT:
3117  case ISD::SETUGE:
3118    std::swap(LHS, RHS);
3119    break;
3120  }
3121
3122  // On a floating point condition, the flags are set as follows:
3123  // ZF  PF  CF   op
3124  //  0 | 0 | 0 | X > Y
3125  //  0 | 0 | 1 | X < Y
3126  //  1 | 0 | 0 | X == Y
3127  //  1 | 1 | 1 | unordered
3128  switch (SetCCOpcode) {
3129  default: llvm_unreachable("Condcode should be pre-legalized away");
3130  case ISD::SETUEQ:
3131  case ISD::SETEQ:   return X86::COND_E;
3132  case ISD::SETOLT:              // flipped
3133  case ISD::SETOGT:
3134  case ISD::SETGT:   return X86::COND_A;
3135  case ISD::SETOLE:              // flipped
3136  case ISD::SETOGE:
3137  case ISD::SETGE:   return X86::COND_AE;
3138  case ISD::SETUGT:              // flipped
3139  case ISD::SETULT:
3140  case ISD::SETLT:   return X86::COND_B;
3141  case ISD::SETUGE:              // flipped
3142  case ISD::SETULE:
3143  case ISD::SETLE:   return X86::COND_BE;
3144  case ISD::SETONE:
3145  case ISD::SETNE:   return X86::COND_NE;
3146  case ISD::SETUO:   return X86::COND_P;
3147  case ISD::SETO:    return X86::COND_NP;
3148  case ISD::SETOEQ:
3149  case ISD::SETUNE:  return X86::COND_INVALID;
3150  }
3151}
3152
3153/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3154/// code. Current x86 isa includes the following FP cmov instructions:
3155/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3156static bool hasFPCMov(unsigned X86CC) {
3157  switch (X86CC) {
3158  default:
3159    return false;
3160  case X86::COND_B:
3161  case X86::COND_BE:
3162  case X86::COND_E:
3163  case X86::COND_P:
3164  case X86::COND_A:
3165  case X86::COND_AE:
3166  case X86::COND_NE:
3167  case X86::COND_NP:
3168    return true;
3169  }
3170}
3171
3172/// isFPImmLegal - Returns true if the target can instruction select the
3173/// specified FP immediate natively. If false, the legalizer will
3174/// materialize the FP immediate as a load from a constant pool.
3175bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3176  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3177    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3178      return true;
3179  }
3180  return false;
3181}
3182
3183/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3184/// the specified range (L, H].
3185static bool isUndefOrInRange(int Val, int Low, int Hi) {
3186  return (Val < 0) || (Val >= Low && Val < Hi);
3187}
3188
3189/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3190/// specified value.
3191static bool isUndefOrEqual(int Val, int CmpVal) {
3192  if (Val < 0 || Val == CmpVal)
3193    return true;
3194  return false;
3195}
3196
3197/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3198/// from position Pos and ending in Pos+Size, falls within the specified
3199/// sequential range (L, L+Pos]. or is undef.
3200static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3201                                       unsigned Pos, unsigned Size, int Low) {
3202  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3203    if (!isUndefOrEqual(Mask[i], Low))
3204      return false;
3205  return true;
3206}
3207
3208/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3209/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3210/// the second operand.
3211static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3212  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3213    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3214  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3215    return (Mask[0] < 2 && Mask[1] < 2);
3216  return false;
3217}
3218
3219/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3220/// is suitable for input to PSHUFHW.
3221static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3222  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3223    return false;
3224
3225  // Lower quadword copied in order or undef.
3226  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3227    return false;
3228
3229  // Upper quadword shuffled.
3230  for (unsigned i = 4; i != 8; ++i)
3231    if (!isUndefOrInRange(Mask[i], 4, 8))
3232      return false;
3233
3234  if (VT == MVT::v16i16) {
3235    // Lower quadword copied in order or undef.
3236    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3237      return false;
3238
3239    // Upper quadword shuffled.
3240    for (unsigned i = 12; i != 16; ++i)
3241      if (!isUndefOrInRange(Mask[i], 12, 16))
3242        return false;
3243  }
3244
3245  return true;
3246}
3247
3248/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3249/// is suitable for input to PSHUFLW.
3250static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3251  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3252    return false;
3253
3254  // Upper quadword copied in order.
3255  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3256    return false;
3257
3258  // Lower quadword shuffled.
3259  for (unsigned i = 0; i != 4; ++i)
3260    if (!isUndefOrInRange(Mask[i], 0, 4))
3261      return false;
3262
3263  if (VT == MVT::v16i16) {
3264    // Upper quadword copied in order.
3265    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3266      return false;
3267
3268    // Lower quadword shuffled.
3269    for (unsigned i = 8; i != 12; ++i)
3270      if (!isUndefOrInRange(Mask[i], 8, 12))
3271        return false;
3272  }
3273
3274  return true;
3275}
3276
3277/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3278/// is suitable for input to PALIGNR.
3279static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3280                          const X86Subtarget *Subtarget) {
3281  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3282      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3283    return false;
3284
3285  unsigned NumElts = VT.getVectorNumElements();
3286  unsigned NumLanes = VT.getSizeInBits()/128;
3287  unsigned NumLaneElts = NumElts/NumLanes;
3288
3289  // Do not handle 64-bit element shuffles with palignr.
3290  if (NumLaneElts == 2)
3291    return false;
3292
3293  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3294    unsigned i;
3295    for (i = 0; i != NumLaneElts; ++i) {
3296      if (Mask[i+l] >= 0)
3297        break;
3298    }
3299
3300    // Lane is all undef, go to next lane
3301    if (i == NumLaneElts)
3302      continue;
3303
3304    int Start = Mask[i+l];
3305
3306    // Make sure its in this lane in one of the sources
3307    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3308        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3309      return false;
3310
3311    // If not lane 0, then we must match lane 0
3312    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3313      return false;
3314
3315    // Correct second source to be contiguous with first source
3316    if (Start >= (int)NumElts)
3317      Start -= NumElts - NumLaneElts;
3318
3319    // Make sure we're shifting in the right direction.
3320    if (Start <= (int)(i+l))
3321      return false;
3322
3323    Start -= i;
3324
3325    // Check the rest of the elements to see if they are consecutive.
3326    for (++i; i != NumLaneElts; ++i) {
3327      int Idx = Mask[i+l];
3328
3329      // Make sure its in this lane
3330      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3331          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3332        return false;
3333
3334      // If not lane 0, then we must match lane 0
3335      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3336        return false;
3337
3338      if (Idx >= (int)NumElts)
3339        Idx -= NumElts - NumLaneElts;
3340
3341      if (!isUndefOrEqual(Idx, Start+i))
3342        return false;
3343
3344    }
3345  }
3346
3347  return true;
3348}
3349
3350/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3351/// the two vector operands have swapped position.
3352static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3353                                     unsigned NumElems) {
3354  for (unsigned i = 0; i != NumElems; ++i) {
3355    int idx = Mask[i];
3356    if (idx < 0)
3357      continue;
3358    else if (idx < (int)NumElems)
3359      Mask[i] = idx + NumElems;
3360    else
3361      Mask[i] = idx - NumElems;
3362  }
3363}
3364
3365/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3366/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3367/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3368/// reverse of what x86 shuffles want.
3369static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3370                        bool Commuted = false) {
3371  if (!HasAVX && VT.getSizeInBits() == 256)
3372    return false;
3373
3374  unsigned NumElems = VT.getVectorNumElements();
3375  unsigned NumLanes = VT.getSizeInBits()/128;
3376  unsigned NumLaneElems = NumElems/NumLanes;
3377
3378  if (NumLaneElems != 2 && NumLaneElems != 4)
3379    return false;
3380
3381  // VSHUFPSY divides the resulting vector into 4 chunks.
3382  // The sources are also splitted into 4 chunks, and each destination
3383  // chunk must come from a different source chunk.
3384  //
3385  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3386  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3387  //
3388  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3389  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3390  //
3391  // VSHUFPDY divides the resulting vector into 4 chunks.
3392  // The sources are also splitted into 4 chunks, and each destination
3393  // chunk must come from a different source chunk.
3394  //
3395  //  SRC1 =>      X3       X2       X1       X0
3396  //  SRC2 =>      Y3       Y2       Y1       Y0
3397  //
3398  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3399  //
3400  unsigned HalfLaneElems = NumLaneElems/2;
3401  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3402    for (unsigned i = 0; i != NumLaneElems; ++i) {
3403      int Idx = Mask[i+l];
3404      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3405      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3406        return false;
3407      // For VSHUFPSY, the mask of the second half must be the same as the
3408      // first but with the appropriate offsets. This works in the same way as
3409      // VPERMILPS works with masks.
3410      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3411        continue;
3412      if (!isUndefOrEqual(Idx, Mask[i]+l))
3413        return false;
3414    }
3415  }
3416
3417  return true;
3418}
3419
3420/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3421/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3422static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3423  unsigned NumElems = VT.getVectorNumElements();
3424
3425  if (VT.getSizeInBits() != 128)
3426    return false;
3427
3428  if (NumElems != 4)
3429    return false;
3430
3431  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3432  return isUndefOrEqual(Mask[0], 6) &&
3433         isUndefOrEqual(Mask[1], 7) &&
3434         isUndefOrEqual(Mask[2], 2) &&
3435         isUndefOrEqual(Mask[3], 3);
3436}
3437
3438/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3439/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3440/// <2, 3, 2, 3>
3441static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3442  unsigned NumElems = VT.getVectorNumElements();
3443
3444  if (VT.getSizeInBits() != 128)
3445    return false;
3446
3447  if (NumElems != 4)
3448    return false;
3449
3450  return isUndefOrEqual(Mask[0], 2) &&
3451         isUndefOrEqual(Mask[1], 3) &&
3452         isUndefOrEqual(Mask[2], 2) &&
3453         isUndefOrEqual(Mask[3], 3);
3454}
3455
3456/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3457/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3458static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3459  if (VT.getSizeInBits() != 128)
3460    return false;
3461
3462  unsigned NumElems = VT.getVectorNumElements();
3463
3464  if (NumElems != 2 && NumElems != 4)
3465    return false;
3466
3467  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3468    if (!isUndefOrEqual(Mask[i], i + NumElems))
3469      return false;
3470
3471  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3472    if (!isUndefOrEqual(Mask[i], i))
3473      return false;
3474
3475  return true;
3476}
3477
3478/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3479/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3480static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3481  unsigned NumElems = VT.getVectorNumElements();
3482
3483  if ((NumElems != 2 && NumElems != 4)
3484      || VT.getSizeInBits() > 128)
3485    return false;
3486
3487  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3488    if (!isUndefOrEqual(Mask[i], i))
3489      return false;
3490
3491  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3492    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3493      return false;
3494
3495  return true;
3496}
3497
3498//
3499// Some special combinations that can be optimized.
3500//
3501static
3502SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3503                               SelectionDAG &DAG) {
3504  EVT VT = SVOp->getValueType(0);
3505  DebugLoc dl = SVOp->getDebugLoc();
3506
3507  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3508    return SDValue();
3509
3510  ArrayRef<int> Mask = SVOp->getMask();
3511
3512  // These are the special masks that may be optimized.
3513  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3514  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3515  bool MatchEvenMask = true;
3516  bool MatchOddMask  = true;
3517  for (int i=0; i<8; ++i) {
3518    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3519      MatchEvenMask = false;
3520    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3521      MatchOddMask = false;
3522  }
3523  static const int CompactionMaskEven[] = {0, 2, -1, -1, 4, 6, -1, -1};
3524  static const int CompactionMaskOdd [] = {1, 3, -1, -1, 5, 7, -1, -1};
3525
3526  const int *CompactionMask;
3527  if (MatchEvenMask)
3528    CompactionMask = CompactionMaskEven;
3529  else if (MatchOddMask)
3530    CompactionMask = CompactionMaskOdd;
3531  else
3532    return SDValue();
3533
3534  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3535
3536  SDValue Op0 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(0),
3537                                     UndefNode, CompactionMask);
3538  SDValue Op1 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(1),
3539                                     UndefNode, CompactionMask);
3540  static const int UnpackMask[] = {0, 8, 1, 9, 4, 12, 5, 13};
3541  return DAG.getVectorShuffle(VT, dl, Op0, Op1, UnpackMask);
3542}
3543
3544/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3545/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3546static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3547                         bool HasAVX2, bool V2IsSplat = false) {
3548  unsigned NumElts = VT.getVectorNumElements();
3549
3550  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3551         "Unsupported vector type for unpckh");
3552
3553  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3554      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3555    return false;
3556
3557  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3558  // independently on 128-bit lanes.
3559  unsigned NumLanes = VT.getSizeInBits()/128;
3560  unsigned NumLaneElts = NumElts/NumLanes;
3561
3562  for (unsigned l = 0; l != NumLanes; ++l) {
3563    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3564         i != (l+1)*NumLaneElts;
3565         i += 2, ++j) {
3566      int BitI  = Mask[i];
3567      int BitI1 = Mask[i+1];
3568      if (!isUndefOrEqual(BitI, j))
3569        return false;
3570      if (V2IsSplat) {
3571        if (!isUndefOrEqual(BitI1, NumElts))
3572          return false;
3573      } else {
3574        if (!isUndefOrEqual(BitI1, j + NumElts))
3575          return false;
3576      }
3577    }
3578  }
3579
3580  return true;
3581}
3582
3583/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3584/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3585static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3586                         bool HasAVX2, bool V2IsSplat = false) {
3587  unsigned NumElts = VT.getVectorNumElements();
3588
3589  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3590         "Unsupported vector type for unpckh");
3591
3592  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3593      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3594    return false;
3595
3596  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3597  // independently on 128-bit lanes.
3598  unsigned NumLanes = VT.getSizeInBits()/128;
3599  unsigned NumLaneElts = NumElts/NumLanes;
3600
3601  for (unsigned l = 0; l != NumLanes; ++l) {
3602    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3603         i != (l+1)*NumLaneElts; i += 2, ++j) {
3604      int BitI  = Mask[i];
3605      int BitI1 = Mask[i+1];
3606      if (!isUndefOrEqual(BitI, j))
3607        return false;
3608      if (V2IsSplat) {
3609        if (isUndefOrEqual(BitI1, NumElts))
3610          return false;
3611      } else {
3612        if (!isUndefOrEqual(BitI1, j+NumElts))
3613          return false;
3614      }
3615    }
3616  }
3617  return true;
3618}
3619
3620/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3621/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3622/// <0, 0, 1, 1>
3623static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3624                                  bool HasAVX2) {
3625  unsigned NumElts = VT.getVectorNumElements();
3626
3627  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3628         "Unsupported vector type for unpckh");
3629
3630  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3631      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3632    return false;
3633
3634  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3635  // FIXME: Need a better way to get rid of this, there's no latency difference
3636  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3637  // the former later. We should also remove the "_undef" special mask.
3638  if (NumElts == 4 && VT.getSizeInBits() == 256)
3639    return false;
3640
3641  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3642  // independently on 128-bit lanes.
3643  unsigned NumLanes = VT.getSizeInBits()/128;
3644  unsigned NumLaneElts = NumElts/NumLanes;
3645
3646  for (unsigned l = 0; l != NumLanes; ++l) {
3647    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3648         i != (l+1)*NumLaneElts;
3649         i += 2, ++j) {
3650      int BitI  = Mask[i];
3651      int BitI1 = Mask[i+1];
3652
3653      if (!isUndefOrEqual(BitI, j))
3654        return false;
3655      if (!isUndefOrEqual(BitI1, j))
3656        return false;
3657    }
3658  }
3659
3660  return true;
3661}
3662
3663/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3664/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3665/// <2, 2, 3, 3>
3666static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3667  unsigned NumElts = VT.getVectorNumElements();
3668
3669  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3670         "Unsupported vector type for unpckh");
3671
3672  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3673      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3674    return false;
3675
3676  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3677  // independently on 128-bit lanes.
3678  unsigned NumLanes = VT.getSizeInBits()/128;
3679  unsigned NumLaneElts = NumElts/NumLanes;
3680
3681  for (unsigned l = 0; l != NumLanes; ++l) {
3682    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3683         i != (l+1)*NumLaneElts; i += 2, ++j) {
3684      int BitI  = Mask[i];
3685      int BitI1 = Mask[i+1];
3686      if (!isUndefOrEqual(BitI, j))
3687        return false;
3688      if (!isUndefOrEqual(BitI1, j))
3689        return false;
3690    }
3691  }
3692  return true;
3693}
3694
3695/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3696/// specifies a shuffle of elements that is suitable for input to MOVSS,
3697/// MOVSD, and MOVD, i.e. setting the lowest element.
3698static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3699  if (VT.getVectorElementType().getSizeInBits() < 32)
3700    return false;
3701  if (VT.getSizeInBits() == 256)
3702    return false;
3703
3704  unsigned NumElts = VT.getVectorNumElements();
3705
3706  if (!isUndefOrEqual(Mask[0], NumElts))
3707    return false;
3708
3709  for (unsigned i = 1; i != NumElts; ++i)
3710    if (!isUndefOrEqual(Mask[i], i))
3711      return false;
3712
3713  return true;
3714}
3715
3716/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3717/// as permutations between 128-bit chunks or halves. As an example: this
3718/// shuffle bellow:
3719///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3720/// The first half comes from the second half of V1 and the second half from the
3721/// the second half of V2.
3722static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3723  if (!HasAVX || VT.getSizeInBits() != 256)
3724    return false;
3725
3726  // The shuffle result is divided into half A and half B. In total the two
3727  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3728  // B must come from C, D, E or F.
3729  unsigned HalfSize = VT.getVectorNumElements()/2;
3730  bool MatchA = false, MatchB = false;
3731
3732  // Check if A comes from one of C, D, E, F.
3733  for (unsigned Half = 0; Half != 4; ++Half) {
3734    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3735      MatchA = true;
3736      break;
3737    }
3738  }
3739
3740  // Check if B comes from one of C, D, E, F.
3741  for (unsigned Half = 0; Half != 4; ++Half) {
3742    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3743      MatchB = true;
3744      break;
3745    }
3746  }
3747
3748  return MatchA && MatchB;
3749}
3750
3751/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3752/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3753static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3754  EVT VT = SVOp->getValueType(0);
3755
3756  unsigned HalfSize = VT.getVectorNumElements()/2;
3757
3758  unsigned FstHalf = 0, SndHalf = 0;
3759  for (unsigned i = 0; i < HalfSize; ++i) {
3760    if (SVOp->getMaskElt(i) > 0) {
3761      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3762      break;
3763    }
3764  }
3765  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3766    if (SVOp->getMaskElt(i) > 0) {
3767      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3768      break;
3769    }
3770  }
3771
3772  return (FstHalf | (SndHalf << 4));
3773}
3774
3775/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3776/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3777/// Note that VPERMIL mask matching is different depending whether theunderlying
3778/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3779/// to the same elements of the low, but to the higher half of the source.
3780/// In VPERMILPD the two lanes could be shuffled independently of each other
3781/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3782static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3783  if (!HasAVX)
3784    return false;
3785
3786  unsigned NumElts = VT.getVectorNumElements();
3787  // Only match 256-bit with 32/64-bit types
3788  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3789    return false;
3790
3791  unsigned NumLanes = VT.getSizeInBits()/128;
3792  unsigned LaneSize = NumElts/NumLanes;
3793  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3794    for (unsigned i = 0; i != LaneSize; ++i) {
3795      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3796        return false;
3797      if (NumElts != 8 || l == 0)
3798        continue;
3799      // VPERMILPS handling
3800      if (Mask[i] < 0)
3801        continue;
3802      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3803        return false;
3804    }
3805  }
3806
3807  return true;
3808}
3809
3810/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3811/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3812/// element of vector 2 and the other elements to come from vector 1 in order.
3813static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3814                               bool V2IsSplat = false, bool V2IsUndef = false) {
3815  unsigned NumOps = VT.getVectorNumElements();
3816  if (VT.getSizeInBits() == 256)
3817    return false;
3818  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3819    return false;
3820
3821  if (!isUndefOrEqual(Mask[0], 0))
3822    return false;
3823
3824  for (unsigned i = 1; i != NumOps; ++i)
3825    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3826          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3827          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3828      return false;
3829
3830  return true;
3831}
3832
3833/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3834/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3835/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3836static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3837                           const X86Subtarget *Subtarget) {
3838  if (!Subtarget->hasSSE3())
3839    return false;
3840
3841  unsigned NumElems = VT.getVectorNumElements();
3842
3843  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3844      (VT.getSizeInBits() == 256 && NumElems != 8))
3845    return false;
3846
3847  // "i+1" is the value the indexed mask element must have
3848  for (unsigned i = 0; i != NumElems; i += 2)
3849    if (!isUndefOrEqual(Mask[i], i+1) ||
3850        !isUndefOrEqual(Mask[i+1], i+1))
3851      return false;
3852
3853  return true;
3854}
3855
3856/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3857/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3858/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3859static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3860                           const X86Subtarget *Subtarget) {
3861  if (!Subtarget->hasSSE3())
3862    return false;
3863
3864  unsigned NumElems = VT.getVectorNumElements();
3865
3866  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3867      (VT.getSizeInBits() == 256 && NumElems != 8))
3868    return false;
3869
3870  // "i" is the value the indexed mask element must have
3871  for (unsigned i = 0; i != NumElems; i += 2)
3872    if (!isUndefOrEqual(Mask[i], i) ||
3873        !isUndefOrEqual(Mask[i+1], i))
3874      return false;
3875
3876  return true;
3877}
3878
3879/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3880/// specifies a shuffle of elements that is suitable for input to 256-bit
3881/// version of MOVDDUP.
3882static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3883  unsigned NumElts = VT.getVectorNumElements();
3884
3885  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3886    return false;
3887
3888  for (unsigned i = 0; i != NumElts/2; ++i)
3889    if (!isUndefOrEqual(Mask[i], 0))
3890      return false;
3891  for (unsigned i = NumElts/2; i != NumElts; ++i)
3892    if (!isUndefOrEqual(Mask[i], NumElts/2))
3893      return false;
3894  return true;
3895}
3896
3897/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3898/// specifies a shuffle of elements that is suitable for input to 128-bit
3899/// version of MOVDDUP.
3900static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3901  if (VT.getSizeInBits() != 128)
3902    return false;
3903
3904  unsigned e = VT.getVectorNumElements() / 2;
3905  for (unsigned i = 0; i != e; ++i)
3906    if (!isUndefOrEqual(Mask[i], i))
3907      return false;
3908  for (unsigned i = 0; i != e; ++i)
3909    if (!isUndefOrEqual(Mask[e+i], i))
3910      return false;
3911  return true;
3912}
3913
3914/// isVEXTRACTF128Index - Return true if the specified
3915/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3916/// suitable for input to VEXTRACTF128.
3917bool X86::isVEXTRACTF128Index(SDNode *N) {
3918  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3919    return false;
3920
3921  // The index should be aligned on a 128-bit boundary.
3922  uint64_t Index =
3923    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3924
3925  unsigned VL = N->getValueType(0).getVectorNumElements();
3926  unsigned VBits = N->getValueType(0).getSizeInBits();
3927  unsigned ElSize = VBits / VL;
3928  bool Result = (Index * ElSize) % 128 == 0;
3929
3930  return Result;
3931}
3932
3933/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3934/// operand specifies a subvector insert that is suitable for input to
3935/// VINSERTF128.
3936bool X86::isVINSERTF128Index(SDNode *N) {
3937  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3938    return false;
3939
3940  // The index should be aligned on a 128-bit boundary.
3941  uint64_t Index =
3942    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3943
3944  unsigned VL = N->getValueType(0).getVectorNumElements();
3945  unsigned VBits = N->getValueType(0).getSizeInBits();
3946  unsigned ElSize = VBits / VL;
3947  bool Result = (Index * ElSize) % 128 == 0;
3948
3949  return Result;
3950}
3951
3952/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3953/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3954/// Handles 128-bit and 256-bit.
3955static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3956  EVT VT = N->getValueType(0);
3957
3958  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3959         "Unsupported vector type for PSHUF/SHUFP");
3960
3961  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3962  // independently on 128-bit lanes.
3963  unsigned NumElts = VT.getVectorNumElements();
3964  unsigned NumLanes = VT.getSizeInBits()/128;
3965  unsigned NumLaneElts = NumElts/NumLanes;
3966
3967  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3968         "Only supports 2 or 4 elements per lane");
3969
3970  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3971  unsigned Mask = 0;
3972  for (unsigned i = 0; i != NumElts; ++i) {
3973    int Elt = N->getMaskElt(i);
3974    if (Elt < 0) continue;
3975    Elt &= NumLaneElts - 1;
3976    unsigned ShAmt = (i << Shift) % 8;
3977    Mask |= Elt << ShAmt;
3978  }
3979
3980  return Mask;
3981}
3982
3983/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3984/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3985static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3986  EVT VT = N->getValueType(0);
3987
3988  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3989         "Unsupported vector type for PSHUFHW");
3990
3991  unsigned NumElts = VT.getVectorNumElements();
3992
3993  unsigned Mask = 0;
3994  for (unsigned l = 0; l != NumElts; l += 8) {
3995    // 8 nodes per lane, but we only care about the last 4.
3996    for (unsigned i = 0; i < 4; ++i) {
3997      int Elt = N->getMaskElt(l+i+4);
3998      if (Elt < 0) continue;
3999      Elt &= 0x3; // only 2-bits.
4000      Mask |= Elt << (i * 2);
4001    }
4002  }
4003
4004  return Mask;
4005}
4006
4007/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4008/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4009static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4010  EVT VT = N->getValueType(0);
4011
4012  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4013         "Unsupported vector type for PSHUFHW");
4014
4015  unsigned NumElts = VT.getVectorNumElements();
4016
4017  unsigned Mask = 0;
4018  for (unsigned l = 0; l != NumElts; l += 8) {
4019    // 8 nodes per lane, but we only care about the first 4.
4020    for (unsigned i = 0; i < 4; ++i) {
4021      int Elt = N->getMaskElt(l+i);
4022      if (Elt < 0) continue;
4023      Elt &= 0x3; // only 2-bits
4024      Mask |= Elt << (i * 2);
4025    }
4026  }
4027
4028  return Mask;
4029}
4030
4031/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4032/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4033static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4034  EVT VT = SVOp->getValueType(0);
4035  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4036
4037  unsigned NumElts = VT.getVectorNumElements();
4038  unsigned NumLanes = VT.getSizeInBits()/128;
4039  unsigned NumLaneElts = NumElts/NumLanes;
4040
4041  int Val = 0;
4042  unsigned i;
4043  for (i = 0; i != NumElts; ++i) {
4044    Val = SVOp->getMaskElt(i);
4045    if (Val >= 0)
4046      break;
4047  }
4048  if (Val >= (int)NumElts)
4049    Val -= NumElts - NumLaneElts;
4050
4051  assert(Val - i > 0 && "PALIGNR imm should be positive");
4052  return (Val - i) * EltSize;
4053}
4054
4055/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4056/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4057/// instructions.
4058unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4059  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4060    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4061
4062  uint64_t Index =
4063    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4064
4065  EVT VecVT = N->getOperand(0).getValueType();
4066  EVT ElVT = VecVT.getVectorElementType();
4067
4068  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4069  return Index / NumElemsPerChunk;
4070}
4071
4072/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4073/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4074/// instructions.
4075unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4076  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4077    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4078
4079  uint64_t Index =
4080    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4081
4082  EVT VecVT = N->getValueType(0);
4083  EVT ElVT = VecVT.getVectorElementType();
4084
4085  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4086  return Index / NumElemsPerChunk;
4087}
4088
4089/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4090/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4091/// Handles 256-bit.
4092static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4093  EVT VT = N->getValueType(0);
4094
4095  unsigned NumElts = VT.getVectorNumElements();
4096
4097  assert((VT.is256BitVector() && NumElts == 4) &&
4098         "Unsupported vector type for VPERMQ/VPERMPD");
4099
4100  unsigned Mask = 0;
4101  for (unsigned i = 0; i != NumElts; ++i) {
4102    int Elt = N->getMaskElt(i);
4103    if (Elt < 0)
4104      continue;
4105    Mask |= Elt << (i*2);
4106  }
4107
4108  return Mask;
4109}
4110/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4111/// constant +0.0.
4112bool X86::isZeroNode(SDValue Elt) {
4113  return ((isa<ConstantSDNode>(Elt) &&
4114           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4115          (isa<ConstantFPSDNode>(Elt) &&
4116           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4117}
4118
4119/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4120/// their permute mask.
4121static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4122                                    SelectionDAG &DAG) {
4123  EVT VT = SVOp->getValueType(0);
4124  unsigned NumElems = VT.getVectorNumElements();
4125  SmallVector<int, 8> MaskVec;
4126
4127  for (unsigned i = 0; i != NumElems; ++i) {
4128    int Idx = SVOp->getMaskElt(i);
4129    if (Idx >= 0) {
4130      if (Idx < (int)NumElems)
4131        Idx += NumElems;
4132      else
4133        Idx -= NumElems;
4134    }
4135    MaskVec.push_back(Idx);
4136  }
4137  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4138                              SVOp->getOperand(0), &MaskVec[0]);
4139}
4140
4141/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4142/// match movhlps. The lower half elements should come from upper half of
4143/// V1 (and in order), and the upper half elements should come from the upper
4144/// half of V2 (and in order).
4145static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4146  if (VT.getSizeInBits() != 128)
4147    return false;
4148  if (VT.getVectorNumElements() != 4)
4149    return false;
4150  for (unsigned i = 0, e = 2; i != e; ++i)
4151    if (!isUndefOrEqual(Mask[i], i+2))
4152      return false;
4153  for (unsigned i = 2; i != 4; ++i)
4154    if (!isUndefOrEqual(Mask[i], i+4))
4155      return false;
4156  return true;
4157}
4158
4159/// isScalarLoadToVector - Returns true if the node is a scalar load that
4160/// is promoted to a vector. It also returns the LoadSDNode by reference if
4161/// required.
4162static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4163  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4164    return false;
4165  N = N->getOperand(0).getNode();
4166  if (!ISD::isNON_EXTLoad(N))
4167    return false;
4168  if (LD)
4169    *LD = cast<LoadSDNode>(N);
4170  return true;
4171}
4172
4173// Test whether the given value is a vector value which will be legalized
4174// into a load.
4175static bool WillBeConstantPoolLoad(SDNode *N) {
4176  if (N->getOpcode() != ISD::BUILD_VECTOR)
4177    return false;
4178
4179  // Check for any non-constant elements.
4180  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4181    switch (N->getOperand(i).getNode()->getOpcode()) {
4182    case ISD::UNDEF:
4183    case ISD::ConstantFP:
4184    case ISD::Constant:
4185      break;
4186    default:
4187      return false;
4188    }
4189
4190  // Vectors of all-zeros and all-ones are materialized with special
4191  // instructions rather than being loaded.
4192  return !ISD::isBuildVectorAllZeros(N) &&
4193         !ISD::isBuildVectorAllOnes(N);
4194}
4195
4196/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4197/// match movlp{s|d}. The lower half elements should come from lower half of
4198/// V1 (and in order), and the upper half elements should come from the upper
4199/// half of V2 (and in order). And since V1 will become the source of the
4200/// MOVLP, it must be either a vector load or a scalar load to vector.
4201static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4202                               ArrayRef<int> Mask, EVT VT) {
4203  if (VT.getSizeInBits() != 128)
4204    return false;
4205
4206  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4207    return false;
4208  // Is V2 is a vector load, don't do this transformation. We will try to use
4209  // load folding shufps op.
4210  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4211    return false;
4212
4213  unsigned NumElems = VT.getVectorNumElements();
4214
4215  if (NumElems != 2 && NumElems != 4)
4216    return false;
4217  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4218    if (!isUndefOrEqual(Mask[i], i))
4219      return false;
4220  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4221    if (!isUndefOrEqual(Mask[i], i+NumElems))
4222      return false;
4223  return true;
4224}
4225
4226/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4227/// all the same.
4228static bool isSplatVector(SDNode *N) {
4229  if (N->getOpcode() != ISD::BUILD_VECTOR)
4230    return false;
4231
4232  SDValue SplatValue = N->getOperand(0);
4233  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4234    if (N->getOperand(i) != SplatValue)
4235      return false;
4236  return true;
4237}
4238
4239/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4240/// to an zero vector.
4241/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4242static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4243  SDValue V1 = N->getOperand(0);
4244  SDValue V2 = N->getOperand(1);
4245  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4246  for (unsigned i = 0; i != NumElems; ++i) {
4247    int Idx = N->getMaskElt(i);
4248    if (Idx >= (int)NumElems) {
4249      unsigned Opc = V2.getOpcode();
4250      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4251        continue;
4252      if (Opc != ISD::BUILD_VECTOR ||
4253          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4254        return false;
4255    } else if (Idx >= 0) {
4256      unsigned Opc = V1.getOpcode();
4257      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4258        continue;
4259      if (Opc != ISD::BUILD_VECTOR ||
4260          !X86::isZeroNode(V1.getOperand(Idx)))
4261        return false;
4262    }
4263  }
4264  return true;
4265}
4266
4267/// getZeroVector - Returns a vector of specified type with all zero elements.
4268///
4269static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4270                             SelectionDAG &DAG, DebugLoc dl) {
4271  assert(VT.isVector() && "Expected a vector type");
4272  unsigned Size = VT.getSizeInBits();
4273
4274  // Always build SSE zero vectors as <4 x i32> bitcasted
4275  // to their dest type. This ensures they get CSE'd.
4276  SDValue Vec;
4277  if (Size == 128) {  // SSE
4278    if (Subtarget->hasSSE2()) {  // SSE2
4279      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4280      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4281    } else { // SSE1
4282      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4283      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4284    }
4285  } else if (Size == 256) { // AVX
4286    if (Subtarget->hasAVX2()) { // AVX2
4287      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4288      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4289      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4290    } else {
4291      // 256-bit logic and arithmetic instructions in AVX are all
4292      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4293      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4294      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4295      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4296    }
4297  } else
4298    llvm_unreachable("Unexpected vector type");
4299
4300  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4301}
4302
4303/// getOnesVector - Returns a vector of specified type with all bits set.
4304/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4305/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4306/// Then bitcast to their original type, ensuring they get CSE'd.
4307static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4308                             DebugLoc dl) {
4309  assert(VT.isVector() && "Expected a vector type");
4310  unsigned Size = VT.getSizeInBits();
4311
4312  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4313  SDValue Vec;
4314  if (Size == 256) {
4315    if (HasAVX2) { // AVX2
4316      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4317      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4318    } else { // AVX
4319      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4320      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4321    }
4322  } else if (Size == 128) {
4323    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4324  } else
4325    llvm_unreachable("Unexpected vector type");
4326
4327  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4328}
4329
4330/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4331/// that point to V2 points to its first element.
4332static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4333  for (unsigned i = 0; i != NumElems; ++i) {
4334    if (Mask[i] > (int)NumElems) {
4335      Mask[i] = NumElems;
4336    }
4337  }
4338}
4339
4340/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4341/// operation of specified width.
4342static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4343                       SDValue V2) {
4344  unsigned NumElems = VT.getVectorNumElements();
4345  SmallVector<int, 8> Mask;
4346  Mask.push_back(NumElems);
4347  for (unsigned i = 1; i != NumElems; ++i)
4348    Mask.push_back(i);
4349  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4350}
4351
4352/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4353static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4354                          SDValue V2) {
4355  unsigned NumElems = VT.getVectorNumElements();
4356  SmallVector<int, 8> Mask;
4357  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4358    Mask.push_back(i);
4359    Mask.push_back(i + NumElems);
4360  }
4361  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4362}
4363
4364/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4365static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4366                          SDValue V2) {
4367  unsigned NumElems = VT.getVectorNumElements();
4368  SmallVector<int, 8> Mask;
4369  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4370    Mask.push_back(i + Half);
4371    Mask.push_back(i + NumElems + Half);
4372  }
4373  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4374}
4375
4376// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4377// a generic shuffle instruction because the target has no such instructions.
4378// Generate shuffles which repeat i16 and i8 several times until they can be
4379// represented by v4f32 and then be manipulated by target suported shuffles.
4380static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4381  EVT VT = V.getValueType();
4382  int NumElems = VT.getVectorNumElements();
4383  DebugLoc dl = V.getDebugLoc();
4384
4385  while (NumElems > 4) {
4386    if (EltNo < NumElems/2) {
4387      V = getUnpackl(DAG, dl, VT, V, V);
4388    } else {
4389      V = getUnpackh(DAG, dl, VT, V, V);
4390      EltNo -= NumElems/2;
4391    }
4392    NumElems >>= 1;
4393  }
4394  return V;
4395}
4396
4397/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4398static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4399  EVT VT = V.getValueType();
4400  DebugLoc dl = V.getDebugLoc();
4401  unsigned Size = VT.getSizeInBits();
4402
4403  if (Size == 128) {
4404    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4405    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4406    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4407                             &SplatMask[0]);
4408  } else if (Size == 256) {
4409    // To use VPERMILPS to splat scalars, the second half of indicies must
4410    // refer to the higher part, which is a duplication of the lower one,
4411    // because VPERMILPS can only handle in-lane permutations.
4412    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4413                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4414
4415    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4416    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4417                             &SplatMask[0]);
4418  } else
4419    llvm_unreachable("Vector size not supported");
4420
4421  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4422}
4423
4424/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4425static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4426  EVT SrcVT = SV->getValueType(0);
4427  SDValue V1 = SV->getOperand(0);
4428  DebugLoc dl = SV->getDebugLoc();
4429
4430  int EltNo = SV->getSplatIndex();
4431  int NumElems = SrcVT.getVectorNumElements();
4432  unsigned Size = SrcVT.getSizeInBits();
4433
4434  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4435          "Unknown how to promote splat for type");
4436
4437  // Extract the 128-bit part containing the splat element and update
4438  // the splat element index when it refers to the higher register.
4439  if (Size == 256) {
4440    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4441    if (EltNo >= NumElems/2)
4442      EltNo -= NumElems/2;
4443  }
4444
4445  // All i16 and i8 vector types can't be used directly by a generic shuffle
4446  // instruction because the target has no such instruction. Generate shuffles
4447  // which repeat i16 and i8 several times until they fit in i32, and then can
4448  // be manipulated by target suported shuffles.
4449  EVT EltVT = SrcVT.getVectorElementType();
4450  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4451    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4452
4453  // Recreate the 256-bit vector and place the same 128-bit vector
4454  // into the low and high part. This is necessary because we want
4455  // to use VPERM* to shuffle the vectors
4456  if (Size == 256) {
4457    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4458  }
4459
4460  return getLegalSplat(DAG, V1, EltNo);
4461}
4462
4463/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4464/// vector of zero or undef vector.  This produces a shuffle where the low
4465/// element of V2 is swizzled into the zero/undef vector, landing at element
4466/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4467static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4468                                           bool IsZero,
4469                                           const X86Subtarget *Subtarget,
4470                                           SelectionDAG &DAG) {
4471  EVT VT = V2.getValueType();
4472  SDValue V1 = IsZero
4473    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4474  unsigned NumElems = VT.getVectorNumElements();
4475  SmallVector<int, 16> MaskVec;
4476  for (unsigned i = 0; i != NumElems; ++i)
4477    // If this is the insertion idx, put the low elt of V2 here.
4478    MaskVec.push_back(i == Idx ? NumElems : i);
4479  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4480}
4481
4482/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4483/// target specific opcode. Returns true if the Mask could be calculated.
4484/// Sets IsUnary to true if only uses one source.
4485static bool getTargetShuffleMask(SDNode *N, MVT VT,
4486                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4487  unsigned NumElems = VT.getVectorNumElements();
4488  SDValue ImmN;
4489
4490  IsUnary = false;
4491  switch(N->getOpcode()) {
4492  case X86ISD::SHUFP:
4493    ImmN = N->getOperand(N->getNumOperands()-1);
4494    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4495    break;
4496  case X86ISD::UNPCKH:
4497    DecodeUNPCKHMask(VT, Mask);
4498    break;
4499  case X86ISD::UNPCKL:
4500    DecodeUNPCKLMask(VT, Mask);
4501    break;
4502  case X86ISD::MOVHLPS:
4503    DecodeMOVHLPSMask(NumElems, Mask);
4504    break;
4505  case X86ISD::MOVLHPS:
4506    DecodeMOVLHPSMask(NumElems, Mask);
4507    break;
4508  case X86ISD::PSHUFD:
4509  case X86ISD::VPERMILP:
4510    ImmN = N->getOperand(N->getNumOperands()-1);
4511    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4512    IsUnary = true;
4513    break;
4514  case X86ISD::PSHUFHW:
4515    ImmN = N->getOperand(N->getNumOperands()-1);
4516    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4517    IsUnary = true;
4518    break;
4519  case X86ISD::PSHUFLW:
4520    ImmN = N->getOperand(N->getNumOperands()-1);
4521    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4522    IsUnary = true;
4523    break;
4524  case X86ISD::VPERMI:
4525    ImmN = N->getOperand(N->getNumOperands()-1);
4526    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4527    IsUnary = true;
4528    break;
4529  case X86ISD::MOVSS:
4530  case X86ISD::MOVSD: {
4531    // The index 0 always comes from the first element of the second source,
4532    // this is why MOVSS and MOVSD are used in the first place. The other
4533    // elements come from the other positions of the first source vector
4534    Mask.push_back(NumElems);
4535    for (unsigned i = 1; i != NumElems; ++i) {
4536      Mask.push_back(i);
4537    }
4538    break;
4539  }
4540  case X86ISD::VPERM2X128:
4541    ImmN = N->getOperand(N->getNumOperands()-1);
4542    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4543    if (Mask.empty()) return false;
4544    break;
4545  case X86ISD::MOVDDUP:
4546  case X86ISD::MOVLHPD:
4547  case X86ISD::MOVLPD:
4548  case X86ISD::MOVLPS:
4549  case X86ISD::MOVSHDUP:
4550  case X86ISD::MOVSLDUP:
4551  case X86ISD::PALIGN:
4552    // Not yet implemented
4553    return false;
4554  default: llvm_unreachable("unknown target shuffle node");
4555  }
4556
4557  return true;
4558}
4559
4560/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4561/// element of the result of the vector shuffle.
4562static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4563                                   unsigned Depth) {
4564  if (Depth == 6)
4565    return SDValue();  // Limit search depth.
4566
4567  SDValue V = SDValue(N, 0);
4568  EVT VT = V.getValueType();
4569  unsigned Opcode = V.getOpcode();
4570
4571  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4572  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4573    int Elt = SV->getMaskElt(Index);
4574
4575    if (Elt < 0)
4576      return DAG.getUNDEF(VT.getVectorElementType());
4577
4578    unsigned NumElems = VT.getVectorNumElements();
4579    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4580                                         : SV->getOperand(1);
4581    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4582  }
4583
4584  // Recurse into target specific vector shuffles to find scalars.
4585  if (isTargetShuffle(Opcode)) {
4586    MVT ShufVT = V.getValueType().getSimpleVT();
4587    unsigned NumElems = ShufVT.getVectorNumElements();
4588    SmallVector<int, 16> ShuffleMask;
4589    SDValue ImmN;
4590    bool IsUnary;
4591
4592    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4593      return SDValue();
4594
4595    int Elt = ShuffleMask[Index];
4596    if (Elt < 0)
4597      return DAG.getUNDEF(ShufVT.getVectorElementType());
4598
4599    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4600                                         : N->getOperand(1);
4601    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4602                               Depth+1);
4603  }
4604
4605  // Actual nodes that may contain scalar elements
4606  if (Opcode == ISD::BITCAST) {
4607    V = V.getOperand(0);
4608    EVT SrcVT = V.getValueType();
4609    unsigned NumElems = VT.getVectorNumElements();
4610
4611    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4612      return SDValue();
4613  }
4614
4615  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4616    return (Index == 0) ? V.getOperand(0)
4617                        : DAG.getUNDEF(VT.getVectorElementType());
4618
4619  if (V.getOpcode() == ISD::BUILD_VECTOR)
4620    return V.getOperand(Index);
4621
4622  return SDValue();
4623}
4624
4625/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4626/// shuffle operation which come from a consecutively from a zero. The
4627/// search can start in two different directions, from left or right.
4628static
4629unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4630                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4631  unsigned i;
4632  for (i = 0; i != NumElems; ++i) {
4633    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4634    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4635    if (!(Elt.getNode() &&
4636         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4637      break;
4638  }
4639
4640  return i;
4641}
4642
4643/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4644/// correspond consecutively to elements from one of the vector operands,
4645/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4646static
4647bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4648                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4649                              unsigned NumElems, unsigned &OpNum) {
4650  bool SeenV1 = false;
4651  bool SeenV2 = false;
4652
4653  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4654    int Idx = SVOp->getMaskElt(i);
4655    // Ignore undef indicies
4656    if (Idx < 0)
4657      continue;
4658
4659    if (Idx < (int)NumElems)
4660      SeenV1 = true;
4661    else
4662      SeenV2 = true;
4663
4664    // Only accept consecutive elements from the same vector
4665    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4666      return false;
4667  }
4668
4669  OpNum = SeenV1 ? 0 : 1;
4670  return true;
4671}
4672
4673/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4674/// logical left shift of a vector.
4675static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4676                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4677  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4678  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4679              false /* check zeros from right */, DAG);
4680  unsigned OpSrc;
4681
4682  if (!NumZeros)
4683    return false;
4684
4685  // Considering the elements in the mask that are not consecutive zeros,
4686  // check if they consecutively come from only one of the source vectors.
4687  //
4688  //               V1 = {X, A, B, C}     0
4689  //                         \  \  \    /
4690  //   vector_shuffle V1, V2 <1, 2, 3, X>
4691  //
4692  if (!isShuffleMaskConsecutive(SVOp,
4693            0,                   // Mask Start Index
4694            NumElems-NumZeros,   // Mask End Index(exclusive)
4695            NumZeros,            // Where to start looking in the src vector
4696            NumElems,            // Number of elements in vector
4697            OpSrc))              // Which source operand ?
4698    return false;
4699
4700  isLeft = false;
4701  ShAmt = NumZeros;
4702  ShVal = SVOp->getOperand(OpSrc);
4703  return true;
4704}
4705
4706/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4707/// logical left shift of a vector.
4708static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4709                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4710  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4711  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4712              true /* check zeros from left */, DAG);
4713  unsigned OpSrc;
4714
4715  if (!NumZeros)
4716    return false;
4717
4718  // Considering the elements in the mask that are not consecutive zeros,
4719  // check if they consecutively come from only one of the source vectors.
4720  //
4721  //                           0    { A, B, X, X } = V2
4722  //                          / \    /  /
4723  //   vector_shuffle V1, V2 <X, X, 4, 5>
4724  //
4725  if (!isShuffleMaskConsecutive(SVOp,
4726            NumZeros,     // Mask Start Index
4727            NumElems,     // Mask End Index(exclusive)
4728            0,            // Where to start looking in the src vector
4729            NumElems,     // Number of elements in vector
4730            OpSrc))       // Which source operand ?
4731    return false;
4732
4733  isLeft = true;
4734  ShAmt = NumZeros;
4735  ShVal = SVOp->getOperand(OpSrc);
4736  return true;
4737}
4738
4739/// isVectorShift - Returns true if the shuffle can be implemented as a
4740/// logical left or right shift of a vector.
4741static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4742                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4743  // Although the logic below support any bitwidth size, there are no
4744  // shift instructions which handle more than 128-bit vectors.
4745  if (SVOp->getValueType(0).getSizeInBits() > 128)
4746    return false;
4747
4748  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4749      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4750    return true;
4751
4752  return false;
4753}
4754
4755/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4756///
4757static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4758                                       unsigned NumNonZero, unsigned NumZero,
4759                                       SelectionDAG &DAG,
4760                                       const X86Subtarget* Subtarget,
4761                                       const TargetLowering &TLI) {
4762  if (NumNonZero > 8)
4763    return SDValue();
4764
4765  DebugLoc dl = Op.getDebugLoc();
4766  SDValue V(0, 0);
4767  bool First = true;
4768  for (unsigned i = 0; i < 16; ++i) {
4769    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4770    if (ThisIsNonZero && First) {
4771      if (NumZero)
4772        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4773      else
4774        V = DAG.getUNDEF(MVT::v8i16);
4775      First = false;
4776    }
4777
4778    if ((i & 1) != 0) {
4779      SDValue ThisElt(0, 0), LastElt(0, 0);
4780      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4781      if (LastIsNonZero) {
4782        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4783                              MVT::i16, Op.getOperand(i-1));
4784      }
4785      if (ThisIsNonZero) {
4786        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4787        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4788                              ThisElt, DAG.getConstant(8, MVT::i8));
4789        if (LastIsNonZero)
4790          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4791      } else
4792        ThisElt = LastElt;
4793
4794      if (ThisElt.getNode())
4795        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4796                        DAG.getIntPtrConstant(i/2));
4797    }
4798  }
4799
4800  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4801}
4802
4803/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4804///
4805static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4806                                     unsigned NumNonZero, unsigned NumZero,
4807                                     SelectionDAG &DAG,
4808                                     const X86Subtarget* Subtarget,
4809                                     const TargetLowering &TLI) {
4810  if (NumNonZero > 4)
4811    return SDValue();
4812
4813  DebugLoc dl = Op.getDebugLoc();
4814  SDValue V(0, 0);
4815  bool First = true;
4816  for (unsigned i = 0; i < 8; ++i) {
4817    bool isNonZero = (NonZeros & (1 << i)) != 0;
4818    if (isNonZero) {
4819      if (First) {
4820        if (NumZero)
4821          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4822        else
4823          V = DAG.getUNDEF(MVT::v8i16);
4824        First = false;
4825      }
4826      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4827                      MVT::v8i16, V, Op.getOperand(i),
4828                      DAG.getIntPtrConstant(i));
4829    }
4830  }
4831
4832  return V;
4833}
4834
4835/// getVShift - Return a vector logical shift node.
4836///
4837static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4838                         unsigned NumBits, SelectionDAG &DAG,
4839                         const TargetLowering &TLI, DebugLoc dl) {
4840  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4841  EVT ShVT = MVT::v2i64;
4842  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4843  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4844  return DAG.getNode(ISD::BITCAST, dl, VT,
4845                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4846                             DAG.getConstant(NumBits,
4847                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4848}
4849
4850SDValue
4851X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4852                                          SelectionDAG &DAG) const {
4853
4854  // Check if the scalar load can be widened into a vector load. And if
4855  // the address is "base + cst" see if the cst can be "absorbed" into
4856  // the shuffle mask.
4857  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4858    SDValue Ptr = LD->getBasePtr();
4859    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4860      return SDValue();
4861    EVT PVT = LD->getValueType(0);
4862    if (PVT != MVT::i32 && PVT != MVT::f32)
4863      return SDValue();
4864
4865    int FI = -1;
4866    int64_t Offset = 0;
4867    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4868      FI = FINode->getIndex();
4869      Offset = 0;
4870    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4871               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4872      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4873      Offset = Ptr.getConstantOperandVal(1);
4874      Ptr = Ptr.getOperand(0);
4875    } else {
4876      return SDValue();
4877    }
4878
4879    // FIXME: 256-bit vector instructions don't require a strict alignment,
4880    // improve this code to support it better.
4881    unsigned RequiredAlign = VT.getSizeInBits()/8;
4882    SDValue Chain = LD->getChain();
4883    // Make sure the stack object alignment is at least 16 or 32.
4884    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4885    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4886      if (MFI->isFixedObjectIndex(FI)) {
4887        // Can't change the alignment. FIXME: It's possible to compute
4888        // the exact stack offset and reference FI + adjust offset instead.
4889        // If someone *really* cares about this. That's the way to implement it.
4890        return SDValue();
4891      } else {
4892        MFI->setObjectAlignment(FI, RequiredAlign);
4893      }
4894    }
4895
4896    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4897    // Ptr + (Offset & ~15).
4898    if (Offset < 0)
4899      return SDValue();
4900    if ((Offset % RequiredAlign) & 3)
4901      return SDValue();
4902    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4903    if (StartOffset)
4904      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4905                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4906
4907    int EltNo = (Offset - StartOffset) >> 2;
4908    unsigned NumElems = VT.getVectorNumElements();
4909
4910    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4911    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4912                             LD->getPointerInfo().getWithOffset(StartOffset),
4913                             false, false, false, 0);
4914
4915    SmallVector<int, 8> Mask;
4916    for (unsigned i = 0; i != NumElems; ++i)
4917      Mask.push_back(EltNo);
4918
4919    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4920  }
4921
4922  return SDValue();
4923}
4924
4925/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4926/// vector of type 'VT', see if the elements can be replaced by a single large
4927/// load which has the same value as a build_vector whose operands are 'elts'.
4928///
4929/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4930///
4931/// FIXME: we'd also like to handle the case where the last elements are zero
4932/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4933/// There's even a handy isZeroNode for that purpose.
4934static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4935                                        DebugLoc &DL, SelectionDAG &DAG) {
4936  EVT EltVT = VT.getVectorElementType();
4937  unsigned NumElems = Elts.size();
4938
4939  LoadSDNode *LDBase = NULL;
4940  unsigned LastLoadedElt = -1U;
4941
4942  // For each element in the initializer, see if we've found a load or an undef.
4943  // If we don't find an initial load element, or later load elements are
4944  // non-consecutive, bail out.
4945  for (unsigned i = 0; i < NumElems; ++i) {
4946    SDValue Elt = Elts[i];
4947
4948    if (!Elt.getNode() ||
4949        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4950      return SDValue();
4951    if (!LDBase) {
4952      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4953        return SDValue();
4954      LDBase = cast<LoadSDNode>(Elt.getNode());
4955      LastLoadedElt = i;
4956      continue;
4957    }
4958    if (Elt.getOpcode() == ISD::UNDEF)
4959      continue;
4960
4961    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4962    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4963      return SDValue();
4964    LastLoadedElt = i;
4965  }
4966
4967  // If we have found an entire vector of loads and undefs, then return a large
4968  // load of the entire vector width starting at the base pointer.  If we found
4969  // consecutive loads for the low half, generate a vzext_load node.
4970  if (LastLoadedElt == NumElems - 1) {
4971    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4972      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4973                         LDBase->getPointerInfo(),
4974                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4975                         LDBase->isInvariant(), 0);
4976    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4977                       LDBase->getPointerInfo(),
4978                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4979                       LDBase->isInvariant(), LDBase->getAlignment());
4980  }
4981  if (NumElems == 4 && LastLoadedElt == 1 &&
4982      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4983    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4984    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4985    SDValue ResNode =
4986        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4987                                LDBase->getPointerInfo(),
4988                                LDBase->getAlignment(),
4989                                false/*isVolatile*/, true/*ReadMem*/,
4990                                false/*WriteMem*/);
4991    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4992  }
4993  return SDValue();
4994}
4995
4996/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4997/// to generate a splat value for the following cases:
4998/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4999/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5000/// a scalar load, or a constant.
5001/// The VBROADCAST node is returned when a pattern is found,
5002/// or SDValue() otherwise.
5003SDValue
5004X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
5005  if (!Subtarget->hasAVX())
5006    return SDValue();
5007
5008  EVT VT = Op.getValueType();
5009  DebugLoc dl = Op.getDebugLoc();
5010
5011  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5012         "Unsupported vector type for broadcast.");
5013
5014  SDValue Ld;
5015  bool ConstSplatVal;
5016
5017  switch (Op.getOpcode()) {
5018    default:
5019      // Unknown pattern found.
5020      return SDValue();
5021
5022    case ISD::BUILD_VECTOR: {
5023      // The BUILD_VECTOR node must be a splat.
5024      if (!isSplatVector(Op.getNode()))
5025        return SDValue();
5026
5027      Ld = Op.getOperand(0);
5028      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5029                     Ld.getOpcode() == ISD::ConstantFP);
5030
5031      // The suspected load node has several users. Make sure that all
5032      // of its users are from the BUILD_VECTOR node.
5033      // Constants may have multiple users.
5034      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5035        return SDValue();
5036      break;
5037    }
5038
5039    case ISD::VECTOR_SHUFFLE: {
5040      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5041
5042      // Shuffles must have a splat mask where the first element is
5043      // broadcasted.
5044      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5045        return SDValue();
5046
5047      SDValue Sc = Op.getOperand(0);
5048      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5049          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5050
5051        if (!Subtarget->hasAVX2())
5052          return SDValue();
5053
5054        // Use the register form of the broadcast instruction available on AVX2.
5055        if (VT.is256BitVector())
5056          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5057        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5058      }
5059
5060      Ld = Sc.getOperand(0);
5061      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5062                       Ld.getOpcode() == ISD::ConstantFP);
5063
5064      // The scalar_to_vector node and the suspected
5065      // load node must have exactly one user.
5066      // Constants may have multiple users.
5067      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5068        return SDValue();
5069      break;
5070    }
5071  }
5072
5073  bool Is256 = VT.getSizeInBits() == 256;
5074
5075  // Handle the broadcasting a single constant scalar from the constant pool
5076  // into a vector. On Sandybridge it is still better to load a constant vector
5077  // from the constant pool and not to broadcast it from a scalar.
5078  if (ConstSplatVal && Subtarget->hasAVX2()) {
5079    EVT CVT = Ld.getValueType();
5080    assert(!CVT.isVector() && "Must not broadcast a vector type");
5081    unsigned ScalarSize = CVT.getSizeInBits();
5082
5083    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5084      const Constant *C = 0;
5085      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5086        C = CI->getConstantIntValue();
5087      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5088        C = CF->getConstantFPValue();
5089
5090      assert(C && "Invalid constant type");
5091
5092      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5093      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5094      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5095                       MachinePointerInfo::getConstantPool(),
5096                       false, false, false, Alignment);
5097
5098      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5099    }
5100  }
5101
5102  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5103  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5104
5105  // Handle AVX2 in-register broadcasts.
5106  if (!IsLoad && Subtarget->hasAVX2() &&
5107      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5108    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5109
5110  // The scalar source must be a normal load.
5111  if (!IsLoad)
5112    return SDValue();
5113
5114  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5115    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5116
5117  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5118  // double since there is no vbroadcastsd xmm
5119  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5120    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5121      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5122  }
5123
5124  // Unsupported broadcast.
5125  return SDValue();
5126}
5127
5128SDValue
5129X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5130  DebugLoc dl = Op.getDebugLoc();
5131
5132  EVT VT = Op.getValueType();
5133  EVT ExtVT = VT.getVectorElementType();
5134  unsigned NumElems = Op.getNumOperands();
5135
5136  // Vectors containing all zeros can be matched by pxor and xorps later
5137  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5138    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5139    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5140    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5141      return Op;
5142
5143    return getZeroVector(VT, Subtarget, DAG, dl);
5144  }
5145
5146  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5147  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5148  // vpcmpeqd on 256-bit vectors.
5149  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5150    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5151      return Op;
5152
5153    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5154  }
5155
5156  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5157  if (Broadcast.getNode())
5158    return Broadcast;
5159
5160  unsigned EVTBits = ExtVT.getSizeInBits();
5161
5162  unsigned NumZero  = 0;
5163  unsigned NumNonZero = 0;
5164  unsigned NonZeros = 0;
5165  bool IsAllConstants = true;
5166  SmallSet<SDValue, 8> Values;
5167  for (unsigned i = 0; i < NumElems; ++i) {
5168    SDValue Elt = Op.getOperand(i);
5169    if (Elt.getOpcode() == ISD::UNDEF)
5170      continue;
5171    Values.insert(Elt);
5172    if (Elt.getOpcode() != ISD::Constant &&
5173        Elt.getOpcode() != ISD::ConstantFP)
5174      IsAllConstants = false;
5175    if (X86::isZeroNode(Elt))
5176      NumZero++;
5177    else {
5178      NonZeros |= (1 << i);
5179      NumNonZero++;
5180    }
5181  }
5182
5183  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5184  if (NumNonZero == 0)
5185    return DAG.getUNDEF(VT);
5186
5187  // Special case for single non-zero, non-undef, element.
5188  if (NumNonZero == 1) {
5189    unsigned Idx = CountTrailingZeros_32(NonZeros);
5190    SDValue Item = Op.getOperand(Idx);
5191
5192    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5193    // the value are obviously zero, truncate the value to i32 and do the
5194    // insertion that way.  Only do this if the value is non-constant or if the
5195    // value is a constant being inserted into element 0.  It is cheaper to do
5196    // a constant pool load than it is to do a movd + shuffle.
5197    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5198        (!IsAllConstants || Idx == 0)) {
5199      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5200        // Handle SSE only.
5201        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5202        EVT VecVT = MVT::v4i32;
5203        unsigned VecElts = 4;
5204
5205        // Truncate the value (which may itself be a constant) to i32, and
5206        // convert it to a vector with movd (S2V+shuffle to zero extend).
5207        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5208        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5209        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5210
5211        // Now we have our 32-bit value zero extended in the low element of
5212        // a vector.  If Idx != 0, swizzle it into place.
5213        if (Idx != 0) {
5214          SmallVector<int, 4> Mask;
5215          Mask.push_back(Idx);
5216          for (unsigned i = 1; i != VecElts; ++i)
5217            Mask.push_back(i);
5218          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5219                                      &Mask[0]);
5220        }
5221        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5222      }
5223    }
5224
5225    // If we have a constant or non-constant insertion into the low element of
5226    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5227    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5228    // depending on what the source datatype is.
5229    if (Idx == 0) {
5230      if (NumZero == 0)
5231        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5232
5233      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5234          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5235        if (VT.getSizeInBits() == 256) {
5236          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5237          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5238                             Item, DAG.getIntPtrConstant(0));
5239        }
5240        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5241        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5242        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5243        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5244      }
5245
5246      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5247        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5248        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5249        if (VT.getSizeInBits() == 256) {
5250          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5251          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5252        } else {
5253          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5254          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5255        }
5256        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5257      }
5258    }
5259
5260    // Is it a vector logical left shift?
5261    if (NumElems == 2 && Idx == 1 &&
5262        X86::isZeroNode(Op.getOperand(0)) &&
5263        !X86::isZeroNode(Op.getOperand(1))) {
5264      unsigned NumBits = VT.getSizeInBits();
5265      return getVShift(true, VT,
5266                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5267                                   VT, Op.getOperand(1)),
5268                       NumBits/2, DAG, *this, dl);
5269    }
5270
5271    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5272      return SDValue();
5273
5274    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5275    // is a non-constant being inserted into an element other than the low one,
5276    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5277    // movd/movss) to move this into the low element, then shuffle it into
5278    // place.
5279    if (EVTBits == 32) {
5280      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5281
5282      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5283      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5284      SmallVector<int, 8> MaskVec;
5285      for (unsigned i = 0; i != NumElems; ++i)
5286        MaskVec.push_back(i == Idx ? 0 : 1);
5287      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5288    }
5289  }
5290
5291  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5292  if (Values.size() == 1) {
5293    if (EVTBits == 32) {
5294      // Instead of a shuffle like this:
5295      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5296      // Check if it's possible to issue this instead.
5297      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5298      unsigned Idx = CountTrailingZeros_32(NonZeros);
5299      SDValue Item = Op.getOperand(Idx);
5300      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5301        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5302    }
5303    return SDValue();
5304  }
5305
5306  // A vector full of immediates; various special cases are already
5307  // handled, so this is best done with a single constant-pool load.
5308  if (IsAllConstants)
5309    return SDValue();
5310
5311  // For AVX-length vectors, build the individual 128-bit pieces and use
5312  // shuffles to put them in place.
5313  if (VT.getSizeInBits() == 256) {
5314    SmallVector<SDValue, 32> V;
5315    for (unsigned i = 0; i != NumElems; ++i)
5316      V.push_back(Op.getOperand(i));
5317
5318    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5319
5320    // Build both the lower and upper subvector.
5321    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5322    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5323                                NumElems/2);
5324
5325    // Recreate the wider vector with the lower and upper part.
5326    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5327  }
5328
5329  // Let legalizer expand 2-wide build_vectors.
5330  if (EVTBits == 64) {
5331    if (NumNonZero == 1) {
5332      // One half is zero or undef.
5333      unsigned Idx = CountTrailingZeros_32(NonZeros);
5334      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5335                                 Op.getOperand(Idx));
5336      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5337    }
5338    return SDValue();
5339  }
5340
5341  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5342  if (EVTBits == 8 && NumElems == 16) {
5343    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5344                                        Subtarget, *this);
5345    if (V.getNode()) return V;
5346  }
5347
5348  if (EVTBits == 16 && NumElems == 8) {
5349    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5350                                      Subtarget, *this);
5351    if (V.getNode()) return V;
5352  }
5353
5354  // If element VT is == 32 bits, turn it into a number of shuffles.
5355  SmallVector<SDValue, 8> V(NumElems);
5356  if (NumElems == 4 && NumZero > 0) {
5357    for (unsigned i = 0; i < 4; ++i) {
5358      bool isZero = !(NonZeros & (1 << i));
5359      if (isZero)
5360        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5361      else
5362        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5363    }
5364
5365    for (unsigned i = 0; i < 2; ++i) {
5366      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5367        default: break;
5368        case 0:
5369          V[i] = V[i*2];  // Must be a zero vector.
5370          break;
5371        case 1:
5372          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5373          break;
5374        case 2:
5375          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5376          break;
5377        case 3:
5378          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5379          break;
5380      }
5381    }
5382
5383    bool Reverse1 = (NonZeros & 0x3) == 2;
5384    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5385    int MaskVec[] = {
5386      Reverse1 ? 1 : 0,
5387      Reverse1 ? 0 : 1,
5388      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5389      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5390    };
5391    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5392  }
5393
5394  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5395    // Check for a build vector of consecutive loads.
5396    for (unsigned i = 0; i < NumElems; ++i)
5397      V[i] = Op.getOperand(i);
5398
5399    // Check for elements which are consecutive loads.
5400    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5401    if (LD.getNode())
5402      return LD;
5403
5404    // For SSE 4.1, use insertps to put the high elements into the low element.
5405    if (getSubtarget()->hasSSE41()) {
5406      SDValue Result;
5407      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5408        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5409      else
5410        Result = DAG.getUNDEF(VT);
5411
5412      for (unsigned i = 1; i < NumElems; ++i) {
5413        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5414        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5415                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5416      }
5417      return Result;
5418    }
5419
5420    // Otherwise, expand into a number of unpckl*, start by extending each of
5421    // our (non-undef) elements to the full vector width with the element in the
5422    // bottom slot of the vector (which generates no code for SSE).
5423    for (unsigned i = 0; i < NumElems; ++i) {
5424      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5425        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5426      else
5427        V[i] = DAG.getUNDEF(VT);
5428    }
5429
5430    // Next, we iteratively mix elements, e.g. for v4f32:
5431    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5432    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5433    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5434    unsigned EltStride = NumElems >> 1;
5435    while (EltStride != 0) {
5436      for (unsigned i = 0; i < EltStride; ++i) {
5437        // If V[i+EltStride] is undef and this is the first round of mixing,
5438        // then it is safe to just drop this shuffle: V[i] is already in the
5439        // right place, the one element (since it's the first round) being
5440        // inserted as undef can be dropped.  This isn't safe for successive
5441        // rounds because they will permute elements within both vectors.
5442        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5443            EltStride == NumElems/2)
5444          continue;
5445
5446        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5447      }
5448      EltStride >>= 1;
5449    }
5450    return V[0];
5451  }
5452  return SDValue();
5453}
5454
5455// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5456// them in a MMX register.  This is better than doing a stack convert.
5457static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5458  DebugLoc dl = Op.getDebugLoc();
5459  EVT ResVT = Op.getValueType();
5460
5461  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5462         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5463  int Mask[2];
5464  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5465  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5466  InVec = Op.getOperand(1);
5467  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5468    unsigned NumElts = ResVT.getVectorNumElements();
5469    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5470    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5471                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5472  } else {
5473    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5474    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5475    Mask[0] = 0; Mask[1] = 2;
5476    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5477  }
5478  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5479}
5480
5481// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5482// to create 256-bit vectors from two other 128-bit ones.
5483static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5484  DebugLoc dl = Op.getDebugLoc();
5485  EVT ResVT = Op.getValueType();
5486
5487  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5488
5489  SDValue V1 = Op.getOperand(0);
5490  SDValue V2 = Op.getOperand(1);
5491  unsigned NumElems = ResVT.getVectorNumElements();
5492
5493  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5494}
5495
5496SDValue
5497X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5498  EVT ResVT = Op.getValueType();
5499
5500  assert(Op.getNumOperands() == 2);
5501  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5502         "Unsupported CONCAT_VECTORS for value type");
5503
5504  // We support concatenate two MMX registers and place them in a MMX register.
5505  // This is better than doing a stack convert.
5506  if (ResVT.is128BitVector())
5507    return LowerMMXCONCAT_VECTORS(Op, DAG);
5508
5509  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5510  // from two other 128-bit ones.
5511  return LowerAVXCONCAT_VECTORS(Op, DAG);
5512}
5513
5514// Try to lower a shuffle node into a simple blend instruction.
5515static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5516                                          const X86Subtarget *Subtarget,
5517                                          SelectionDAG &DAG) {
5518  SDValue V1 = SVOp->getOperand(0);
5519  SDValue V2 = SVOp->getOperand(1);
5520  DebugLoc dl = SVOp->getDebugLoc();
5521  MVT VT = SVOp->getValueType(0).getSimpleVT();
5522  unsigned NumElems = VT.getVectorNumElements();
5523
5524  if (!Subtarget->hasSSE41())
5525    return SDValue();
5526
5527  unsigned ISDNo = 0;
5528  MVT OpTy;
5529
5530  switch (VT.SimpleTy) {
5531  default: return SDValue();
5532  case MVT::v8i16:
5533    ISDNo = X86ISD::BLENDPW;
5534    OpTy = MVT::v8i16;
5535    break;
5536  case MVT::v4i32:
5537  case MVT::v4f32:
5538    ISDNo = X86ISD::BLENDPS;
5539    OpTy = MVT::v4f32;
5540    break;
5541  case MVT::v2i64:
5542  case MVT::v2f64:
5543    ISDNo = X86ISD::BLENDPD;
5544    OpTy = MVT::v2f64;
5545    break;
5546  case MVT::v8i32:
5547  case MVT::v8f32:
5548    if (!Subtarget->hasAVX())
5549      return SDValue();
5550    ISDNo = X86ISD::BLENDPS;
5551    OpTy = MVT::v8f32;
5552    break;
5553  case MVT::v4i64:
5554  case MVT::v4f64:
5555    if (!Subtarget->hasAVX())
5556      return SDValue();
5557    ISDNo = X86ISD::BLENDPD;
5558    OpTy = MVT::v4f64;
5559    break;
5560  }
5561  assert(ISDNo && "Invalid Op Number");
5562
5563  unsigned MaskVals = 0;
5564
5565  for (unsigned i = 0; i != NumElems; ++i) {
5566    int EltIdx = SVOp->getMaskElt(i);
5567    if (EltIdx == (int)i || EltIdx < 0)
5568      MaskVals |= (1<<i);
5569    else if (EltIdx == (int)(i + NumElems))
5570      continue; // Bit is set to zero;
5571    else
5572      return SDValue();
5573  }
5574
5575  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5576  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5577  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5578                             DAG.getConstant(MaskVals, MVT::i32));
5579  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5580}
5581
5582// v8i16 shuffles - Prefer shuffles in the following order:
5583// 1. [all]   pshuflw, pshufhw, optional move
5584// 2. [ssse3] 1 x pshufb
5585// 3. [ssse3] 2 x pshufb + 1 x por
5586// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5587SDValue
5588X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5589                                            SelectionDAG &DAG) const {
5590  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5591  SDValue V1 = SVOp->getOperand(0);
5592  SDValue V2 = SVOp->getOperand(1);
5593  DebugLoc dl = SVOp->getDebugLoc();
5594  SmallVector<int, 8> MaskVals;
5595
5596  // Determine if more than 1 of the words in each of the low and high quadwords
5597  // of the result come from the same quadword of one of the two inputs.  Undef
5598  // mask values count as coming from any quadword, for better codegen.
5599  unsigned LoQuad[] = { 0, 0, 0, 0 };
5600  unsigned HiQuad[] = { 0, 0, 0, 0 };
5601  std::bitset<4> InputQuads;
5602  for (unsigned i = 0; i < 8; ++i) {
5603    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5604    int EltIdx = SVOp->getMaskElt(i);
5605    MaskVals.push_back(EltIdx);
5606    if (EltIdx < 0) {
5607      ++Quad[0];
5608      ++Quad[1];
5609      ++Quad[2];
5610      ++Quad[3];
5611      continue;
5612    }
5613    ++Quad[EltIdx / 4];
5614    InputQuads.set(EltIdx / 4);
5615  }
5616
5617  int BestLoQuad = -1;
5618  unsigned MaxQuad = 1;
5619  for (unsigned i = 0; i < 4; ++i) {
5620    if (LoQuad[i] > MaxQuad) {
5621      BestLoQuad = i;
5622      MaxQuad = LoQuad[i];
5623    }
5624  }
5625
5626  int BestHiQuad = -1;
5627  MaxQuad = 1;
5628  for (unsigned i = 0; i < 4; ++i) {
5629    if (HiQuad[i] > MaxQuad) {
5630      BestHiQuad = i;
5631      MaxQuad = HiQuad[i];
5632    }
5633  }
5634
5635  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5636  // of the two input vectors, shuffle them into one input vector so only a
5637  // single pshufb instruction is necessary. If There are more than 2 input
5638  // quads, disable the next transformation since it does not help SSSE3.
5639  bool V1Used = InputQuads[0] || InputQuads[1];
5640  bool V2Used = InputQuads[2] || InputQuads[3];
5641  if (Subtarget->hasSSSE3()) {
5642    if (InputQuads.count() == 2 && V1Used && V2Used) {
5643      BestLoQuad = InputQuads[0] ? 0 : 1;
5644      BestHiQuad = InputQuads[2] ? 2 : 3;
5645    }
5646    if (InputQuads.count() > 2) {
5647      BestLoQuad = -1;
5648      BestHiQuad = -1;
5649    }
5650  }
5651
5652  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5653  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5654  // words from all 4 input quadwords.
5655  SDValue NewV;
5656  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5657    int MaskV[] = {
5658      BestLoQuad < 0 ? 0 : BestLoQuad,
5659      BestHiQuad < 0 ? 1 : BestHiQuad
5660    };
5661    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5662                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5663                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5664    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5665
5666    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5667    // source words for the shuffle, to aid later transformations.
5668    bool AllWordsInNewV = true;
5669    bool InOrder[2] = { true, true };
5670    for (unsigned i = 0; i != 8; ++i) {
5671      int idx = MaskVals[i];
5672      if (idx != (int)i)
5673        InOrder[i/4] = false;
5674      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5675        continue;
5676      AllWordsInNewV = false;
5677      break;
5678    }
5679
5680    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5681    if (AllWordsInNewV) {
5682      for (int i = 0; i != 8; ++i) {
5683        int idx = MaskVals[i];
5684        if (idx < 0)
5685          continue;
5686        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5687        if ((idx != i) && idx < 4)
5688          pshufhw = false;
5689        if ((idx != i) && idx > 3)
5690          pshuflw = false;
5691      }
5692      V1 = NewV;
5693      V2Used = false;
5694      BestLoQuad = 0;
5695      BestHiQuad = 1;
5696    }
5697
5698    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5699    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5700    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5701      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5702      unsigned TargetMask = 0;
5703      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5704                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5705      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5706      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5707                             getShufflePSHUFLWImmediate(SVOp);
5708      V1 = NewV.getOperand(0);
5709      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5710    }
5711  }
5712
5713  // If we have SSSE3, and all words of the result are from 1 input vector,
5714  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5715  // is present, fall back to case 4.
5716  if (Subtarget->hasSSSE3()) {
5717    SmallVector<SDValue,16> pshufbMask;
5718
5719    // If we have elements from both input vectors, set the high bit of the
5720    // shuffle mask element to zero out elements that come from V2 in the V1
5721    // mask, and elements that come from V1 in the V2 mask, so that the two
5722    // results can be OR'd together.
5723    bool TwoInputs = V1Used && V2Used;
5724    for (unsigned i = 0; i != 8; ++i) {
5725      int EltIdx = MaskVals[i] * 2;
5726      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5727      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5728      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5729      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5730    }
5731    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5732    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5733                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5734                                 MVT::v16i8, &pshufbMask[0], 16));
5735    if (!TwoInputs)
5736      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5737
5738    // Calculate the shuffle mask for the second input, shuffle it, and
5739    // OR it with the first shuffled input.
5740    pshufbMask.clear();
5741    for (unsigned i = 0; i != 8; ++i) {
5742      int EltIdx = MaskVals[i] * 2;
5743      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5744      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5745      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5746      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5747    }
5748    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5749    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5750                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5751                                 MVT::v16i8, &pshufbMask[0], 16));
5752    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5753    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5754  }
5755
5756  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5757  // and update MaskVals with new element order.
5758  std::bitset<8> InOrder;
5759  if (BestLoQuad >= 0) {
5760    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5761    for (int i = 0; i != 4; ++i) {
5762      int idx = MaskVals[i];
5763      if (idx < 0) {
5764        InOrder.set(i);
5765      } else if ((idx / 4) == BestLoQuad) {
5766        MaskV[i] = idx & 3;
5767        InOrder.set(i);
5768      }
5769    }
5770    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5771                                &MaskV[0]);
5772
5773    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5774      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5775      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5776                                  NewV.getOperand(0),
5777                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5778    }
5779  }
5780
5781  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5782  // and update MaskVals with the new element order.
5783  if (BestHiQuad >= 0) {
5784    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5785    for (unsigned i = 4; i != 8; ++i) {
5786      int idx = MaskVals[i];
5787      if (idx < 0) {
5788        InOrder.set(i);
5789      } else if ((idx / 4) == BestHiQuad) {
5790        MaskV[i] = (idx & 3) + 4;
5791        InOrder.set(i);
5792      }
5793    }
5794    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5795                                &MaskV[0]);
5796
5797    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5798      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5799      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5800                                  NewV.getOperand(0),
5801                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5802    }
5803  }
5804
5805  // In case BestHi & BestLo were both -1, which means each quadword has a word
5806  // from each of the four input quadwords, calculate the InOrder bitvector now
5807  // before falling through to the insert/extract cleanup.
5808  if (BestLoQuad == -1 && BestHiQuad == -1) {
5809    NewV = V1;
5810    for (int i = 0; i != 8; ++i)
5811      if (MaskVals[i] < 0 || MaskVals[i] == i)
5812        InOrder.set(i);
5813  }
5814
5815  // The other elements are put in the right place using pextrw and pinsrw.
5816  for (unsigned i = 0; i != 8; ++i) {
5817    if (InOrder[i])
5818      continue;
5819    int EltIdx = MaskVals[i];
5820    if (EltIdx < 0)
5821      continue;
5822    SDValue ExtOp = (EltIdx < 8) ?
5823      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5824                  DAG.getIntPtrConstant(EltIdx)) :
5825      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5826                  DAG.getIntPtrConstant(EltIdx - 8));
5827    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5828                       DAG.getIntPtrConstant(i));
5829  }
5830  return NewV;
5831}
5832
5833// v16i8 shuffles - Prefer shuffles in the following order:
5834// 1. [ssse3] 1 x pshufb
5835// 2. [ssse3] 2 x pshufb + 1 x por
5836// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5837static
5838SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5839                                 SelectionDAG &DAG,
5840                                 const X86TargetLowering &TLI) {
5841  SDValue V1 = SVOp->getOperand(0);
5842  SDValue V2 = SVOp->getOperand(1);
5843  DebugLoc dl = SVOp->getDebugLoc();
5844  ArrayRef<int> MaskVals = SVOp->getMask();
5845
5846  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5847
5848  // If we have SSSE3, case 1 is generated when all result bytes come from
5849  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5850  // present, fall back to case 3.
5851
5852  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5853  if (TLI.getSubtarget()->hasSSSE3()) {
5854    SmallVector<SDValue,16> pshufbMask;
5855
5856    // If all result elements are from one input vector, then only translate
5857    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5858    //
5859    // Otherwise, we have elements from both input vectors, and must zero out
5860    // elements that come from V2 in the first mask, and V1 in the second mask
5861    // so that we can OR them together.
5862    for (unsigned i = 0; i != 16; ++i) {
5863      int EltIdx = MaskVals[i];
5864      if (EltIdx < 0 || EltIdx >= 16)
5865        EltIdx = 0x80;
5866      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5867    }
5868    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5869                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5870                                 MVT::v16i8, &pshufbMask[0], 16));
5871    if (V2IsUndef)
5872      return V1;
5873
5874    // Calculate the shuffle mask for the second input, shuffle it, and
5875    // OR it with the first shuffled input.
5876    pshufbMask.clear();
5877    for (unsigned i = 0; i != 16; ++i) {
5878      int EltIdx = MaskVals[i];
5879      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5880      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5881    }
5882    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5883                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5884                                 MVT::v16i8, &pshufbMask[0], 16));
5885    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5886  }
5887
5888  // No SSSE3 - Calculate in place words and then fix all out of place words
5889  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5890  // the 16 different words that comprise the two doublequadword input vectors.
5891  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5892  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5893  SDValue NewV = V1;
5894  for (int i = 0; i != 8; ++i) {
5895    int Elt0 = MaskVals[i*2];
5896    int Elt1 = MaskVals[i*2+1];
5897
5898    // This word of the result is all undef, skip it.
5899    if (Elt0 < 0 && Elt1 < 0)
5900      continue;
5901
5902    // This word of the result is already in the correct place, skip it.
5903    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5904      continue;
5905
5906    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5907    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5908    SDValue InsElt;
5909
5910    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5911    // using a single extract together, load it and store it.
5912    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5913      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5914                           DAG.getIntPtrConstant(Elt1 / 2));
5915      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5916                        DAG.getIntPtrConstant(i));
5917      continue;
5918    }
5919
5920    // If Elt1 is defined, extract it from the appropriate source.  If the
5921    // source byte is not also odd, shift the extracted word left 8 bits
5922    // otherwise clear the bottom 8 bits if we need to do an or.
5923    if (Elt1 >= 0) {
5924      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5925                           DAG.getIntPtrConstant(Elt1 / 2));
5926      if ((Elt1 & 1) == 0)
5927        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5928                             DAG.getConstant(8,
5929                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5930      else if (Elt0 >= 0)
5931        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5932                             DAG.getConstant(0xFF00, MVT::i16));
5933    }
5934    // If Elt0 is defined, extract it from the appropriate source.  If the
5935    // source byte is not also even, shift the extracted word right 8 bits. If
5936    // Elt1 was also defined, OR the extracted values together before
5937    // inserting them in the result.
5938    if (Elt0 >= 0) {
5939      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5940                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5941      if ((Elt0 & 1) != 0)
5942        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5943                              DAG.getConstant(8,
5944                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5945      else if (Elt1 >= 0)
5946        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5947                             DAG.getConstant(0x00FF, MVT::i16));
5948      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5949                         : InsElt0;
5950    }
5951    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5952                       DAG.getIntPtrConstant(i));
5953  }
5954  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5955}
5956
5957/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5958/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5959/// done when every pair / quad of shuffle mask elements point to elements in
5960/// the right sequence. e.g.
5961/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5962static
5963SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5964                                 SelectionDAG &DAG, DebugLoc dl) {
5965  MVT VT = SVOp->getValueType(0).getSimpleVT();
5966  unsigned NumElems = VT.getVectorNumElements();
5967  MVT NewVT;
5968  unsigned Scale;
5969  switch (VT.SimpleTy) {
5970  default: llvm_unreachable("Unexpected!");
5971  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
5972  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
5973  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
5974  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
5975  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
5976  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
5977  }
5978
5979  SmallVector<int, 8> MaskVec;
5980  for (unsigned i = 0; i != NumElems; i += Scale) {
5981    int StartIdx = -1;
5982    for (unsigned j = 0; j != Scale; ++j) {
5983      int EltIdx = SVOp->getMaskElt(i+j);
5984      if (EltIdx < 0)
5985        continue;
5986      if (StartIdx < 0)
5987        StartIdx = (EltIdx / Scale);
5988      if (EltIdx != (int)(StartIdx*Scale + j))
5989        return SDValue();
5990    }
5991    MaskVec.push_back(StartIdx);
5992  }
5993
5994  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
5995  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
5996  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5997}
5998
5999/// getVZextMovL - Return a zero-extending vector move low node.
6000///
6001static SDValue getVZextMovL(EVT VT, EVT OpVT,
6002                            SDValue SrcOp, SelectionDAG &DAG,
6003                            const X86Subtarget *Subtarget, DebugLoc dl) {
6004  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6005    LoadSDNode *LD = NULL;
6006    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6007      LD = dyn_cast<LoadSDNode>(SrcOp);
6008    if (!LD) {
6009      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6010      // instead.
6011      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6012      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6013          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6014          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6015          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6016        // PR2108
6017        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6018        return DAG.getNode(ISD::BITCAST, dl, VT,
6019                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6020                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6021                                                   OpVT,
6022                                                   SrcOp.getOperand(0)
6023                                                          .getOperand(0))));
6024      }
6025    }
6026  }
6027
6028  return DAG.getNode(ISD::BITCAST, dl, VT,
6029                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6030                                 DAG.getNode(ISD::BITCAST, dl,
6031                                             OpVT, SrcOp)));
6032}
6033
6034/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6035/// which could not be matched by any known target speficic shuffle
6036static SDValue
6037LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6038
6039  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6040  if (NewOp.getNode())
6041    return NewOp;
6042
6043  EVT VT = SVOp->getValueType(0);
6044
6045  unsigned NumElems = VT.getVectorNumElements();
6046  unsigned NumLaneElems = NumElems / 2;
6047
6048  DebugLoc dl = SVOp->getDebugLoc();
6049  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6050  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6051  SDValue Output[2];
6052
6053  SmallVector<int, 16> Mask;
6054  for (unsigned l = 0; l < 2; ++l) {
6055    // Build a shuffle mask for the output, discovering on the fly which
6056    // input vectors to use as shuffle operands (recorded in InputUsed).
6057    // If building a suitable shuffle vector proves too hard, then bail
6058    // out with UseBuildVector set.
6059    bool UseBuildVector = false;
6060    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6061    unsigned LaneStart = l * NumLaneElems;
6062    for (unsigned i = 0; i != NumLaneElems; ++i) {
6063      // The mask element.  This indexes into the input.
6064      int Idx = SVOp->getMaskElt(i+LaneStart);
6065      if (Idx < 0) {
6066        // the mask element does not index into any input vector.
6067        Mask.push_back(-1);
6068        continue;
6069      }
6070
6071      // The input vector this mask element indexes into.
6072      int Input = Idx / NumLaneElems;
6073
6074      // Turn the index into an offset from the start of the input vector.
6075      Idx -= Input * NumLaneElems;
6076
6077      // Find or create a shuffle vector operand to hold this input.
6078      unsigned OpNo;
6079      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6080        if (InputUsed[OpNo] == Input)
6081          // This input vector is already an operand.
6082          break;
6083        if (InputUsed[OpNo] < 0) {
6084          // Create a new operand for this input vector.
6085          InputUsed[OpNo] = Input;
6086          break;
6087        }
6088      }
6089
6090      if (OpNo >= array_lengthof(InputUsed)) {
6091        // More than two input vectors used!  Give up on trying to create a
6092        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6093        UseBuildVector = true;
6094        break;
6095      }
6096
6097      // Add the mask index for the new shuffle vector.
6098      Mask.push_back(Idx + OpNo * NumLaneElems);
6099    }
6100
6101    if (UseBuildVector) {
6102      SmallVector<SDValue, 16> SVOps;
6103      for (unsigned i = 0; i != NumLaneElems; ++i) {
6104        // The mask element.  This indexes into the input.
6105        int Idx = SVOp->getMaskElt(i+LaneStart);
6106        if (Idx < 0) {
6107          SVOps.push_back(DAG.getUNDEF(EltVT));
6108          continue;
6109        }
6110
6111        // The input vector this mask element indexes into.
6112        int Input = Idx / NumElems;
6113
6114        // Turn the index into an offset from the start of the input vector.
6115        Idx -= Input * NumElems;
6116
6117        // Extract the vector element by hand.
6118        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6119                                    SVOp->getOperand(Input),
6120                                    DAG.getIntPtrConstant(Idx)));
6121      }
6122
6123      // Construct the output using a BUILD_VECTOR.
6124      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6125                              SVOps.size());
6126    } else if (InputUsed[0] < 0) {
6127      // No input vectors were used! The result is undefined.
6128      Output[l] = DAG.getUNDEF(NVT);
6129    } else {
6130      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6131                                        (InputUsed[0] % 2) * NumLaneElems,
6132                                        DAG, dl);
6133      // If only one input was used, use an undefined vector for the other.
6134      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6135        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6136                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6137      // At least one input vector was used. Create a new shuffle vector.
6138      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6139    }
6140
6141    Mask.clear();
6142  }
6143
6144  // Concatenate the result back
6145  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6146}
6147
6148/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6149/// 4 elements, and match them with several different shuffle types.
6150static SDValue
6151LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6152  SDValue V1 = SVOp->getOperand(0);
6153  SDValue V2 = SVOp->getOperand(1);
6154  DebugLoc dl = SVOp->getDebugLoc();
6155  EVT VT = SVOp->getValueType(0);
6156
6157  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6158
6159  std::pair<int, int> Locs[4];
6160  int Mask1[] = { -1, -1, -1, -1 };
6161  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6162
6163  unsigned NumHi = 0;
6164  unsigned NumLo = 0;
6165  for (unsigned i = 0; i != 4; ++i) {
6166    int Idx = PermMask[i];
6167    if (Idx < 0) {
6168      Locs[i] = std::make_pair(-1, -1);
6169    } else {
6170      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6171      if (Idx < 4) {
6172        Locs[i] = std::make_pair(0, NumLo);
6173        Mask1[NumLo] = Idx;
6174        NumLo++;
6175      } else {
6176        Locs[i] = std::make_pair(1, NumHi);
6177        if (2+NumHi < 4)
6178          Mask1[2+NumHi] = Idx;
6179        NumHi++;
6180      }
6181    }
6182  }
6183
6184  if (NumLo <= 2 && NumHi <= 2) {
6185    // If no more than two elements come from either vector. This can be
6186    // implemented with two shuffles. First shuffle gather the elements.
6187    // The second shuffle, which takes the first shuffle as both of its
6188    // vector operands, put the elements into the right order.
6189    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6190
6191    int Mask2[] = { -1, -1, -1, -1 };
6192
6193    for (unsigned i = 0; i != 4; ++i)
6194      if (Locs[i].first != -1) {
6195        unsigned Idx = (i < 2) ? 0 : 4;
6196        Idx += Locs[i].first * 2 + Locs[i].second;
6197        Mask2[i] = Idx;
6198      }
6199
6200    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6201  }
6202
6203  if (NumLo == 3 || NumHi == 3) {
6204    // Otherwise, we must have three elements from one vector, call it X, and
6205    // one element from the other, call it Y.  First, use a shufps to build an
6206    // intermediate vector with the one element from Y and the element from X
6207    // that will be in the same half in the final destination (the indexes don't
6208    // matter). Then, use a shufps to build the final vector, taking the half
6209    // containing the element from Y from the intermediate, and the other half
6210    // from X.
6211    if (NumHi == 3) {
6212      // Normalize it so the 3 elements come from V1.
6213      CommuteVectorShuffleMask(PermMask, 4);
6214      std::swap(V1, V2);
6215    }
6216
6217    // Find the element from V2.
6218    unsigned HiIndex;
6219    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6220      int Val = PermMask[HiIndex];
6221      if (Val < 0)
6222        continue;
6223      if (Val >= 4)
6224        break;
6225    }
6226
6227    Mask1[0] = PermMask[HiIndex];
6228    Mask1[1] = -1;
6229    Mask1[2] = PermMask[HiIndex^1];
6230    Mask1[3] = -1;
6231    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6232
6233    if (HiIndex >= 2) {
6234      Mask1[0] = PermMask[0];
6235      Mask1[1] = PermMask[1];
6236      Mask1[2] = HiIndex & 1 ? 6 : 4;
6237      Mask1[3] = HiIndex & 1 ? 4 : 6;
6238      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6239    }
6240
6241    Mask1[0] = HiIndex & 1 ? 2 : 0;
6242    Mask1[1] = HiIndex & 1 ? 0 : 2;
6243    Mask1[2] = PermMask[2];
6244    Mask1[3] = PermMask[3];
6245    if (Mask1[2] >= 0)
6246      Mask1[2] += 4;
6247    if (Mask1[3] >= 0)
6248      Mask1[3] += 4;
6249    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6250  }
6251
6252  // Break it into (shuffle shuffle_hi, shuffle_lo).
6253  int LoMask[] = { -1, -1, -1, -1 };
6254  int HiMask[] = { -1, -1, -1, -1 };
6255
6256  int *MaskPtr = LoMask;
6257  unsigned MaskIdx = 0;
6258  unsigned LoIdx = 0;
6259  unsigned HiIdx = 2;
6260  for (unsigned i = 0; i != 4; ++i) {
6261    if (i == 2) {
6262      MaskPtr = HiMask;
6263      MaskIdx = 1;
6264      LoIdx = 0;
6265      HiIdx = 2;
6266    }
6267    int Idx = PermMask[i];
6268    if (Idx < 0) {
6269      Locs[i] = std::make_pair(-1, -1);
6270    } else if (Idx < 4) {
6271      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6272      MaskPtr[LoIdx] = Idx;
6273      LoIdx++;
6274    } else {
6275      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6276      MaskPtr[HiIdx] = Idx;
6277      HiIdx++;
6278    }
6279  }
6280
6281  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6282  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6283  int MaskOps[] = { -1, -1, -1, -1 };
6284  for (unsigned i = 0; i != 4; ++i)
6285    if (Locs[i].first != -1)
6286      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6287  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6288}
6289
6290static bool MayFoldVectorLoad(SDValue V) {
6291  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6292    V = V.getOperand(0);
6293  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6294    V = V.getOperand(0);
6295  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6296      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6297    // BUILD_VECTOR (load), undef
6298    V = V.getOperand(0);
6299  if (MayFoldLoad(V))
6300    return true;
6301  return false;
6302}
6303
6304// FIXME: the version above should always be used. Since there's
6305// a bug where several vector shuffles can't be folded because the
6306// DAG is not updated during lowering and a node claims to have two
6307// uses while it only has one, use this version, and let isel match
6308// another instruction if the load really happens to have more than
6309// one use. Remove this version after this bug get fixed.
6310// rdar://8434668, PR8156
6311static bool RelaxedMayFoldVectorLoad(SDValue V) {
6312  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6313    V = V.getOperand(0);
6314  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6315    V = V.getOperand(0);
6316  if (ISD::isNormalLoad(V.getNode()))
6317    return true;
6318  return false;
6319}
6320
6321static
6322SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6323  EVT VT = Op.getValueType();
6324
6325  // Canonizalize to v2f64.
6326  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6327  return DAG.getNode(ISD::BITCAST, dl, VT,
6328                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6329                                          V1, DAG));
6330}
6331
6332static
6333SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6334                        bool HasSSE2) {
6335  SDValue V1 = Op.getOperand(0);
6336  SDValue V2 = Op.getOperand(1);
6337  EVT VT = Op.getValueType();
6338
6339  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6340
6341  if (HasSSE2 && VT == MVT::v2f64)
6342    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6343
6344  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6345  return DAG.getNode(ISD::BITCAST, dl, VT,
6346                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6347                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6348                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6349}
6350
6351static
6352SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6353  SDValue V1 = Op.getOperand(0);
6354  SDValue V2 = Op.getOperand(1);
6355  EVT VT = Op.getValueType();
6356
6357  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6358         "unsupported shuffle type");
6359
6360  if (V2.getOpcode() == ISD::UNDEF)
6361    V2 = V1;
6362
6363  // v4i32 or v4f32
6364  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6365}
6366
6367static
6368SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6369  SDValue V1 = Op.getOperand(0);
6370  SDValue V2 = Op.getOperand(1);
6371  EVT VT = Op.getValueType();
6372  unsigned NumElems = VT.getVectorNumElements();
6373
6374  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6375  // operand of these instructions is only memory, so check if there's a
6376  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6377  // same masks.
6378  bool CanFoldLoad = false;
6379
6380  // Trivial case, when V2 comes from a load.
6381  if (MayFoldVectorLoad(V2))
6382    CanFoldLoad = true;
6383
6384  // When V1 is a load, it can be folded later into a store in isel, example:
6385  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6386  //    turns into:
6387  //  (MOVLPSmr addr:$src1, VR128:$src2)
6388  // So, recognize this potential and also use MOVLPS or MOVLPD
6389  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6390    CanFoldLoad = true;
6391
6392  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6393  if (CanFoldLoad) {
6394    if (HasSSE2 && NumElems == 2)
6395      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6396
6397    if (NumElems == 4)
6398      // If we don't care about the second element, proceed to use movss.
6399      if (SVOp->getMaskElt(1) != -1)
6400        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6401  }
6402
6403  // movl and movlp will both match v2i64, but v2i64 is never matched by
6404  // movl earlier because we make it strict to avoid messing with the movlp load
6405  // folding logic (see the code above getMOVLP call). Match it here then,
6406  // this is horrible, but will stay like this until we move all shuffle
6407  // matching to x86 specific nodes. Note that for the 1st condition all
6408  // types are matched with movsd.
6409  if (HasSSE2) {
6410    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6411    // as to remove this logic from here, as much as possible
6412    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6413      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6414    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6415  }
6416
6417  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6418
6419  // Invert the operand order and use SHUFPS to match it.
6420  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6421                              getShuffleSHUFImmediate(SVOp), DAG);
6422}
6423
6424SDValue
6425X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6426  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6427  EVT VT = Op.getValueType();
6428  DebugLoc dl = Op.getDebugLoc();
6429  SDValue V1 = Op.getOperand(0);
6430  SDValue V2 = Op.getOperand(1);
6431
6432  if (isZeroShuffle(SVOp))
6433    return getZeroVector(VT, Subtarget, DAG, dl);
6434
6435  // Handle splat operations
6436  if (SVOp->isSplat()) {
6437    unsigned NumElem = VT.getVectorNumElements();
6438    int Size = VT.getSizeInBits();
6439
6440    // Use vbroadcast whenever the splat comes from a foldable load
6441    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6442    if (Broadcast.getNode())
6443      return Broadcast;
6444
6445    // Handle splats by matching through known shuffle masks
6446    if ((Size == 128 && NumElem <= 4) ||
6447        (Size == 256 && NumElem < 8))
6448      return SDValue();
6449
6450    // All remaning splats are promoted to target supported vector shuffles.
6451    return PromoteSplat(SVOp, DAG);
6452  }
6453
6454  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6455  // do it!
6456  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6457      VT == MVT::v16i16 || VT == MVT::v32i8) {
6458    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6459    if (NewOp.getNode())
6460      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6461  } else if ((VT == MVT::v4i32 ||
6462             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6463    // FIXME: Figure out a cleaner way to do this.
6464    // Try to make use of movq to zero out the top part.
6465    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6466      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6467      if (NewOp.getNode()) {
6468        EVT NewVT = NewOp.getValueType();
6469        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6470                               NewVT, true, false))
6471          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6472                              DAG, Subtarget, dl);
6473      }
6474    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6475      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6476      if (NewOp.getNode()) {
6477        EVT NewVT = NewOp.getValueType();
6478        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6479          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6480                              DAG, Subtarget, dl);
6481      }
6482    }
6483  }
6484  return SDValue();
6485}
6486
6487SDValue
6488X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6489  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6490  SDValue V1 = Op.getOperand(0);
6491  SDValue V2 = Op.getOperand(1);
6492  EVT VT = Op.getValueType();
6493  DebugLoc dl = Op.getDebugLoc();
6494  unsigned NumElems = VT.getVectorNumElements();
6495  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6496  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6497  bool V1IsSplat = false;
6498  bool V2IsSplat = false;
6499  bool HasSSE2 = Subtarget->hasSSE2();
6500  bool HasAVX    = Subtarget->hasAVX();
6501  bool HasAVX2   = Subtarget->hasAVX2();
6502  MachineFunction &MF = DAG.getMachineFunction();
6503  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6504
6505  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6506
6507  if (V1IsUndef && V2IsUndef)
6508    return DAG.getUNDEF(VT);
6509
6510  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6511
6512  // Vector shuffle lowering takes 3 steps:
6513  //
6514  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6515  //    narrowing and commutation of operands should be handled.
6516  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6517  //    shuffle nodes.
6518  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6519  //    so the shuffle can be broken into other shuffles and the legalizer can
6520  //    try the lowering again.
6521  //
6522  // The general idea is that no vector_shuffle operation should be left to
6523  // be matched during isel, all of them must be converted to a target specific
6524  // node here.
6525
6526  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6527  // narrowing and commutation of operands should be handled. The actual code
6528  // doesn't include all of those, work in progress...
6529  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6530  if (NewOp.getNode())
6531    return NewOp;
6532
6533  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6534
6535  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6536  // unpckh_undef). Only use pshufd if speed is more important than size.
6537  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6538    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6539  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6540    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6541
6542  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6543      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6544    return getMOVDDup(Op, dl, V1, DAG);
6545
6546  if (isMOVHLPS_v_undef_Mask(M, VT))
6547    return getMOVHighToLow(Op, dl, DAG);
6548
6549  // Use to match splats
6550  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6551      (VT == MVT::v2f64 || VT == MVT::v2i64))
6552    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6553
6554  if (isPSHUFDMask(M, VT)) {
6555    // The actual implementation will match the mask in the if above and then
6556    // during isel it can match several different instructions, not only pshufd
6557    // as its name says, sad but true, emulate the behavior for now...
6558    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6559      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6560
6561    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6562
6563    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6564      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6565
6566    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6567      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6568
6569    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6570                                TargetMask, DAG);
6571  }
6572
6573  // Check if this can be converted into a logical shift.
6574  bool isLeft = false;
6575  unsigned ShAmt = 0;
6576  SDValue ShVal;
6577  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6578  if (isShift && ShVal.hasOneUse()) {
6579    // If the shifted value has multiple uses, it may be cheaper to use
6580    // v_set0 + movlhps or movhlps, etc.
6581    EVT EltVT = VT.getVectorElementType();
6582    ShAmt *= EltVT.getSizeInBits();
6583    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6584  }
6585
6586  if (isMOVLMask(M, VT)) {
6587    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6588      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6589    if (!isMOVLPMask(M, VT)) {
6590      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6591        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6592
6593      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6594        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6595    }
6596  }
6597
6598  // FIXME: fold these into legal mask.
6599  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6600    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6601
6602  if (isMOVHLPSMask(M, VT))
6603    return getMOVHighToLow(Op, dl, DAG);
6604
6605  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6606    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6607
6608  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6609    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6610
6611  if (isMOVLPMask(M, VT))
6612    return getMOVLP(Op, dl, DAG, HasSSE2);
6613
6614  if (ShouldXformToMOVHLPS(M, VT) ||
6615      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6616    return CommuteVectorShuffle(SVOp, DAG);
6617
6618  if (isShift) {
6619    // No better options. Use a vshldq / vsrldq.
6620    EVT EltVT = VT.getVectorElementType();
6621    ShAmt *= EltVT.getSizeInBits();
6622    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6623  }
6624
6625  bool Commuted = false;
6626  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6627  // 1,1,1,1 -> v8i16 though.
6628  V1IsSplat = isSplatVector(V1.getNode());
6629  V2IsSplat = isSplatVector(V2.getNode());
6630
6631  // Canonicalize the splat or undef, if present, to be on the RHS.
6632  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6633    CommuteVectorShuffleMask(M, NumElems);
6634    std::swap(V1, V2);
6635    std::swap(V1IsSplat, V2IsSplat);
6636    Commuted = true;
6637  }
6638
6639  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6640    // Shuffling low element of v1 into undef, just return v1.
6641    if (V2IsUndef)
6642      return V1;
6643    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6644    // the instruction selector will not match, so get a canonical MOVL with
6645    // swapped operands to undo the commute.
6646    return getMOVL(DAG, dl, VT, V2, V1);
6647  }
6648
6649  if (isUNPCKLMask(M, VT, HasAVX2))
6650    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6651
6652  if (isUNPCKHMask(M, VT, HasAVX2))
6653    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6654
6655  if (V2IsSplat) {
6656    // Normalize mask so all entries that point to V2 points to its first
6657    // element then try to match unpck{h|l} again. If match, return a
6658    // new vector_shuffle with the corrected mask.p
6659    SmallVector<int, 8> NewMask(M.begin(), M.end());
6660    NormalizeMask(NewMask, NumElems);
6661    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6662      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6663    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6664      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6665  }
6666
6667  if (Commuted) {
6668    // Commute is back and try unpck* again.
6669    // FIXME: this seems wrong.
6670    CommuteVectorShuffleMask(M, NumElems);
6671    std::swap(V1, V2);
6672    std::swap(V1IsSplat, V2IsSplat);
6673    Commuted = false;
6674
6675    if (isUNPCKLMask(M, VT, HasAVX2))
6676      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6677
6678    if (isUNPCKHMask(M, VT, HasAVX2))
6679      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6680  }
6681
6682  // Normalize the node to match x86 shuffle ops if needed
6683  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6684    return CommuteVectorShuffle(SVOp, DAG);
6685
6686  // The checks below are all present in isShuffleMaskLegal, but they are
6687  // inlined here right now to enable us to directly emit target specific
6688  // nodes, and remove one by one until they don't return Op anymore.
6689
6690  if (isPALIGNRMask(M, VT, Subtarget))
6691    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6692                                getShufflePALIGNRImmediate(SVOp),
6693                                DAG);
6694
6695  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6696      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6697    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6698      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6699  }
6700
6701  if (isPSHUFHWMask(M, VT, HasAVX2))
6702    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6703                                getShufflePSHUFHWImmediate(SVOp),
6704                                DAG);
6705
6706  if (isPSHUFLWMask(M, VT, HasAVX2))
6707    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6708                                getShufflePSHUFLWImmediate(SVOp),
6709                                DAG);
6710
6711  if (isSHUFPMask(M, VT, HasAVX))
6712    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6713                                getShuffleSHUFImmediate(SVOp), DAG);
6714
6715  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6716    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6717  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6718    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6719
6720  //===--------------------------------------------------------------------===//
6721  // Generate target specific nodes for 128 or 256-bit shuffles only
6722  // supported in the AVX instruction set.
6723  //
6724
6725  // Handle VMOVDDUPY permutations
6726  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6727    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6728
6729  // Handle VPERMILPS/D* permutations
6730  if (isVPERMILPMask(M, VT, HasAVX)) {
6731    if (HasAVX2 && VT == MVT::v8i32)
6732      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6733                                  getShuffleSHUFImmediate(SVOp), DAG);
6734    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6735                                getShuffleSHUFImmediate(SVOp), DAG);
6736  }
6737
6738  // Handle VPERM2F128/VPERM2I128 permutations
6739  if (isVPERM2X128Mask(M, VT, HasAVX))
6740    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6741                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6742
6743  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6744  if (BlendOp.getNode())
6745    return BlendOp;
6746
6747  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6748    SmallVector<SDValue, 8> permclMask;
6749    for (unsigned i = 0; i != 8; ++i) {
6750      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6751    }
6752    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6753                               &permclMask[0], 8);
6754    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6755    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6756                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6757  }
6758
6759  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6760    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6761                                getShuffleCLImmediate(SVOp), DAG);
6762
6763
6764  //===--------------------------------------------------------------------===//
6765  // Since no target specific shuffle was selected for this generic one,
6766  // lower it into other known shuffles. FIXME: this isn't true yet, but
6767  // this is the plan.
6768  //
6769
6770  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6771  if (VT == MVT::v8i16) {
6772    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6773    if (NewOp.getNode())
6774      return NewOp;
6775  }
6776
6777  if (VT == MVT::v16i8) {
6778    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6779    if (NewOp.getNode())
6780      return NewOp;
6781  }
6782
6783  // Handle all 128-bit wide vectors with 4 elements, and match them with
6784  // several different shuffle types.
6785  if (NumElems == 4 && VT.getSizeInBits() == 128)
6786    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6787
6788  // Handle general 256-bit shuffles
6789  if (VT.is256BitVector())
6790    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6791
6792  return SDValue();
6793}
6794
6795SDValue
6796X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6797                                                SelectionDAG &DAG) const {
6798  EVT VT = Op.getValueType();
6799  DebugLoc dl = Op.getDebugLoc();
6800
6801  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6802    return SDValue();
6803
6804  if (VT.getSizeInBits() == 8) {
6805    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6806                                    Op.getOperand(0), Op.getOperand(1));
6807    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6808                                    DAG.getValueType(VT));
6809    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6810  }
6811
6812  if (VT.getSizeInBits() == 16) {
6813    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6814    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6815    if (Idx == 0)
6816      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6817                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6818                                     DAG.getNode(ISD::BITCAST, dl,
6819                                                 MVT::v4i32,
6820                                                 Op.getOperand(0)),
6821                                     Op.getOperand(1)));
6822    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6823                                    Op.getOperand(0), Op.getOperand(1));
6824    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6825                                    DAG.getValueType(VT));
6826    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6827  }
6828
6829  if (VT == MVT::f32) {
6830    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6831    // the result back to FR32 register. It's only worth matching if the
6832    // result has a single use which is a store or a bitcast to i32.  And in
6833    // the case of a store, it's not worth it if the index is a constant 0,
6834    // because a MOVSSmr can be used instead, which is smaller and faster.
6835    if (!Op.hasOneUse())
6836      return SDValue();
6837    SDNode *User = *Op.getNode()->use_begin();
6838    if ((User->getOpcode() != ISD::STORE ||
6839         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6840          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6841        (User->getOpcode() != ISD::BITCAST ||
6842         User->getValueType(0) != MVT::i32))
6843      return SDValue();
6844    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6845                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6846                                              Op.getOperand(0)),
6847                                              Op.getOperand(1));
6848    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6849  }
6850
6851  if (VT == MVT::i32 || VT == MVT::i64) {
6852    // ExtractPS/pextrq works with constant index.
6853    if (isa<ConstantSDNode>(Op.getOperand(1)))
6854      return Op;
6855  }
6856  return SDValue();
6857}
6858
6859
6860SDValue
6861X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6862                                           SelectionDAG &DAG) const {
6863  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6864    return SDValue();
6865
6866  SDValue Vec = Op.getOperand(0);
6867  EVT VecVT = Vec.getValueType();
6868
6869  // If this is a 256-bit vector result, first extract the 128-bit vector and
6870  // then extract the element from the 128-bit vector.
6871  if (VecVT.getSizeInBits() == 256) {
6872    DebugLoc dl = Op.getNode()->getDebugLoc();
6873    unsigned NumElems = VecVT.getVectorNumElements();
6874    SDValue Idx = Op.getOperand(1);
6875    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6876
6877    // Get the 128-bit vector.
6878    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6879
6880    if (IdxVal >= NumElems/2)
6881      IdxVal -= NumElems/2;
6882    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6883                       DAG.getConstant(IdxVal, MVT::i32));
6884  }
6885
6886  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6887
6888  if (Subtarget->hasSSE41()) {
6889    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6890    if (Res.getNode())
6891      return Res;
6892  }
6893
6894  EVT VT = Op.getValueType();
6895  DebugLoc dl = Op.getDebugLoc();
6896  // TODO: handle v16i8.
6897  if (VT.getSizeInBits() == 16) {
6898    SDValue Vec = Op.getOperand(0);
6899    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6900    if (Idx == 0)
6901      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6902                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6903                                     DAG.getNode(ISD::BITCAST, dl,
6904                                                 MVT::v4i32, Vec),
6905                                     Op.getOperand(1)));
6906    // Transform it so it match pextrw which produces a 32-bit result.
6907    EVT EltVT = MVT::i32;
6908    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6909                                    Op.getOperand(0), Op.getOperand(1));
6910    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6911                                    DAG.getValueType(VT));
6912    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6913  }
6914
6915  if (VT.getSizeInBits() == 32) {
6916    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6917    if (Idx == 0)
6918      return Op;
6919
6920    // SHUFPS the element to the lowest double word, then movss.
6921    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6922    EVT VVT = Op.getOperand(0).getValueType();
6923    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6924                                       DAG.getUNDEF(VVT), Mask);
6925    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6926                       DAG.getIntPtrConstant(0));
6927  }
6928
6929  if (VT.getSizeInBits() == 64) {
6930    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6931    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6932    //        to match extract_elt for f64.
6933    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6934    if (Idx == 0)
6935      return Op;
6936
6937    // UNPCKHPD the element to the lowest double word, then movsd.
6938    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6939    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6940    int Mask[2] = { 1, -1 };
6941    EVT VVT = Op.getOperand(0).getValueType();
6942    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6943                                       DAG.getUNDEF(VVT), Mask);
6944    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6945                       DAG.getIntPtrConstant(0));
6946  }
6947
6948  return SDValue();
6949}
6950
6951SDValue
6952X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6953                                               SelectionDAG &DAG) const {
6954  EVT VT = Op.getValueType();
6955  EVT EltVT = VT.getVectorElementType();
6956  DebugLoc dl = Op.getDebugLoc();
6957
6958  SDValue N0 = Op.getOperand(0);
6959  SDValue N1 = Op.getOperand(1);
6960  SDValue N2 = Op.getOperand(2);
6961
6962  if (VT.getSizeInBits() == 256)
6963    return SDValue();
6964
6965  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6966      isa<ConstantSDNode>(N2)) {
6967    unsigned Opc;
6968    if (VT == MVT::v8i16)
6969      Opc = X86ISD::PINSRW;
6970    else if (VT == MVT::v16i8)
6971      Opc = X86ISD::PINSRB;
6972    else
6973      Opc = X86ISD::PINSRB;
6974
6975    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6976    // argument.
6977    if (N1.getValueType() != MVT::i32)
6978      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6979    if (N2.getValueType() != MVT::i32)
6980      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6981    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6982  }
6983
6984  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6985    // Bits [7:6] of the constant are the source select.  This will always be
6986    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6987    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6988    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6989    // Bits [5:4] of the constant are the destination select.  This is the
6990    //  value of the incoming immediate.
6991    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6992    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6993    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6994    // Create this as a scalar to vector..
6995    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6996    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6997  }
6998
6999  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7000    // PINSR* works with constant index.
7001    return Op;
7002  }
7003  return SDValue();
7004}
7005
7006SDValue
7007X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7008  EVT VT = Op.getValueType();
7009  EVT EltVT = VT.getVectorElementType();
7010
7011  DebugLoc dl = Op.getDebugLoc();
7012  SDValue N0 = Op.getOperand(0);
7013  SDValue N1 = Op.getOperand(1);
7014  SDValue N2 = Op.getOperand(2);
7015
7016  // If this is a 256-bit vector result, first extract the 128-bit vector,
7017  // insert the element into the extracted half and then place it back.
7018  if (VT.getSizeInBits() == 256) {
7019    if (!isa<ConstantSDNode>(N2))
7020      return SDValue();
7021
7022    // Get the desired 128-bit vector half.
7023    unsigned NumElems = VT.getVectorNumElements();
7024    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7025    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7026
7027    // Insert the element into the desired half.
7028    bool Upper = IdxVal >= NumElems/2;
7029    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7030                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7031
7032    // Insert the changed part back to the 256-bit vector
7033    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7034  }
7035
7036  if (Subtarget->hasSSE41())
7037    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7038
7039  if (EltVT == MVT::i8)
7040    return SDValue();
7041
7042  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7043    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7044    // as its second argument.
7045    if (N1.getValueType() != MVT::i32)
7046      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7047    if (N2.getValueType() != MVT::i32)
7048      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7049    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7050  }
7051  return SDValue();
7052}
7053
7054SDValue
7055X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7056  LLVMContext *Context = DAG.getContext();
7057  DebugLoc dl = Op.getDebugLoc();
7058  EVT OpVT = Op.getValueType();
7059
7060  // If this is a 256-bit vector result, first insert into a 128-bit
7061  // vector and then insert into the 256-bit vector.
7062  if (OpVT.getSizeInBits() > 128) {
7063    // Insert into a 128-bit vector.
7064    EVT VT128 = EVT::getVectorVT(*Context,
7065                                 OpVT.getVectorElementType(),
7066                                 OpVT.getVectorNumElements() / 2);
7067
7068    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7069
7070    // Insert the 128-bit vector.
7071    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7072  }
7073
7074  if (OpVT == MVT::v1i64 &&
7075      Op.getOperand(0).getValueType() == MVT::i64)
7076    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7077
7078  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7079  assert(OpVT.getSizeInBits() == 128 && "Expected an SSE type!");
7080  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7081                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7082}
7083
7084// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7085// a simple subregister reference or explicit instructions to grab
7086// upper bits of a vector.
7087SDValue
7088X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7089  if (Subtarget->hasAVX()) {
7090    DebugLoc dl = Op.getNode()->getDebugLoc();
7091    SDValue Vec = Op.getNode()->getOperand(0);
7092    SDValue Idx = Op.getNode()->getOperand(1);
7093
7094    if (Op.getNode()->getValueType(0).getSizeInBits() == 128 &&
7095        Vec.getNode()->getValueType(0).getSizeInBits() == 256 &&
7096        isa<ConstantSDNode>(Idx)) {
7097      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7098      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7099    }
7100  }
7101  return SDValue();
7102}
7103
7104// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7105// simple superregister reference or explicit instructions to insert
7106// the upper bits of a vector.
7107SDValue
7108X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7109  if (Subtarget->hasAVX()) {
7110    DebugLoc dl = Op.getNode()->getDebugLoc();
7111    SDValue Vec = Op.getNode()->getOperand(0);
7112    SDValue SubVec = Op.getNode()->getOperand(1);
7113    SDValue Idx = Op.getNode()->getOperand(2);
7114
7115    if (Op.getNode()->getValueType(0).getSizeInBits() == 256 &&
7116        SubVec.getNode()->getValueType(0).getSizeInBits() == 128 &&
7117        isa<ConstantSDNode>(Idx)) {
7118      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7119      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7120    }
7121  }
7122  return SDValue();
7123}
7124
7125// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7126// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7127// one of the above mentioned nodes. It has to be wrapped because otherwise
7128// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7129// be used to form addressing mode. These wrapped nodes will be selected
7130// into MOV32ri.
7131SDValue
7132X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7133  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7134
7135  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7136  // global base reg.
7137  unsigned char OpFlag = 0;
7138  unsigned WrapperKind = X86ISD::Wrapper;
7139  CodeModel::Model M = getTargetMachine().getCodeModel();
7140
7141  if (Subtarget->isPICStyleRIPRel() &&
7142      (M == CodeModel::Small || M == CodeModel::Kernel))
7143    WrapperKind = X86ISD::WrapperRIP;
7144  else if (Subtarget->isPICStyleGOT())
7145    OpFlag = X86II::MO_GOTOFF;
7146  else if (Subtarget->isPICStyleStubPIC())
7147    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7148
7149  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7150                                             CP->getAlignment(),
7151                                             CP->getOffset(), OpFlag);
7152  DebugLoc DL = CP->getDebugLoc();
7153  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7154  // With PIC, the address is actually $g + Offset.
7155  if (OpFlag) {
7156    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7157                         DAG.getNode(X86ISD::GlobalBaseReg,
7158                                     DebugLoc(), getPointerTy()),
7159                         Result);
7160  }
7161
7162  return Result;
7163}
7164
7165SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7166  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7167
7168  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7169  // global base reg.
7170  unsigned char OpFlag = 0;
7171  unsigned WrapperKind = X86ISD::Wrapper;
7172  CodeModel::Model M = getTargetMachine().getCodeModel();
7173
7174  if (Subtarget->isPICStyleRIPRel() &&
7175      (M == CodeModel::Small || M == CodeModel::Kernel))
7176    WrapperKind = X86ISD::WrapperRIP;
7177  else if (Subtarget->isPICStyleGOT())
7178    OpFlag = X86II::MO_GOTOFF;
7179  else if (Subtarget->isPICStyleStubPIC())
7180    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7181
7182  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7183                                          OpFlag);
7184  DebugLoc DL = JT->getDebugLoc();
7185  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7186
7187  // With PIC, the address is actually $g + Offset.
7188  if (OpFlag)
7189    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7190                         DAG.getNode(X86ISD::GlobalBaseReg,
7191                                     DebugLoc(), getPointerTy()),
7192                         Result);
7193
7194  return Result;
7195}
7196
7197SDValue
7198X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7199  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7200
7201  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7202  // global base reg.
7203  unsigned char OpFlag = 0;
7204  unsigned WrapperKind = X86ISD::Wrapper;
7205  CodeModel::Model M = getTargetMachine().getCodeModel();
7206
7207  if (Subtarget->isPICStyleRIPRel() &&
7208      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7209    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7210      OpFlag = X86II::MO_GOTPCREL;
7211    WrapperKind = X86ISD::WrapperRIP;
7212  } else if (Subtarget->isPICStyleGOT()) {
7213    OpFlag = X86II::MO_GOT;
7214  } else if (Subtarget->isPICStyleStubPIC()) {
7215    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7216  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7217    OpFlag = X86II::MO_DARWIN_NONLAZY;
7218  }
7219
7220  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7221
7222  DebugLoc DL = Op.getDebugLoc();
7223  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7224
7225
7226  // With PIC, the address is actually $g + Offset.
7227  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7228      !Subtarget->is64Bit()) {
7229    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7230                         DAG.getNode(X86ISD::GlobalBaseReg,
7231                                     DebugLoc(), getPointerTy()),
7232                         Result);
7233  }
7234
7235  // For symbols that require a load from a stub to get the address, emit the
7236  // load.
7237  if (isGlobalStubReference(OpFlag))
7238    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7239                         MachinePointerInfo::getGOT(), false, false, false, 0);
7240
7241  return Result;
7242}
7243
7244SDValue
7245X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7246  // Create the TargetBlockAddressAddress node.
7247  unsigned char OpFlags =
7248    Subtarget->ClassifyBlockAddressReference();
7249  CodeModel::Model M = getTargetMachine().getCodeModel();
7250  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7251  DebugLoc dl = Op.getDebugLoc();
7252  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7253                                       /*isTarget=*/true, OpFlags);
7254
7255  if (Subtarget->isPICStyleRIPRel() &&
7256      (M == CodeModel::Small || M == CodeModel::Kernel))
7257    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7258  else
7259    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7260
7261  // With PIC, the address is actually $g + Offset.
7262  if (isGlobalRelativeToPICBase(OpFlags)) {
7263    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7264                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7265                         Result);
7266  }
7267
7268  return Result;
7269}
7270
7271SDValue
7272X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7273                                      int64_t Offset,
7274                                      SelectionDAG &DAG) const {
7275  // Create the TargetGlobalAddress node, folding in the constant
7276  // offset if it is legal.
7277  unsigned char OpFlags =
7278    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7279  CodeModel::Model M = getTargetMachine().getCodeModel();
7280  SDValue Result;
7281  if (OpFlags == X86II::MO_NO_FLAG &&
7282      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7283    // A direct static reference to a global.
7284    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7285    Offset = 0;
7286  } else {
7287    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7288  }
7289
7290  if (Subtarget->isPICStyleRIPRel() &&
7291      (M == CodeModel::Small || M == CodeModel::Kernel))
7292    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7293  else
7294    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7295
7296  // With PIC, the address is actually $g + Offset.
7297  if (isGlobalRelativeToPICBase(OpFlags)) {
7298    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7299                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7300                         Result);
7301  }
7302
7303  // For globals that require a load from a stub to get the address, emit the
7304  // load.
7305  if (isGlobalStubReference(OpFlags))
7306    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7307                         MachinePointerInfo::getGOT(), false, false, false, 0);
7308
7309  // If there was a non-zero offset that we didn't fold, create an explicit
7310  // addition for it.
7311  if (Offset != 0)
7312    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7313                         DAG.getConstant(Offset, getPointerTy()));
7314
7315  return Result;
7316}
7317
7318SDValue
7319X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7320  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7321  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7322  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7323}
7324
7325static SDValue
7326GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7327           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7328           unsigned char OperandFlags, bool LocalDynamic = false) {
7329  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7330  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7331  DebugLoc dl = GA->getDebugLoc();
7332  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7333                                           GA->getValueType(0),
7334                                           GA->getOffset(),
7335                                           OperandFlags);
7336
7337  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7338                                           : X86ISD::TLSADDR;
7339
7340  if (InFlag) {
7341    SDValue Ops[] = { Chain,  TGA, *InFlag };
7342    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7343  } else {
7344    SDValue Ops[]  = { Chain, TGA };
7345    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7346  }
7347
7348  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7349  MFI->setAdjustsStack(true);
7350
7351  SDValue Flag = Chain.getValue(1);
7352  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7353}
7354
7355// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7356static SDValue
7357LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7358                                const EVT PtrVT) {
7359  SDValue InFlag;
7360  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7361  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7362                                     DAG.getNode(X86ISD::GlobalBaseReg,
7363                                                 DebugLoc(), PtrVT), InFlag);
7364  InFlag = Chain.getValue(1);
7365
7366  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7367}
7368
7369// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7370static SDValue
7371LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7372                                const EVT PtrVT) {
7373  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7374                    X86::RAX, X86II::MO_TLSGD);
7375}
7376
7377static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7378                                           SelectionDAG &DAG,
7379                                           const EVT PtrVT,
7380                                           bool is64Bit) {
7381  DebugLoc dl = GA->getDebugLoc();
7382
7383  // Get the start address of the TLS block for this module.
7384  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7385      .getInfo<X86MachineFunctionInfo>();
7386  MFI->incNumLocalDynamicTLSAccesses();
7387
7388  SDValue Base;
7389  if (is64Bit) {
7390    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7391                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7392  } else {
7393    SDValue InFlag;
7394    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7395        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7396    InFlag = Chain.getValue(1);
7397    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7398                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7399  }
7400
7401  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7402  // of Base.
7403
7404  // Build x@dtpoff.
7405  unsigned char OperandFlags = X86II::MO_DTPOFF;
7406  unsigned WrapperKind = X86ISD::Wrapper;
7407  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7408                                           GA->getValueType(0),
7409                                           GA->getOffset(), OperandFlags);
7410  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7411
7412  // Add x@dtpoff with the base.
7413  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7414}
7415
7416// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7417static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7418                                   const EVT PtrVT, TLSModel::Model model,
7419                                   bool is64Bit, bool isPIC) {
7420  DebugLoc dl = GA->getDebugLoc();
7421
7422  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7423  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7424                                                         is64Bit ? 257 : 256));
7425
7426  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7427                                      DAG.getIntPtrConstant(0),
7428                                      MachinePointerInfo(Ptr),
7429                                      false, false, false, 0);
7430
7431  unsigned char OperandFlags = 0;
7432  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7433  // initialexec.
7434  unsigned WrapperKind = X86ISD::Wrapper;
7435  if (model == TLSModel::LocalExec) {
7436    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7437  } else if (model == TLSModel::InitialExec) {
7438    if (is64Bit) {
7439      OperandFlags = X86II::MO_GOTTPOFF;
7440      WrapperKind = X86ISD::WrapperRIP;
7441    } else {
7442      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7443    }
7444  } else {
7445    llvm_unreachable("Unexpected model");
7446  }
7447
7448  // emit "addl x@ntpoff,%eax" (local exec)
7449  // or "addl x@indntpoff,%eax" (initial exec)
7450  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7451  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7452                                           GA->getValueType(0),
7453                                           GA->getOffset(), OperandFlags);
7454  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7455
7456  if (model == TLSModel::InitialExec) {
7457    if (isPIC && !is64Bit) {
7458      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7459                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7460                           Offset);
7461    }
7462
7463    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7464                         MachinePointerInfo::getGOT(), false, false, false,
7465                         0);
7466  }
7467
7468  // The address of the thread local variable is the add of the thread
7469  // pointer with the offset of the variable.
7470  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7471}
7472
7473SDValue
7474X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7475
7476  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7477  const GlobalValue *GV = GA->getGlobal();
7478
7479  if (Subtarget->isTargetELF()) {
7480    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7481
7482    switch (model) {
7483      case TLSModel::GeneralDynamic:
7484        if (Subtarget->is64Bit())
7485          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7486        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7487      case TLSModel::LocalDynamic:
7488        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7489                                           Subtarget->is64Bit());
7490      case TLSModel::InitialExec:
7491      case TLSModel::LocalExec:
7492        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7493                                   Subtarget->is64Bit(),
7494                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7495    }
7496    llvm_unreachable("Unknown TLS model.");
7497  }
7498
7499  if (Subtarget->isTargetDarwin()) {
7500    // Darwin only has one model of TLS.  Lower to that.
7501    unsigned char OpFlag = 0;
7502    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7503                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7504
7505    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7506    // global base reg.
7507    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7508                  !Subtarget->is64Bit();
7509    if (PIC32)
7510      OpFlag = X86II::MO_TLVP_PIC_BASE;
7511    else
7512      OpFlag = X86II::MO_TLVP;
7513    DebugLoc DL = Op.getDebugLoc();
7514    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7515                                                GA->getValueType(0),
7516                                                GA->getOffset(), OpFlag);
7517    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7518
7519    // With PIC32, the address is actually $g + Offset.
7520    if (PIC32)
7521      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7522                           DAG.getNode(X86ISD::GlobalBaseReg,
7523                                       DebugLoc(), getPointerTy()),
7524                           Offset);
7525
7526    // Lowering the machine isd will make sure everything is in the right
7527    // location.
7528    SDValue Chain = DAG.getEntryNode();
7529    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7530    SDValue Args[] = { Chain, Offset };
7531    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7532
7533    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7534    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7535    MFI->setAdjustsStack(true);
7536
7537    // And our return value (tls address) is in the standard call return value
7538    // location.
7539    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7540    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7541                              Chain.getValue(1));
7542  }
7543
7544  if (Subtarget->isTargetWindows()) {
7545    // Just use the implicit TLS architecture
7546    // Need to generate someting similar to:
7547    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7548    //                                  ; from TEB
7549    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7550    //   mov     rcx, qword [rdx+rcx*8]
7551    //   mov     eax, .tls$:tlsvar
7552    //   [rax+rcx] contains the address
7553    // Windows 64bit: gs:0x58
7554    // Windows 32bit: fs:__tls_array
7555
7556    // If GV is an alias then use the aliasee for determining
7557    // thread-localness.
7558    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7559      GV = GA->resolveAliasedGlobal(false);
7560    DebugLoc dl = GA->getDebugLoc();
7561    SDValue Chain = DAG.getEntryNode();
7562
7563    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7564    // %gs:0x58 (64-bit).
7565    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7566                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7567                                                             256)
7568                                        : Type::getInt32PtrTy(*DAG.getContext(),
7569                                                              257));
7570
7571    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7572                                        Subtarget->is64Bit()
7573                                        ? DAG.getIntPtrConstant(0x58)
7574                                        : DAG.getExternalSymbol("_tls_array",
7575                                                                getPointerTy()),
7576                                        MachinePointerInfo(Ptr),
7577                                        false, false, false, 0);
7578
7579    // Load the _tls_index variable
7580    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7581    if (Subtarget->is64Bit())
7582      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7583                           IDX, MachinePointerInfo(), MVT::i32,
7584                           false, false, 0);
7585    else
7586      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7587                        false, false, false, 0);
7588
7589    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7590                                    getPointerTy());
7591    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7592
7593    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7594    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7595                      false, false, false, 0);
7596
7597    // Get the offset of start of .tls section
7598    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7599                                             GA->getValueType(0),
7600                                             GA->getOffset(), X86II::MO_SECREL);
7601    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7602
7603    // The address of the thread local variable is the add of the thread
7604    // pointer with the offset of the variable.
7605    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7606  }
7607
7608  llvm_unreachable("TLS not implemented for this target.");
7609}
7610
7611
7612/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7613/// and take a 2 x i32 value to shift plus a shift amount.
7614SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7615  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7616  EVT VT = Op.getValueType();
7617  unsigned VTBits = VT.getSizeInBits();
7618  DebugLoc dl = Op.getDebugLoc();
7619  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7620  SDValue ShOpLo = Op.getOperand(0);
7621  SDValue ShOpHi = Op.getOperand(1);
7622  SDValue ShAmt  = Op.getOperand(2);
7623  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7624                                     DAG.getConstant(VTBits - 1, MVT::i8))
7625                       : DAG.getConstant(0, VT);
7626
7627  SDValue Tmp2, Tmp3;
7628  if (Op.getOpcode() == ISD::SHL_PARTS) {
7629    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7630    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7631  } else {
7632    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7633    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7634  }
7635
7636  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7637                                DAG.getConstant(VTBits, MVT::i8));
7638  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7639                             AndNode, DAG.getConstant(0, MVT::i8));
7640
7641  SDValue Hi, Lo;
7642  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7643  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7644  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7645
7646  if (Op.getOpcode() == ISD::SHL_PARTS) {
7647    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7648    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7649  } else {
7650    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7651    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7652  }
7653
7654  SDValue Ops[2] = { Lo, Hi };
7655  return DAG.getMergeValues(Ops, 2, dl);
7656}
7657
7658SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7659                                           SelectionDAG &DAG) const {
7660  EVT SrcVT = Op.getOperand(0).getValueType();
7661
7662  if (SrcVT.isVector())
7663    return SDValue();
7664
7665  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7666         "Unknown SINT_TO_FP to lower!");
7667
7668  // These are really Legal; return the operand so the caller accepts it as
7669  // Legal.
7670  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7671    return Op;
7672  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7673      Subtarget->is64Bit()) {
7674    return Op;
7675  }
7676
7677  DebugLoc dl = Op.getDebugLoc();
7678  unsigned Size = SrcVT.getSizeInBits()/8;
7679  MachineFunction &MF = DAG.getMachineFunction();
7680  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7681  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7682  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7683                               StackSlot,
7684                               MachinePointerInfo::getFixedStack(SSFI),
7685                               false, false, 0);
7686  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7687}
7688
7689SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7690                                     SDValue StackSlot,
7691                                     SelectionDAG &DAG) const {
7692  // Build the FILD
7693  DebugLoc DL = Op.getDebugLoc();
7694  SDVTList Tys;
7695  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7696  if (useSSE)
7697    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7698  else
7699    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7700
7701  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7702
7703  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7704  MachineMemOperand *MMO;
7705  if (FI) {
7706    int SSFI = FI->getIndex();
7707    MMO =
7708      DAG.getMachineFunction()
7709      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7710                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7711  } else {
7712    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7713    StackSlot = StackSlot.getOperand(1);
7714  }
7715  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7716  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7717                                           X86ISD::FILD, DL,
7718                                           Tys, Ops, array_lengthof(Ops),
7719                                           SrcVT, MMO);
7720
7721  if (useSSE) {
7722    Chain = Result.getValue(1);
7723    SDValue InFlag = Result.getValue(2);
7724
7725    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7726    // shouldn't be necessary except that RFP cannot be live across
7727    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7728    MachineFunction &MF = DAG.getMachineFunction();
7729    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7730    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7731    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7732    Tys = DAG.getVTList(MVT::Other);
7733    SDValue Ops[] = {
7734      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7735    };
7736    MachineMemOperand *MMO =
7737      DAG.getMachineFunction()
7738      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7739                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7740
7741    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7742                                    Ops, array_lengthof(Ops),
7743                                    Op.getValueType(), MMO);
7744    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7745                         MachinePointerInfo::getFixedStack(SSFI),
7746                         false, false, false, 0);
7747  }
7748
7749  return Result;
7750}
7751
7752// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7753SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7754                                               SelectionDAG &DAG) const {
7755  // This algorithm is not obvious. Here it is what we're trying to output:
7756  /*
7757     movq       %rax,  %xmm0
7758     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7759     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7760     #ifdef __SSE3__
7761       haddpd   %xmm0, %xmm0
7762     #else
7763       pshufd   $0x4e, %xmm0, %xmm1
7764       addpd    %xmm1, %xmm0
7765     #endif
7766  */
7767
7768  DebugLoc dl = Op.getDebugLoc();
7769  LLVMContext *Context = DAG.getContext();
7770
7771  // Build some magic constants.
7772  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7773  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7774  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7775
7776  SmallVector<Constant*,2> CV1;
7777  CV1.push_back(
7778        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7779  CV1.push_back(
7780        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7781  Constant *C1 = ConstantVector::get(CV1);
7782  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7783
7784  // Load the 64-bit value into an XMM register.
7785  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7786                            Op.getOperand(0));
7787  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7788                              MachinePointerInfo::getConstantPool(),
7789                              false, false, false, 16);
7790  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7791                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7792                              CLod0);
7793
7794  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7795                              MachinePointerInfo::getConstantPool(),
7796                              false, false, false, 16);
7797  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7798  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7799  SDValue Result;
7800
7801  if (Subtarget->hasSSE3()) {
7802    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7803    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7804  } else {
7805    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7806    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7807                                           S2F, 0x4E, DAG);
7808    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7809                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7810                         Sub);
7811  }
7812
7813  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7814                     DAG.getIntPtrConstant(0));
7815}
7816
7817// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7818SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7819                                               SelectionDAG &DAG) const {
7820  DebugLoc dl = Op.getDebugLoc();
7821  // FP constant to bias correct the final result.
7822  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7823                                   MVT::f64);
7824
7825  // Load the 32-bit value into an XMM register.
7826  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7827                             Op.getOperand(0));
7828
7829  // Zero out the upper parts of the register.
7830  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7831
7832  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7833                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7834                     DAG.getIntPtrConstant(0));
7835
7836  // Or the load with the bias.
7837  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7838                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7839                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7840                                                   MVT::v2f64, Load)),
7841                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7842                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7843                                                   MVT::v2f64, Bias)));
7844  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7845                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7846                   DAG.getIntPtrConstant(0));
7847
7848  // Subtract the bias.
7849  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7850
7851  // Handle final rounding.
7852  EVT DestVT = Op.getValueType();
7853
7854  if (DestVT.bitsLT(MVT::f64))
7855    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7856                       DAG.getIntPtrConstant(0));
7857  if (DestVT.bitsGT(MVT::f64))
7858    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7859
7860  // Handle final rounding.
7861  return Sub;
7862}
7863
7864SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7865                                           SelectionDAG &DAG) const {
7866  SDValue N0 = Op.getOperand(0);
7867  DebugLoc dl = Op.getDebugLoc();
7868
7869  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7870  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7871  // the optimization here.
7872  if (DAG.SignBitIsZero(N0))
7873    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7874
7875  EVT SrcVT = N0.getValueType();
7876  EVT DstVT = Op.getValueType();
7877  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7878    return LowerUINT_TO_FP_i64(Op, DAG);
7879  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7880    return LowerUINT_TO_FP_i32(Op, DAG);
7881  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7882    return SDValue();
7883
7884  // Make a 64-bit buffer, and use it to build an FILD.
7885  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7886  if (SrcVT == MVT::i32) {
7887    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7888    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7889                                     getPointerTy(), StackSlot, WordOff);
7890    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7891                                  StackSlot, MachinePointerInfo(),
7892                                  false, false, 0);
7893    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7894                                  OffsetSlot, MachinePointerInfo(),
7895                                  false, false, 0);
7896    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7897    return Fild;
7898  }
7899
7900  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7901  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7902                               StackSlot, MachinePointerInfo(),
7903                               false, false, 0);
7904  // For i64 source, we need to add the appropriate power of 2 if the input
7905  // was negative.  This is the same as the optimization in
7906  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7907  // we must be careful to do the computation in x87 extended precision, not
7908  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7909  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7910  MachineMemOperand *MMO =
7911    DAG.getMachineFunction()
7912    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7913                          MachineMemOperand::MOLoad, 8, 8);
7914
7915  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7916  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7917  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7918                                         MVT::i64, MMO);
7919
7920  APInt FF(32, 0x5F800000ULL);
7921
7922  // Check whether the sign bit is set.
7923  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7924                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7925                                 ISD::SETLT);
7926
7927  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7928  SDValue FudgePtr = DAG.getConstantPool(
7929                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7930                                         getPointerTy());
7931
7932  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7933  SDValue Zero = DAG.getIntPtrConstant(0);
7934  SDValue Four = DAG.getIntPtrConstant(4);
7935  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7936                               Zero, Four);
7937  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7938
7939  // Load the value out, extending it from f32 to f80.
7940  // FIXME: Avoid the extend by constructing the right constant pool?
7941  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7942                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7943                                 MVT::f32, false, false, 4);
7944  // Extend everything to 80 bits to force it to be done on x87.
7945  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7946  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7947}
7948
7949std::pair<SDValue,SDValue> X86TargetLowering::
7950FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7951  DebugLoc DL = Op.getDebugLoc();
7952
7953  EVT DstTy = Op.getValueType();
7954
7955  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7956    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7957    DstTy = MVT::i64;
7958  }
7959
7960  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7961         DstTy.getSimpleVT() >= MVT::i16 &&
7962         "Unknown FP_TO_INT to lower!");
7963
7964  // These are really Legal.
7965  if (DstTy == MVT::i32 &&
7966      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7967    return std::make_pair(SDValue(), SDValue());
7968  if (Subtarget->is64Bit() &&
7969      DstTy == MVT::i64 &&
7970      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7971    return std::make_pair(SDValue(), SDValue());
7972
7973  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7974  // stack slot, or into the FTOL runtime function.
7975  MachineFunction &MF = DAG.getMachineFunction();
7976  unsigned MemSize = DstTy.getSizeInBits()/8;
7977  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7978  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7979
7980  unsigned Opc;
7981  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7982    Opc = X86ISD::WIN_FTOL;
7983  else
7984    switch (DstTy.getSimpleVT().SimpleTy) {
7985    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7986    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7987    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7988    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7989    }
7990
7991  SDValue Chain = DAG.getEntryNode();
7992  SDValue Value = Op.getOperand(0);
7993  EVT TheVT = Op.getOperand(0).getValueType();
7994  // FIXME This causes a redundant load/store if the SSE-class value is already
7995  // in memory, such as if it is on the callstack.
7996  if (isScalarFPTypeInSSEReg(TheVT)) {
7997    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7998    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7999                         MachinePointerInfo::getFixedStack(SSFI),
8000                         false, false, 0);
8001    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8002    SDValue Ops[] = {
8003      Chain, StackSlot, DAG.getValueType(TheVT)
8004    };
8005
8006    MachineMemOperand *MMO =
8007      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8008                              MachineMemOperand::MOLoad, MemSize, MemSize);
8009    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8010                                    DstTy, MMO);
8011    Chain = Value.getValue(1);
8012    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8013    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8014  }
8015
8016  MachineMemOperand *MMO =
8017    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8018                            MachineMemOperand::MOStore, MemSize, MemSize);
8019
8020  if (Opc != X86ISD::WIN_FTOL) {
8021    // Build the FP_TO_INT*_IN_MEM
8022    SDValue Ops[] = { Chain, Value, StackSlot };
8023    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8024                                           Ops, 3, DstTy, MMO);
8025    return std::make_pair(FIST, StackSlot);
8026  } else {
8027    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8028      DAG.getVTList(MVT::Other, MVT::Glue),
8029      Chain, Value);
8030    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8031      MVT::i32, ftol.getValue(1));
8032    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8033      MVT::i32, eax.getValue(2));
8034    SDValue Ops[] = { eax, edx };
8035    SDValue pair = IsReplace
8036      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8037      : DAG.getMergeValues(Ops, 2, DL);
8038    return std::make_pair(pair, SDValue());
8039  }
8040}
8041
8042SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8043                                           SelectionDAG &DAG) const {
8044  if (Op.getValueType().isVector())
8045    return SDValue();
8046
8047  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8048    /*IsSigned=*/ true, /*IsReplace=*/ false);
8049  SDValue FIST = Vals.first, StackSlot = Vals.second;
8050  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8051  if (FIST.getNode() == 0) return Op;
8052
8053  if (StackSlot.getNode())
8054    // Load the result.
8055    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8056                       FIST, StackSlot, MachinePointerInfo(),
8057                       false, false, false, 0);
8058
8059  // The node is the result.
8060  return FIST;
8061}
8062
8063SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8064                                           SelectionDAG &DAG) const {
8065  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8066    /*IsSigned=*/ false, /*IsReplace=*/ false);
8067  SDValue FIST = Vals.first, StackSlot = Vals.second;
8068  assert(FIST.getNode() && "Unexpected failure");
8069
8070  if (StackSlot.getNode())
8071    // Load the result.
8072    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8073                       FIST, StackSlot, MachinePointerInfo(),
8074                       false, false, false, 0);
8075
8076  // The node is the result.
8077  return FIST;
8078}
8079
8080SDValue X86TargetLowering::LowerFABS(SDValue Op,
8081                                     SelectionDAG &DAG) const {
8082  LLVMContext *Context = DAG.getContext();
8083  DebugLoc dl = Op.getDebugLoc();
8084  EVT VT = Op.getValueType();
8085  EVT EltVT = VT;
8086  if (VT.isVector())
8087    EltVT = VT.getVectorElementType();
8088  Constant *C;
8089  if (EltVT == MVT::f64) {
8090    C = ConstantVector::getSplat(2,
8091                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8092  } else {
8093    C = ConstantVector::getSplat(4,
8094               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8095  }
8096  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8097  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8098                             MachinePointerInfo::getConstantPool(),
8099                             false, false, false, 16);
8100  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8101}
8102
8103SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8104  LLVMContext *Context = DAG.getContext();
8105  DebugLoc dl = Op.getDebugLoc();
8106  EVT VT = Op.getValueType();
8107  EVT EltVT = VT;
8108  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8109  if (VT.isVector()) {
8110    EltVT = VT.getVectorElementType();
8111    NumElts = VT.getVectorNumElements();
8112  }
8113  Constant *C;
8114  if (EltVT == MVT::f64)
8115    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8116  else
8117    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8118  C = ConstantVector::getSplat(NumElts, C);
8119  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8120  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8121                             MachinePointerInfo::getConstantPool(),
8122                             false, false, false, 16);
8123  if (VT.isVector()) {
8124    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
8125    return DAG.getNode(ISD::BITCAST, dl, VT,
8126                       DAG.getNode(ISD::XOR, dl, XORVT,
8127                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8128                                               Op.getOperand(0)),
8129                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8130  }
8131
8132  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8133}
8134
8135SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8136  LLVMContext *Context = DAG.getContext();
8137  SDValue Op0 = Op.getOperand(0);
8138  SDValue Op1 = Op.getOperand(1);
8139  DebugLoc dl = Op.getDebugLoc();
8140  EVT VT = Op.getValueType();
8141  EVT SrcVT = Op1.getValueType();
8142
8143  // If second operand is smaller, extend it first.
8144  if (SrcVT.bitsLT(VT)) {
8145    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8146    SrcVT = VT;
8147  }
8148  // And if it is bigger, shrink it first.
8149  if (SrcVT.bitsGT(VT)) {
8150    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8151    SrcVT = VT;
8152  }
8153
8154  // At this point the operands and the result should have the same
8155  // type, and that won't be f80 since that is not custom lowered.
8156
8157  // First get the sign bit of second operand.
8158  SmallVector<Constant*,4> CV;
8159  if (SrcVT == MVT::f64) {
8160    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8161    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8162  } else {
8163    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8164    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8165    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8166    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8167  }
8168  Constant *C = ConstantVector::get(CV);
8169  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8170  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8171                              MachinePointerInfo::getConstantPool(),
8172                              false, false, false, 16);
8173  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8174
8175  // Shift sign bit right or left if the two operands have different types.
8176  if (SrcVT.bitsGT(VT)) {
8177    // Op0 is MVT::f32, Op1 is MVT::f64.
8178    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8179    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8180                          DAG.getConstant(32, MVT::i32));
8181    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8182    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8183                          DAG.getIntPtrConstant(0));
8184  }
8185
8186  // Clear first operand sign bit.
8187  CV.clear();
8188  if (VT == MVT::f64) {
8189    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8190    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8191  } else {
8192    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8193    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8194    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8195    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8196  }
8197  C = ConstantVector::get(CV);
8198  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8199  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8200                              MachinePointerInfo::getConstantPool(),
8201                              false, false, false, 16);
8202  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8203
8204  // Or the value with the sign bit.
8205  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8206}
8207
8208SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8209  SDValue N0 = Op.getOperand(0);
8210  DebugLoc dl = Op.getDebugLoc();
8211  EVT VT = Op.getValueType();
8212
8213  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8214  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8215                                  DAG.getConstant(1, VT));
8216  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8217}
8218
8219/// Emit nodes that will be selected as "test Op0,Op0", or something
8220/// equivalent.
8221SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8222                                    SelectionDAG &DAG) const {
8223  DebugLoc dl = Op.getDebugLoc();
8224
8225  // CF and OF aren't always set the way we want. Determine which
8226  // of these we need.
8227  bool NeedCF = false;
8228  bool NeedOF = false;
8229  switch (X86CC) {
8230  default: break;
8231  case X86::COND_A: case X86::COND_AE:
8232  case X86::COND_B: case X86::COND_BE:
8233    NeedCF = true;
8234    break;
8235  case X86::COND_G: case X86::COND_GE:
8236  case X86::COND_L: case X86::COND_LE:
8237  case X86::COND_O: case X86::COND_NO:
8238    NeedOF = true;
8239    break;
8240  }
8241
8242  // See if we can use the EFLAGS value from the operand instead of
8243  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8244  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8245  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8246    // Emit a CMP with 0, which is the TEST pattern.
8247    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8248                       DAG.getConstant(0, Op.getValueType()));
8249
8250  unsigned Opcode = 0;
8251  unsigned NumOperands = 0;
8252  switch (Op.getNode()->getOpcode()) {
8253  case ISD::ADD:
8254    // Due to an isel shortcoming, be conservative if this add is likely to be
8255    // selected as part of a load-modify-store instruction. When the root node
8256    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8257    // uses of other nodes in the match, such as the ADD in this case. This
8258    // leads to the ADD being left around and reselected, with the result being
8259    // two adds in the output.  Alas, even if none our users are stores, that
8260    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8261    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8262    // climbing the DAG back to the root, and it doesn't seem to be worth the
8263    // effort.
8264    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8265         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8266      if (UI->getOpcode() != ISD::CopyToReg &&
8267          UI->getOpcode() != ISD::SETCC &&
8268          UI->getOpcode() != ISD::STORE)
8269        goto default_case;
8270
8271    if (ConstantSDNode *C =
8272        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8273      // An add of one will be selected as an INC.
8274      if (C->getAPIntValue() == 1) {
8275        Opcode = X86ISD::INC;
8276        NumOperands = 1;
8277        break;
8278      }
8279
8280      // An add of negative one (subtract of one) will be selected as a DEC.
8281      if (C->getAPIntValue().isAllOnesValue()) {
8282        Opcode = X86ISD::DEC;
8283        NumOperands = 1;
8284        break;
8285      }
8286    }
8287
8288    // Otherwise use a regular EFLAGS-setting add.
8289    Opcode = X86ISD::ADD;
8290    NumOperands = 2;
8291    break;
8292  case ISD::AND: {
8293    // If the primary and result isn't used, don't bother using X86ISD::AND,
8294    // because a TEST instruction will be better.
8295    bool NonFlagUse = false;
8296    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8297           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8298      SDNode *User = *UI;
8299      unsigned UOpNo = UI.getOperandNo();
8300      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8301        // Look pass truncate.
8302        UOpNo = User->use_begin().getOperandNo();
8303        User = *User->use_begin();
8304      }
8305
8306      if (User->getOpcode() != ISD::BRCOND &&
8307          User->getOpcode() != ISD::SETCC &&
8308          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8309        NonFlagUse = true;
8310        break;
8311      }
8312    }
8313
8314    if (!NonFlagUse)
8315      break;
8316  }
8317    // FALL THROUGH
8318  case ISD::SUB:
8319  case ISD::OR:
8320  case ISD::XOR:
8321    // Due to the ISEL shortcoming noted above, be conservative if this op is
8322    // likely to be selected as part of a load-modify-store instruction.
8323    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8324           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8325      if (UI->getOpcode() == ISD::STORE)
8326        goto default_case;
8327
8328    // Otherwise use a regular EFLAGS-setting instruction.
8329    switch (Op.getNode()->getOpcode()) {
8330    default: llvm_unreachable("unexpected operator!");
8331    case ISD::SUB:
8332      Opcode = X86ISD::SUB;
8333      break;
8334    case ISD::OR:  Opcode = X86ISD::OR;  break;
8335    case ISD::XOR: Opcode = X86ISD::XOR; break;
8336    case ISD::AND: Opcode = X86ISD::AND; break;
8337    }
8338
8339    NumOperands = 2;
8340    break;
8341  case X86ISD::ADD:
8342  case X86ISD::SUB:
8343  case X86ISD::INC:
8344  case X86ISD::DEC:
8345  case X86ISD::OR:
8346  case X86ISD::XOR:
8347  case X86ISD::AND:
8348    return SDValue(Op.getNode(), 1);
8349  default:
8350  default_case:
8351    break;
8352  }
8353
8354  if (Opcode == 0)
8355    // Emit a CMP with 0, which is the TEST pattern.
8356    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8357                       DAG.getConstant(0, Op.getValueType()));
8358
8359  if (Opcode == X86ISD::CMP) {
8360    SDValue New = DAG.getNode(Opcode, dl, MVT::i32, Op.getOperand(0),
8361                              Op.getOperand(1));
8362    // We can't replace usage of SUB with CMP.
8363    // The SUB node will be removed later because there is no use of it.
8364    return SDValue(New.getNode(), 0);
8365  }
8366
8367  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8368  SmallVector<SDValue, 4> Ops;
8369  for (unsigned i = 0; i != NumOperands; ++i)
8370    Ops.push_back(Op.getOperand(i));
8371
8372  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8373  DAG.ReplaceAllUsesWith(Op, New);
8374  return SDValue(New.getNode(), 1);
8375}
8376
8377/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8378/// equivalent.
8379SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8380                                   SelectionDAG &DAG) const {
8381  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8382    if (C->getAPIntValue() == 0)
8383      return EmitTest(Op0, X86CC, DAG);
8384
8385  DebugLoc dl = Op0.getDebugLoc();
8386  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8387       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8388    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8389    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8390    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8391                              Op0, Op1);
8392    return SDValue(Sub.getNode(), 1);
8393  }
8394  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8395}
8396
8397/// Convert a comparison if required by the subtarget.
8398SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8399                                                 SelectionDAG &DAG) const {
8400  // If the subtarget does not support the FUCOMI instruction, floating-point
8401  // comparisons have to be converted.
8402  if (Subtarget->hasCMov() ||
8403      Cmp.getOpcode() != X86ISD::CMP ||
8404      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8405      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8406    return Cmp;
8407
8408  // The instruction selector will select an FUCOM instruction instead of
8409  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8410  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8411  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8412  DebugLoc dl = Cmp.getDebugLoc();
8413  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8414  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8415  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8416                            DAG.getConstant(8, MVT::i8));
8417  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8418  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8419}
8420
8421/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8422/// if it's possible.
8423SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8424                                     DebugLoc dl, SelectionDAG &DAG) const {
8425  SDValue Op0 = And.getOperand(0);
8426  SDValue Op1 = And.getOperand(1);
8427  if (Op0.getOpcode() == ISD::TRUNCATE)
8428    Op0 = Op0.getOperand(0);
8429  if (Op1.getOpcode() == ISD::TRUNCATE)
8430    Op1 = Op1.getOperand(0);
8431
8432  SDValue LHS, RHS;
8433  if (Op1.getOpcode() == ISD::SHL)
8434    std::swap(Op0, Op1);
8435  if (Op0.getOpcode() == ISD::SHL) {
8436    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8437      if (And00C->getZExtValue() == 1) {
8438        // If we looked past a truncate, check that it's only truncating away
8439        // known zeros.
8440        unsigned BitWidth = Op0.getValueSizeInBits();
8441        unsigned AndBitWidth = And.getValueSizeInBits();
8442        if (BitWidth > AndBitWidth) {
8443          APInt Zeros, Ones;
8444          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8445          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8446            return SDValue();
8447        }
8448        LHS = Op1;
8449        RHS = Op0.getOperand(1);
8450      }
8451  } else if (Op1.getOpcode() == ISD::Constant) {
8452    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8453    uint64_t AndRHSVal = AndRHS->getZExtValue();
8454    SDValue AndLHS = Op0;
8455
8456    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8457      LHS = AndLHS.getOperand(0);
8458      RHS = AndLHS.getOperand(1);
8459    }
8460
8461    // Use BT if the immediate can't be encoded in a TEST instruction.
8462    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8463      LHS = AndLHS;
8464      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8465    }
8466  }
8467
8468  if (LHS.getNode()) {
8469    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8470    // instruction.  Since the shift amount is in-range-or-undefined, we know
8471    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8472    // the encoding for the i16 version is larger than the i32 version.
8473    // Also promote i16 to i32 for performance / code size reason.
8474    if (LHS.getValueType() == MVT::i8 ||
8475        LHS.getValueType() == MVT::i16)
8476      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8477
8478    // If the operand types disagree, extend the shift amount to match.  Since
8479    // BT ignores high bits (like shifts) we can use anyextend.
8480    if (LHS.getValueType() != RHS.getValueType())
8481      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8482
8483    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8484    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8485    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8486                       DAG.getConstant(Cond, MVT::i8), BT);
8487  }
8488
8489  return SDValue();
8490}
8491
8492SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8493
8494  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8495
8496  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8497  SDValue Op0 = Op.getOperand(0);
8498  SDValue Op1 = Op.getOperand(1);
8499  DebugLoc dl = Op.getDebugLoc();
8500  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8501
8502  // Optimize to BT if possible.
8503  // Lower (X & (1 << N)) == 0 to BT(X, N).
8504  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8505  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8506  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8507      Op1.getOpcode() == ISD::Constant &&
8508      cast<ConstantSDNode>(Op1)->isNullValue() &&
8509      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8510    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8511    if (NewSetCC.getNode())
8512      return NewSetCC;
8513  }
8514
8515  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8516  // these.
8517  if (Op1.getOpcode() == ISD::Constant &&
8518      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8519       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8520      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8521
8522    // If the input is a setcc, then reuse the input setcc or use a new one with
8523    // the inverted condition.
8524    if (Op0.getOpcode() == X86ISD::SETCC) {
8525      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8526      bool Invert = (CC == ISD::SETNE) ^
8527        cast<ConstantSDNode>(Op1)->isNullValue();
8528      if (!Invert) return Op0;
8529
8530      CCode = X86::GetOppositeBranchCondition(CCode);
8531      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8532                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8533    }
8534  }
8535
8536  bool isFP = Op1.getValueType().isFloatingPoint();
8537  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8538  if (X86CC == X86::COND_INVALID)
8539    return SDValue();
8540
8541  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8542  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8543  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8544                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8545}
8546
8547// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8548// ones, and then concatenate the result back.
8549static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8550  EVT VT = Op.getValueType();
8551
8552  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8553         "Unsupported value type for operation");
8554
8555  unsigned NumElems = VT.getVectorNumElements();
8556  DebugLoc dl = Op.getDebugLoc();
8557  SDValue CC = Op.getOperand(2);
8558
8559  // Extract the LHS vectors
8560  SDValue LHS = Op.getOperand(0);
8561  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8562  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8563
8564  // Extract the RHS vectors
8565  SDValue RHS = Op.getOperand(1);
8566  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8567  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8568
8569  // Issue the operation on the smaller types and concatenate the result back
8570  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8571  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8572  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8573                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8574                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8575}
8576
8577
8578SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8579  SDValue Cond;
8580  SDValue Op0 = Op.getOperand(0);
8581  SDValue Op1 = Op.getOperand(1);
8582  SDValue CC = Op.getOperand(2);
8583  EVT VT = Op.getValueType();
8584  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8585  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8586  DebugLoc dl = Op.getDebugLoc();
8587
8588  if (isFP) {
8589    unsigned SSECC = 8;
8590    EVT EltVT = Op0.getValueType().getVectorElementType();
8591    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8592
8593    bool Swap = false;
8594
8595    // SSE Condition code mapping:
8596    //  0 - EQ
8597    //  1 - LT
8598    //  2 - LE
8599    //  3 - UNORD
8600    //  4 - NEQ
8601    //  5 - NLT
8602    //  6 - NLE
8603    //  7 - ORD
8604    switch (SetCCOpcode) {
8605    default: break;
8606    case ISD::SETOEQ:
8607    case ISD::SETEQ:  SSECC = 0; break;
8608    case ISD::SETOGT:
8609    case ISD::SETGT: Swap = true; // Fallthrough
8610    case ISD::SETLT:
8611    case ISD::SETOLT: SSECC = 1; break;
8612    case ISD::SETOGE:
8613    case ISD::SETGE: Swap = true; // Fallthrough
8614    case ISD::SETLE:
8615    case ISD::SETOLE: SSECC = 2; break;
8616    case ISD::SETUO:  SSECC = 3; break;
8617    case ISD::SETUNE:
8618    case ISD::SETNE:  SSECC = 4; break;
8619    case ISD::SETULE: Swap = true;
8620    case ISD::SETUGE: SSECC = 5; break;
8621    case ISD::SETULT: Swap = true;
8622    case ISD::SETUGT: SSECC = 6; break;
8623    case ISD::SETO:   SSECC = 7; break;
8624    }
8625    if (Swap)
8626      std::swap(Op0, Op1);
8627
8628    // In the two special cases we can't handle, emit two comparisons.
8629    if (SSECC == 8) {
8630      if (SetCCOpcode == ISD::SETUEQ) {
8631        SDValue UNORD, EQ;
8632        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8633                            DAG.getConstant(3, MVT::i8));
8634        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8635                         DAG.getConstant(0, MVT::i8));
8636        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8637      }
8638      if (SetCCOpcode == ISD::SETONE) {
8639        SDValue ORD, NEQ;
8640        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8641                          DAG.getConstant(7, MVT::i8));
8642        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8643                          DAG.getConstant(4, MVT::i8));
8644        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8645      }
8646      llvm_unreachable("Illegal FP comparison");
8647    }
8648    // Handle all other FP comparisons here.
8649    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8650                       DAG.getConstant(SSECC, MVT::i8));
8651  }
8652
8653  // Break 256-bit integer vector compare into smaller ones.
8654  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8655    return Lower256IntVSETCC(Op, DAG);
8656
8657  // We are handling one of the integer comparisons here.  Since SSE only has
8658  // GT and EQ comparisons for integer, swapping operands and multiple
8659  // operations may be required for some comparisons.
8660  unsigned Opc = 0;
8661  bool Swap = false, Invert = false, FlipSigns = false;
8662
8663  switch (SetCCOpcode) {
8664  default: break;
8665  case ISD::SETNE:  Invert = true;
8666  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8667  case ISD::SETLT:  Swap = true;
8668  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8669  case ISD::SETGE:  Swap = true;
8670  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8671  case ISD::SETULT: Swap = true;
8672  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8673  case ISD::SETUGE: Swap = true;
8674  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8675  }
8676  if (Swap)
8677    std::swap(Op0, Op1);
8678
8679  // Check that the operation in question is available (most are plain SSE2,
8680  // but PCMPGTQ and PCMPEQQ have different requirements).
8681  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8682    return SDValue();
8683  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8684    return SDValue();
8685
8686  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8687  // bits of the inputs before performing those operations.
8688  if (FlipSigns) {
8689    EVT EltVT = VT.getVectorElementType();
8690    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8691                                      EltVT);
8692    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8693    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8694                                    SignBits.size());
8695    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8696    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8697  }
8698
8699  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8700
8701  // If the logical-not of the result is required, perform that now.
8702  if (Invert)
8703    Result = DAG.getNOT(dl, Result, VT);
8704
8705  return Result;
8706}
8707
8708// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8709static bool isX86LogicalCmp(SDValue Op) {
8710  unsigned Opc = Op.getNode()->getOpcode();
8711  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8712      Opc == X86ISD::SAHF)
8713    return true;
8714  if (Op.getResNo() == 1 &&
8715      (Opc == X86ISD::ADD ||
8716       Opc == X86ISD::SUB ||
8717       Opc == X86ISD::ADC ||
8718       Opc == X86ISD::SBB ||
8719       Opc == X86ISD::SMUL ||
8720       Opc == X86ISD::UMUL ||
8721       Opc == X86ISD::INC ||
8722       Opc == X86ISD::DEC ||
8723       Opc == X86ISD::OR ||
8724       Opc == X86ISD::XOR ||
8725       Opc == X86ISD::AND))
8726    return true;
8727
8728  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8729    return true;
8730
8731  return false;
8732}
8733
8734static bool isZero(SDValue V) {
8735  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8736  return C && C->isNullValue();
8737}
8738
8739static bool isAllOnes(SDValue V) {
8740  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8741  return C && C->isAllOnesValue();
8742}
8743
8744static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
8745  if (V.getOpcode() != ISD::TRUNCATE)
8746    return false;
8747
8748  SDValue VOp0 = V.getOperand(0);
8749  unsigned InBits = VOp0.getValueSizeInBits();
8750  unsigned Bits = V.getValueSizeInBits();
8751  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
8752}
8753
8754SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8755  bool addTest = true;
8756  SDValue Cond  = Op.getOperand(0);
8757  SDValue Op1 = Op.getOperand(1);
8758  SDValue Op2 = Op.getOperand(2);
8759  DebugLoc DL = Op.getDebugLoc();
8760  SDValue CC;
8761
8762  if (Cond.getOpcode() == ISD::SETCC) {
8763    SDValue NewCond = LowerSETCC(Cond, DAG);
8764    if (NewCond.getNode())
8765      Cond = NewCond;
8766  }
8767
8768  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8769  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8770  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8771  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8772  if (Cond.getOpcode() == X86ISD::SETCC &&
8773      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8774      isZero(Cond.getOperand(1).getOperand(1))) {
8775    SDValue Cmp = Cond.getOperand(1);
8776
8777    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8778
8779    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8780        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8781      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8782
8783      SDValue CmpOp0 = Cmp.getOperand(0);
8784      // Apply further optimizations for special cases
8785      // (select (x != 0), -1, 0) -> neg & sbb
8786      // (select (x == 0), 0, -1) -> neg & sbb
8787      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
8788        if (YC->isNullValue() &&
8789            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
8790          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
8791          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
8792                                    DAG.getConstant(0, CmpOp0.getValueType()),
8793                                    CmpOp0);
8794          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8795                                    DAG.getConstant(X86::COND_B, MVT::i8),
8796                                    SDValue(Neg.getNode(), 1));
8797          return Res;
8798        }
8799
8800      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8801                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8802      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8803
8804      SDValue Res =   // Res = 0 or -1.
8805        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8806                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8807
8808      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8809        Res = DAG.getNOT(DL, Res, Res.getValueType());
8810
8811      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8812      if (N2C == 0 || !N2C->isNullValue())
8813        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8814      return Res;
8815    }
8816  }
8817
8818  // Look past (and (setcc_carry (cmp ...)), 1).
8819  if (Cond.getOpcode() == ISD::AND &&
8820      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8821    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8822    if (C && C->getAPIntValue() == 1)
8823      Cond = Cond.getOperand(0);
8824  }
8825
8826  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8827  // setting operand in place of the X86ISD::SETCC.
8828  unsigned CondOpcode = Cond.getOpcode();
8829  if (CondOpcode == X86ISD::SETCC ||
8830      CondOpcode == X86ISD::SETCC_CARRY) {
8831    CC = Cond.getOperand(0);
8832
8833    SDValue Cmp = Cond.getOperand(1);
8834    unsigned Opc = Cmp.getOpcode();
8835    EVT VT = Op.getValueType();
8836
8837    bool IllegalFPCMov = false;
8838    if (VT.isFloatingPoint() && !VT.isVector() &&
8839        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8840      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8841
8842    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8843        Opc == X86ISD::BT) { // FIXME
8844      Cond = Cmp;
8845      addTest = false;
8846    }
8847  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8848             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8849             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8850              Cond.getOperand(0).getValueType() != MVT::i8)) {
8851    SDValue LHS = Cond.getOperand(0);
8852    SDValue RHS = Cond.getOperand(1);
8853    unsigned X86Opcode;
8854    unsigned X86Cond;
8855    SDVTList VTs;
8856    switch (CondOpcode) {
8857    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8858    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8859    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8860    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8861    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8862    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8863    default: llvm_unreachable("unexpected overflowing operator");
8864    }
8865    if (CondOpcode == ISD::UMULO)
8866      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8867                          MVT::i32);
8868    else
8869      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8870
8871    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8872
8873    if (CondOpcode == ISD::UMULO)
8874      Cond = X86Op.getValue(2);
8875    else
8876      Cond = X86Op.getValue(1);
8877
8878    CC = DAG.getConstant(X86Cond, MVT::i8);
8879    addTest = false;
8880  }
8881
8882  if (addTest) {
8883    // Look pass the truncate if the high bits are known zero.
8884    if (isTruncWithZeroHighBitsInput(Cond, DAG))
8885        Cond = Cond.getOperand(0);
8886
8887    // We know the result of AND is compared against zero. Try to match
8888    // it to BT.
8889    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8890      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8891      if (NewSetCC.getNode()) {
8892        CC = NewSetCC.getOperand(0);
8893        Cond = NewSetCC.getOperand(1);
8894        addTest = false;
8895      }
8896    }
8897  }
8898
8899  if (addTest) {
8900    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8901    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8902  }
8903
8904  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8905  // a <  b ?  0 : -1 -> RES = setcc_carry
8906  // a >= b ? -1 :  0 -> RES = setcc_carry
8907  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8908  if (Cond.getOpcode() == X86ISD::SUB) {
8909    Cond = ConvertCmpIfNecessary(Cond, DAG);
8910    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8911
8912    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8913        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8914      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8915                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8916      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8917        return DAG.getNOT(DL, Res, Res.getValueType());
8918      return Res;
8919    }
8920  }
8921
8922  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8923  // condition is true.
8924  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8925  SDValue Ops[] = { Op2, Op1, CC, Cond };
8926  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8927}
8928
8929// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8930// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8931// from the AND / OR.
8932static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8933  Opc = Op.getOpcode();
8934  if (Opc != ISD::OR && Opc != ISD::AND)
8935    return false;
8936  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8937          Op.getOperand(0).hasOneUse() &&
8938          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8939          Op.getOperand(1).hasOneUse());
8940}
8941
8942// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8943// 1 and that the SETCC node has a single use.
8944static bool isXor1OfSetCC(SDValue Op) {
8945  if (Op.getOpcode() != ISD::XOR)
8946    return false;
8947  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8948  if (N1C && N1C->getAPIntValue() == 1) {
8949    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8950      Op.getOperand(0).hasOneUse();
8951  }
8952  return false;
8953}
8954
8955SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8956  bool addTest = true;
8957  SDValue Chain = Op.getOperand(0);
8958  SDValue Cond  = Op.getOperand(1);
8959  SDValue Dest  = Op.getOperand(2);
8960  DebugLoc dl = Op.getDebugLoc();
8961  SDValue CC;
8962  bool Inverted = false;
8963
8964  if (Cond.getOpcode() == ISD::SETCC) {
8965    // Check for setcc([su]{add,sub,mul}o == 0).
8966    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8967        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8968        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8969        Cond.getOperand(0).getResNo() == 1 &&
8970        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8971         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8972         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8973         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8974         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8975         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8976      Inverted = true;
8977      Cond = Cond.getOperand(0);
8978    } else {
8979      SDValue NewCond = LowerSETCC(Cond, DAG);
8980      if (NewCond.getNode())
8981        Cond = NewCond;
8982    }
8983  }
8984#if 0
8985  // FIXME: LowerXALUO doesn't handle these!!
8986  else if (Cond.getOpcode() == X86ISD::ADD  ||
8987           Cond.getOpcode() == X86ISD::SUB  ||
8988           Cond.getOpcode() == X86ISD::SMUL ||
8989           Cond.getOpcode() == X86ISD::UMUL)
8990    Cond = LowerXALUO(Cond, DAG);
8991#endif
8992
8993  // Look pass (and (setcc_carry (cmp ...)), 1).
8994  if (Cond.getOpcode() == ISD::AND &&
8995      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8996    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8997    if (C && C->getAPIntValue() == 1)
8998      Cond = Cond.getOperand(0);
8999  }
9000
9001  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9002  // setting operand in place of the X86ISD::SETCC.
9003  unsigned CondOpcode = Cond.getOpcode();
9004  if (CondOpcode == X86ISD::SETCC ||
9005      CondOpcode == X86ISD::SETCC_CARRY) {
9006    CC = Cond.getOperand(0);
9007
9008    SDValue Cmp = Cond.getOperand(1);
9009    unsigned Opc = Cmp.getOpcode();
9010    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9011    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9012      Cond = Cmp;
9013      addTest = false;
9014    } else {
9015      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9016      default: break;
9017      case X86::COND_O:
9018      case X86::COND_B:
9019        // These can only come from an arithmetic instruction with overflow,
9020        // e.g. SADDO, UADDO.
9021        Cond = Cond.getNode()->getOperand(1);
9022        addTest = false;
9023        break;
9024      }
9025    }
9026  }
9027  CondOpcode = Cond.getOpcode();
9028  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9029      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9030      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9031       Cond.getOperand(0).getValueType() != MVT::i8)) {
9032    SDValue LHS = Cond.getOperand(0);
9033    SDValue RHS = Cond.getOperand(1);
9034    unsigned X86Opcode;
9035    unsigned X86Cond;
9036    SDVTList VTs;
9037    switch (CondOpcode) {
9038    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9039    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9040    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9041    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9042    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9043    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9044    default: llvm_unreachable("unexpected overflowing operator");
9045    }
9046    if (Inverted)
9047      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9048    if (CondOpcode == ISD::UMULO)
9049      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9050                          MVT::i32);
9051    else
9052      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9053
9054    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9055
9056    if (CondOpcode == ISD::UMULO)
9057      Cond = X86Op.getValue(2);
9058    else
9059      Cond = X86Op.getValue(1);
9060
9061    CC = DAG.getConstant(X86Cond, MVT::i8);
9062    addTest = false;
9063  } else {
9064    unsigned CondOpc;
9065    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9066      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9067      if (CondOpc == ISD::OR) {
9068        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9069        // two branches instead of an explicit OR instruction with a
9070        // separate test.
9071        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9072            isX86LogicalCmp(Cmp)) {
9073          CC = Cond.getOperand(0).getOperand(0);
9074          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9075                              Chain, Dest, CC, Cmp);
9076          CC = Cond.getOperand(1).getOperand(0);
9077          Cond = Cmp;
9078          addTest = false;
9079        }
9080      } else { // ISD::AND
9081        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9082        // two branches instead of an explicit AND instruction with a
9083        // separate test. However, we only do this if this block doesn't
9084        // have a fall-through edge, because this requires an explicit
9085        // jmp when the condition is false.
9086        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9087            isX86LogicalCmp(Cmp) &&
9088            Op.getNode()->hasOneUse()) {
9089          X86::CondCode CCode =
9090            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9091          CCode = X86::GetOppositeBranchCondition(CCode);
9092          CC = DAG.getConstant(CCode, MVT::i8);
9093          SDNode *User = *Op.getNode()->use_begin();
9094          // Look for an unconditional branch following this conditional branch.
9095          // We need this because we need to reverse the successors in order
9096          // to implement FCMP_OEQ.
9097          if (User->getOpcode() == ISD::BR) {
9098            SDValue FalseBB = User->getOperand(1);
9099            SDNode *NewBR =
9100              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9101            assert(NewBR == User);
9102            (void)NewBR;
9103            Dest = FalseBB;
9104
9105            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9106                                Chain, Dest, CC, Cmp);
9107            X86::CondCode CCode =
9108              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9109            CCode = X86::GetOppositeBranchCondition(CCode);
9110            CC = DAG.getConstant(CCode, MVT::i8);
9111            Cond = Cmp;
9112            addTest = false;
9113          }
9114        }
9115      }
9116    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9117      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9118      // It should be transformed during dag combiner except when the condition
9119      // is set by a arithmetics with overflow node.
9120      X86::CondCode CCode =
9121        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9122      CCode = X86::GetOppositeBranchCondition(CCode);
9123      CC = DAG.getConstant(CCode, MVT::i8);
9124      Cond = Cond.getOperand(0).getOperand(1);
9125      addTest = false;
9126    } else if (Cond.getOpcode() == ISD::SETCC &&
9127               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9128      // For FCMP_OEQ, we can emit
9129      // two branches instead of an explicit AND instruction with a
9130      // separate test. However, we only do this if this block doesn't
9131      // have a fall-through edge, because this requires an explicit
9132      // jmp when the condition is false.
9133      if (Op.getNode()->hasOneUse()) {
9134        SDNode *User = *Op.getNode()->use_begin();
9135        // Look for an unconditional branch following this conditional branch.
9136        // We need this because we need to reverse the successors in order
9137        // to implement FCMP_OEQ.
9138        if (User->getOpcode() == ISD::BR) {
9139          SDValue FalseBB = User->getOperand(1);
9140          SDNode *NewBR =
9141            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9142          assert(NewBR == User);
9143          (void)NewBR;
9144          Dest = FalseBB;
9145
9146          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9147                                    Cond.getOperand(0), Cond.getOperand(1));
9148          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9149          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9150          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9151                              Chain, Dest, CC, Cmp);
9152          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9153          Cond = Cmp;
9154          addTest = false;
9155        }
9156      }
9157    } else if (Cond.getOpcode() == ISD::SETCC &&
9158               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9159      // For FCMP_UNE, we can emit
9160      // two branches instead of an explicit AND instruction with a
9161      // separate test. However, we only do this if this block doesn't
9162      // have a fall-through edge, because this requires an explicit
9163      // jmp when the condition is false.
9164      if (Op.getNode()->hasOneUse()) {
9165        SDNode *User = *Op.getNode()->use_begin();
9166        // Look for an unconditional branch following this conditional branch.
9167        // We need this because we need to reverse the successors in order
9168        // to implement FCMP_UNE.
9169        if (User->getOpcode() == ISD::BR) {
9170          SDValue FalseBB = User->getOperand(1);
9171          SDNode *NewBR =
9172            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9173          assert(NewBR == User);
9174          (void)NewBR;
9175
9176          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9177                                    Cond.getOperand(0), Cond.getOperand(1));
9178          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9179          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9180          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9181                              Chain, Dest, CC, Cmp);
9182          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9183          Cond = Cmp;
9184          addTest = false;
9185          Dest = FalseBB;
9186        }
9187      }
9188    }
9189  }
9190
9191  if (addTest) {
9192    // Look pass the truncate if the high bits are known zero.
9193    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9194        Cond = Cond.getOperand(0);
9195
9196    // We know the result of AND is compared against zero. Try to match
9197    // it to BT.
9198    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9199      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9200      if (NewSetCC.getNode()) {
9201        CC = NewSetCC.getOperand(0);
9202        Cond = NewSetCC.getOperand(1);
9203        addTest = false;
9204      }
9205    }
9206  }
9207
9208  if (addTest) {
9209    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9210    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9211  }
9212  Cond = ConvertCmpIfNecessary(Cond, DAG);
9213  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9214                     Chain, Dest, CC, Cond);
9215}
9216
9217
9218// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9219// Calls to _alloca is needed to probe the stack when allocating more than 4k
9220// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9221// that the guard pages used by the OS virtual memory manager are allocated in
9222// correct sequence.
9223SDValue
9224X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9225                                           SelectionDAG &DAG) const {
9226  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9227          getTargetMachine().Options.EnableSegmentedStacks) &&
9228         "This should be used only on Windows targets or when segmented stacks "
9229         "are being used");
9230  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9231  DebugLoc dl = Op.getDebugLoc();
9232
9233  // Get the inputs.
9234  SDValue Chain = Op.getOperand(0);
9235  SDValue Size  = Op.getOperand(1);
9236  // FIXME: Ensure alignment here
9237
9238  bool Is64Bit = Subtarget->is64Bit();
9239  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9240
9241  if (getTargetMachine().Options.EnableSegmentedStacks) {
9242    MachineFunction &MF = DAG.getMachineFunction();
9243    MachineRegisterInfo &MRI = MF.getRegInfo();
9244
9245    if (Is64Bit) {
9246      // The 64 bit implementation of segmented stacks needs to clobber both r10
9247      // r11. This makes it impossible to use it along with nested parameters.
9248      const Function *F = MF.getFunction();
9249
9250      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9251           I != E; ++I)
9252        if (I->hasNestAttr())
9253          report_fatal_error("Cannot use segmented stacks with functions that "
9254                             "have nested arguments.");
9255    }
9256
9257    const TargetRegisterClass *AddrRegClass =
9258      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9259    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9260    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9261    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9262                                DAG.getRegister(Vreg, SPTy));
9263    SDValue Ops1[2] = { Value, Chain };
9264    return DAG.getMergeValues(Ops1, 2, dl);
9265  } else {
9266    SDValue Flag;
9267    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9268
9269    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9270    Flag = Chain.getValue(1);
9271    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9272
9273    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9274    Flag = Chain.getValue(1);
9275
9276    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9277
9278    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9279    return DAG.getMergeValues(Ops1, 2, dl);
9280  }
9281}
9282
9283SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9284  MachineFunction &MF = DAG.getMachineFunction();
9285  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9286
9287  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9288  DebugLoc DL = Op.getDebugLoc();
9289
9290  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9291    // vastart just stores the address of the VarArgsFrameIndex slot into the
9292    // memory location argument.
9293    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9294                                   getPointerTy());
9295    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9296                        MachinePointerInfo(SV), false, false, 0);
9297  }
9298
9299  // __va_list_tag:
9300  //   gp_offset         (0 - 6 * 8)
9301  //   fp_offset         (48 - 48 + 8 * 16)
9302  //   overflow_arg_area (point to parameters coming in memory).
9303  //   reg_save_area
9304  SmallVector<SDValue, 8> MemOps;
9305  SDValue FIN = Op.getOperand(1);
9306  // Store gp_offset
9307  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9308                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9309                                               MVT::i32),
9310                               FIN, MachinePointerInfo(SV), false, false, 0);
9311  MemOps.push_back(Store);
9312
9313  // Store fp_offset
9314  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9315                    FIN, DAG.getIntPtrConstant(4));
9316  Store = DAG.getStore(Op.getOperand(0), DL,
9317                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9318                                       MVT::i32),
9319                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9320  MemOps.push_back(Store);
9321
9322  // Store ptr to overflow_arg_area
9323  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9324                    FIN, DAG.getIntPtrConstant(4));
9325  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9326                                    getPointerTy());
9327  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9328                       MachinePointerInfo(SV, 8),
9329                       false, false, 0);
9330  MemOps.push_back(Store);
9331
9332  // Store ptr to reg_save_area.
9333  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9334                    FIN, DAG.getIntPtrConstant(8));
9335  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9336                                    getPointerTy());
9337  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9338                       MachinePointerInfo(SV, 16), false, false, 0);
9339  MemOps.push_back(Store);
9340  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9341                     &MemOps[0], MemOps.size());
9342}
9343
9344SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9345  assert(Subtarget->is64Bit() &&
9346         "LowerVAARG only handles 64-bit va_arg!");
9347  assert((Subtarget->isTargetLinux() ||
9348          Subtarget->isTargetDarwin()) &&
9349          "Unhandled target in LowerVAARG");
9350  assert(Op.getNode()->getNumOperands() == 4);
9351  SDValue Chain = Op.getOperand(0);
9352  SDValue SrcPtr = Op.getOperand(1);
9353  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9354  unsigned Align = Op.getConstantOperandVal(3);
9355  DebugLoc dl = Op.getDebugLoc();
9356
9357  EVT ArgVT = Op.getNode()->getValueType(0);
9358  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9359  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9360  uint8_t ArgMode;
9361
9362  // Decide which area this value should be read from.
9363  // TODO: Implement the AMD64 ABI in its entirety. This simple
9364  // selection mechanism works only for the basic types.
9365  if (ArgVT == MVT::f80) {
9366    llvm_unreachable("va_arg for f80 not yet implemented");
9367  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9368    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9369  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9370    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9371  } else {
9372    llvm_unreachable("Unhandled argument type in LowerVAARG");
9373  }
9374
9375  if (ArgMode == 2) {
9376    // Sanity Check: Make sure using fp_offset makes sense.
9377    assert(!getTargetMachine().Options.UseSoftFloat &&
9378           !(DAG.getMachineFunction()
9379                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9380           Subtarget->hasSSE1());
9381  }
9382
9383  // Insert VAARG_64 node into the DAG
9384  // VAARG_64 returns two values: Variable Argument Address, Chain
9385  SmallVector<SDValue, 11> InstOps;
9386  InstOps.push_back(Chain);
9387  InstOps.push_back(SrcPtr);
9388  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9389  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9390  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9391  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9392  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9393                                          VTs, &InstOps[0], InstOps.size(),
9394                                          MVT::i64,
9395                                          MachinePointerInfo(SV),
9396                                          /*Align=*/0,
9397                                          /*Volatile=*/false,
9398                                          /*ReadMem=*/true,
9399                                          /*WriteMem=*/true);
9400  Chain = VAARG.getValue(1);
9401
9402  // Load the next argument and return it
9403  return DAG.getLoad(ArgVT, dl,
9404                     Chain,
9405                     VAARG,
9406                     MachinePointerInfo(),
9407                     false, false, false, 0);
9408}
9409
9410SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9411  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9412  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9413  SDValue Chain = Op.getOperand(0);
9414  SDValue DstPtr = Op.getOperand(1);
9415  SDValue SrcPtr = Op.getOperand(2);
9416  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9417  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9418  DebugLoc DL = Op.getDebugLoc();
9419
9420  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9421                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9422                       false,
9423                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9424}
9425
9426// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9427// may or may not be a constant. Takes immediate version of shift as input.
9428static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9429                                   SDValue SrcOp, SDValue ShAmt,
9430                                   SelectionDAG &DAG) {
9431  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9432
9433  if (isa<ConstantSDNode>(ShAmt)) {
9434    // Constant may be a TargetConstant. Use a regular constant.
9435    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9436    switch (Opc) {
9437      default: llvm_unreachable("Unknown target vector shift node");
9438      case X86ISD::VSHLI:
9439      case X86ISD::VSRLI:
9440      case X86ISD::VSRAI:
9441        return DAG.getNode(Opc, dl, VT, SrcOp,
9442                           DAG.getConstant(ShiftAmt, MVT::i32));
9443    }
9444  }
9445
9446  // Change opcode to non-immediate version
9447  switch (Opc) {
9448    default: llvm_unreachable("Unknown target vector shift node");
9449    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9450    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9451    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9452  }
9453
9454  // Need to build a vector containing shift amount
9455  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9456  SDValue ShOps[4];
9457  ShOps[0] = ShAmt;
9458  ShOps[1] = DAG.getConstant(0, MVT::i32);
9459  ShOps[2] = DAG.getUNDEF(MVT::i32);
9460  ShOps[3] = DAG.getUNDEF(MVT::i32);
9461  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9462
9463  // The return type has to be a 128-bit type with the same element
9464  // type as the input type.
9465  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9466  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9467
9468  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9469  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9470}
9471
9472SDValue
9473X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9474  DebugLoc dl = Op.getDebugLoc();
9475  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9476  switch (IntNo) {
9477  default: return SDValue();    // Don't custom lower most intrinsics.
9478  // Comparison intrinsics.
9479  case Intrinsic::x86_sse_comieq_ss:
9480  case Intrinsic::x86_sse_comilt_ss:
9481  case Intrinsic::x86_sse_comile_ss:
9482  case Intrinsic::x86_sse_comigt_ss:
9483  case Intrinsic::x86_sse_comige_ss:
9484  case Intrinsic::x86_sse_comineq_ss:
9485  case Intrinsic::x86_sse_ucomieq_ss:
9486  case Intrinsic::x86_sse_ucomilt_ss:
9487  case Intrinsic::x86_sse_ucomile_ss:
9488  case Intrinsic::x86_sse_ucomigt_ss:
9489  case Intrinsic::x86_sse_ucomige_ss:
9490  case Intrinsic::x86_sse_ucomineq_ss:
9491  case Intrinsic::x86_sse2_comieq_sd:
9492  case Intrinsic::x86_sse2_comilt_sd:
9493  case Intrinsic::x86_sse2_comile_sd:
9494  case Intrinsic::x86_sse2_comigt_sd:
9495  case Intrinsic::x86_sse2_comige_sd:
9496  case Intrinsic::x86_sse2_comineq_sd:
9497  case Intrinsic::x86_sse2_ucomieq_sd:
9498  case Intrinsic::x86_sse2_ucomilt_sd:
9499  case Intrinsic::x86_sse2_ucomile_sd:
9500  case Intrinsic::x86_sse2_ucomigt_sd:
9501  case Intrinsic::x86_sse2_ucomige_sd:
9502  case Intrinsic::x86_sse2_ucomineq_sd: {
9503    unsigned Opc = 0;
9504    ISD::CondCode CC = ISD::SETCC_INVALID;
9505    switch (IntNo) {
9506    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9507    case Intrinsic::x86_sse_comieq_ss:
9508    case Intrinsic::x86_sse2_comieq_sd:
9509      Opc = X86ISD::COMI;
9510      CC = ISD::SETEQ;
9511      break;
9512    case Intrinsic::x86_sse_comilt_ss:
9513    case Intrinsic::x86_sse2_comilt_sd:
9514      Opc = X86ISD::COMI;
9515      CC = ISD::SETLT;
9516      break;
9517    case Intrinsic::x86_sse_comile_ss:
9518    case Intrinsic::x86_sse2_comile_sd:
9519      Opc = X86ISD::COMI;
9520      CC = ISD::SETLE;
9521      break;
9522    case Intrinsic::x86_sse_comigt_ss:
9523    case Intrinsic::x86_sse2_comigt_sd:
9524      Opc = X86ISD::COMI;
9525      CC = ISD::SETGT;
9526      break;
9527    case Intrinsic::x86_sse_comige_ss:
9528    case Intrinsic::x86_sse2_comige_sd:
9529      Opc = X86ISD::COMI;
9530      CC = ISD::SETGE;
9531      break;
9532    case Intrinsic::x86_sse_comineq_ss:
9533    case Intrinsic::x86_sse2_comineq_sd:
9534      Opc = X86ISD::COMI;
9535      CC = ISD::SETNE;
9536      break;
9537    case Intrinsic::x86_sse_ucomieq_ss:
9538    case Intrinsic::x86_sse2_ucomieq_sd:
9539      Opc = X86ISD::UCOMI;
9540      CC = ISD::SETEQ;
9541      break;
9542    case Intrinsic::x86_sse_ucomilt_ss:
9543    case Intrinsic::x86_sse2_ucomilt_sd:
9544      Opc = X86ISD::UCOMI;
9545      CC = ISD::SETLT;
9546      break;
9547    case Intrinsic::x86_sse_ucomile_ss:
9548    case Intrinsic::x86_sse2_ucomile_sd:
9549      Opc = X86ISD::UCOMI;
9550      CC = ISD::SETLE;
9551      break;
9552    case Intrinsic::x86_sse_ucomigt_ss:
9553    case Intrinsic::x86_sse2_ucomigt_sd:
9554      Opc = X86ISD::UCOMI;
9555      CC = ISD::SETGT;
9556      break;
9557    case Intrinsic::x86_sse_ucomige_ss:
9558    case Intrinsic::x86_sse2_ucomige_sd:
9559      Opc = X86ISD::UCOMI;
9560      CC = ISD::SETGE;
9561      break;
9562    case Intrinsic::x86_sse_ucomineq_ss:
9563    case Intrinsic::x86_sse2_ucomineq_sd:
9564      Opc = X86ISD::UCOMI;
9565      CC = ISD::SETNE;
9566      break;
9567    }
9568
9569    SDValue LHS = Op.getOperand(1);
9570    SDValue RHS = Op.getOperand(2);
9571    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9572    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9573    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9574    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9575                                DAG.getConstant(X86CC, MVT::i8), Cond);
9576    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9577  }
9578  // Arithmetic intrinsics.
9579  case Intrinsic::x86_sse2_pmulu_dq:
9580  case Intrinsic::x86_avx2_pmulu_dq:
9581    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9582                       Op.getOperand(1), Op.getOperand(2));
9583  case Intrinsic::x86_sse3_hadd_ps:
9584  case Intrinsic::x86_sse3_hadd_pd:
9585  case Intrinsic::x86_avx_hadd_ps_256:
9586  case Intrinsic::x86_avx_hadd_pd_256:
9587    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9588                       Op.getOperand(1), Op.getOperand(2));
9589  case Intrinsic::x86_sse3_hsub_ps:
9590  case Intrinsic::x86_sse3_hsub_pd:
9591  case Intrinsic::x86_avx_hsub_ps_256:
9592  case Intrinsic::x86_avx_hsub_pd_256:
9593    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9594                       Op.getOperand(1), Op.getOperand(2));
9595  case Intrinsic::x86_ssse3_phadd_w_128:
9596  case Intrinsic::x86_ssse3_phadd_d_128:
9597  case Intrinsic::x86_avx2_phadd_w:
9598  case Intrinsic::x86_avx2_phadd_d:
9599    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9600                       Op.getOperand(1), Op.getOperand(2));
9601  case Intrinsic::x86_ssse3_phsub_w_128:
9602  case Intrinsic::x86_ssse3_phsub_d_128:
9603  case Intrinsic::x86_avx2_phsub_w:
9604  case Intrinsic::x86_avx2_phsub_d:
9605    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9606                       Op.getOperand(1), Op.getOperand(2));
9607  case Intrinsic::x86_avx2_psllv_d:
9608  case Intrinsic::x86_avx2_psllv_q:
9609  case Intrinsic::x86_avx2_psllv_d_256:
9610  case Intrinsic::x86_avx2_psllv_q_256:
9611    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9612                      Op.getOperand(1), Op.getOperand(2));
9613  case Intrinsic::x86_avx2_psrlv_d:
9614  case Intrinsic::x86_avx2_psrlv_q:
9615  case Intrinsic::x86_avx2_psrlv_d_256:
9616  case Intrinsic::x86_avx2_psrlv_q_256:
9617    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9618                      Op.getOperand(1), Op.getOperand(2));
9619  case Intrinsic::x86_avx2_psrav_d:
9620  case Intrinsic::x86_avx2_psrav_d_256:
9621    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9622                      Op.getOperand(1), Op.getOperand(2));
9623  case Intrinsic::x86_ssse3_pshuf_b_128:
9624  case Intrinsic::x86_avx2_pshuf_b:
9625    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9626                       Op.getOperand(1), Op.getOperand(2));
9627  case Intrinsic::x86_ssse3_psign_b_128:
9628  case Intrinsic::x86_ssse3_psign_w_128:
9629  case Intrinsic::x86_ssse3_psign_d_128:
9630  case Intrinsic::x86_avx2_psign_b:
9631  case Intrinsic::x86_avx2_psign_w:
9632  case Intrinsic::x86_avx2_psign_d:
9633    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9634                       Op.getOperand(1), Op.getOperand(2));
9635  case Intrinsic::x86_sse41_insertps:
9636    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9637                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9638  case Intrinsic::x86_avx_vperm2f128_ps_256:
9639  case Intrinsic::x86_avx_vperm2f128_pd_256:
9640  case Intrinsic::x86_avx_vperm2f128_si_256:
9641  case Intrinsic::x86_avx2_vperm2i128:
9642    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9643                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9644  case Intrinsic::x86_avx2_permd:
9645  case Intrinsic::x86_avx2_permps:
9646    // Operands intentionally swapped. Mask is last operand to intrinsic,
9647    // but second operand for node/intruction.
9648    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9649                       Op.getOperand(2), Op.getOperand(1));
9650
9651  // ptest and testp intrinsics. The intrinsic these come from are designed to
9652  // return an integer value, not just an instruction so lower it to the ptest
9653  // or testp pattern and a setcc for the result.
9654  case Intrinsic::x86_sse41_ptestz:
9655  case Intrinsic::x86_sse41_ptestc:
9656  case Intrinsic::x86_sse41_ptestnzc:
9657  case Intrinsic::x86_avx_ptestz_256:
9658  case Intrinsic::x86_avx_ptestc_256:
9659  case Intrinsic::x86_avx_ptestnzc_256:
9660  case Intrinsic::x86_avx_vtestz_ps:
9661  case Intrinsic::x86_avx_vtestc_ps:
9662  case Intrinsic::x86_avx_vtestnzc_ps:
9663  case Intrinsic::x86_avx_vtestz_pd:
9664  case Intrinsic::x86_avx_vtestc_pd:
9665  case Intrinsic::x86_avx_vtestnzc_pd:
9666  case Intrinsic::x86_avx_vtestz_ps_256:
9667  case Intrinsic::x86_avx_vtestc_ps_256:
9668  case Intrinsic::x86_avx_vtestnzc_ps_256:
9669  case Intrinsic::x86_avx_vtestz_pd_256:
9670  case Intrinsic::x86_avx_vtestc_pd_256:
9671  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9672    bool IsTestPacked = false;
9673    unsigned X86CC = 0;
9674    switch (IntNo) {
9675    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9676    case Intrinsic::x86_avx_vtestz_ps:
9677    case Intrinsic::x86_avx_vtestz_pd:
9678    case Intrinsic::x86_avx_vtestz_ps_256:
9679    case Intrinsic::x86_avx_vtestz_pd_256:
9680      IsTestPacked = true; // Fallthrough
9681    case Intrinsic::x86_sse41_ptestz:
9682    case Intrinsic::x86_avx_ptestz_256:
9683      // ZF = 1
9684      X86CC = X86::COND_E;
9685      break;
9686    case Intrinsic::x86_avx_vtestc_ps:
9687    case Intrinsic::x86_avx_vtestc_pd:
9688    case Intrinsic::x86_avx_vtestc_ps_256:
9689    case Intrinsic::x86_avx_vtestc_pd_256:
9690      IsTestPacked = true; // Fallthrough
9691    case Intrinsic::x86_sse41_ptestc:
9692    case Intrinsic::x86_avx_ptestc_256:
9693      // CF = 1
9694      X86CC = X86::COND_B;
9695      break;
9696    case Intrinsic::x86_avx_vtestnzc_ps:
9697    case Intrinsic::x86_avx_vtestnzc_pd:
9698    case Intrinsic::x86_avx_vtestnzc_ps_256:
9699    case Intrinsic::x86_avx_vtestnzc_pd_256:
9700      IsTestPacked = true; // Fallthrough
9701    case Intrinsic::x86_sse41_ptestnzc:
9702    case Intrinsic::x86_avx_ptestnzc_256:
9703      // ZF and CF = 0
9704      X86CC = X86::COND_A;
9705      break;
9706    }
9707
9708    SDValue LHS = Op.getOperand(1);
9709    SDValue RHS = Op.getOperand(2);
9710    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9711    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9712    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9713    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9714    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9715  }
9716
9717  // SSE/AVX shift intrinsics
9718  case Intrinsic::x86_sse2_psll_w:
9719  case Intrinsic::x86_sse2_psll_d:
9720  case Intrinsic::x86_sse2_psll_q:
9721  case Intrinsic::x86_avx2_psll_w:
9722  case Intrinsic::x86_avx2_psll_d:
9723  case Intrinsic::x86_avx2_psll_q:
9724    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9725                       Op.getOperand(1), Op.getOperand(2));
9726  case Intrinsic::x86_sse2_psrl_w:
9727  case Intrinsic::x86_sse2_psrl_d:
9728  case Intrinsic::x86_sse2_psrl_q:
9729  case Intrinsic::x86_avx2_psrl_w:
9730  case Intrinsic::x86_avx2_psrl_d:
9731  case Intrinsic::x86_avx2_psrl_q:
9732    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9733                       Op.getOperand(1), Op.getOperand(2));
9734  case Intrinsic::x86_sse2_psra_w:
9735  case Intrinsic::x86_sse2_psra_d:
9736  case Intrinsic::x86_avx2_psra_w:
9737  case Intrinsic::x86_avx2_psra_d:
9738    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9739                       Op.getOperand(1), Op.getOperand(2));
9740  case Intrinsic::x86_sse2_pslli_w:
9741  case Intrinsic::x86_sse2_pslli_d:
9742  case Intrinsic::x86_sse2_pslli_q:
9743  case Intrinsic::x86_avx2_pslli_w:
9744  case Intrinsic::x86_avx2_pslli_d:
9745  case Intrinsic::x86_avx2_pslli_q:
9746    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9747                               Op.getOperand(1), Op.getOperand(2), DAG);
9748  case Intrinsic::x86_sse2_psrli_w:
9749  case Intrinsic::x86_sse2_psrli_d:
9750  case Intrinsic::x86_sse2_psrli_q:
9751  case Intrinsic::x86_avx2_psrli_w:
9752  case Intrinsic::x86_avx2_psrli_d:
9753  case Intrinsic::x86_avx2_psrli_q:
9754    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9755                               Op.getOperand(1), Op.getOperand(2), DAG);
9756  case Intrinsic::x86_sse2_psrai_w:
9757  case Intrinsic::x86_sse2_psrai_d:
9758  case Intrinsic::x86_avx2_psrai_w:
9759  case Intrinsic::x86_avx2_psrai_d:
9760    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9761                               Op.getOperand(1), Op.getOperand(2), DAG);
9762  // Fix vector shift instructions where the last operand is a non-immediate
9763  // i32 value.
9764  case Intrinsic::x86_mmx_pslli_w:
9765  case Intrinsic::x86_mmx_pslli_d:
9766  case Intrinsic::x86_mmx_pslli_q:
9767  case Intrinsic::x86_mmx_psrli_w:
9768  case Intrinsic::x86_mmx_psrli_d:
9769  case Intrinsic::x86_mmx_psrli_q:
9770  case Intrinsic::x86_mmx_psrai_w:
9771  case Intrinsic::x86_mmx_psrai_d: {
9772    SDValue ShAmt = Op.getOperand(2);
9773    if (isa<ConstantSDNode>(ShAmt))
9774      return SDValue();
9775
9776    unsigned NewIntNo = 0;
9777    switch (IntNo) {
9778    case Intrinsic::x86_mmx_pslli_w:
9779      NewIntNo = Intrinsic::x86_mmx_psll_w;
9780      break;
9781    case Intrinsic::x86_mmx_pslli_d:
9782      NewIntNo = Intrinsic::x86_mmx_psll_d;
9783      break;
9784    case Intrinsic::x86_mmx_pslli_q:
9785      NewIntNo = Intrinsic::x86_mmx_psll_q;
9786      break;
9787    case Intrinsic::x86_mmx_psrli_w:
9788      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9789      break;
9790    case Intrinsic::x86_mmx_psrli_d:
9791      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9792      break;
9793    case Intrinsic::x86_mmx_psrli_q:
9794      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9795      break;
9796    case Intrinsic::x86_mmx_psrai_w:
9797      NewIntNo = Intrinsic::x86_mmx_psra_w;
9798      break;
9799    case Intrinsic::x86_mmx_psrai_d:
9800      NewIntNo = Intrinsic::x86_mmx_psra_d;
9801      break;
9802    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9803    }
9804
9805    // The vector shift intrinsics with scalars uses 32b shift amounts but
9806    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9807    // to be zero.
9808    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9809                         DAG.getConstant(0, MVT::i32));
9810// FIXME this must be lowered to get rid of the invalid type.
9811
9812    EVT VT = Op.getValueType();
9813    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9814    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9815                       DAG.getConstant(NewIntNo, MVT::i32),
9816                       Op.getOperand(1), ShAmt);
9817  }
9818  case Intrinsic::x86_sse42_pcmpistria128:
9819  case Intrinsic::x86_sse42_pcmpestria128:
9820  case Intrinsic::x86_sse42_pcmpistric128:
9821  case Intrinsic::x86_sse42_pcmpestric128:
9822  case Intrinsic::x86_sse42_pcmpistrio128:
9823  case Intrinsic::x86_sse42_pcmpestrio128:
9824  case Intrinsic::x86_sse42_pcmpistris128:
9825  case Intrinsic::x86_sse42_pcmpestris128:
9826  case Intrinsic::x86_sse42_pcmpistriz128:
9827  case Intrinsic::x86_sse42_pcmpestriz128: {
9828    unsigned Opcode;
9829    unsigned X86CC;
9830    switch (IntNo) {
9831    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9832    case Intrinsic::x86_sse42_pcmpistria128:
9833      Opcode = X86ISD::PCMPISTRI;
9834      X86CC = X86::COND_A;
9835      break;
9836    case Intrinsic::x86_sse42_pcmpestria128:
9837      Opcode = X86ISD::PCMPESTRI;
9838      X86CC = X86::COND_A;
9839      break;
9840    case Intrinsic::x86_sse42_pcmpistric128:
9841      Opcode = X86ISD::PCMPISTRI;
9842      X86CC = X86::COND_B;
9843      break;
9844    case Intrinsic::x86_sse42_pcmpestric128:
9845      Opcode = X86ISD::PCMPESTRI;
9846      X86CC = X86::COND_B;
9847      break;
9848    case Intrinsic::x86_sse42_pcmpistrio128:
9849      Opcode = X86ISD::PCMPISTRI;
9850      X86CC = X86::COND_O;
9851      break;
9852    case Intrinsic::x86_sse42_pcmpestrio128:
9853      Opcode = X86ISD::PCMPESTRI;
9854      X86CC = X86::COND_O;
9855      break;
9856    case Intrinsic::x86_sse42_pcmpistris128:
9857      Opcode = X86ISD::PCMPISTRI;
9858      X86CC = X86::COND_S;
9859      break;
9860    case Intrinsic::x86_sse42_pcmpestris128:
9861      Opcode = X86ISD::PCMPESTRI;
9862      X86CC = X86::COND_S;
9863      break;
9864    case Intrinsic::x86_sse42_pcmpistriz128:
9865      Opcode = X86ISD::PCMPISTRI;
9866      X86CC = X86::COND_E;
9867      break;
9868    case Intrinsic::x86_sse42_pcmpestriz128:
9869      Opcode = X86ISD::PCMPESTRI;
9870      X86CC = X86::COND_E;
9871      break;
9872    }
9873    SmallVector<SDValue, 5> NewOps;
9874    NewOps.append(Op->op_begin()+1, Op->op_end());
9875    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9876    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
9877    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9878                                DAG.getConstant(X86CC, MVT::i8),
9879                                SDValue(PCMP.getNode(), 1));
9880    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9881  }
9882  case Intrinsic::x86_sse42_pcmpistri128:
9883  case Intrinsic::x86_sse42_pcmpestri128: {
9884    unsigned Opcode;
9885    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
9886      Opcode = X86ISD::PCMPISTRI;
9887    else
9888      Opcode = X86ISD::PCMPESTRI;
9889
9890    SmallVector<SDValue, 5> NewOps;
9891    NewOps.append(Op->op_begin()+1, Op->op_end());
9892    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9893    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
9894  }
9895  }
9896}
9897
9898SDValue
9899X86TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9900  DebugLoc dl = Op.getDebugLoc();
9901  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9902  switch (IntNo) {
9903  default: return SDValue();    // Don't custom lower most intrinsics.
9904
9905  // RDRAND intrinsics.
9906  case Intrinsic::x86_rdrand_16:
9907  case Intrinsic::x86_rdrand_32:
9908  case Intrinsic::x86_rdrand_64: {
9909    // Emit the node with the right value type.
9910    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
9911    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
9912
9913    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
9914    // return the value from Rand, which is always 0, casted to i32.
9915    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
9916                      DAG.getConstant(1, Op->getValueType(1)),
9917                      DAG.getConstant(X86::COND_B, MVT::i32),
9918                      SDValue(Result.getNode(), 1) };
9919    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
9920                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
9921                                  Ops, 4);
9922
9923    // Return { result, isValid, chain }.
9924    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
9925                       SDValue(Result.getNode(), 2));
9926  }
9927  }
9928}
9929
9930SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9931                                           SelectionDAG &DAG) const {
9932  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9933  MFI->setReturnAddressIsTaken(true);
9934
9935  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9936  DebugLoc dl = Op.getDebugLoc();
9937
9938  if (Depth > 0) {
9939    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9940    SDValue Offset =
9941      DAG.getConstant(TD->getPointerSize(),
9942                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9943    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9944                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9945                                   FrameAddr, Offset),
9946                       MachinePointerInfo(), false, false, false, 0);
9947  }
9948
9949  // Just load the return address.
9950  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9951  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9952                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9953}
9954
9955SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9956  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9957  MFI->setFrameAddressIsTaken(true);
9958
9959  EVT VT = Op.getValueType();
9960  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9961  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9962  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9963  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9964  while (Depth--)
9965    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9966                            MachinePointerInfo(),
9967                            false, false, false, 0);
9968  return FrameAddr;
9969}
9970
9971SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9972                                                     SelectionDAG &DAG) const {
9973  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9974}
9975
9976SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9977  SDValue Chain     = Op.getOperand(0);
9978  SDValue Offset    = Op.getOperand(1);
9979  SDValue Handler   = Op.getOperand(2);
9980  DebugLoc dl       = Op.getDebugLoc();
9981
9982  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9983                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9984                                     getPointerTy());
9985  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9986
9987  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9988                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9989  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9990  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9991                       false, false, 0);
9992  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9993
9994  return DAG.getNode(X86ISD::EH_RETURN, dl,
9995                     MVT::Other,
9996                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9997}
9998
9999SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
10000                                                  SelectionDAG &DAG) const {
10001  return Op.getOperand(0);
10002}
10003
10004SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10005                                                SelectionDAG &DAG) const {
10006  SDValue Root = Op.getOperand(0);
10007  SDValue Trmp = Op.getOperand(1); // trampoline
10008  SDValue FPtr = Op.getOperand(2); // nested function
10009  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10010  DebugLoc dl  = Op.getDebugLoc();
10011
10012  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10013
10014  if (Subtarget->is64Bit()) {
10015    SDValue OutChains[6];
10016
10017    // Large code-model.
10018    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10019    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10020
10021    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
10022    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
10023
10024    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10025
10026    // Load the pointer to the nested function into R11.
10027    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10028    SDValue Addr = Trmp;
10029    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10030                                Addr, MachinePointerInfo(TrmpAddr),
10031                                false, false, 0);
10032
10033    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10034                       DAG.getConstant(2, MVT::i64));
10035    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10036                                MachinePointerInfo(TrmpAddr, 2),
10037                                false, false, 2);
10038
10039    // Load the 'nest' parameter value into R10.
10040    // R10 is specified in X86CallingConv.td
10041    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10042    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10043                       DAG.getConstant(10, MVT::i64));
10044    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10045                                Addr, MachinePointerInfo(TrmpAddr, 10),
10046                                false, false, 0);
10047
10048    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10049                       DAG.getConstant(12, MVT::i64));
10050    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10051                                MachinePointerInfo(TrmpAddr, 12),
10052                                false, false, 2);
10053
10054    // Jump to the nested function.
10055    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10056    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10057                       DAG.getConstant(20, MVT::i64));
10058    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10059                                Addr, MachinePointerInfo(TrmpAddr, 20),
10060                                false, false, 0);
10061
10062    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10063    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10064                       DAG.getConstant(22, MVT::i64));
10065    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10066                                MachinePointerInfo(TrmpAddr, 22),
10067                                false, false, 0);
10068
10069    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10070  } else {
10071    const Function *Func =
10072      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10073    CallingConv::ID CC = Func->getCallingConv();
10074    unsigned NestReg;
10075
10076    switch (CC) {
10077    default:
10078      llvm_unreachable("Unsupported calling convention");
10079    case CallingConv::C:
10080    case CallingConv::X86_StdCall: {
10081      // Pass 'nest' parameter in ECX.
10082      // Must be kept in sync with X86CallingConv.td
10083      NestReg = X86::ECX;
10084
10085      // Check that ECX wasn't needed by an 'inreg' parameter.
10086      FunctionType *FTy = Func->getFunctionType();
10087      const AttrListPtr &Attrs = Func->getAttributes();
10088
10089      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10090        unsigned InRegCount = 0;
10091        unsigned Idx = 1;
10092
10093        for (FunctionType::param_iterator I = FTy->param_begin(),
10094             E = FTy->param_end(); I != E; ++I, ++Idx)
10095          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10096            // FIXME: should only count parameters that are lowered to integers.
10097            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10098
10099        if (InRegCount > 2) {
10100          report_fatal_error("Nest register in use - reduce number of inreg"
10101                             " parameters!");
10102        }
10103      }
10104      break;
10105    }
10106    case CallingConv::X86_FastCall:
10107    case CallingConv::X86_ThisCall:
10108    case CallingConv::Fast:
10109      // Pass 'nest' parameter in EAX.
10110      // Must be kept in sync with X86CallingConv.td
10111      NestReg = X86::EAX;
10112      break;
10113    }
10114
10115    SDValue OutChains[4];
10116    SDValue Addr, Disp;
10117
10118    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10119                       DAG.getConstant(10, MVT::i32));
10120    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10121
10122    // This is storing the opcode for MOV32ri.
10123    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10124    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10125    OutChains[0] = DAG.getStore(Root, dl,
10126                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10127                                Trmp, MachinePointerInfo(TrmpAddr),
10128                                false, false, 0);
10129
10130    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10131                       DAG.getConstant(1, MVT::i32));
10132    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10133                                MachinePointerInfo(TrmpAddr, 1),
10134                                false, false, 1);
10135
10136    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10137    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10138                       DAG.getConstant(5, MVT::i32));
10139    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10140                                MachinePointerInfo(TrmpAddr, 5),
10141                                false, false, 1);
10142
10143    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10144                       DAG.getConstant(6, MVT::i32));
10145    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10146                                MachinePointerInfo(TrmpAddr, 6),
10147                                false, false, 1);
10148
10149    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10150  }
10151}
10152
10153SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10154                                            SelectionDAG &DAG) const {
10155  /*
10156   The rounding mode is in bits 11:10 of FPSR, and has the following
10157   settings:
10158     00 Round to nearest
10159     01 Round to -inf
10160     10 Round to +inf
10161     11 Round to 0
10162
10163  FLT_ROUNDS, on the other hand, expects the following:
10164    -1 Undefined
10165     0 Round to 0
10166     1 Round to nearest
10167     2 Round to +inf
10168     3 Round to -inf
10169
10170  To perform the conversion, we do:
10171    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10172  */
10173
10174  MachineFunction &MF = DAG.getMachineFunction();
10175  const TargetMachine &TM = MF.getTarget();
10176  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10177  unsigned StackAlignment = TFI.getStackAlignment();
10178  EVT VT = Op.getValueType();
10179  DebugLoc DL = Op.getDebugLoc();
10180
10181  // Save FP Control Word to stack slot
10182  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10183  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10184
10185
10186  MachineMemOperand *MMO =
10187   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10188                           MachineMemOperand::MOStore, 2, 2);
10189
10190  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10191  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10192                                          DAG.getVTList(MVT::Other),
10193                                          Ops, 2, MVT::i16, MMO);
10194
10195  // Load FP Control Word from stack slot
10196  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10197                            MachinePointerInfo(), false, false, false, 0);
10198
10199  // Transform as necessary
10200  SDValue CWD1 =
10201    DAG.getNode(ISD::SRL, DL, MVT::i16,
10202                DAG.getNode(ISD::AND, DL, MVT::i16,
10203                            CWD, DAG.getConstant(0x800, MVT::i16)),
10204                DAG.getConstant(11, MVT::i8));
10205  SDValue CWD2 =
10206    DAG.getNode(ISD::SRL, DL, MVT::i16,
10207                DAG.getNode(ISD::AND, DL, MVT::i16,
10208                            CWD, DAG.getConstant(0x400, MVT::i16)),
10209                DAG.getConstant(9, MVT::i8));
10210
10211  SDValue RetVal =
10212    DAG.getNode(ISD::AND, DL, MVT::i16,
10213                DAG.getNode(ISD::ADD, DL, MVT::i16,
10214                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10215                            DAG.getConstant(1, MVT::i16)),
10216                DAG.getConstant(3, MVT::i16));
10217
10218
10219  return DAG.getNode((VT.getSizeInBits() < 16 ?
10220                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10221}
10222
10223SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10224  EVT VT = Op.getValueType();
10225  EVT OpVT = VT;
10226  unsigned NumBits = VT.getSizeInBits();
10227  DebugLoc dl = Op.getDebugLoc();
10228
10229  Op = Op.getOperand(0);
10230  if (VT == MVT::i8) {
10231    // Zero extend to i32 since there is not an i8 bsr.
10232    OpVT = MVT::i32;
10233    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10234  }
10235
10236  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10237  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10238  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10239
10240  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10241  SDValue Ops[] = {
10242    Op,
10243    DAG.getConstant(NumBits+NumBits-1, OpVT),
10244    DAG.getConstant(X86::COND_E, MVT::i8),
10245    Op.getValue(1)
10246  };
10247  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10248
10249  // Finally xor with NumBits-1.
10250  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10251
10252  if (VT == MVT::i8)
10253    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10254  return Op;
10255}
10256
10257SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10258                                                SelectionDAG &DAG) const {
10259  EVT VT = Op.getValueType();
10260  EVT OpVT = VT;
10261  unsigned NumBits = VT.getSizeInBits();
10262  DebugLoc dl = Op.getDebugLoc();
10263
10264  Op = Op.getOperand(0);
10265  if (VT == MVT::i8) {
10266    // Zero extend to i32 since there is not an i8 bsr.
10267    OpVT = MVT::i32;
10268    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10269  }
10270
10271  // Issue a bsr (scan bits in reverse).
10272  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10273  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10274
10275  // And xor with NumBits-1.
10276  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10277
10278  if (VT == MVT::i8)
10279    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10280  return Op;
10281}
10282
10283SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10284  EVT VT = Op.getValueType();
10285  unsigned NumBits = VT.getSizeInBits();
10286  DebugLoc dl = Op.getDebugLoc();
10287  Op = Op.getOperand(0);
10288
10289  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10290  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10291  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10292
10293  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10294  SDValue Ops[] = {
10295    Op,
10296    DAG.getConstant(NumBits, VT),
10297    DAG.getConstant(X86::COND_E, MVT::i8),
10298    Op.getValue(1)
10299  };
10300  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10301}
10302
10303// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10304// ones, and then concatenate the result back.
10305static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10306  EVT VT = Op.getValueType();
10307
10308  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10309         "Unsupported value type for operation");
10310
10311  unsigned NumElems = VT.getVectorNumElements();
10312  DebugLoc dl = Op.getDebugLoc();
10313
10314  // Extract the LHS vectors
10315  SDValue LHS = Op.getOperand(0);
10316  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10317  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10318
10319  // Extract the RHS vectors
10320  SDValue RHS = Op.getOperand(1);
10321  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10322  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10323
10324  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10325  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10326
10327  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10328                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10329                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10330}
10331
10332SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10333  assert(Op.getValueType().getSizeInBits() == 256 &&
10334         Op.getValueType().isInteger() &&
10335         "Only handle AVX 256-bit vector integer operation");
10336  return Lower256IntArith(Op, DAG);
10337}
10338
10339SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10340  assert(Op.getValueType().getSizeInBits() == 256 &&
10341         Op.getValueType().isInteger() &&
10342         "Only handle AVX 256-bit vector integer operation");
10343  return Lower256IntArith(Op, DAG);
10344}
10345
10346SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10347  EVT VT = Op.getValueType();
10348
10349  // Decompose 256-bit ops into smaller 128-bit ops.
10350  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10351    return Lower256IntArith(Op, DAG);
10352
10353  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10354         "Only know how to lower V2I64/V4I64 multiply");
10355
10356  DebugLoc dl = Op.getDebugLoc();
10357
10358  //  Ahi = psrlqi(a, 32);
10359  //  Bhi = psrlqi(b, 32);
10360  //
10361  //  AloBlo = pmuludq(a, b);
10362  //  AloBhi = pmuludq(a, Bhi);
10363  //  AhiBlo = pmuludq(Ahi, b);
10364
10365  //  AloBhi = psllqi(AloBhi, 32);
10366  //  AhiBlo = psllqi(AhiBlo, 32);
10367  //  return AloBlo + AloBhi + AhiBlo;
10368
10369  SDValue A = Op.getOperand(0);
10370  SDValue B = Op.getOperand(1);
10371
10372  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10373
10374  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10375  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10376
10377  // Bit cast to 32-bit vectors for MULUDQ
10378  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10379  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10380  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10381  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10382  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10383
10384  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10385  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10386  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10387
10388  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10389  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10390
10391  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10392  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10393}
10394
10395SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10396
10397  EVT VT = Op.getValueType();
10398  DebugLoc dl = Op.getDebugLoc();
10399  SDValue R = Op.getOperand(0);
10400  SDValue Amt = Op.getOperand(1);
10401  LLVMContext *Context = DAG.getContext();
10402
10403  if (!Subtarget->hasSSE2())
10404    return SDValue();
10405
10406  // Optimize shl/srl/sra with constant shift amount.
10407  if (isSplatVector(Amt.getNode())) {
10408    SDValue SclrAmt = Amt->getOperand(0);
10409    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10410      uint64_t ShiftAmt = C->getZExtValue();
10411
10412      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10413          (Subtarget->hasAVX2() &&
10414           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10415        if (Op.getOpcode() == ISD::SHL)
10416          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10417                             DAG.getConstant(ShiftAmt, MVT::i32));
10418        if (Op.getOpcode() == ISD::SRL)
10419          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10420                             DAG.getConstant(ShiftAmt, MVT::i32));
10421        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10422          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10423                             DAG.getConstant(ShiftAmt, MVT::i32));
10424      }
10425
10426      if (VT == MVT::v16i8) {
10427        if (Op.getOpcode() == ISD::SHL) {
10428          // Make a large shift.
10429          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10430                                    DAG.getConstant(ShiftAmt, MVT::i32));
10431          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10432          // Zero out the rightmost bits.
10433          SmallVector<SDValue, 16> V(16,
10434                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10435                                                     MVT::i8));
10436          return DAG.getNode(ISD::AND, dl, VT, SHL,
10437                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10438        }
10439        if (Op.getOpcode() == ISD::SRL) {
10440          // Make a large shift.
10441          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10442                                    DAG.getConstant(ShiftAmt, MVT::i32));
10443          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10444          // Zero out the leftmost bits.
10445          SmallVector<SDValue, 16> V(16,
10446                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10447                                                     MVT::i8));
10448          return DAG.getNode(ISD::AND, dl, VT, SRL,
10449                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10450        }
10451        if (Op.getOpcode() == ISD::SRA) {
10452          if (ShiftAmt == 7) {
10453            // R s>> 7  ===  R s< 0
10454            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10455            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10456          }
10457
10458          // R s>> a === ((R u>> a) ^ m) - m
10459          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10460          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10461                                                         MVT::i8));
10462          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10463          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10464          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10465          return Res;
10466        }
10467        llvm_unreachable("Unknown shift opcode.");
10468      }
10469
10470      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10471        if (Op.getOpcode() == ISD::SHL) {
10472          // Make a large shift.
10473          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10474                                    DAG.getConstant(ShiftAmt, MVT::i32));
10475          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10476          // Zero out the rightmost bits.
10477          SmallVector<SDValue, 32> V(32,
10478                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10479                                                     MVT::i8));
10480          return DAG.getNode(ISD::AND, dl, VT, SHL,
10481                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10482        }
10483        if (Op.getOpcode() == ISD::SRL) {
10484          // Make a large shift.
10485          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10486                                    DAG.getConstant(ShiftAmt, MVT::i32));
10487          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10488          // Zero out the leftmost bits.
10489          SmallVector<SDValue, 32> V(32,
10490                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10491                                                     MVT::i8));
10492          return DAG.getNode(ISD::AND, dl, VT, SRL,
10493                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10494        }
10495        if (Op.getOpcode() == ISD::SRA) {
10496          if (ShiftAmt == 7) {
10497            // R s>> 7  ===  R s< 0
10498            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10499            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10500          }
10501
10502          // R s>> a === ((R u>> a) ^ m) - m
10503          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10504          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10505                                                         MVT::i8));
10506          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10507          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10508          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10509          return Res;
10510        }
10511        llvm_unreachable("Unknown shift opcode.");
10512      }
10513    }
10514  }
10515
10516  // Lower SHL with variable shift amount.
10517  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10518    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10519                     DAG.getConstant(23, MVT::i32));
10520
10521    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10522    Constant *C = ConstantDataVector::get(*Context, CV);
10523    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10524    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10525                                 MachinePointerInfo::getConstantPool(),
10526                                 false, false, false, 16);
10527
10528    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10529    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10530    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10531    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10532  }
10533  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10534    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10535
10536    // a = a << 5;
10537    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10538                     DAG.getConstant(5, MVT::i32));
10539    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10540
10541    // Turn 'a' into a mask suitable for VSELECT
10542    SDValue VSelM = DAG.getConstant(0x80, VT);
10543    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10544    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10545
10546    SDValue CM1 = DAG.getConstant(0x0f, VT);
10547    SDValue CM2 = DAG.getConstant(0x3f, VT);
10548
10549    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10550    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10551    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10552                            DAG.getConstant(4, MVT::i32), DAG);
10553    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10554    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10555
10556    // a += a
10557    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10558    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10559    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10560
10561    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10562    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10563    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10564                            DAG.getConstant(2, MVT::i32), DAG);
10565    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10566    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10567
10568    // a += a
10569    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10570    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10571    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10572
10573    // return VSELECT(r, r+r, a);
10574    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10575                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10576    return R;
10577  }
10578
10579  // Decompose 256-bit shifts into smaller 128-bit shifts.
10580  if (VT.getSizeInBits() == 256) {
10581    unsigned NumElems = VT.getVectorNumElements();
10582    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10583    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10584
10585    // Extract the two vectors
10586    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10587    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10588
10589    // Recreate the shift amount vectors
10590    SDValue Amt1, Amt2;
10591    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10592      // Constant shift amount
10593      SmallVector<SDValue, 4> Amt1Csts;
10594      SmallVector<SDValue, 4> Amt2Csts;
10595      for (unsigned i = 0; i != NumElems/2; ++i)
10596        Amt1Csts.push_back(Amt->getOperand(i));
10597      for (unsigned i = NumElems/2; i != NumElems; ++i)
10598        Amt2Csts.push_back(Amt->getOperand(i));
10599
10600      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10601                                 &Amt1Csts[0], NumElems/2);
10602      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10603                                 &Amt2Csts[0], NumElems/2);
10604    } else {
10605      // Variable shift amount
10606      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10607      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10608    }
10609
10610    // Issue new vector shifts for the smaller types
10611    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10612    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10613
10614    // Concatenate the result back
10615    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10616  }
10617
10618  return SDValue();
10619}
10620
10621SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10622  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10623  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10624  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10625  // has only one use.
10626  SDNode *N = Op.getNode();
10627  SDValue LHS = N->getOperand(0);
10628  SDValue RHS = N->getOperand(1);
10629  unsigned BaseOp = 0;
10630  unsigned Cond = 0;
10631  DebugLoc DL = Op.getDebugLoc();
10632  switch (Op.getOpcode()) {
10633  default: llvm_unreachable("Unknown ovf instruction!");
10634  case ISD::SADDO:
10635    // A subtract of one will be selected as a INC. Note that INC doesn't
10636    // set CF, so we can't do this for UADDO.
10637    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10638      if (C->isOne()) {
10639        BaseOp = X86ISD::INC;
10640        Cond = X86::COND_O;
10641        break;
10642      }
10643    BaseOp = X86ISD::ADD;
10644    Cond = X86::COND_O;
10645    break;
10646  case ISD::UADDO:
10647    BaseOp = X86ISD::ADD;
10648    Cond = X86::COND_B;
10649    break;
10650  case ISD::SSUBO:
10651    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10652    // set CF, so we can't do this for USUBO.
10653    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10654      if (C->isOne()) {
10655        BaseOp = X86ISD::DEC;
10656        Cond = X86::COND_O;
10657        break;
10658      }
10659    BaseOp = X86ISD::SUB;
10660    Cond = X86::COND_O;
10661    break;
10662  case ISD::USUBO:
10663    BaseOp = X86ISD::SUB;
10664    Cond = X86::COND_B;
10665    break;
10666  case ISD::SMULO:
10667    BaseOp = X86ISD::SMUL;
10668    Cond = X86::COND_O;
10669    break;
10670  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10671    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10672                                 MVT::i32);
10673    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10674
10675    SDValue SetCC =
10676      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10677                  DAG.getConstant(X86::COND_O, MVT::i32),
10678                  SDValue(Sum.getNode(), 2));
10679
10680    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10681  }
10682  }
10683
10684  // Also sets EFLAGS.
10685  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10686  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10687
10688  SDValue SetCC =
10689    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10690                DAG.getConstant(Cond, MVT::i32),
10691                SDValue(Sum.getNode(), 1));
10692
10693  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10694}
10695
10696SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10697                                                  SelectionDAG &DAG) const {
10698  DebugLoc dl = Op.getDebugLoc();
10699  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10700  EVT VT = Op.getValueType();
10701
10702  if (!Subtarget->hasSSE2() || !VT.isVector())
10703    return SDValue();
10704
10705  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10706                      ExtraVT.getScalarType().getSizeInBits();
10707  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10708
10709  switch (VT.getSimpleVT().SimpleTy) {
10710    default: return SDValue();
10711    case MVT::v8i32:
10712    case MVT::v16i16:
10713      if (!Subtarget->hasAVX())
10714        return SDValue();
10715      if (!Subtarget->hasAVX2()) {
10716        // needs to be split
10717        unsigned NumElems = VT.getVectorNumElements();
10718
10719        // Extract the LHS vectors
10720        SDValue LHS = Op.getOperand(0);
10721        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10722        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10723
10724        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10725        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10726
10727        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10728        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
10729        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10730                                   ExtraNumElems/2);
10731        SDValue Extra = DAG.getValueType(ExtraVT);
10732
10733        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10734        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10735
10736        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10737      }
10738      // fall through
10739    case MVT::v4i32:
10740    case MVT::v8i16: {
10741      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10742                                         Op.getOperand(0), ShAmt, DAG);
10743      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10744    }
10745  }
10746}
10747
10748
10749SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10750  DebugLoc dl = Op.getDebugLoc();
10751
10752  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10753  // There isn't any reason to disable it if the target processor supports it.
10754  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10755    SDValue Chain = Op.getOperand(0);
10756    SDValue Zero = DAG.getConstant(0, MVT::i32);
10757    SDValue Ops[] = {
10758      DAG.getRegister(X86::ESP, MVT::i32), // Base
10759      DAG.getTargetConstant(1, MVT::i8),   // Scale
10760      DAG.getRegister(0, MVT::i32),        // Index
10761      DAG.getTargetConstant(0, MVT::i32),  // Disp
10762      DAG.getRegister(0, MVT::i32),        // Segment.
10763      Zero,
10764      Chain
10765    };
10766    SDNode *Res =
10767      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10768                          array_lengthof(Ops));
10769    return SDValue(Res, 0);
10770  }
10771
10772  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10773  if (!isDev)
10774    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10775
10776  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10777  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10778  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10779  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10780
10781  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10782  if (!Op1 && !Op2 && !Op3 && Op4)
10783    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10784
10785  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10786  if (Op1 && !Op2 && !Op3 && !Op4)
10787    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10788
10789  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10790  //           (MFENCE)>;
10791  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10792}
10793
10794SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10795                                             SelectionDAG &DAG) const {
10796  DebugLoc dl = Op.getDebugLoc();
10797  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10798    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10799  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10800    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10801
10802  // The only fence that needs an instruction is a sequentially-consistent
10803  // cross-thread fence.
10804  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10805    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10806    // no-sse2). There isn't any reason to disable it if the target processor
10807    // supports it.
10808    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10809      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10810
10811    SDValue Chain = Op.getOperand(0);
10812    SDValue Zero = DAG.getConstant(0, MVT::i32);
10813    SDValue Ops[] = {
10814      DAG.getRegister(X86::ESP, MVT::i32), // Base
10815      DAG.getTargetConstant(1, MVT::i8),   // Scale
10816      DAG.getRegister(0, MVT::i32),        // Index
10817      DAG.getTargetConstant(0, MVT::i32),  // Disp
10818      DAG.getRegister(0, MVT::i32),        // Segment.
10819      Zero,
10820      Chain
10821    };
10822    SDNode *Res =
10823      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10824                         array_lengthof(Ops));
10825    return SDValue(Res, 0);
10826  }
10827
10828  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10829  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10830}
10831
10832
10833SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10834  EVT T = Op.getValueType();
10835  DebugLoc DL = Op.getDebugLoc();
10836  unsigned Reg = 0;
10837  unsigned size = 0;
10838  switch(T.getSimpleVT().SimpleTy) {
10839  default: llvm_unreachable("Invalid value type!");
10840  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10841  case MVT::i16: Reg = X86::AX;  size = 2; break;
10842  case MVT::i32: Reg = X86::EAX; size = 4; break;
10843  case MVT::i64:
10844    assert(Subtarget->is64Bit() && "Node not type legal!");
10845    Reg = X86::RAX; size = 8;
10846    break;
10847  }
10848  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10849                                    Op.getOperand(2), SDValue());
10850  SDValue Ops[] = { cpIn.getValue(0),
10851                    Op.getOperand(1),
10852                    Op.getOperand(3),
10853                    DAG.getTargetConstant(size, MVT::i8),
10854                    cpIn.getValue(1) };
10855  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10856  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10857  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10858                                           Ops, 5, T, MMO);
10859  SDValue cpOut =
10860    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10861  return cpOut;
10862}
10863
10864SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10865                                                 SelectionDAG &DAG) const {
10866  assert(Subtarget->is64Bit() && "Result not type legalized?");
10867  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10868  SDValue TheChain = Op.getOperand(0);
10869  DebugLoc dl = Op.getDebugLoc();
10870  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10871  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10872  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10873                                   rax.getValue(2));
10874  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10875                            DAG.getConstant(32, MVT::i8));
10876  SDValue Ops[] = {
10877    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10878    rdx.getValue(1)
10879  };
10880  return DAG.getMergeValues(Ops, 2, dl);
10881}
10882
10883SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10884                                            SelectionDAG &DAG) const {
10885  EVT SrcVT = Op.getOperand(0).getValueType();
10886  EVT DstVT = Op.getValueType();
10887  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10888         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10889  assert((DstVT == MVT::i64 ||
10890          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10891         "Unexpected custom BITCAST");
10892  // i64 <=> MMX conversions are Legal.
10893  if (SrcVT==MVT::i64 && DstVT.isVector())
10894    return Op;
10895  if (DstVT==MVT::i64 && SrcVT.isVector())
10896    return Op;
10897  // MMX <=> MMX conversions are Legal.
10898  if (SrcVT.isVector() && DstVT.isVector())
10899    return Op;
10900  // All other conversions need to be expanded.
10901  return SDValue();
10902}
10903
10904SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10905  SDNode *Node = Op.getNode();
10906  DebugLoc dl = Node->getDebugLoc();
10907  EVT T = Node->getValueType(0);
10908  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10909                              DAG.getConstant(0, T), Node->getOperand(2));
10910  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10911                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10912                       Node->getOperand(0),
10913                       Node->getOperand(1), negOp,
10914                       cast<AtomicSDNode>(Node)->getSrcValue(),
10915                       cast<AtomicSDNode>(Node)->getAlignment(),
10916                       cast<AtomicSDNode>(Node)->getOrdering(),
10917                       cast<AtomicSDNode>(Node)->getSynchScope());
10918}
10919
10920static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10921  SDNode *Node = Op.getNode();
10922  DebugLoc dl = Node->getDebugLoc();
10923  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10924
10925  // Convert seq_cst store -> xchg
10926  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10927  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10928  //        (The only way to get a 16-byte store is cmpxchg16b)
10929  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10930  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10931      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10932    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10933                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10934                                 Node->getOperand(0),
10935                                 Node->getOperand(1), Node->getOperand(2),
10936                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10937                                 cast<AtomicSDNode>(Node)->getOrdering(),
10938                                 cast<AtomicSDNode>(Node)->getSynchScope());
10939    return Swap.getValue(1);
10940  }
10941  // Other atomic stores have a simple pattern.
10942  return Op;
10943}
10944
10945static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10946  EVT VT = Op.getNode()->getValueType(0);
10947
10948  // Let legalize expand this if it isn't a legal type yet.
10949  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10950    return SDValue();
10951
10952  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10953
10954  unsigned Opc;
10955  bool ExtraOp = false;
10956  switch (Op.getOpcode()) {
10957  default: llvm_unreachable("Invalid code");
10958  case ISD::ADDC: Opc = X86ISD::ADD; break;
10959  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10960  case ISD::SUBC: Opc = X86ISD::SUB; break;
10961  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10962  }
10963
10964  if (!ExtraOp)
10965    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10966                       Op.getOperand(1));
10967  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10968                     Op.getOperand(1), Op.getOperand(2));
10969}
10970
10971/// LowerOperation - Provide custom lowering hooks for some operations.
10972///
10973SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10974  switch (Op.getOpcode()) {
10975  default: llvm_unreachable("Should not custom lower this!");
10976  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10977  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10978  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10979  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10980  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10981  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10982  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10983  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10984  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10985  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10986  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10987  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10988  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10989  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10990  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10991  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10992  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10993  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10994  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10995  case ISD::SHL_PARTS:
10996  case ISD::SRA_PARTS:
10997  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10998  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10999  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11000  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11001  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11002  case ISD::FABS:               return LowerFABS(Op, DAG);
11003  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11004  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11005  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11006  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11007  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11008  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11009  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11010  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11011  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11012  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11013  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11014  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11015  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11016  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11017  case ISD::FRAME_TO_ARGS_OFFSET:
11018                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11019  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11020  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11021  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11022  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11023  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11024  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11025  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11026  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11027  case ISD::MUL:                return LowerMUL(Op, DAG);
11028  case ISD::SRA:
11029  case ISD::SRL:
11030  case ISD::SHL:                return LowerShift(Op, DAG);
11031  case ISD::SADDO:
11032  case ISD::UADDO:
11033  case ISD::SSUBO:
11034  case ISD::USUBO:
11035  case ISD::SMULO:
11036  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11037  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
11038  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11039  case ISD::ADDC:
11040  case ISD::ADDE:
11041  case ISD::SUBC:
11042  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11043  case ISD::ADD:                return LowerADD(Op, DAG);
11044  case ISD::SUB:                return LowerSUB(Op, DAG);
11045  }
11046}
11047
11048static void ReplaceATOMIC_LOAD(SDNode *Node,
11049                                  SmallVectorImpl<SDValue> &Results,
11050                                  SelectionDAG &DAG) {
11051  DebugLoc dl = Node->getDebugLoc();
11052  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11053
11054  // Convert wide load -> cmpxchg8b/cmpxchg16b
11055  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11056  //        (The only way to get a 16-byte load is cmpxchg16b)
11057  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11058  SDValue Zero = DAG.getConstant(0, VT);
11059  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11060                               Node->getOperand(0),
11061                               Node->getOperand(1), Zero, Zero,
11062                               cast<AtomicSDNode>(Node)->getMemOperand(),
11063                               cast<AtomicSDNode>(Node)->getOrdering(),
11064                               cast<AtomicSDNode>(Node)->getSynchScope());
11065  Results.push_back(Swap.getValue(0));
11066  Results.push_back(Swap.getValue(1));
11067}
11068
11069void X86TargetLowering::
11070ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11071                        SelectionDAG &DAG, unsigned NewOp) const {
11072  DebugLoc dl = Node->getDebugLoc();
11073  assert (Node->getValueType(0) == MVT::i64 &&
11074          "Only know how to expand i64 atomics");
11075
11076  SDValue Chain = Node->getOperand(0);
11077  SDValue In1 = Node->getOperand(1);
11078  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11079                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11080  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11081                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11082  SDValue Ops[] = { Chain, In1, In2L, In2H };
11083  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11084  SDValue Result =
11085    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11086                            cast<MemSDNode>(Node)->getMemOperand());
11087  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11088  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11089  Results.push_back(Result.getValue(2));
11090}
11091
11092/// ReplaceNodeResults - Replace a node with an illegal result type
11093/// with a new node built out of custom code.
11094void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11095                                           SmallVectorImpl<SDValue>&Results,
11096                                           SelectionDAG &DAG) const {
11097  DebugLoc dl = N->getDebugLoc();
11098  switch (N->getOpcode()) {
11099  default:
11100    llvm_unreachable("Do not know how to custom type legalize this operation!");
11101  case ISD::SIGN_EXTEND_INREG:
11102  case ISD::ADDC:
11103  case ISD::ADDE:
11104  case ISD::SUBC:
11105  case ISD::SUBE:
11106    // We don't want to expand or promote these.
11107    return;
11108  case ISD::FP_TO_SINT:
11109  case ISD::FP_TO_UINT: {
11110    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11111
11112    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11113      return;
11114
11115    std::pair<SDValue,SDValue> Vals =
11116        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11117    SDValue FIST = Vals.first, StackSlot = Vals.second;
11118    if (FIST.getNode() != 0) {
11119      EVT VT = N->getValueType(0);
11120      // Return a load from the stack slot.
11121      if (StackSlot.getNode() != 0)
11122        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11123                                      MachinePointerInfo(),
11124                                      false, false, false, 0));
11125      else
11126        Results.push_back(FIST);
11127    }
11128    return;
11129  }
11130  case ISD::READCYCLECOUNTER: {
11131    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11132    SDValue TheChain = N->getOperand(0);
11133    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11134    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11135                                     rd.getValue(1));
11136    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11137                                     eax.getValue(2));
11138    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11139    SDValue Ops[] = { eax, edx };
11140    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11141    Results.push_back(edx.getValue(1));
11142    return;
11143  }
11144  case ISD::ATOMIC_CMP_SWAP: {
11145    EVT T = N->getValueType(0);
11146    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11147    bool Regs64bit = T == MVT::i128;
11148    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11149    SDValue cpInL, cpInH;
11150    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11151                        DAG.getConstant(0, HalfT));
11152    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11153                        DAG.getConstant(1, HalfT));
11154    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11155                             Regs64bit ? X86::RAX : X86::EAX,
11156                             cpInL, SDValue());
11157    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11158                             Regs64bit ? X86::RDX : X86::EDX,
11159                             cpInH, cpInL.getValue(1));
11160    SDValue swapInL, swapInH;
11161    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11162                          DAG.getConstant(0, HalfT));
11163    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11164                          DAG.getConstant(1, HalfT));
11165    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11166                               Regs64bit ? X86::RBX : X86::EBX,
11167                               swapInL, cpInH.getValue(1));
11168    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11169                               Regs64bit ? X86::RCX : X86::ECX,
11170                               swapInH, swapInL.getValue(1));
11171    SDValue Ops[] = { swapInH.getValue(0),
11172                      N->getOperand(1),
11173                      swapInH.getValue(1) };
11174    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11175    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11176    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11177                                  X86ISD::LCMPXCHG8_DAG;
11178    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11179                                             Ops, 3, T, MMO);
11180    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11181                                        Regs64bit ? X86::RAX : X86::EAX,
11182                                        HalfT, Result.getValue(1));
11183    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11184                                        Regs64bit ? X86::RDX : X86::EDX,
11185                                        HalfT, cpOutL.getValue(2));
11186    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11187    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11188    Results.push_back(cpOutH.getValue(1));
11189    return;
11190  }
11191  case ISD::ATOMIC_LOAD_ADD:
11192    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11193    return;
11194  case ISD::ATOMIC_LOAD_AND:
11195    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11196    return;
11197  case ISD::ATOMIC_LOAD_NAND:
11198    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11199    return;
11200  case ISD::ATOMIC_LOAD_OR:
11201    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11202    return;
11203  case ISD::ATOMIC_LOAD_SUB:
11204    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11205    return;
11206  case ISD::ATOMIC_LOAD_XOR:
11207    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11208    return;
11209  case ISD::ATOMIC_SWAP:
11210    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11211    return;
11212  case ISD::ATOMIC_LOAD:
11213    ReplaceATOMIC_LOAD(N, Results, DAG);
11214  }
11215}
11216
11217const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11218  switch (Opcode) {
11219  default: return NULL;
11220  case X86ISD::BSF:                return "X86ISD::BSF";
11221  case X86ISD::BSR:                return "X86ISD::BSR";
11222  case X86ISD::SHLD:               return "X86ISD::SHLD";
11223  case X86ISD::SHRD:               return "X86ISD::SHRD";
11224  case X86ISD::FAND:               return "X86ISD::FAND";
11225  case X86ISD::FOR:                return "X86ISD::FOR";
11226  case X86ISD::FXOR:               return "X86ISD::FXOR";
11227  case X86ISD::FSRL:               return "X86ISD::FSRL";
11228  case X86ISD::FILD:               return "X86ISD::FILD";
11229  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11230  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11231  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11232  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11233  case X86ISD::FLD:                return "X86ISD::FLD";
11234  case X86ISD::FST:                return "X86ISD::FST";
11235  case X86ISD::CALL:               return "X86ISD::CALL";
11236  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11237  case X86ISD::BT:                 return "X86ISD::BT";
11238  case X86ISD::CMP:                return "X86ISD::CMP";
11239  case X86ISD::COMI:               return "X86ISD::COMI";
11240  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11241  case X86ISD::SETCC:              return "X86ISD::SETCC";
11242  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11243  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11244  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11245  case X86ISD::CMOV:               return "X86ISD::CMOV";
11246  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11247  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11248  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11249  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11250  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11251  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11252  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11253  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11254  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11255  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11256  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11257  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11258  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11259  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11260  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11261  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11262  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11263  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11264  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11265  case X86ISD::HADD:               return "X86ISD::HADD";
11266  case X86ISD::HSUB:               return "X86ISD::HSUB";
11267  case X86ISD::FHADD:              return "X86ISD::FHADD";
11268  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11269  case X86ISD::FMAX:               return "X86ISD::FMAX";
11270  case X86ISD::FMIN:               return "X86ISD::FMIN";
11271  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11272  case X86ISD::FRCP:               return "X86ISD::FRCP";
11273  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11274  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11275  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11276  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11277  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11278  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11279  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11280  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11281  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11282  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11283  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11284  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11285  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11286  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11287  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11288  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11289  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11290  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11291  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11292  case X86ISD::VSHL:               return "X86ISD::VSHL";
11293  case X86ISD::VSRL:               return "X86ISD::VSRL";
11294  case X86ISD::VSRA:               return "X86ISD::VSRA";
11295  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11296  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11297  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11298  case X86ISD::CMPP:               return "X86ISD::CMPP";
11299  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11300  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11301  case X86ISD::ADD:                return "X86ISD::ADD";
11302  case X86ISD::SUB:                return "X86ISD::SUB";
11303  case X86ISD::ADC:                return "X86ISD::ADC";
11304  case X86ISD::SBB:                return "X86ISD::SBB";
11305  case X86ISD::SMUL:               return "X86ISD::SMUL";
11306  case X86ISD::UMUL:               return "X86ISD::UMUL";
11307  case X86ISD::INC:                return "X86ISD::INC";
11308  case X86ISD::DEC:                return "X86ISD::DEC";
11309  case X86ISD::OR:                 return "X86ISD::OR";
11310  case X86ISD::XOR:                return "X86ISD::XOR";
11311  case X86ISD::AND:                return "X86ISD::AND";
11312  case X86ISD::ANDN:               return "X86ISD::ANDN";
11313  case X86ISD::BLSI:               return "X86ISD::BLSI";
11314  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11315  case X86ISD::BLSR:               return "X86ISD::BLSR";
11316  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11317  case X86ISD::PTEST:              return "X86ISD::PTEST";
11318  case X86ISD::TESTP:              return "X86ISD::TESTP";
11319  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11320  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11321  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11322  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11323  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11324  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11325  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11326  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11327  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11328  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11329  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11330  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11331  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11332  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11333  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11334  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11335  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11336  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11337  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11338  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11339  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11340  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11341  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11342  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11343  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11344  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11345  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11346  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11347  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11348  case X86ISD::SAHF:               return "X86ISD::SAHF";
11349  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11350  case X86ISD::FMADD:              return "X86ISD::FMADD";
11351  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
11352  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
11353  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
11354  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
11355  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
11356  }
11357}
11358
11359// isLegalAddressingMode - Return true if the addressing mode represented
11360// by AM is legal for this target, for a load/store of the specified type.
11361bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11362                                              Type *Ty) const {
11363  // X86 supports extremely general addressing modes.
11364  CodeModel::Model M = getTargetMachine().getCodeModel();
11365  Reloc::Model R = getTargetMachine().getRelocationModel();
11366
11367  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11368  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11369    return false;
11370
11371  if (AM.BaseGV) {
11372    unsigned GVFlags =
11373      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11374
11375    // If a reference to this global requires an extra load, we can't fold it.
11376    if (isGlobalStubReference(GVFlags))
11377      return false;
11378
11379    // If BaseGV requires a register for the PIC base, we cannot also have a
11380    // BaseReg specified.
11381    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11382      return false;
11383
11384    // If lower 4G is not available, then we must use rip-relative addressing.
11385    if ((M != CodeModel::Small || R != Reloc::Static) &&
11386        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11387      return false;
11388  }
11389
11390  switch (AM.Scale) {
11391  case 0:
11392  case 1:
11393  case 2:
11394  case 4:
11395  case 8:
11396    // These scales always work.
11397    break;
11398  case 3:
11399  case 5:
11400  case 9:
11401    // These scales are formed with basereg+scalereg.  Only accept if there is
11402    // no basereg yet.
11403    if (AM.HasBaseReg)
11404      return false;
11405    break;
11406  default:  // Other stuff never works.
11407    return false;
11408  }
11409
11410  return true;
11411}
11412
11413
11414bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11415  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11416    return false;
11417  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11418  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11419  if (NumBits1 <= NumBits2)
11420    return false;
11421  return true;
11422}
11423
11424bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11425  return Imm == (int32_t)Imm;
11426}
11427
11428bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
11429  // Can also use sub to handle negated immediates.
11430  return Imm == (int32_t)Imm;
11431}
11432
11433bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11434  if (!VT1.isInteger() || !VT2.isInteger())
11435    return false;
11436  unsigned NumBits1 = VT1.getSizeInBits();
11437  unsigned NumBits2 = VT2.getSizeInBits();
11438  if (NumBits1 <= NumBits2)
11439    return false;
11440  return true;
11441}
11442
11443bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11444  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11445  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11446}
11447
11448bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11449  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11450  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11451}
11452
11453bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11454  // i16 instructions are longer (0x66 prefix) and potentially slower.
11455  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11456}
11457
11458/// isShuffleMaskLegal - Targets can use this to indicate that they only
11459/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11460/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11461/// are assumed to be legal.
11462bool
11463X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11464                                      EVT VT) const {
11465  // Very little shuffling can be done for 64-bit vectors right now.
11466  if (VT.getSizeInBits() == 64)
11467    return false;
11468
11469  // FIXME: pshufb, blends, shifts.
11470  return (VT.getVectorNumElements() == 2 ||
11471          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11472          isMOVLMask(M, VT) ||
11473          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11474          isPSHUFDMask(M, VT) ||
11475          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11476          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11477          isPALIGNRMask(M, VT, Subtarget) ||
11478          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11479          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11480          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11481          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11482}
11483
11484bool
11485X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11486                                          EVT VT) const {
11487  unsigned NumElts = VT.getVectorNumElements();
11488  // FIXME: This collection of masks seems suspect.
11489  if (NumElts == 2)
11490    return true;
11491  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11492    return (isMOVLMask(Mask, VT)  ||
11493            isCommutedMOVLMask(Mask, VT, true) ||
11494            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11495            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11496  }
11497  return false;
11498}
11499
11500//===----------------------------------------------------------------------===//
11501//                           X86 Scheduler Hooks
11502//===----------------------------------------------------------------------===//
11503
11504// private utility function
11505MachineBasicBlock *
11506X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11507                                                       MachineBasicBlock *MBB,
11508                                                       unsigned regOpc,
11509                                                       unsigned immOpc,
11510                                                       unsigned LoadOpc,
11511                                                       unsigned CXchgOpc,
11512                                                       unsigned notOpc,
11513                                                       unsigned EAXreg,
11514                                                 const TargetRegisterClass *RC,
11515                                                       bool Invert) const {
11516  // For the atomic bitwise operator, we generate
11517  //   thisMBB:
11518  //   newMBB:
11519  //     ld  t1 = [bitinstr.addr]
11520  //     op  t2 = t1, [bitinstr.val]
11521  //     not t3 = t2  (if Invert)
11522  //     mov EAX = t1
11523  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11524  //     bz  newMBB
11525  //     fallthrough -->nextMBB
11526  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11527  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11528  MachineFunction::iterator MBBIter = MBB;
11529  ++MBBIter;
11530
11531  /// First build the CFG
11532  MachineFunction *F = MBB->getParent();
11533  MachineBasicBlock *thisMBB = MBB;
11534  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11535  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11536  F->insert(MBBIter, newMBB);
11537  F->insert(MBBIter, nextMBB);
11538
11539  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11540  nextMBB->splice(nextMBB->begin(), thisMBB,
11541                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11542                  thisMBB->end());
11543  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11544
11545  // Update thisMBB to fall through to newMBB
11546  thisMBB->addSuccessor(newMBB);
11547
11548  // newMBB jumps to itself and fall through to nextMBB
11549  newMBB->addSuccessor(nextMBB);
11550  newMBB->addSuccessor(newMBB);
11551
11552  // Insert instructions into newMBB based on incoming instruction
11553  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11554         "unexpected number of operands");
11555  DebugLoc dl = bInstr->getDebugLoc();
11556  MachineOperand& destOper = bInstr->getOperand(0);
11557  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11558  int numArgs = bInstr->getNumOperands() - 1;
11559  for (int i=0; i < numArgs; ++i)
11560    argOpers[i] = &bInstr->getOperand(i+1);
11561
11562  // x86 address has 4 operands: base, index, scale, and displacement
11563  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11564  int valArgIndx = lastAddrIndx + 1;
11565
11566  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11567  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11568  for (int i=0; i <= lastAddrIndx; ++i)
11569    (*MIB).addOperand(*argOpers[i]);
11570
11571  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11572  assert((argOpers[valArgIndx]->isReg() ||
11573          argOpers[valArgIndx]->isImm()) &&
11574         "invalid operand");
11575  if (argOpers[valArgIndx]->isReg())
11576    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11577  else
11578    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11579  MIB.addReg(t1);
11580  (*MIB).addOperand(*argOpers[valArgIndx]);
11581
11582  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11583  if (Invert) {
11584    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11585  }
11586  else
11587    t3 = t2;
11588
11589  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11590  MIB.addReg(t1);
11591
11592  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11593  for (int i=0; i <= lastAddrIndx; ++i)
11594    (*MIB).addOperand(*argOpers[i]);
11595  MIB.addReg(t3);
11596  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11597  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11598                    bInstr->memoperands_end());
11599
11600  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11601  MIB.addReg(EAXreg);
11602
11603  // insert branch
11604  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11605
11606  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11607  return nextMBB;
11608}
11609
11610// private utility function:  64 bit atomics on 32 bit host.
11611MachineBasicBlock *
11612X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11613                                                       MachineBasicBlock *MBB,
11614                                                       unsigned regOpcL,
11615                                                       unsigned regOpcH,
11616                                                       unsigned immOpcL,
11617                                                       unsigned immOpcH,
11618                                                       bool Invert) const {
11619  // For the atomic bitwise operator, we generate
11620  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11621  //     ld t1,t2 = [bitinstr.addr]
11622  //   newMBB:
11623  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11624  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11625  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11626  //     neg t7, t8 < t5, t6  (if Invert)
11627  //     mov ECX, EBX <- t5, t6
11628  //     mov EAX, EDX <- t1, t2
11629  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11630  //     mov t3, t4 <- EAX, EDX
11631  //     bz  newMBB
11632  //     result in out1, out2
11633  //     fallthrough -->nextMBB
11634
11635  const TargetRegisterClass *RC = &X86::GR32RegClass;
11636  const unsigned LoadOpc = X86::MOV32rm;
11637  const unsigned NotOpc = X86::NOT32r;
11638  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11639  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11640  MachineFunction::iterator MBBIter = MBB;
11641  ++MBBIter;
11642
11643  /// First build the CFG
11644  MachineFunction *F = MBB->getParent();
11645  MachineBasicBlock *thisMBB = MBB;
11646  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11647  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11648  F->insert(MBBIter, newMBB);
11649  F->insert(MBBIter, nextMBB);
11650
11651  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11652  nextMBB->splice(nextMBB->begin(), thisMBB,
11653                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11654                  thisMBB->end());
11655  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11656
11657  // Update thisMBB to fall through to newMBB
11658  thisMBB->addSuccessor(newMBB);
11659
11660  // newMBB jumps to itself and fall through to nextMBB
11661  newMBB->addSuccessor(nextMBB);
11662  newMBB->addSuccessor(newMBB);
11663
11664  DebugLoc dl = bInstr->getDebugLoc();
11665  // Insert instructions into newMBB based on incoming instruction
11666  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11667  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11668         "unexpected number of operands");
11669  MachineOperand& dest1Oper = bInstr->getOperand(0);
11670  MachineOperand& dest2Oper = bInstr->getOperand(1);
11671  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11672  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11673    argOpers[i] = &bInstr->getOperand(i+2);
11674
11675    // We use some of the operands multiple times, so conservatively just
11676    // clear any kill flags that might be present.
11677    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11678      argOpers[i]->setIsKill(false);
11679  }
11680
11681  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11682  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11683
11684  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11685  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11686  for (int i=0; i <= lastAddrIndx; ++i)
11687    (*MIB).addOperand(*argOpers[i]);
11688  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11689  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11690  // add 4 to displacement.
11691  for (int i=0; i <= lastAddrIndx-2; ++i)
11692    (*MIB).addOperand(*argOpers[i]);
11693  MachineOperand newOp3 = *(argOpers[3]);
11694  if (newOp3.isImm())
11695    newOp3.setImm(newOp3.getImm()+4);
11696  else
11697    newOp3.setOffset(newOp3.getOffset()+4);
11698  (*MIB).addOperand(newOp3);
11699  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11700
11701  // t3/4 are defined later, at the bottom of the loop
11702  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11703  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11704  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11705    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11706  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11707    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11708
11709  // The subsequent operations should be using the destination registers of
11710  // the PHI instructions.
11711  t1 = dest1Oper.getReg();
11712  t2 = dest2Oper.getReg();
11713
11714  int valArgIndx = lastAddrIndx + 1;
11715  assert((argOpers[valArgIndx]->isReg() ||
11716          argOpers[valArgIndx]->isImm()) &&
11717         "invalid operand");
11718  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11719  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11720  if (argOpers[valArgIndx]->isReg())
11721    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11722  else
11723    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11724  if (regOpcL != X86::MOV32rr)
11725    MIB.addReg(t1);
11726  (*MIB).addOperand(*argOpers[valArgIndx]);
11727  assert(argOpers[valArgIndx + 1]->isReg() ==
11728         argOpers[valArgIndx]->isReg());
11729  assert(argOpers[valArgIndx + 1]->isImm() ==
11730         argOpers[valArgIndx]->isImm());
11731  if (argOpers[valArgIndx + 1]->isReg())
11732    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11733  else
11734    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11735  if (regOpcH != X86::MOV32rr)
11736    MIB.addReg(t2);
11737  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11738
11739  unsigned t7, t8;
11740  if (Invert) {
11741    t7 = F->getRegInfo().createVirtualRegister(RC);
11742    t8 = F->getRegInfo().createVirtualRegister(RC);
11743    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11744    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11745  } else {
11746    t7 = t5;
11747    t8 = t6;
11748  }
11749
11750  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11751  MIB.addReg(t1);
11752  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11753  MIB.addReg(t2);
11754
11755  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11756  MIB.addReg(t7);
11757  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11758  MIB.addReg(t8);
11759
11760  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11761  for (int i=0; i <= lastAddrIndx; ++i)
11762    (*MIB).addOperand(*argOpers[i]);
11763
11764  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11765  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11766                    bInstr->memoperands_end());
11767
11768  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11769  MIB.addReg(X86::EAX);
11770  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11771  MIB.addReg(X86::EDX);
11772
11773  // insert branch
11774  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11775
11776  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11777  return nextMBB;
11778}
11779
11780// private utility function
11781MachineBasicBlock *
11782X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11783                                                      MachineBasicBlock *MBB,
11784                                                      unsigned cmovOpc) const {
11785  // For the atomic min/max operator, we generate
11786  //   thisMBB:
11787  //   newMBB:
11788  //     ld t1 = [min/max.addr]
11789  //     mov t2 = [min/max.val]
11790  //     cmp  t1, t2
11791  //     cmov[cond] t2 = t1
11792  //     mov EAX = t1
11793  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11794  //     bz   newMBB
11795  //     fallthrough -->nextMBB
11796  //
11797  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11798  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11799  MachineFunction::iterator MBBIter = MBB;
11800  ++MBBIter;
11801
11802  /// First build the CFG
11803  MachineFunction *F = MBB->getParent();
11804  MachineBasicBlock *thisMBB = MBB;
11805  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11806  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11807  F->insert(MBBIter, newMBB);
11808  F->insert(MBBIter, nextMBB);
11809
11810  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11811  nextMBB->splice(nextMBB->begin(), thisMBB,
11812                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11813                  thisMBB->end());
11814  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11815
11816  // Update thisMBB to fall through to newMBB
11817  thisMBB->addSuccessor(newMBB);
11818
11819  // newMBB jumps to newMBB and fall through to nextMBB
11820  newMBB->addSuccessor(nextMBB);
11821  newMBB->addSuccessor(newMBB);
11822
11823  DebugLoc dl = mInstr->getDebugLoc();
11824  // Insert instructions into newMBB based on incoming instruction
11825  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11826         "unexpected number of operands");
11827  MachineOperand& destOper = mInstr->getOperand(0);
11828  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11829  int numArgs = mInstr->getNumOperands() - 1;
11830  for (int i=0; i < numArgs; ++i)
11831    argOpers[i] = &mInstr->getOperand(i+1);
11832
11833  // x86 address has 4 operands: base, index, scale, and displacement
11834  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11835  int valArgIndx = lastAddrIndx + 1;
11836
11837  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11838  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11839  for (int i=0; i <= lastAddrIndx; ++i)
11840    (*MIB).addOperand(*argOpers[i]);
11841
11842  // We only support register and immediate values
11843  assert((argOpers[valArgIndx]->isReg() ||
11844          argOpers[valArgIndx]->isImm()) &&
11845         "invalid operand");
11846
11847  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11848  if (argOpers[valArgIndx]->isReg())
11849    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11850  else
11851    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11852  (*MIB).addOperand(*argOpers[valArgIndx]);
11853
11854  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11855  MIB.addReg(t1);
11856
11857  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11858  MIB.addReg(t1);
11859  MIB.addReg(t2);
11860
11861  // Generate movc
11862  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11863  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11864  MIB.addReg(t2);
11865  MIB.addReg(t1);
11866
11867  // Cmp and exchange if none has modified the memory location
11868  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11869  for (int i=0; i <= lastAddrIndx; ++i)
11870    (*MIB).addOperand(*argOpers[i]);
11871  MIB.addReg(t3);
11872  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11873  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11874                    mInstr->memoperands_end());
11875
11876  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11877  MIB.addReg(X86::EAX);
11878
11879  // insert branch
11880  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11881
11882  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11883  return nextMBB;
11884}
11885
11886// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11887// or XMM0_V32I8 in AVX all of this code can be replaced with that
11888// in the .td file.
11889MachineBasicBlock *
11890X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11891                            unsigned numArgs, bool memArg) const {
11892  assert(Subtarget->hasSSE42() &&
11893         "Target must have SSE4.2 or AVX features enabled");
11894
11895  DebugLoc dl = MI->getDebugLoc();
11896  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11897  unsigned Opc;
11898  if (!Subtarget->hasAVX()) {
11899    if (memArg)
11900      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11901    else
11902      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11903  } else {
11904    if (memArg)
11905      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11906    else
11907      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11908  }
11909
11910  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11911  for (unsigned i = 0; i < numArgs; ++i) {
11912    MachineOperand &Op = MI->getOperand(i+1);
11913    if (!(Op.isReg() && Op.isImplicit()))
11914      MIB.addOperand(Op);
11915  }
11916  BuildMI(*BB, MI, dl,
11917    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
11918    .addReg(X86::XMM0);
11919
11920  MI->eraseFromParent();
11921  return BB;
11922}
11923
11924MachineBasicBlock *
11925X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11926  DebugLoc dl = MI->getDebugLoc();
11927  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11928
11929  // Address into RAX/EAX, other two args into ECX, EDX.
11930  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11931  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11932  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11933  for (int i = 0; i < X86::AddrNumOperands; ++i)
11934    MIB.addOperand(MI->getOperand(i));
11935
11936  unsigned ValOps = X86::AddrNumOperands;
11937  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11938    .addReg(MI->getOperand(ValOps).getReg());
11939  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11940    .addReg(MI->getOperand(ValOps+1).getReg());
11941
11942  // The instruction doesn't actually take any operands though.
11943  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11944
11945  MI->eraseFromParent(); // The pseudo is gone now.
11946  return BB;
11947}
11948
11949MachineBasicBlock *
11950X86TargetLowering::EmitVAARG64WithCustomInserter(
11951                   MachineInstr *MI,
11952                   MachineBasicBlock *MBB) const {
11953  // Emit va_arg instruction on X86-64.
11954
11955  // Operands to this pseudo-instruction:
11956  // 0  ) Output        : destination address (reg)
11957  // 1-5) Input         : va_list address (addr, i64mem)
11958  // 6  ) ArgSize       : Size (in bytes) of vararg type
11959  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11960  // 8  ) Align         : Alignment of type
11961  // 9  ) EFLAGS (implicit-def)
11962
11963  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11964  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11965
11966  unsigned DestReg = MI->getOperand(0).getReg();
11967  MachineOperand &Base = MI->getOperand(1);
11968  MachineOperand &Scale = MI->getOperand(2);
11969  MachineOperand &Index = MI->getOperand(3);
11970  MachineOperand &Disp = MI->getOperand(4);
11971  MachineOperand &Segment = MI->getOperand(5);
11972  unsigned ArgSize = MI->getOperand(6).getImm();
11973  unsigned ArgMode = MI->getOperand(7).getImm();
11974  unsigned Align = MI->getOperand(8).getImm();
11975
11976  // Memory Reference
11977  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11978  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11979  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11980
11981  // Machine Information
11982  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11983  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11984  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11985  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11986  DebugLoc DL = MI->getDebugLoc();
11987
11988  // struct va_list {
11989  //   i32   gp_offset
11990  //   i32   fp_offset
11991  //   i64   overflow_area (address)
11992  //   i64   reg_save_area (address)
11993  // }
11994  // sizeof(va_list) = 24
11995  // alignment(va_list) = 8
11996
11997  unsigned TotalNumIntRegs = 6;
11998  unsigned TotalNumXMMRegs = 8;
11999  bool UseGPOffset = (ArgMode == 1);
12000  bool UseFPOffset = (ArgMode == 2);
12001  unsigned MaxOffset = TotalNumIntRegs * 8 +
12002                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12003
12004  /* Align ArgSize to a multiple of 8 */
12005  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12006  bool NeedsAlign = (Align > 8);
12007
12008  MachineBasicBlock *thisMBB = MBB;
12009  MachineBasicBlock *overflowMBB;
12010  MachineBasicBlock *offsetMBB;
12011  MachineBasicBlock *endMBB;
12012
12013  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12014  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12015  unsigned OffsetReg = 0;
12016
12017  if (!UseGPOffset && !UseFPOffset) {
12018    // If we only pull from the overflow region, we don't create a branch.
12019    // We don't need to alter control flow.
12020    OffsetDestReg = 0; // unused
12021    OverflowDestReg = DestReg;
12022
12023    offsetMBB = NULL;
12024    overflowMBB = thisMBB;
12025    endMBB = thisMBB;
12026  } else {
12027    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12028    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12029    // If not, pull from overflow_area. (branch to overflowMBB)
12030    //
12031    //       thisMBB
12032    //         |     .
12033    //         |        .
12034    //     offsetMBB   overflowMBB
12035    //         |        .
12036    //         |     .
12037    //        endMBB
12038
12039    // Registers for the PHI in endMBB
12040    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12041    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12042
12043    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12044    MachineFunction *MF = MBB->getParent();
12045    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12046    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12047    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12048
12049    MachineFunction::iterator MBBIter = MBB;
12050    ++MBBIter;
12051
12052    // Insert the new basic blocks
12053    MF->insert(MBBIter, offsetMBB);
12054    MF->insert(MBBIter, overflowMBB);
12055    MF->insert(MBBIter, endMBB);
12056
12057    // Transfer the remainder of MBB and its successor edges to endMBB.
12058    endMBB->splice(endMBB->begin(), thisMBB,
12059                    llvm::next(MachineBasicBlock::iterator(MI)),
12060                    thisMBB->end());
12061    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12062
12063    // Make offsetMBB and overflowMBB successors of thisMBB
12064    thisMBB->addSuccessor(offsetMBB);
12065    thisMBB->addSuccessor(overflowMBB);
12066
12067    // endMBB is a successor of both offsetMBB and overflowMBB
12068    offsetMBB->addSuccessor(endMBB);
12069    overflowMBB->addSuccessor(endMBB);
12070
12071    // Load the offset value into a register
12072    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12073    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12074      .addOperand(Base)
12075      .addOperand(Scale)
12076      .addOperand(Index)
12077      .addDisp(Disp, UseFPOffset ? 4 : 0)
12078      .addOperand(Segment)
12079      .setMemRefs(MMOBegin, MMOEnd);
12080
12081    // Check if there is enough room left to pull this argument.
12082    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12083      .addReg(OffsetReg)
12084      .addImm(MaxOffset + 8 - ArgSizeA8);
12085
12086    // Branch to "overflowMBB" if offset >= max
12087    // Fall through to "offsetMBB" otherwise
12088    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12089      .addMBB(overflowMBB);
12090  }
12091
12092  // In offsetMBB, emit code to use the reg_save_area.
12093  if (offsetMBB) {
12094    assert(OffsetReg != 0);
12095
12096    // Read the reg_save_area address.
12097    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12098    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12099      .addOperand(Base)
12100      .addOperand(Scale)
12101      .addOperand(Index)
12102      .addDisp(Disp, 16)
12103      .addOperand(Segment)
12104      .setMemRefs(MMOBegin, MMOEnd);
12105
12106    // Zero-extend the offset
12107    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12108      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12109        .addImm(0)
12110        .addReg(OffsetReg)
12111        .addImm(X86::sub_32bit);
12112
12113    // Add the offset to the reg_save_area to get the final address.
12114    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12115      .addReg(OffsetReg64)
12116      .addReg(RegSaveReg);
12117
12118    // Compute the offset for the next argument
12119    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12120    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12121      .addReg(OffsetReg)
12122      .addImm(UseFPOffset ? 16 : 8);
12123
12124    // Store it back into the va_list.
12125    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12126      .addOperand(Base)
12127      .addOperand(Scale)
12128      .addOperand(Index)
12129      .addDisp(Disp, UseFPOffset ? 4 : 0)
12130      .addOperand(Segment)
12131      .addReg(NextOffsetReg)
12132      .setMemRefs(MMOBegin, MMOEnd);
12133
12134    // Jump to endMBB
12135    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12136      .addMBB(endMBB);
12137  }
12138
12139  //
12140  // Emit code to use overflow area
12141  //
12142
12143  // Load the overflow_area address into a register.
12144  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12145  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12146    .addOperand(Base)
12147    .addOperand(Scale)
12148    .addOperand(Index)
12149    .addDisp(Disp, 8)
12150    .addOperand(Segment)
12151    .setMemRefs(MMOBegin, MMOEnd);
12152
12153  // If we need to align it, do so. Otherwise, just copy the address
12154  // to OverflowDestReg.
12155  if (NeedsAlign) {
12156    // Align the overflow address
12157    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12158    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12159
12160    // aligned_addr = (addr + (align-1)) & ~(align-1)
12161    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12162      .addReg(OverflowAddrReg)
12163      .addImm(Align-1);
12164
12165    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12166      .addReg(TmpReg)
12167      .addImm(~(uint64_t)(Align-1));
12168  } else {
12169    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12170      .addReg(OverflowAddrReg);
12171  }
12172
12173  // Compute the next overflow address after this argument.
12174  // (the overflow address should be kept 8-byte aligned)
12175  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12176  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12177    .addReg(OverflowDestReg)
12178    .addImm(ArgSizeA8);
12179
12180  // Store the new overflow address.
12181  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12182    .addOperand(Base)
12183    .addOperand(Scale)
12184    .addOperand(Index)
12185    .addDisp(Disp, 8)
12186    .addOperand(Segment)
12187    .addReg(NextAddrReg)
12188    .setMemRefs(MMOBegin, MMOEnd);
12189
12190  // If we branched, emit the PHI to the front of endMBB.
12191  if (offsetMBB) {
12192    BuildMI(*endMBB, endMBB->begin(), DL,
12193            TII->get(X86::PHI), DestReg)
12194      .addReg(OffsetDestReg).addMBB(offsetMBB)
12195      .addReg(OverflowDestReg).addMBB(overflowMBB);
12196  }
12197
12198  // Erase the pseudo instruction
12199  MI->eraseFromParent();
12200
12201  return endMBB;
12202}
12203
12204MachineBasicBlock *
12205X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12206                                                 MachineInstr *MI,
12207                                                 MachineBasicBlock *MBB) const {
12208  // Emit code to save XMM registers to the stack. The ABI says that the
12209  // number of registers to save is given in %al, so it's theoretically
12210  // possible to do an indirect jump trick to avoid saving all of them,
12211  // however this code takes a simpler approach and just executes all
12212  // of the stores if %al is non-zero. It's less code, and it's probably
12213  // easier on the hardware branch predictor, and stores aren't all that
12214  // expensive anyway.
12215
12216  // Create the new basic blocks. One block contains all the XMM stores,
12217  // and one block is the final destination regardless of whether any
12218  // stores were performed.
12219  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12220  MachineFunction *F = MBB->getParent();
12221  MachineFunction::iterator MBBIter = MBB;
12222  ++MBBIter;
12223  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12224  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12225  F->insert(MBBIter, XMMSaveMBB);
12226  F->insert(MBBIter, EndMBB);
12227
12228  // Transfer the remainder of MBB and its successor edges to EndMBB.
12229  EndMBB->splice(EndMBB->begin(), MBB,
12230                 llvm::next(MachineBasicBlock::iterator(MI)),
12231                 MBB->end());
12232  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12233
12234  // The original block will now fall through to the XMM save block.
12235  MBB->addSuccessor(XMMSaveMBB);
12236  // The XMMSaveMBB will fall through to the end block.
12237  XMMSaveMBB->addSuccessor(EndMBB);
12238
12239  // Now add the instructions.
12240  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12241  DebugLoc DL = MI->getDebugLoc();
12242
12243  unsigned CountReg = MI->getOperand(0).getReg();
12244  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12245  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12246
12247  if (!Subtarget->isTargetWin64()) {
12248    // If %al is 0, branch around the XMM save block.
12249    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12250    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12251    MBB->addSuccessor(EndMBB);
12252  }
12253
12254  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12255  // In the XMM save block, save all the XMM argument registers.
12256  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12257    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12258    MachineMemOperand *MMO =
12259      F->getMachineMemOperand(
12260          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12261        MachineMemOperand::MOStore,
12262        /*Size=*/16, /*Align=*/16);
12263    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12264      .addFrameIndex(RegSaveFrameIndex)
12265      .addImm(/*Scale=*/1)
12266      .addReg(/*IndexReg=*/0)
12267      .addImm(/*Disp=*/Offset)
12268      .addReg(/*Segment=*/0)
12269      .addReg(MI->getOperand(i).getReg())
12270      .addMemOperand(MMO);
12271  }
12272
12273  MI->eraseFromParent();   // The pseudo instruction is gone now.
12274
12275  return EndMBB;
12276}
12277
12278// The EFLAGS operand of SelectItr might be missing a kill marker
12279// because there were multiple uses of EFLAGS, and ISel didn't know
12280// which to mark. Figure out whether SelectItr should have had a
12281// kill marker, and set it if it should. Returns the correct kill
12282// marker value.
12283static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12284                                     MachineBasicBlock* BB,
12285                                     const TargetRegisterInfo* TRI) {
12286  // Scan forward through BB for a use/def of EFLAGS.
12287  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12288  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12289    const MachineInstr& mi = *miI;
12290    if (mi.readsRegister(X86::EFLAGS))
12291      return false;
12292    if (mi.definesRegister(X86::EFLAGS))
12293      break; // Should have kill-flag - update below.
12294  }
12295
12296  // If we hit the end of the block, check whether EFLAGS is live into a
12297  // successor.
12298  if (miI == BB->end()) {
12299    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12300                                          sEnd = BB->succ_end();
12301         sItr != sEnd; ++sItr) {
12302      MachineBasicBlock* succ = *sItr;
12303      if (succ->isLiveIn(X86::EFLAGS))
12304        return false;
12305    }
12306  }
12307
12308  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12309  // out. SelectMI should have a kill flag on EFLAGS.
12310  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12311  return true;
12312}
12313
12314MachineBasicBlock *
12315X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12316                                     MachineBasicBlock *BB) const {
12317  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12318  DebugLoc DL = MI->getDebugLoc();
12319
12320  // To "insert" a SELECT_CC instruction, we actually have to insert the
12321  // diamond control-flow pattern.  The incoming instruction knows the
12322  // destination vreg to set, the condition code register to branch on, the
12323  // true/false values to select between, and a branch opcode to use.
12324  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12325  MachineFunction::iterator It = BB;
12326  ++It;
12327
12328  //  thisMBB:
12329  //  ...
12330  //   TrueVal = ...
12331  //   cmpTY ccX, r1, r2
12332  //   bCC copy1MBB
12333  //   fallthrough --> copy0MBB
12334  MachineBasicBlock *thisMBB = BB;
12335  MachineFunction *F = BB->getParent();
12336  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12337  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12338  F->insert(It, copy0MBB);
12339  F->insert(It, sinkMBB);
12340
12341  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12342  // live into the sink and copy blocks.
12343  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12344  if (!MI->killsRegister(X86::EFLAGS) &&
12345      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12346    copy0MBB->addLiveIn(X86::EFLAGS);
12347    sinkMBB->addLiveIn(X86::EFLAGS);
12348  }
12349
12350  // Transfer the remainder of BB and its successor edges to sinkMBB.
12351  sinkMBB->splice(sinkMBB->begin(), BB,
12352                  llvm::next(MachineBasicBlock::iterator(MI)),
12353                  BB->end());
12354  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12355
12356  // Add the true and fallthrough blocks as its successors.
12357  BB->addSuccessor(copy0MBB);
12358  BB->addSuccessor(sinkMBB);
12359
12360  // Create the conditional branch instruction.
12361  unsigned Opc =
12362    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12363  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12364
12365  //  copy0MBB:
12366  //   %FalseValue = ...
12367  //   # fallthrough to sinkMBB
12368  copy0MBB->addSuccessor(sinkMBB);
12369
12370  //  sinkMBB:
12371  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12372  //  ...
12373  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12374          TII->get(X86::PHI), MI->getOperand(0).getReg())
12375    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12376    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12377
12378  MI->eraseFromParent();   // The pseudo instruction is gone now.
12379  return sinkMBB;
12380}
12381
12382MachineBasicBlock *
12383X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12384                                        bool Is64Bit) const {
12385  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12386  DebugLoc DL = MI->getDebugLoc();
12387  MachineFunction *MF = BB->getParent();
12388  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12389
12390  assert(getTargetMachine().Options.EnableSegmentedStacks);
12391
12392  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12393  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12394
12395  // BB:
12396  //  ... [Till the alloca]
12397  // If stacklet is not large enough, jump to mallocMBB
12398  //
12399  // bumpMBB:
12400  //  Allocate by subtracting from RSP
12401  //  Jump to continueMBB
12402  //
12403  // mallocMBB:
12404  //  Allocate by call to runtime
12405  //
12406  // continueMBB:
12407  //  ...
12408  //  [rest of original BB]
12409  //
12410
12411  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12412  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12413  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12414
12415  MachineRegisterInfo &MRI = MF->getRegInfo();
12416  const TargetRegisterClass *AddrRegClass =
12417    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12418
12419  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12420    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12421    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12422    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12423    sizeVReg = MI->getOperand(1).getReg(),
12424    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12425
12426  MachineFunction::iterator MBBIter = BB;
12427  ++MBBIter;
12428
12429  MF->insert(MBBIter, bumpMBB);
12430  MF->insert(MBBIter, mallocMBB);
12431  MF->insert(MBBIter, continueMBB);
12432
12433  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12434                      (MachineBasicBlock::iterator(MI)), BB->end());
12435  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12436
12437  // Add code to the main basic block to check if the stack limit has been hit,
12438  // and if so, jump to mallocMBB otherwise to bumpMBB.
12439  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12440  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12441    .addReg(tmpSPVReg).addReg(sizeVReg);
12442  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12443    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12444    .addReg(SPLimitVReg);
12445  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12446
12447  // bumpMBB simply decreases the stack pointer, since we know the current
12448  // stacklet has enough space.
12449  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12450    .addReg(SPLimitVReg);
12451  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12452    .addReg(SPLimitVReg);
12453  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12454
12455  // Calls into a routine in libgcc to allocate more space from the heap.
12456  const uint32_t *RegMask =
12457    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12458  if (Is64Bit) {
12459    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12460      .addReg(sizeVReg);
12461    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12462      .addExternalSymbol("__morestack_allocate_stack_space")
12463      .addRegMask(RegMask)
12464      .addReg(X86::RDI, RegState::Implicit)
12465      .addReg(X86::RAX, RegState::ImplicitDefine);
12466  } else {
12467    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12468      .addImm(12);
12469    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12470    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12471      .addExternalSymbol("__morestack_allocate_stack_space")
12472      .addRegMask(RegMask)
12473      .addReg(X86::EAX, RegState::ImplicitDefine);
12474  }
12475
12476  if (!Is64Bit)
12477    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12478      .addImm(16);
12479
12480  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12481    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12482  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12483
12484  // Set up the CFG correctly.
12485  BB->addSuccessor(bumpMBB);
12486  BB->addSuccessor(mallocMBB);
12487  mallocMBB->addSuccessor(continueMBB);
12488  bumpMBB->addSuccessor(continueMBB);
12489
12490  // Take care of the PHI nodes.
12491  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12492          MI->getOperand(0).getReg())
12493    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12494    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12495
12496  // Delete the original pseudo instruction.
12497  MI->eraseFromParent();
12498
12499  // And we're done.
12500  return continueMBB;
12501}
12502
12503MachineBasicBlock *
12504X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12505                                          MachineBasicBlock *BB) const {
12506  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12507  DebugLoc DL = MI->getDebugLoc();
12508
12509  assert(!Subtarget->isTargetEnvMacho());
12510
12511  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12512  // non-trivial part is impdef of ESP.
12513
12514  if (Subtarget->isTargetWin64()) {
12515    if (Subtarget->isTargetCygMing()) {
12516      // ___chkstk(Mingw64):
12517      // Clobbers R10, R11, RAX and EFLAGS.
12518      // Updates RSP.
12519      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12520        .addExternalSymbol("___chkstk")
12521        .addReg(X86::RAX, RegState::Implicit)
12522        .addReg(X86::RSP, RegState::Implicit)
12523        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12524        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12525        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12526    } else {
12527      // __chkstk(MSVCRT): does not update stack pointer.
12528      // Clobbers R10, R11 and EFLAGS.
12529      // FIXME: RAX(allocated size) might be reused and not killed.
12530      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12531        .addExternalSymbol("__chkstk")
12532        .addReg(X86::RAX, RegState::Implicit)
12533        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12534      // RAX has the offset to subtracted from RSP.
12535      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12536        .addReg(X86::RSP)
12537        .addReg(X86::RAX);
12538    }
12539  } else {
12540    const char *StackProbeSymbol =
12541      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12542
12543    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12544      .addExternalSymbol(StackProbeSymbol)
12545      .addReg(X86::EAX, RegState::Implicit)
12546      .addReg(X86::ESP, RegState::Implicit)
12547      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12548      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12549      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12550  }
12551
12552  MI->eraseFromParent();   // The pseudo instruction is gone now.
12553  return BB;
12554}
12555
12556MachineBasicBlock *
12557X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12558                                      MachineBasicBlock *BB) const {
12559  // This is pretty easy.  We're taking the value that we received from
12560  // our load from the relocation, sticking it in either RDI (x86-64)
12561  // or EAX and doing an indirect call.  The return value will then
12562  // be in the normal return register.
12563  const X86InstrInfo *TII
12564    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12565  DebugLoc DL = MI->getDebugLoc();
12566  MachineFunction *F = BB->getParent();
12567
12568  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12569  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12570
12571  // Get a register mask for the lowered call.
12572  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12573  // proper register mask.
12574  const uint32_t *RegMask =
12575    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12576  if (Subtarget->is64Bit()) {
12577    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12578                                      TII->get(X86::MOV64rm), X86::RDI)
12579    .addReg(X86::RIP)
12580    .addImm(0).addReg(0)
12581    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12582                      MI->getOperand(3).getTargetFlags())
12583    .addReg(0);
12584    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12585    addDirectMem(MIB, X86::RDI);
12586    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12587  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12588    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12589                                      TII->get(X86::MOV32rm), X86::EAX)
12590    .addReg(0)
12591    .addImm(0).addReg(0)
12592    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12593                      MI->getOperand(3).getTargetFlags())
12594    .addReg(0);
12595    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12596    addDirectMem(MIB, X86::EAX);
12597    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12598  } else {
12599    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12600                                      TII->get(X86::MOV32rm), X86::EAX)
12601    .addReg(TII->getGlobalBaseReg(F))
12602    .addImm(0).addReg(0)
12603    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12604                      MI->getOperand(3).getTargetFlags())
12605    .addReg(0);
12606    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12607    addDirectMem(MIB, X86::EAX);
12608    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12609  }
12610
12611  MI->eraseFromParent(); // The pseudo instruction is gone now.
12612  return BB;
12613}
12614
12615MachineBasicBlock *
12616X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12617                                               MachineBasicBlock *BB) const {
12618  switch (MI->getOpcode()) {
12619  default: llvm_unreachable("Unexpected instr type to insert");
12620  case X86::TAILJMPd64:
12621  case X86::TAILJMPr64:
12622  case X86::TAILJMPm64:
12623    llvm_unreachable("TAILJMP64 would not be touched here.");
12624  case X86::TCRETURNdi64:
12625  case X86::TCRETURNri64:
12626  case X86::TCRETURNmi64:
12627    return BB;
12628  case X86::WIN_ALLOCA:
12629    return EmitLoweredWinAlloca(MI, BB);
12630  case X86::SEG_ALLOCA_32:
12631    return EmitLoweredSegAlloca(MI, BB, false);
12632  case X86::SEG_ALLOCA_64:
12633    return EmitLoweredSegAlloca(MI, BB, true);
12634  case X86::TLSCall_32:
12635  case X86::TLSCall_64:
12636    return EmitLoweredTLSCall(MI, BB);
12637  case X86::CMOV_GR8:
12638  case X86::CMOV_FR32:
12639  case X86::CMOV_FR64:
12640  case X86::CMOV_V4F32:
12641  case X86::CMOV_V2F64:
12642  case X86::CMOV_V2I64:
12643  case X86::CMOV_V8F32:
12644  case X86::CMOV_V4F64:
12645  case X86::CMOV_V4I64:
12646  case X86::CMOV_GR16:
12647  case X86::CMOV_GR32:
12648  case X86::CMOV_RFP32:
12649  case X86::CMOV_RFP64:
12650  case X86::CMOV_RFP80:
12651    return EmitLoweredSelect(MI, BB);
12652
12653  case X86::FP32_TO_INT16_IN_MEM:
12654  case X86::FP32_TO_INT32_IN_MEM:
12655  case X86::FP32_TO_INT64_IN_MEM:
12656  case X86::FP64_TO_INT16_IN_MEM:
12657  case X86::FP64_TO_INT32_IN_MEM:
12658  case X86::FP64_TO_INT64_IN_MEM:
12659  case X86::FP80_TO_INT16_IN_MEM:
12660  case X86::FP80_TO_INT32_IN_MEM:
12661  case X86::FP80_TO_INT64_IN_MEM: {
12662    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12663    DebugLoc DL = MI->getDebugLoc();
12664
12665    // Change the floating point control register to use "round towards zero"
12666    // mode when truncating to an integer value.
12667    MachineFunction *F = BB->getParent();
12668    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12669    addFrameReference(BuildMI(*BB, MI, DL,
12670                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12671
12672    // Load the old value of the high byte of the control word...
12673    unsigned OldCW =
12674      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12675    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12676                      CWFrameIdx);
12677
12678    // Set the high part to be round to zero...
12679    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12680      .addImm(0xC7F);
12681
12682    // Reload the modified control word now...
12683    addFrameReference(BuildMI(*BB, MI, DL,
12684                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12685
12686    // Restore the memory image of control word to original value
12687    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12688      .addReg(OldCW);
12689
12690    // Get the X86 opcode to use.
12691    unsigned Opc;
12692    switch (MI->getOpcode()) {
12693    default: llvm_unreachable("illegal opcode!");
12694    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12695    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12696    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12697    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12698    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12699    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12700    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12701    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12702    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12703    }
12704
12705    X86AddressMode AM;
12706    MachineOperand &Op = MI->getOperand(0);
12707    if (Op.isReg()) {
12708      AM.BaseType = X86AddressMode::RegBase;
12709      AM.Base.Reg = Op.getReg();
12710    } else {
12711      AM.BaseType = X86AddressMode::FrameIndexBase;
12712      AM.Base.FrameIndex = Op.getIndex();
12713    }
12714    Op = MI->getOperand(1);
12715    if (Op.isImm())
12716      AM.Scale = Op.getImm();
12717    Op = MI->getOperand(2);
12718    if (Op.isImm())
12719      AM.IndexReg = Op.getImm();
12720    Op = MI->getOperand(3);
12721    if (Op.isGlobal()) {
12722      AM.GV = Op.getGlobal();
12723    } else {
12724      AM.Disp = Op.getImm();
12725    }
12726    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12727                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12728
12729    // Reload the original control word now.
12730    addFrameReference(BuildMI(*BB, MI, DL,
12731                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12732
12733    MI->eraseFromParent();   // The pseudo instruction is gone now.
12734    return BB;
12735  }
12736    // String/text processing lowering.
12737  case X86::PCMPISTRM128REG:
12738  case X86::VPCMPISTRM128REG:
12739    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12740  case X86::PCMPISTRM128MEM:
12741  case X86::VPCMPISTRM128MEM:
12742    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12743  case X86::PCMPESTRM128REG:
12744  case X86::VPCMPESTRM128REG:
12745    return EmitPCMP(MI, BB, 5, false /* in mem */);
12746  case X86::PCMPESTRM128MEM:
12747  case X86::VPCMPESTRM128MEM:
12748    return EmitPCMP(MI, BB, 5, true /* in mem */);
12749
12750    // Thread synchronization.
12751  case X86::MONITOR:
12752    return EmitMonitor(MI, BB);
12753
12754    // Atomic Lowering.
12755  case X86::ATOMAND32:
12756    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12757                                               X86::AND32ri, X86::MOV32rm,
12758                                               X86::LCMPXCHG32,
12759                                               X86::NOT32r, X86::EAX,
12760                                               &X86::GR32RegClass);
12761  case X86::ATOMOR32:
12762    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12763                                               X86::OR32ri, X86::MOV32rm,
12764                                               X86::LCMPXCHG32,
12765                                               X86::NOT32r, X86::EAX,
12766                                               &X86::GR32RegClass);
12767  case X86::ATOMXOR32:
12768    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12769                                               X86::XOR32ri, X86::MOV32rm,
12770                                               X86::LCMPXCHG32,
12771                                               X86::NOT32r, X86::EAX,
12772                                               &X86::GR32RegClass);
12773  case X86::ATOMNAND32:
12774    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12775                                               X86::AND32ri, X86::MOV32rm,
12776                                               X86::LCMPXCHG32,
12777                                               X86::NOT32r, X86::EAX,
12778                                               &X86::GR32RegClass, true);
12779  case X86::ATOMMIN32:
12780    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12781  case X86::ATOMMAX32:
12782    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12783  case X86::ATOMUMIN32:
12784    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12785  case X86::ATOMUMAX32:
12786    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12787
12788  case X86::ATOMAND16:
12789    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12790                                               X86::AND16ri, X86::MOV16rm,
12791                                               X86::LCMPXCHG16,
12792                                               X86::NOT16r, X86::AX,
12793                                               &X86::GR16RegClass);
12794  case X86::ATOMOR16:
12795    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12796                                               X86::OR16ri, X86::MOV16rm,
12797                                               X86::LCMPXCHG16,
12798                                               X86::NOT16r, X86::AX,
12799                                               &X86::GR16RegClass);
12800  case X86::ATOMXOR16:
12801    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12802                                               X86::XOR16ri, X86::MOV16rm,
12803                                               X86::LCMPXCHG16,
12804                                               X86::NOT16r, X86::AX,
12805                                               &X86::GR16RegClass);
12806  case X86::ATOMNAND16:
12807    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12808                                               X86::AND16ri, X86::MOV16rm,
12809                                               X86::LCMPXCHG16,
12810                                               X86::NOT16r, X86::AX,
12811                                               &X86::GR16RegClass, true);
12812  case X86::ATOMMIN16:
12813    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12814  case X86::ATOMMAX16:
12815    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12816  case X86::ATOMUMIN16:
12817    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12818  case X86::ATOMUMAX16:
12819    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12820
12821  case X86::ATOMAND8:
12822    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12823                                               X86::AND8ri, X86::MOV8rm,
12824                                               X86::LCMPXCHG8,
12825                                               X86::NOT8r, X86::AL,
12826                                               &X86::GR8RegClass);
12827  case X86::ATOMOR8:
12828    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12829                                               X86::OR8ri, X86::MOV8rm,
12830                                               X86::LCMPXCHG8,
12831                                               X86::NOT8r, X86::AL,
12832                                               &X86::GR8RegClass);
12833  case X86::ATOMXOR8:
12834    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12835                                               X86::XOR8ri, X86::MOV8rm,
12836                                               X86::LCMPXCHG8,
12837                                               X86::NOT8r, X86::AL,
12838                                               &X86::GR8RegClass);
12839  case X86::ATOMNAND8:
12840    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12841                                               X86::AND8ri, X86::MOV8rm,
12842                                               X86::LCMPXCHG8,
12843                                               X86::NOT8r, X86::AL,
12844                                               &X86::GR8RegClass, true);
12845  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12846  // This group is for 64-bit host.
12847  case X86::ATOMAND64:
12848    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12849                                               X86::AND64ri32, X86::MOV64rm,
12850                                               X86::LCMPXCHG64,
12851                                               X86::NOT64r, X86::RAX,
12852                                               &X86::GR64RegClass);
12853  case X86::ATOMOR64:
12854    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12855                                               X86::OR64ri32, X86::MOV64rm,
12856                                               X86::LCMPXCHG64,
12857                                               X86::NOT64r, X86::RAX,
12858                                               &X86::GR64RegClass);
12859  case X86::ATOMXOR64:
12860    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12861                                               X86::XOR64ri32, X86::MOV64rm,
12862                                               X86::LCMPXCHG64,
12863                                               X86::NOT64r, X86::RAX,
12864                                               &X86::GR64RegClass);
12865  case X86::ATOMNAND64:
12866    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12867                                               X86::AND64ri32, X86::MOV64rm,
12868                                               X86::LCMPXCHG64,
12869                                               X86::NOT64r, X86::RAX,
12870                                               &X86::GR64RegClass, true);
12871  case X86::ATOMMIN64:
12872    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12873  case X86::ATOMMAX64:
12874    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12875  case X86::ATOMUMIN64:
12876    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12877  case X86::ATOMUMAX64:
12878    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12879
12880  // This group does 64-bit operations on a 32-bit host.
12881  case X86::ATOMAND6432:
12882    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12883                                               X86::AND32rr, X86::AND32rr,
12884                                               X86::AND32ri, X86::AND32ri,
12885                                               false);
12886  case X86::ATOMOR6432:
12887    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12888                                               X86::OR32rr, X86::OR32rr,
12889                                               X86::OR32ri, X86::OR32ri,
12890                                               false);
12891  case X86::ATOMXOR6432:
12892    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12893                                               X86::XOR32rr, X86::XOR32rr,
12894                                               X86::XOR32ri, X86::XOR32ri,
12895                                               false);
12896  case X86::ATOMNAND6432:
12897    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12898                                               X86::AND32rr, X86::AND32rr,
12899                                               X86::AND32ri, X86::AND32ri,
12900                                               true);
12901  case X86::ATOMADD6432:
12902    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12903                                               X86::ADD32rr, X86::ADC32rr,
12904                                               X86::ADD32ri, X86::ADC32ri,
12905                                               false);
12906  case X86::ATOMSUB6432:
12907    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12908                                               X86::SUB32rr, X86::SBB32rr,
12909                                               X86::SUB32ri, X86::SBB32ri,
12910                                               false);
12911  case X86::ATOMSWAP6432:
12912    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12913                                               X86::MOV32rr, X86::MOV32rr,
12914                                               X86::MOV32ri, X86::MOV32ri,
12915                                               false);
12916  case X86::VASTART_SAVE_XMM_REGS:
12917    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12918
12919  case X86::VAARG_64:
12920    return EmitVAARG64WithCustomInserter(MI, BB);
12921  }
12922}
12923
12924//===----------------------------------------------------------------------===//
12925//                           X86 Optimization Hooks
12926//===----------------------------------------------------------------------===//
12927
12928void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12929                                                       APInt &KnownZero,
12930                                                       APInt &KnownOne,
12931                                                       const SelectionDAG &DAG,
12932                                                       unsigned Depth) const {
12933  unsigned BitWidth = KnownZero.getBitWidth();
12934  unsigned Opc = Op.getOpcode();
12935  assert((Opc >= ISD::BUILTIN_OP_END ||
12936          Opc == ISD::INTRINSIC_WO_CHAIN ||
12937          Opc == ISD::INTRINSIC_W_CHAIN ||
12938          Opc == ISD::INTRINSIC_VOID) &&
12939         "Should use MaskedValueIsZero if you don't know whether Op"
12940         " is a target node!");
12941
12942  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12943  switch (Opc) {
12944  default: break;
12945  case X86ISD::ADD:
12946  case X86ISD::SUB:
12947  case X86ISD::ADC:
12948  case X86ISD::SBB:
12949  case X86ISD::SMUL:
12950  case X86ISD::UMUL:
12951  case X86ISD::INC:
12952  case X86ISD::DEC:
12953  case X86ISD::OR:
12954  case X86ISD::XOR:
12955  case X86ISD::AND:
12956    // These nodes' second result is a boolean.
12957    if (Op.getResNo() == 0)
12958      break;
12959    // Fallthrough
12960  case X86ISD::SETCC:
12961    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12962    break;
12963  case ISD::INTRINSIC_WO_CHAIN: {
12964    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12965    unsigned NumLoBits = 0;
12966    switch (IntId) {
12967    default: break;
12968    case Intrinsic::x86_sse_movmsk_ps:
12969    case Intrinsic::x86_avx_movmsk_ps_256:
12970    case Intrinsic::x86_sse2_movmsk_pd:
12971    case Intrinsic::x86_avx_movmsk_pd_256:
12972    case Intrinsic::x86_mmx_pmovmskb:
12973    case Intrinsic::x86_sse2_pmovmskb_128:
12974    case Intrinsic::x86_avx2_pmovmskb: {
12975      // High bits of movmskp{s|d}, pmovmskb are known zero.
12976      switch (IntId) {
12977        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12978        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12979        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12980        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12981        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12982        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12983        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12984        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12985      }
12986      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12987      break;
12988    }
12989    }
12990    break;
12991  }
12992  }
12993}
12994
12995unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12996                                                         unsigned Depth) const {
12997  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12998  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12999    return Op.getValueType().getScalarType().getSizeInBits();
13000
13001  // Fallback case.
13002  return 1;
13003}
13004
13005/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
13006/// node is a GlobalAddress + offset.
13007bool X86TargetLowering::isGAPlusOffset(SDNode *N,
13008                                       const GlobalValue* &GA,
13009                                       int64_t &Offset) const {
13010  if (N->getOpcode() == X86ISD::Wrapper) {
13011    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
13012      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
13013      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
13014      return true;
13015    }
13016  }
13017  return TargetLowering::isGAPlusOffset(N, GA, Offset);
13018}
13019
13020/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
13021/// same as extracting the high 128-bit part of 256-bit vector and then
13022/// inserting the result into the low part of a new 256-bit vector
13023static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
13024  EVT VT = SVOp->getValueType(0);
13025  unsigned NumElems = VT.getVectorNumElements();
13026
13027  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13028  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13029    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13030        SVOp->getMaskElt(j) >= 0)
13031      return false;
13032
13033  return true;
13034}
13035
13036/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13037/// same as extracting the low 128-bit part of 256-bit vector and then
13038/// inserting the result into the high part of a new 256-bit vector
13039static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13040  EVT VT = SVOp->getValueType(0);
13041  unsigned NumElems = VT.getVectorNumElements();
13042
13043  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13044  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13045    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13046        SVOp->getMaskElt(j) >= 0)
13047      return false;
13048
13049  return true;
13050}
13051
13052/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13053static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13054                                        TargetLowering::DAGCombinerInfo &DCI,
13055                                        const X86Subtarget* Subtarget) {
13056  DebugLoc dl = N->getDebugLoc();
13057  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13058  SDValue V1 = SVOp->getOperand(0);
13059  SDValue V2 = SVOp->getOperand(1);
13060  EVT VT = SVOp->getValueType(0);
13061  unsigned NumElems = VT.getVectorNumElements();
13062
13063  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13064      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13065    //
13066    //                   0,0,0,...
13067    //                      |
13068    //    V      UNDEF    BUILD_VECTOR    UNDEF
13069    //     \      /           \           /
13070    //  CONCAT_VECTOR         CONCAT_VECTOR
13071    //         \                  /
13072    //          \                /
13073    //          RESULT: V + zero extended
13074    //
13075    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13076        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13077        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13078      return SDValue();
13079
13080    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13081      return SDValue();
13082
13083    // To match the shuffle mask, the first half of the mask should
13084    // be exactly the first vector, and all the rest a splat with the
13085    // first element of the second one.
13086    for (unsigned i = 0; i != NumElems/2; ++i)
13087      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13088          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13089        return SDValue();
13090
13091    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13092    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13093      if (Ld->hasNUsesOfValue(1, 0)) {
13094        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13095        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13096        SDValue ResNode =
13097          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13098                                  Ld->getMemoryVT(),
13099                                  Ld->getPointerInfo(),
13100                                  Ld->getAlignment(),
13101                                  false/*isVolatile*/, true/*ReadMem*/,
13102                                  false/*WriteMem*/);
13103        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13104      }
13105    }
13106
13107    // Emit a zeroed vector and insert the desired subvector on its
13108    // first half.
13109    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13110    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13111    return DCI.CombineTo(N, InsV);
13112  }
13113
13114  //===--------------------------------------------------------------------===//
13115  // Combine some shuffles into subvector extracts and inserts:
13116  //
13117
13118  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13119  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13120    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13121    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13122    return DCI.CombineTo(N, InsV);
13123  }
13124
13125  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13126  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13127    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13128    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13129    return DCI.CombineTo(N, InsV);
13130  }
13131
13132  return SDValue();
13133}
13134
13135/// PerformShuffleCombine - Performs several different shuffle combines.
13136static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13137                                     TargetLowering::DAGCombinerInfo &DCI,
13138                                     const X86Subtarget *Subtarget) {
13139  DebugLoc dl = N->getDebugLoc();
13140  EVT VT = N->getValueType(0);
13141
13142  // Don't create instructions with illegal types after legalize types has run.
13143  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13144  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13145    return SDValue();
13146
13147  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13148  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13149      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13150    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13151
13152  // Only handle 128 wide vector from here on.
13153  if (VT.getSizeInBits() != 128)
13154    return SDValue();
13155
13156  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13157  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13158  // consecutive, non-overlapping, and in the right order.
13159  SmallVector<SDValue, 16> Elts;
13160  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13161    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13162
13163  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13164}
13165
13166
13167/// DCI, PerformTruncateCombine - Converts truncate operation to
13168/// a sequence of vector shuffle operations.
13169/// It is possible when we truncate 256-bit vector to 128-bit vector
13170
13171SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13172                                                  DAGCombinerInfo &DCI) const {
13173  if (!DCI.isBeforeLegalizeOps())
13174    return SDValue();
13175
13176  if (!Subtarget->hasAVX())
13177    return SDValue();
13178
13179  EVT VT = N->getValueType(0);
13180  SDValue Op = N->getOperand(0);
13181  EVT OpVT = Op.getValueType();
13182  DebugLoc dl = N->getDebugLoc();
13183
13184  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13185
13186    if (Subtarget->hasAVX2()) {
13187      // AVX2: v4i64 -> v4i32
13188
13189      // VPERMD
13190      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13191
13192      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13193      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13194                                ShufMask);
13195
13196      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13197                         DAG.getIntPtrConstant(0));
13198    }
13199
13200    // AVX: v4i64 -> v4i32
13201    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13202                               DAG.getIntPtrConstant(0));
13203
13204    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13205                               DAG.getIntPtrConstant(2));
13206
13207    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13208    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13209
13210    // PSHUFD
13211    static const int ShufMask1[] = {0, 2, 0, 0};
13212
13213    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT), ShufMask1);
13214    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT), ShufMask1);
13215
13216    // MOVLHPS
13217    static const int ShufMask2[] = {0, 1, 4, 5};
13218
13219    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13220  }
13221
13222  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13223
13224    if (Subtarget->hasAVX2()) {
13225      // AVX2: v8i32 -> v8i16
13226
13227      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13228
13229      // PSHUFB
13230      SmallVector<SDValue,32> pshufbMask;
13231      for (unsigned i = 0; i < 2; ++i) {
13232        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13233        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13234        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13235        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13236        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13237        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13238        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13239        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13240        for (unsigned j = 0; j < 8; ++j)
13241          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13242      }
13243      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13244                               &pshufbMask[0], 32);
13245      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13246
13247      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13248
13249      static const int ShufMask[] = {0,  2,  -1,  -1};
13250      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13251                                &ShufMask[0]);
13252
13253      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13254                       DAG.getIntPtrConstant(0));
13255
13256      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13257    }
13258
13259    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13260                               DAG.getIntPtrConstant(0));
13261
13262    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13263                               DAG.getIntPtrConstant(4));
13264
13265    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13266    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13267
13268    // PSHUFB
13269    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13270                                   -1, -1, -1, -1, -1, -1, -1, -1};
13271
13272    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, DAG.getUNDEF(MVT::v16i8),
13273                                ShufMask1);
13274    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, DAG.getUNDEF(MVT::v16i8),
13275                                ShufMask1);
13276
13277    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13278    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13279
13280    // MOVLHPS
13281    static const int ShufMask2[] = {0, 1, 4, 5};
13282
13283    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13284    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13285  }
13286
13287  return SDValue();
13288}
13289
13290/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13291/// specific shuffle of a load can be folded into a single element load.
13292/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13293/// shuffles have been customed lowered so we need to handle those here.
13294static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13295                                         TargetLowering::DAGCombinerInfo &DCI) {
13296  if (DCI.isBeforeLegalizeOps())
13297    return SDValue();
13298
13299  SDValue InVec = N->getOperand(0);
13300  SDValue EltNo = N->getOperand(1);
13301
13302  if (!isa<ConstantSDNode>(EltNo))
13303    return SDValue();
13304
13305  EVT VT = InVec.getValueType();
13306
13307  bool HasShuffleIntoBitcast = false;
13308  if (InVec.getOpcode() == ISD::BITCAST) {
13309    // Don't duplicate a load with other uses.
13310    if (!InVec.hasOneUse())
13311      return SDValue();
13312    EVT BCVT = InVec.getOperand(0).getValueType();
13313    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13314      return SDValue();
13315    InVec = InVec.getOperand(0);
13316    HasShuffleIntoBitcast = true;
13317  }
13318
13319  if (!isTargetShuffle(InVec.getOpcode()))
13320    return SDValue();
13321
13322  // Don't duplicate a load with other uses.
13323  if (!InVec.hasOneUse())
13324    return SDValue();
13325
13326  SmallVector<int, 16> ShuffleMask;
13327  bool UnaryShuffle;
13328  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13329                            UnaryShuffle))
13330    return SDValue();
13331
13332  // Select the input vector, guarding against out of range extract vector.
13333  unsigned NumElems = VT.getVectorNumElements();
13334  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13335  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13336  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13337                                         : InVec.getOperand(1);
13338
13339  // If inputs to shuffle are the same for both ops, then allow 2 uses
13340  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13341
13342  if (LdNode.getOpcode() == ISD::BITCAST) {
13343    // Don't duplicate a load with other uses.
13344    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13345      return SDValue();
13346
13347    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13348    LdNode = LdNode.getOperand(0);
13349  }
13350
13351  if (!ISD::isNormalLoad(LdNode.getNode()))
13352    return SDValue();
13353
13354  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13355
13356  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13357    return SDValue();
13358
13359  if (HasShuffleIntoBitcast) {
13360    // If there's a bitcast before the shuffle, check if the load type and
13361    // alignment is valid.
13362    unsigned Align = LN0->getAlignment();
13363    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13364    unsigned NewAlign = TLI.getTargetData()->
13365      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13366
13367    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13368      return SDValue();
13369  }
13370
13371  // All checks match so transform back to vector_shuffle so that DAG combiner
13372  // can finish the job
13373  DebugLoc dl = N->getDebugLoc();
13374
13375  // Create shuffle node taking into account the case that its a unary shuffle
13376  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13377  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13378                                 InVec.getOperand(0), Shuffle,
13379                                 &ShuffleMask[0]);
13380  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13381  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13382                     EltNo);
13383}
13384
13385/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13386/// generation and convert it from being a bunch of shuffles and extracts
13387/// to a simple store and scalar loads to extract the elements.
13388static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13389                                         TargetLowering::DAGCombinerInfo &DCI) {
13390  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13391  if (NewOp.getNode())
13392    return NewOp;
13393
13394  SDValue InputVector = N->getOperand(0);
13395
13396  // Only operate on vectors of 4 elements, where the alternative shuffling
13397  // gets to be more expensive.
13398  if (InputVector.getValueType() != MVT::v4i32)
13399    return SDValue();
13400
13401  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13402  // single use which is a sign-extend or zero-extend, and all elements are
13403  // used.
13404  SmallVector<SDNode *, 4> Uses;
13405  unsigned ExtractedElements = 0;
13406  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13407       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13408    if (UI.getUse().getResNo() != InputVector.getResNo())
13409      return SDValue();
13410
13411    SDNode *Extract = *UI;
13412    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13413      return SDValue();
13414
13415    if (Extract->getValueType(0) != MVT::i32)
13416      return SDValue();
13417    if (!Extract->hasOneUse())
13418      return SDValue();
13419    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13420        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13421      return SDValue();
13422    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13423      return SDValue();
13424
13425    // Record which element was extracted.
13426    ExtractedElements |=
13427      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13428
13429    Uses.push_back(Extract);
13430  }
13431
13432  // If not all the elements were used, this may not be worthwhile.
13433  if (ExtractedElements != 15)
13434    return SDValue();
13435
13436  // Ok, we've now decided to do the transformation.
13437  DebugLoc dl = InputVector.getDebugLoc();
13438
13439  // Store the value to a temporary stack slot.
13440  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13441  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13442                            MachinePointerInfo(), false, false, 0);
13443
13444  // Replace each use (extract) with a load of the appropriate element.
13445  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13446       UE = Uses.end(); UI != UE; ++UI) {
13447    SDNode *Extract = *UI;
13448
13449    // cOMpute the element's address.
13450    SDValue Idx = Extract->getOperand(1);
13451    unsigned EltSize =
13452        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13453    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13454    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13455    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13456
13457    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13458                                     StackPtr, OffsetVal);
13459
13460    // Load the scalar.
13461    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13462                                     ScalarAddr, MachinePointerInfo(),
13463                                     false, false, false, 0);
13464
13465    // Replace the exact with the load.
13466    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13467  }
13468
13469  // The replacement was made in place; don't return anything.
13470  return SDValue();
13471}
13472
13473/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13474/// nodes.
13475static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13476                                    TargetLowering::DAGCombinerInfo &DCI,
13477                                    const X86Subtarget *Subtarget) {
13478  DebugLoc DL = N->getDebugLoc();
13479  SDValue Cond = N->getOperand(0);
13480  // Get the LHS/RHS of the select.
13481  SDValue LHS = N->getOperand(1);
13482  SDValue RHS = N->getOperand(2);
13483  EVT VT = LHS.getValueType();
13484
13485  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13486  // instructions match the semantics of the common C idiom x<y?x:y but not
13487  // x<=y?x:y, because of how they handle negative zero (which can be
13488  // ignored in unsafe-math mode).
13489  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13490      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13491      (Subtarget->hasSSE2() ||
13492       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13493    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13494
13495    unsigned Opcode = 0;
13496    // Check for x CC y ? x : y.
13497    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13498        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13499      switch (CC) {
13500      default: break;
13501      case ISD::SETULT:
13502        // Converting this to a min would handle NaNs incorrectly, and swapping
13503        // the operands would cause it to handle comparisons between positive
13504        // and negative zero incorrectly.
13505        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13506          if (!DAG.getTarget().Options.UnsafeFPMath &&
13507              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13508            break;
13509          std::swap(LHS, RHS);
13510        }
13511        Opcode = X86ISD::FMIN;
13512        break;
13513      case ISD::SETOLE:
13514        // Converting this to a min would handle comparisons between positive
13515        // and negative zero incorrectly.
13516        if (!DAG.getTarget().Options.UnsafeFPMath &&
13517            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13518          break;
13519        Opcode = X86ISD::FMIN;
13520        break;
13521      case ISD::SETULE:
13522        // Converting this to a min would handle both negative zeros and NaNs
13523        // incorrectly, but we can swap the operands to fix both.
13524        std::swap(LHS, RHS);
13525      case ISD::SETOLT:
13526      case ISD::SETLT:
13527      case ISD::SETLE:
13528        Opcode = X86ISD::FMIN;
13529        break;
13530
13531      case ISD::SETOGE:
13532        // Converting this to a max would handle comparisons between positive
13533        // and negative zero incorrectly.
13534        if (!DAG.getTarget().Options.UnsafeFPMath &&
13535            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13536          break;
13537        Opcode = X86ISD::FMAX;
13538        break;
13539      case ISD::SETUGT:
13540        // Converting this to a max would handle NaNs incorrectly, and swapping
13541        // the operands would cause it to handle comparisons between positive
13542        // and negative zero incorrectly.
13543        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13544          if (!DAG.getTarget().Options.UnsafeFPMath &&
13545              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13546            break;
13547          std::swap(LHS, RHS);
13548        }
13549        Opcode = X86ISD::FMAX;
13550        break;
13551      case ISD::SETUGE:
13552        // Converting this to a max would handle both negative zeros and NaNs
13553        // incorrectly, but we can swap the operands to fix both.
13554        std::swap(LHS, RHS);
13555      case ISD::SETOGT:
13556      case ISD::SETGT:
13557      case ISD::SETGE:
13558        Opcode = X86ISD::FMAX;
13559        break;
13560      }
13561    // Check for x CC y ? y : x -- a min/max with reversed arms.
13562    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13563               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13564      switch (CC) {
13565      default: break;
13566      case ISD::SETOGE:
13567        // Converting this to a min would handle comparisons between positive
13568        // and negative zero incorrectly, and swapping the operands would
13569        // cause it to handle NaNs incorrectly.
13570        if (!DAG.getTarget().Options.UnsafeFPMath &&
13571            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13572          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13573            break;
13574          std::swap(LHS, RHS);
13575        }
13576        Opcode = X86ISD::FMIN;
13577        break;
13578      case ISD::SETUGT:
13579        // Converting this to a min would handle NaNs incorrectly.
13580        if (!DAG.getTarget().Options.UnsafeFPMath &&
13581            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13582          break;
13583        Opcode = X86ISD::FMIN;
13584        break;
13585      case ISD::SETUGE:
13586        // Converting this to a min would handle both negative zeros and NaNs
13587        // incorrectly, but we can swap the operands to fix both.
13588        std::swap(LHS, RHS);
13589      case ISD::SETOGT:
13590      case ISD::SETGT:
13591      case ISD::SETGE:
13592        Opcode = X86ISD::FMIN;
13593        break;
13594
13595      case ISD::SETULT:
13596        // Converting this to a max would handle NaNs incorrectly.
13597        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13598          break;
13599        Opcode = X86ISD::FMAX;
13600        break;
13601      case ISD::SETOLE:
13602        // Converting this to a max would handle comparisons between positive
13603        // and negative zero incorrectly, and swapping the operands would
13604        // cause it to handle NaNs incorrectly.
13605        if (!DAG.getTarget().Options.UnsafeFPMath &&
13606            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13607          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13608            break;
13609          std::swap(LHS, RHS);
13610        }
13611        Opcode = X86ISD::FMAX;
13612        break;
13613      case ISD::SETULE:
13614        // Converting this to a max would handle both negative zeros and NaNs
13615        // incorrectly, but we can swap the operands to fix both.
13616        std::swap(LHS, RHS);
13617      case ISD::SETOLT:
13618      case ISD::SETLT:
13619      case ISD::SETLE:
13620        Opcode = X86ISD::FMAX;
13621        break;
13622      }
13623    }
13624
13625    if (Opcode)
13626      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13627  }
13628
13629  // If this is a select between two integer constants, try to do some
13630  // optimizations.
13631  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13632    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13633      // Don't do this for crazy integer types.
13634      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13635        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13636        // so that TrueC (the true value) is larger than FalseC.
13637        bool NeedsCondInvert = false;
13638
13639        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13640            // Efficiently invertible.
13641            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13642             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13643              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13644          NeedsCondInvert = true;
13645          std::swap(TrueC, FalseC);
13646        }
13647
13648        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13649        if (FalseC->getAPIntValue() == 0 &&
13650            TrueC->getAPIntValue().isPowerOf2()) {
13651          if (NeedsCondInvert) // Invert the condition if needed.
13652            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13653                               DAG.getConstant(1, Cond.getValueType()));
13654
13655          // Zero extend the condition if needed.
13656          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13657
13658          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13659          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13660                             DAG.getConstant(ShAmt, MVT::i8));
13661        }
13662
13663        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13664        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13665          if (NeedsCondInvert) // Invert the condition if needed.
13666            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13667                               DAG.getConstant(1, Cond.getValueType()));
13668
13669          // Zero extend the condition if needed.
13670          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13671                             FalseC->getValueType(0), Cond);
13672          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13673                             SDValue(FalseC, 0));
13674        }
13675
13676        // Optimize cases that will turn into an LEA instruction.  This requires
13677        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13678        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13679          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13680          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13681
13682          bool isFastMultiplier = false;
13683          if (Diff < 10) {
13684            switch ((unsigned char)Diff) {
13685              default: break;
13686              case 1:  // result = add base, cond
13687              case 2:  // result = lea base(    , cond*2)
13688              case 3:  // result = lea base(cond, cond*2)
13689              case 4:  // result = lea base(    , cond*4)
13690              case 5:  // result = lea base(cond, cond*4)
13691              case 8:  // result = lea base(    , cond*8)
13692              case 9:  // result = lea base(cond, cond*8)
13693                isFastMultiplier = true;
13694                break;
13695            }
13696          }
13697
13698          if (isFastMultiplier) {
13699            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13700            if (NeedsCondInvert) // Invert the condition if needed.
13701              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13702                                 DAG.getConstant(1, Cond.getValueType()));
13703
13704            // Zero extend the condition if needed.
13705            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13706                               Cond);
13707            // Scale the condition by the difference.
13708            if (Diff != 1)
13709              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13710                                 DAG.getConstant(Diff, Cond.getValueType()));
13711
13712            // Add the base if non-zero.
13713            if (FalseC->getAPIntValue() != 0)
13714              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13715                                 SDValue(FalseC, 0));
13716            return Cond;
13717          }
13718        }
13719      }
13720  }
13721
13722  // Canonicalize max and min:
13723  // (x > y) ? x : y -> (x >= y) ? x : y
13724  // (x < y) ? x : y -> (x <= y) ? x : y
13725  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13726  // the need for an extra compare
13727  // against zero. e.g.
13728  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13729  // subl   %esi, %edi
13730  // testl  %edi, %edi
13731  // movl   $0, %eax
13732  // cmovgl %edi, %eax
13733  // =>
13734  // xorl   %eax, %eax
13735  // subl   %esi, $edi
13736  // cmovsl %eax, %edi
13737  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13738      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13739      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13740    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13741    switch (CC) {
13742    default: break;
13743    case ISD::SETLT:
13744    case ISD::SETGT: {
13745      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13746      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13747                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13748      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13749    }
13750    }
13751  }
13752
13753  // If we know that this node is legal then we know that it is going to be
13754  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13755  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13756  // to simplify previous instructions.
13757  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13758  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13759      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
13760    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13761
13762    // Don't optimize vector selects that map to mask-registers.
13763    if (BitWidth == 1)
13764      return SDValue();
13765
13766    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13767    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13768
13769    APInt KnownZero, KnownOne;
13770    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13771                                          DCI.isBeforeLegalizeOps());
13772    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13773        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13774      DCI.CommitTargetLoweringOpt(TLO);
13775  }
13776
13777  return SDValue();
13778}
13779
13780// Check whether a boolean test is testing a boolean value generated by
13781// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
13782// code.
13783//
13784// Simplify the following patterns:
13785// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
13786// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
13787// to (Op EFLAGS Cond)
13788//
13789// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
13790// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
13791// to (Op EFLAGS !Cond)
13792//
13793// where Op could be BRCOND or CMOV.
13794//
13795static SDValue BoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
13796  // Quit if not CMP and SUB with its value result used.
13797  if (Cmp.getOpcode() != X86ISD::CMP &&
13798      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
13799      return SDValue();
13800
13801  // Quit if not used as a boolean value.
13802  if (CC != X86::COND_E && CC != X86::COND_NE)
13803    return SDValue();
13804
13805  // Check CMP operands. One of them should be 0 or 1 and the other should be
13806  // an SetCC or extended from it.
13807  SDValue Op1 = Cmp.getOperand(0);
13808  SDValue Op2 = Cmp.getOperand(1);
13809
13810  SDValue SetCC;
13811  const ConstantSDNode* C = 0;
13812  bool needOppositeCond = (CC == X86::COND_E);
13813
13814  if ((C = dyn_cast<ConstantSDNode>(Op1)))
13815    SetCC = Op2;
13816  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
13817    SetCC = Op1;
13818  else // Quit if all operands are not constants.
13819    return SDValue();
13820
13821  if (C->getZExtValue() == 1)
13822    needOppositeCond = !needOppositeCond;
13823  else if (C->getZExtValue() != 0)
13824    // Quit if the constant is neither 0 or 1.
13825    return SDValue();
13826
13827  // Skip 'zext' node.
13828  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
13829    SetCC = SetCC.getOperand(0);
13830
13831  // Quit if not SETCC.
13832  // FIXME: So far we only handle the boolean value generated from SETCC. If
13833  // there is other ways to generate boolean values, we need handle them here
13834  // as well.
13835  if (SetCC.getOpcode() != X86ISD::SETCC)
13836    return SDValue();
13837
13838  // Set the condition code or opposite one if necessary.
13839  CC = X86::CondCode(SetCC.getConstantOperandVal(0));
13840  if (needOppositeCond)
13841    CC = X86::GetOppositeBranchCondition(CC);
13842
13843  return SetCC.getOperand(1);
13844}
13845
13846static bool IsValidFCMOVCondition(X86::CondCode CC) {
13847  switch (CC) {
13848  default:
13849    return false;
13850  case X86::COND_B:
13851  case X86::COND_BE:
13852  case X86::COND_E:
13853  case X86::COND_P:
13854  case X86::COND_AE:
13855  case X86::COND_A:
13856  case X86::COND_NE:
13857  case X86::COND_NP:
13858    return true;
13859  }
13860}
13861
13862/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13863static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13864                                  TargetLowering::DAGCombinerInfo &DCI) {
13865  DebugLoc DL = N->getDebugLoc();
13866
13867  // If the flag operand isn't dead, don't touch this CMOV.
13868  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13869    return SDValue();
13870
13871  SDValue FalseOp = N->getOperand(0);
13872  SDValue TrueOp = N->getOperand(1);
13873  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13874  SDValue Cond = N->getOperand(3);
13875
13876  if (CC == X86::COND_E || CC == X86::COND_NE) {
13877    switch (Cond.getOpcode()) {
13878    default: break;
13879    case X86ISD::BSR:
13880    case X86ISD::BSF:
13881      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13882      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13883        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13884    }
13885  }
13886
13887  SDValue Flags;
13888
13889  Flags = BoolTestSetCCCombine(Cond, CC);
13890  if (Flags.getNode() &&
13891      // Extra check as FCMOV only supports a subset of X86 cond.
13892      (FalseOp.getValueType() != MVT::f80 || IsValidFCMOVCondition(CC))) {
13893    SDValue Ops[] = { FalseOp, TrueOp,
13894                      DAG.getConstant(CC, MVT::i8), Flags };
13895    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
13896                       Ops, array_lengthof(Ops));
13897  }
13898
13899  // If this is a select between two integer constants, try to do some
13900  // optimizations.  Note that the operands are ordered the opposite of SELECT
13901  // operands.
13902  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13903    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13904      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13905      // larger than FalseC (the false value).
13906      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13907        CC = X86::GetOppositeBranchCondition(CC);
13908        std::swap(TrueC, FalseC);
13909      }
13910
13911      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13912      // This is efficient for any integer data type (including i8/i16) and
13913      // shift amount.
13914      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13915        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13916                           DAG.getConstant(CC, MVT::i8), Cond);
13917
13918        // Zero extend the condition if needed.
13919        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13920
13921        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13922        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13923                           DAG.getConstant(ShAmt, MVT::i8));
13924        if (N->getNumValues() == 2)  // Dead flag value?
13925          return DCI.CombineTo(N, Cond, SDValue());
13926        return Cond;
13927      }
13928
13929      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13930      // for any integer data type, including i8/i16.
13931      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13932        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13933                           DAG.getConstant(CC, MVT::i8), Cond);
13934
13935        // Zero extend the condition if needed.
13936        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13937                           FalseC->getValueType(0), Cond);
13938        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13939                           SDValue(FalseC, 0));
13940
13941        if (N->getNumValues() == 2)  // Dead flag value?
13942          return DCI.CombineTo(N, Cond, SDValue());
13943        return Cond;
13944      }
13945
13946      // Optimize cases that will turn into an LEA instruction.  This requires
13947      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13948      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13949        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13950        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13951
13952        bool isFastMultiplier = false;
13953        if (Diff < 10) {
13954          switch ((unsigned char)Diff) {
13955          default: break;
13956          case 1:  // result = add base, cond
13957          case 2:  // result = lea base(    , cond*2)
13958          case 3:  // result = lea base(cond, cond*2)
13959          case 4:  // result = lea base(    , cond*4)
13960          case 5:  // result = lea base(cond, cond*4)
13961          case 8:  // result = lea base(    , cond*8)
13962          case 9:  // result = lea base(cond, cond*8)
13963            isFastMultiplier = true;
13964            break;
13965          }
13966        }
13967
13968        if (isFastMultiplier) {
13969          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13970          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13971                             DAG.getConstant(CC, MVT::i8), Cond);
13972          // Zero extend the condition if needed.
13973          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13974                             Cond);
13975          // Scale the condition by the difference.
13976          if (Diff != 1)
13977            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13978                               DAG.getConstant(Diff, Cond.getValueType()));
13979
13980          // Add the base if non-zero.
13981          if (FalseC->getAPIntValue() != 0)
13982            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13983                               SDValue(FalseC, 0));
13984          if (N->getNumValues() == 2)  // Dead flag value?
13985            return DCI.CombineTo(N, Cond, SDValue());
13986          return Cond;
13987        }
13988      }
13989    }
13990  }
13991  return SDValue();
13992}
13993
13994
13995/// PerformMulCombine - Optimize a single multiply with constant into two
13996/// in order to implement it with two cheaper instructions, e.g.
13997/// LEA + SHL, LEA + LEA.
13998static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13999                                 TargetLowering::DAGCombinerInfo &DCI) {
14000  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14001    return SDValue();
14002
14003  EVT VT = N->getValueType(0);
14004  if (VT != MVT::i64)
14005    return SDValue();
14006
14007  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14008  if (!C)
14009    return SDValue();
14010  uint64_t MulAmt = C->getZExtValue();
14011  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
14012    return SDValue();
14013
14014  uint64_t MulAmt1 = 0;
14015  uint64_t MulAmt2 = 0;
14016  if ((MulAmt % 9) == 0) {
14017    MulAmt1 = 9;
14018    MulAmt2 = MulAmt / 9;
14019  } else if ((MulAmt % 5) == 0) {
14020    MulAmt1 = 5;
14021    MulAmt2 = MulAmt / 5;
14022  } else if ((MulAmt % 3) == 0) {
14023    MulAmt1 = 3;
14024    MulAmt2 = MulAmt / 3;
14025  }
14026  if (MulAmt2 &&
14027      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
14028    DebugLoc DL = N->getDebugLoc();
14029
14030    if (isPowerOf2_64(MulAmt2) &&
14031        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
14032      // If second multiplifer is pow2, issue it first. We want the multiply by
14033      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
14034      // is an add.
14035      std::swap(MulAmt1, MulAmt2);
14036
14037    SDValue NewMul;
14038    if (isPowerOf2_64(MulAmt1))
14039      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14040                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
14041    else
14042      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
14043                           DAG.getConstant(MulAmt1, VT));
14044
14045    if (isPowerOf2_64(MulAmt2))
14046      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
14047                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
14048    else
14049      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
14050                           DAG.getConstant(MulAmt2, VT));
14051
14052    // Do not add new nodes to DAG combiner worklist.
14053    DCI.CombineTo(N, NewMul, false);
14054  }
14055  return SDValue();
14056}
14057
14058static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
14059  SDValue N0 = N->getOperand(0);
14060  SDValue N1 = N->getOperand(1);
14061  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14062  EVT VT = N0.getValueType();
14063
14064  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
14065  // since the result of setcc_c is all zero's or all ones.
14066  if (VT.isInteger() && !VT.isVector() &&
14067      N1C && N0.getOpcode() == ISD::AND &&
14068      N0.getOperand(1).getOpcode() == ISD::Constant) {
14069    SDValue N00 = N0.getOperand(0);
14070    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
14071        ((N00.getOpcode() == ISD::ANY_EXTEND ||
14072          N00.getOpcode() == ISD::ZERO_EXTEND) &&
14073         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
14074      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
14075      APInt ShAmt = N1C->getAPIntValue();
14076      Mask = Mask.shl(ShAmt);
14077      if (Mask != 0)
14078        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
14079                           N00, DAG.getConstant(Mask, VT));
14080    }
14081  }
14082
14083
14084  // Hardware support for vector shifts is sparse which makes us scalarize the
14085  // vector operations in many cases. Also, on sandybridge ADD is faster than
14086  // shl.
14087  // (shl V, 1) -> add V,V
14088  if (isSplatVector(N1.getNode())) {
14089    assert(N0.getValueType().isVector() && "Invalid vector shift type");
14090    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
14091    // We shift all of the values by one. In many cases we do not have
14092    // hardware support for this operation. This is better expressed as an ADD
14093    // of two values.
14094    if (N1C && (1 == N1C->getZExtValue())) {
14095      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
14096    }
14097  }
14098
14099  return SDValue();
14100}
14101
14102/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
14103///                       when possible.
14104static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
14105                                   TargetLowering::DAGCombinerInfo &DCI,
14106                                   const X86Subtarget *Subtarget) {
14107  EVT VT = N->getValueType(0);
14108  if (N->getOpcode() == ISD::SHL) {
14109    SDValue V = PerformSHLCombine(N, DAG);
14110    if (V.getNode()) return V;
14111  }
14112
14113  // On X86 with SSE2 support, we can transform this to a vector shift if
14114  // all elements are shifted by the same amount.  We can't do this in legalize
14115  // because the a constant vector is typically transformed to a constant pool
14116  // so we have no knowledge of the shift amount.
14117  if (!Subtarget->hasSSE2())
14118    return SDValue();
14119
14120  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
14121      (!Subtarget->hasAVX2() ||
14122       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14123    return SDValue();
14124
14125  SDValue ShAmtOp = N->getOperand(1);
14126  EVT EltVT = VT.getVectorElementType();
14127  DebugLoc DL = N->getDebugLoc();
14128  SDValue BaseShAmt = SDValue();
14129  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14130    unsigned NumElts = VT.getVectorNumElements();
14131    unsigned i = 0;
14132    for (; i != NumElts; ++i) {
14133      SDValue Arg = ShAmtOp.getOperand(i);
14134      if (Arg.getOpcode() == ISD::UNDEF) continue;
14135      BaseShAmt = Arg;
14136      break;
14137    }
14138    // Handle the case where the build_vector is all undef
14139    // FIXME: Should DAG allow this?
14140    if (i == NumElts)
14141      return SDValue();
14142
14143    for (; i != NumElts; ++i) {
14144      SDValue Arg = ShAmtOp.getOperand(i);
14145      if (Arg.getOpcode() == ISD::UNDEF) continue;
14146      if (Arg != BaseShAmt) {
14147        return SDValue();
14148      }
14149    }
14150  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14151             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14152    SDValue InVec = ShAmtOp.getOperand(0);
14153    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14154      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14155      unsigned i = 0;
14156      for (; i != NumElts; ++i) {
14157        SDValue Arg = InVec.getOperand(i);
14158        if (Arg.getOpcode() == ISD::UNDEF) continue;
14159        BaseShAmt = Arg;
14160        break;
14161      }
14162    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14163       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14164         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14165         if (C->getZExtValue() == SplatIdx)
14166           BaseShAmt = InVec.getOperand(1);
14167       }
14168    }
14169    if (BaseShAmt.getNode() == 0) {
14170      // Don't create instructions with illegal types after legalize
14171      // types has run.
14172      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14173          !DCI.isBeforeLegalize())
14174        return SDValue();
14175
14176      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14177                              DAG.getIntPtrConstant(0));
14178    }
14179  } else
14180    return SDValue();
14181
14182  // The shift amount is an i32.
14183  if (EltVT.bitsGT(MVT::i32))
14184    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14185  else if (EltVT.bitsLT(MVT::i32))
14186    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14187
14188  // The shift amount is identical so we can do a vector shift.
14189  SDValue  ValOp = N->getOperand(0);
14190  switch (N->getOpcode()) {
14191  default:
14192    llvm_unreachable("Unknown shift opcode!");
14193  case ISD::SHL:
14194    switch (VT.getSimpleVT().SimpleTy) {
14195    default: return SDValue();
14196    case MVT::v2i64:
14197    case MVT::v4i32:
14198    case MVT::v8i16:
14199    case MVT::v4i64:
14200    case MVT::v8i32:
14201    case MVT::v16i16:
14202      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14203    }
14204  case ISD::SRA:
14205    switch (VT.getSimpleVT().SimpleTy) {
14206    default: return SDValue();
14207    case MVT::v4i32:
14208    case MVT::v8i16:
14209    case MVT::v8i32:
14210    case MVT::v16i16:
14211      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14212    }
14213  case ISD::SRL:
14214    switch (VT.getSimpleVT().SimpleTy) {
14215    default: return SDValue();
14216    case MVT::v2i64:
14217    case MVT::v4i32:
14218    case MVT::v8i16:
14219    case MVT::v4i64:
14220    case MVT::v8i32:
14221    case MVT::v16i16:
14222      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14223    }
14224  }
14225}
14226
14227
14228// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14229// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14230// and friends.  Likewise for OR -> CMPNEQSS.
14231static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14232                            TargetLowering::DAGCombinerInfo &DCI,
14233                            const X86Subtarget *Subtarget) {
14234  unsigned opcode;
14235
14236  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14237  // we're requiring SSE2 for both.
14238  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14239    SDValue N0 = N->getOperand(0);
14240    SDValue N1 = N->getOperand(1);
14241    SDValue CMP0 = N0->getOperand(1);
14242    SDValue CMP1 = N1->getOperand(1);
14243    DebugLoc DL = N->getDebugLoc();
14244
14245    // The SETCCs should both refer to the same CMP.
14246    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14247      return SDValue();
14248
14249    SDValue CMP00 = CMP0->getOperand(0);
14250    SDValue CMP01 = CMP0->getOperand(1);
14251    EVT     VT    = CMP00.getValueType();
14252
14253    if (VT == MVT::f32 || VT == MVT::f64) {
14254      bool ExpectingFlags = false;
14255      // Check for any users that want flags:
14256      for (SDNode::use_iterator UI = N->use_begin(),
14257             UE = N->use_end();
14258           !ExpectingFlags && UI != UE; ++UI)
14259        switch (UI->getOpcode()) {
14260        default:
14261        case ISD::BR_CC:
14262        case ISD::BRCOND:
14263        case ISD::SELECT:
14264          ExpectingFlags = true;
14265          break;
14266        case ISD::CopyToReg:
14267        case ISD::SIGN_EXTEND:
14268        case ISD::ZERO_EXTEND:
14269        case ISD::ANY_EXTEND:
14270          break;
14271        }
14272
14273      if (!ExpectingFlags) {
14274        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14275        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14276
14277        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14278          X86::CondCode tmp = cc0;
14279          cc0 = cc1;
14280          cc1 = tmp;
14281        }
14282
14283        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14284            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14285          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14286          X86ISD::NodeType NTOperator = is64BitFP ?
14287            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14288          // FIXME: need symbolic constants for these magic numbers.
14289          // See X86ATTInstPrinter.cpp:printSSECC().
14290          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14291          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14292                                              DAG.getConstant(x86cc, MVT::i8));
14293          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14294                                              OnesOrZeroesF);
14295          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14296                                      DAG.getConstant(1, MVT::i32));
14297          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14298          return OneBitOfTruth;
14299        }
14300      }
14301    }
14302  }
14303  return SDValue();
14304}
14305
14306/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14307/// so it can be folded inside ANDNP.
14308static bool CanFoldXORWithAllOnes(const SDNode *N) {
14309  EVT VT = N->getValueType(0);
14310
14311  // Match direct AllOnes for 128 and 256-bit vectors
14312  if (ISD::isBuildVectorAllOnes(N))
14313    return true;
14314
14315  // Look through a bit convert.
14316  if (N->getOpcode() == ISD::BITCAST)
14317    N = N->getOperand(0).getNode();
14318
14319  // Sometimes the operand may come from a insert_subvector building a 256-bit
14320  // allones vector
14321  if (VT.getSizeInBits() == 256 &&
14322      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14323    SDValue V1 = N->getOperand(0);
14324    SDValue V2 = N->getOperand(1);
14325
14326    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14327        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14328        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14329        ISD::isBuildVectorAllOnes(V2.getNode()))
14330      return true;
14331  }
14332
14333  return false;
14334}
14335
14336static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14337                                 TargetLowering::DAGCombinerInfo &DCI,
14338                                 const X86Subtarget *Subtarget) {
14339  if (DCI.isBeforeLegalizeOps())
14340    return SDValue();
14341
14342  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14343  if (R.getNode())
14344    return R;
14345
14346  EVT VT = N->getValueType(0);
14347
14348  // Create ANDN, BLSI, and BLSR instructions
14349  // BLSI is X & (-X)
14350  // BLSR is X & (X-1)
14351  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14352    SDValue N0 = N->getOperand(0);
14353    SDValue N1 = N->getOperand(1);
14354    DebugLoc DL = N->getDebugLoc();
14355
14356    // Check LHS for not
14357    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14358      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14359    // Check RHS for not
14360    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14361      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14362
14363    // Check LHS for neg
14364    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14365        isZero(N0.getOperand(0)))
14366      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14367
14368    // Check RHS for neg
14369    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14370        isZero(N1.getOperand(0)))
14371      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14372
14373    // Check LHS for X-1
14374    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14375        isAllOnes(N0.getOperand(1)))
14376      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14377
14378    // Check RHS for X-1
14379    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14380        isAllOnes(N1.getOperand(1)))
14381      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14382
14383    return SDValue();
14384  }
14385
14386  // Want to form ANDNP nodes:
14387  // 1) In the hopes of then easily combining them with OR and AND nodes
14388  //    to form PBLEND/PSIGN.
14389  // 2) To match ANDN packed intrinsics
14390  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14391    return SDValue();
14392
14393  SDValue N0 = N->getOperand(0);
14394  SDValue N1 = N->getOperand(1);
14395  DebugLoc DL = N->getDebugLoc();
14396
14397  // Check LHS for vnot
14398  if (N0.getOpcode() == ISD::XOR &&
14399      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14400      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14401    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14402
14403  // Check RHS for vnot
14404  if (N1.getOpcode() == ISD::XOR &&
14405      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14406      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14407    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14408
14409  return SDValue();
14410}
14411
14412static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14413                                TargetLowering::DAGCombinerInfo &DCI,
14414                                const X86Subtarget *Subtarget) {
14415  if (DCI.isBeforeLegalizeOps())
14416    return SDValue();
14417
14418  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14419  if (R.getNode())
14420    return R;
14421
14422  EVT VT = N->getValueType(0);
14423
14424  SDValue N0 = N->getOperand(0);
14425  SDValue N1 = N->getOperand(1);
14426
14427  // look for psign/blend
14428  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14429    if (!Subtarget->hasSSSE3() ||
14430        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14431      return SDValue();
14432
14433    // Canonicalize pandn to RHS
14434    if (N0.getOpcode() == X86ISD::ANDNP)
14435      std::swap(N0, N1);
14436    // or (and (m, y), (pandn m, x))
14437    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14438      SDValue Mask = N1.getOperand(0);
14439      SDValue X    = N1.getOperand(1);
14440      SDValue Y;
14441      if (N0.getOperand(0) == Mask)
14442        Y = N0.getOperand(1);
14443      if (N0.getOperand(1) == Mask)
14444        Y = N0.getOperand(0);
14445
14446      // Check to see if the mask appeared in both the AND and ANDNP and
14447      if (!Y.getNode())
14448        return SDValue();
14449
14450      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14451      // Look through mask bitcast.
14452      if (Mask.getOpcode() == ISD::BITCAST)
14453        Mask = Mask.getOperand(0);
14454      if (X.getOpcode() == ISD::BITCAST)
14455        X = X.getOperand(0);
14456      if (Y.getOpcode() == ISD::BITCAST)
14457        Y = Y.getOperand(0);
14458
14459      EVT MaskVT = Mask.getValueType();
14460
14461      // Validate that the Mask operand is a vector sra node.
14462      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14463      // there is no psrai.b
14464      if (Mask.getOpcode() != X86ISD::VSRAI)
14465        return SDValue();
14466
14467      // Check that the SRA is all signbits.
14468      SDValue SraC = Mask.getOperand(1);
14469      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14470      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14471      if ((SraAmt + 1) != EltBits)
14472        return SDValue();
14473
14474      DebugLoc DL = N->getDebugLoc();
14475
14476      // Now we know we at least have a plendvb with the mask val.  See if
14477      // we can form a psignb/w/d.
14478      // psign = x.type == y.type == mask.type && y = sub(0, x);
14479      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14480          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14481          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14482        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14483               "Unsupported VT for PSIGN");
14484        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14485        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14486      }
14487      // PBLENDVB only available on SSE 4.1
14488      if (!Subtarget->hasSSE41())
14489        return SDValue();
14490
14491      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14492
14493      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14494      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14495      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14496      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14497      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14498    }
14499  }
14500
14501  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14502    return SDValue();
14503
14504  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14505  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14506    std::swap(N0, N1);
14507  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14508    return SDValue();
14509  if (!N0.hasOneUse() || !N1.hasOneUse())
14510    return SDValue();
14511
14512  SDValue ShAmt0 = N0.getOperand(1);
14513  if (ShAmt0.getValueType() != MVT::i8)
14514    return SDValue();
14515  SDValue ShAmt1 = N1.getOperand(1);
14516  if (ShAmt1.getValueType() != MVT::i8)
14517    return SDValue();
14518  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14519    ShAmt0 = ShAmt0.getOperand(0);
14520  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14521    ShAmt1 = ShAmt1.getOperand(0);
14522
14523  DebugLoc DL = N->getDebugLoc();
14524  unsigned Opc = X86ISD::SHLD;
14525  SDValue Op0 = N0.getOperand(0);
14526  SDValue Op1 = N1.getOperand(0);
14527  if (ShAmt0.getOpcode() == ISD::SUB) {
14528    Opc = X86ISD::SHRD;
14529    std::swap(Op0, Op1);
14530    std::swap(ShAmt0, ShAmt1);
14531  }
14532
14533  unsigned Bits = VT.getSizeInBits();
14534  if (ShAmt1.getOpcode() == ISD::SUB) {
14535    SDValue Sum = ShAmt1.getOperand(0);
14536    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14537      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14538      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14539        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14540      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14541        return DAG.getNode(Opc, DL, VT,
14542                           Op0, Op1,
14543                           DAG.getNode(ISD::TRUNCATE, DL,
14544                                       MVT::i8, ShAmt0));
14545    }
14546  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14547    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14548    if (ShAmt0C &&
14549        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14550      return DAG.getNode(Opc, DL, VT,
14551                         N0.getOperand(0), N1.getOperand(0),
14552                         DAG.getNode(ISD::TRUNCATE, DL,
14553                                       MVT::i8, ShAmt0));
14554  }
14555
14556  return SDValue();
14557}
14558
14559// Generate NEG and CMOV for integer abs.
14560static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
14561  EVT VT = N->getValueType(0);
14562
14563  // Since X86 does not have CMOV for 8-bit integer, we don't convert
14564  // 8-bit integer abs to NEG and CMOV.
14565  if (VT.isInteger() && VT.getSizeInBits() == 8)
14566    return SDValue();
14567
14568  SDValue N0 = N->getOperand(0);
14569  SDValue N1 = N->getOperand(1);
14570  DebugLoc DL = N->getDebugLoc();
14571
14572  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
14573  // and change it to SUB and CMOV.
14574  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
14575      N0.getOpcode() == ISD::ADD &&
14576      N0.getOperand(1) == N1 &&
14577      N1.getOpcode() == ISD::SRA &&
14578      N1.getOperand(0) == N0.getOperand(0))
14579    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
14580      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
14581        // Generate SUB & CMOV.
14582        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
14583                                  DAG.getConstant(0, VT), N0.getOperand(0));
14584
14585        SDValue Ops[] = { N0.getOperand(0), Neg,
14586                          DAG.getConstant(X86::COND_GE, MVT::i8),
14587                          SDValue(Neg.getNode(), 1) };
14588        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
14589                           Ops, array_lengthof(Ops));
14590      }
14591  return SDValue();
14592}
14593
14594// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14595static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14596                                 TargetLowering::DAGCombinerInfo &DCI,
14597                                 const X86Subtarget *Subtarget) {
14598  if (DCI.isBeforeLegalizeOps())
14599    return SDValue();
14600
14601  if (Subtarget->hasCMov()) {
14602    SDValue RV = performIntegerAbsCombine(N, DAG);
14603    if (RV.getNode())
14604      return RV;
14605  }
14606
14607  // Try forming BMI if it is available.
14608  if (!Subtarget->hasBMI())
14609    return SDValue();
14610
14611  EVT VT = N->getValueType(0);
14612
14613  if (VT != MVT::i32 && VT != MVT::i64)
14614    return SDValue();
14615
14616  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14617
14618  // Create BLSMSK instructions by finding X ^ (X-1)
14619  SDValue N0 = N->getOperand(0);
14620  SDValue N1 = N->getOperand(1);
14621  DebugLoc DL = N->getDebugLoc();
14622
14623  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14624      isAllOnes(N0.getOperand(1)))
14625    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14626
14627  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14628      isAllOnes(N1.getOperand(1)))
14629    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14630
14631  return SDValue();
14632}
14633
14634/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14635static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14636                                  TargetLowering::DAGCombinerInfo &DCI,
14637                                  const X86Subtarget *Subtarget) {
14638  LoadSDNode *Ld = cast<LoadSDNode>(N);
14639  EVT RegVT = Ld->getValueType(0);
14640  EVT MemVT = Ld->getMemoryVT();
14641  DebugLoc dl = Ld->getDebugLoc();
14642  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14643
14644  ISD::LoadExtType Ext = Ld->getExtensionType();
14645
14646  // If this is a vector EXT Load then attempt to optimize it using a
14647  // shuffle. We need SSE4 for the shuffles.
14648  // TODO: It is possible to support ZExt by zeroing the undef values
14649  // during the shuffle phase or after the shuffle.
14650  if (RegVT.isVector() && RegVT.isInteger() &&
14651      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14652    assert(MemVT != RegVT && "Cannot extend to the same type");
14653    assert(MemVT.isVector() && "Must load a vector from memory");
14654
14655    unsigned NumElems = RegVT.getVectorNumElements();
14656    unsigned RegSz = RegVT.getSizeInBits();
14657    unsigned MemSz = MemVT.getSizeInBits();
14658    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14659
14660    // All sizes must be a power of two.
14661    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
14662      return SDValue();
14663
14664    // Attempt to load the original value using scalar loads.
14665    // Find the largest scalar type that divides the total loaded size.
14666    MVT SclrLoadTy = MVT::i8;
14667    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14668         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14669      MVT Tp = (MVT::SimpleValueType)tp;
14670      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
14671        SclrLoadTy = Tp;
14672      }
14673    }
14674
14675    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
14676    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
14677        (64 <= MemSz))
14678      SclrLoadTy = MVT::f64;
14679
14680    // Calculate the number of scalar loads that we need to perform
14681    // in order to load our vector from memory.
14682    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
14683
14684    // Represent our vector as a sequence of elements which are the
14685    // largest scalar that we can load.
14686    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14687      RegSz/SclrLoadTy.getSizeInBits());
14688
14689    // Represent the data using the same element type that is stored in
14690    // memory. In practice, we ''widen'' MemVT.
14691    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14692                                  RegSz/MemVT.getScalarType().getSizeInBits());
14693
14694    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
14695      "Invalid vector type");
14696
14697    // We can't shuffle using an illegal type.
14698    if (!TLI.isTypeLegal(WideVecVT))
14699      return SDValue();
14700
14701    SmallVector<SDValue, 8> Chains;
14702    SDValue Ptr = Ld->getBasePtr();
14703    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
14704                                        TLI.getPointerTy());
14705    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
14706
14707    for (unsigned i = 0; i < NumLoads; ++i) {
14708      // Perform a single load.
14709      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14710                                       Ptr, Ld->getPointerInfo(),
14711                                       Ld->isVolatile(), Ld->isNonTemporal(),
14712                                       Ld->isInvariant(), Ld->getAlignment());
14713      Chains.push_back(ScalarLoad.getValue(1));
14714      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
14715      // another round of DAGCombining.
14716      if (i == 0)
14717        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
14718      else
14719        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
14720                          ScalarLoad, DAG.getIntPtrConstant(i));
14721
14722      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14723    }
14724
14725    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14726                               Chains.size());
14727
14728    // Bitcast the loaded value to a vector of the original element type, in
14729    // the size of the target vector type.
14730    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
14731    unsigned SizeRatio = RegSz/MemSz;
14732
14733    // Redistribute the loaded elements into the different locations.
14734    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14735    for (unsigned i = 0; i != NumElems; ++i)
14736      ShuffleVec[i*SizeRatio] = i;
14737
14738    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14739                                         DAG.getUNDEF(WideVecVT),
14740                                         &ShuffleVec[0]);
14741
14742    // Bitcast to the requested type.
14743    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14744    // Replace the original load with the new sequence
14745    // and return the new chain.
14746    return DCI.CombineTo(N, Shuff, TF, true);
14747  }
14748
14749  return SDValue();
14750}
14751
14752/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14753static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14754                                   const X86Subtarget *Subtarget) {
14755  StoreSDNode *St = cast<StoreSDNode>(N);
14756  EVT VT = St->getValue().getValueType();
14757  EVT StVT = St->getMemoryVT();
14758  DebugLoc dl = St->getDebugLoc();
14759  SDValue StoredVal = St->getOperand(1);
14760  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14761
14762  // If we are saving a concatenation of two XMM registers, perform two stores.
14763  // On Sandy Bridge, 256-bit memory operations are executed by two
14764  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
14765  // memory  operation.
14766  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2() &&
14767      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14768      StoredVal.getNumOperands() == 2) {
14769    SDValue Value0 = StoredVal.getOperand(0);
14770    SDValue Value1 = StoredVal.getOperand(1);
14771
14772    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14773    SDValue Ptr0 = St->getBasePtr();
14774    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14775
14776    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14777                                St->getPointerInfo(), St->isVolatile(),
14778                                St->isNonTemporal(), St->getAlignment());
14779    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14780                                St->getPointerInfo(), St->isVolatile(),
14781                                St->isNonTemporal(), St->getAlignment());
14782    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14783  }
14784
14785  // Optimize trunc store (of multiple scalars) to shuffle and store.
14786  // First, pack all of the elements in one place. Next, store to memory
14787  // in fewer chunks.
14788  if (St->isTruncatingStore() && VT.isVector()) {
14789    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14790    unsigned NumElems = VT.getVectorNumElements();
14791    assert(StVT != VT && "Cannot truncate to the same type");
14792    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14793    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14794
14795    // From, To sizes and ElemCount must be pow of two
14796    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14797    // We are going to use the original vector elt for storing.
14798    // Accumulated smaller vector elements must be a multiple of the store size.
14799    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14800
14801    unsigned SizeRatio  = FromSz / ToSz;
14802
14803    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14804
14805    // Create a type on which we perform the shuffle
14806    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14807            StVT.getScalarType(), NumElems*SizeRatio);
14808
14809    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14810
14811    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14812    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14813    for (unsigned i = 0; i != NumElems; ++i)
14814      ShuffleVec[i] = i * SizeRatio;
14815
14816    // Can't shuffle using an illegal type.
14817    if (!TLI.isTypeLegal(WideVecVT))
14818      return SDValue();
14819
14820    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14821                                         DAG.getUNDEF(WideVecVT),
14822                                         &ShuffleVec[0]);
14823    // At this point all of the data is stored at the bottom of the
14824    // register. We now need to save it to mem.
14825
14826    // Find the largest store unit
14827    MVT StoreType = MVT::i8;
14828    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14829         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14830      MVT Tp = (MVT::SimpleValueType)tp;
14831      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
14832        StoreType = Tp;
14833    }
14834
14835    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
14836    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
14837        (64 <= NumElems * ToSz))
14838      StoreType = MVT::f64;
14839
14840    // Bitcast the original vector into a vector of store-size units
14841    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14842            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
14843    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14844    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14845    SmallVector<SDValue, 8> Chains;
14846    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14847                                        TLI.getPointerTy());
14848    SDValue Ptr = St->getBasePtr();
14849
14850    // Perform one or more big stores into memory.
14851    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
14852      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14853                                   StoreType, ShuffWide,
14854                                   DAG.getIntPtrConstant(i));
14855      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14856                                St->getPointerInfo(), St->isVolatile(),
14857                                St->isNonTemporal(), St->getAlignment());
14858      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14859      Chains.push_back(Ch);
14860    }
14861
14862    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14863                               Chains.size());
14864  }
14865
14866
14867  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14868  // the FP state in cases where an emms may be missing.
14869  // A preferable solution to the general problem is to figure out the right
14870  // places to insert EMMS.  This qualifies as a quick hack.
14871
14872  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14873  if (VT.getSizeInBits() != 64)
14874    return SDValue();
14875
14876  const Function *F = DAG.getMachineFunction().getFunction();
14877  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14878  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14879                     && Subtarget->hasSSE2();
14880  if ((VT.isVector() ||
14881       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14882      isa<LoadSDNode>(St->getValue()) &&
14883      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14884      St->getChain().hasOneUse() && !St->isVolatile()) {
14885    SDNode* LdVal = St->getValue().getNode();
14886    LoadSDNode *Ld = 0;
14887    int TokenFactorIndex = -1;
14888    SmallVector<SDValue, 8> Ops;
14889    SDNode* ChainVal = St->getChain().getNode();
14890    // Must be a store of a load.  We currently handle two cases:  the load
14891    // is a direct child, and it's under an intervening TokenFactor.  It is
14892    // possible to dig deeper under nested TokenFactors.
14893    if (ChainVal == LdVal)
14894      Ld = cast<LoadSDNode>(St->getChain());
14895    else if (St->getValue().hasOneUse() &&
14896             ChainVal->getOpcode() == ISD::TokenFactor) {
14897      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14898        if (ChainVal->getOperand(i).getNode() == LdVal) {
14899          TokenFactorIndex = i;
14900          Ld = cast<LoadSDNode>(St->getValue());
14901        } else
14902          Ops.push_back(ChainVal->getOperand(i));
14903      }
14904    }
14905
14906    if (!Ld || !ISD::isNormalLoad(Ld))
14907      return SDValue();
14908
14909    // If this is not the MMX case, i.e. we are just turning i64 load/store
14910    // into f64 load/store, avoid the transformation if there are multiple
14911    // uses of the loaded value.
14912    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14913      return SDValue();
14914
14915    DebugLoc LdDL = Ld->getDebugLoc();
14916    DebugLoc StDL = N->getDebugLoc();
14917    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14918    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14919    // pair instead.
14920    if (Subtarget->is64Bit() || F64IsLegal) {
14921      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14922      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14923                                  Ld->getPointerInfo(), Ld->isVolatile(),
14924                                  Ld->isNonTemporal(), Ld->isInvariant(),
14925                                  Ld->getAlignment());
14926      SDValue NewChain = NewLd.getValue(1);
14927      if (TokenFactorIndex != -1) {
14928        Ops.push_back(NewChain);
14929        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14930                               Ops.size());
14931      }
14932      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14933                          St->getPointerInfo(),
14934                          St->isVolatile(), St->isNonTemporal(),
14935                          St->getAlignment());
14936    }
14937
14938    // Otherwise, lower to two pairs of 32-bit loads / stores.
14939    SDValue LoAddr = Ld->getBasePtr();
14940    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14941                                 DAG.getConstant(4, MVT::i32));
14942
14943    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14944                               Ld->getPointerInfo(),
14945                               Ld->isVolatile(), Ld->isNonTemporal(),
14946                               Ld->isInvariant(), Ld->getAlignment());
14947    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14948                               Ld->getPointerInfo().getWithOffset(4),
14949                               Ld->isVolatile(), Ld->isNonTemporal(),
14950                               Ld->isInvariant(),
14951                               MinAlign(Ld->getAlignment(), 4));
14952
14953    SDValue NewChain = LoLd.getValue(1);
14954    if (TokenFactorIndex != -1) {
14955      Ops.push_back(LoLd);
14956      Ops.push_back(HiLd);
14957      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14958                             Ops.size());
14959    }
14960
14961    LoAddr = St->getBasePtr();
14962    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14963                         DAG.getConstant(4, MVT::i32));
14964
14965    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14966                                St->getPointerInfo(),
14967                                St->isVolatile(), St->isNonTemporal(),
14968                                St->getAlignment());
14969    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14970                                St->getPointerInfo().getWithOffset(4),
14971                                St->isVolatile(),
14972                                St->isNonTemporal(),
14973                                MinAlign(St->getAlignment(), 4));
14974    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14975  }
14976  return SDValue();
14977}
14978
14979/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14980/// and return the operands for the horizontal operation in LHS and RHS.  A
14981/// horizontal operation performs the binary operation on successive elements
14982/// of its first operand, then on successive elements of its second operand,
14983/// returning the resulting values in a vector.  For example, if
14984///   A = < float a0, float a1, float a2, float a3 >
14985/// and
14986///   B = < float b0, float b1, float b2, float b3 >
14987/// then the result of doing a horizontal operation on A and B is
14988///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14989/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14990/// A horizontal-op B, for some already available A and B, and if so then LHS is
14991/// set to A, RHS to B, and the routine returns 'true'.
14992/// Note that the binary operation should have the property that if one of the
14993/// operands is UNDEF then the result is UNDEF.
14994static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14995  // Look for the following pattern: if
14996  //   A = < float a0, float a1, float a2, float a3 >
14997  //   B = < float b0, float b1, float b2, float b3 >
14998  // and
14999  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
15000  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
15001  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
15002  // which is A horizontal-op B.
15003
15004  // At least one of the operands should be a vector shuffle.
15005  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15006      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
15007    return false;
15008
15009  EVT VT = LHS.getValueType();
15010
15011  assert((VT.is128BitVector() || VT.is256BitVector()) &&
15012         "Unsupported vector type for horizontal add/sub");
15013
15014  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
15015  // operate independently on 128-bit lanes.
15016  unsigned NumElts = VT.getVectorNumElements();
15017  unsigned NumLanes = VT.getSizeInBits()/128;
15018  unsigned NumLaneElts = NumElts / NumLanes;
15019  assert((NumLaneElts % 2 == 0) &&
15020         "Vector type should have an even number of elements in each lane");
15021  unsigned HalfLaneElts = NumLaneElts/2;
15022
15023  // View LHS in the form
15024  //   LHS = VECTOR_SHUFFLE A, B, LMask
15025  // If LHS is not a shuffle then pretend it is the shuffle
15026  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
15027  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
15028  // type VT.
15029  SDValue A, B;
15030  SmallVector<int, 16> LMask(NumElts);
15031  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15032    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
15033      A = LHS.getOperand(0);
15034    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
15035      B = LHS.getOperand(1);
15036    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
15037    std::copy(Mask.begin(), Mask.end(), LMask.begin());
15038  } else {
15039    if (LHS.getOpcode() != ISD::UNDEF)
15040      A = LHS;
15041    for (unsigned i = 0; i != NumElts; ++i)
15042      LMask[i] = i;
15043  }
15044
15045  // Likewise, view RHS in the form
15046  //   RHS = VECTOR_SHUFFLE C, D, RMask
15047  SDValue C, D;
15048  SmallVector<int, 16> RMask(NumElts);
15049  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15050    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
15051      C = RHS.getOperand(0);
15052    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
15053      D = RHS.getOperand(1);
15054    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
15055    std::copy(Mask.begin(), Mask.end(), RMask.begin());
15056  } else {
15057    if (RHS.getOpcode() != ISD::UNDEF)
15058      C = RHS;
15059    for (unsigned i = 0; i != NumElts; ++i)
15060      RMask[i] = i;
15061  }
15062
15063  // Check that the shuffles are both shuffling the same vectors.
15064  if (!(A == C && B == D) && !(A == D && B == C))
15065    return false;
15066
15067  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
15068  if (!A.getNode() && !B.getNode())
15069    return false;
15070
15071  // If A and B occur in reverse order in RHS, then "swap" them (which means
15072  // rewriting the mask).
15073  if (A != C)
15074    CommuteVectorShuffleMask(RMask, NumElts);
15075
15076  // At this point LHS and RHS are equivalent to
15077  //   LHS = VECTOR_SHUFFLE A, B, LMask
15078  //   RHS = VECTOR_SHUFFLE A, B, RMask
15079  // Check that the masks correspond to performing a horizontal operation.
15080  for (unsigned i = 0; i != NumElts; ++i) {
15081    int LIdx = LMask[i], RIdx = RMask[i];
15082
15083    // Ignore any UNDEF components.
15084    if (LIdx < 0 || RIdx < 0 ||
15085        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
15086        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
15087      continue;
15088
15089    // Check that successive elements are being operated on.  If not, this is
15090    // not a horizontal operation.
15091    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
15092    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
15093    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
15094    if (!(LIdx == Index && RIdx == Index + 1) &&
15095        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
15096      return false;
15097  }
15098
15099  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
15100  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
15101  return true;
15102}
15103
15104/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
15105static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
15106                                  const X86Subtarget *Subtarget) {
15107  EVT VT = N->getValueType(0);
15108  SDValue LHS = N->getOperand(0);
15109  SDValue RHS = N->getOperand(1);
15110
15111  // Try to synthesize horizontal adds from adds of shuffles.
15112  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15113       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15114      isHorizontalBinOp(LHS, RHS, true))
15115    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
15116  return SDValue();
15117}
15118
15119/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
15120static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
15121                                  const X86Subtarget *Subtarget) {
15122  EVT VT = N->getValueType(0);
15123  SDValue LHS = N->getOperand(0);
15124  SDValue RHS = N->getOperand(1);
15125
15126  // Try to synthesize horizontal subs from subs of shuffles.
15127  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15128       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15129      isHorizontalBinOp(LHS, RHS, false))
15130    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15131  return SDValue();
15132}
15133
15134/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15135/// X86ISD::FXOR nodes.
15136static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15137  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15138  // F[X]OR(0.0, x) -> x
15139  // F[X]OR(x, 0.0) -> x
15140  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15141    if (C->getValueAPF().isPosZero())
15142      return N->getOperand(1);
15143  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15144    if (C->getValueAPF().isPosZero())
15145      return N->getOperand(0);
15146  return SDValue();
15147}
15148
15149/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15150static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15151  // FAND(0.0, x) -> 0.0
15152  // FAND(x, 0.0) -> 0.0
15153  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15154    if (C->getValueAPF().isPosZero())
15155      return N->getOperand(0);
15156  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15157    if (C->getValueAPF().isPosZero())
15158      return N->getOperand(1);
15159  return SDValue();
15160}
15161
15162static SDValue PerformBTCombine(SDNode *N,
15163                                SelectionDAG &DAG,
15164                                TargetLowering::DAGCombinerInfo &DCI) {
15165  // BT ignores high bits in the bit index operand.
15166  SDValue Op1 = N->getOperand(1);
15167  if (Op1.hasOneUse()) {
15168    unsigned BitWidth = Op1.getValueSizeInBits();
15169    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15170    APInt KnownZero, KnownOne;
15171    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15172                                          !DCI.isBeforeLegalizeOps());
15173    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15174    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
15175        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
15176      DCI.CommitTargetLoweringOpt(TLO);
15177  }
15178  return SDValue();
15179}
15180
15181static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
15182  SDValue Op = N->getOperand(0);
15183  if (Op.getOpcode() == ISD::BITCAST)
15184    Op = Op.getOperand(0);
15185  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
15186  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
15187      VT.getVectorElementType().getSizeInBits() ==
15188      OpVT.getVectorElementType().getSizeInBits()) {
15189    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
15190  }
15191  return SDValue();
15192}
15193
15194static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
15195                                  TargetLowering::DAGCombinerInfo &DCI,
15196                                  const X86Subtarget *Subtarget) {
15197  if (!DCI.isBeforeLegalizeOps())
15198    return SDValue();
15199
15200  if (!Subtarget->hasAVX())
15201    return SDValue();
15202
15203  EVT VT = N->getValueType(0);
15204  SDValue Op = N->getOperand(0);
15205  EVT OpVT = Op.getValueType();
15206  DebugLoc dl = N->getDebugLoc();
15207
15208  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
15209      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
15210
15211    if (Subtarget->hasAVX2())
15212      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15213
15214    // Optimize vectors in AVX mode
15215    // Sign extend  v8i16 to v8i32 and
15216    //              v4i32 to v4i64
15217    //
15218    // Divide input vector into two parts
15219    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15220    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15221    // concat the vectors to original VT
15222
15223    unsigned NumElems = OpVT.getVectorNumElements();
15224    SmallVector<int,8> ShufMask1(NumElems, -1);
15225    for (unsigned i = 0; i != NumElems/2; ++i)
15226      ShufMask1[i] = i;
15227
15228    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15229                                        &ShufMask1[0]);
15230
15231    SmallVector<int,8> ShufMask2(NumElems, -1);
15232    for (unsigned i = 0; i != NumElems/2; ++i)
15233      ShufMask2[i] = i + NumElems/2;
15234
15235    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15236                                        &ShufMask2[0]);
15237
15238    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15239                                  VT.getVectorNumElements()/2);
15240
15241    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15242    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15243
15244    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15245  }
15246  return SDValue();
15247}
15248
15249static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
15250                                 const X86Subtarget* Subtarget) {
15251  DebugLoc dl = N->getDebugLoc();
15252  EVT VT = N->getValueType(0);
15253
15254  EVT ScalarVT = VT.getScalarType();
15255  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget->hasFMA())
15256    return SDValue();
15257
15258  SDValue A = N->getOperand(0);
15259  SDValue B = N->getOperand(1);
15260  SDValue C = N->getOperand(2);
15261
15262  bool NegA = (A.getOpcode() == ISD::FNEG);
15263  bool NegB = (B.getOpcode() == ISD::FNEG);
15264  bool NegC = (C.getOpcode() == ISD::FNEG);
15265
15266  // Negative multiplication when NegA xor NegB
15267  bool NegMul = (NegA != NegB);
15268  if (NegA)
15269    A = A.getOperand(0);
15270  if (NegB)
15271    B = B.getOperand(0);
15272  if (NegC)
15273    C = C.getOperand(0);
15274
15275  unsigned Opcode;
15276  if (!NegMul)
15277    Opcode = (!NegC)? X86ISD::FMADD : X86ISD::FMSUB;
15278  else
15279    Opcode = (!NegC)? X86ISD::FNMADD : X86ISD::FNMSUB;
15280  return DAG.getNode(Opcode, dl, VT, A, B, C);
15281}
15282
15283static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15284                                  TargetLowering::DAGCombinerInfo &DCI,
15285                                  const X86Subtarget *Subtarget) {
15286  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15287  //           (and (i32 x86isd::setcc_carry), 1)
15288  // This eliminates the zext. This transformation is necessary because
15289  // ISD::SETCC is always legalized to i8.
15290  DebugLoc dl = N->getDebugLoc();
15291  SDValue N0 = N->getOperand(0);
15292  EVT VT = N->getValueType(0);
15293  EVT OpVT = N0.getValueType();
15294
15295  if (N0.getOpcode() == ISD::AND &&
15296      N0.hasOneUse() &&
15297      N0.getOperand(0).hasOneUse()) {
15298    SDValue N00 = N0.getOperand(0);
15299    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15300      return SDValue();
15301    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15302    if (!C || C->getZExtValue() != 1)
15303      return SDValue();
15304    return DAG.getNode(ISD::AND, dl, VT,
15305                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15306                                   N00.getOperand(0), N00.getOperand(1)),
15307                       DAG.getConstant(1, VT));
15308  }
15309
15310  // Optimize vectors in AVX mode:
15311  //
15312  //   v8i16 -> v8i32
15313  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15314  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15315  //   Concat upper and lower parts.
15316  //
15317  //   v4i32 -> v4i64
15318  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15319  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15320  //   Concat upper and lower parts.
15321  //
15322  if (!DCI.isBeforeLegalizeOps())
15323    return SDValue();
15324
15325  if (!Subtarget->hasAVX())
15326    return SDValue();
15327
15328  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15329      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15330
15331    if (Subtarget->hasAVX2())
15332      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15333
15334    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15335    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15336    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15337
15338    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15339                               VT.getVectorNumElements()/2);
15340
15341    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15342    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15343
15344    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15345  }
15346
15347  return SDValue();
15348}
15349
15350// Optimize x == -y --> x+y == 0
15351//          x != -y --> x+y != 0
15352static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15353  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15354  SDValue LHS = N->getOperand(0);
15355  SDValue RHS = N->getOperand(1);
15356
15357  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15358    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15359      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15360        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15361                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15362        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15363                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15364      }
15365  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15366    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15367      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15368        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15369                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15370        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15371                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15372      }
15373  return SDValue();
15374}
15375
15376// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15377static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15378  DebugLoc DL = N->getDebugLoc();
15379  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
15380  SDValue EFLAGS = N->getOperand(1);
15381
15382  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15383  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15384  // cases.
15385  if (CC == X86::COND_B)
15386    return DAG.getNode(ISD::AND, DL, MVT::i8,
15387                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15388                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
15389                       DAG.getConstant(1, MVT::i8));
15390
15391  SDValue Flags;
15392
15393  Flags = BoolTestSetCCCombine(EFLAGS, CC);
15394  if (Flags.getNode()) {
15395    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15396    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
15397  }
15398
15399  return SDValue();
15400}
15401
15402// Optimize branch condition evaluation.
15403//
15404static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
15405                                    TargetLowering::DAGCombinerInfo &DCI,
15406                                    const X86Subtarget *Subtarget) {
15407  DebugLoc DL = N->getDebugLoc();
15408  SDValue Chain = N->getOperand(0);
15409  SDValue Dest = N->getOperand(1);
15410  SDValue EFLAGS = N->getOperand(3);
15411  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
15412
15413  SDValue Flags;
15414
15415  Flags = BoolTestSetCCCombine(EFLAGS, CC);
15416  if (Flags.getNode()) {
15417    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15418    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
15419                       Flags);
15420  }
15421
15422  return SDValue();
15423}
15424
15425static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15426  SDValue Op0 = N->getOperand(0);
15427  EVT InVT = Op0->getValueType(0);
15428
15429  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15430  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15431    DebugLoc dl = N->getDebugLoc();
15432    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15433    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15434    // Notice that we use SINT_TO_FP because we know that the high bits
15435    // are zero and SINT_TO_FP is better supported by the hardware.
15436    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15437  }
15438
15439  return SDValue();
15440}
15441
15442static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15443                                        const X86TargetLowering *XTLI) {
15444  SDValue Op0 = N->getOperand(0);
15445  EVT InVT = Op0->getValueType(0);
15446
15447  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15448  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15449    DebugLoc dl = N->getDebugLoc();
15450    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15451    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15452    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15453  }
15454
15455  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15456  // a 32-bit target where SSE doesn't support i64->FP operations.
15457  if (Op0.getOpcode() == ISD::LOAD) {
15458    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15459    EVT VT = Ld->getValueType(0);
15460    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15461        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15462        !XTLI->getSubtarget()->is64Bit() &&
15463        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15464      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15465                                          Ld->getChain(), Op0, DAG);
15466      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15467      return FILDChain;
15468    }
15469  }
15470  return SDValue();
15471}
15472
15473static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15474  EVT VT = N->getValueType(0);
15475
15476  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15477  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15478    DebugLoc dl = N->getDebugLoc();
15479    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15480    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15481    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15482  }
15483
15484  return SDValue();
15485}
15486
15487// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15488static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15489                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15490  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15491  // the result is either zero or one (depending on the input carry bit).
15492  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15493  if (X86::isZeroNode(N->getOperand(0)) &&
15494      X86::isZeroNode(N->getOperand(1)) &&
15495      // We don't have a good way to replace an EFLAGS use, so only do this when
15496      // dead right now.
15497      SDValue(N, 1).use_empty()) {
15498    DebugLoc DL = N->getDebugLoc();
15499    EVT VT = N->getValueType(0);
15500    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15501    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15502                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15503                                           DAG.getConstant(X86::COND_B,MVT::i8),
15504                                           N->getOperand(2)),
15505                               DAG.getConstant(1, VT));
15506    return DCI.CombineTo(N, Res1, CarryOut);
15507  }
15508
15509  return SDValue();
15510}
15511
15512// fold (add Y, (sete  X, 0)) -> adc  0, Y
15513//      (add Y, (setne X, 0)) -> sbb -1, Y
15514//      (sub (sete  X, 0), Y) -> sbb  0, Y
15515//      (sub (setne X, 0), Y) -> adc -1, Y
15516static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15517  DebugLoc DL = N->getDebugLoc();
15518
15519  // Look through ZExts.
15520  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15521  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15522    return SDValue();
15523
15524  SDValue SetCC = Ext.getOperand(0);
15525  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15526    return SDValue();
15527
15528  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15529  if (CC != X86::COND_E && CC != X86::COND_NE)
15530    return SDValue();
15531
15532  SDValue Cmp = SetCC.getOperand(1);
15533  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15534      !X86::isZeroNode(Cmp.getOperand(1)) ||
15535      !Cmp.getOperand(0).getValueType().isInteger())
15536    return SDValue();
15537
15538  SDValue CmpOp0 = Cmp.getOperand(0);
15539  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15540                               DAG.getConstant(1, CmpOp0.getValueType()));
15541
15542  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15543  if (CC == X86::COND_NE)
15544    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15545                       DL, OtherVal.getValueType(), OtherVal,
15546                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15547  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15548                     DL, OtherVal.getValueType(), OtherVal,
15549                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15550}
15551
15552/// PerformADDCombine - Do target-specific dag combines on integer adds.
15553static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15554                                 const X86Subtarget *Subtarget) {
15555  EVT VT = N->getValueType(0);
15556  SDValue Op0 = N->getOperand(0);
15557  SDValue Op1 = N->getOperand(1);
15558
15559  // Try to synthesize horizontal adds from adds of shuffles.
15560  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15561       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15562      isHorizontalBinOp(Op0, Op1, true))
15563    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15564
15565  return OptimizeConditionalInDecrement(N, DAG);
15566}
15567
15568static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15569                                 const X86Subtarget *Subtarget) {
15570  SDValue Op0 = N->getOperand(0);
15571  SDValue Op1 = N->getOperand(1);
15572
15573  // X86 can't encode an immediate LHS of a sub. See if we can push the
15574  // negation into a preceding instruction.
15575  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15576    // If the RHS of the sub is a XOR with one use and a constant, invert the
15577    // immediate. Then add one to the LHS of the sub so we can turn
15578    // X-Y -> X+~Y+1, saving one register.
15579    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15580        isa<ConstantSDNode>(Op1.getOperand(1))) {
15581      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15582      EVT VT = Op0.getValueType();
15583      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15584                                   Op1.getOperand(0),
15585                                   DAG.getConstant(~XorC, VT));
15586      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15587                         DAG.getConstant(C->getAPIntValue()+1, VT));
15588    }
15589  }
15590
15591  // Try to synthesize horizontal adds from adds of shuffles.
15592  EVT VT = N->getValueType(0);
15593  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15594       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15595      isHorizontalBinOp(Op0, Op1, true))
15596    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15597
15598  return OptimizeConditionalInDecrement(N, DAG);
15599}
15600
15601SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15602                                             DAGCombinerInfo &DCI) const {
15603  SelectionDAG &DAG = DCI.DAG;
15604  switch (N->getOpcode()) {
15605  default: break;
15606  case ISD::EXTRACT_VECTOR_ELT:
15607    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15608  case ISD::VSELECT:
15609  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15610  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15611  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15612  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15613  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15614  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15615  case ISD::SHL:
15616  case ISD::SRA:
15617  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15618  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15619  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15620  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15621  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
15622  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15623  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15624  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15625  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15626  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15627  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15628  case X86ISD::FXOR:
15629  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15630  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15631  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15632  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15633  case ISD::ANY_EXTEND:
15634  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
15635  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15636  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15637  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
15638  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15639  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
15640  case X86ISD::SHUFP:       // Handle all target specific shuffles
15641  case X86ISD::PALIGN:
15642  case X86ISD::UNPCKH:
15643  case X86ISD::UNPCKL:
15644  case X86ISD::MOVHLPS:
15645  case X86ISD::MOVLHPS:
15646  case X86ISD::PSHUFD:
15647  case X86ISD::PSHUFHW:
15648  case X86ISD::PSHUFLW:
15649  case X86ISD::MOVSS:
15650  case X86ISD::MOVSD:
15651  case X86ISD::VPERMILP:
15652  case X86ISD::VPERM2X128:
15653  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15654  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
15655  }
15656
15657  return SDValue();
15658}
15659
15660/// isTypeDesirableForOp - Return true if the target has native support for
15661/// the specified value type and it is 'desirable' to use the type for the
15662/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15663/// instruction encodings are longer and some i16 instructions are slow.
15664bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15665  if (!isTypeLegal(VT))
15666    return false;
15667  if (VT != MVT::i16)
15668    return true;
15669
15670  switch (Opc) {
15671  default:
15672    return true;
15673  case ISD::LOAD:
15674  case ISD::SIGN_EXTEND:
15675  case ISD::ZERO_EXTEND:
15676  case ISD::ANY_EXTEND:
15677  case ISD::SHL:
15678  case ISD::SRL:
15679  case ISD::SUB:
15680  case ISD::ADD:
15681  case ISD::MUL:
15682  case ISD::AND:
15683  case ISD::OR:
15684  case ISD::XOR:
15685    return false;
15686  }
15687}
15688
15689/// IsDesirableToPromoteOp - This method query the target whether it is
15690/// beneficial for dag combiner to promote the specified node. If true, it
15691/// should return the desired promotion type by reference.
15692bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15693  EVT VT = Op.getValueType();
15694  if (VT != MVT::i16)
15695    return false;
15696
15697  bool Promote = false;
15698  bool Commute = false;
15699  switch (Op.getOpcode()) {
15700  default: break;
15701  case ISD::LOAD: {
15702    LoadSDNode *LD = cast<LoadSDNode>(Op);
15703    // If the non-extending load has a single use and it's not live out, then it
15704    // might be folded.
15705    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15706                                                     Op.hasOneUse()*/) {
15707      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15708             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15709        // The only case where we'd want to promote LOAD (rather then it being
15710        // promoted as an operand is when it's only use is liveout.
15711        if (UI->getOpcode() != ISD::CopyToReg)
15712          return false;
15713      }
15714    }
15715    Promote = true;
15716    break;
15717  }
15718  case ISD::SIGN_EXTEND:
15719  case ISD::ZERO_EXTEND:
15720  case ISD::ANY_EXTEND:
15721    Promote = true;
15722    break;
15723  case ISD::SHL:
15724  case ISD::SRL: {
15725    SDValue N0 = Op.getOperand(0);
15726    // Look out for (store (shl (load), x)).
15727    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15728      return false;
15729    Promote = true;
15730    break;
15731  }
15732  case ISD::ADD:
15733  case ISD::MUL:
15734  case ISD::AND:
15735  case ISD::OR:
15736  case ISD::XOR:
15737    Commute = true;
15738    // fallthrough
15739  case ISD::SUB: {
15740    SDValue N0 = Op.getOperand(0);
15741    SDValue N1 = Op.getOperand(1);
15742    if (!Commute && MayFoldLoad(N1))
15743      return false;
15744    // Avoid disabling potential load folding opportunities.
15745    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15746      return false;
15747    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15748      return false;
15749    Promote = true;
15750  }
15751  }
15752
15753  PVT = MVT::i32;
15754  return Promote;
15755}
15756
15757//===----------------------------------------------------------------------===//
15758//                           X86 Inline Assembly Support
15759//===----------------------------------------------------------------------===//
15760
15761namespace {
15762  // Helper to match a string separated by whitespace.
15763  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15764    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15765
15766    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15767      StringRef piece(*args[i]);
15768      if (!s.startswith(piece)) // Check if the piece matches.
15769        return false;
15770
15771      s = s.substr(piece.size());
15772      StringRef::size_type pos = s.find_first_not_of(" \t");
15773      if (pos == 0) // We matched a prefix.
15774        return false;
15775
15776      s = s.substr(pos);
15777    }
15778
15779    return s.empty();
15780  }
15781  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15782}
15783
15784bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15785  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15786
15787  std::string AsmStr = IA->getAsmString();
15788
15789  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15790  if (!Ty || Ty->getBitWidth() % 16 != 0)
15791    return false;
15792
15793  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15794  SmallVector<StringRef, 4> AsmPieces;
15795  SplitString(AsmStr, AsmPieces, ";\n");
15796
15797  switch (AsmPieces.size()) {
15798  default: return false;
15799  case 1:
15800    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15801    // we will turn this bswap into something that will be lowered to logical
15802    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15803    // lower so don't worry about this.
15804    // bswap $0
15805    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15806        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15807        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15808        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15809        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15810        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15811      // No need to check constraints, nothing other than the equivalent of
15812      // "=r,0" would be valid here.
15813      return IntrinsicLowering::LowerToByteSwap(CI);
15814    }
15815
15816    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15817    if (CI->getType()->isIntegerTy(16) &&
15818        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15819        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15820         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15821      AsmPieces.clear();
15822      const std::string &ConstraintsStr = IA->getConstraintString();
15823      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15824      std::sort(AsmPieces.begin(), AsmPieces.end());
15825      if (AsmPieces.size() == 4 &&
15826          AsmPieces[0] == "~{cc}" &&
15827          AsmPieces[1] == "~{dirflag}" &&
15828          AsmPieces[2] == "~{flags}" &&
15829          AsmPieces[3] == "~{fpsr}")
15830      return IntrinsicLowering::LowerToByteSwap(CI);
15831    }
15832    break;
15833  case 3:
15834    if (CI->getType()->isIntegerTy(32) &&
15835        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15836        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15837        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15838        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15839      AsmPieces.clear();
15840      const std::string &ConstraintsStr = IA->getConstraintString();
15841      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15842      std::sort(AsmPieces.begin(), AsmPieces.end());
15843      if (AsmPieces.size() == 4 &&
15844          AsmPieces[0] == "~{cc}" &&
15845          AsmPieces[1] == "~{dirflag}" &&
15846          AsmPieces[2] == "~{flags}" &&
15847          AsmPieces[3] == "~{fpsr}")
15848        return IntrinsicLowering::LowerToByteSwap(CI);
15849    }
15850
15851    if (CI->getType()->isIntegerTy(64)) {
15852      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15853      if (Constraints.size() >= 2 &&
15854          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15855          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15856        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15857        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15858            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15859            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15860          return IntrinsicLowering::LowerToByteSwap(CI);
15861      }
15862    }
15863    break;
15864  }
15865  return false;
15866}
15867
15868
15869
15870/// getConstraintType - Given a constraint letter, return the type of
15871/// constraint it is for this target.
15872X86TargetLowering::ConstraintType
15873X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15874  if (Constraint.size() == 1) {
15875    switch (Constraint[0]) {
15876    case 'R':
15877    case 'q':
15878    case 'Q':
15879    case 'f':
15880    case 't':
15881    case 'u':
15882    case 'y':
15883    case 'x':
15884    case 'Y':
15885    case 'l':
15886      return C_RegisterClass;
15887    case 'a':
15888    case 'b':
15889    case 'c':
15890    case 'd':
15891    case 'S':
15892    case 'D':
15893    case 'A':
15894      return C_Register;
15895    case 'I':
15896    case 'J':
15897    case 'K':
15898    case 'L':
15899    case 'M':
15900    case 'N':
15901    case 'G':
15902    case 'C':
15903    case 'e':
15904    case 'Z':
15905      return C_Other;
15906    default:
15907      break;
15908    }
15909  }
15910  return TargetLowering::getConstraintType(Constraint);
15911}
15912
15913/// Examine constraint type and operand type and determine a weight value.
15914/// This object must already have been set up with the operand type
15915/// and the current alternative constraint selected.
15916TargetLowering::ConstraintWeight
15917  X86TargetLowering::getSingleConstraintMatchWeight(
15918    AsmOperandInfo &info, const char *constraint) const {
15919  ConstraintWeight weight = CW_Invalid;
15920  Value *CallOperandVal = info.CallOperandVal;
15921    // If we don't have a value, we can't do a match,
15922    // but allow it at the lowest weight.
15923  if (CallOperandVal == NULL)
15924    return CW_Default;
15925  Type *type = CallOperandVal->getType();
15926  // Look at the constraint type.
15927  switch (*constraint) {
15928  default:
15929    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15930  case 'R':
15931  case 'q':
15932  case 'Q':
15933  case 'a':
15934  case 'b':
15935  case 'c':
15936  case 'd':
15937  case 'S':
15938  case 'D':
15939  case 'A':
15940    if (CallOperandVal->getType()->isIntegerTy())
15941      weight = CW_SpecificReg;
15942    break;
15943  case 'f':
15944  case 't':
15945  case 'u':
15946      if (type->isFloatingPointTy())
15947        weight = CW_SpecificReg;
15948      break;
15949  case 'y':
15950      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15951        weight = CW_SpecificReg;
15952      break;
15953  case 'x':
15954  case 'Y':
15955    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15956        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15957      weight = CW_Register;
15958    break;
15959  case 'I':
15960    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15961      if (C->getZExtValue() <= 31)
15962        weight = CW_Constant;
15963    }
15964    break;
15965  case 'J':
15966    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15967      if (C->getZExtValue() <= 63)
15968        weight = CW_Constant;
15969    }
15970    break;
15971  case 'K':
15972    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15973      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15974        weight = CW_Constant;
15975    }
15976    break;
15977  case 'L':
15978    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15979      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15980        weight = CW_Constant;
15981    }
15982    break;
15983  case 'M':
15984    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15985      if (C->getZExtValue() <= 3)
15986        weight = CW_Constant;
15987    }
15988    break;
15989  case 'N':
15990    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15991      if (C->getZExtValue() <= 0xff)
15992        weight = CW_Constant;
15993    }
15994    break;
15995  case 'G':
15996  case 'C':
15997    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15998      weight = CW_Constant;
15999    }
16000    break;
16001  case 'e':
16002    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16003      if ((C->getSExtValue() >= -0x80000000LL) &&
16004          (C->getSExtValue() <= 0x7fffffffLL))
16005        weight = CW_Constant;
16006    }
16007    break;
16008  case 'Z':
16009    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16010      if (C->getZExtValue() <= 0xffffffff)
16011        weight = CW_Constant;
16012    }
16013    break;
16014  }
16015  return weight;
16016}
16017
16018/// LowerXConstraint - try to replace an X constraint, which matches anything,
16019/// with another that has more specific requirements based on the type of the
16020/// corresponding operand.
16021const char *X86TargetLowering::
16022LowerXConstraint(EVT ConstraintVT) const {
16023  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
16024  // 'f' like normal targets.
16025  if (ConstraintVT.isFloatingPoint()) {
16026    if (Subtarget->hasSSE2())
16027      return "Y";
16028    if (Subtarget->hasSSE1())
16029      return "x";
16030  }
16031
16032  return TargetLowering::LowerXConstraint(ConstraintVT);
16033}
16034
16035/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16036/// vector.  If it is invalid, don't add anything to Ops.
16037void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16038                                                     std::string &Constraint,
16039                                                     std::vector<SDValue>&Ops,
16040                                                     SelectionDAG &DAG) const {
16041  SDValue Result(0, 0);
16042
16043  // Only support length 1 constraints for now.
16044  if (Constraint.length() > 1) return;
16045
16046  char ConstraintLetter = Constraint[0];
16047  switch (ConstraintLetter) {
16048  default: break;
16049  case 'I':
16050    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16051      if (C->getZExtValue() <= 31) {
16052        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16053        break;
16054      }
16055    }
16056    return;
16057  case 'J':
16058    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16059      if (C->getZExtValue() <= 63) {
16060        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16061        break;
16062      }
16063    }
16064    return;
16065  case 'K':
16066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16067      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
16068        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16069        break;
16070      }
16071    }
16072    return;
16073  case 'N':
16074    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16075      if (C->getZExtValue() <= 255) {
16076        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16077        break;
16078      }
16079    }
16080    return;
16081  case 'e': {
16082    // 32-bit signed value
16083    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16084      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16085                                           C->getSExtValue())) {
16086        // Widen to 64 bits here to get it sign extended.
16087        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
16088        break;
16089      }
16090    // FIXME gcc accepts some relocatable values here too, but only in certain
16091    // memory models; it's complicated.
16092    }
16093    return;
16094  }
16095  case 'Z': {
16096    // 32-bit unsigned value
16097    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16098      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16099                                           C->getZExtValue())) {
16100        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16101        break;
16102      }
16103    }
16104    // FIXME gcc accepts some relocatable values here too, but only in certain
16105    // memory models; it's complicated.
16106    return;
16107  }
16108  case 'i': {
16109    // Literal immediates are always ok.
16110    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
16111      // Widen to 64 bits here to get it sign extended.
16112      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
16113      break;
16114    }
16115
16116    // In any sort of PIC mode addresses need to be computed at runtime by
16117    // adding in a register or some sort of table lookup.  These can't
16118    // be used as immediates.
16119    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
16120      return;
16121
16122    // If we are in non-pic codegen mode, we allow the address of a global (with
16123    // an optional displacement) to be used with 'i'.
16124    GlobalAddressSDNode *GA = 0;
16125    int64_t Offset = 0;
16126
16127    // Match either (GA), (GA+C), (GA+C1+C2), etc.
16128    while (1) {
16129      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
16130        Offset += GA->getOffset();
16131        break;
16132      } else if (Op.getOpcode() == ISD::ADD) {
16133        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16134          Offset += C->getZExtValue();
16135          Op = Op.getOperand(0);
16136          continue;
16137        }
16138      } else if (Op.getOpcode() == ISD::SUB) {
16139        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16140          Offset += -C->getZExtValue();
16141          Op = Op.getOperand(0);
16142          continue;
16143        }
16144      }
16145
16146      // Otherwise, this isn't something we can handle, reject it.
16147      return;
16148    }
16149
16150    const GlobalValue *GV = GA->getGlobal();
16151    // If we require an extra load to get this address, as in PIC mode, we
16152    // can't accept it.
16153    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
16154                                                        getTargetMachine())))
16155      return;
16156
16157    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
16158                                        GA->getValueType(0), Offset);
16159    break;
16160  }
16161  }
16162
16163  if (Result.getNode()) {
16164    Ops.push_back(Result);
16165    return;
16166  }
16167  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16168}
16169
16170std::pair<unsigned, const TargetRegisterClass*>
16171X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
16172                                                EVT VT) const {
16173  // First, see if this is a constraint that directly corresponds to an LLVM
16174  // register class.
16175  if (Constraint.size() == 1) {
16176    // GCC Constraint Letters
16177    switch (Constraint[0]) {
16178    default: break;
16179      // TODO: Slight differences here in allocation order and leaving
16180      // RIP in the class. Do they matter any more here than they do
16181      // in the normal allocation?
16182    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
16183      if (Subtarget->is64Bit()) {
16184        if (VT == MVT::i32 || VT == MVT::f32)
16185          return std::make_pair(0U, &X86::GR32RegClass);
16186        if (VT == MVT::i16)
16187          return std::make_pair(0U, &X86::GR16RegClass);
16188        if (VT == MVT::i8 || VT == MVT::i1)
16189          return std::make_pair(0U, &X86::GR8RegClass);
16190        if (VT == MVT::i64 || VT == MVT::f64)
16191          return std::make_pair(0U, &X86::GR64RegClass);
16192        break;
16193      }
16194      // 32-bit fallthrough
16195    case 'Q':   // Q_REGS
16196      if (VT == MVT::i32 || VT == MVT::f32)
16197        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
16198      if (VT == MVT::i16)
16199        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
16200      if (VT == MVT::i8 || VT == MVT::i1)
16201        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
16202      if (VT == MVT::i64)
16203        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
16204      break;
16205    case 'r':   // GENERAL_REGS
16206    case 'l':   // INDEX_REGS
16207      if (VT == MVT::i8 || VT == MVT::i1)
16208        return std::make_pair(0U, &X86::GR8RegClass);
16209      if (VT == MVT::i16)
16210        return std::make_pair(0U, &X86::GR16RegClass);
16211      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
16212        return std::make_pair(0U, &X86::GR32RegClass);
16213      return std::make_pair(0U, &X86::GR64RegClass);
16214    case 'R':   // LEGACY_REGS
16215      if (VT == MVT::i8 || VT == MVT::i1)
16216        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
16217      if (VT == MVT::i16)
16218        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
16219      if (VT == MVT::i32 || !Subtarget->is64Bit())
16220        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
16221      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
16222    case 'f':  // FP Stack registers.
16223      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
16224      // value to the correct fpstack register class.
16225      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
16226        return std::make_pair(0U, &X86::RFP32RegClass);
16227      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
16228        return std::make_pair(0U, &X86::RFP64RegClass);
16229      return std::make_pair(0U, &X86::RFP80RegClass);
16230    case 'y':   // MMX_REGS if MMX allowed.
16231      if (!Subtarget->hasMMX()) break;
16232      return std::make_pair(0U, &X86::VR64RegClass);
16233    case 'Y':   // SSE_REGS if SSE2 allowed
16234      if (!Subtarget->hasSSE2()) break;
16235      // FALL THROUGH.
16236    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
16237      if (!Subtarget->hasSSE1()) break;
16238
16239      switch (VT.getSimpleVT().SimpleTy) {
16240      default: break;
16241      // Scalar SSE types.
16242      case MVT::f32:
16243      case MVT::i32:
16244        return std::make_pair(0U, &X86::FR32RegClass);
16245      case MVT::f64:
16246      case MVT::i64:
16247        return std::make_pair(0U, &X86::FR64RegClass);
16248      // Vector types.
16249      case MVT::v16i8:
16250      case MVT::v8i16:
16251      case MVT::v4i32:
16252      case MVT::v2i64:
16253      case MVT::v4f32:
16254      case MVT::v2f64:
16255        return std::make_pair(0U, &X86::VR128RegClass);
16256      // AVX types.
16257      case MVT::v32i8:
16258      case MVT::v16i16:
16259      case MVT::v8i32:
16260      case MVT::v4i64:
16261      case MVT::v8f32:
16262      case MVT::v4f64:
16263        return std::make_pair(0U, &X86::VR256RegClass);
16264      }
16265      break;
16266    }
16267  }
16268
16269  // Use the default implementation in TargetLowering to convert the register
16270  // constraint into a member of a register class.
16271  std::pair<unsigned, const TargetRegisterClass*> Res;
16272  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
16273
16274  // Not found as a standard register?
16275  if (Res.second == 0) {
16276    // Map st(0) -> st(7) -> ST0
16277    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16278        tolower(Constraint[1]) == 's' &&
16279        tolower(Constraint[2]) == 't' &&
16280        Constraint[3] == '(' &&
16281        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16282        Constraint[5] == ')' &&
16283        Constraint[6] == '}') {
16284
16285      Res.first = X86::ST0+Constraint[4]-'0';
16286      Res.second = &X86::RFP80RegClass;
16287      return Res;
16288    }
16289
16290    // GCC allows "st(0)" to be called just plain "st".
16291    if (StringRef("{st}").equals_lower(Constraint)) {
16292      Res.first = X86::ST0;
16293      Res.second = &X86::RFP80RegClass;
16294      return Res;
16295    }
16296
16297    // flags -> EFLAGS
16298    if (StringRef("{flags}").equals_lower(Constraint)) {
16299      Res.first = X86::EFLAGS;
16300      Res.second = &X86::CCRRegClass;
16301      return Res;
16302    }
16303
16304    // 'A' means EAX + EDX.
16305    if (Constraint == "A") {
16306      Res.first = X86::EAX;
16307      Res.second = &X86::GR32_ADRegClass;
16308      return Res;
16309    }
16310    return Res;
16311  }
16312
16313  // Otherwise, check to see if this is a register class of the wrong value
16314  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16315  // turn into {ax},{dx}.
16316  if (Res.second->hasType(VT))
16317    return Res;   // Correct type already, nothing to do.
16318
16319  // All of the single-register GCC register classes map their values onto
16320  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16321  // really want an 8-bit or 32-bit register, map to the appropriate register
16322  // class and return the appropriate register.
16323  if (Res.second == &X86::GR16RegClass) {
16324    if (VT == MVT::i8) {
16325      unsigned DestReg = 0;
16326      switch (Res.first) {
16327      default: break;
16328      case X86::AX: DestReg = X86::AL; break;
16329      case X86::DX: DestReg = X86::DL; break;
16330      case X86::CX: DestReg = X86::CL; break;
16331      case X86::BX: DestReg = X86::BL; break;
16332      }
16333      if (DestReg) {
16334        Res.first = DestReg;
16335        Res.second = &X86::GR8RegClass;
16336      }
16337    } else if (VT == MVT::i32) {
16338      unsigned DestReg = 0;
16339      switch (Res.first) {
16340      default: break;
16341      case X86::AX: DestReg = X86::EAX; break;
16342      case X86::DX: DestReg = X86::EDX; break;
16343      case X86::CX: DestReg = X86::ECX; break;
16344      case X86::BX: DestReg = X86::EBX; break;
16345      case X86::SI: DestReg = X86::ESI; break;
16346      case X86::DI: DestReg = X86::EDI; break;
16347      case X86::BP: DestReg = X86::EBP; break;
16348      case X86::SP: DestReg = X86::ESP; break;
16349      }
16350      if (DestReg) {
16351        Res.first = DestReg;
16352        Res.second = &X86::GR32RegClass;
16353      }
16354    } else if (VT == MVT::i64) {
16355      unsigned DestReg = 0;
16356      switch (Res.first) {
16357      default: break;
16358      case X86::AX: DestReg = X86::RAX; break;
16359      case X86::DX: DestReg = X86::RDX; break;
16360      case X86::CX: DestReg = X86::RCX; break;
16361      case X86::BX: DestReg = X86::RBX; break;
16362      case X86::SI: DestReg = X86::RSI; break;
16363      case X86::DI: DestReg = X86::RDI; break;
16364      case X86::BP: DestReg = X86::RBP; break;
16365      case X86::SP: DestReg = X86::RSP; break;
16366      }
16367      if (DestReg) {
16368        Res.first = DestReg;
16369        Res.second = &X86::GR64RegClass;
16370      }
16371    }
16372  } else if (Res.second == &X86::FR32RegClass ||
16373             Res.second == &X86::FR64RegClass ||
16374             Res.second == &X86::VR128RegClass) {
16375    // Handle references to XMM physical registers that got mapped into the
16376    // wrong class.  This can happen with constraints like {xmm0} where the
16377    // target independent register mapper will just pick the first match it can
16378    // find, ignoring the required type.
16379
16380    if (VT == MVT::f32 || VT == MVT::i32)
16381      Res.second = &X86::FR32RegClass;
16382    else if (VT == MVT::f64 || VT == MVT::i64)
16383      Res.second = &X86::FR64RegClass;
16384    else if (X86::VR128RegClass.hasType(VT))
16385      Res.second = &X86::VR128RegClass;
16386    else if (X86::VR256RegClass.hasType(VT))
16387      Res.second = &X86::VR256RegClass;
16388  }
16389
16390  return Res;
16391}
16392