X86ISelLowering.cpp revision 9eca5e814da3490ae889a75c93c0191f510b9f1c
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/ADT/VectorExtras.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37// FIXME: temporary.
38static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
39                                  cl::desc("Enable fastcc on X86"));
40X86TargetLowering::X86TargetLowering(TargetMachine &TM)
41  : TargetLowering(TM) {
42  Subtarget = &TM.getSubtarget<X86Subtarget>();
43  X86ScalarSSE = Subtarget->hasSSE2();
44  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
45
46  // Set up the TargetLowering object.
47
48  // X86 is weird, it always uses i8 for shift amounts and setcc results.
49  setShiftAmountType(MVT::i8);
50  setSetCCResultType(MVT::i8);
51  setSetCCResultContents(ZeroOrOneSetCCResult);
52  setSchedulingPreference(SchedulingForRegPressure);
53  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
54  setStackPointerRegisterToSaveRestore(X86StackPtr);
55
56  if (!Subtarget->isTargetDarwin())
57    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
58    setUseUnderscoreSetJmpLongJmp(true);
59
60  // Add legal addressing mode scale values.
61  addLegalAddressScale(8);
62  addLegalAddressScale(4);
63  addLegalAddressScale(2);
64  // Enter the ones which require both scale + index last. These are more
65  // expensive.
66  addLegalAddressScale(9);
67  addLegalAddressScale(5);
68  addLegalAddressScale(3);
69
70  // Set up the register classes.
71  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
72  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
73  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
74  if (Subtarget->is64Bit())
75    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
76
77  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
78
79  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
80  // operation.
81  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
82  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
83  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
84
85  if (Subtarget->is64Bit()) {
86    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
87    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
88  } else {
89    if (X86ScalarSSE)
90      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
91      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
92    else
93      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
94  }
95
96  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
97  // this operation.
98  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
99  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
100  // SSE has no i16 to fp conversion, only i32
101  if (X86ScalarSSE)
102    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
103  else {
104    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
105    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
106  }
107
108  if (!Subtarget->is64Bit()) {
109    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
110    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
111    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
112  }
113
114  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
115  // this operation.
116  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
117  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
118
119  if (X86ScalarSSE) {
120    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
121  } else {
122    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
123    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
124  }
125
126  // Handle FP_TO_UINT by promoting the destination to a larger signed
127  // conversion.
128  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
129  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
130  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
131
132  if (Subtarget->is64Bit()) {
133    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
134    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
135  } else {
136    if (X86ScalarSSE && !Subtarget->hasSSE3())
137      // Expand FP_TO_UINT into a select.
138      // FIXME: We would like to use a Custom expander here eventually to do
139      // the optimal thing for SSE vs. the default expansion in the legalizer.
140      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
141    else
142      // With SSE3 we can use fisttpll to convert to a signed i64.
143      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
144  }
145
146  setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
147  setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
148
149  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
150  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
151  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
152  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
153  if (Subtarget->is64Bit())
154    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
155  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
156  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
157  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
158  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
159  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
160
161  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
162  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
163  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
164  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
165  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
166  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
167  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
168  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
169  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
170  if (Subtarget->is64Bit()) {
171    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
172    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
173    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
174  }
175
176  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
177  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
178
179  // These should be promoted to a larger select which is supported.
180  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
181  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
182  // X86 wants to expand cmov itself.
183  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
184  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
185  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
186  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
187  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
188  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
189  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
190  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
191  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
192  if (Subtarget->is64Bit()) {
193    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
194    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
195  }
196  // X86 ret instruction may pop stack.
197  setOperationAction(ISD::RET             , MVT::Other, Custom);
198  // Darwin ABI issue.
199  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
200  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
201  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
202  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
203  if (Subtarget->is64Bit()) {
204    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
205    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
206    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
207    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
208  }
209  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
210  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
211  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
212  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
213  // X86 wants to expand memset / memcpy itself.
214  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
215  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
216
217  // We don't have line number support yet.
218  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
219  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
220  // FIXME - use subtarget debug flags
221  if (!Subtarget->isTargetDarwin())
222    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
223
224  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
225  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
226
227  // Use the default implementation.
228  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
229  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
230  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
231  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
232  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
233  if (Subtarget->is64Bit())
234    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
235  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
236
237  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
238  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
239
240  if (X86ScalarSSE) {
241    // Set up the FP register classes.
242    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
243    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
244
245    // Use ANDPD to simulate FABS.
246    setOperationAction(ISD::FABS , MVT::f64, Custom);
247    setOperationAction(ISD::FABS , MVT::f32, Custom);
248
249    // Use XORP to simulate FNEG.
250    setOperationAction(ISD::FNEG , MVT::f64, Custom);
251    setOperationAction(ISD::FNEG , MVT::f32, Custom);
252
253    // We don't support sin/cos/fmod
254    setOperationAction(ISD::FSIN , MVT::f64, Expand);
255    setOperationAction(ISD::FCOS , MVT::f64, Expand);
256    setOperationAction(ISD::FREM , MVT::f64, Expand);
257    setOperationAction(ISD::FSIN , MVT::f32, Expand);
258    setOperationAction(ISD::FCOS , MVT::f32, Expand);
259    setOperationAction(ISD::FREM , MVT::f32, Expand);
260
261    // Expand FP immediates into loads from the stack, except for the special
262    // cases we handle.
263    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
264    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
265    addLegalFPImmediate(+0.0); // xorps / xorpd
266  } else {
267    // Set up the FP register classes.
268    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
269
270    setOperationAction(ISD::UNDEF, MVT::f64, Expand);
271
272    if (!UnsafeFPMath) {
273      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
274      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
275    }
276
277    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
278    addLegalFPImmediate(+0.0); // FLD0
279    addLegalFPImmediate(+1.0); // FLD1
280    addLegalFPImmediate(-0.0); // FLD0/FCHS
281    addLegalFPImmediate(-1.0); // FLD1/FCHS
282  }
283
284  // First set operation action for all vector types to expand. Then we
285  // will selectively turn on ones that can be effectively codegen'd.
286  for (unsigned VT = (unsigned)MVT::Vector + 1;
287       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
288    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
289    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
290    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
291    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
292    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
293    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
294    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
295  }
296
297  if (Subtarget->hasMMX()) {
298    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
299    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
300    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
301
302    // FIXME: add MMX packed arithmetics
303    setOperationAction(ISD::BUILD_VECTOR,     MVT::v8i8,  Expand);
304    setOperationAction(ISD::BUILD_VECTOR,     MVT::v4i16, Expand);
305    setOperationAction(ISD::BUILD_VECTOR,     MVT::v2i32, Expand);
306  }
307
308  if (Subtarget->hasSSE1()) {
309    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
310
311    setOperationAction(ISD::AND,                MVT::v4f32, Legal);
312    setOperationAction(ISD::OR,                 MVT::v4f32, Legal);
313    setOperationAction(ISD::XOR,                MVT::v4f32, Legal);
314    setOperationAction(ISD::ADD,                MVT::v4f32, Legal);
315    setOperationAction(ISD::SUB,                MVT::v4f32, Legal);
316    setOperationAction(ISD::MUL,                MVT::v4f32, Legal);
317    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
318    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
319    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
320    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
321    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
322  }
323
324  if (Subtarget->hasSSE2()) {
325    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
326    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
327    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
328    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
329    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
330
331    setOperationAction(ISD::ADD,                MVT::v2f64, Legal);
332    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
333    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
334    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
335    setOperationAction(ISD::SUB,                MVT::v2f64, Legal);
336    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
337    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
338    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
339    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
340    setOperationAction(ISD::MUL,                MVT::v2f64, Legal);
341
342    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
343    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
344    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
345    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
346    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
347    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
348
349    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
350    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
351      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
352      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
353      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
354    }
355    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
356    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
357    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
358    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
359    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
360    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
361
362    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
363    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
364      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
365      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
366      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
367      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
368      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
369      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
370      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
371      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
372      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
373      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
374    }
375
376    // Custom lower v2i64 and v2f64 selects.
377    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
378    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
379    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
380    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
381  }
382
383  // We want to custom lower some of our intrinsics.
384  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
385
386  // We have target-specific dag combine patterns for the following nodes:
387  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
388  setTargetDAGCombine(ISD::SELECT);
389
390  computeRegisterProperties();
391
392  // FIXME: These should be based on subtarget info. Plus, the values should
393  // be smaller when we are in optimizing for size mode.
394  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
395  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
396  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
397  allowUnalignedMemoryAccesses = true; // x86 supports it!
398}
399
400//===----------------------------------------------------------------------===//
401//                    C Calling Convention implementation
402//===----------------------------------------------------------------------===//
403
404/// AddLiveIn - This helper function adds the specified physical register to the
405/// MachineFunction as a live in value.  It also creates a corresponding virtual
406/// register for it.
407static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
408                          TargetRegisterClass *RC) {
409  assert(RC->contains(PReg) && "Not the correct regclass!");
410  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
411  MF.addLiveIn(PReg, VReg);
412  return VReg;
413}
414
415/// HowToPassCCCArgument - Returns how an formal argument of the specified type
416/// should be passed. If it is through stack, returns the size of the stack
417/// slot; if it is through XMM register, returns the number of XMM registers
418/// are needed.
419static void
420HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs,
421                     unsigned &ObjSize, unsigned &ObjXMMRegs) {
422  ObjXMMRegs = 0;
423
424  switch (ObjectVT) {
425  default: assert(0 && "Unhandled argument type!");
426  case MVT::i8:  ObjSize = 1; break;
427  case MVT::i16: ObjSize = 2; break;
428  case MVT::i32: ObjSize = 4; break;
429  case MVT::i64: ObjSize = 8; break;
430  case MVT::f32: ObjSize = 4; break;
431  case MVT::f64: ObjSize = 8; break;
432  case MVT::v16i8:
433  case MVT::v8i16:
434  case MVT::v4i32:
435  case MVT::v2i64:
436  case MVT::v4f32:
437  case MVT::v2f64:
438    if (NumXMMRegs < 4)
439      ObjXMMRegs = 1;
440    else
441      ObjSize = 16;
442    break;
443  }
444}
445
446SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) {
447  unsigned NumArgs = Op.Val->getNumValues() - 1;
448  MachineFunction &MF = DAG.getMachineFunction();
449  MachineFrameInfo *MFI = MF.getFrameInfo();
450  SDOperand Root = Op.getOperand(0);
451  std::vector<SDOperand> ArgValues;
452
453  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
454  // the stack frame looks like this:
455  //
456  // [ESP] -- return address
457  // [ESP + 4] -- first argument (leftmost lexically)
458  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
459  //    ...
460  //
461  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
462  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
463  static const unsigned XMMArgRegs[] = {
464    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
465  };
466  for (unsigned i = 0; i < NumArgs; ++i) {
467    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
468    unsigned ArgIncrement = 4;
469    unsigned ObjSize = 0;
470    unsigned ObjXMMRegs = 0;
471    HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs);
472    if (ObjSize > 4)
473      ArgIncrement = ObjSize;
474
475    SDOperand ArgValue;
476    if (ObjXMMRegs) {
477      // Passed in a XMM register.
478      unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
479                               X86::VR128RegisterClass);
480      ArgValue= DAG.getCopyFromReg(Root, Reg, ObjectVT);
481      ArgValues.push_back(ArgValue);
482      NumXMMRegs += ObjXMMRegs;
483    } else {
484      // XMM arguments have to be aligned on 16-byte boundary.
485      if (ObjSize == 16)
486        ArgOffset = ((ArgOffset + 15) / 16) * 16;
487      // Create the frame index object for this incoming parameter...
488      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
489      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
490      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
491      ArgValues.push_back(ArgValue);
492      ArgOffset += ArgIncrement;   // Move on to the next argument...
493    }
494  }
495
496  ArgValues.push_back(Root);
497
498  // If the function takes variable number of arguments, make a frame index for
499  // the start of the first vararg value... for expansion of llvm.va_start.
500  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
501  if (isVarArg)
502    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
503  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
504  ReturnAddrIndex = 0;            // No return address slot generated yet.
505  BytesToPopOnReturn = 0;         // Callee pops nothing.
506  BytesCallerReserves = ArgOffset;
507
508  // If this is a struct return on Darwin/X86, the callee pops the hidden struct
509  // pointer.
510  if (MF.getFunction()->getCallingConv() == CallingConv::CSRet &&
511      Subtarget->isTargetDarwin())
512    BytesToPopOnReturn = 4;
513
514  // Return the new list of results.
515  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
516                                     Op.Val->value_end());
517  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
518}
519
520
521SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG) {
522  SDOperand Chain     = Op.getOperand(0);
523  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
524  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
525  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
526  SDOperand Callee    = Op.getOperand(4);
527  MVT::ValueType RetVT= Op.Val->getValueType(0);
528  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
529
530  // Keep track of the number of XMM regs passed so far.
531  unsigned NumXMMRegs = 0;
532  static const unsigned XMMArgRegs[] = {
533    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
534  };
535
536  // Count how many bytes are to be pushed on the stack.
537  unsigned NumBytes = 0;
538  for (unsigned i = 0; i != NumOps; ++i) {
539    SDOperand Arg = Op.getOperand(5+2*i);
540
541    switch (Arg.getValueType()) {
542    default: assert(0 && "Unexpected ValueType for argument!");
543    case MVT::i8:
544    case MVT::i16:
545    case MVT::i32:
546    case MVT::f32:
547      NumBytes += 4;
548      break;
549    case MVT::i64:
550    case MVT::f64:
551      NumBytes += 8;
552      break;
553    case MVT::v16i8:
554    case MVT::v8i16:
555    case MVT::v4i32:
556    case MVT::v2i64:
557    case MVT::v4f32:
558    case MVT::v2f64:
559      if (NumXMMRegs < 4)
560        ++NumXMMRegs;
561      else {
562        // XMM arguments have to be aligned on 16-byte boundary.
563        NumBytes = ((NumBytes + 15) / 16) * 16;
564        NumBytes += 16;
565      }
566      break;
567    }
568  }
569
570  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
571
572  // Arguments go on the stack in reverse order, as specified by the ABI.
573  unsigned ArgOffset = 0;
574  NumXMMRegs = 0;
575  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
576  std::vector<SDOperand> MemOpChains;
577  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
578  for (unsigned i = 0; i != NumOps; ++i) {
579    SDOperand Arg = Op.getOperand(5+2*i);
580
581    switch (Arg.getValueType()) {
582    default: assert(0 && "Unexpected ValueType for argument!");
583    case MVT::i8:
584    case MVT::i16: {
585      // Promote the integer to 32 bits.  If the input type is signed use a
586      // sign extend, otherwise use a zero extend.
587      unsigned ExtOp =
588        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
589        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
590      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
591    }
592    // Fallthrough
593
594    case MVT::i32:
595    case MVT::f32: {
596      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
597      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
598      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
599      ArgOffset += 4;
600      break;
601    }
602    case MVT::i64:
603    case MVT::f64: {
604      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
605      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
606      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
607      ArgOffset += 8;
608      break;
609    }
610    case MVT::v16i8:
611    case MVT::v8i16:
612    case MVT::v4i32:
613    case MVT::v2i64:
614    case MVT::v4f32:
615    case MVT::v2f64:
616      if (NumXMMRegs < 4) {
617        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
618        NumXMMRegs++;
619      } else {
620        // XMM arguments have to be aligned on 16-byte boundary.
621        ArgOffset = ((ArgOffset + 15) / 16) * 16;
622        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
623        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
624        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
625        ArgOffset += 16;
626      }
627    }
628  }
629
630  if (!MemOpChains.empty())
631    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
632                        &MemOpChains[0], MemOpChains.size());
633
634  // Build a sequence of copy-to-reg nodes chained together with token chain
635  // and flag operands which copy the outgoing args into registers.
636  SDOperand InFlag;
637  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
638    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
639                             InFlag);
640    InFlag = Chain.getValue(1);
641  }
642
643  // If the callee is a GlobalAddress node (quite common, every direct call is)
644  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
645  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
646    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
647  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
648    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
649
650  std::vector<MVT::ValueType> NodeTys;
651  NodeTys.push_back(MVT::Other);   // Returns a chain
652  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
653  std::vector<SDOperand> Ops;
654  Ops.push_back(Chain);
655  Ops.push_back(Callee);
656
657  // Add argument registers to the end of the list so that they are known live
658  // into the call.
659  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
660    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
661                                  RegsToPass[i].second.getValueType()));
662
663  if (InFlag.Val)
664    Ops.push_back(InFlag);
665
666  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
667                      NodeTys, &Ops[0], Ops.size());
668  InFlag = Chain.getValue(1);
669
670  // Create the CALLSEQ_END node.
671  unsigned NumBytesForCalleeToPush = 0;
672
673  // If this is is a call to a struct-return function on Darwin/X86, the callee
674  // pops the hidden struct pointer, so we have to push it back.
675  if (CallingConv == CallingConv::CSRet && Subtarget->isTargetDarwin())
676    NumBytesForCalleeToPush = 4;
677
678  NodeTys.clear();
679  NodeTys.push_back(MVT::Other);   // Returns a chain
680  if (RetVT != MVT::Other)
681    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
682  Ops.clear();
683  Ops.push_back(Chain);
684  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
685  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
686  Ops.push_back(InFlag);
687  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
688  if (RetVT != MVT::Other)
689    InFlag = Chain.getValue(1);
690
691  std::vector<SDOperand> ResultVals;
692  NodeTys.clear();
693  switch (RetVT) {
694  default: assert(0 && "Unknown value type to return!");
695  case MVT::Other: break;
696  case MVT::i8:
697    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
698    ResultVals.push_back(Chain.getValue(0));
699    NodeTys.push_back(MVT::i8);
700    break;
701  case MVT::i16:
702    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
703    ResultVals.push_back(Chain.getValue(0));
704    NodeTys.push_back(MVT::i16);
705    break;
706  case MVT::i32:
707    if (Op.Val->getValueType(1) == MVT::i32) {
708      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
709      ResultVals.push_back(Chain.getValue(0));
710      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
711                                 Chain.getValue(2)).getValue(1);
712      ResultVals.push_back(Chain.getValue(0));
713      NodeTys.push_back(MVT::i32);
714    } else {
715      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
716      ResultVals.push_back(Chain.getValue(0));
717    }
718    NodeTys.push_back(MVT::i32);
719    break;
720  case MVT::v16i8:
721  case MVT::v8i16:
722  case MVT::v4i32:
723  case MVT::v2i64:
724  case MVT::v4f32:
725  case MVT::v2f64:
726    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
727    ResultVals.push_back(Chain.getValue(0));
728    NodeTys.push_back(RetVT);
729    break;
730  case MVT::f32:
731  case MVT::f64: {
732    std::vector<MVT::ValueType> Tys;
733    Tys.push_back(MVT::f64);
734    Tys.push_back(MVT::Other);
735    Tys.push_back(MVT::Flag);
736    std::vector<SDOperand> Ops;
737    Ops.push_back(Chain);
738    Ops.push_back(InFlag);
739    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
740                                   &Ops[0], Ops.size());
741    Chain  = RetVal.getValue(1);
742    InFlag = RetVal.getValue(2);
743    if (X86ScalarSSE) {
744      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
745      // shouldn't be necessary except that RFP cannot be live across
746      // multiple blocks. When stackifier is fixed, they can be uncoupled.
747      MachineFunction &MF = DAG.getMachineFunction();
748      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
749      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
750      Tys.clear();
751      Tys.push_back(MVT::Other);
752      Ops.clear();
753      Ops.push_back(Chain);
754      Ops.push_back(RetVal);
755      Ops.push_back(StackSlot);
756      Ops.push_back(DAG.getValueType(RetVT));
757      Ops.push_back(InFlag);
758      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
759      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
760      Chain = RetVal.getValue(1);
761    }
762
763    if (RetVT == MVT::f32 && !X86ScalarSSE)
764      // FIXME: we would really like to remember that this FP_ROUND
765      // operation is okay to eliminate if we allow excess FP precision.
766      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
767    ResultVals.push_back(RetVal);
768    NodeTys.push_back(RetVT);
769    break;
770  }
771  }
772
773  // If the function returns void, just return the chain.
774  if (ResultVals.empty())
775    return Chain;
776
777  // Otherwise, merge everything together with a MERGE_VALUES node.
778  NodeTys.push_back(MVT::Other);
779  ResultVals.push_back(Chain);
780  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
781                              &ResultVals[0], ResultVals.size());
782  return Res.getValue(Op.ResNo);
783}
784
785
786//===----------------------------------------------------------------------===//
787//                 X86-64 C Calling Convention implementation
788//===----------------------------------------------------------------------===//
789
790/// HowToPassX86_64CCCArgument - Returns how an formal argument of the specified
791/// type should be passed. If it is through stack, returns the size of the stack
792/// slot; if it is through integer or XMM register, returns the number of
793/// integer or XMM registers are needed.
794static void
795HowToPassX86_64CCCArgument(MVT::ValueType ObjectVT,
796                           unsigned NumIntRegs, unsigned NumXMMRegs,
797                           unsigned &ObjSize, unsigned &ObjIntRegs,
798                           unsigned &ObjXMMRegs) {
799  ObjSize = 0;
800  ObjIntRegs = 0;
801  ObjXMMRegs = 0;
802
803  switch (ObjectVT) {
804  default: assert(0 && "Unhandled argument type!");
805  case MVT::i8:
806  case MVT::i16:
807  case MVT::i32:
808  case MVT::i64:
809    if (NumIntRegs < 6)
810      ObjIntRegs = 1;
811    else {
812      switch (ObjectVT) {
813      default: break;
814      case MVT::i8:  ObjSize = 1; break;
815      case MVT::i16: ObjSize = 2; break;
816      case MVT::i32: ObjSize = 4; break;
817      case MVT::i64: ObjSize = 8; break;
818      }
819    }
820    break;
821  case MVT::f32:
822  case MVT::f64:
823  case MVT::v16i8:
824  case MVT::v8i16:
825  case MVT::v4i32:
826  case MVT::v2i64:
827  case MVT::v4f32:
828  case MVT::v2f64:
829    if (NumXMMRegs < 8)
830      ObjXMMRegs = 1;
831    else {
832      switch (ObjectVT) {
833      default: break;
834      case MVT::f32:  ObjSize = 4; break;
835      case MVT::f64:  ObjSize = 8; break;
836      case MVT::v16i8:
837      case MVT::v8i16:
838      case MVT::v4i32:
839      case MVT::v2i64:
840      case MVT::v4f32:
841      case MVT::v2f64: ObjSize = 16; break;
842    }
843    break;
844  }
845  }
846}
847
848SDOperand
849X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
850  unsigned NumArgs = Op.Val->getNumValues() - 1;
851  MachineFunction &MF = DAG.getMachineFunction();
852  MachineFrameInfo *MFI = MF.getFrameInfo();
853  SDOperand Root = Op.getOperand(0);
854  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
855  std::vector<SDOperand> ArgValues;
856
857  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
858  // the stack frame looks like this:
859  //
860  // [RSP] -- return address
861  // [RSP + 8] -- first nonreg argument (leftmost lexically)
862  // [RSP +16] -- second nonreg argument, if 1st argument is <= 8 bytes in size
863  //    ...
864  //
865  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
866  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
867  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
868
869  static const unsigned GPR8ArgRegs[] = {
870    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
871  };
872  static const unsigned GPR16ArgRegs[] = {
873    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
874  };
875  static const unsigned GPR32ArgRegs[] = {
876    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
877  };
878  static const unsigned GPR64ArgRegs[] = {
879    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
880  };
881  static const unsigned XMMArgRegs[] = {
882    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
883    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
884  };
885
886  for (unsigned i = 0; i < NumArgs; ++i) {
887    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
888    unsigned ArgIncrement = 8;
889    unsigned ObjSize = 0;
890    unsigned ObjIntRegs = 0;
891    unsigned ObjXMMRegs = 0;
892
893    // FIXME: __int128 and long double support?
894    HowToPassX86_64CCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
895                               ObjSize, ObjIntRegs, ObjXMMRegs);
896    if (ObjSize > 8)
897      ArgIncrement = ObjSize;
898
899    unsigned Reg = 0;
900    SDOperand ArgValue;
901    if (ObjIntRegs || ObjXMMRegs) {
902      switch (ObjectVT) {
903      default: assert(0 && "Unhandled argument type!");
904      case MVT::i8:
905      case MVT::i16:
906      case MVT::i32:
907      case MVT::i64: {
908        TargetRegisterClass *RC = NULL;
909        switch (ObjectVT) {
910        default: break;
911        case MVT::i8:
912          RC = X86::GR8RegisterClass;
913          Reg = GPR8ArgRegs[NumIntRegs];
914          break;
915        case MVT::i16:
916          RC = X86::GR16RegisterClass;
917          Reg = GPR16ArgRegs[NumIntRegs];
918          break;
919        case MVT::i32:
920          RC = X86::GR32RegisterClass;
921          Reg = GPR32ArgRegs[NumIntRegs];
922          break;
923        case MVT::i64:
924          RC = X86::GR64RegisterClass;
925          Reg = GPR64ArgRegs[NumIntRegs];
926          break;
927        }
928        Reg = AddLiveIn(MF, Reg, RC);
929        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
930        break;
931      }
932      case MVT::f32:
933      case MVT::f64:
934      case MVT::v16i8:
935      case MVT::v8i16:
936      case MVT::v4i32:
937      case MVT::v2i64:
938      case MVT::v4f32:
939      case MVT::v2f64: {
940        TargetRegisterClass *RC= (ObjectVT == MVT::f32) ?
941          X86::FR32RegisterClass : ((ObjectVT == MVT::f64) ?
942                              X86::FR64RegisterClass : X86::VR128RegisterClass);
943        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], RC);
944        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
945        break;
946      }
947      }
948      NumIntRegs += ObjIntRegs;
949      NumXMMRegs += ObjXMMRegs;
950    } else if (ObjSize) {
951      // XMM arguments have to be aligned on 16-byte boundary.
952      if (ObjSize == 16)
953        ArgOffset = ((ArgOffset + 15) / 16) * 16;
954      // Create the SelectionDAG nodes corresponding to a load from this
955      // parameter.
956      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
957      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
958      ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
959      ArgOffset += ArgIncrement;   // Move on to the next argument.
960    }
961
962    ArgValues.push_back(ArgValue);
963  }
964
965  // If the function takes variable number of arguments, make a frame index for
966  // the start of the first vararg value... for expansion of llvm.va_start.
967  if (isVarArg) {
968    // For X86-64, if there are vararg parameters that are passed via
969    // registers, then we must store them to their spots on the stack so they
970    // may be loaded by deferencing the result of va_next.
971    VarArgsGPOffset = NumIntRegs * 8;
972    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
973    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
974    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
975
976    // Store the integer parameter registers.
977    std::vector<SDOperand> MemOps;
978    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
979    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
980                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
981    for (; NumIntRegs != 6; ++NumIntRegs) {
982      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
983                                X86::GR64RegisterClass);
984      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
985      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
986      MemOps.push_back(Store);
987      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
988                        DAG.getConstant(8, getPointerTy()));
989    }
990
991    // Now store the XMM (fp + vector) parameter registers.
992    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
993                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
994    for (; NumXMMRegs != 8; ++NumXMMRegs) {
995      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
996                                X86::VR128RegisterClass);
997      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
998      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
999      MemOps.push_back(Store);
1000      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1001                        DAG.getConstant(16, getPointerTy()));
1002    }
1003    if (!MemOps.empty())
1004        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1005                           &MemOps[0], MemOps.size());
1006  }
1007
1008  ArgValues.push_back(Root);
1009
1010  ReturnAddrIndex = 0;     // No return address slot generated yet.
1011  BytesToPopOnReturn = 0;  // Callee pops nothing.
1012  BytesCallerReserves = ArgOffset;
1013
1014  // Return the new list of results.
1015  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1016                                     Op.Val->value_end());
1017  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1018}
1019
1020SDOperand
1021X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG) {
1022  SDOperand Chain     = Op.getOperand(0);
1023  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1024  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1025  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1026  SDOperand Callee    = Op.getOperand(4);
1027  MVT::ValueType RetVT= Op.Val->getValueType(0);
1028  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1029
1030  // Count how many bytes are to be pushed on the stack.
1031  unsigned NumBytes = 0;
1032  unsigned NumIntRegs = 0;  // Int regs used for parameter passing.
1033  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1034
1035  static const unsigned GPR8ArgRegs[] = {
1036    X86::DIL, X86::SIL, X86::DL,  X86::CL,  X86::R8B, X86::R9B
1037  };
1038  static const unsigned GPR16ArgRegs[] = {
1039    X86::DI,  X86::SI,  X86::DX,  X86::CX,  X86::R8W, X86::R9W
1040  };
1041  static const unsigned GPR32ArgRegs[] = {
1042    X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
1043  };
1044  static const unsigned GPR64ArgRegs[] = {
1045    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1046  };
1047  static const unsigned XMMArgRegs[] = {
1048    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1049    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1050  };
1051
1052  for (unsigned i = 0; i != NumOps; ++i) {
1053    SDOperand Arg = Op.getOperand(5+2*i);
1054    MVT::ValueType ArgVT = Arg.getValueType();
1055
1056    switch (ArgVT) {
1057    default: assert(0 && "Unknown value type!");
1058    case MVT::i8:
1059    case MVT::i16:
1060    case MVT::i32:
1061    case MVT::i64:
1062      if (NumIntRegs < 6)
1063        ++NumIntRegs;
1064      else
1065        NumBytes += 8;
1066      break;
1067    case MVT::f32:
1068    case MVT::f64:
1069    case MVT::v16i8:
1070    case MVT::v8i16:
1071    case MVT::v4i32:
1072    case MVT::v2i64:
1073    case MVT::v4f32:
1074    case MVT::v2f64:
1075      if (NumXMMRegs < 8)
1076        NumXMMRegs++;
1077      else if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1078        NumBytes += 8;
1079      else {
1080        // XMM arguments have to be aligned on 16-byte boundary.
1081        NumBytes = ((NumBytes + 15) / 16) * 16;
1082        NumBytes += 16;
1083      }
1084      break;
1085    }
1086  }
1087
1088  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1089
1090  // Arguments go on the stack in reverse order, as specified by the ABI.
1091  unsigned ArgOffset = 0;
1092  NumIntRegs = 0;
1093  NumXMMRegs = 0;
1094  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1095  std::vector<SDOperand> MemOpChains;
1096  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1097  for (unsigned i = 0; i != NumOps; ++i) {
1098    SDOperand Arg = Op.getOperand(5+2*i);
1099    MVT::ValueType ArgVT = Arg.getValueType();
1100
1101    switch (ArgVT) {
1102    default: assert(0 && "Unexpected ValueType for argument!");
1103    case MVT::i8:
1104    case MVT::i16:
1105    case MVT::i32:
1106    case MVT::i64:
1107      if (NumIntRegs < 6) {
1108        unsigned Reg = 0;
1109        switch (ArgVT) {
1110        default: break;
1111        case MVT::i8:  Reg = GPR8ArgRegs[NumIntRegs];  break;
1112        case MVT::i16: Reg = GPR16ArgRegs[NumIntRegs]; break;
1113        case MVT::i32: Reg = GPR32ArgRegs[NumIntRegs]; break;
1114        case MVT::i64: Reg = GPR64ArgRegs[NumIntRegs]; break;
1115        }
1116        RegsToPass.push_back(std::make_pair(Reg, Arg));
1117        ++NumIntRegs;
1118      } else {
1119        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1120        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1121        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1122        ArgOffset += 8;
1123      }
1124      break;
1125    case MVT::f32:
1126    case MVT::f64:
1127    case MVT::v16i8:
1128    case MVT::v8i16:
1129    case MVT::v4i32:
1130    case MVT::v2i64:
1131    case MVT::v4f32:
1132    case MVT::v2f64:
1133      if (NumXMMRegs < 8) {
1134        RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1135        NumXMMRegs++;
1136      } else {
1137        if (ArgVT != MVT::f32 && ArgVT != MVT::f64) {
1138          // XMM arguments have to be aligned on 16-byte boundary.
1139          ArgOffset = ((ArgOffset + 15) / 16) * 16;
1140        }
1141        SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1142        PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1143        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1144        if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
1145          ArgOffset += 8;
1146        else
1147          ArgOffset += 16;
1148      }
1149    }
1150  }
1151
1152  if (!MemOpChains.empty())
1153    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1154                        &MemOpChains[0], MemOpChains.size());
1155
1156  // Build a sequence of copy-to-reg nodes chained together with token chain
1157  // and flag operands which copy the outgoing args into registers.
1158  SDOperand InFlag;
1159  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1160    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1161                             InFlag);
1162    InFlag = Chain.getValue(1);
1163  }
1164
1165  if (isVarArg) {
1166    // From AMD64 ABI document:
1167    // For calls that may call functions that use varargs or stdargs
1168    // (prototype-less calls or calls to functions containing ellipsis (...) in
1169    // the declaration) %al is used as hidden argument to specify the number
1170    // of SSE registers used. The contents of %al do not need to match exactly
1171    // the number of registers, but must be an ubound on the number of SSE
1172    // registers used and is in the range 0 - 8 inclusive.
1173    Chain = DAG.getCopyToReg(Chain, X86::AL,
1174                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1175    InFlag = Chain.getValue(1);
1176  }
1177
1178  // If the callee is a GlobalAddress node (quite common, every direct call is)
1179  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1180  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1181    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1182  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1183    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1184
1185  std::vector<MVT::ValueType> NodeTys;
1186  NodeTys.push_back(MVT::Other);   // Returns a chain
1187  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1188  std::vector<SDOperand> Ops;
1189  Ops.push_back(Chain);
1190  Ops.push_back(Callee);
1191
1192  // Add argument registers to the end of the list so that they are known live
1193  // into the call.
1194  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1195    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1196                                  RegsToPass[i].second.getValueType()));
1197
1198  if (InFlag.Val)
1199    Ops.push_back(InFlag);
1200
1201  // FIXME: Do not generate X86ISD::TAILCALL for now.
1202  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1203                      NodeTys, &Ops[0], Ops.size());
1204  InFlag = Chain.getValue(1);
1205
1206  NodeTys.clear();
1207  NodeTys.push_back(MVT::Other);   // Returns a chain
1208  if (RetVT != MVT::Other)
1209    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
1210  Ops.clear();
1211  Ops.push_back(Chain);
1212  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1213  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1214  Ops.push_back(InFlag);
1215  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1216  if (RetVT != MVT::Other)
1217    InFlag = Chain.getValue(1);
1218
1219  std::vector<SDOperand> ResultVals;
1220  NodeTys.clear();
1221  switch (RetVT) {
1222  default: assert(0 && "Unknown value type to return!");
1223  case MVT::Other: break;
1224  case MVT::i8:
1225    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1226    ResultVals.push_back(Chain.getValue(0));
1227    NodeTys.push_back(MVT::i8);
1228    break;
1229  case MVT::i16:
1230    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1231    ResultVals.push_back(Chain.getValue(0));
1232    NodeTys.push_back(MVT::i16);
1233    break;
1234  case MVT::i32:
1235    Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1236    ResultVals.push_back(Chain.getValue(0));
1237    NodeTys.push_back(MVT::i32);
1238    break;
1239  case MVT::i64:
1240    if (Op.Val->getValueType(1) == MVT::i64) {
1241      // FIXME: __int128 support?
1242      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1243      ResultVals.push_back(Chain.getValue(0));
1244      Chain = DAG.getCopyFromReg(Chain, X86::RDX, MVT::i64,
1245                                 Chain.getValue(2)).getValue(1);
1246      ResultVals.push_back(Chain.getValue(0));
1247      NodeTys.push_back(MVT::i64);
1248    } else {
1249      Chain = DAG.getCopyFromReg(Chain, X86::RAX, MVT::i64, InFlag).getValue(1);
1250      ResultVals.push_back(Chain.getValue(0));
1251    }
1252    NodeTys.push_back(MVT::i64);
1253    break;
1254  case MVT::f32:
1255  case MVT::f64:
1256  case MVT::v16i8:
1257  case MVT::v8i16:
1258  case MVT::v4i32:
1259  case MVT::v2i64:
1260  case MVT::v4f32:
1261  case MVT::v2f64:
1262    // FIXME: long double support?
1263    Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1264    ResultVals.push_back(Chain.getValue(0));
1265    NodeTys.push_back(RetVT);
1266    break;
1267  }
1268
1269  // If the function returns void, just return the chain.
1270  if (ResultVals.empty())
1271    return Chain;
1272
1273  // Otherwise, merge everything together with a MERGE_VALUES node.
1274  NodeTys.push_back(MVT::Other);
1275  ResultVals.push_back(Chain);
1276  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1277                              &ResultVals[0], ResultVals.size());
1278  return Res.getValue(Op.ResNo);
1279}
1280
1281//===----------------------------------------------------------------------===//
1282//                    Fast Calling Convention implementation
1283//===----------------------------------------------------------------------===//
1284//
1285// The X86 'fast' calling convention passes up to two integer arguments in
1286// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
1287// and requires that the callee pop its arguments off the stack (allowing proper
1288// tail calls), and has the same return value conventions as C calling convs.
1289//
1290// This calling convention always arranges for the callee pop value to be 8n+4
1291// bytes, which is needed for tail recursion elimination and stack alignment
1292// reasons.
1293//
1294// Note that this can be enhanced in the future to pass fp vals in registers
1295// (when we have a global fp allocator) and do other tricks.
1296//
1297
1298/// HowToPassFastCCArgument - Returns how an formal argument of the specified
1299/// type should be passed. If it is through stack, returns the size of the stack
1300/// slot; if it is through integer or XMM register, returns the number of
1301/// integer or XMM registers are needed.
1302static void
1303HowToPassFastCCArgument(MVT::ValueType ObjectVT,
1304                        unsigned NumIntRegs, unsigned NumXMMRegs,
1305                        unsigned &ObjSize, unsigned &ObjIntRegs,
1306                        unsigned &ObjXMMRegs) {
1307  ObjSize = 0;
1308  ObjIntRegs = 0;
1309  ObjXMMRegs = 0;
1310
1311  switch (ObjectVT) {
1312  default: assert(0 && "Unhandled argument type!");
1313  case MVT::i8:
1314#if FASTCC_NUM_INT_ARGS_INREGS > 0
1315    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1316      ObjIntRegs = 1;
1317    else
1318#endif
1319      ObjSize = 1;
1320    break;
1321  case MVT::i16:
1322#if FASTCC_NUM_INT_ARGS_INREGS > 0
1323    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1324      ObjIntRegs = 1;
1325    else
1326#endif
1327      ObjSize = 2;
1328    break;
1329  case MVT::i32:
1330#if FASTCC_NUM_INT_ARGS_INREGS > 0
1331    if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS)
1332      ObjIntRegs = 1;
1333    else
1334#endif
1335      ObjSize = 4;
1336    break;
1337  case MVT::i64:
1338#if FASTCC_NUM_INT_ARGS_INREGS > 0
1339    if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) {
1340      ObjIntRegs = 2;
1341    } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) {
1342      ObjIntRegs = 1;
1343      ObjSize = 4;
1344    } else
1345#endif
1346      ObjSize = 8;
1347  case MVT::f32:
1348    ObjSize = 4;
1349    break;
1350  case MVT::f64:
1351    ObjSize = 8;
1352    break;
1353  case MVT::v16i8:
1354  case MVT::v8i16:
1355  case MVT::v4i32:
1356  case MVT::v2i64:
1357  case MVT::v4f32:
1358  case MVT::v2f64:
1359    if (NumXMMRegs < 4)
1360      ObjXMMRegs = 1;
1361    else
1362      ObjSize = 16;
1363    break;
1364  }
1365}
1366
1367SDOperand
1368X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1369  unsigned NumArgs = Op.Val->getNumValues()-1;
1370  MachineFunction &MF = DAG.getMachineFunction();
1371  MachineFrameInfo *MFI = MF.getFrameInfo();
1372  SDOperand Root = Op.getOperand(0);
1373  std::vector<SDOperand> ArgValues;
1374
1375  // Add DAG nodes to load the arguments...  On entry to a function the stack
1376  // frame looks like this:
1377  //
1378  // [ESP] -- return address
1379  // [ESP + 4] -- first nonreg argument (leftmost lexically)
1380  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
1381  //    ...
1382  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1383
1384  // Keep track of the number of integer regs passed so far.  This can be either
1385  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
1386  // used).
1387  unsigned NumIntRegs = 0;
1388  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1389
1390  static const unsigned XMMArgRegs[] = {
1391    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1392  };
1393
1394  for (unsigned i = 0; i < NumArgs; ++i) {
1395    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1396    unsigned ArgIncrement = 4;
1397    unsigned ObjSize = 0;
1398    unsigned ObjIntRegs = 0;
1399    unsigned ObjXMMRegs = 0;
1400
1401    HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs,
1402                            ObjSize, ObjIntRegs, ObjXMMRegs);
1403    if (ObjSize > 4)
1404      ArgIncrement = ObjSize;
1405
1406    unsigned Reg = 0;
1407    SDOperand ArgValue;
1408    if (ObjIntRegs || ObjXMMRegs) {
1409      switch (ObjectVT) {
1410      default: assert(0 && "Unhandled argument type!");
1411      case MVT::i8:
1412        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
1413                        X86::GR8RegisterClass);
1414        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
1415        break;
1416      case MVT::i16:
1417        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
1418                        X86::GR16RegisterClass);
1419        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
1420        break;
1421      case MVT::i32:
1422        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
1423                        X86::GR32RegisterClass);
1424        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1425        break;
1426      case MVT::i64:
1427        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX,
1428                        X86::GR32RegisterClass);
1429        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1430        if (ObjIntRegs == 2) {
1431          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
1432          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
1433          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
1434        }
1435        break;
1436      case MVT::v16i8:
1437      case MVT::v8i16:
1438      case MVT::v4i32:
1439      case MVT::v2i64:
1440      case MVT::v4f32:
1441      case MVT::v2f64:
1442        Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass);
1443        ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT);
1444        break;
1445      }
1446      NumIntRegs += ObjIntRegs;
1447      NumXMMRegs += ObjXMMRegs;
1448    }
1449
1450    if (ObjSize) {
1451      // XMM arguments have to be aligned on 16-byte boundary.
1452      if (ObjSize == 16)
1453        ArgOffset = ((ArgOffset + 15) / 16) * 16;
1454      // Create the SelectionDAG nodes corresponding to a load from this
1455      // parameter.
1456      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1457      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1458      if (ObjectVT == MVT::i64 && ObjIntRegs) {
1459        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
1460                                          NULL, 0);
1461        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
1462      } else
1463        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1464      ArgOffset += ArgIncrement;   // Move on to the next argument.
1465    }
1466
1467    ArgValues.push_back(ArgValue);
1468  }
1469
1470  ArgValues.push_back(Root);
1471
1472  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1473  // arguments and the arguments after the retaddr has been pushed are aligned.
1474  if ((ArgOffset & 7) == 0)
1475    ArgOffset += 4;
1476
1477  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1478  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
1479  ReturnAddrIndex = 0;             // No return address slot generated yet.
1480  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
1481  BytesCallerReserves = 0;
1482
1483  // Finally, inform the code generator which regs we return values in.
1484  switch (getValueType(MF.getFunction()->getReturnType())) {
1485  default: assert(0 && "Unknown type!");
1486  case MVT::isVoid: break;
1487  case MVT::i1:
1488  case MVT::i8:
1489  case MVT::i16:
1490  case MVT::i32:
1491    MF.addLiveOut(X86::EAX);
1492    break;
1493  case MVT::i64:
1494    MF.addLiveOut(X86::EAX);
1495    MF.addLiveOut(X86::EDX);
1496    break;
1497  case MVT::f32:
1498  case MVT::f64:
1499    MF.addLiveOut(X86::ST0);
1500    break;
1501  case MVT::v16i8:
1502  case MVT::v8i16:
1503  case MVT::v4i32:
1504  case MVT::v2i64:
1505  case MVT::v4f32:
1506  case MVT::v2f64:
1507    MF.addLiveOut(X86::XMM0);
1508    break;
1509  }
1510
1511  // Return the new list of results.
1512  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1513                                     Op.Val->value_end());
1514  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1515}
1516
1517SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1518                                               bool isFastCall) {
1519  SDOperand Chain     = Op.getOperand(0);
1520  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1521  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1522  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1523  SDOperand Callee    = Op.getOperand(4);
1524  MVT::ValueType RetVT= Op.Val->getValueType(0);
1525  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1526
1527  // Count how many bytes are to be pushed on the stack.
1528  unsigned NumBytes = 0;
1529
1530  // Keep track of the number of integer regs passed so far.  This can be either
1531  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
1532  // used).
1533  unsigned NumIntRegs = 0;
1534  unsigned NumXMMRegs = 0;  // XMM regs used for parameter passing.
1535
1536  static const unsigned GPRArgRegs[][2] = {
1537    { X86::AL,  X86::DL },
1538    { X86::AX,  X86::DX },
1539    { X86::EAX, X86::EDX }
1540  };
1541  static const unsigned FastCallGPRArgRegs[][2] = {
1542    { X86::CL,  X86::DL },
1543    { X86::CX,  X86::DX },
1544    { X86::ECX, X86::EDX }
1545  };
1546  static const unsigned XMMArgRegs[] = {
1547    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1548  };
1549
1550  for (unsigned i = 0; i != NumOps; ++i) {
1551    SDOperand Arg = Op.getOperand(5+2*i);
1552
1553    switch (Arg.getValueType()) {
1554    default: assert(0 && "Unknown value type!");
1555    case MVT::i8:
1556    case MVT::i16:
1557    case MVT::i32: {
1558     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1559     if (NumIntRegs < MaxNumIntRegs) {
1560       ++NumIntRegs;
1561       break;
1562     }
1563     } // Fall through
1564    case MVT::f32:
1565      NumBytes += 4;
1566      break;
1567    case MVT::f64:
1568      NumBytes += 8;
1569      break;
1570    case MVT::v16i8:
1571    case MVT::v8i16:
1572    case MVT::v4i32:
1573    case MVT::v2i64:
1574    case MVT::v4f32:
1575    case MVT::v2f64:
1576     if (isFastCall) {
1577      assert(0 && "Unknown value type!");
1578     } else {
1579       if (NumXMMRegs < 4)
1580         NumXMMRegs++;
1581       else {
1582         // XMM arguments have to be aligned on 16-byte boundary.
1583         NumBytes = ((NumBytes + 15) / 16) * 16;
1584         NumBytes += 16;
1585       }
1586     }
1587     break;
1588    }
1589  }
1590
1591  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1592  // arguments and the arguments after the retaddr has been pushed are aligned.
1593  if ((NumBytes & 7) == 0)
1594    NumBytes += 4;
1595
1596  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1597
1598  // Arguments go on the stack in reverse order, as specified by the ABI.
1599  unsigned ArgOffset = 0;
1600  NumIntRegs = 0;
1601  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1602  std::vector<SDOperand> MemOpChains;
1603  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1604  for (unsigned i = 0; i != NumOps; ++i) {
1605    SDOperand Arg = Op.getOperand(5+2*i);
1606
1607    switch (Arg.getValueType()) {
1608    default: assert(0 && "Unexpected ValueType for argument!");
1609    case MVT::i8:
1610    case MVT::i16:
1611    case MVT::i32: {
1612     unsigned MaxNumIntRegs = (isFastCall ? 2 : FASTCC_NUM_INT_ARGS_INREGS);
1613     if (NumIntRegs < MaxNumIntRegs) {
1614       RegsToPass.push_back(
1615         std::make_pair(GPRArgRegs[Arg.getValueType()-MVT::i8][NumIntRegs],
1616                        Arg));
1617       ++NumIntRegs;
1618       break;
1619     }
1620     } // Fall through
1621    case MVT::f32: {
1622      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1623      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1624      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1625      ArgOffset += 4;
1626      break;
1627    }
1628    case MVT::f64: {
1629      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1630      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1631      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1632      ArgOffset += 8;
1633      break;
1634    }
1635    case MVT::v16i8:
1636    case MVT::v8i16:
1637    case MVT::v4i32:
1638    case MVT::v2i64:
1639    case MVT::v4f32:
1640    case MVT::v2f64:
1641     if (isFastCall) {
1642       assert(0 && "Unexpected ValueType for argument!");
1643     } else {
1644       if (NumXMMRegs < 4) {
1645         RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg));
1646         NumXMMRegs++;
1647       } else {
1648         // XMM arguments have to be aligned on 16-byte boundary.
1649         ArgOffset = ((ArgOffset + 15) / 16) * 16;
1650         SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1651         PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1652         MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1653         ArgOffset += 16;
1654       }
1655     }
1656     break;
1657    }
1658  }
1659
1660  if (!MemOpChains.empty())
1661    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1662                        &MemOpChains[0], MemOpChains.size());
1663
1664  // Build a sequence of copy-to-reg nodes chained together with token chain
1665  // and flag operands which copy the outgoing args into registers.
1666  SDOperand InFlag;
1667  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1668    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1669                             InFlag);
1670    InFlag = Chain.getValue(1);
1671  }
1672
1673  // If the callee is a GlobalAddress node (quite common, every direct call is)
1674  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1675  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1676    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1677  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1678    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1679
1680  std::vector<MVT::ValueType> NodeTys;
1681  NodeTys.push_back(MVT::Other);   // Returns a chain
1682  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1683  std::vector<SDOperand> Ops;
1684  Ops.push_back(Chain);
1685  Ops.push_back(Callee);
1686
1687  // Add argument registers to the end of the list so that they are known live
1688  // into the call.
1689  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1690    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1691                                  RegsToPass[i].second.getValueType()));
1692
1693  if (InFlag.Val)
1694    Ops.push_back(InFlag);
1695
1696  // FIXME: Do not generate X86ISD::TAILCALL for now.
1697  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1698                      NodeTys, &Ops[0], Ops.size());
1699  InFlag = Chain.getValue(1);
1700
1701  NodeTys.clear();
1702  NodeTys.push_back(MVT::Other);   // Returns a chain
1703  if (RetVT != MVT::Other)
1704    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
1705  Ops.clear();
1706  Ops.push_back(Chain);
1707  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1708  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1709  Ops.push_back(InFlag);
1710  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1711  if (RetVT != MVT::Other)
1712    InFlag = Chain.getValue(1);
1713
1714  std::vector<SDOperand> ResultVals;
1715  NodeTys.clear();
1716  switch (RetVT) {
1717  default: assert(0 && "Unknown value type to return!");
1718  case MVT::Other: break;
1719  case MVT::i8:
1720    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
1721    ResultVals.push_back(Chain.getValue(0));
1722    NodeTys.push_back(MVT::i8);
1723    break;
1724  case MVT::i16:
1725    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
1726    ResultVals.push_back(Chain.getValue(0));
1727    NodeTys.push_back(MVT::i16);
1728    break;
1729  case MVT::i32:
1730    if (Op.Val->getValueType(1) == MVT::i32) {
1731      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1732      ResultVals.push_back(Chain.getValue(0));
1733      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
1734                                 Chain.getValue(2)).getValue(1);
1735      ResultVals.push_back(Chain.getValue(0));
1736      NodeTys.push_back(MVT::i32);
1737    } else {
1738      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
1739      ResultVals.push_back(Chain.getValue(0));
1740    }
1741    NodeTys.push_back(MVT::i32);
1742    break;
1743  case MVT::v16i8:
1744  case MVT::v8i16:
1745  case MVT::v4i32:
1746  case MVT::v2i64:
1747  case MVT::v4f32:
1748  case MVT::v2f64:
1749   if (isFastCall) {
1750     assert(0 && "Unknown value type to return!");
1751   } else {
1752     Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1);
1753     ResultVals.push_back(Chain.getValue(0));
1754     NodeTys.push_back(RetVT);
1755   }
1756   break;
1757  case MVT::f32:
1758  case MVT::f64: {
1759    std::vector<MVT::ValueType> Tys;
1760    Tys.push_back(MVT::f64);
1761    Tys.push_back(MVT::Other);
1762    Tys.push_back(MVT::Flag);
1763    std::vector<SDOperand> Ops;
1764    Ops.push_back(Chain);
1765    Ops.push_back(InFlag);
1766    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
1767                                   &Ops[0], Ops.size());
1768    Chain  = RetVal.getValue(1);
1769    InFlag = RetVal.getValue(2);
1770    if (X86ScalarSSE) {
1771      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
1772      // shouldn't be necessary except that RFP cannot be live across
1773      // multiple blocks. When stackifier is fixed, they can be uncoupled.
1774      MachineFunction &MF = DAG.getMachineFunction();
1775      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
1776      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
1777      Tys.clear();
1778      Tys.push_back(MVT::Other);
1779      Ops.clear();
1780      Ops.push_back(Chain);
1781      Ops.push_back(RetVal);
1782      Ops.push_back(StackSlot);
1783      Ops.push_back(DAG.getValueType(RetVT));
1784      Ops.push_back(InFlag);
1785      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
1786      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
1787      Chain = RetVal.getValue(1);
1788    }
1789
1790    if (RetVT == MVT::f32 && !X86ScalarSSE)
1791      // FIXME: we would really like to remember that this FP_ROUND
1792      // operation is okay to eliminate if we allow excess FP precision.
1793      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
1794    ResultVals.push_back(RetVal);
1795    NodeTys.push_back(RetVT);
1796    break;
1797  }
1798  }
1799
1800
1801  // If the function returns void, just return the chain.
1802  if (ResultVals.empty())
1803    return Chain;
1804
1805  // Otherwise, merge everything together with a MERGE_VALUES node.
1806  NodeTys.push_back(MVT::Other);
1807  ResultVals.push_back(Chain);
1808  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1809                              &ResultVals[0], ResultVals.size());
1810  return Res.getValue(Op.ResNo);
1811}
1812
1813//===----------------------------------------------------------------------===//
1814//                  StdCall Calling Convention implementation
1815//===----------------------------------------------------------------------===//
1816//  StdCall calling convention seems to be standard for many Windows' API
1817//  routines and around. It differs from C calling convention just a little:
1818//  callee should clean up the stack, not caller. Symbols should be also
1819//  decorated in some fancy way :) It doesn't support any vector arguments.
1820
1821/// HowToPassStdCallCCArgument - Returns how an formal argument of the specified
1822/// type should be passed. Returns the size of the stack slot
1823static void
1824HowToPassStdCallCCArgument(MVT::ValueType ObjectVT, unsigned &ObjSize) {
1825  switch (ObjectVT) {
1826  default: assert(0 && "Unhandled argument type!");
1827  case MVT::i8:  ObjSize = 1; break;
1828  case MVT::i16: ObjSize = 2; break;
1829  case MVT::i32: ObjSize = 4; break;
1830  case MVT::i64: ObjSize = 8; break;
1831  case MVT::f32: ObjSize = 4; break;
1832  case MVT::f64: ObjSize = 8; break;
1833  }
1834}
1835
1836SDOperand X86TargetLowering::LowerStdCallCCArguments(SDOperand Op,
1837                                                     SelectionDAG &DAG) {
1838  unsigned NumArgs = Op.Val->getNumValues() - 1;
1839  MachineFunction &MF = DAG.getMachineFunction();
1840  MachineFrameInfo *MFI = MF.getFrameInfo();
1841  SDOperand Root = Op.getOperand(0);
1842  std::vector<SDOperand> ArgValues;
1843
1844  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
1845  // the stack frame looks like this:
1846  //
1847  // [ESP] -- return address
1848  // [ESP + 4] -- first argument (leftmost lexically)
1849  // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size
1850  //    ...
1851  //
1852  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
1853  for (unsigned i = 0; i < NumArgs; ++i) {
1854    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
1855    unsigned ArgIncrement = 4;
1856    unsigned ObjSize = 0;
1857    HowToPassStdCallCCArgument(ObjectVT, ObjSize);
1858    if (ObjSize > 4)
1859      ArgIncrement = ObjSize;
1860
1861    SDOperand ArgValue;
1862    // Create the frame index object for this incoming parameter...
1863    int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1864    SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1865    ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
1866    ArgValues.push_back(ArgValue);
1867    ArgOffset += ArgIncrement;   // Move on to the next argument...
1868  }
1869
1870  ArgValues.push_back(Root);
1871
1872  // If the function takes variable number of arguments, make a frame index for
1873  // the start of the first vararg value... for expansion of llvm.va_start.
1874  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1875  if (isVarArg) {
1876    BytesToPopOnReturn = 0;         // Callee pops nothing.
1877    BytesCallerReserves = ArgOffset;
1878    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
1879  } else {
1880    BytesToPopOnReturn = ArgOffset; // Callee pops everything..
1881    BytesCallerReserves = 0;
1882  }
1883  RegSaveFrameIndex = 0xAAAAAAA;    // X86-64 only.
1884  ReturnAddrIndex = 0;              // No return address slot generated yet.
1885
1886  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
1887
1888  // Return the new list of results.
1889  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
1890                                     Op.Val->value_end());
1891  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
1892}
1893
1894
1895SDOperand X86TargetLowering::LowerStdCallCCCallTo(SDOperand Op,
1896                                                  SelectionDAG &DAG) {
1897  SDOperand Chain     = Op.getOperand(0);
1898  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1899  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1900  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1901  SDOperand Callee    = Op.getOperand(4);
1902  MVT::ValueType RetVT= Op.Val->getValueType(0);
1903  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1904
1905  // Count how many bytes are to be pushed on the stack.
1906  unsigned NumBytes = 0;
1907  for (unsigned i = 0; i != NumOps; ++i) {
1908    SDOperand Arg = Op.getOperand(5+2*i);
1909
1910    switch (Arg.getValueType()) {
1911    default: assert(0 && "Unexpected ValueType for argument!");
1912    case MVT::i8:
1913    case MVT::i16:
1914    case MVT::i32:
1915    case MVT::f32:
1916      NumBytes += 4;
1917      break;
1918    case MVT::i64:
1919    case MVT::f64:
1920      NumBytes += 8;
1921      break;
1922    }
1923  }
1924
1925  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1926
1927  // Arguments go on the stack in reverse order, as specified by the ABI.
1928  unsigned ArgOffset = 0;
1929  std::vector<SDOperand> MemOpChains;
1930  SDOperand StackPtr = DAG.getRegister(X86StackPtr, getPointerTy());
1931  for (unsigned i = 0; i != NumOps; ++i) {
1932    SDOperand Arg = Op.getOperand(5+2*i);
1933
1934    switch (Arg.getValueType()) {
1935    default: assert(0 && "Unexpected ValueType for argument!");
1936    case MVT::i8:
1937    case MVT::i16: {
1938      // Promote the integer to 32 bits.  If the input type is signed use a
1939      // sign extend, otherwise use a zero extend.
1940      unsigned ExtOp =
1941        dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ?
1942        ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1943      Arg = DAG.getNode(ExtOp, MVT::i32, Arg);
1944    }
1945    // Fallthrough
1946
1947    case MVT::i32:
1948    case MVT::f32: {
1949      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1950      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1951      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1952      ArgOffset += 4;
1953      break;
1954    }
1955    case MVT::i64:
1956    case MVT::f64: {
1957      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1958      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1959      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1960      ArgOffset += 8;
1961      break;
1962    }
1963    }
1964  }
1965
1966  if (!MemOpChains.empty())
1967    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1968                        &MemOpChains[0], MemOpChains.size());
1969
1970  // If the callee is a GlobalAddress node (quite common, every direct call is)
1971  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1972  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1973    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1974  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1975    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1976
1977  std::vector<MVT::ValueType> NodeTys;
1978  NodeTys.push_back(MVT::Other);   // Returns a chain
1979  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1980  std::vector<SDOperand> Ops;
1981  Ops.push_back(Chain);
1982  Ops.push_back(Callee);
1983
1984  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1985                      NodeTys, &Ops[0], Ops.size());
1986  SDOperand InFlag = Chain.getValue(1);
1987
1988  // Create the CALLSEQ_END node.
1989  unsigned NumBytesForCalleeToPush;
1990
1991  if (isVarArg) {
1992    NumBytesForCalleeToPush = 0;
1993  } else {
1994    NumBytesForCalleeToPush = NumBytes;
1995  }
1996
1997  NodeTys.clear();
1998  NodeTys.push_back(MVT::Other);   // Returns a chain
1999  if (RetVT != MVT::Other)
2000    NodeTys.push_back(MVT::Flag);  // Returns a flag for retval copy to use.
2001  Ops.clear();
2002  Ops.push_back(Chain);
2003  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
2004  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
2005  Ops.push_back(InFlag);
2006  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2007  if (RetVT != MVT::Other)
2008    InFlag = Chain.getValue(1);
2009
2010  std::vector<SDOperand> ResultVals;
2011  NodeTys.clear();
2012  switch (RetVT) {
2013  default: assert(0 && "Unknown value type to return!");
2014  case MVT::Other: break;
2015  case MVT::i8:
2016    Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1);
2017    ResultVals.push_back(Chain.getValue(0));
2018    NodeTys.push_back(MVT::i8);
2019    break;
2020  case MVT::i16:
2021    Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1);
2022    ResultVals.push_back(Chain.getValue(0));
2023    NodeTys.push_back(MVT::i16);
2024    break;
2025  case MVT::i32:
2026    if (Op.Val->getValueType(1) == MVT::i32) {
2027      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
2028      ResultVals.push_back(Chain.getValue(0));
2029      Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32,
2030                                 Chain.getValue(2)).getValue(1);
2031      ResultVals.push_back(Chain.getValue(0));
2032      NodeTys.push_back(MVT::i32);
2033    } else {
2034      Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1);
2035      ResultVals.push_back(Chain.getValue(0));
2036    }
2037    NodeTys.push_back(MVT::i32);
2038    break;
2039  case MVT::f32:
2040  case MVT::f64: {
2041    std::vector<MVT::ValueType> Tys;
2042    Tys.push_back(MVT::f64);
2043    Tys.push_back(MVT::Other);
2044    Tys.push_back(MVT::Flag);
2045    std::vector<SDOperand> Ops;
2046    Ops.push_back(Chain);
2047    Ops.push_back(InFlag);
2048    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys,
2049                                   &Ops[0], Ops.size());
2050    Chain  = RetVal.getValue(1);
2051    InFlag = RetVal.getValue(2);
2052    if (X86ScalarSSE) {
2053      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
2054      // shouldn't be necessary except that RFP cannot be live across
2055      // multiple blocks. When stackifier is fixed, they can be uncoupled.
2056      MachineFunction &MF = DAG.getMachineFunction();
2057      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2058      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
2059      Tys.clear();
2060      Tys.push_back(MVT::Other);
2061      Ops.clear();
2062      Ops.push_back(Chain);
2063      Ops.push_back(RetVal);
2064      Ops.push_back(StackSlot);
2065      Ops.push_back(DAG.getValueType(RetVT));
2066      Ops.push_back(InFlag);
2067      Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
2068      RetVal = DAG.getLoad(RetVT, Chain, StackSlot, NULL, 0);
2069      Chain = RetVal.getValue(1);
2070    }
2071
2072    if (RetVT == MVT::f32 && !X86ScalarSSE)
2073      // FIXME: we would really like to remember that this FP_ROUND
2074      // operation is okay to eliminate if we allow excess FP precision.
2075      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
2076    ResultVals.push_back(RetVal);
2077    NodeTys.push_back(RetVT);
2078    break;
2079  }
2080  }
2081
2082  // If the function returns void, just return the chain.
2083  if (ResultVals.empty())
2084    return Chain;
2085
2086  // Otherwise, merge everything together with a MERGE_VALUES node.
2087  NodeTys.push_back(MVT::Other);
2088  ResultVals.push_back(Chain);
2089  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
2090                              &ResultVals[0], ResultVals.size());
2091  return Res.getValue(Op.ResNo);
2092}
2093
2094//===----------------------------------------------------------------------===//
2095//                  FastCall Calling Convention implementation
2096//===----------------------------------------------------------------------===//
2097//
2098// The X86 'fastcall' calling convention passes up to two integer arguments in
2099// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
2100// and requires that the callee pop its arguments off the stack (allowing proper
2101// tail calls), and has the same return value conventions as C calling convs.
2102//
2103// This calling convention always arranges for the callee pop value to be 8n+4
2104// bytes, which is needed for tail recursion elimination and stack alignment
2105// reasons.
2106//
2107
2108/// HowToPassFastCallCCArgument - Returns how an formal argument of the
2109/// specified type should be passed. If it is through stack, returns the size of
2110/// the stack slot; if it is through integer register, returns the number of
2111/// integer registers are needed.
2112static void
2113HowToPassFastCallCCArgument(MVT::ValueType ObjectVT,
2114                            unsigned NumIntRegs,
2115                            unsigned &ObjSize,
2116                            unsigned &ObjIntRegs)
2117{
2118  ObjSize = 0;
2119  ObjIntRegs = 0;
2120
2121  switch (ObjectVT) {
2122  default: assert(0 && "Unhandled argument type!");
2123  case MVT::i8:
2124   if (NumIntRegs < 2)
2125     ObjIntRegs = 1;
2126   else
2127     ObjSize = 1;
2128   break;
2129  case MVT::i16:
2130   if (NumIntRegs < 2)
2131     ObjIntRegs = 1;
2132   else
2133     ObjSize = 2;
2134   break;
2135  case MVT::i32:
2136   if (NumIntRegs < 2)
2137     ObjIntRegs = 1;
2138   else
2139     ObjSize = 4;
2140    break;
2141  case MVT::i64:
2142   if (NumIntRegs+2 <= 2) {
2143     ObjIntRegs = 2;
2144   } else if (NumIntRegs+1 <= 2) {
2145     ObjIntRegs = 1;
2146     ObjSize = 4;
2147   } else
2148     ObjSize = 8;
2149   case MVT::f32:
2150    ObjSize = 4;
2151    break;
2152   case MVT::f64:
2153    ObjSize = 8;
2154    break;
2155  }
2156}
2157
2158SDOperand
2159X86TargetLowering::LowerFastCallCCArguments(SDOperand Op, SelectionDAG &DAG) {
2160  unsigned NumArgs = Op.Val->getNumValues()-1;
2161  MachineFunction &MF = DAG.getMachineFunction();
2162  MachineFrameInfo *MFI = MF.getFrameInfo();
2163  SDOperand Root = Op.getOperand(0);
2164  std::vector<SDOperand> ArgValues;
2165
2166  // Add DAG nodes to load the arguments...  On entry to a function the stack
2167  // frame looks like this:
2168  //
2169  // [ESP] -- return address
2170  // [ESP + 4] -- first nonreg argument (leftmost lexically)
2171  // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size
2172  //    ...
2173  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
2174
2175  // Keep track of the number of integer regs passed so far.  This can be either
2176  // 0 (neither ECX or EDX used), 1 (ECX is used) or 2 (ECX and EDX are both
2177  // used).
2178  unsigned NumIntRegs = 0;
2179
2180  for (unsigned i = 0; i < NumArgs; ++i) {
2181    MVT::ValueType ObjectVT = Op.getValue(i).getValueType();
2182    unsigned ArgIncrement = 4;
2183    unsigned ObjSize = 0;
2184    unsigned ObjIntRegs = 0;
2185
2186    HowToPassFastCallCCArgument(ObjectVT, NumIntRegs, ObjSize, ObjIntRegs);
2187    if (ObjSize > 4)
2188      ArgIncrement = ObjSize;
2189
2190    unsigned Reg = 0;
2191    SDOperand ArgValue;
2192    if (ObjIntRegs) {
2193      switch (ObjectVT) {
2194      default: assert(0 && "Unhandled argument type!");
2195      case MVT::i8:
2196        Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::CL,
2197                        X86::GR8RegisterClass);
2198        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8);
2199        break;
2200      case MVT::i16:
2201        Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::CX,
2202                        X86::GR16RegisterClass);
2203        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16);
2204        break;
2205      case MVT::i32:
2206        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
2207                        X86::GR32RegisterClass);
2208        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2209        break;
2210      case MVT::i64:
2211        Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::ECX,
2212                        X86::GR32RegisterClass);
2213        ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2214        if (ObjIntRegs == 2) {
2215          Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass);
2216          SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32);
2217          ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
2218        }
2219        break;
2220      }
2221
2222      NumIntRegs += ObjIntRegs;
2223    }
2224
2225    if (ObjSize) {
2226      // Create the SelectionDAG nodes corresponding to a load from this
2227      // parameter.
2228      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
2229      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
2230      if (ObjectVT == MVT::i64 && ObjIntRegs) {
2231        SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN,
2232                                          NULL, 0);
2233        ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2);
2234      } else
2235        ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, NULL, 0);
2236      ArgOffset += ArgIncrement;   // Move on to the next argument.
2237    }
2238
2239    ArgValues.push_back(ArgValue);
2240  }
2241
2242  ArgValues.push_back(Root);
2243
2244  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
2245  // arguments and the arguments after the retaddr has been pushed are aligned.
2246  if ((ArgOffset & 7) == 0)
2247    ArgOffset += 4;
2248
2249  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
2250  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
2251  ReturnAddrIndex = 0;             // No return address slot generated yet.
2252  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
2253  BytesCallerReserves = 0;
2254
2255  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
2256
2257  // Finally, inform the code generator which regs we return values in.
2258  switch (getValueType(MF.getFunction()->getReturnType())) {
2259  default: assert(0 && "Unknown type!");
2260  case MVT::isVoid: break;
2261  case MVT::i1:
2262  case MVT::i8:
2263  case MVT::i16:
2264  case MVT::i32:
2265    MF.addLiveOut(X86::ECX);
2266    break;
2267  case MVT::i64:
2268    MF.addLiveOut(X86::ECX);
2269    MF.addLiveOut(X86::EDX);
2270    break;
2271  case MVT::f32:
2272  case MVT::f64:
2273    MF.addLiveOut(X86::ST0);
2274    break;
2275  }
2276
2277  // Return the new list of results.
2278  std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(),
2279                                     Op.Val->value_end());
2280  return DAG.getNode(ISD::MERGE_VALUES, RetVTs, &ArgValues[0],ArgValues.size());
2281}
2282
2283SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2284  if (ReturnAddrIndex == 0) {
2285    // Set up a frame object for the return address.
2286    MachineFunction &MF = DAG.getMachineFunction();
2287    if (Subtarget->is64Bit())
2288      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2289    else
2290      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
2291  }
2292
2293  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2294}
2295
2296
2297
2298std::pair<SDOperand, SDOperand> X86TargetLowering::
2299LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
2300                        SelectionDAG &DAG) {
2301  SDOperand Result;
2302  if (Depth)        // Depths > 0 not supported yet!
2303    Result = DAG.getConstant(0, getPointerTy());
2304  else {
2305    SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
2306    if (!isFrameAddress)
2307      // Just load the return address
2308      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI,
2309                           NULL, 0);
2310    else
2311      Result = DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
2312                           DAG.getConstant(4, getPointerTy()));
2313  }
2314  return std::make_pair(Result, Chain);
2315}
2316
2317/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2318/// specific condition code. It returns a false if it cannot do a direct
2319/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
2320/// needed.
2321static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2322                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2323                           SelectionDAG &DAG) {
2324  X86CC = X86::COND_INVALID;
2325  if (!isFP) {
2326    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2327      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2328        // X > -1   -> X == 0, jump !sign.
2329        RHS = DAG.getConstant(0, RHS.getValueType());
2330        X86CC = X86::COND_NS;
2331        return true;
2332      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2333        // X < 0   -> X == 0, jump on sign.
2334        X86CC = X86::COND_S;
2335        return true;
2336      }
2337    }
2338
2339    switch (SetCCOpcode) {
2340    default: break;
2341    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
2342    case ISD::SETGT:  X86CC = X86::COND_G;  break;
2343    case ISD::SETGE:  X86CC = X86::COND_GE; break;
2344    case ISD::SETLT:  X86CC = X86::COND_L;  break;
2345    case ISD::SETLE:  X86CC = X86::COND_LE; break;
2346    case ISD::SETNE:  X86CC = X86::COND_NE; break;
2347    case ISD::SETULT: X86CC = X86::COND_B;  break;
2348    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2349    case ISD::SETULE: X86CC = X86::COND_BE; break;
2350    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2351    }
2352  } else {
2353    // On a floating point condition, the flags are set as follows:
2354    // ZF  PF  CF   op
2355    //  0 | 0 | 0 | X > Y
2356    //  0 | 0 | 1 | X < Y
2357    //  1 | 0 | 0 | X == Y
2358    //  1 | 1 | 1 | unordered
2359    bool Flip = false;
2360    switch (SetCCOpcode) {
2361    default: break;
2362    case ISD::SETUEQ:
2363    case ISD::SETEQ: X86CC = X86::COND_E;  break;
2364    case ISD::SETOLT: Flip = true; // Fallthrough
2365    case ISD::SETOGT:
2366    case ISD::SETGT: X86CC = X86::COND_A;  break;
2367    case ISD::SETOLE: Flip = true; // Fallthrough
2368    case ISD::SETOGE:
2369    case ISD::SETGE: X86CC = X86::COND_AE; break;
2370    case ISD::SETUGT: Flip = true; // Fallthrough
2371    case ISD::SETULT:
2372    case ISD::SETLT: X86CC = X86::COND_B;  break;
2373    case ISD::SETUGE: Flip = true; // Fallthrough
2374    case ISD::SETULE:
2375    case ISD::SETLE: X86CC = X86::COND_BE; break;
2376    case ISD::SETONE:
2377    case ISD::SETNE: X86CC = X86::COND_NE; break;
2378    case ISD::SETUO: X86CC = X86::COND_P;  break;
2379    case ISD::SETO:  X86CC = X86::COND_NP; break;
2380    }
2381    if (Flip)
2382      std::swap(LHS, RHS);
2383  }
2384
2385  return X86CC != X86::COND_INVALID;
2386}
2387
2388/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2389/// code. Current x86 isa includes the following FP cmov instructions:
2390/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2391static bool hasFPCMov(unsigned X86CC) {
2392  switch (X86CC) {
2393  default:
2394    return false;
2395  case X86::COND_B:
2396  case X86::COND_BE:
2397  case X86::COND_E:
2398  case X86::COND_P:
2399  case X86::COND_A:
2400  case X86::COND_AE:
2401  case X86::COND_NE:
2402  case X86::COND_NP:
2403    return true;
2404  }
2405}
2406
2407/// DarwinGVRequiresExtraLoad - true if accessing the GV requires an extra
2408/// load. For Darwin, external and weak symbols are indirect, loading the value
2409/// at address GV rather then the value of GV itself. This means that the
2410/// GlobalAddress must be in the base or index register of the address, not the
2411/// GV offset field.
2412static bool DarwinGVRequiresExtraLoad(GlobalValue *GV) {
2413  return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
2414          (GV->isExternal() && !GV->hasNotBeenReadFromBytecode()));
2415}
2416
2417/// WindowsGVRequiresExtraLoad - true if accessing the GV requires an extra
2418/// load. For Windows, dllimported symbols are indirect, loading the value at
2419/// address GV rather then the value of GV itself. This means that the
2420/// GlobalAddress must be in the base or index register of the address, not the
2421/// GV offset field.
2422static bool WindowsGVRequiresExtraLoad(GlobalValue *GV) {
2423  return (GV->hasDLLImportLinkage());
2424}
2425
2426/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2427/// true if Op is undef or if its value falls within the specified range (L, H].
2428static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2429  if (Op.getOpcode() == ISD::UNDEF)
2430    return true;
2431
2432  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2433  return (Val >= Low && Val < Hi);
2434}
2435
2436/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2437/// true if Op is undef or if its value equal to the specified value.
2438static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2439  if (Op.getOpcode() == ISD::UNDEF)
2440    return true;
2441  return cast<ConstantSDNode>(Op)->getValue() == Val;
2442}
2443
2444/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2445/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2446bool X86::isPSHUFDMask(SDNode *N) {
2447  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2448
2449  if (N->getNumOperands() != 4)
2450    return false;
2451
2452  // Check if the value doesn't reference the second vector.
2453  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2454    SDOperand Arg = N->getOperand(i);
2455    if (Arg.getOpcode() == ISD::UNDEF) continue;
2456    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2457    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
2458      return false;
2459  }
2460
2461  return true;
2462}
2463
2464/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2465/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2466bool X86::isPSHUFHWMask(SDNode *N) {
2467  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2468
2469  if (N->getNumOperands() != 8)
2470    return false;
2471
2472  // Lower quadword copied in order.
2473  for (unsigned i = 0; i != 4; ++i) {
2474    SDOperand Arg = N->getOperand(i);
2475    if (Arg.getOpcode() == ISD::UNDEF) continue;
2476    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2477    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2478      return false;
2479  }
2480
2481  // Upper quadword shuffled.
2482  for (unsigned i = 4; i != 8; ++i) {
2483    SDOperand Arg = N->getOperand(i);
2484    if (Arg.getOpcode() == ISD::UNDEF) continue;
2485    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2486    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2487    if (Val < 4 || Val > 7)
2488      return false;
2489  }
2490
2491  return true;
2492}
2493
2494/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2495/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2496bool X86::isPSHUFLWMask(SDNode *N) {
2497  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2498
2499  if (N->getNumOperands() != 8)
2500    return false;
2501
2502  // Upper quadword copied in order.
2503  for (unsigned i = 4; i != 8; ++i)
2504    if (!isUndefOrEqual(N->getOperand(i), i))
2505      return false;
2506
2507  // Lower quadword shuffled.
2508  for (unsigned i = 0; i != 4; ++i)
2509    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2510      return false;
2511
2512  return true;
2513}
2514
2515/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2516/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2517static bool isSHUFPMask(std::vector<SDOperand> &N) {
2518  unsigned NumElems = N.size();
2519  if (NumElems != 2 && NumElems != 4) return false;
2520
2521  unsigned Half = NumElems / 2;
2522  for (unsigned i = 0; i < Half; ++i)
2523    if (!isUndefOrInRange(N[i], 0, NumElems))
2524      return false;
2525  for (unsigned i = Half; i < NumElems; ++i)
2526    if (!isUndefOrInRange(N[i], NumElems, NumElems*2))
2527      return false;
2528
2529  return true;
2530}
2531
2532bool X86::isSHUFPMask(SDNode *N) {
2533  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2534  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2535  return ::isSHUFPMask(Ops);
2536}
2537
2538/// isCommutedSHUFP - Returns true if the shuffle mask is except
2539/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2540/// half elements to come from vector 1 (which would equal the dest.) and
2541/// the upper half to come from vector 2.
2542static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) {
2543  unsigned NumElems = Ops.size();
2544  if (NumElems != 2 && NumElems != 4) return false;
2545
2546  unsigned Half = NumElems / 2;
2547  for (unsigned i = 0; i < Half; ++i)
2548    if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2))
2549      return false;
2550  for (unsigned i = Half; i < NumElems; ++i)
2551    if (!isUndefOrInRange(Ops[i], 0, NumElems))
2552      return false;
2553  return true;
2554}
2555
2556static bool isCommutedSHUFP(SDNode *N) {
2557  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2558  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2559  return isCommutedSHUFP(Ops);
2560}
2561
2562/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2563/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2564bool X86::isMOVHLPSMask(SDNode *N) {
2565  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2566
2567  if (N->getNumOperands() != 4)
2568    return false;
2569
2570  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2571  return isUndefOrEqual(N->getOperand(0), 6) &&
2572         isUndefOrEqual(N->getOperand(1), 7) &&
2573         isUndefOrEqual(N->getOperand(2), 2) &&
2574         isUndefOrEqual(N->getOperand(3), 3);
2575}
2576
2577/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2578/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2579bool X86::isMOVLPMask(SDNode *N) {
2580  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2581
2582  unsigned NumElems = N->getNumOperands();
2583  if (NumElems != 2 && NumElems != 4)
2584    return false;
2585
2586  for (unsigned i = 0; i < NumElems/2; ++i)
2587    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2588      return false;
2589
2590  for (unsigned i = NumElems/2; i < NumElems; ++i)
2591    if (!isUndefOrEqual(N->getOperand(i), i))
2592      return false;
2593
2594  return true;
2595}
2596
2597/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2598/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2599/// and MOVLHPS.
2600bool X86::isMOVHPMask(SDNode *N) {
2601  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2602
2603  unsigned NumElems = N->getNumOperands();
2604  if (NumElems != 2 && NumElems != 4)
2605    return false;
2606
2607  for (unsigned i = 0; i < NumElems/2; ++i)
2608    if (!isUndefOrEqual(N->getOperand(i), i))
2609      return false;
2610
2611  for (unsigned i = 0; i < NumElems/2; ++i) {
2612    SDOperand Arg = N->getOperand(i + NumElems/2);
2613    if (!isUndefOrEqual(Arg, i + NumElems))
2614      return false;
2615  }
2616
2617  return true;
2618}
2619
2620/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2621/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2622bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2623  unsigned NumElems = N.size();
2624  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2625    return false;
2626
2627  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2628    SDOperand BitI  = N[i];
2629    SDOperand BitI1 = N[i+1];
2630    if (!isUndefOrEqual(BitI, j))
2631      return false;
2632    if (V2IsSplat) {
2633      if (isUndefOrEqual(BitI1, NumElems))
2634        return false;
2635    } else {
2636      if (!isUndefOrEqual(BitI1, j + NumElems))
2637        return false;
2638    }
2639  }
2640
2641  return true;
2642}
2643
2644bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2645  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2646  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2647  return ::isUNPCKLMask(Ops, V2IsSplat);
2648}
2649
2650/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2651/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2652bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) {
2653  unsigned NumElems = N.size();
2654  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2655    return false;
2656
2657  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2658    SDOperand BitI  = N[i];
2659    SDOperand BitI1 = N[i+1];
2660    if (!isUndefOrEqual(BitI, j + NumElems/2))
2661      return false;
2662    if (V2IsSplat) {
2663      if (isUndefOrEqual(BitI1, NumElems))
2664        return false;
2665    } else {
2666      if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems))
2667        return false;
2668    }
2669  }
2670
2671  return true;
2672}
2673
2674bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2675  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2676  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2677  return ::isUNPCKHMask(Ops, V2IsSplat);
2678}
2679
2680/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2681/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2682/// <0, 0, 1, 1>
2683bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2684  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2685
2686  unsigned NumElems = N->getNumOperands();
2687  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
2688    return false;
2689
2690  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2691    SDOperand BitI  = N->getOperand(i);
2692    SDOperand BitI1 = N->getOperand(i+1);
2693
2694    if (!isUndefOrEqual(BitI, j))
2695      return false;
2696    if (!isUndefOrEqual(BitI1, j))
2697      return false;
2698  }
2699
2700  return true;
2701}
2702
2703/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2704/// specifies a shuffle of elements that is suitable for input to MOVSS,
2705/// MOVSD, and MOVD, i.e. setting the lowest element.
2706static bool isMOVLMask(std::vector<SDOperand> &N) {
2707  unsigned NumElems = N.size();
2708  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2709    return false;
2710
2711  if (!isUndefOrEqual(N[0], NumElems))
2712    return false;
2713
2714  for (unsigned i = 1; i < NumElems; ++i) {
2715    SDOperand Arg = N[i];
2716    if (!isUndefOrEqual(Arg, i))
2717      return false;
2718  }
2719
2720  return true;
2721}
2722
2723bool X86::isMOVLMask(SDNode *N) {
2724  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2725  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2726  return ::isMOVLMask(Ops);
2727}
2728
2729/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2730/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2731/// element of vector 2 and the other elements to come from vector 1 in order.
2732static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false,
2733                           bool V2IsUndef = false) {
2734  unsigned NumElems = Ops.size();
2735  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2736    return false;
2737
2738  if (!isUndefOrEqual(Ops[0], 0))
2739    return false;
2740
2741  for (unsigned i = 1; i < NumElems; ++i) {
2742    SDOperand Arg = Ops[i];
2743    if (!(isUndefOrEqual(Arg, i+NumElems) ||
2744          (V2IsUndef && isUndefOrInRange(Arg, NumElems, NumElems*2)) ||
2745          (V2IsSplat && isUndefOrEqual(Arg, NumElems))))
2746      return false;
2747  }
2748
2749  return true;
2750}
2751
2752static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2753                           bool V2IsUndef = false) {
2754  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2755  std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
2756  return isCommutedMOVL(Ops, V2IsSplat, V2IsUndef);
2757}
2758
2759/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2760/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2761bool X86::isMOVSHDUPMask(SDNode *N) {
2762  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2763
2764  if (N->getNumOperands() != 4)
2765    return false;
2766
2767  // Expect 1, 1, 3, 3
2768  for (unsigned i = 0; i < 2; ++i) {
2769    SDOperand Arg = N->getOperand(i);
2770    if (Arg.getOpcode() == ISD::UNDEF) continue;
2771    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2772    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2773    if (Val != 1) return false;
2774  }
2775
2776  bool HasHi = false;
2777  for (unsigned i = 2; i < 4; ++i) {
2778    SDOperand Arg = N->getOperand(i);
2779    if (Arg.getOpcode() == ISD::UNDEF) continue;
2780    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2781    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2782    if (Val != 3) return false;
2783    HasHi = true;
2784  }
2785
2786  // Don't use movshdup if it can be done with a shufps.
2787  return HasHi;
2788}
2789
2790/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2791/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2792bool X86::isMOVSLDUPMask(SDNode *N) {
2793  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2794
2795  if (N->getNumOperands() != 4)
2796    return false;
2797
2798  // Expect 0, 0, 2, 2
2799  for (unsigned i = 0; i < 2; ++i) {
2800    SDOperand Arg = N->getOperand(i);
2801    if (Arg.getOpcode() == ISD::UNDEF) continue;
2802    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2803    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2804    if (Val != 0) return false;
2805  }
2806
2807  bool HasHi = false;
2808  for (unsigned i = 2; i < 4; ++i) {
2809    SDOperand Arg = N->getOperand(i);
2810    if (Arg.getOpcode() == ISD::UNDEF) continue;
2811    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2812    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2813    if (Val != 2) return false;
2814    HasHi = true;
2815  }
2816
2817  // Don't use movshdup if it can be done with a shufps.
2818  return HasHi;
2819}
2820
2821/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2822/// a splat of a single element.
2823static bool isSplatMask(SDNode *N) {
2824  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2825
2826  // This is a splat operation if each element of the permute is the same, and
2827  // if the value doesn't reference the second vector.
2828  unsigned NumElems = N->getNumOperands();
2829  SDOperand ElementBase;
2830  unsigned i = 0;
2831  for (; i != NumElems; ++i) {
2832    SDOperand Elt = N->getOperand(i);
2833    if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) {
2834      ElementBase = Elt;
2835      break;
2836    }
2837  }
2838
2839  if (!ElementBase.Val)
2840    return false;
2841
2842  for (; i != NumElems; ++i) {
2843    SDOperand Arg = N->getOperand(i);
2844    if (Arg.getOpcode() == ISD::UNDEF) continue;
2845    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2846    if (Arg != ElementBase) return false;
2847  }
2848
2849  // Make sure it is a splat of the first vector operand.
2850  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2851}
2852
2853/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2854/// a splat of a single element and it's a 2 or 4 element mask.
2855bool X86::isSplatMask(SDNode *N) {
2856  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2857
2858  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2859  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2860    return false;
2861  return ::isSplatMask(N);
2862}
2863
2864/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2865/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2866/// instructions.
2867unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2868  unsigned NumOperands = N->getNumOperands();
2869  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2870  unsigned Mask = 0;
2871  for (unsigned i = 0; i < NumOperands; ++i) {
2872    unsigned Val = 0;
2873    SDOperand Arg = N->getOperand(NumOperands-i-1);
2874    if (Arg.getOpcode() != ISD::UNDEF)
2875      Val = cast<ConstantSDNode>(Arg)->getValue();
2876    if (Val >= NumOperands) Val -= NumOperands;
2877    Mask |= Val;
2878    if (i != NumOperands - 1)
2879      Mask <<= Shift;
2880  }
2881
2882  return Mask;
2883}
2884
2885/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2886/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2887/// instructions.
2888unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2889  unsigned Mask = 0;
2890  // 8 nodes, but we only care about the last 4.
2891  for (unsigned i = 7; i >= 4; --i) {
2892    unsigned Val = 0;
2893    SDOperand Arg = N->getOperand(i);
2894    if (Arg.getOpcode() != ISD::UNDEF)
2895      Val = cast<ConstantSDNode>(Arg)->getValue();
2896    Mask |= (Val - 4);
2897    if (i != 4)
2898      Mask <<= 2;
2899  }
2900
2901  return Mask;
2902}
2903
2904/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2905/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2906/// instructions.
2907unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2908  unsigned Mask = 0;
2909  // 8 nodes, but we only care about the first 4.
2910  for (int i = 3; i >= 0; --i) {
2911    unsigned Val = 0;
2912    SDOperand Arg = N->getOperand(i);
2913    if (Arg.getOpcode() != ISD::UNDEF)
2914      Val = cast<ConstantSDNode>(Arg)->getValue();
2915    Mask |= Val;
2916    if (i != 0)
2917      Mask <<= 2;
2918  }
2919
2920  return Mask;
2921}
2922
2923/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2924/// specifies a 8 element shuffle that can be broken into a pair of
2925/// PSHUFHW and PSHUFLW.
2926static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2927  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2928
2929  if (N->getNumOperands() != 8)
2930    return false;
2931
2932  // Lower quadword shuffled.
2933  for (unsigned i = 0; i != 4; ++i) {
2934    SDOperand Arg = N->getOperand(i);
2935    if (Arg.getOpcode() == ISD::UNDEF) continue;
2936    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2937    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2938    if (Val > 4)
2939      return false;
2940  }
2941
2942  // Upper quadword shuffled.
2943  for (unsigned i = 4; i != 8; ++i) {
2944    SDOperand Arg = N->getOperand(i);
2945    if (Arg.getOpcode() == ISD::UNDEF) continue;
2946    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2947    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2948    if (Val < 4 || Val > 7)
2949      return false;
2950  }
2951
2952  return true;
2953}
2954
2955/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2956/// values in ther permute mask.
2957static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2958                                      SDOperand &V2, SDOperand &Mask,
2959                                      SelectionDAG &DAG) {
2960  MVT::ValueType VT = Op.getValueType();
2961  MVT::ValueType MaskVT = Mask.getValueType();
2962  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2963  unsigned NumElems = Mask.getNumOperands();
2964  std::vector<SDOperand> MaskVec;
2965
2966  for (unsigned i = 0; i != NumElems; ++i) {
2967    SDOperand Arg = Mask.getOperand(i);
2968    if (Arg.getOpcode() == ISD::UNDEF) {
2969      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2970      continue;
2971    }
2972    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2973    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2974    if (Val < NumElems)
2975      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2976    else
2977      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2978  }
2979
2980  std::swap(V1, V2);
2981  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2982  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2983}
2984
2985/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2986/// match movhlps. The lower half elements should come from upper half of
2987/// V1 (and in order), and the upper half elements should come from the upper
2988/// half of V2 (and in order).
2989static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2990  unsigned NumElems = Mask->getNumOperands();
2991  if (NumElems != 4)
2992    return false;
2993  for (unsigned i = 0, e = 2; i != e; ++i)
2994    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2995      return false;
2996  for (unsigned i = 2; i != 4; ++i)
2997    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2998      return false;
2999  return true;
3000}
3001
3002/// isScalarLoadToVector - Returns true if the node is a scalar load that
3003/// is promoted to a vector.
3004static inline bool isScalarLoadToVector(SDNode *N) {
3005  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
3006    N = N->getOperand(0).Val;
3007    return ISD::isNON_EXTLoad(N);
3008  }
3009  return false;
3010}
3011
3012/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3013/// match movlp{s|d}. The lower half elements should come from lower half of
3014/// V1 (and in order), and the upper half elements should come from the upper
3015/// half of V2 (and in order). And since V1 will become the source of the
3016/// MOVLP, it must be either a vector load or a scalar load to vector.
3017static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
3018  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3019    return false;
3020  // Is V2 is a vector load, don't do this transformation. We will try to use
3021  // load folding shufps op.
3022  if (ISD::isNON_EXTLoad(V2))
3023    return false;
3024
3025  unsigned NumElems = Mask->getNumOperands();
3026  if (NumElems != 2 && NumElems != 4)
3027    return false;
3028  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3029    if (!isUndefOrEqual(Mask->getOperand(i), i))
3030      return false;
3031  for (unsigned i = NumElems/2; i != NumElems; ++i)
3032    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
3033      return false;
3034  return true;
3035}
3036
3037/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3038/// all the same.
3039static bool isSplatVector(SDNode *N) {
3040  if (N->getOpcode() != ISD::BUILD_VECTOR)
3041    return false;
3042
3043  SDOperand SplatValue = N->getOperand(0);
3044  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3045    if (N->getOperand(i) != SplatValue)
3046      return false;
3047  return true;
3048}
3049
3050/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3051/// to an undef.
3052static bool isUndefShuffle(SDNode *N) {
3053  if (N->getOpcode() != ISD::BUILD_VECTOR)
3054    return false;
3055
3056  SDOperand V1 = N->getOperand(0);
3057  SDOperand V2 = N->getOperand(1);
3058  SDOperand Mask = N->getOperand(2);
3059  unsigned NumElems = Mask.getNumOperands();
3060  for (unsigned i = 0; i != NumElems; ++i) {
3061    SDOperand Arg = Mask.getOperand(i);
3062    if (Arg.getOpcode() != ISD::UNDEF) {
3063      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3064      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
3065        return false;
3066      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
3067        return false;
3068    }
3069  }
3070  return true;
3071}
3072
3073/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3074/// that point to V2 points to its first element.
3075static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
3076  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
3077
3078  bool Changed = false;
3079  std::vector<SDOperand> MaskVec;
3080  unsigned NumElems = Mask.getNumOperands();
3081  for (unsigned i = 0; i != NumElems; ++i) {
3082    SDOperand Arg = Mask.getOperand(i);
3083    if (Arg.getOpcode() != ISD::UNDEF) {
3084      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
3085      if (Val > NumElems) {
3086        Arg = DAG.getConstant(NumElems, Arg.getValueType());
3087        Changed = true;
3088      }
3089    }
3090    MaskVec.push_back(Arg);
3091  }
3092
3093  if (Changed)
3094    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
3095                       &MaskVec[0], MaskVec.size());
3096  return Mask;
3097}
3098
3099/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3100/// operation of specified width.
3101static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
3102  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3103  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3104
3105  std::vector<SDOperand> MaskVec;
3106  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
3107  for (unsigned i = 1; i != NumElems; ++i)
3108    MaskVec.push_back(DAG.getConstant(i, BaseVT));
3109  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3110}
3111
3112/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
3113/// of specified width.
3114static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
3115  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3116  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3117  std::vector<SDOperand> MaskVec;
3118  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3119    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
3120    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
3121  }
3122  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3123}
3124
3125/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
3126/// of specified width.
3127static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
3128  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3129  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3130  unsigned Half = NumElems/2;
3131  std::vector<SDOperand> MaskVec;
3132  for (unsigned i = 0; i != Half; ++i) {
3133    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
3134    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
3135  }
3136  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
3137}
3138
3139/// getZeroVector - Returns a vector of specified type with all zero elements.
3140///
3141static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
3142  assert(MVT::isVector(VT) && "Expected a vector type");
3143  unsigned NumElems = getVectorNumElements(VT);
3144  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
3145  bool isFP = MVT::isFloatingPoint(EVT);
3146  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
3147  std::vector<SDOperand> ZeroVec(NumElems, Zero);
3148  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
3149}
3150
3151/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
3152///
3153static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
3154  SDOperand V1 = Op.getOperand(0);
3155  SDOperand Mask = Op.getOperand(2);
3156  MVT::ValueType VT = Op.getValueType();
3157  unsigned NumElems = Mask.getNumOperands();
3158  Mask = getUnpacklMask(NumElems, DAG);
3159  while (NumElems != 4) {
3160    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3161    NumElems >>= 1;
3162  }
3163  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
3164
3165  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3166  Mask = getZeroVector(MaskVT, DAG);
3167  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
3168                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
3169  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3170}
3171
3172/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3173/// constant +0.0.
3174static inline bool isZeroNode(SDOperand Elt) {
3175  return ((isa<ConstantSDNode>(Elt) &&
3176           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
3177          (isa<ConstantFPSDNode>(Elt) &&
3178           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
3179}
3180
3181/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3182/// vector and zero or undef vector.
3183static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
3184                                             unsigned NumElems, unsigned Idx,
3185                                             bool isZero, SelectionDAG &DAG) {
3186  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
3187  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3188  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3189  SDOperand Zero = DAG.getConstant(0, EVT);
3190  std::vector<SDOperand> MaskVec(NumElems, Zero);
3191  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
3192  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3193                               &MaskVec[0], MaskVec.size());
3194  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3195}
3196
3197/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3198///
3199static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
3200                                       unsigned NumNonZero, unsigned NumZero,
3201                                       SelectionDAG &DAG, TargetLowering &TLI) {
3202  if (NumNonZero > 8)
3203    return SDOperand();
3204
3205  SDOperand V(0, 0);
3206  bool First = true;
3207  for (unsigned i = 0; i < 16; ++i) {
3208    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3209    if (ThisIsNonZero && First) {
3210      if (NumZero)
3211        V = getZeroVector(MVT::v8i16, DAG);
3212      else
3213        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3214      First = false;
3215    }
3216
3217    if ((i & 1) != 0) {
3218      SDOperand ThisElt(0, 0), LastElt(0, 0);
3219      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3220      if (LastIsNonZero) {
3221        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3222      }
3223      if (ThisIsNonZero) {
3224        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3225        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3226                              ThisElt, DAG.getConstant(8, MVT::i8));
3227        if (LastIsNonZero)
3228          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3229      } else
3230        ThisElt = LastElt;
3231
3232      if (ThisElt.Val)
3233        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3234                        DAG.getConstant(i/2, TLI.getPointerTy()));
3235    }
3236  }
3237
3238  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3239}
3240
3241/// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16.
3242///
3243static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3244                                       unsigned NumNonZero, unsigned NumZero,
3245                                       SelectionDAG &DAG, TargetLowering &TLI) {
3246  if (NumNonZero > 4)
3247    return SDOperand();
3248
3249  SDOperand V(0, 0);
3250  bool First = true;
3251  for (unsigned i = 0; i < 8; ++i) {
3252    bool isNonZero = (NonZeros & (1 << i)) != 0;
3253    if (isNonZero) {
3254      if (First) {
3255        if (NumZero)
3256          V = getZeroVector(MVT::v8i16, DAG);
3257        else
3258          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3259        First = false;
3260      }
3261      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3262                      DAG.getConstant(i, TLI.getPointerTy()));
3263    }
3264  }
3265
3266  return V;
3267}
3268
3269SDOperand
3270X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3271  // All zero's are handled with pxor.
3272  if (ISD::isBuildVectorAllZeros(Op.Val))
3273    return Op;
3274
3275  // All one's are handled with pcmpeqd.
3276  if (ISD::isBuildVectorAllOnes(Op.Val))
3277    return Op;
3278
3279  MVT::ValueType VT = Op.getValueType();
3280  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
3281  unsigned EVTBits = MVT::getSizeInBits(EVT);
3282
3283  unsigned NumElems = Op.getNumOperands();
3284  unsigned NumZero  = 0;
3285  unsigned NumNonZero = 0;
3286  unsigned NonZeros = 0;
3287  std::set<SDOperand> Values;
3288  for (unsigned i = 0; i < NumElems; ++i) {
3289    SDOperand Elt = Op.getOperand(i);
3290    if (Elt.getOpcode() != ISD::UNDEF) {
3291      Values.insert(Elt);
3292      if (isZeroNode(Elt))
3293        NumZero++;
3294      else {
3295        NonZeros |= (1 << i);
3296        NumNonZero++;
3297      }
3298    }
3299  }
3300
3301  if (NumNonZero == 0)
3302    // Must be a mix of zero and undef. Return a zero vector.
3303    return getZeroVector(VT, DAG);
3304
3305  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3306  if (Values.size() == 1)
3307    return SDOperand();
3308
3309  // Special case for single non-zero element.
3310  if (NumNonZero == 1) {
3311    unsigned Idx = CountTrailingZeros_32(NonZeros);
3312    SDOperand Item = Op.getOperand(Idx);
3313    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3314    if (Idx == 0)
3315      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3316      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3317                                         NumZero > 0, DAG);
3318
3319    if (EVTBits == 32) {
3320      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3321      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3322                                         DAG);
3323      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3324      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3325      std::vector<SDOperand> MaskVec;
3326      for (unsigned i = 0; i < NumElems; i++)
3327        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3328      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3329                                   &MaskVec[0], MaskVec.size());
3330      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3331                         DAG.getNode(ISD::UNDEF, VT), Mask);
3332    }
3333  }
3334
3335  // Let legalizer expand 2-wide build_vector's.
3336  if (EVTBits == 64)
3337    return SDOperand();
3338
3339  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3340  if (EVTBits == 8) {
3341    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3342                                        *this);
3343    if (V.Val) return V;
3344  }
3345
3346  if (EVTBits == 16) {
3347    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3348                                        *this);
3349    if (V.Val) return V;
3350  }
3351
3352  // If element VT is == 32 bits, turn it into a number of shuffles.
3353  std::vector<SDOperand> V(NumElems);
3354  if (NumElems == 4 && NumZero > 0) {
3355    for (unsigned i = 0; i < 4; ++i) {
3356      bool isZero = !(NonZeros & (1 << i));
3357      if (isZero)
3358        V[i] = getZeroVector(VT, DAG);
3359      else
3360        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3361    }
3362
3363    for (unsigned i = 0; i < 2; ++i) {
3364      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3365        default: break;
3366        case 0:
3367          V[i] = V[i*2];  // Must be a zero vector.
3368          break;
3369        case 1:
3370          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3371                             getMOVLMask(NumElems, DAG));
3372          break;
3373        case 2:
3374          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3375                             getMOVLMask(NumElems, DAG));
3376          break;
3377        case 3:
3378          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3379                             getUnpacklMask(NumElems, DAG));
3380          break;
3381      }
3382    }
3383
3384    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3385    // clears the upper bits.
3386    // FIXME: we can do the same for v4f32 case when we know both parts of
3387    // the lower half come from scalar_to_vector (loadf32). We should do
3388    // that in post legalizer dag combiner with target specific hooks.
3389    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3390      return V[0];
3391    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3392    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
3393    std::vector<SDOperand> MaskVec;
3394    bool Reverse = (NonZeros & 0x3) == 2;
3395    for (unsigned i = 0; i < 2; ++i)
3396      if (Reverse)
3397        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3398      else
3399        MaskVec.push_back(DAG.getConstant(i, EVT));
3400    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3401    for (unsigned i = 0; i < 2; ++i)
3402      if (Reverse)
3403        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3404      else
3405        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3406    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3407                                     &MaskVec[0], MaskVec.size());
3408    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3409  }
3410
3411  if (Values.size() > 2) {
3412    // Expand into a number of unpckl*.
3413    // e.g. for v4f32
3414    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3415    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3416    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3417    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3418    for (unsigned i = 0; i < NumElems; ++i)
3419      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3420    NumElems >>= 1;
3421    while (NumElems != 0) {
3422      for (unsigned i = 0; i < NumElems; ++i)
3423        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3424                           UnpckMask);
3425      NumElems >>= 1;
3426    }
3427    return V[0];
3428  }
3429
3430  return SDOperand();
3431}
3432
3433SDOperand
3434X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3435  SDOperand V1 = Op.getOperand(0);
3436  SDOperand V2 = Op.getOperand(1);
3437  SDOperand PermMask = Op.getOperand(2);
3438  MVT::ValueType VT = Op.getValueType();
3439  unsigned NumElems = PermMask.getNumOperands();
3440  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3441  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3442  bool V1IsSplat = false;
3443  bool V2IsSplat = false;
3444
3445  if (isUndefShuffle(Op.Val))
3446    return DAG.getNode(ISD::UNDEF, VT);
3447
3448  if (isSplatMask(PermMask.Val)) {
3449    if (NumElems <= 4) return Op;
3450    // Promote it to a v4i32 splat.
3451    return PromoteSplat(Op, DAG);
3452  }
3453
3454  if (X86::isMOVLMask(PermMask.Val))
3455    return (V1IsUndef) ? V2 : Op;
3456
3457  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3458      X86::isMOVSLDUPMask(PermMask.Val) ||
3459      X86::isMOVHLPSMask(PermMask.Val) ||
3460      X86::isMOVHPMask(PermMask.Val) ||
3461      X86::isMOVLPMask(PermMask.Val))
3462    return Op;
3463
3464  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3465      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3466    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3467
3468  bool Commuted = false;
3469  V1IsSplat = isSplatVector(V1.Val);
3470  V2IsSplat = isSplatVector(V2.Val);
3471  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3472    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3473    std::swap(V1IsSplat, V2IsSplat);
3474    std::swap(V1IsUndef, V2IsUndef);
3475    Commuted = true;
3476  }
3477
3478  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3479    if (V2IsUndef) return V1;
3480    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3481    if (V2IsSplat) {
3482      // V2 is a splat, so the mask may be malformed. That is, it may point
3483      // to any V2 element. The instruction selectior won't like this. Get
3484      // a corrected mask and commute to form a proper MOVS{S|D}.
3485      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3486      if (NewMask.Val != PermMask.Val)
3487        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3488    }
3489    return Op;
3490  }
3491
3492  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3493      X86::isUNPCKLMask(PermMask.Val) ||
3494      X86::isUNPCKHMask(PermMask.Val))
3495    return Op;
3496
3497  if (V2IsSplat) {
3498    // Normalize mask so all entries that point to V2 points to its first
3499    // element then try to match unpck{h|l} again. If match, return a
3500    // new vector_shuffle with the corrected mask.
3501    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3502    if (NewMask.Val != PermMask.Val) {
3503      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3504        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3505        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3506      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3507        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3508        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3509      }
3510    }
3511  }
3512
3513  // Normalize the node to match x86 shuffle ops if needed
3514  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3515      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3516
3517  if (Commuted) {
3518    // Commute is back and try unpck* again.
3519    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3520    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3521        X86::isUNPCKLMask(PermMask.Val) ||
3522        X86::isUNPCKHMask(PermMask.Val))
3523      return Op;
3524  }
3525
3526  // If VT is integer, try PSHUF* first, then SHUFP*.
3527  if (MVT::isInteger(VT)) {
3528    if (X86::isPSHUFDMask(PermMask.Val) ||
3529        X86::isPSHUFHWMask(PermMask.Val) ||
3530        X86::isPSHUFLWMask(PermMask.Val)) {
3531      if (V2.getOpcode() != ISD::UNDEF)
3532        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3533                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3534      return Op;
3535    }
3536
3537    if (X86::isSHUFPMask(PermMask.Val))
3538      return Op;
3539
3540    // Handle v8i16 shuffle high / low shuffle node pair.
3541    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3542      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3543      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3544      std::vector<SDOperand> MaskVec;
3545      for (unsigned i = 0; i != 4; ++i)
3546        MaskVec.push_back(PermMask.getOperand(i));
3547      for (unsigned i = 4; i != 8; ++i)
3548        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3549      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3550                                   &MaskVec[0], MaskVec.size());
3551      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3552      MaskVec.clear();
3553      for (unsigned i = 0; i != 4; ++i)
3554        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3555      for (unsigned i = 4; i != 8; ++i)
3556        MaskVec.push_back(PermMask.getOperand(i));
3557      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3558      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3559    }
3560  } else {
3561    // Floating point cases in the other order.
3562    if (X86::isSHUFPMask(PermMask.Val))
3563      return Op;
3564    if (X86::isPSHUFDMask(PermMask.Val) ||
3565        X86::isPSHUFHWMask(PermMask.Val) ||
3566        X86::isPSHUFLWMask(PermMask.Val)) {
3567      if (V2.getOpcode() != ISD::UNDEF)
3568        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3569                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3570      return Op;
3571    }
3572  }
3573
3574  if (NumElems == 4) {
3575    MVT::ValueType MaskVT = PermMask.getValueType();
3576    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
3577    std::vector<std::pair<int, int> > Locs;
3578    Locs.reserve(NumElems);
3579    std::vector<SDOperand> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3580    std::vector<SDOperand> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3581    unsigned NumHi = 0;
3582    unsigned NumLo = 0;
3583    // If no more than two elements come from either vector. This can be
3584    // implemented with two shuffles. First shuffle gather the elements.
3585    // The second shuffle, which takes the first shuffle as both of its
3586    // vector operands, put the elements into the right order.
3587    for (unsigned i = 0; i != NumElems; ++i) {
3588      SDOperand Elt = PermMask.getOperand(i);
3589      if (Elt.getOpcode() == ISD::UNDEF) {
3590        Locs[i] = std::make_pair(-1, -1);
3591      } else {
3592        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3593        if (Val < NumElems) {
3594          Locs[i] = std::make_pair(0, NumLo);
3595          Mask1[NumLo] = Elt;
3596          NumLo++;
3597        } else {
3598          Locs[i] = std::make_pair(1, NumHi);
3599          if (2+NumHi < NumElems)
3600            Mask1[2+NumHi] = Elt;
3601          NumHi++;
3602        }
3603      }
3604    }
3605    if (NumLo <= 2 && NumHi <= 2) {
3606      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3607                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3608                                   &Mask1[0], Mask1.size()));
3609      for (unsigned i = 0; i != NumElems; ++i) {
3610        if (Locs[i].first == -1)
3611          continue;
3612        else {
3613          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3614          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3615          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3616        }
3617      }
3618
3619      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3620                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3621                                     &Mask2[0], Mask2.size()));
3622    }
3623
3624    // Break it into (shuffle shuffle_hi, shuffle_lo).
3625    Locs.clear();
3626    std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3627    std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3628    std::vector<SDOperand> *MaskPtr = &LoMask;
3629    unsigned MaskIdx = 0;
3630    unsigned LoIdx = 0;
3631    unsigned HiIdx = NumElems/2;
3632    for (unsigned i = 0; i != NumElems; ++i) {
3633      if (i == NumElems/2) {
3634        MaskPtr = &HiMask;
3635        MaskIdx = 1;
3636        LoIdx = 0;
3637        HiIdx = NumElems/2;
3638      }
3639      SDOperand Elt = PermMask.getOperand(i);
3640      if (Elt.getOpcode() == ISD::UNDEF) {
3641        Locs[i] = std::make_pair(-1, -1);
3642      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3643        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3644        (*MaskPtr)[LoIdx] = Elt;
3645        LoIdx++;
3646      } else {
3647        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3648        (*MaskPtr)[HiIdx] = Elt;
3649        HiIdx++;
3650      }
3651    }
3652
3653    SDOperand LoShuffle =
3654      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3655                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3656                              &LoMask[0], LoMask.size()));
3657    SDOperand HiShuffle =
3658      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3659                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3660                              &HiMask[0], HiMask.size()));
3661    std::vector<SDOperand> MaskOps;
3662    for (unsigned i = 0; i != NumElems; ++i) {
3663      if (Locs[i].first == -1) {
3664        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3665      } else {
3666        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3667        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3668      }
3669    }
3670    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3671                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3672                                   &MaskOps[0], MaskOps.size()));
3673  }
3674
3675  return SDOperand();
3676}
3677
3678SDOperand
3679X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3680  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3681    return SDOperand();
3682
3683  MVT::ValueType VT = Op.getValueType();
3684  // TODO: handle v16i8.
3685  if (MVT::getSizeInBits(VT) == 16) {
3686    // Transform it so it match pextrw which produces a 32-bit result.
3687    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3688    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3689                                    Op.getOperand(0), Op.getOperand(1));
3690    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3691                                    DAG.getValueType(VT));
3692    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3693  } else if (MVT::getSizeInBits(VT) == 32) {
3694    SDOperand Vec = Op.getOperand(0);
3695    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3696    if (Idx == 0)
3697      return Op;
3698    // SHUFPS the element to the lowest double word, then movss.
3699    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3700    std::vector<SDOperand> IdxVec;
3701    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
3702    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3703    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3704    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3705    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3706                                 &IdxVec[0], IdxVec.size());
3707    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3708                      Vec, Vec, Mask);
3709    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3710                       DAG.getConstant(0, getPointerTy()));
3711  } else if (MVT::getSizeInBits(VT) == 64) {
3712    SDOperand Vec = Op.getOperand(0);
3713    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3714    if (Idx == 0)
3715      return Op;
3716
3717    // UNPCKHPD the element to the lowest double word, then movsd.
3718    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3719    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3720    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3721    std::vector<SDOperand> IdxVec;
3722    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
3723    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
3724    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3725                                 &IdxVec[0], IdxVec.size());
3726    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3727                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3728    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3729                       DAG.getConstant(0, getPointerTy()));
3730  }
3731
3732  return SDOperand();
3733}
3734
3735SDOperand
3736X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3737  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3738  // as its second argument.
3739  MVT::ValueType VT = Op.getValueType();
3740  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
3741  SDOperand N0 = Op.getOperand(0);
3742  SDOperand N1 = Op.getOperand(1);
3743  SDOperand N2 = Op.getOperand(2);
3744  if (MVT::getSizeInBits(BaseVT) == 16) {
3745    if (N1.getValueType() != MVT::i32)
3746      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3747    if (N2.getValueType() != MVT::i32)
3748      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
3749    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3750  } else if (MVT::getSizeInBits(BaseVT) == 32) {
3751    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3752    if (Idx == 0) {
3753      // Use a movss.
3754      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3755      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3756      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
3757      std::vector<SDOperand> MaskVec;
3758      MaskVec.push_back(DAG.getConstant(4, BaseVT));
3759      for (unsigned i = 1; i <= 3; ++i)
3760        MaskVec.push_back(DAG.getConstant(i, BaseVT));
3761      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3762                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3763                                     &MaskVec[0], MaskVec.size()));
3764    } else {
3765      // Use two pinsrw instructions to insert a 32 bit value.
3766      Idx <<= 1;
3767      if (MVT::isFloatingPoint(N1.getValueType())) {
3768        if (ISD::isNON_EXTLoad(N1.Val)) {
3769          // Just load directly from f32mem to GR32.
3770          LoadSDNode *LD = cast<LoadSDNode>(N1);
3771          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
3772                           LD->getSrcValue(), LD->getSrcValueOffset());
3773        } else {
3774          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3775          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3776          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3777                           DAG.getConstant(0, getPointerTy()));
3778        }
3779      }
3780      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3781      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3782                       DAG.getConstant(Idx, getPointerTy()));
3783      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3784      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3785                       DAG.getConstant(Idx+1, getPointerTy()));
3786      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3787    }
3788  }
3789
3790  return SDOperand();
3791}
3792
3793SDOperand
3794X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3795  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3796  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3797}
3798
3799// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3800// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3801// one of the above mentioned nodes. It has to be wrapped because otherwise
3802// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3803// be used to form addressing mode. These wrapped nodes will be selected
3804// into MOV32ri.
3805SDOperand
3806X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3807  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3808  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
3809                                 DAG.getTargetConstantPool(CP->getConstVal(),
3810                                                           getPointerTy(),
3811                                                           CP->getAlignment()));
3812  if (Subtarget->isTargetDarwin()) {
3813    // With PIC, the address is actually $g + Offset.
3814    if (!Subtarget->is64Bit() &&
3815        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3816      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3817                    DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result);
3818  }
3819
3820  return Result;
3821}
3822
3823SDOperand
3824X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3825  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3826  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
3827                                 DAG.getTargetGlobalAddress(GV,
3828                                                            getPointerTy()));
3829  if (Subtarget->isTargetDarwin()) {
3830    // With PIC, the address is actually $g + Offset.
3831    if (!Subtarget->is64Bit() &&
3832        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3833      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3834                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3835                           Result);
3836
3837    // For Darwin, external and weak symbols are indirect, so we want to load
3838    // the value at address GV, not the value of GV itself. This means that
3839    // the GlobalAddress must be in the base or index register of the address,
3840    // not the GV offset field.
3841    if (getTargetMachine().getRelocationModel() != Reloc::Static &&
3842        DarwinGVRequiresExtraLoad(GV))
3843      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3844  } else if (Subtarget->isTargetCygwin() || Subtarget->isTargetWindows()) {
3845    // FIXME: What about PIC?
3846    if (WindowsGVRequiresExtraLoad(GV))
3847      Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3848  }
3849
3850
3851  return Result;
3852}
3853
3854SDOperand
3855X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3856  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3857  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
3858                                 DAG.getTargetExternalSymbol(Sym,
3859                                                             getPointerTy()));
3860  if (Subtarget->isTargetDarwin()) {
3861    // With PIC, the address is actually $g + Offset.
3862    if (!Subtarget->is64Bit() &&
3863        getTargetMachine().getRelocationModel() == Reloc::PIC_)
3864      Result = DAG.getNode(ISD::ADD, getPointerTy(),
3865                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3866                           Result);
3867  }
3868
3869  return Result;
3870}
3871
3872SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3873    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3874           "Not an i64 shift!");
3875    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3876    SDOperand ShOpLo = Op.getOperand(0);
3877    SDOperand ShOpHi = Op.getOperand(1);
3878    SDOperand ShAmt  = Op.getOperand(2);
3879    SDOperand Tmp1 = isSRA ?
3880      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3881      DAG.getConstant(0, MVT::i32);
3882
3883    SDOperand Tmp2, Tmp3;
3884    if (Op.getOpcode() == ISD::SHL_PARTS) {
3885      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3886      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3887    } else {
3888      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3889      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3890    }
3891
3892    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3893    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3894                                    DAG.getConstant(32, MVT::i8));
3895    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3896    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3897
3898    SDOperand Hi, Lo;
3899    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3900
3901    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3902    SmallVector<SDOperand, 4> Ops;
3903    if (Op.getOpcode() == ISD::SHL_PARTS) {
3904      Ops.push_back(Tmp2);
3905      Ops.push_back(Tmp3);
3906      Ops.push_back(CC);
3907      Ops.push_back(InFlag);
3908      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3909      InFlag = Hi.getValue(1);
3910
3911      Ops.clear();
3912      Ops.push_back(Tmp3);
3913      Ops.push_back(Tmp1);
3914      Ops.push_back(CC);
3915      Ops.push_back(InFlag);
3916      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3917    } else {
3918      Ops.push_back(Tmp2);
3919      Ops.push_back(Tmp3);
3920      Ops.push_back(CC);
3921      Ops.push_back(InFlag);
3922      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3923      InFlag = Lo.getValue(1);
3924
3925      Ops.clear();
3926      Ops.push_back(Tmp3);
3927      Ops.push_back(Tmp1);
3928      Ops.push_back(CC);
3929      Ops.push_back(InFlag);
3930      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3931    }
3932
3933    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3934    Ops.clear();
3935    Ops.push_back(Lo);
3936    Ops.push_back(Hi);
3937    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3938}
3939
3940SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3941  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3942         Op.getOperand(0).getValueType() >= MVT::i16 &&
3943         "Unknown SINT_TO_FP to lower!");
3944
3945  SDOperand Result;
3946  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3947  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3948  MachineFunction &MF = DAG.getMachineFunction();
3949  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3950  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3951  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3952                                 StackSlot, NULL, 0);
3953
3954  // Build the FILD
3955  std::vector<MVT::ValueType> Tys;
3956  Tys.push_back(MVT::f64);
3957  Tys.push_back(MVT::Other);
3958  if (X86ScalarSSE) Tys.push_back(MVT::Flag);
3959  std::vector<SDOperand> Ops;
3960  Ops.push_back(Chain);
3961  Ops.push_back(StackSlot);
3962  Ops.push_back(DAG.getValueType(SrcVT));
3963  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3964                       Tys, &Ops[0], Ops.size());
3965
3966  if (X86ScalarSSE) {
3967    Chain = Result.getValue(1);
3968    SDOperand InFlag = Result.getValue(2);
3969
3970    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3971    // shouldn't be necessary except that RFP cannot be live across
3972    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3973    MachineFunction &MF = DAG.getMachineFunction();
3974    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3975    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3976    std::vector<MVT::ValueType> Tys;
3977    Tys.push_back(MVT::Other);
3978    std::vector<SDOperand> Ops;
3979    Ops.push_back(Chain);
3980    Ops.push_back(Result);
3981    Ops.push_back(StackSlot);
3982    Ops.push_back(DAG.getValueType(Op.getValueType()));
3983    Ops.push_back(InFlag);
3984    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3985    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3986  }
3987
3988  return Result;
3989}
3990
3991SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3992  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3993         "Unknown FP_TO_SINT to lower!");
3994  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3995  // stack slot.
3996  MachineFunction &MF = DAG.getMachineFunction();
3997  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3998  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3999  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4000
4001  unsigned Opc;
4002  switch (Op.getValueType()) {
4003    default: assert(0 && "Invalid FP_TO_SINT to lower!");
4004    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4005    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4006    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4007  }
4008
4009  SDOperand Chain = DAG.getEntryNode();
4010  SDOperand Value = Op.getOperand(0);
4011  if (X86ScalarSSE) {
4012    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4013    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
4014    std::vector<MVT::ValueType> Tys;
4015    Tys.push_back(MVT::f64);
4016    Tys.push_back(MVT::Other);
4017    std::vector<SDOperand> Ops;
4018    Ops.push_back(Chain);
4019    Ops.push_back(StackSlot);
4020    Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType()));
4021    Value = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
4022    Chain = Value.getValue(1);
4023    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4024    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4025  }
4026
4027  // Build the FP_TO_INT*_IN_MEM
4028  std::vector<SDOperand> Ops;
4029  Ops.push_back(Chain);
4030  Ops.push_back(Value);
4031  Ops.push_back(StackSlot);
4032  SDOperand FIST = DAG.getNode(Opc, MVT::Other, &Ops[0], Ops.size());
4033
4034  // Load the result.
4035  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4036}
4037
4038SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4039  MVT::ValueType VT = Op.getValueType();
4040  const Type *OpNTy =  MVT::getTypeForValueType(VT);
4041  std::vector<Constant*> CV;
4042  if (VT == MVT::f64) {
4043    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
4044    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4045  } else {
4046    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
4047    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4048    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4049    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4050  }
4051  Constant *CS = ConstantStruct::get(CV);
4052  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
4053  std::vector<MVT::ValueType> Tys;
4054  Tys.push_back(VT);
4055  Tys.push_back(MVT::Other);
4056  SmallVector<SDOperand, 3> Ops;
4057  Ops.push_back(DAG.getEntryNode());
4058  Ops.push_back(CPIdx);
4059  Ops.push_back(DAG.getSrcValue(NULL));
4060  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
4061  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4062}
4063
4064SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4065  MVT::ValueType VT = Op.getValueType();
4066  const Type *OpNTy =  MVT::getTypeForValueType(VT);
4067  std::vector<Constant*> CV;
4068  if (VT == MVT::f64) {
4069    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
4070    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4071  } else {
4072    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
4073    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4074    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4075    CV.push_back(ConstantFP::get(OpNTy, 0.0));
4076  }
4077  Constant *CS = ConstantStruct::get(CV);
4078  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
4079  std::vector<MVT::ValueType> Tys;
4080  Tys.push_back(VT);
4081  Tys.push_back(MVT::Other);
4082  SmallVector<SDOperand, 3> Ops;
4083  Ops.push_back(DAG.getEntryNode());
4084  Ops.push_back(CPIdx);
4085  Ops.push_back(DAG.getSrcValue(NULL));
4086  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
4087  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4088}
4089
4090SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
4091                                        SDOperand Chain) {
4092  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4093  SDOperand Cond;
4094  SDOperand Op0 = Op.getOperand(0);
4095  SDOperand Op1 = Op.getOperand(1);
4096  SDOperand CC = Op.getOperand(2);
4097  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4098  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4099  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4100  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4101  unsigned X86CC;
4102
4103  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4104                     Op0, Op1, DAG)) {
4105    SDOperand Ops1[] = { Chain, Op0, Op1 };
4106    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
4107    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4108    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4109  }
4110
4111  assert(isFP && "Illegal integer SetCC!");
4112
4113  SDOperand COps[] = { Chain, Op0, Op1 };
4114  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
4115
4116  switch (SetCCOpcode) {
4117  default: assert(false && "Illegal floating point SetCC!");
4118  case ISD::SETOEQ: {  // !PF & ZF
4119    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
4120    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
4121    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
4122                         Tmp1.getValue(1) };
4123    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4124    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4125  }
4126  case ISD::SETUNE: {  // PF | !ZF
4127    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
4128    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
4129    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
4130                         Tmp1.getValue(1) };
4131    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
4132    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4133  }
4134  }
4135}
4136
4137SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4138  bool addTest = true;
4139  SDOperand Chain = DAG.getEntryNode();
4140  SDOperand Cond  = Op.getOperand(0);
4141  SDOperand CC;
4142  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4143
4144  if (Cond.getOpcode() == ISD::SETCC)
4145    Cond = LowerSETCC(Cond, DAG, Chain);
4146
4147  if (Cond.getOpcode() == X86ISD::SETCC) {
4148    CC = Cond.getOperand(0);
4149
4150    // If condition flag is set by a X86ISD::CMP, then make a copy of it
4151    // (since flag operand cannot be shared). Use it as the condition setting
4152    // operand in place of the X86ISD::SETCC.
4153    // If the X86ISD::SETCC has more than one use, then perhaps it's better
4154    // to use a test instead of duplicating the X86ISD::CMP (for register
4155    // pressure reason)?
4156    SDOperand Cmp = Cond.getOperand(1);
4157    unsigned Opc = Cmp.getOpcode();
4158    bool IllegalFPCMov = !X86ScalarSSE &&
4159      MVT::isFloatingPoint(Op.getValueType()) &&
4160      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4161    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
4162        !IllegalFPCMov) {
4163      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
4164      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
4165      addTest = false;
4166    }
4167  }
4168
4169  if (addTest) {
4170    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4171    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
4172    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
4173  }
4174
4175  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
4176  SmallVector<SDOperand, 4> Ops;
4177  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4178  // condition is true.
4179  Ops.push_back(Op.getOperand(2));
4180  Ops.push_back(Op.getOperand(1));
4181  Ops.push_back(CC);
4182  Ops.push_back(Cond.getValue(1));
4183  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4184}
4185
4186SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4187  bool addTest = true;
4188  SDOperand Chain = Op.getOperand(0);
4189  SDOperand Cond  = Op.getOperand(1);
4190  SDOperand Dest  = Op.getOperand(2);
4191  SDOperand CC;
4192  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4193
4194  if (Cond.getOpcode() == ISD::SETCC)
4195    Cond = LowerSETCC(Cond, DAG, Chain);
4196
4197  if (Cond.getOpcode() == X86ISD::SETCC) {
4198    CC = Cond.getOperand(0);
4199
4200    // If condition flag is set by a X86ISD::CMP, then make a copy of it
4201    // (since flag operand cannot be shared). Use it as the condition setting
4202    // operand in place of the X86ISD::SETCC.
4203    // If the X86ISD::SETCC has more than one use, then perhaps it's better
4204    // to use a test instead of duplicating the X86ISD::CMP (for register
4205    // pressure reason)?
4206    SDOperand Cmp = Cond.getOperand(1);
4207    unsigned Opc = Cmp.getOpcode();
4208    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
4209      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
4210      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
4211      addTest = false;
4212    }
4213  }
4214
4215  if (addTest) {
4216    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4217    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
4218    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
4219  }
4220  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4221                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
4222}
4223
4224SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4225  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4226  SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(),
4227                                 DAG.getTargetJumpTable(JT->getIndex(),
4228                                                        getPointerTy()));
4229  if (Subtarget->isTargetDarwin()) {
4230    // With PIC, the address is actually $g + Offset.
4231    if (!Subtarget->is64Bit() &&
4232        getTargetMachine().getRelocationModel() == Reloc::PIC_)
4233      Result = DAG.getNode(ISD::ADD, getPointerTy(),
4234                           DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4235                           Result);
4236  }
4237
4238  return Result;
4239}
4240
4241SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
4242  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4243
4244  if (Subtarget->is64Bit())
4245    return LowerX86_64CCCCallTo(Op, DAG);
4246  else
4247    switch (CallingConv) {
4248    default:
4249      assert(0 && "Unsupported calling convention");
4250    case CallingConv::Fast:
4251      if (EnableFastCC) {
4252        return LowerFastCCCallTo(Op, DAG, false);
4253      }
4254      // Falls through
4255    case CallingConv::C:
4256    case CallingConv::CSRet:
4257      return LowerCCCCallTo(Op, DAG);
4258    case CallingConv::X86_StdCall:
4259      return LowerStdCallCCCallTo(Op, DAG);
4260    case CallingConv::X86_FastCall:
4261      return LowerFastCCCallTo(Op, DAG, true);
4262    }
4263}
4264
4265SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
4266  SDOperand Copy;
4267
4268  switch(Op.getNumOperands()) {
4269    default:
4270      assert(0 && "Do not know how to return this many arguments!");
4271      abort();
4272    case 1:    // ret void.
4273      return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0),
4274                        DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
4275    case 3: {
4276      MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
4277
4278      if (MVT::isVector(ArgVT) ||
4279          (Subtarget->is64Bit() && MVT::isFloatingPoint(ArgVT))) {
4280        // Integer or FP vector result -> XMM0.
4281        if (DAG.getMachineFunction().liveout_empty())
4282          DAG.getMachineFunction().addLiveOut(X86::XMM0);
4283        Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1),
4284                                SDOperand());
4285      } else if (MVT::isInteger(ArgVT)) {
4286        // Integer result -> EAX / RAX.
4287        // The C calling convention guarantees the return value has been
4288        // promoted to at least MVT::i32. The X86-64 ABI doesn't require the
4289        // value to be promoted MVT::i64. So we don't have to extend it to
4290        // 64-bit. Return the value in EAX, but mark RAX as liveout.
4291        unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4292        if (DAG.getMachineFunction().liveout_empty())
4293          DAG.getMachineFunction().addLiveOut(Reg);
4294
4295        Reg = (ArgVT == MVT::i64) ? X86::RAX : X86::EAX;
4296        Copy = DAG.getCopyToReg(Op.getOperand(0), Reg, Op.getOperand(1),
4297                                SDOperand());
4298      } else if (!X86ScalarSSE) {
4299        // FP return with fp-stack value.
4300        if (DAG.getMachineFunction().liveout_empty())
4301          DAG.getMachineFunction().addLiveOut(X86::ST0);
4302
4303        std::vector<MVT::ValueType> Tys;
4304        Tys.push_back(MVT::Other);
4305        Tys.push_back(MVT::Flag);
4306        std::vector<SDOperand> Ops;
4307        Ops.push_back(Op.getOperand(0));
4308        Ops.push_back(Op.getOperand(1));
4309        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
4310      } else {
4311        // FP return with ScalarSSE (return on fp-stack).
4312        if (DAG.getMachineFunction().liveout_empty())
4313          DAG.getMachineFunction().addLiveOut(X86::ST0);
4314
4315        SDOperand MemLoc;
4316        SDOperand Chain = Op.getOperand(0);
4317        SDOperand Value = Op.getOperand(1);
4318
4319        if (ISD::isNON_EXTLoad(Value.Val) &&
4320            (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
4321          Chain  = Value.getOperand(0);
4322          MemLoc = Value.getOperand(1);
4323        } else {
4324          // Spill the value to memory and reload it into top of stack.
4325          unsigned Size = MVT::getSizeInBits(ArgVT)/8;
4326          MachineFunction &MF = DAG.getMachineFunction();
4327          int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4328          MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
4329          Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
4330        }
4331        std::vector<MVT::ValueType> Tys;
4332        Tys.push_back(MVT::f64);
4333        Tys.push_back(MVT::Other);
4334        std::vector<SDOperand> Ops;
4335        Ops.push_back(Chain);
4336        Ops.push_back(MemLoc);
4337        Ops.push_back(DAG.getValueType(ArgVT));
4338        Copy = DAG.getNode(X86ISD::FLD, Tys, &Ops[0], Ops.size());
4339        Tys.clear();
4340        Tys.push_back(MVT::Other);
4341        Tys.push_back(MVT::Flag);
4342        Ops.clear();
4343        Ops.push_back(Copy.getValue(1));
4344        Ops.push_back(Copy);
4345        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, &Ops[0], Ops.size());
4346      }
4347      break;
4348    }
4349    case 5: {
4350      unsigned Reg1 = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
4351      unsigned Reg2 = Subtarget->is64Bit() ? X86::RDX : X86::EDX;
4352      if (DAG.getMachineFunction().liveout_empty()) {
4353        DAG.getMachineFunction().addLiveOut(Reg1);
4354        DAG.getMachineFunction().addLiveOut(Reg2);
4355      }
4356
4357      Copy = DAG.getCopyToReg(Op.getOperand(0), Reg2, Op.getOperand(3),
4358                              SDOperand());
4359      Copy = DAG.getCopyToReg(Copy, Reg1, Op.getOperand(1), Copy.getValue(1));
4360      break;
4361    }
4362  }
4363  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
4364                     Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
4365                     Copy.getValue(1));
4366}
4367
4368SDOperand
4369X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4370  MachineFunction &MF = DAG.getMachineFunction();
4371  const Function* Fn = MF.getFunction();
4372  if (Fn->hasExternalLinkage() &&
4373      Subtarget->isTargetCygwin() &&
4374      Fn->getName() == "main")
4375    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
4376
4377  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4378  if (Subtarget->is64Bit())
4379    return LowerX86_64CCCArguments(Op, DAG);
4380  else
4381    switch(CC) {
4382    default:
4383      assert(0 && "Unsupported calling convention");
4384    case CallingConv::Fast:
4385      if (EnableFastCC) {
4386        return LowerFastCCArguments(Op, DAG);
4387      }
4388      // Falls through
4389    case CallingConv::C:
4390    case CallingConv::CSRet:
4391      return LowerCCCArguments(Op, DAG);
4392    case CallingConv::X86_StdCall:
4393      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
4394      return LowerStdCallCCArguments(Op, DAG);
4395    case CallingConv::X86_FastCall:
4396      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
4397      return LowerFastCallCCArguments(Op, DAG);
4398    }
4399}
4400
4401SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4402  SDOperand InFlag(0, 0);
4403  SDOperand Chain = Op.getOperand(0);
4404  unsigned Align =
4405    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4406  if (Align == 0) Align = 1;
4407
4408  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4409  // If not DWORD aligned, call memset if size is less than the threshold.
4410  // It knows how to align to the right boundary first.
4411  if ((Align & 3) != 0 ||
4412      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4413    MVT::ValueType IntPtr = getPointerTy();
4414    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4415    std::vector<std::pair<SDOperand, const Type*> > Args;
4416    Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
4417    // Extend the ubyte argument to be an int value for the call.
4418    SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4419    Args.push_back(std::make_pair(Val, IntPtrTy));
4420    Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
4421    std::pair<SDOperand,SDOperand> CallResult =
4422      LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
4423                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4424    return CallResult.second;
4425  }
4426
4427  MVT::ValueType AVT;
4428  SDOperand Count;
4429  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4430  unsigned BytesLeft = 0;
4431  bool TwoRepStos = false;
4432  if (ValC) {
4433    unsigned ValReg;
4434    uint64_t Val = ValC->getValue() & 255;
4435
4436    // If the value is a constant, then we can potentially use larger sets.
4437    switch (Align & 3) {
4438      case 2:   // WORD aligned
4439        AVT = MVT::i16;
4440        ValReg = X86::AX;
4441        Val = (Val << 8) | Val;
4442        break;
4443      case 0:  // DWORD aligned
4444        AVT = MVT::i32;
4445        ValReg = X86::EAX;
4446        Val = (Val << 8)  | Val;
4447        Val = (Val << 16) | Val;
4448        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4449          AVT = MVT::i64;
4450          ValReg = X86::RAX;
4451          Val = (Val << 32) | Val;
4452        }
4453        break;
4454      default:  // Byte aligned
4455        AVT = MVT::i8;
4456        ValReg = X86::AL;
4457        Count = Op.getOperand(3);
4458        break;
4459    }
4460
4461    if (AVT > MVT::i8) {
4462      if (I) {
4463        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4464        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4465        BytesLeft = I->getValue() % UBytes;
4466      } else {
4467        assert(AVT >= MVT::i32 &&
4468               "Do not use rep;stos if not at least DWORD aligned");
4469        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4470                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4471        TwoRepStos = true;
4472      }
4473    }
4474
4475    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4476                              InFlag);
4477    InFlag = Chain.getValue(1);
4478  } else {
4479    AVT = MVT::i8;
4480    Count  = Op.getOperand(3);
4481    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4482    InFlag = Chain.getValue(1);
4483  }
4484
4485  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4486                            Count, InFlag);
4487  InFlag = Chain.getValue(1);
4488  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4489                            Op.getOperand(1), InFlag);
4490  InFlag = Chain.getValue(1);
4491
4492  std::vector<MVT::ValueType> Tys;
4493  Tys.push_back(MVT::Other);
4494  Tys.push_back(MVT::Flag);
4495  std::vector<SDOperand> Ops;
4496  Ops.push_back(Chain);
4497  Ops.push_back(DAG.getValueType(AVT));
4498  Ops.push_back(InFlag);
4499  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4500
4501  if (TwoRepStos) {
4502    InFlag = Chain.getValue(1);
4503    Count = Op.getOperand(3);
4504    MVT::ValueType CVT = Count.getValueType();
4505    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4506                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4507    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4508                              Left, InFlag);
4509    InFlag = Chain.getValue(1);
4510    Tys.clear();
4511    Tys.push_back(MVT::Other);
4512    Tys.push_back(MVT::Flag);
4513    Ops.clear();
4514    Ops.push_back(Chain);
4515    Ops.push_back(DAG.getValueType(MVT::i8));
4516    Ops.push_back(InFlag);
4517    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4518  } else if (BytesLeft) {
4519    // Issue stores for the last 1 - 7 bytes.
4520    SDOperand Value;
4521    unsigned Val = ValC->getValue() & 255;
4522    unsigned Offset = I->getValue() - BytesLeft;
4523    SDOperand DstAddr = Op.getOperand(1);
4524    MVT::ValueType AddrVT = DstAddr.getValueType();
4525    if (BytesLeft >= 4) {
4526      Val = (Val << 8)  | Val;
4527      Val = (Val << 16) | Val;
4528      Value = DAG.getConstant(Val, MVT::i32);
4529      Chain = DAG.getStore(Chain, Value,
4530                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4531                                       DAG.getConstant(Offset, AddrVT)),
4532                           NULL, 0);
4533      BytesLeft -= 4;
4534      Offset += 4;
4535    }
4536    if (BytesLeft >= 2) {
4537      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4538      Chain = DAG.getStore(Chain, Value,
4539                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4540                                       DAG.getConstant(Offset, AddrVT)),
4541                           NULL, 0);
4542      BytesLeft -= 2;
4543      Offset += 2;
4544    }
4545    if (BytesLeft == 1) {
4546      Value = DAG.getConstant(Val, MVT::i8);
4547      Chain = DAG.getStore(Chain, Value,
4548                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4549                                       DAG.getConstant(Offset, AddrVT)),
4550                           NULL, 0);
4551    }
4552  }
4553
4554  return Chain;
4555}
4556
4557SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
4558  SDOperand Chain = Op.getOperand(0);
4559  unsigned Align =
4560    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4561  if (Align == 0) Align = 1;
4562
4563  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4564  // If not DWORD aligned, call memcpy if size is less than the threshold.
4565  // It knows how to align to the right boundary first.
4566  if ((Align & 3) != 0 ||
4567      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
4568    MVT::ValueType IntPtr = getPointerTy();
4569    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4570    std::vector<std::pair<SDOperand, const Type*> > Args;
4571    Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy));
4572    Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy));
4573    Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy));
4574    std::pair<SDOperand,SDOperand> CallResult =
4575      LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false,
4576                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
4577    return CallResult.second;
4578  }
4579
4580  MVT::ValueType AVT;
4581  SDOperand Count;
4582  unsigned BytesLeft = 0;
4583  bool TwoRepMovs = false;
4584  switch (Align & 3) {
4585    case 2:   // WORD aligned
4586      AVT = MVT::i16;
4587      break;
4588    case 0:  // DWORD aligned
4589      AVT = MVT::i32;
4590      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4591        AVT = MVT::i64;
4592      break;
4593    default:  // Byte aligned
4594      AVT = MVT::i8;
4595      Count = Op.getOperand(3);
4596      break;
4597  }
4598
4599  if (AVT > MVT::i8) {
4600    if (I) {
4601      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4602      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4603      BytesLeft = I->getValue() % UBytes;
4604    } else {
4605      assert(AVT >= MVT::i32 &&
4606             "Do not use rep;movs if not at least DWORD aligned");
4607      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4608                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4609      TwoRepMovs = true;
4610    }
4611  }
4612
4613  SDOperand InFlag(0, 0);
4614  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4615                            Count, InFlag);
4616  InFlag = Chain.getValue(1);
4617  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4618                            Op.getOperand(1), InFlag);
4619  InFlag = Chain.getValue(1);
4620  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4621                            Op.getOperand(2), InFlag);
4622  InFlag = Chain.getValue(1);
4623
4624  std::vector<MVT::ValueType> Tys;
4625  Tys.push_back(MVT::Other);
4626  Tys.push_back(MVT::Flag);
4627  std::vector<SDOperand> Ops;
4628  Ops.push_back(Chain);
4629  Ops.push_back(DAG.getValueType(AVT));
4630  Ops.push_back(InFlag);
4631  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4632
4633  if (TwoRepMovs) {
4634    InFlag = Chain.getValue(1);
4635    Count = Op.getOperand(3);
4636    MVT::ValueType CVT = Count.getValueType();
4637    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4638                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4639    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4640                              Left, InFlag);
4641    InFlag = Chain.getValue(1);
4642    Tys.clear();
4643    Tys.push_back(MVT::Other);
4644    Tys.push_back(MVT::Flag);
4645    Ops.clear();
4646    Ops.push_back(Chain);
4647    Ops.push_back(DAG.getValueType(MVT::i8));
4648    Ops.push_back(InFlag);
4649    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4650  } else if (BytesLeft) {
4651    // Issue loads and stores for the last 1 - 7 bytes.
4652    unsigned Offset = I->getValue() - BytesLeft;
4653    SDOperand DstAddr = Op.getOperand(1);
4654    MVT::ValueType DstVT = DstAddr.getValueType();
4655    SDOperand SrcAddr = Op.getOperand(2);
4656    MVT::ValueType SrcVT = SrcAddr.getValueType();
4657    SDOperand Value;
4658    if (BytesLeft >= 4) {
4659      Value = DAG.getLoad(MVT::i32, Chain,
4660                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4661                                      DAG.getConstant(Offset, SrcVT)),
4662                          NULL, 0);
4663      Chain = Value.getValue(1);
4664      Chain = DAG.getStore(Chain, Value,
4665                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4666                                       DAG.getConstant(Offset, DstVT)),
4667                           NULL, 0);
4668      BytesLeft -= 4;
4669      Offset += 4;
4670    }
4671    if (BytesLeft >= 2) {
4672      Value = DAG.getLoad(MVT::i16, Chain,
4673                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4674                                      DAG.getConstant(Offset, SrcVT)),
4675                          NULL, 0);
4676      Chain = Value.getValue(1);
4677      Chain = DAG.getStore(Chain, Value,
4678                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4679                                       DAG.getConstant(Offset, DstVT)),
4680                           NULL, 0);
4681      BytesLeft -= 2;
4682      Offset += 2;
4683    }
4684
4685    if (BytesLeft == 1) {
4686      Value = DAG.getLoad(MVT::i8, Chain,
4687                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4688                                      DAG.getConstant(Offset, SrcVT)),
4689                          NULL, 0);
4690      Chain = Value.getValue(1);
4691      Chain = DAG.getStore(Chain, Value,
4692                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4693                                       DAG.getConstant(Offset, DstVT)),
4694                           NULL, 0);
4695    }
4696  }
4697
4698  return Chain;
4699}
4700
4701SDOperand
4702X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4703  std::vector<MVT::ValueType> Tys;
4704  Tys.push_back(MVT::Other);
4705  Tys.push_back(MVT::Flag);
4706  std::vector<SDOperand> Ops;
4707  Ops.push_back(Op.getOperand(0));
4708  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &Ops[0], Ops.size());
4709  Ops.clear();
4710  Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)));
4711  Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX,
4712                                   MVT::i32, Ops[0].getValue(2)));
4713  Ops.push_back(Ops[1].getValue(1));
4714  Tys[0] = Tys[1] = MVT::i32;
4715  Tys.push_back(MVT::Other);
4716  return DAG.getNode(ISD::MERGE_VALUES, Tys, &Ops[0], Ops.size());
4717}
4718
4719SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4720  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4721
4722  if (!Subtarget->is64Bit()) {
4723    // vastart just stores the address of the VarArgsFrameIndex slot into the
4724    // memory location argument.
4725    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4726    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4727                        SV->getOffset());
4728  }
4729
4730  // __va_list_tag:
4731  //   gp_offset         (0 - 6 * 8)
4732  //   fp_offset         (48 - 48 + 8 * 16)
4733  //   overflow_arg_area (point to parameters coming in memory).
4734  //   reg_save_area
4735  std::vector<SDOperand> MemOps;
4736  SDOperand FIN = Op.getOperand(1);
4737  // Store gp_offset
4738  SDOperand Store = DAG.getStore(Op.getOperand(0),
4739                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4740                                 FIN, SV->getValue(), SV->getOffset());
4741  MemOps.push_back(Store);
4742
4743  // Store fp_offset
4744  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4745                    DAG.getConstant(4, getPointerTy()));
4746  Store = DAG.getStore(Op.getOperand(0),
4747                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4748                       FIN, SV->getValue(), SV->getOffset());
4749  MemOps.push_back(Store);
4750
4751  // Store ptr to overflow_arg_area
4752  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4753                    DAG.getConstant(4, getPointerTy()));
4754  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4755  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4756                       SV->getOffset());
4757  MemOps.push_back(Store);
4758
4759  // Store ptr to reg_save_area.
4760  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4761                    DAG.getConstant(8, getPointerTy()));
4762  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4763  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4764                       SV->getOffset());
4765  MemOps.push_back(Store);
4766  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4767}
4768
4769SDOperand
4770X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4771  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4772  switch (IntNo) {
4773  default: return SDOperand();    // Don't custom lower most intrinsics.
4774    // Comparison intrinsics.
4775  case Intrinsic::x86_sse_comieq_ss:
4776  case Intrinsic::x86_sse_comilt_ss:
4777  case Intrinsic::x86_sse_comile_ss:
4778  case Intrinsic::x86_sse_comigt_ss:
4779  case Intrinsic::x86_sse_comige_ss:
4780  case Intrinsic::x86_sse_comineq_ss:
4781  case Intrinsic::x86_sse_ucomieq_ss:
4782  case Intrinsic::x86_sse_ucomilt_ss:
4783  case Intrinsic::x86_sse_ucomile_ss:
4784  case Intrinsic::x86_sse_ucomigt_ss:
4785  case Intrinsic::x86_sse_ucomige_ss:
4786  case Intrinsic::x86_sse_ucomineq_ss:
4787  case Intrinsic::x86_sse2_comieq_sd:
4788  case Intrinsic::x86_sse2_comilt_sd:
4789  case Intrinsic::x86_sse2_comile_sd:
4790  case Intrinsic::x86_sse2_comigt_sd:
4791  case Intrinsic::x86_sse2_comige_sd:
4792  case Intrinsic::x86_sse2_comineq_sd:
4793  case Intrinsic::x86_sse2_ucomieq_sd:
4794  case Intrinsic::x86_sse2_ucomilt_sd:
4795  case Intrinsic::x86_sse2_ucomile_sd:
4796  case Intrinsic::x86_sse2_ucomigt_sd:
4797  case Intrinsic::x86_sse2_ucomige_sd:
4798  case Intrinsic::x86_sse2_ucomineq_sd: {
4799    unsigned Opc = 0;
4800    ISD::CondCode CC = ISD::SETCC_INVALID;
4801    switch (IntNo) {
4802    default: break;
4803    case Intrinsic::x86_sse_comieq_ss:
4804    case Intrinsic::x86_sse2_comieq_sd:
4805      Opc = X86ISD::COMI;
4806      CC = ISD::SETEQ;
4807      break;
4808    case Intrinsic::x86_sse_comilt_ss:
4809    case Intrinsic::x86_sse2_comilt_sd:
4810      Opc = X86ISD::COMI;
4811      CC = ISD::SETLT;
4812      break;
4813    case Intrinsic::x86_sse_comile_ss:
4814    case Intrinsic::x86_sse2_comile_sd:
4815      Opc = X86ISD::COMI;
4816      CC = ISD::SETLE;
4817      break;
4818    case Intrinsic::x86_sse_comigt_ss:
4819    case Intrinsic::x86_sse2_comigt_sd:
4820      Opc = X86ISD::COMI;
4821      CC = ISD::SETGT;
4822      break;
4823    case Intrinsic::x86_sse_comige_ss:
4824    case Intrinsic::x86_sse2_comige_sd:
4825      Opc = X86ISD::COMI;
4826      CC = ISD::SETGE;
4827      break;
4828    case Intrinsic::x86_sse_comineq_ss:
4829    case Intrinsic::x86_sse2_comineq_sd:
4830      Opc = X86ISD::COMI;
4831      CC = ISD::SETNE;
4832      break;
4833    case Intrinsic::x86_sse_ucomieq_ss:
4834    case Intrinsic::x86_sse2_ucomieq_sd:
4835      Opc = X86ISD::UCOMI;
4836      CC = ISD::SETEQ;
4837      break;
4838    case Intrinsic::x86_sse_ucomilt_ss:
4839    case Intrinsic::x86_sse2_ucomilt_sd:
4840      Opc = X86ISD::UCOMI;
4841      CC = ISD::SETLT;
4842      break;
4843    case Intrinsic::x86_sse_ucomile_ss:
4844    case Intrinsic::x86_sse2_ucomile_sd:
4845      Opc = X86ISD::UCOMI;
4846      CC = ISD::SETLE;
4847      break;
4848    case Intrinsic::x86_sse_ucomigt_ss:
4849    case Intrinsic::x86_sse2_ucomigt_sd:
4850      Opc = X86ISD::UCOMI;
4851      CC = ISD::SETGT;
4852      break;
4853    case Intrinsic::x86_sse_ucomige_ss:
4854    case Intrinsic::x86_sse2_ucomige_sd:
4855      Opc = X86ISD::UCOMI;
4856      CC = ISD::SETGE;
4857      break;
4858    case Intrinsic::x86_sse_ucomineq_ss:
4859    case Intrinsic::x86_sse2_ucomineq_sd:
4860      Opc = X86ISD::UCOMI;
4861      CC = ISD::SETNE;
4862      break;
4863    }
4864
4865    unsigned X86CC;
4866    SDOperand LHS = Op.getOperand(1);
4867    SDOperand RHS = Op.getOperand(2);
4868    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4869
4870    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4871    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4872    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4873    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4874    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4875    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4876    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4877  }
4878  }
4879}
4880
4881/// LowerOperation - Provide custom lowering hooks for some operations.
4882///
4883SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4884  switch (Op.getOpcode()) {
4885  default: assert(0 && "Should not custom lower this!");
4886  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4887  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4888  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4889  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4890  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4891  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4892  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4893  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4894  case ISD::SHL_PARTS:
4895  case ISD::SRA_PARTS:
4896  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4897  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4898  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4899  case ISD::FABS:               return LowerFABS(Op, DAG);
4900  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4901  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4902  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4903  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4904  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4905  case ISD::CALL:               return LowerCALL(Op, DAG);
4906  case ISD::RET:                return LowerRET(Op, DAG);
4907  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4908  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4909  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4910  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4911  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4912  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4913  }
4914}
4915
4916const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4917  switch (Opcode) {
4918  default: return NULL;
4919  case X86ISD::SHLD:               return "X86ISD::SHLD";
4920  case X86ISD::SHRD:               return "X86ISD::SHRD";
4921  case X86ISD::FAND:               return "X86ISD::FAND";
4922  case X86ISD::FXOR:               return "X86ISD::FXOR";
4923  case X86ISD::FILD:               return "X86ISD::FILD";
4924  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4925  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4926  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4927  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4928  case X86ISD::FLD:                return "X86ISD::FLD";
4929  case X86ISD::FST:                return "X86ISD::FST";
4930  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4931  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4932  case X86ISD::CALL:               return "X86ISD::CALL";
4933  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4934  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4935  case X86ISD::CMP:                return "X86ISD::CMP";
4936  case X86ISD::COMI:               return "X86ISD::COMI";
4937  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4938  case X86ISD::SETCC:              return "X86ISD::SETCC";
4939  case X86ISD::CMOV:               return "X86ISD::CMOV";
4940  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4941  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4942  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4943  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4944  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4945  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4946  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4947  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4948  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4949  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4950  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4951  }
4952}
4953
4954/// isLegalAddressImmediate - Return true if the integer value or
4955/// GlobalValue can be used as the offset of the target addressing mode.
4956bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const {
4957  // X86 allows a sign-extended 32-bit immediate field.
4958  return (V > -(1LL << 32) && V < (1LL << 32)-1);
4959}
4960
4961bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
4962  // GV is 64-bit but displacement field is 32-bit unless we are in small code
4963  // model. Mac OS X happens to support only small PIC code model.
4964  // FIXME: better support for other OS's.
4965  if (Subtarget->is64Bit() && !Subtarget->isTargetDarwin())
4966    return false;
4967  if (Subtarget->isTargetDarwin()) {
4968    Reloc::Model RModel = getTargetMachine().getRelocationModel();
4969    if (RModel == Reloc::Static)
4970      return true;
4971    else if (RModel == Reloc::DynamicNoPIC)
4972      return !DarwinGVRequiresExtraLoad(GV);
4973    else
4974      return false;
4975  } else
4976    return true;
4977}
4978
4979/// isShuffleMaskLegal - Targets can use this to indicate that they only
4980/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4981/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4982/// are assumed to be legal.
4983bool
4984X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4985  // Only do shuffles on 128-bit vector types for now.
4986  if (MVT::getSizeInBits(VT) == 64) return false;
4987  return (Mask.Val->getNumOperands() <= 4 ||
4988          isSplatMask(Mask.Val)  ||
4989          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4990          X86::isUNPCKLMask(Mask.Val) ||
4991          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4992          X86::isUNPCKHMask(Mask.Val));
4993}
4994
4995bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4996                                               MVT::ValueType EVT,
4997                                               SelectionDAG &DAG) const {
4998  unsigned NumElts = BVOps.size();
4999  // Only do shuffles on 128-bit vector types for now.
5000  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5001  if (NumElts == 2) return true;
5002  if (NumElts == 4) {
5003    return (isMOVLMask(BVOps)  || isCommutedMOVL(BVOps, true) ||
5004            isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps));
5005  }
5006  return false;
5007}
5008
5009//===----------------------------------------------------------------------===//
5010//                           X86 Scheduler Hooks
5011//===----------------------------------------------------------------------===//
5012
5013MachineBasicBlock *
5014X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5015                                           MachineBasicBlock *BB) {
5016  switch (MI->getOpcode()) {
5017  default: assert(false && "Unexpected instr type to insert");
5018  case X86::CMOV_FR32:
5019  case X86::CMOV_FR64:
5020  case X86::CMOV_V4F32:
5021  case X86::CMOV_V2F64:
5022  case X86::CMOV_V2I64: {
5023    // To "insert" a SELECT_CC instruction, we actually have to insert the
5024    // diamond control-flow pattern.  The incoming instruction knows the
5025    // destination vreg to set, the condition code register to branch on, the
5026    // true/false values to select between, and a branch opcode to use.
5027    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5028    ilist<MachineBasicBlock>::iterator It = BB;
5029    ++It;
5030
5031    //  thisMBB:
5032    //  ...
5033    //   TrueVal = ...
5034    //   cmpTY ccX, r1, r2
5035    //   bCC copy1MBB
5036    //   fallthrough --> copy0MBB
5037    MachineBasicBlock *thisMBB = BB;
5038    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5039    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5040    unsigned Opc =
5041      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5042    BuildMI(BB, Opc, 1).addMBB(sinkMBB);
5043    MachineFunction *F = BB->getParent();
5044    F->getBasicBlockList().insert(It, copy0MBB);
5045    F->getBasicBlockList().insert(It, sinkMBB);
5046    // Update machine-CFG edges by first adding all successors of the current
5047    // block to the new block which will contain the Phi node for the select.
5048    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5049        e = BB->succ_end(); i != e; ++i)
5050      sinkMBB->addSuccessor(*i);
5051    // Next, remove all successors of the current block, and add the true
5052    // and fallthrough blocks as its successors.
5053    while(!BB->succ_empty())
5054      BB->removeSuccessor(BB->succ_begin());
5055    BB->addSuccessor(copy0MBB);
5056    BB->addSuccessor(sinkMBB);
5057
5058    //  copy0MBB:
5059    //   %FalseValue = ...
5060    //   # fallthrough to sinkMBB
5061    BB = copy0MBB;
5062
5063    // Update machine-CFG edges
5064    BB->addSuccessor(sinkMBB);
5065
5066    //  sinkMBB:
5067    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5068    //  ...
5069    BB = sinkMBB;
5070    BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg())
5071      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5072      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5073
5074    delete MI;   // The pseudo instruction is gone now.
5075    return BB;
5076  }
5077
5078  case X86::FP_TO_INT16_IN_MEM:
5079  case X86::FP_TO_INT32_IN_MEM:
5080  case X86::FP_TO_INT64_IN_MEM: {
5081    // Change the floating point control register to use "round towards zero"
5082    // mode when truncating to an integer value.
5083    MachineFunction *F = BB->getParent();
5084    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5085    addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx);
5086
5087    // Load the old value of the high byte of the control word...
5088    unsigned OldCW =
5089      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5090    addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx);
5091
5092    // Set the high part to be round to zero...
5093    addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F);
5094
5095    // Reload the modified control word now...
5096    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
5097
5098    // Restore the memory image of control word to original value
5099    addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW);
5100
5101    // Get the X86 opcode to use.
5102    unsigned Opc;
5103    switch (MI->getOpcode()) {
5104    default: assert(0 && "illegal opcode!");
5105    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
5106    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
5107    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
5108    }
5109
5110    X86AddressMode AM;
5111    MachineOperand &Op = MI->getOperand(0);
5112    if (Op.isRegister()) {
5113      AM.BaseType = X86AddressMode::RegBase;
5114      AM.Base.Reg = Op.getReg();
5115    } else {
5116      AM.BaseType = X86AddressMode::FrameIndexBase;
5117      AM.Base.FrameIndex = Op.getFrameIndex();
5118    }
5119    Op = MI->getOperand(1);
5120    if (Op.isImmediate())
5121      AM.Scale = Op.getImm();
5122    Op = MI->getOperand(2);
5123    if (Op.isImmediate())
5124      AM.IndexReg = Op.getImm();
5125    Op = MI->getOperand(3);
5126    if (Op.isGlobalAddress()) {
5127      AM.GV = Op.getGlobal();
5128    } else {
5129      AM.Disp = Op.getImm();
5130    }
5131    addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg());
5132
5133    // Reload the original control word now.
5134    addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx);
5135
5136    delete MI;   // The pseudo instruction is gone now.
5137    return BB;
5138  }
5139  }
5140}
5141
5142//===----------------------------------------------------------------------===//
5143//                           X86 Optimization Hooks
5144//===----------------------------------------------------------------------===//
5145
5146void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5147                                                       uint64_t Mask,
5148                                                       uint64_t &KnownZero,
5149                                                       uint64_t &KnownOne,
5150                                                       unsigned Depth) const {
5151  unsigned Opc = Op.getOpcode();
5152  assert((Opc >= ISD::BUILTIN_OP_END ||
5153          Opc == ISD::INTRINSIC_WO_CHAIN ||
5154          Opc == ISD::INTRINSIC_W_CHAIN ||
5155          Opc == ISD::INTRINSIC_VOID) &&
5156         "Should use MaskedValueIsZero if you don't know whether Op"
5157         " is a target node!");
5158
5159  KnownZero = KnownOne = 0;   // Don't know anything.
5160  switch (Opc) {
5161  default: break;
5162  case X86ISD::SETCC:
5163    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5164    break;
5165  }
5166}
5167
5168/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5169/// element of the result of the vector shuffle.
5170static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5171  MVT::ValueType VT = N->getValueType(0);
5172  SDOperand PermMask = N->getOperand(2);
5173  unsigned NumElems = PermMask.getNumOperands();
5174  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5175  i %= NumElems;
5176  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5177    return (i == 0)
5178      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
5179  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5180    SDOperand Idx = PermMask.getOperand(i);
5181    if (Idx.getOpcode() == ISD::UNDEF)
5182      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
5183    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5184  }
5185  return SDOperand();
5186}
5187
5188/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5189/// node is a GlobalAddress + an offset.
5190static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5191  if (N->getOpcode() == X86ISD::Wrapper) {
5192    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5193      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5194      return true;
5195    }
5196  } else if (N->getOpcode() == ISD::ADD) {
5197    SDOperand N1 = N->getOperand(0);
5198    SDOperand N2 = N->getOperand(1);
5199    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5200      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5201      if (V) {
5202        Offset += V->getSignExtended();
5203        return true;
5204      }
5205    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5206      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5207      if (V) {
5208        Offset += V->getSignExtended();
5209        return true;
5210      }
5211    }
5212  }
5213  return false;
5214}
5215
5216/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5217/// + Dist * Size.
5218static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5219                              MachineFrameInfo *MFI) {
5220  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5221    return false;
5222
5223  SDOperand Loc = N->getOperand(1);
5224  SDOperand BaseLoc = Base->getOperand(1);
5225  if (Loc.getOpcode() == ISD::FrameIndex) {
5226    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5227      return false;
5228    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
5229    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5230    int FS  = MFI->getObjectSize(FI);
5231    int BFS = MFI->getObjectSize(BFI);
5232    if (FS != BFS || FS != Size) return false;
5233    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5234  } else {
5235    GlobalValue *GV1 = NULL;
5236    GlobalValue *GV2 = NULL;
5237    int64_t Offset1 = 0;
5238    int64_t Offset2 = 0;
5239    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5240    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5241    if (isGA1 && isGA2 && GV1 == GV2)
5242      return Offset1 == (Offset2 + Dist*Size);
5243  }
5244
5245  return false;
5246}
5247
5248static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5249                              const X86Subtarget *Subtarget) {
5250  GlobalValue *GV;
5251  int64_t Offset;
5252  if (isGAPlusOffset(Base, GV, Offset))
5253    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5254  else {
5255    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
5256    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
5257    if (BFI < 0)
5258      // Fixed objects do not specify alignment, however the offsets are known.
5259      return ((Subtarget->getStackAlignment() % 16) == 0 &&
5260              (MFI->getObjectOffset(BFI) % 16) == 0);
5261    else
5262      return MFI->getObjectAlignment(BFI) >= 16;
5263  }
5264  return false;
5265}
5266
5267
5268/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5269/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5270/// if the load addresses are consecutive, non-overlapping, and in the right
5271/// order.
5272static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5273                                       const X86Subtarget *Subtarget) {
5274  MachineFunction &MF = DAG.getMachineFunction();
5275  MachineFrameInfo *MFI = MF.getFrameInfo();
5276  MVT::ValueType VT = N->getValueType(0);
5277  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
5278  SDOperand PermMask = N->getOperand(2);
5279  int NumElems = (int)PermMask.getNumOperands();
5280  SDNode *Base = NULL;
5281  for (int i = 0; i < NumElems; ++i) {
5282    SDOperand Idx = PermMask.getOperand(i);
5283    if (Idx.getOpcode() == ISD::UNDEF) {
5284      if (!Base) return SDOperand();
5285    } else {
5286      SDOperand Arg =
5287        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5288      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5289        return SDOperand();
5290      if (!Base)
5291        Base = Arg.Val;
5292      else if (!isConsecutiveLoad(Arg.Val, Base,
5293                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5294        return SDOperand();
5295    }
5296  }
5297
5298  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5299  if (isAlign16) {
5300    LoadSDNode *LD = cast<LoadSDNode>(Base);
5301    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5302                       LD->getSrcValueOffset());
5303  } else {
5304    // Just use movups, it's shorter.
5305    std::vector<MVT::ValueType> Tys;
5306    Tys.push_back(MVT::v4f32);
5307    Tys.push_back(MVT::Other);
5308    SmallVector<SDOperand, 3> Ops;
5309    Ops.push_back(Base->getOperand(0));
5310    Ops.push_back(Base->getOperand(1));
5311    Ops.push_back(Base->getOperand(2));
5312    return DAG.getNode(ISD::BIT_CONVERT, VT,
5313                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
5314  }
5315}
5316
5317/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5318static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5319                                      const X86Subtarget *Subtarget) {
5320  SDOperand Cond = N->getOperand(0);
5321
5322  // If we have SSE[12] support, try to form min/max nodes.
5323  if (Subtarget->hasSSE2() &&
5324      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5325    if (Cond.getOpcode() == ISD::SETCC) {
5326      // Get the LHS/RHS of the select.
5327      SDOperand LHS = N->getOperand(1);
5328      SDOperand RHS = N->getOperand(2);
5329      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5330
5331      unsigned IntNo = 0;
5332      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5333        switch (CC) {
5334        default: break;
5335        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5336        case ISD::SETULE:
5337        case ISD::SETLE:
5338          if (!UnsafeFPMath) break;
5339          // FALL THROUGH.
5340        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5341        case ISD::SETLT:
5342          IntNo = LHS.getValueType() == MVT::f32 ? Intrinsic::x86_sse_min_ss :
5343                                                   Intrinsic::x86_sse2_min_sd;
5344          break;
5345
5346        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5347        case ISD::SETUGT:
5348        case ISD::SETGT:
5349          if (!UnsafeFPMath) break;
5350          // FALL THROUGH.
5351        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5352        case ISD::SETGE:
5353          IntNo = LHS.getValueType() == MVT::f32 ? Intrinsic::x86_sse_max_ss :
5354                                                   Intrinsic::x86_sse2_max_sd;
5355          break;
5356        }
5357      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5358        switch (CC) {
5359        default: break;
5360        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5361        case ISD::SETUGT:
5362        case ISD::SETGT:
5363          if (!UnsafeFPMath) break;
5364          // FALL THROUGH.
5365        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5366        case ISD::SETGE:
5367          IntNo = LHS.getValueType() == MVT::f32 ? Intrinsic::x86_sse_min_ss :
5368                                                   Intrinsic::x86_sse2_min_sd;
5369          break;
5370
5371        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5372        case ISD::SETULE:
5373        case ISD::SETLE:
5374          if (!UnsafeFPMath) break;
5375          // FALL THROUGH.
5376        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5377        case ISD::SETLT:
5378          IntNo = LHS.getValueType() == MVT::f32 ? Intrinsic::x86_sse_max_ss :
5379                                                   Intrinsic::x86_sse2_max_sd;
5380          break;
5381        }
5382      }
5383
5384      // minss/maxss take a v4f32 operand.
5385      if (IntNo) {
5386        if (LHS.getValueType() == MVT::f32) {
5387          LHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, LHS);
5388          RHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, RHS);
5389        } else {
5390          LHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, LHS);
5391          RHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, RHS);
5392        }
5393
5394        MVT::ValueType PtrTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5395        SDOperand IntNoN = DAG.getConstant(IntNo, PtrTy);
5396
5397        SDOperand Val = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, LHS.getValueType(),
5398                                    IntNoN, LHS, RHS);
5399        return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getValueType(0), Val,
5400                           DAG.getConstant(0, PtrTy));
5401      }
5402    }
5403
5404  }
5405
5406  return SDOperand();
5407}
5408
5409
5410SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5411                                               DAGCombinerInfo &DCI) const {
5412  TargetMachine &TM = getTargetMachine();
5413  SelectionDAG &DAG = DCI.DAG;
5414  switch (N->getOpcode()) {
5415  default: break;
5416  case ISD::VECTOR_SHUFFLE:
5417    return PerformShuffleCombine(N, DAG, Subtarget);
5418  case ISD::SELECT:
5419    return PerformSELECTCombine(N, DAG, Subtarget);
5420  }
5421
5422  return SDOperand();
5423}
5424
5425//===----------------------------------------------------------------------===//
5426//                           X86 Inline Assembly Support
5427//===----------------------------------------------------------------------===//
5428
5429/// getConstraintType - Given a constraint letter, return the type of
5430/// constraint it is for this target.
5431X86TargetLowering::ConstraintType
5432X86TargetLowering::getConstraintType(char ConstraintLetter) const {
5433  switch (ConstraintLetter) {
5434  case 'A':
5435  case 'r':
5436  case 'R':
5437  case 'l':
5438  case 'q':
5439  case 'Q':
5440  case 'x':
5441  case 'Y':
5442    return C_RegisterClass;
5443  default: return TargetLowering::getConstraintType(ConstraintLetter);
5444  }
5445}
5446
5447std::vector<unsigned> X86TargetLowering::
5448getRegClassForInlineAsmConstraint(const std::string &Constraint,
5449                                  MVT::ValueType VT) const {
5450  if (Constraint.size() == 1) {
5451    // FIXME: not handling fp-stack yet!
5452    // FIXME: not handling MMX registers yet ('y' constraint).
5453    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5454    default: break;  // Unknown constraint letter
5455    case 'A':   // EAX/EDX
5456      if (VT == MVT::i32 || VT == MVT::i64)
5457        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5458      break;
5459    case 'r':   // GENERAL_REGS
5460    case 'R':   // LEGACY_REGS
5461      if (VT == MVT::i32)
5462        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5463                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
5464      else if (VT == MVT::i16)
5465        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5466                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
5467      else if (VT == MVT::i8)
5468        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5469      break;
5470    case 'l':   // INDEX_REGS
5471      if (VT == MVT::i32)
5472        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
5473                                     X86::ESI, X86::EDI, X86::EBP, 0);
5474      else if (VT == MVT::i16)
5475        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
5476                                     X86::SI, X86::DI, X86::BP, 0);
5477      else if (VT == MVT::i8)
5478        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5479      break;
5480    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5481    case 'Q':   // Q_REGS
5482      if (VT == MVT::i32)
5483        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5484      else if (VT == MVT::i16)
5485        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5486      else if (VT == MVT::i8)
5487        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
5488        break;
5489    case 'x':   // SSE_REGS if SSE1 allowed
5490      if (Subtarget->hasSSE1())
5491        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5492                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5493                                     0);
5494      return std::vector<unsigned>();
5495    case 'Y':   // SSE_REGS if SSE2 allowed
5496      if (Subtarget->hasSSE2())
5497        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
5498                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
5499                                     0);
5500      return std::vector<unsigned>();
5501    }
5502  }
5503
5504  return std::vector<unsigned>();
5505}
5506
5507std::pair<unsigned, const TargetRegisterClass*>
5508X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5509                                                MVT::ValueType VT) const {
5510  // Use the default implementation in TargetLowering to convert the register
5511  // constraint into a member of a register class.
5512  std::pair<unsigned, const TargetRegisterClass*> Res;
5513  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5514
5515  // Not found?  Bail out.
5516  if (Res.second == 0) return Res;
5517
5518  // Otherwise, check to see if this is a register class of the wrong value
5519  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5520  // turn into {ax},{dx}.
5521  if (Res.second->hasType(VT))
5522    return Res;   // Correct type already, nothing to do.
5523
5524  // All of the single-register GCC register classes map their values onto
5525  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
5526  // really want an 8-bit or 32-bit register, map to the appropriate register
5527  // class and return the appropriate register.
5528  if (Res.second != X86::GR16RegisterClass)
5529    return Res;
5530
5531  if (VT == MVT::i8) {
5532    unsigned DestReg = 0;
5533    switch (Res.first) {
5534    default: break;
5535    case X86::AX: DestReg = X86::AL; break;
5536    case X86::DX: DestReg = X86::DL; break;
5537    case X86::CX: DestReg = X86::CL; break;
5538    case X86::BX: DestReg = X86::BL; break;
5539    }
5540    if (DestReg) {
5541      Res.first = DestReg;
5542      Res.second = Res.second = X86::GR8RegisterClass;
5543    }
5544  } else if (VT == MVT::i32) {
5545    unsigned DestReg = 0;
5546    switch (Res.first) {
5547    default: break;
5548    case X86::AX: DestReg = X86::EAX; break;
5549    case X86::DX: DestReg = X86::EDX; break;
5550    case X86::CX: DestReg = X86::ECX; break;
5551    case X86::BX: DestReg = X86::EBX; break;
5552    case X86::SI: DestReg = X86::ESI; break;
5553    case X86::DI: DestReg = X86::EDI; break;
5554    case X86::BP: DestReg = X86::EBP; break;
5555    case X86::SP: DestReg = X86::ESP; break;
5556    }
5557    if (DestReg) {
5558      Res.first = DestReg;
5559      Res.second = Res.second = X86::GR32RegisterClass;
5560    }
5561  } else if (VT == MVT::i64) {
5562    unsigned DestReg = 0;
5563    switch (Res.first) {
5564    default: break;
5565    case X86::AX: DestReg = X86::RAX; break;
5566    case X86::DX: DestReg = X86::RDX; break;
5567    case X86::CX: DestReg = X86::RCX; break;
5568    case X86::BX: DestReg = X86::RBX; break;
5569    case X86::SI: DestReg = X86::RSI; break;
5570    case X86::DI: DestReg = X86::RDI; break;
5571    case X86::BP: DestReg = X86::RBP; break;
5572    case X86::SP: DestReg = X86::RSP; break;
5573    }
5574    if (DestReg) {
5575      Res.first = DestReg;
5576      Res.second = Res.second = X86::GR64RegisterClass;
5577    }
5578  }
5579
5580  return Res;
5581}
5582
5583