X86ISelLowering.cpp revision a0fd0d5b27257c7397e9f6e4234cd600683c9248
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63
64  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
65
66  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
67    if (is64Bit)
68      return new X8664_MachoTargetObjectFile();
69    return new TargetLoweringObjectFileMachO();
70  }
71
72  if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73    if (is64Bit)
74      return new X8664_ELFTargetObjectFile(TM);
75    return new X8632_ELFTargetObjectFile(TM);
76  }
77  if (TM.getSubtarget<X86Subtarget>().isTargetCOFF())
78    return new TargetLoweringObjectFileCOFF();
79  llvm_unreachable("unknown subtarget type");
80}
81
82X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
83  : TargetLowering(TM, createTLOF(TM)) {
84  Subtarget = &TM.getSubtarget<X86Subtarget>();
85  X86ScalarSSEf64 = Subtarget->hasXMMInt();
86  X86ScalarSSEf32 = Subtarget->hasXMM();
87  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
88
89  RegInfo = TM.getRegisterInfo();
90  TD = getTargetData();
91
92  // Set up the TargetLowering object.
93  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
94
95  // X86 is weird, it always uses i8 for shift amounts and setcc results.
96  setShiftAmountType(MVT::i8);
97  setBooleanContents(ZeroOrOneBooleanContent);
98  setSchedulingPreference(Sched::RegPressure);
99  setStackPointerRegisterToSaveRestore(X86StackPtr);
100
101  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
102    // Setup Windows compiler runtime calls.
103    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
104    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
105    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
106    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
107    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
108    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
109    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
110    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
111  }
112
113  if (Subtarget->isTargetDarwin()) {
114    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
115    setUseUnderscoreSetJmp(false);
116    setUseUnderscoreLongJmp(false);
117  } else if (Subtarget->isTargetMingw()) {
118    // MS runtime is weird: it exports _setjmp, but longjmp!
119    setUseUnderscoreSetJmp(true);
120    setUseUnderscoreLongJmp(false);
121  } else {
122    setUseUnderscoreSetJmp(true);
123    setUseUnderscoreLongJmp(true);
124  }
125
126  // Set up the register classes.
127  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
128  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
129  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
130  if (Subtarget->is64Bit())
131    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
132
133  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
134
135  // We don't accept any truncstore of integer registers.
136  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
137  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
140  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
141  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
142
143  // SETOEQ and SETUNE require checking two conditions.
144  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
145  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
146  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
148  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
149  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
150
151  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
152  // operation.
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
154  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
155  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
156
157  if (Subtarget->is64Bit()) {
158    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
159    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
160  } else if (!UseSoftFloat) {
161    // We have an algorithm for SSE2->double, and we turn this into a
162    // 64-bit FILD followed by conditional FADD for other targets.
163    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
164    // We have an algorithm for SSE2, and we turn this into a 64-bit
165    // FILD for other targets.
166    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
167  }
168
169  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
170  // this operation.
171  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
172  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
173
174  if (!UseSoftFloat) {
175    // SSE has no i16 to fp conversion, only i32
176    if (X86ScalarSSEf32) {
177      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
178      // f32 and f64 cases are Legal, f80 case is not
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
180    } else {
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
182      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
183    }
184  } else {
185    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
186    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
187  }
188
189  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
190  // are Legal, f80 is custom lowered.
191  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
192  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
193
194  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
195  // this operation.
196  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
197  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
198
199  if (X86ScalarSSEf32) {
200    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
201    // f32 and f64 cases are Legal, f80 case is not
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
203  } else {
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
205    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
206  }
207
208  // Handle FP_TO_UINT by promoting the destination to a larger signed
209  // conversion.
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
212  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
213
214  if (Subtarget->is64Bit()) {
215    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
216    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
217  } else if (!UseSoftFloat) {
218    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
219      // Expand FP_TO_UINT into a select.
220      // FIXME: We would like to use a Custom expander here eventually to do
221      // the optimal thing for SSE vs. the default expansion in the legalizer.
222      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
223    else
224      // With SSE3 we can use fisttpll to convert to a signed i64; without
225      // SSE, we're stuck with a fistpll.
226      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
227  }
228
229  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
230  if (!X86ScalarSSEf64) {
231    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
232    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
233    if (Subtarget->is64Bit()) {
234      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
235      // Without SSE, i64->f64 goes through memory.
236      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
237    }
238  }
239
240  // Scalar integer divide and remainder are lowered to use operations that
241  // produce two results, to match the available instructions. This exposes
242  // the two-result form to trivial CSE, which is able to combine x/y and x%y
243  // into a single instruction.
244  //
245  // Scalar integer multiply-high is also lowered to use two-result
246  // operations, to match the available instructions. However, plain multiply
247  // (low) operations are left as Legal, as there are single-result
248  // instructions for this in x86. Using the two-result multiply instructions
249  // when both high and low results are needed must be arranged by dagcombine.
250  for (unsigned i = 0, e = 4; i != e; ++i) {
251    MVT VT = IntVTs[i];
252    setOperationAction(ISD::MULHS, VT, Expand);
253    setOperationAction(ISD::MULHU, VT, Expand);
254    setOperationAction(ISD::SDIV, VT, Expand);
255    setOperationAction(ISD::UDIV, VT, Expand);
256    setOperationAction(ISD::SREM, VT, Expand);
257    setOperationAction(ISD::UREM, VT, Expand);
258  }
259
260  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
261  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
262  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
263  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
264  if (Subtarget->is64Bit())
265    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
266  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
267  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
268  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
269  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
270  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
271  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
272  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
273  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
274
275  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
276  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
277  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
278  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
279  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
281  if (Subtarget->is64Bit()) {
282    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
283    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
284  }
285
286  if (Subtarget->hasPOPCNT()) {
287    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
288  } else {
289    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
290    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
291    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
292    if (Subtarget->is64Bit())
293      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
294  }
295
296  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
297  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
298
299  // These should be promoted to a larger select which is supported.
300  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
301  // X86 wants to expand cmov itself.
302  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
303  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
305  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
306  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
307  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
309  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
311  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
312  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
313  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
314  if (Subtarget->is64Bit()) {
315    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
316    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
317  }
318  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
319
320  // Darwin ABI issue.
321  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
322  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
323  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
324  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
325  if (Subtarget->is64Bit())
326    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
327  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
328  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
329  if (Subtarget->is64Bit()) {
330    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
331    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
332    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
333    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
334    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
335  }
336  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
337  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
338  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
339  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
340  if (Subtarget->is64Bit()) {
341    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
342    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
343    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
344  }
345
346  if (Subtarget->hasXMM())
347    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
348
349  // We may not have a libcall for MEMBARRIER so we should lower this.
350  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
351
352  // On X86 and X86-64, atomic operations are lowered to locked instructions.
353  // Locked instructions, in turn, have implicit fence semantics (all memory
354  // operations are flushed before issuing the locked instruction, and they
355  // are not buffered), so we can fold away the common pattern of
356  // fence-atomic-fence.
357  setShouldFoldAtomicFences(true);
358
359  // Expand certain atomics
360  for (unsigned i = 0, e = 4; i != e; ++i) {
361    MVT VT = IntVTs[i];
362    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
363    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
364  }
365
366  if (!Subtarget->is64Bit()) {
367    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
368    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
374  }
375
376  // FIXME - use subtarget debug flags
377  if (!Subtarget->isTargetDarwin() &&
378      !Subtarget->isTargetELF() &&
379      !Subtarget->isTargetCygMing()) {
380    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
381  }
382
383  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
384  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
385  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
386  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
387  if (Subtarget->is64Bit()) {
388    setExceptionPointerRegister(X86::RAX);
389    setExceptionSelectorRegister(X86::RDX);
390  } else {
391    setExceptionPointerRegister(X86::EAX);
392    setExceptionSelectorRegister(X86::EDX);
393  }
394  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
396
397  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
398
399  setOperationAction(ISD::TRAP, MVT::Other, Legal);
400
401  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
402  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
403  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
404  if (Subtarget->is64Bit()) {
405    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
406    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
407  } else {
408    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
409    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
410  }
411
412  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
413  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
414  if (Subtarget->is64Bit())
415    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
416  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
417    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
418  else
419    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
420
421  if (!UseSoftFloat && X86ScalarSSEf64) {
422    // f32 and f64 use SSE.
423    // Set up the FP register classes.
424    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
425    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
426
427    // Use ANDPD to simulate FABS.
428    setOperationAction(ISD::FABS , MVT::f64, Custom);
429    setOperationAction(ISD::FABS , MVT::f32, Custom);
430
431    // Use XORP to simulate FNEG.
432    setOperationAction(ISD::FNEG , MVT::f64, Custom);
433    setOperationAction(ISD::FNEG , MVT::f32, Custom);
434
435    // Use ANDPD and ORPD to simulate FCOPYSIGN.
436    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
437    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
438
439    // We don't support sin/cos/fmod
440    setOperationAction(ISD::FSIN , MVT::f64, Expand);
441    setOperationAction(ISD::FCOS , MVT::f64, Expand);
442    setOperationAction(ISD::FSIN , MVT::f32, Expand);
443    setOperationAction(ISD::FCOS , MVT::f32, Expand);
444
445    // Expand FP immediates into loads from the stack, except for the special
446    // cases we handle.
447    addLegalFPImmediate(APFloat(+0.0)); // xorpd
448    addLegalFPImmediate(APFloat(+0.0f)); // xorps
449  } else if (!UseSoftFloat && X86ScalarSSEf32) {
450    // Use SSE for f32, x87 for f64.
451    // Set up the FP register classes.
452    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
453    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
454
455    // Use ANDPS to simulate FABS.
456    setOperationAction(ISD::FABS , MVT::f32, Custom);
457
458    // Use XORP to simulate FNEG.
459    setOperationAction(ISD::FNEG , MVT::f32, Custom);
460
461    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
462
463    // Use ANDPS and ORPS to simulate FCOPYSIGN.
464    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
465    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
466
467    // We don't support sin/cos/fmod
468    setOperationAction(ISD::FSIN , MVT::f32, Expand);
469    setOperationAction(ISD::FCOS , MVT::f32, Expand);
470
471    // Special cases we handle for FP constants.
472    addLegalFPImmediate(APFloat(+0.0f)); // xorps
473    addLegalFPImmediate(APFloat(+0.0)); // FLD0
474    addLegalFPImmediate(APFloat(+1.0)); // FLD1
475    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
476    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
477
478    if (!UnsafeFPMath) {
479      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
480      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
481    }
482  } else if (!UseSoftFloat) {
483    // f32 and f64 in x87.
484    // Set up the FP register classes.
485    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
486    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
487
488    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
489    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
490    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
492
493    if (!UnsafeFPMath) {
494      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
495      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
496    }
497    addLegalFPImmediate(APFloat(+0.0)); // FLD0
498    addLegalFPImmediate(APFloat(+1.0)); // FLD1
499    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
500    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
501    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
502    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
503    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
504    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
505  }
506
507  // Long double always uses X87.
508  if (!UseSoftFloat) {
509    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
510    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
511    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
512    {
513      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
514      addLegalFPImmediate(TmpFlt);  // FLD0
515      TmpFlt.changeSign();
516      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
517
518      bool ignored;
519      APFloat TmpFlt2(+1.0);
520      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
521                      &ignored);
522      addLegalFPImmediate(TmpFlt2);  // FLD1
523      TmpFlt2.changeSign();
524      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
525    }
526
527    if (!UnsafeFPMath) {
528      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
529      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
530    }
531  }
532
533  // Always use a library call for pow.
534  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
535  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
536  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
537
538  setOperationAction(ISD::FLOG, MVT::f80, Expand);
539  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
540  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
541  setOperationAction(ISD::FEXP, MVT::f80, Expand);
542  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
543
544  // First set operation action for all vector types to either promote
545  // (for widening) or expand (for scalarization). Then we will selectively
546  // turn on ones that can be effectively codegen'd.
547  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
548       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
549    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
550    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
564    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
565    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
598    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
603         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
604      setTruncStoreAction((MVT::SimpleValueType)VT,
605                          (MVT::SimpleValueType)InnerVT, Expand);
606    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
607    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
608    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
609  }
610
611  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
612  // with -msoft-float, disable use of MMX as well.
613  if (!UseSoftFloat && Subtarget->hasMMX()) {
614    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
615    // No operations on x86mmx supported, everything uses intrinsics.
616  }
617
618  // MMX-sized vectors (other than x86mmx) are expected to be expanded
619  // into smaller operations.
620  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
621  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
622  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
623  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
624  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
625  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
626  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
627  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
628  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
629  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
630  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
631  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
632  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
633  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
634  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
635  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
636  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
637  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
638  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
639  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
640  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
641  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
642  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
643  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
644  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
645  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
646  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
647  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
648  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
649
650  if (!UseSoftFloat && Subtarget->hasXMM()) {
651    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
652
653    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
654    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
655    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
656    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
657    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
658    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
659    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
660    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
661    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
662    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
663    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
664    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
665  }
666
667  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
668    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
669
670    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
671    // registers cannot be used even for integer operations.
672    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
673    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
674    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
675    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
676
677    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
678    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
679    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
680    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
681    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
682    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
683    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
684    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
685    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
686    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
687    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
688    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
689    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
690    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
691    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
692    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
693
694    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
695    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
696    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
697    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
698
699    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
700    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
701    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
702    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
703    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
704
705    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
706    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
707    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
708    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
709    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
710
711    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
712    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
713      EVT VT = (MVT::SimpleValueType)i;
714      // Do not attempt to custom lower non-power-of-2 vectors
715      if (!isPowerOf2_32(VT.getVectorNumElements()))
716        continue;
717      // Do not attempt to custom lower non-128-bit vectors
718      if (!VT.is128BitVector())
719        continue;
720      setOperationAction(ISD::BUILD_VECTOR,
721                         VT.getSimpleVT().SimpleTy, Custom);
722      setOperationAction(ISD::VECTOR_SHUFFLE,
723                         VT.getSimpleVT().SimpleTy, Custom);
724      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
725                         VT.getSimpleVT().SimpleTy, Custom);
726    }
727
728    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
729    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
730    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
731    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
732    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
733    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
734
735    if (Subtarget->is64Bit()) {
736      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
737      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
738    }
739
740    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
741    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
742      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
743      EVT VT = SVT;
744
745      // Do not attempt to promote non-128-bit vectors
746      if (!VT.is128BitVector())
747        continue;
748
749      setOperationAction(ISD::AND,    SVT, Promote);
750      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
751      setOperationAction(ISD::OR,     SVT, Promote);
752      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
753      setOperationAction(ISD::XOR,    SVT, Promote);
754      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
755      setOperationAction(ISD::LOAD,   SVT, Promote);
756      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
757      setOperationAction(ISD::SELECT, SVT, Promote);
758      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
759    }
760
761    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
762
763    // Custom lower v2i64 and v2f64 selects.
764    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
765    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
766    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
767    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
768
769    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
770    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
771  }
772
773  if (Subtarget->hasSSE41()) {
774    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
775    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
776    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
777    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
778    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
779    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
780    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
781    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
782    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
783    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
784
785    // FIXME: Do we need to handle scalar-to-vector here?
786    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
787
788    // Can turn SHL into an integer multiply.
789    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
790    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
791
792    // i8 and i16 vectors are custom , because the source register and source
793    // source memory operand types are not the same width.  f32 vectors are
794    // custom since the immediate controlling the insert encodes additional
795    // information.
796    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
797    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
798    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
799    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
800
801    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
802    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
803    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
804    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
805
806    if (Subtarget->is64Bit()) {
807      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
808      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
809    }
810  }
811
812  if (Subtarget->hasSSE42())
813    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
814
815  if (!UseSoftFloat && Subtarget->hasAVX()) {
816    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
817    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
818    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
819    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
820    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
821
822    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
823    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
824    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
825    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
826    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
827    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
828    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
829    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
830    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
831    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
832    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
833    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
834    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
835    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
836    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
837
838    // Operations to consider commented out -v16i16 v32i8
839    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
840    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
841    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
842    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
843    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
844    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
845    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
846    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
847    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
848    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
849    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
850    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
851    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
852    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
853
854    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
855    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
856    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
857    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
858
859    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
860    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
861    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
864
865    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
866    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
867    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
868    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
870    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
871
872#if 0
873    // Not sure we want to do this since there are no 256-bit integer
874    // operations in AVX
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    // This includes 256-bit vectors
878    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
879      EVT VT = (MVT::SimpleValueType)i;
880
881      // Do not attempt to custom lower non-power-of-2 vectors
882      if (!isPowerOf2_32(VT.getVectorNumElements()))
883        continue;
884
885      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
886      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
887      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
888    }
889
890    if (Subtarget->is64Bit()) {
891      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
892      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
893    }
894#endif
895
896#if 0
897    // Not sure we want to do this since there are no 256-bit integer
898    // operations in AVX
899
900    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
901    // Including 256-bit vectors
902    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
903      EVT VT = (MVT::SimpleValueType)i;
904
905      if (!VT.is256BitVector()) {
906        continue;
907      }
908      setOperationAction(ISD::AND,    VT, Promote);
909      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
910      setOperationAction(ISD::OR,     VT, Promote);
911      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
912      setOperationAction(ISD::XOR,    VT, Promote);
913      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
914      setOperationAction(ISD::LOAD,   VT, Promote);
915      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
916      setOperationAction(ISD::SELECT, VT, Promote);
917      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
918    }
919
920    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
921#endif
922  }
923
924  // We want to custom lower some of our intrinsics.
925  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
926
927
928  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
929  // handle type legalization for these operations here.
930  //
931  // FIXME: We really should do custom legalization for addition and
932  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
933  // than generic legalization for 64-bit multiplication-with-overflow, though.
934  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
935    // Add/Sub/Mul with overflow operations are custom lowered.
936    MVT VT = IntVTs[i];
937    setOperationAction(ISD::SADDO, VT, Custom);
938    setOperationAction(ISD::UADDO, VT, Custom);
939    setOperationAction(ISD::SSUBO, VT, Custom);
940    setOperationAction(ISD::USUBO, VT, Custom);
941    setOperationAction(ISD::SMULO, VT, Custom);
942    setOperationAction(ISD::UMULO, VT, Custom);
943  }
944
945  // There are no 8-bit 3-address imul/mul instructions
946  setOperationAction(ISD::SMULO, MVT::i8, Expand);
947  setOperationAction(ISD::UMULO, MVT::i8, Expand);
948
949  if (!Subtarget->is64Bit()) {
950    // These libcalls are not available in 32-bit.
951    setLibcallName(RTLIB::SHL_I128, 0);
952    setLibcallName(RTLIB::SRL_I128, 0);
953    setLibcallName(RTLIB::SRA_I128, 0);
954  }
955
956  // We have target-specific dag combine patterns for the following nodes:
957  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
958  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
959  setTargetDAGCombine(ISD::BUILD_VECTOR);
960  setTargetDAGCombine(ISD::SELECT);
961  setTargetDAGCombine(ISD::SHL);
962  setTargetDAGCombine(ISD::SRA);
963  setTargetDAGCombine(ISD::SRL);
964  setTargetDAGCombine(ISD::OR);
965  setTargetDAGCombine(ISD::AND);
966  setTargetDAGCombine(ISD::STORE);
967  setTargetDAGCombine(ISD::ZERO_EXTEND);
968  if (Subtarget->is64Bit())
969    setTargetDAGCombine(ISD::MUL);
970
971  computeRegisterProperties();
972
973  // FIXME: These should be based on subtarget info. Plus, the values should
974  // be smaller when we are in optimizing for size mode.
975  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
976  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
977  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
978  setPrefLoopAlignment(16);
979  benefitFromCodePlacementOpt = true;
980}
981
982
983MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
984  return MVT::i8;
985}
986
987
988/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
989/// the desired ByVal argument alignment.
990static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
991  if (MaxAlign == 16)
992    return;
993  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
994    if (VTy->getBitWidth() == 128)
995      MaxAlign = 16;
996  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
997    unsigned EltAlign = 0;
998    getMaxByValAlign(ATy->getElementType(), EltAlign);
999    if (EltAlign > MaxAlign)
1000      MaxAlign = EltAlign;
1001  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1002    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1003      unsigned EltAlign = 0;
1004      getMaxByValAlign(STy->getElementType(i), EltAlign);
1005      if (EltAlign > MaxAlign)
1006        MaxAlign = EltAlign;
1007      if (MaxAlign == 16)
1008        break;
1009    }
1010  }
1011  return;
1012}
1013
1014/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1015/// function arguments in the caller parameter area. For X86, aggregates
1016/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1017/// are at 4-byte boundaries.
1018unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1019  if (Subtarget->is64Bit()) {
1020    // Max of 8 and alignment of type.
1021    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1022    if (TyAlign > 8)
1023      return TyAlign;
1024    return 8;
1025  }
1026
1027  unsigned Align = 4;
1028  if (Subtarget->hasXMM())
1029    getMaxByValAlign(Ty, Align);
1030  return Align;
1031}
1032
1033/// getOptimalMemOpType - Returns the target specific optimal type for load
1034/// and store operations as a result of memset, memcpy, and memmove
1035/// lowering. If DstAlign is zero that means it's safe to destination
1036/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1037/// means there isn't a need to check it against alignment requirement,
1038/// probably because the source does not need to be loaded. If
1039/// 'NonScalarIntSafe' is true, that means it's safe to return a
1040/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1041/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1042/// constant so it does not need to be loaded.
1043/// It returns EVT::Other if the type should be determined using generic
1044/// target-independent logic.
1045EVT
1046X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1047                                       unsigned DstAlign, unsigned SrcAlign,
1048                                       bool NonScalarIntSafe,
1049                                       bool MemcpyStrSrc,
1050                                       MachineFunction &MF) const {
1051  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1052  // linux.  This is because the stack realignment code can't handle certain
1053  // cases like PR2962.  This should be removed when PR2962 is fixed.
1054  const Function *F = MF.getFunction();
1055  if (NonScalarIntSafe &&
1056      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1057    if (Size >= 16 &&
1058        (Subtarget->isUnalignedMemAccessFast() ||
1059         ((DstAlign == 0 || DstAlign >= 16) &&
1060          (SrcAlign == 0 || SrcAlign >= 16))) &&
1061        Subtarget->getStackAlignment() >= 16) {
1062      if (Subtarget->hasSSE2())
1063        return MVT::v4i32;
1064      if (Subtarget->hasSSE1())
1065        return MVT::v4f32;
1066    } else if (!MemcpyStrSrc && Size >= 8 &&
1067               !Subtarget->is64Bit() &&
1068               Subtarget->getStackAlignment() >= 8 &&
1069               Subtarget->hasXMMInt()) {
1070      // Do not use f64 to lower memcpy if source is string constant. It's
1071      // better to use i32 to avoid the loads.
1072      return MVT::f64;
1073    }
1074  }
1075  if (Subtarget->is64Bit() && Size >= 8)
1076    return MVT::i64;
1077  return MVT::i32;
1078}
1079
1080/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1081/// current function.  The returned value is a member of the
1082/// MachineJumpTableInfo::JTEntryKind enum.
1083unsigned X86TargetLowering::getJumpTableEncoding() const {
1084  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1085  // symbol.
1086  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1087      Subtarget->isPICStyleGOT())
1088    return MachineJumpTableInfo::EK_Custom32;
1089
1090  // Otherwise, use the normal jump table encoding heuristics.
1091  return TargetLowering::getJumpTableEncoding();
1092}
1093
1094const MCExpr *
1095X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1096                                             const MachineBasicBlock *MBB,
1097                                             unsigned uid,MCContext &Ctx) const{
1098  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1099         Subtarget->isPICStyleGOT());
1100  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1101  // entries.
1102  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1103                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1104}
1105
1106/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1107/// jumptable.
1108SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1109                                                    SelectionDAG &DAG) const {
1110  if (!Subtarget->is64Bit())
1111    // This doesn't have DebugLoc associated with it, but is not really the
1112    // same as a Register.
1113    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1114  return Table;
1115}
1116
1117/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1118/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1119/// MCExpr.
1120const MCExpr *X86TargetLowering::
1121getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1122                             MCContext &Ctx) const {
1123  // X86-64 uses RIP relative addressing based on the jump table label.
1124  if (Subtarget->isPICStyleRIPRel())
1125    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1126
1127  // Otherwise, the reference is relative to the PIC base.
1128  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1129}
1130
1131/// getFunctionAlignment - Return the Log2 alignment of this function.
1132unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1133  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1134}
1135
1136std::pair<const TargetRegisterClass*, uint8_t>
1137X86TargetLowering::findRepresentativeClass(EVT VT) const{
1138  const TargetRegisterClass *RRC = 0;
1139  uint8_t Cost = 1;
1140  switch (VT.getSimpleVT().SimpleTy) {
1141  default:
1142    return TargetLowering::findRepresentativeClass(VT);
1143  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1144    RRC = (Subtarget->is64Bit()
1145           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1146    break;
1147  case MVT::x86mmx:
1148    RRC = X86::VR64RegisterClass;
1149    break;
1150  case MVT::f32: case MVT::f64:
1151  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1152  case MVT::v4f32: case MVT::v2f64:
1153  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1154  case MVT::v4f64:
1155    RRC = X86::VR128RegisterClass;
1156    break;
1157  }
1158  return std::make_pair(RRC, Cost);
1159}
1160
1161unsigned
1162X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1163                                       MachineFunction &MF) const {
1164  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
1165
1166  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
1167  switch (RC->getID()) {
1168  default:
1169    return 0;
1170  case X86::GR32RegClassID:
1171    return 4 - FPDiff;
1172  case X86::GR64RegClassID:
1173    return 8 - FPDiff;
1174  case X86::VR128RegClassID:
1175    return Subtarget->is64Bit() ? 10 : 4;
1176  case X86::VR64RegClassID:
1177    return 4;
1178  }
1179}
1180
1181bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1182                                               unsigned &Offset) const {
1183  if (!Subtarget->isTargetLinux())
1184    return false;
1185
1186  if (Subtarget->is64Bit()) {
1187    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1188    Offset = 0x28;
1189    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1190      AddressSpace = 256;
1191    else
1192      AddressSpace = 257;
1193  } else {
1194    // %gs:0x14 on i386
1195    Offset = 0x14;
1196    AddressSpace = 256;
1197  }
1198  return true;
1199}
1200
1201
1202//===----------------------------------------------------------------------===//
1203//               Return Value Calling Convention Implementation
1204//===----------------------------------------------------------------------===//
1205
1206#include "X86GenCallingConv.inc"
1207
1208bool
1209X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1210                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1211                        LLVMContext &Context) const {
1212  SmallVector<CCValAssign, 16> RVLocs;
1213  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1214                 RVLocs, Context);
1215  return CCInfo.CheckReturn(Outs, RetCC_X86);
1216}
1217
1218SDValue
1219X86TargetLowering::LowerReturn(SDValue Chain,
1220                               CallingConv::ID CallConv, bool isVarArg,
1221                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1222                               const SmallVectorImpl<SDValue> &OutVals,
1223                               DebugLoc dl, SelectionDAG &DAG) const {
1224  MachineFunction &MF = DAG.getMachineFunction();
1225  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1226
1227  SmallVector<CCValAssign, 16> RVLocs;
1228  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1229                 RVLocs, *DAG.getContext());
1230  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1231
1232  // Add the regs to the liveout set for the function.
1233  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1234  for (unsigned i = 0; i != RVLocs.size(); ++i)
1235    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1236      MRI.addLiveOut(RVLocs[i].getLocReg());
1237
1238  SDValue Flag;
1239
1240  SmallVector<SDValue, 6> RetOps;
1241  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1242  // Operand #1 = Bytes To Pop
1243  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1244                   MVT::i16));
1245
1246  // Copy the result values into the output registers.
1247  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1248    CCValAssign &VA = RVLocs[i];
1249    assert(VA.isRegLoc() && "Can only return in registers!");
1250    SDValue ValToCopy = OutVals[i];
1251    EVT ValVT = ValToCopy.getValueType();
1252
1253    // If this is x86-64, and we disabled SSE, we can't return FP values,
1254    // or SSE or MMX vectors.
1255    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1256         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1257          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1258      report_fatal_error("SSE register return with SSE disabled");
1259    }
1260    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1261    // llvm-gcc has never done it right and no one has noticed, so this
1262    // should be OK for now.
1263    if (ValVT == MVT::f64 &&
1264        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1265      report_fatal_error("SSE2 register return with SSE2 disabled");
1266
1267    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1268    // the RET instruction and handled by the FP Stackifier.
1269    if (VA.getLocReg() == X86::ST0 ||
1270        VA.getLocReg() == X86::ST1) {
1271      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1272      // change the value to the FP stack register class.
1273      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1274        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1275      RetOps.push_back(ValToCopy);
1276      // Don't emit a copytoreg.
1277      continue;
1278    }
1279
1280    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1281    // which is returned in RAX / RDX.
1282    if (Subtarget->is64Bit()) {
1283      if (ValVT == MVT::x86mmx) {
1284        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1285          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1286          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1287                                  ValToCopy);
1288          // If we don't have SSE2 available, convert to v4f32 so the generated
1289          // register is legal.
1290          if (!Subtarget->hasSSE2())
1291            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1292        }
1293      }
1294    }
1295
1296    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1297    Flag = Chain.getValue(1);
1298  }
1299
1300  // The x86-64 ABI for returning structs by value requires that we copy
1301  // the sret argument into %rax for the return. We saved the argument into
1302  // a virtual register in the entry block, so now we copy the value out
1303  // and into %rax.
1304  if (Subtarget->is64Bit() &&
1305      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1306    MachineFunction &MF = DAG.getMachineFunction();
1307    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1308    unsigned Reg = FuncInfo->getSRetReturnReg();
1309    assert(Reg &&
1310           "SRetReturnReg should have been set in LowerFormalArguments().");
1311    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1312
1313    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1314    Flag = Chain.getValue(1);
1315
1316    // RAX now acts like a return value.
1317    MRI.addLiveOut(X86::RAX);
1318  }
1319
1320  RetOps[0] = Chain;  // Update chain.
1321
1322  // Add the flag if we have it.
1323  if (Flag.getNode())
1324    RetOps.push_back(Flag);
1325
1326  return DAG.getNode(X86ISD::RET_FLAG, dl,
1327                     MVT::Other, &RetOps[0], RetOps.size());
1328}
1329
1330bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1331  if (N->getNumValues() != 1)
1332    return false;
1333  if (!N->hasNUsesOfValue(1, 0))
1334    return false;
1335
1336  SDNode *Copy = *N->use_begin();
1337  if (Copy->getOpcode() != ISD::CopyToReg &&
1338      Copy->getOpcode() != ISD::FP_EXTEND)
1339    return false;
1340
1341  bool HasRet = false;
1342  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1343       UI != UE; ++UI) {
1344    if (UI->getOpcode() != X86ISD::RET_FLAG)
1345      return false;
1346    HasRet = true;
1347  }
1348
1349  return HasRet;
1350}
1351
1352/// LowerCallResult - Lower the result values of a call into the
1353/// appropriate copies out of appropriate physical registers.
1354///
1355SDValue
1356X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1357                                   CallingConv::ID CallConv, bool isVarArg,
1358                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1359                                   DebugLoc dl, SelectionDAG &DAG,
1360                                   SmallVectorImpl<SDValue> &InVals) const {
1361
1362  // Assign locations to each value returned by this call.
1363  SmallVector<CCValAssign, 16> RVLocs;
1364  bool Is64Bit = Subtarget->is64Bit();
1365  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1366                 RVLocs, *DAG.getContext());
1367  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1368
1369  // Copy all of the result registers out of their specified physreg.
1370  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1371    CCValAssign &VA = RVLocs[i];
1372    EVT CopyVT = VA.getValVT();
1373
1374    // If this is x86-64, and we disabled SSE, we can't return FP values
1375    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1376        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1377      report_fatal_error("SSE register return with SSE disabled");
1378    }
1379
1380    SDValue Val;
1381
1382    // If this is a call to a function that returns an fp value on the floating
1383    // point stack, we must guarantee the the value is popped from the stack, so
1384    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1385    // if the return value is not used. We use the FpGET_ST0 instructions
1386    // instead.
1387    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1388      // If we prefer to use the value in xmm registers, copy it out as f80 and
1389      // use a truncate to move it from fp stack reg to xmm reg.
1390      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1391      bool isST0 = VA.getLocReg() == X86::ST0;
1392      unsigned Opc = 0;
1393      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1394      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1395      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1396      SDValue Ops[] = { Chain, InFlag };
1397      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1398                                         Ops, 2), 1);
1399      Val = Chain.getValue(0);
1400
1401      // Round the f80 to the right size, which also moves it to the appropriate
1402      // xmm register.
1403      if (CopyVT != VA.getValVT())
1404        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1405                          // This truncation won't change the value.
1406                          DAG.getIntPtrConstant(1));
1407    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1408      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1409      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1410        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1411                                   MVT::v2i64, InFlag).getValue(1);
1412        Val = Chain.getValue(0);
1413        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1414                          Val, DAG.getConstant(0, MVT::i64));
1415      } else {
1416        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1417                                   MVT::i64, InFlag).getValue(1);
1418        Val = Chain.getValue(0);
1419      }
1420      Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1421    } else {
1422      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1423                                 CopyVT, InFlag).getValue(1);
1424      Val = Chain.getValue(0);
1425    }
1426    InFlag = Chain.getValue(2);
1427    InVals.push_back(Val);
1428  }
1429
1430  return Chain;
1431}
1432
1433
1434//===----------------------------------------------------------------------===//
1435//                C & StdCall & Fast Calling Convention implementation
1436//===----------------------------------------------------------------------===//
1437//  StdCall calling convention seems to be standard for many Windows' API
1438//  routines and around. It differs from C calling convention just a little:
1439//  callee should clean up the stack, not caller. Symbols should be also
1440//  decorated in some fancy way :) It doesn't support any vector arguments.
1441//  For info on fast calling convention see Fast Calling Convention (tail call)
1442//  implementation LowerX86_32FastCCCallTo.
1443
1444/// CallIsStructReturn - Determines whether a call uses struct return
1445/// semantics.
1446static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1447  if (Outs.empty())
1448    return false;
1449
1450  return Outs[0].Flags.isSRet();
1451}
1452
1453/// ArgsAreStructReturn - Determines whether a function uses struct
1454/// return semantics.
1455static bool
1456ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1457  if (Ins.empty())
1458    return false;
1459
1460  return Ins[0].Flags.isSRet();
1461}
1462
1463/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1464/// by "Src" to address "Dst" with size and alignment information specified by
1465/// the specific parameter attribute. The copy will be passed as a byval
1466/// function parameter.
1467static SDValue
1468CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1469                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1470                          DebugLoc dl) {
1471  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1472
1473  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1474                       /*isVolatile*/false, /*AlwaysInline=*/true,
1475                       MachinePointerInfo(), MachinePointerInfo());
1476}
1477
1478/// IsTailCallConvention - Return true if the calling convention is one that
1479/// supports tail call optimization.
1480static bool IsTailCallConvention(CallingConv::ID CC) {
1481  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1482}
1483
1484/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1485/// a tailcall target by changing its ABI.
1486static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1487  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1488}
1489
1490SDValue
1491X86TargetLowering::LowerMemArgument(SDValue Chain,
1492                                    CallingConv::ID CallConv,
1493                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1494                                    DebugLoc dl, SelectionDAG &DAG,
1495                                    const CCValAssign &VA,
1496                                    MachineFrameInfo *MFI,
1497                                    unsigned i) const {
1498  // Create the nodes corresponding to a load from this parameter slot.
1499  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1500  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1501  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1502  EVT ValVT;
1503
1504  // If value is passed by pointer we have address passed instead of the value
1505  // itself.
1506  if (VA.getLocInfo() == CCValAssign::Indirect)
1507    ValVT = VA.getLocVT();
1508  else
1509    ValVT = VA.getValVT();
1510
1511  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1512  // changed with more analysis.
1513  // In case of tail call optimization mark all arguments mutable. Since they
1514  // could be overwritten by lowering of arguments in case of a tail call.
1515  if (Flags.isByVal()) {
1516    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1517                                    VA.getLocMemOffset(), isImmutable);
1518    return DAG.getFrameIndex(FI, getPointerTy());
1519  } else {
1520    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1521                                    VA.getLocMemOffset(), isImmutable);
1522    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1523    return DAG.getLoad(ValVT, dl, Chain, FIN,
1524                       MachinePointerInfo::getFixedStack(FI),
1525                       false, false, 0);
1526  }
1527}
1528
1529SDValue
1530X86TargetLowering::LowerFormalArguments(SDValue Chain,
1531                                        CallingConv::ID CallConv,
1532                                        bool isVarArg,
1533                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1534                                        DebugLoc dl,
1535                                        SelectionDAG &DAG,
1536                                        SmallVectorImpl<SDValue> &InVals)
1537                                          const {
1538  MachineFunction &MF = DAG.getMachineFunction();
1539  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1540
1541  const Function* Fn = MF.getFunction();
1542  if (Fn->hasExternalLinkage() &&
1543      Subtarget->isTargetCygMing() &&
1544      Fn->getName() == "main")
1545    FuncInfo->setForceFramePointer(true);
1546
1547  MachineFrameInfo *MFI = MF.getFrameInfo();
1548  bool Is64Bit = Subtarget->is64Bit();
1549  bool IsWin64 = Subtarget->isTargetWin64();
1550
1551  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1552         "Var args not supported with calling convention fastcc or ghc");
1553
1554  // Assign locations to all of the incoming arguments.
1555  SmallVector<CCValAssign, 16> ArgLocs;
1556  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1557                 ArgLocs, *DAG.getContext());
1558  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1559
1560  unsigned LastVal = ~0U;
1561  SDValue ArgValue;
1562  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1563    CCValAssign &VA = ArgLocs[i];
1564    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1565    // places.
1566    assert(VA.getValNo() != LastVal &&
1567           "Don't support value assigned to multiple locs yet");
1568    LastVal = VA.getValNo();
1569
1570    if (VA.isRegLoc()) {
1571      EVT RegVT = VA.getLocVT();
1572      TargetRegisterClass *RC = NULL;
1573      if (RegVT == MVT::i32)
1574        RC = X86::GR32RegisterClass;
1575      else if (Is64Bit && RegVT == MVT::i64)
1576        RC = X86::GR64RegisterClass;
1577      else if (RegVT == MVT::f32)
1578        RC = X86::FR32RegisterClass;
1579      else if (RegVT == MVT::f64)
1580        RC = X86::FR64RegisterClass;
1581      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1582        RC = X86::VR256RegisterClass;
1583      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1584        RC = X86::VR128RegisterClass;
1585      else if (RegVT == MVT::x86mmx)
1586        RC = X86::VR64RegisterClass;
1587      else
1588        llvm_unreachable("Unknown argument type!");
1589
1590      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1591      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1592
1593      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1594      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1595      // right size.
1596      if (VA.getLocInfo() == CCValAssign::SExt)
1597        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1598                               DAG.getValueType(VA.getValVT()));
1599      else if (VA.getLocInfo() == CCValAssign::ZExt)
1600        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1601                               DAG.getValueType(VA.getValVT()));
1602      else if (VA.getLocInfo() == CCValAssign::BCvt)
1603        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1604
1605      if (VA.isExtInLoc()) {
1606        // Handle MMX values passed in XMM regs.
1607        if (RegVT.isVector()) {
1608          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1609                                 ArgValue);
1610        } else
1611          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1612      }
1613    } else {
1614      assert(VA.isMemLoc());
1615      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1616    }
1617
1618    // If value is passed via pointer - do a load.
1619    if (VA.getLocInfo() == CCValAssign::Indirect)
1620      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1621                             MachinePointerInfo(), false, false, 0);
1622
1623    InVals.push_back(ArgValue);
1624  }
1625
1626  // The x86-64 ABI for returning structs by value requires that we copy
1627  // the sret argument into %rax for the return. Save the argument into
1628  // a virtual register so that we can access it from the return points.
1629  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1630    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1631    unsigned Reg = FuncInfo->getSRetReturnReg();
1632    if (!Reg) {
1633      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1634      FuncInfo->setSRetReturnReg(Reg);
1635    }
1636    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1637    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1638  }
1639
1640  unsigned StackSize = CCInfo.getNextStackOffset();
1641  // Align stack specially for tail calls.
1642  if (FuncIsMadeTailCallSafe(CallConv))
1643    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1644
1645  // If the function takes variable number of arguments, make a frame index for
1646  // the start of the first vararg value... for expansion of llvm.va_start.
1647  if (isVarArg) {
1648    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1649                    CallConv != CallingConv::X86_ThisCall))) {
1650      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1651    }
1652    if (Is64Bit) {
1653      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1654
1655      // FIXME: We should really autogenerate these arrays
1656      static const unsigned GPR64ArgRegsWin64[] = {
1657        X86::RCX, X86::RDX, X86::R8,  X86::R9
1658      };
1659      static const unsigned GPR64ArgRegs64Bit[] = {
1660        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1661      };
1662      static const unsigned XMMArgRegs64Bit[] = {
1663        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1664        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1665      };
1666      const unsigned *GPR64ArgRegs;
1667      unsigned NumXMMRegs = 0;
1668
1669      if (IsWin64) {
1670        // The XMM registers which might contain var arg parameters are shadowed
1671        // in their paired GPR.  So we only need to save the GPR to their home
1672        // slots.
1673        TotalNumIntRegs = 4;
1674        GPR64ArgRegs = GPR64ArgRegsWin64;
1675      } else {
1676        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1677        GPR64ArgRegs = GPR64ArgRegs64Bit;
1678
1679        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1680      }
1681      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1682                                                       TotalNumIntRegs);
1683
1684      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1685      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1686             "SSE register cannot be used when SSE is disabled!");
1687      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1688             "SSE register cannot be used when SSE is disabled!");
1689      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1690        // Kernel mode asks for SSE to be disabled, so don't push them
1691        // on the stack.
1692        TotalNumXMMRegs = 0;
1693
1694      if (IsWin64) {
1695        const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
1696        // Get to the caller-allocated home save location.  Add 8 to account
1697        // for the return address.
1698        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1699        FuncInfo->setRegSaveFrameIndex(
1700          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1701        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1702      } else {
1703        // For X86-64, if there are vararg parameters that are passed via
1704        // registers, then we must store them to their spots on the stack so they
1705        // may be loaded by deferencing the result of va_next.
1706        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1707        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1708        FuncInfo->setRegSaveFrameIndex(
1709          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1710                               false));
1711      }
1712
1713      // Store the integer parameter registers.
1714      SmallVector<SDValue, 8> MemOps;
1715      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1716                                        getPointerTy());
1717      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1718      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1719        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1720                                  DAG.getIntPtrConstant(Offset));
1721        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1722                                     X86::GR64RegisterClass);
1723        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1724        SDValue Store =
1725          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1726                       MachinePointerInfo::getFixedStack(
1727                         FuncInfo->getRegSaveFrameIndex(), Offset),
1728                       false, false, 0);
1729        MemOps.push_back(Store);
1730        Offset += 8;
1731      }
1732
1733      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1734        // Now store the XMM (fp + vector) parameter registers.
1735        SmallVector<SDValue, 11> SaveXMMOps;
1736        SaveXMMOps.push_back(Chain);
1737
1738        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1739        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1740        SaveXMMOps.push_back(ALVal);
1741
1742        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1743                               FuncInfo->getRegSaveFrameIndex()));
1744        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1745                               FuncInfo->getVarArgsFPOffset()));
1746
1747        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1748          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1749                                       X86::VR128RegisterClass);
1750          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1751          SaveXMMOps.push_back(Val);
1752        }
1753        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1754                                     MVT::Other,
1755                                     &SaveXMMOps[0], SaveXMMOps.size()));
1756      }
1757
1758      if (!MemOps.empty())
1759        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1760                            &MemOps[0], MemOps.size());
1761    }
1762  }
1763
1764  // Some CCs need callee pop.
1765  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1766    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1767  } else {
1768    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1769    // If this is an sret function, the return should pop the hidden pointer.
1770    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1771      FuncInfo->setBytesToPopOnReturn(4);
1772  }
1773
1774  if (!Is64Bit) {
1775    // RegSaveFrameIndex is X86-64 only.
1776    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1777    if (CallConv == CallingConv::X86_FastCall ||
1778        CallConv == CallingConv::X86_ThisCall)
1779      // fastcc functions can't have varargs.
1780      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1781  }
1782
1783  return Chain;
1784}
1785
1786SDValue
1787X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1788                                    SDValue StackPtr, SDValue Arg,
1789                                    DebugLoc dl, SelectionDAG &DAG,
1790                                    const CCValAssign &VA,
1791                                    ISD::ArgFlagsTy Flags) const {
1792  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1793  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1794  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1795  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1796  if (Flags.isByVal())
1797    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1798
1799  return DAG.getStore(Chain, dl, Arg, PtrOff,
1800                      MachinePointerInfo::getStack(LocMemOffset),
1801                      false, false, 0);
1802}
1803
1804/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1805/// optimization is performed and it is required.
1806SDValue
1807X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1808                                           SDValue &OutRetAddr, SDValue Chain,
1809                                           bool IsTailCall, bool Is64Bit,
1810                                           int FPDiff, DebugLoc dl) const {
1811  // Adjust the Return address stack slot.
1812  EVT VT = getPointerTy();
1813  OutRetAddr = getReturnAddressFrameIndex(DAG);
1814
1815  // Load the "old" Return address.
1816  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1817                           false, false, 0);
1818  return SDValue(OutRetAddr.getNode(), 1);
1819}
1820
1821/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1822/// optimization is performed and it is required (FPDiff!=0).
1823static SDValue
1824EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1825                         SDValue Chain, SDValue RetAddrFrIdx,
1826                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1827  // Store the return address to the appropriate stack slot.
1828  if (!FPDiff) return Chain;
1829  // Calculate the new stack slot for the return address.
1830  int SlotSize = Is64Bit ? 8 : 4;
1831  int NewReturnAddrFI =
1832    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1833  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1834  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1835  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1836                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1837                       false, false, 0);
1838  return Chain;
1839}
1840
1841SDValue
1842X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1843                             CallingConv::ID CallConv, bool isVarArg,
1844                             bool &isTailCall,
1845                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1846                             const SmallVectorImpl<SDValue> &OutVals,
1847                             const SmallVectorImpl<ISD::InputArg> &Ins,
1848                             DebugLoc dl, SelectionDAG &DAG,
1849                             SmallVectorImpl<SDValue> &InVals) const {
1850  MachineFunction &MF = DAG.getMachineFunction();
1851  bool Is64Bit        = Subtarget->is64Bit();
1852  bool IsStructRet    = CallIsStructReturn(Outs);
1853  bool IsSibcall      = false;
1854
1855  if (isTailCall) {
1856    // Check if it's really possible to do a tail call.
1857    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1858                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1859                                                   Outs, OutVals, Ins, DAG);
1860
1861    // Sibcalls are automatically detected tailcalls which do not require
1862    // ABI changes.
1863    if (!GuaranteedTailCallOpt && isTailCall)
1864      IsSibcall = true;
1865
1866    if (isTailCall)
1867      ++NumTailCalls;
1868  }
1869
1870  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1871         "Var args not supported with calling convention fastcc or ghc");
1872
1873  // Analyze operands of the call, assigning locations to each operand.
1874  SmallVector<CCValAssign, 16> ArgLocs;
1875  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1876                 ArgLocs, *DAG.getContext());
1877  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1878
1879  // Get a count of how many bytes are to be pushed on the stack.
1880  unsigned NumBytes = CCInfo.getNextStackOffset();
1881  if (IsSibcall)
1882    // This is a sibcall. The memory operands are available in caller's
1883    // own caller's stack.
1884    NumBytes = 0;
1885  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1886    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1887
1888  int FPDiff = 0;
1889  if (isTailCall && !IsSibcall) {
1890    // Lower arguments at fp - stackoffset + fpdiff.
1891    unsigned NumBytesCallerPushed =
1892      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1893    FPDiff = NumBytesCallerPushed - NumBytes;
1894
1895    // Set the delta of movement of the returnaddr stackslot.
1896    // But only set if delta is greater than previous delta.
1897    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1898      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1899  }
1900
1901  if (!IsSibcall)
1902    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1903
1904  SDValue RetAddrFrIdx;
1905  // Load return adress for tail calls.
1906  if (isTailCall && FPDiff)
1907    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1908                                    Is64Bit, FPDiff, dl);
1909
1910  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1911  SmallVector<SDValue, 8> MemOpChains;
1912  SDValue StackPtr;
1913
1914  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1915  // of tail call optimization arguments are handle later.
1916  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1917    CCValAssign &VA = ArgLocs[i];
1918    EVT RegVT = VA.getLocVT();
1919    SDValue Arg = OutVals[i];
1920    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1921    bool isByVal = Flags.isByVal();
1922
1923    // Promote the value if needed.
1924    switch (VA.getLocInfo()) {
1925    default: llvm_unreachable("Unknown loc info!");
1926    case CCValAssign::Full: break;
1927    case CCValAssign::SExt:
1928      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1929      break;
1930    case CCValAssign::ZExt:
1931      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1932      break;
1933    case CCValAssign::AExt:
1934      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1935        // Special case: passing MMX values in XMM registers.
1936        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
1937        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1938        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1939      } else
1940        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1941      break;
1942    case CCValAssign::BCvt:
1943      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
1944      break;
1945    case CCValAssign::Indirect: {
1946      // Store the argument.
1947      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1948      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1949      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1950                           MachinePointerInfo::getFixedStack(FI),
1951                           false, false, 0);
1952      Arg = SpillSlot;
1953      break;
1954    }
1955    }
1956
1957    if (VA.isRegLoc()) {
1958      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1959      if (isVarArg && Subtarget->isTargetWin64()) {
1960        // Win64 ABI requires argument XMM reg to be copied to the corresponding
1961        // shadow reg if callee is a varargs function.
1962        unsigned ShadowReg = 0;
1963        switch (VA.getLocReg()) {
1964        case X86::XMM0: ShadowReg = X86::RCX; break;
1965        case X86::XMM1: ShadowReg = X86::RDX; break;
1966        case X86::XMM2: ShadowReg = X86::R8; break;
1967        case X86::XMM3: ShadowReg = X86::R9; break;
1968        }
1969        if (ShadowReg)
1970          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1971      }
1972    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1973      assert(VA.isMemLoc());
1974      if (StackPtr.getNode() == 0)
1975        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1976      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1977                                             dl, DAG, VA, Flags));
1978    }
1979  }
1980
1981  if (!MemOpChains.empty())
1982    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1983                        &MemOpChains[0], MemOpChains.size());
1984
1985  // Build a sequence of copy-to-reg nodes chained together with token chain
1986  // and flag operands which copy the outgoing args into registers.
1987  SDValue InFlag;
1988  // Tail call byval lowering might overwrite argument registers so in case of
1989  // tail call optimization the copies to registers are lowered later.
1990  if (!isTailCall)
1991    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1992      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1993                               RegsToPass[i].second, InFlag);
1994      InFlag = Chain.getValue(1);
1995    }
1996
1997  if (Subtarget->isPICStyleGOT()) {
1998    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1999    // GOT pointer.
2000    if (!isTailCall) {
2001      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2002                               DAG.getNode(X86ISD::GlobalBaseReg,
2003                                           DebugLoc(), getPointerTy()),
2004                               InFlag);
2005      InFlag = Chain.getValue(1);
2006    } else {
2007      // If we are tail calling and generating PIC/GOT style code load the
2008      // address of the callee into ECX. The value in ecx is used as target of
2009      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2010      // for tail calls on PIC/GOT architectures. Normally we would just put the
2011      // address of GOT into ebx and then call target@PLT. But for tail calls
2012      // ebx would be restored (since ebx is callee saved) before jumping to the
2013      // target@PLT.
2014
2015      // Note: The actual moving to ECX is done further down.
2016      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2017      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2018          !G->getGlobal()->hasProtectedVisibility())
2019        Callee = LowerGlobalAddress(Callee, DAG);
2020      else if (isa<ExternalSymbolSDNode>(Callee))
2021        Callee = LowerExternalSymbol(Callee, DAG);
2022    }
2023  }
2024
2025  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2026    // From AMD64 ABI document:
2027    // For calls that may call functions that use varargs or stdargs
2028    // (prototype-less calls or calls to functions containing ellipsis (...) in
2029    // the declaration) %al is used as hidden argument to specify the number
2030    // of SSE registers used. The contents of %al do not need to match exactly
2031    // the number of registers, but must be an ubound on the number of SSE
2032    // registers used and is in the range 0 - 8 inclusive.
2033
2034    // Count the number of XMM registers allocated.
2035    static const unsigned XMMArgRegs[] = {
2036      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2037      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2038    };
2039    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2040    assert((Subtarget->hasXMM() || !NumXMMRegs)
2041           && "SSE registers cannot be used when SSE is disabled");
2042
2043    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2044                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2045    InFlag = Chain.getValue(1);
2046  }
2047
2048
2049  // For tail calls lower the arguments to the 'real' stack slot.
2050  if (isTailCall) {
2051    // Force all the incoming stack arguments to be loaded from the stack
2052    // before any new outgoing arguments are stored to the stack, because the
2053    // outgoing stack slots may alias the incoming argument stack slots, and
2054    // the alias isn't otherwise explicit. This is slightly more conservative
2055    // than necessary, because it means that each store effectively depends
2056    // on every argument instead of just those arguments it would clobber.
2057    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2058
2059    SmallVector<SDValue, 8> MemOpChains2;
2060    SDValue FIN;
2061    int FI = 0;
2062    // Do not flag preceeding copytoreg stuff together with the following stuff.
2063    InFlag = SDValue();
2064    if (GuaranteedTailCallOpt) {
2065      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2066        CCValAssign &VA = ArgLocs[i];
2067        if (VA.isRegLoc())
2068          continue;
2069        assert(VA.isMemLoc());
2070        SDValue Arg = OutVals[i];
2071        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2072        // Create frame index.
2073        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2074        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2075        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2076        FIN = DAG.getFrameIndex(FI, getPointerTy());
2077
2078        if (Flags.isByVal()) {
2079          // Copy relative to framepointer.
2080          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2081          if (StackPtr.getNode() == 0)
2082            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2083                                          getPointerTy());
2084          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2085
2086          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2087                                                           ArgChain,
2088                                                           Flags, DAG, dl));
2089        } else {
2090          // Store relative to framepointer.
2091          MemOpChains2.push_back(
2092            DAG.getStore(ArgChain, dl, Arg, FIN,
2093                         MachinePointerInfo::getFixedStack(FI),
2094                         false, false, 0));
2095        }
2096      }
2097    }
2098
2099    if (!MemOpChains2.empty())
2100      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2101                          &MemOpChains2[0], MemOpChains2.size());
2102
2103    // Copy arguments to their registers.
2104    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2105      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2106                               RegsToPass[i].second, InFlag);
2107      InFlag = Chain.getValue(1);
2108    }
2109    InFlag =SDValue();
2110
2111    // Store the return address to the appropriate stack slot.
2112    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2113                                     FPDiff, dl);
2114  }
2115
2116  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2117    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2118    // In the 64-bit large code model, we have to make all calls
2119    // through a register, since the call instruction's 32-bit
2120    // pc-relative offset may not be large enough to hold the whole
2121    // address.
2122  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2123    // If the callee is a GlobalAddress node (quite common, every direct call
2124    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2125    // it.
2126
2127    // We should use extra load for direct calls to dllimported functions in
2128    // non-JIT mode.
2129    const GlobalValue *GV = G->getGlobal();
2130    if (!GV->hasDLLImportLinkage()) {
2131      unsigned char OpFlags = 0;
2132
2133      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2134      // external symbols most go through the PLT in PIC mode.  If the symbol
2135      // has hidden or protected visibility, or if it is static or local, then
2136      // we don't need to use the PLT - we can directly call it.
2137      if (Subtarget->isTargetELF() &&
2138          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2139          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2140        OpFlags = X86II::MO_PLT;
2141      } else if (Subtarget->isPICStyleStubAny() &&
2142                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2143                 Subtarget->getDarwinVers() < 9) {
2144        // PC-relative references to external symbols should go through $stub,
2145        // unless we're building with the leopard linker or later, which
2146        // automatically synthesizes these stubs.
2147        OpFlags = X86II::MO_DARWIN_STUB;
2148      }
2149
2150      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2151                                          G->getOffset(), OpFlags);
2152    }
2153  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2154    unsigned char OpFlags = 0;
2155
2156    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2157    // external symbols should go through the PLT.
2158    if (Subtarget->isTargetELF() &&
2159        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2160      OpFlags = X86II::MO_PLT;
2161    } else if (Subtarget->isPICStyleStubAny() &&
2162               Subtarget->getDarwinVers() < 9) {
2163      // PC-relative references to external symbols should go through $stub,
2164      // unless we're building with the leopard linker or later, which
2165      // automatically synthesizes these stubs.
2166      OpFlags = X86II::MO_DARWIN_STUB;
2167    }
2168
2169    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2170                                         OpFlags);
2171  }
2172
2173  // Returns a chain & a flag for retval copy to use.
2174  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2175  SmallVector<SDValue, 8> Ops;
2176
2177  if (!IsSibcall && isTailCall) {
2178    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2179                           DAG.getIntPtrConstant(0, true), InFlag);
2180    InFlag = Chain.getValue(1);
2181  }
2182
2183  Ops.push_back(Chain);
2184  Ops.push_back(Callee);
2185
2186  if (isTailCall)
2187    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2188
2189  // Add argument registers to the end of the list so that they are known live
2190  // into the call.
2191  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2192    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2193                                  RegsToPass[i].second.getValueType()));
2194
2195  // Add an implicit use GOT pointer in EBX.
2196  if (!isTailCall && Subtarget->isPICStyleGOT())
2197    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2198
2199  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2200  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2201    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2202
2203  if (InFlag.getNode())
2204    Ops.push_back(InFlag);
2205
2206  if (isTailCall) {
2207    // We used to do:
2208    //// If this is the first return lowered for this function, add the regs
2209    //// to the liveout set for the function.
2210    // This isn't right, although it's probably harmless on x86; liveouts
2211    // should be computed from returns not tail calls.  Consider a void
2212    // function making a tail call to a function returning int.
2213    return DAG.getNode(X86ISD::TC_RETURN, dl,
2214                       NodeTys, &Ops[0], Ops.size());
2215  }
2216
2217  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2218  InFlag = Chain.getValue(1);
2219
2220  // Create the CALLSEQ_END node.
2221  unsigned NumBytesForCalleeToPush;
2222  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2223    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2224  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2225    // If this is a call to a struct-return function, the callee
2226    // pops the hidden struct pointer, so we have to push it back.
2227    // This is common for Darwin/X86, Linux & Mingw32 targets.
2228    NumBytesForCalleeToPush = 4;
2229  else
2230    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2231
2232  // Returns a flag for retval copy to use.
2233  if (!IsSibcall) {
2234    Chain = DAG.getCALLSEQ_END(Chain,
2235                               DAG.getIntPtrConstant(NumBytes, true),
2236                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2237                                                     true),
2238                               InFlag);
2239    InFlag = Chain.getValue(1);
2240  }
2241
2242  // Handle result values, copying them out of physregs into vregs that we
2243  // return.
2244  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2245                         Ins, dl, DAG, InVals);
2246}
2247
2248
2249//===----------------------------------------------------------------------===//
2250//                Fast Calling Convention (tail call) implementation
2251//===----------------------------------------------------------------------===//
2252
2253//  Like std call, callee cleans arguments, convention except that ECX is
2254//  reserved for storing the tail called function address. Only 2 registers are
2255//  free for argument passing (inreg). Tail call optimization is performed
2256//  provided:
2257//                * tailcallopt is enabled
2258//                * caller/callee are fastcc
2259//  On X86_64 architecture with GOT-style position independent code only local
2260//  (within module) calls are supported at the moment.
2261//  To keep the stack aligned according to platform abi the function
2262//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2263//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2264//  If a tail called function callee has more arguments than the caller the
2265//  caller needs to make sure that there is room to move the RETADDR to. This is
2266//  achieved by reserving an area the size of the argument delta right after the
2267//  original REtADDR, but before the saved framepointer or the spilled registers
2268//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2269//  stack layout:
2270//    arg1
2271//    arg2
2272//    RETADDR
2273//    [ new RETADDR
2274//      move area ]
2275//    (possible EBP)
2276//    ESI
2277//    EDI
2278//    local1 ..
2279
2280/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2281/// for a 16 byte align requirement.
2282unsigned
2283X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2284                                               SelectionDAG& DAG) const {
2285  MachineFunction &MF = DAG.getMachineFunction();
2286  const TargetMachine &TM = MF.getTarget();
2287  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2288  unsigned StackAlignment = TFI.getStackAlignment();
2289  uint64_t AlignMask = StackAlignment - 1;
2290  int64_t Offset = StackSize;
2291  uint64_t SlotSize = TD->getPointerSize();
2292  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2293    // Number smaller than 12 so just add the difference.
2294    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2295  } else {
2296    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2297    Offset = ((~AlignMask) & Offset) + StackAlignment +
2298      (StackAlignment-SlotSize);
2299  }
2300  return Offset;
2301}
2302
2303/// MatchingStackOffset - Return true if the given stack call argument is
2304/// already available in the same position (relatively) of the caller's
2305/// incoming argument stack.
2306static
2307bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2308                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2309                         const X86InstrInfo *TII) {
2310  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2311  int FI = INT_MAX;
2312  if (Arg.getOpcode() == ISD::CopyFromReg) {
2313    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2314    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2315      return false;
2316    MachineInstr *Def = MRI->getVRegDef(VR);
2317    if (!Def)
2318      return false;
2319    if (!Flags.isByVal()) {
2320      if (!TII->isLoadFromStackSlot(Def, FI))
2321        return false;
2322    } else {
2323      unsigned Opcode = Def->getOpcode();
2324      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2325          Def->getOperand(1).isFI()) {
2326        FI = Def->getOperand(1).getIndex();
2327        Bytes = Flags.getByValSize();
2328      } else
2329        return false;
2330    }
2331  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2332    if (Flags.isByVal())
2333      // ByVal argument is passed in as a pointer but it's now being
2334      // dereferenced. e.g.
2335      // define @foo(%struct.X* %A) {
2336      //   tail call @bar(%struct.X* byval %A)
2337      // }
2338      return false;
2339    SDValue Ptr = Ld->getBasePtr();
2340    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2341    if (!FINode)
2342      return false;
2343    FI = FINode->getIndex();
2344  } else
2345    return false;
2346
2347  assert(FI != INT_MAX);
2348  if (!MFI->isFixedObjectIndex(FI))
2349    return false;
2350  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2351}
2352
2353/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2354/// for tail call optimization. Targets which want to do tail call
2355/// optimization should implement this function.
2356bool
2357X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2358                                                     CallingConv::ID CalleeCC,
2359                                                     bool isVarArg,
2360                                                     bool isCalleeStructRet,
2361                                                     bool isCallerStructRet,
2362                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2363                                    const SmallVectorImpl<SDValue> &OutVals,
2364                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2365                                                     SelectionDAG& DAG) const {
2366  if (!IsTailCallConvention(CalleeCC) &&
2367      CalleeCC != CallingConv::C)
2368    return false;
2369
2370  // If -tailcallopt is specified, make fastcc functions tail-callable.
2371  const MachineFunction &MF = DAG.getMachineFunction();
2372  const Function *CallerF = DAG.getMachineFunction().getFunction();
2373  CallingConv::ID CallerCC = CallerF->getCallingConv();
2374  bool CCMatch = CallerCC == CalleeCC;
2375
2376  if (GuaranteedTailCallOpt) {
2377    if (IsTailCallConvention(CalleeCC) && CCMatch)
2378      return true;
2379    return false;
2380  }
2381
2382  // Look for obvious safe cases to perform tail call optimization that do not
2383  // require ABI changes. This is what gcc calls sibcall.
2384
2385  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2386  // emit a special epilogue.
2387  if (RegInfo->needsStackRealignment(MF))
2388    return false;
2389
2390  // Do not sibcall optimize vararg calls unless the call site is not passing
2391  // any arguments.
2392  if (isVarArg && !Outs.empty())
2393    return false;
2394
2395  // Also avoid sibcall optimization if either caller or callee uses struct
2396  // return semantics.
2397  if (isCalleeStructRet || isCallerStructRet)
2398    return false;
2399
2400  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2401  // Therefore if it's not used by the call it is not safe to optimize this into
2402  // a sibcall.
2403  bool Unused = false;
2404  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2405    if (!Ins[i].Used) {
2406      Unused = true;
2407      break;
2408    }
2409  }
2410  if (Unused) {
2411    SmallVector<CCValAssign, 16> RVLocs;
2412    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2413                   RVLocs, *DAG.getContext());
2414    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2415    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2416      CCValAssign &VA = RVLocs[i];
2417      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2418        return false;
2419    }
2420  }
2421
2422  // If the calling conventions do not match, then we'd better make sure the
2423  // results are returned in the same way as what the caller expects.
2424  if (!CCMatch) {
2425    SmallVector<CCValAssign, 16> RVLocs1;
2426    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2427                    RVLocs1, *DAG.getContext());
2428    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2429
2430    SmallVector<CCValAssign, 16> RVLocs2;
2431    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2432                    RVLocs2, *DAG.getContext());
2433    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2434
2435    if (RVLocs1.size() != RVLocs2.size())
2436      return false;
2437    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2438      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2439        return false;
2440      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2441        return false;
2442      if (RVLocs1[i].isRegLoc()) {
2443        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2444          return false;
2445      } else {
2446        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2447          return false;
2448      }
2449    }
2450  }
2451
2452  // If the callee takes no arguments then go on to check the results of the
2453  // call.
2454  if (!Outs.empty()) {
2455    // Check if stack adjustment is needed. For now, do not do this if any
2456    // argument is passed on the stack.
2457    SmallVector<CCValAssign, 16> ArgLocs;
2458    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2459                   ArgLocs, *DAG.getContext());
2460    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2461    if (CCInfo.getNextStackOffset()) {
2462      MachineFunction &MF = DAG.getMachineFunction();
2463      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2464        return false;
2465      if (Subtarget->isTargetWin64())
2466        // Win64 ABI has additional complications.
2467        return false;
2468
2469      // Check if the arguments are already laid out in the right way as
2470      // the caller's fixed stack objects.
2471      MachineFrameInfo *MFI = MF.getFrameInfo();
2472      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2473      const X86InstrInfo *TII =
2474        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2475      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2476        CCValAssign &VA = ArgLocs[i];
2477        SDValue Arg = OutVals[i];
2478        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2479        if (VA.getLocInfo() == CCValAssign::Indirect)
2480          return false;
2481        if (!VA.isRegLoc()) {
2482          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2483                                   MFI, MRI, TII))
2484            return false;
2485        }
2486      }
2487    }
2488
2489    // If the tailcall address may be in a register, then make sure it's
2490    // possible to register allocate for it. In 32-bit, the call address can
2491    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2492    // callee-saved registers are restored. These happen to be the same
2493    // registers used to pass 'inreg' arguments so watch out for those.
2494    if (!Subtarget->is64Bit() &&
2495        !isa<GlobalAddressSDNode>(Callee) &&
2496        !isa<ExternalSymbolSDNode>(Callee)) {
2497      unsigned NumInRegs = 0;
2498      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2499        CCValAssign &VA = ArgLocs[i];
2500        if (!VA.isRegLoc())
2501          continue;
2502        unsigned Reg = VA.getLocReg();
2503        switch (Reg) {
2504        default: break;
2505        case X86::EAX: case X86::EDX: case X86::ECX:
2506          if (++NumInRegs == 3)
2507            return false;
2508          break;
2509        }
2510      }
2511    }
2512  }
2513
2514  // An stdcall caller is expected to clean up its arguments; the callee
2515  // isn't going to do that.
2516  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2517    return false;
2518
2519  return true;
2520}
2521
2522FastISel *
2523X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2524  return X86::createFastISel(funcInfo);
2525}
2526
2527
2528//===----------------------------------------------------------------------===//
2529//                           Other Lowering Hooks
2530//===----------------------------------------------------------------------===//
2531
2532static bool MayFoldLoad(SDValue Op) {
2533  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2534}
2535
2536static bool MayFoldIntoStore(SDValue Op) {
2537  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2538}
2539
2540static bool isTargetShuffle(unsigned Opcode) {
2541  switch(Opcode) {
2542  default: return false;
2543  case X86ISD::PSHUFD:
2544  case X86ISD::PSHUFHW:
2545  case X86ISD::PSHUFLW:
2546  case X86ISD::SHUFPD:
2547  case X86ISD::PALIGN:
2548  case X86ISD::SHUFPS:
2549  case X86ISD::MOVLHPS:
2550  case X86ISD::MOVLHPD:
2551  case X86ISD::MOVHLPS:
2552  case X86ISD::MOVLPS:
2553  case X86ISD::MOVLPD:
2554  case X86ISD::MOVSHDUP:
2555  case X86ISD::MOVSLDUP:
2556  case X86ISD::MOVDDUP:
2557  case X86ISD::MOVSS:
2558  case X86ISD::MOVSD:
2559  case X86ISD::UNPCKLPS:
2560  case X86ISD::UNPCKLPD:
2561  case X86ISD::PUNPCKLWD:
2562  case X86ISD::PUNPCKLBW:
2563  case X86ISD::PUNPCKLDQ:
2564  case X86ISD::PUNPCKLQDQ:
2565  case X86ISD::UNPCKHPS:
2566  case X86ISD::UNPCKHPD:
2567  case X86ISD::PUNPCKHWD:
2568  case X86ISD::PUNPCKHBW:
2569  case X86ISD::PUNPCKHDQ:
2570  case X86ISD::PUNPCKHQDQ:
2571    return true;
2572  }
2573  return false;
2574}
2575
2576static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2577                                               SDValue V1, SelectionDAG &DAG) {
2578  switch(Opc) {
2579  default: llvm_unreachable("Unknown x86 shuffle node");
2580  case X86ISD::MOVSHDUP:
2581  case X86ISD::MOVSLDUP:
2582  case X86ISD::MOVDDUP:
2583    return DAG.getNode(Opc, dl, VT, V1);
2584  }
2585
2586  return SDValue();
2587}
2588
2589static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2590                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2591  switch(Opc) {
2592  default: llvm_unreachable("Unknown x86 shuffle node");
2593  case X86ISD::PSHUFD:
2594  case X86ISD::PSHUFHW:
2595  case X86ISD::PSHUFLW:
2596    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2597  }
2598
2599  return SDValue();
2600}
2601
2602static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2603               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2604  switch(Opc) {
2605  default: llvm_unreachable("Unknown x86 shuffle node");
2606  case X86ISD::PALIGN:
2607  case X86ISD::SHUFPD:
2608  case X86ISD::SHUFPS:
2609    return DAG.getNode(Opc, dl, VT, V1, V2,
2610                       DAG.getConstant(TargetMask, MVT::i8));
2611  }
2612  return SDValue();
2613}
2614
2615static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2616                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2617  switch(Opc) {
2618  default: llvm_unreachable("Unknown x86 shuffle node");
2619  case X86ISD::MOVLHPS:
2620  case X86ISD::MOVLHPD:
2621  case X86ISD::MOVHLPS:
2622  case X86ISD::MOVLPS:
2623  case X86ISD::MOVLPD:
2624  case X86ISD::MOVSS:
2625  case X86ISD::MOVSD:
2626  case X86ISD::UNPCKLPS:
2627  case X86ISD::UNPCKLPD:
2628  case X86ISD::PUNPCKLWD:
2629  case X86ISD::PUNPCKLBW:
2630  case X86ISD::PUNPCKLDQ:
2631  case X86ISD::PUNPCKLQDQ:
2632  case X86ISD::UNPCKHPS:
2633  case X86ISD::UNPCKHPD:
2634  case X86ISD::PUNPCKHWD:
2635  case X86ISD::PUNPCKHBW:
2636  case X86ISD::PUNPCKHDQ:
2637  case X86ISD::PUNPCKHQDQ:
2638    return DAG.getNode(Opc, dl, VT, V1, V2);
2639  }
2640  return SDValue();
2641}
2642
2643SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2644  MachineFunction &MF = DAG.getMachineFunction();
2645  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2646  int ReturnAddrIndex = FuncInfo->getRAIndex();
2647
2648  if (ReturnAddrIndex == 0) {
2649    // Set up a frame object for the return address.
2650    uint64_t SlotSize = TD->getPointerSize();
2651    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2652                                                           false);
2653    FuncInfo->setRAIndex(ReturnAddrIndex);
2654  }
2655
2656  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2657}
2658
2659
2660bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2661                                       bool hasSymbolicDisplacement) {
2662  // Offset should fit into 32 bit immediate field.
2663  if (!isInt<32>(Offset))
2664    return false;
2665
2666  // If we don't have a symbolic displacement - we don't have any extra
2667  // restrictions.
2668  if (!hasSymbolicDisplacement)
2669    return true;
2670
2671  // FIXME: Some tweaks might be needed for medium code model.
2672  if (M != CodeModel::Small && M != CodeModel::Kernel)
2673    return false;
2674
2675  // For small code model we assume that latest object is 16MB before end of 31
2676  // bits boundary. We may also accept pretty large negative constants knowing
2677  // that all objects are in the positive half of address space.
2678  if (M == CodeModel::Small && Offset < 16*1024*1024)
2679    return true;
2680
2681  // For kernel code model we know that all object resist in the negative half
2682  // of 32bits address space. We may not accept negative offsets, since they may
2683  // be just off and we may accept pretty large positive ones.
2684  if (M == CodeModel::Kernel && Offset > 0)
2685    return true;
2686
2687  return false;
2688}
2689
2690/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2691/// specific condition code, returning the condition code and the LHS/RHS of the
2692/// comparison to make.
2693static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2694                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2695  if (!isFP) {
2696    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2697      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2698        // X > -1   -> X == 0, jump !sign.
2699        RHS = DAG.getConstant(0, RHS.getValueType());
2700        return X86::COND_NS;
2701      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2702        // X < 0   -> X == 0, jump on sign.
2703        return X86::COND_S;
2704      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2705        // X < 1   -> X <= 0
2706        RHS = DAG.getConstant(0, RHS.getValueType());
2707        return X86::COND_LE;
2708      }
2709    }
2710
2711    switch (SetCCOpcode) {
2712    default: llvm_unreachable("Invalid integer condition!");
2713    case ISD::SETEQ:  return X86::COND_E;
2714    case ISD::SETGT:  return X86::COND_G;
2715    case ISD::SETGE:  return X86::COND_GE;
2716    case ISD::SETLT:  return X86::COND_L;
2717    case ISD::SETLE:  return X86::COND_LE;
2718    case ISD::SETNE:  return X86::COND_NE;
2719    case ISD::SETULT: return X86::COND_B;
2720    case ISD::SETUGT: return X86::COND_A;
2721    case ISD::SETULE: return X86::COND_BE;
2722    case ISD::SETUGE: return X86::COND_AE;
2723    }
2724  }
2725
2726  // First determine if it is required or is profitable to flip the operands.
2727
2728  // If LHS is a foldable load, but RHS is not, flip the condition.
2729  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2730      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2731    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2732    std::swap(LHS, RHS);
2733  }
2734
2735  switch (SetCCOpcode) {
2736  default: break;
2737  case ISD::SETOLT:
2738  case ISD::SETOLE:
2739  case ISD::SETUGT:
2740  case ISD::SETUGE:
2741    std::swap(LHS, RHS);
2742    break;
2743  }
2744
2745  // On a floating point condition, the flags are set as follows:
2746  // ZF  PF  CF   op
2747  //  0 | 0 | 0 | X > Y
2748  //  0 | 0 | 1 | X < Y
2749  //  1 | 0 | 0 | X == Y
2750  //  1 | 1 | 1 | unordered
2751  switch (SetCCOpcode) {
2752  default: llvm_unreachable("Condcode should be pre-legalized away");
2753  case ISD::SETUEQ:
2754  case ISD::SETEQ:   return X86::COND_E;
2755  case ISD::SETOLT:              // flipped
2756  case ISD::SETOGT:
2757  case ISD::SETGT:   return X86::COND_A;
2758  case ISD::SETOLE:              // flipped
2759  case ISD::SETOGE:
2760  case ISD::SETGE:   return X86::COND_AE;
2761  case ISD::SETUGT:              // flipped
2762  case ISD::SETULT:
2763  case ISD::SETLT:   return X86::COND_B;
2764  case ISD::SETUGE:              // flipped
2765  case ISD::SETULE:
2766  case ISD::SETLE:   return X86::COND_BE;
2767  case ISD::SETONE:
2768  case ISD::SETNE:   return X86::COND_NE;
2769  case ISD::SETUO:   return X86::COND_P;
2770  case ISD::SETO:    return X86::COND_NP;
2771  case ISD::SETOEQ:
2772  case ISD::SETUNE:  return X86::COND_INVALID;
2773  }
2774}
2775
2776/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2777/// code. Current x86 isa includes the following FP cmov instructions:
2778/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2779static bool hasFPCMov(unsigned X86CC) {
2780  switch (X86CC) {
2781  default:
2782    return false;
2783  case X86::COND_B:
2784  case X86::COND_BE:
2785  case X86::COND_E:
2786  case X86::COND_P:
2787  case X86::COND_A:
2788  case X86::COND_AE:
2789  case X86::COND_NE:
2790  case X86::COND_NP:
2791    return true;
2792  }
2793}
2794
2795/// isFPImmLegal - Returns true if the target can instruction select the
2796/// specified FP immediate natively. If false, the legalizer will
2797/// materialize the FP immediate as a load from a constant pool.
2798bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2799  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2800    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2801      return true;
2802  }
2803  return false;
2804}
2805
2806/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2807/// the specified range (L, H].
2808static bool isUndefOrInRange(int Val, int Low, int Hi) {
2809  return (Val < 0) || (Val >= Low && Val < Hi);
2810}
2811
2812/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2813/// specified value.
2814static bool isUndefOrEqual(int Val, int CmpVal) {
2815  if (Val < 0 || Val == CmpVal)
2816    return true;
2817  return false;
2818}
2819
2820/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2821/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2822/// the second operand.
2823static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2824  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2825    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2826  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2827    return (Mask[0] < 2 && Mask[1] < 2);
2828  return false;
2829}
2830
2831bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2832  SmallVector<int, 8> M;
2833  N->getMask(M);
2834  return ::isPSHUFDMask(M, N->getValueType(0));
2835}
2836
2837/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2838/// is suitable for input to PSHUFHW.
2839static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2840  if (VT != MVT::v8i16)
2841    return false;
2842
2843  // Lower quadword copied in order or undef.
2844  for (int i = 0; i != 4; ++i)
2845    if (Mask[i] >= 0 && Mask[i] != i)
2846      return false;
2847
2848  // Upper quadword shuffled.
2849  for (int i = 4; i != 8; ++i)
2850    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2851      return false;
2852
2853  return true;
2854}
2855
2856bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2857  SmallVector<int, 8> M;
2858  N->getMask(M);
2859  return ::isPSHUFHWMask(M, N->getValueType(0));
2860}
2861
2862/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2863/// is suitable for input to PSHUFLW.
2864static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2865  if (VT != MVT::v8i16)
2866    return false;
2867
2868  // Upper quadword copied in order.
2869  for (int i = 4; i != 8; ++i)
2870    if (Mask[i] >= 0 && Mask[i] != i)
2871      return false;
2872
2873  // Lower quadword shuffled.
2874  for (int i = 0; i != 4; ++i)
2875    if (Mask[i] >= 4)
2876      return false;
2877
2878  return true;
2879}
2880
2881bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2882  SmallVector<int, 8> M;
2883  N->getMask(M);
2884  return ::isPSHUFLWMask(M, N->getValueType(0));
2885}
2886
2887/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2888/// is suitable for input to PALIGNR.
2889static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2890                          bool hasSSSE3) {
2891  int i, e = VT.getVectorNumElements();
2892
2893  // Do not handle v2i64 / v2f64 shuffles with palignr.
2894  if (e < 4 || !hasSSSE3)
2895    return false;
2896
2897  for (i = 0; i != e; ++i)
2898    if (Mask[i] >= 0)
2899      break;
2900
2901  // All undef, not a palignr.
2902  if (i == e)
2903    return false;
2904
2905  // Determine if it's ok to perform a palignr with only the LHS, since we
2906  // don't have access to the actual shuffle elements to see if RHS is undef.
2907  bool Unary = Mask[i] < (int)e;
2908  bool NeedsUnary = false;
2909
2910  int s = Mask[i] - i;
2911
2912  // Check the rest of the elements to see if they are consecutive.
2913  for (++i; i != e; ++i) {
2914    int m = Mask[i];
2915    if (m < 0)
2916      continue;
2917
2918    Unary = Unary && (m < (int)e);
2919    NeedsUnary = NeedsUnary || (m < s);
2920
2921    if (NeedsUnary && !Unary)
2922      return false;
2923    if (Unary && m != ((s+i) & (e-1)))
2924      return false;
2925    if (!Unary && m != (s+i))
2926      return false;
2927  }
2928  return true;
2929}
2930
2931bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2932  SmallVector<int, 8> M;
2933  N->getMask(M);
2934  return ::isPALIGNRMask(M, N->getValueType(0), true);
2935}
2936
2937/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2938/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2939static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2940  int NumElems = VT.getVectorNumElements();
2941  if (NumElems != 2 && NumElems != 4)
2942    return false;
2943
2944  int Half = NumElems / 2;
2945  for (int i = 0; i < Half; ++i)
2946    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2947      return false;
2948  for (int i = Half; i < NumElems; ++i)
2949    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2950      return false;
2951
2952  return true;
2953}
2954
2955bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2956  SmallVector<int, 8> M;
2957  N->getMask(M);
2958  return ::isSHUFPMask(M, N->getValueType(0));
2959}
2960
2961/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2962/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2963/// half elements to come from vector 1 (which would equal the dest.) and
2964/// the upper half to come from vector 2.
2965static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2966  int NumElems = VT.getVectorNumElements();
2967
2968  if (NumElems != 2 && NumElems != 4)
2969    return false;
2970
2971  int Half = NumElems / 2;
2972  for (int i = 0; i < Half; ++i)
2973    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2974      return false;
2975  for (int i = Half; i < NumElems; ++i)
2976    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2977      return false;
2978  return true;
2979}
2980
2981static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2982  SmallVector<int, 8> M;
2983  N->getMask(M);
2984  return isCommutedSHUFPMask(M, N->getValueType(0));
2985}
2986
2987/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2988/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2989bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2990  if (N->getValueType(0).getVectorNumElements() != 4)
2991    return false;
2992
2993  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2994  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2995         isUndefOrEqual(N->getMaskElt(1), 7) &&
2996         isUndefOrEqual(N->getMaskElt(2), 2) &&
2997         isUndefOrEqual(N->getMaskElt(3), 3);
2998}
2999
3000/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3001/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3002/// <2, 3, 2, 3>
3003bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3004  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3005
3006  if (NumElems != 4)
3007    return false;
3008
3009  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3010  isUndefOrEqual(N->getMaskElt(1), 3) &&
3011  isUndefOrEqual(N->getMaskElt(2), 2) &&
3012  isUndefOrEqual(N->getMaskElt(3), 3);
3013}
3014
3015/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3016/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3017bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3018  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3019
3020  if (NumElems != 2 && NumElems != 4)
3021    return false;
3022
3023  for (unsigned i = 0; i < NumElems/2; ++i)
3024    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3025      return false;
3026
3027  for (unsigned i = NumElems/2; i < NumElems; ++i)
3028    if (!isUndefOrEqual(N->getMaskElt(i), i))
3029      return false;
3030
3031  return true;
3032}
3033
3034/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3035/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3036bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3037  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3038
3039  if (NumElems != 2 && NumElems != 4)
3040    return false;
3041
3042  for (unsigned i = 0; i < NumElems/2; ++i)
3043    if (!isUndefOrEqual(N->getMaskElt(i), i))
3044      return false;
3045
3046  for (unsigned i = 0; i < NumElems/2; ++i)
3047    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3048      return false;
3049
3050  return true;
3051}
3052
3053/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3054/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3055static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3056                         bool V2IsSplat = false) {
3057  int NumElts = VT.getVectorNumElements();
3058  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3059    return false;
3060
3061  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3062    int BitI  = Mask[i];
3063    int BitI1 = Mask[i+1];
3064    if (!isUndefOrEqual(BitI, j))
3065      return false;
3066    if (V2IsSplat) {
3067      if (!isUndefOrEqual(BitI1, NumElts))
3068        return false;
3069    } else {
3070      if (!isUndefOrEqual(BitI1, j + NumElts))
3071        return false;
3072    }
3073  }
3074  return true;
3075}
3076
3077bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3078  SmallVector<int, 8> M;
3079  N->getMask(M);
3080  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3081}
3082
3083/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3084/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3085static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3086                         bool V2IsSplat = false) {
3087  int NumElts = VT.getVectorNumElements();
3088  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3089    return false;
3090
3091  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3092    int BitI  = Mask[i];
3093    int BitI1 = Mask[i+1];
3094    if (!isUndefOrEqual(BitI, j + NumElts/2))
3095      return false;
3096    if (V2IsSplat) {
3097      if (isUndefOrEqual(BitI1, NumElts))
3098        return false;
3099    } else {
3100      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3101        return false;
3102    }
3103  }
3104  return true;
3105}
3106
3107bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3108  SmallVector<int, 8> M;
3109  N->getMask(M);
3110  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3111}
3112
3113/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3114/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3115/// <0, 0, 1, 1>
3116static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3117  int NumElems = VT.getVectorNumElements();
3118  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3119    return false;
3120
3121  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3122    int BitI  = Mask[i];
3123    int BitI1 = Mask[i+1];
3124    if (!isUndefOrEqual(BitI, j))
3125      return false;
3126    if (!isUndefOrEqual(BitI1, j))
3127      return false;
3128  }
3129  return true;
3130}
3131
3132bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3133  SmallVector<int, 8> M;
3134  N->getMask(M);
3135  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3136}
3137
3138/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3139/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3140/// <2, 2, 3, 3>
3141static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3142  int NumElems = VT.getVectorNumElements();
3143  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3144    return false;
3145
3146  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3147    int BitI  = Mask[i];
3148    int BitI1 = Mask[i+1];
3149    if (!isUndefOrEqual(BitI, j))
3150      return false;
3151    if (!isUndefOrEqual(BitI1, j))
3152      return false;
3153  }
3154  return true;
3155}
3156
3157bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3158  SmallVector<int, 8> M;
3159  N->getMask(M);
3160  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3161}
3162
3163/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3164/// specifies a shuffle of elements that is suitable for input to MOVSS,
3165/// MOVSD, and MOVD, i.e. setting the lowest element.
3166static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3167  if (VT.getVectorElementType().getSizeInBits() < 32)
3168    return false;
3169
3170  int NumElts = VT.getVectorNumElements();
3171
3172  if (!isUndefOrEqual(Mask[0], NumElts))
3173    return false;
3174
3175  for (int i = 1; i < NumElts; ++i)
3176    if (!isUndefOrEqual(Mask[i], i))
3177      return false;
3178
3179  return true;
3180}
3181
3182bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3183  SmallVector<int, 8> M;
3184  N->getMask(M);
3185  return ::isMOVLMask(M, N->getValueType(0));
3186}
3187
3188/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3189/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3190/// element of vector 2 and the other elements to come from vector 1 in order.
3191static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3192                               bool V2IsSplat = false, bool V2IsUndef = false) {
3193  int NumOps = VT.getVectorNumElements();
3194  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3195    return false;
3196
3197  if (!isUndefOrEqual(Mask[0], 0))
3198    return false;
3199
3200  for (int i = 1; i < NumOps; ++i)
3201    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3202          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3203          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3204      return false;
3205
3206  return true;
3207}
3208
3209static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3210                           bool V2IsUndef = false) {
3211  SmallVector<int, 8> M;
3212  N->getMask(M);
3213  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3214}
3215
3216/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3217/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3218bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3219  if (N->getValueType(0).getVectorNumElements() != 4)
3220    return false;
3221
3222  // Expect 1, 1, 3, 3
3223  for (unsigned i = 0; i < 2; ++i) {
3224    int Elt = N->getMaskElt(i);
3225    if (Elt >= 0 && Elt != 1)
3226      return false;
3227  }
3228
3229  bool HasHi = false;
3230  for (unsigned i = 2; i < 4; ++i) {
3231    int Elt = N->getMaskElt(i);
3232    if (Elt >= 0 && Elt != 3)
3233      return false;
3234    if (Elt == 3)
3235      HasHi = true;
3236  }
3237  // Don't use movshdup if it can be done with a shufps.
3238  // FIXME: verify that matching u, u, 3, 3 is what we want.
3239  return HasHi;
3240}
3241
3242/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3243/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3244bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3245  if (N->getValueType(0).getVectorNumElements() != 4)
3246    return false;
3247
3248  // Expect 0, 0, 2, 2
3249  for (unsigned i = 0; i < 2; ++i)
3250    if (N->getMaskElt(i) > 0)
3251      return false;
3252
3253  bool HasHi = false;
3254  for (unsigned i = 2; i < 4; ++i) {
3255    int Elt = N->getMaskElt(i);
3256    if (Elt >= 0 && Elt != 2)
3257      return false;
3258    if (Elt == 2)
3259      HasHi = true;
3260  }
3261  // Don't use movsldup if it can be done with a shufps.
3262  return HasHi;
3263}
3264
3265/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3266/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3267bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3268  int e = N->getValueType(0).getVectorNumElements() / 2;
3269
3270  for (int i = 0; i < e; ++i)
3271    if (!isUndefOrEqual(N->getMaskElt(i), i))
3272      return false;
3273  for (int i = 0; i < e; ++i)
3274    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3275      return false;
3276  return true;
3277}
3278
3279/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3280/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3281unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3282  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3283  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3284
3285  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3286  unsigned Mask = 0;
3287  for (int i = 0; i < NumOperands; ++i) {
3288    int Val = SVOp->getMaskElt(NumOperands-i-1);
3289    if (Val < 0) Val = 0;
3290    if (Val >= NumOperands) Val -= NumOperands;
3291    Mask |= Val;
3292    if (i != NumOperands - 1)
3293      Mask <<= Shift;
3294  }
3295  return Mask;
3296}
3297
3298/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3299/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3300unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3301  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3302  unsigned Mask = 0;
3303  // 8 nodes, but we only care about the last 4.
3304  for (unsigned i = 7; i >= 4; --i) {
3305    int Val = SVOp->getMaskElt(i);
3306    if (Val >= 0)
3307      Mask |= (Val - 4);
3308    if (i != 4)
3309      Mask <<= 2;
3310  }
3311  return Mask;
3312}
3313
3314/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3315/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3316unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3317  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3318  unsigned Mask = 0;
3319  // 8 nodes, but we only care about the first 4.
3320  for (int i = 3; i >= 0; --i) {
3321    int Val = SVOp->getMaskElt(i);
3322    if (Val >= 0)
3323      Mask |= Val;
3324    if (i != 0)
3325      Mask <<= 2;
3326  }
3327  return Mask;
3328}
3329
3330/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3331/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3332unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3333  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3334  EVT VVT = N->getValueType(0);
3335  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3336  int Val = 0;
3337
3338  unsigned i, e;
3339  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3340    Val = SVOp->getMaskElt(i);
3341    if (Val >= 0)
3342      break;
3343  }
3344  return (Val - i) * EltSize;
3345}
3346
3347/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3348/// constant +0.0.
3349bool X86::isZeroNode(SDValue Elt) {
3350  return ((isa<ConstantSDNode>(Elt) &&
3351           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3352          (isa<ConstantFPSDNode>(Elt) &&
3353           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3354}
3355
3356/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3357/// their permute mask.
3358static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3359                                    SelectionDAG &DAG) {
3360  EVT VT = SVOp->getValueType(0);
3361  unsigned NumElems = VT.getVectorNumElements();
3362  SmallVector<int, 8> MaskVec;
3363
3364  for (unsigned i = 0; i != NumElems; ++i) {
3365    int idx = SVOp->getMaskElt(i);
3366    if (idx < 0)
3367      MaskVec.push_back(idx);
3368    else if (idx < (int)NumElems)
3369      MaskVec.push_back(idx + NumElems);
3370    else
3371      MaskVec.push_back(idx - NumElems);
3372  }
3373  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3374                              SVOp->getOperand(0), &MaskVec[0]);
3375}
3376
3377/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3378/// the two vector operands have swapped position.
3379static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3380  unsigned NumElems = VT.getVectorNumElements();
3381  for (unsigned i = 0; i != NumElems; ++i) {
3382    int idx = Mask[i];
3383    if (idx < 0)
3384      continue;
3385    else if (idx < (int)NumElems)
3386      Mask[i] = idx + NumElems;
3387    else
3388      Mask[i] = idx - NumElems;
3389  }
3390}
3391
3392/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3393/// match movhlps. The lower half elements should come from upper half of
3394/// V1 (and in order), and the upper half elements should come from the upper
3395/// half of V2 (and in order).
3396static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3397  if (Op->getValueType(0).getVectorNumElements() != 4)
3398    return false;
3399  for (unsigned i = 0, e = 2; i != e; ++i)
3400    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3401      return false;
3402  for (unsigned i = 2; i != 4; ++i)
3403    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3404      return false;
3405  return true;
3406}
3407
3408/// isScalarLoadToVector - Returns true if the node is a scalar load that
3409/// is promoted to a vector. It also returns the LoadSDNode by reference if
3410/// required.
3411static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3412  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3413    return false;
3414  N = N->getOperand(0).getNode();
3415  if (!ISD::isNON_EXTLoad(N))
3416    return false;
3417  if (LD)
3418    *LD = cast<LoadSDNode>(N);
3419  return true;
3420}
3421
3422/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3423/// match movlp{s|d}. The lower half elements should come from lower half of
3424/// V1 (and in order), and the upper half elements should come from the upper
3425/// half of V2 (and in order). And since V1 will become the source of the
3426/// MOVLP, it must be either a vector load or a scalar load to vector.
3427static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3428                               ShuffleVectorSDNode *Op) {
3429  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3430    return false;
3431  // Is V2 is a vector load, don't do this transformation. We will try to use
3432  // load folding shufps op.
3433  if (ISD::isNON_EXTLoad(V2))
3434    return false;
3435
3436  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3437
3438  if (NumElems != 2 && NumElems != 4)
3439    return false;
3440  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3441    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3442      return false;
3443  for (unsigned i = NumElems/2; i != NumElems; ++i)
3444    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3445      return false;
3446  return true;
3447}
3448
3449/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3450/// all the same.
3451static bool isSplatVector(SDNode *N) {
3452  if (N->getOpcode() != ISD::BUILD_VECTOR)
3453    return false;
3454
3455  SDValue SplatValue = N->getOperand(0);
3456  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3457    if (N->getOperand(i) != SplatValue)
3458      return false;
3459  return true;
3460}
3461
3462/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3463/// to an zero vector.
3464/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3465static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3466  SDValue V1 = N->getOperand(0);
3467  SDValue V2 = N->getOperand(1);
3468  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3469  for (unsigned i = 0; i != NumElems; ++i) {
3470    int Idx = N->getMaskElt(i);
3471    if (Idx >= (int)NumElems) {
3472      unsigned Opc = V2.getOpcode();
3473      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3474        continue;
3475      if (Opc != ISD::BUILD_VECTOR ||
3476          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3477        return false;
3478    } else if (Idx >= 0) {
3479      unsigned Opc = V1.getOpcode();
3480      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3481        continue;
3482      if (Opc != ISD::BUILD_VECTOR ||
3483          !X86::isZeroNode(V1.getOperand(Idx)))
3484        return false;
3485    }
3486  }
3487  return true;
3488}
3489
3490/// getZeroVector - Returns a vector of specified type with all zero elements.
3491///
3492static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3493                             DebugLoc dl) {
3494  assert(VT.isVector() && "Expected a vector type");
3495
3496  // Always build SSE zero vectors as <4 x i32> bitcasted
3497  // to their dest type. This ensures they get CSE'd.
3498  SDValue Vec;
3499  if (VT.getSizeInBits() == 128) {  // SSE
3500    if (HasSSE2) {  // SSE2
3501      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3502      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3503    } else { // SSE1
3504      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3505      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3506    }
3507  } else if (VT.getSizeInBits() == 256) { // AVX
3508    // 256-bit logic and arithmetic instructions in AVX are
3509    // all floating-point, no support for integer ops. Default
3510    // to emitting fp zeroed vectors then.
3511    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3512    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3513    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3514  }
3515  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3516}
3517
3518/// getOnesVector - Returns a vector of specified type with all bits set.
3519///
3520static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3521  assert(VT.isVector() && "Expected a vector type");
3522
3523  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3524  // type.  This ensures they get CSE'd.
3525  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3526  SDValue Vec;
3527  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3528  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3529}
3530
3531
3532/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3533/// that point to V2 points to its first element.
3534static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3535  EVT VT = SVOp->getValueType(0);
3536  unsigned NumElems = VT.getVectorNumElements();
3537
3538  bool Changed = false;
3539  SmallVector<int, 8> MaskVec;
3540  SVOp->getMask(MaskVec);
3541
3542  for (unsigned i = 0; i != NumElems; ++i) {
3543    if (MaskVec[i] > (int)NumElems) {
3544      MaskVec[i] = NumElems;
3545      Changed = true;
3546    }
3547  }
3548  if (Changed)
3549    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3550                                SVOp->getOperand(1), &MaskVec[0]);
3551  return SDValue(SVOp, 0);
3552}
3553
3554/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3555/// operation of specified width.
3556static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3557                       SDValue V2) {
3558  unsigned NumElems = VT.getVectorNumElements();
3559  SmallVector<int, 8> Mask;
3560  Mask.push_back(NumElems);
3561  for (unsigned i = 1; i != NumElems; ++i)
3562    Mask.push_back(i);
3563  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3564}
3565
3566/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3567static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3568                          SDValue V2) {
3569  unsigned NumElems = VT.getVectorNumElements();
3570  SmallVector<int, 8> Mask;
3571  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3572    Mask.push_back(i);
3573    Mask.push_back(i + NumElems);
3574  }
3575  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3576}
3577
3578/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3579static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3580                          SDValue V2) {
3581  unsigned NumElems = VT.getVectorNumElements();
3582  unsigned Half = NumElems/2;
3583  SmallVector<int, 8> Mask;
3584  for (unsigned i = 0; i != Half; ++i) {
3585    Mask.push_back(i + Half);
3586    Mask.push_back(i + NumElems + Half);
3587  }
3588  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3589}
3590
3591/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3592static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3593  EVT PVT = MVT::v4f32;
3594  EVT VT = SV->getValueType(0);
3595  DebugLoc dl = SV->getDebugLoc();
3596  SDValue V1 = SV->getOperand(0);
3597  int NumElems = VT.getVectorNumElements();
3598  int EltNo = SV->getSplatIndex();
3599
3600  // unpack elements to the correct location
3601  while (NumElems > 4) {
3602    if (EltNo < NumElems/2) {
3603      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3604    } else {
3605      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3606      EltNo -= NumElems/2;
3607    }
3608    NumElems >>= 1;
3609  }
3610
3611  // Perform the splat.
3612  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3613  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3614  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3615  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3616}
3617
3618/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3619/// vector of zero or undef vector.  This produces a shuffle where the low
3620/// element of V2 is swizzled into the zero/undef vector, landing at element
3621/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3622static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3623                                             bool isZero, bool HasSSE2,
3624                                             SelectionDAG &DAG) {
3625  EVT VT = V2.getValueType();
3626  SDValue V1 = isZero
3627    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3628  unsigned NumElems = VT.getVectorNumElements();
3629  SmallVector<int, 16> MaskVec;
3630  for (unsigned i = 0; i != NumElems; ++i)
3631    // If this is the insertion idx, put the low elt of V2 here.
3632    MaskVec.push_back(i == Idx ? NumElems : i);
3633  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3634}
3635
3636/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3637/// element of the result of the vector shuffle.
3638SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3639                            unsigned Depth) {
3640  if (Depth == 6)
3641    return SDValue();  // Limit search depth.
3642
3643  SDValue V = SDValue(N, 0);
3644  EVT VT = V.getValueType();
3645  unsigned Opcode = V.getOpcode();
3646
3647  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3648  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3649    Index = SV->getMaskElt(Index);
3650
3651    if (Index < 0)
3652      return DAG.getUNDEF(VT.getVectorElementType());
3653
3654    int NumElems = VT.getVectorNumElements();
3655    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3656    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3657  }
3658
3659  // Recurse into target specific vector shuffles to find scalars.
3660  if (isTargetShuffle(Opcode)) {
3661    int NumElems = VT.getVectorNumElements();
3662    SmallVector<unsigned, 16> ShuffleMask;
3663    SDValue ImmN;
3664
3665    switch(Opcode) {
3666    case X86ISD::SHUFPS:
3667    case X86ISD::SHUFPD:
3668      ImmN = N->getOperand(N->getNumOperands()-1);
3669      DecodeSHUFPSMask(NumElems,
3670                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3671                       ShuffleMask);
3672      break;
3673    case X86ISD::PUNPCKHBW:
3674    case X86ISD::PUNPCKHWD:
3675    case X86ISD::PUNPCKHDQ:
3676    case X86ISD::PUNPCKHQDQ:
3677      DecodePUNPCKHMask(NumElems, ShuffleMask);
3678      break;
3679    case X86ISD::UNPCKHPS:
3680    case X86ISD::UNPCKHPD:
3681      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3682      break;
3683    case X86ISD::PUNPCKLBW:
3684    case X86ISD::PUNPCKLWD:
3685    case X86ISD::PUNPCKLDQ:
3686    case X86ISD::PUNPCKLQDQ:
3687      DecodePUNPCKLMask(NumElems, ShuffleMask);
3688      break;
3689    case X86ISD::UNPCKLPS:
3690    case X86ISD::UNPCKLPD:
3691      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3692      break;
3693    case X86ISD::MOVHLPS:
3694      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3695      break;
3696    case X86ISD::MOVLHPS:
3697      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3698      break;
3699    case X86ISD::PSHUFD:
3700      ImmN = N->getOperand(N->getNumOperands()-1);
3701      DecodePSHUFMask(NumElems,
3702                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3703                      ShuffleMask);
3704      break;
3705    case X86ISD::PSHUFHW:
3706      ImmN = N->getOperand(N->getNumOperands()-1);
3707      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3708                        ShuffleMask);
3709      break;
3710    case X86ISD::PSHUFLW:
3711      ImmN = N->getOperand(N->getNumOperands()-1);
3712      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3713                        ShuffleMask);
3714      break;
3715    case X86ISD::MOVSS:
3716    case X86ISD::MOVSD: {
3717      // The index 0 always comes from the first element of the second source,
3718      // this is why MOVSS and MOVSD are used in the first place. The other
3719      // elements come from the other positions of the first source vector.
3720      unsigned OpNum = (Index == 0) ? 1 : 0;
3721      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3722                                 Depth+1);
3723    }
3724    default:
3725      assert("not implemented for target shuffle node");
3726      return SDValue();
3727    }
3728
3729    Index = ShuffleMask[Index];
3730    if (Index < 0)
3731      return DAG.getUNDEF(VT.getVectorElementType());
3732
3733    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3734    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3735                               Depth+1);
3736  }
3737
3738  // Actual nodes that may contain scalar elements
3739  if (Opcode == ISD::BITCAST) {
3740    V = V.getOperand(0);
3741    EVT SrcVT = V.getValueType();
3742    unsigned NumElems = VT.getVectorNumElements();
3743
3744    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3745      return SDValue();
3746  }
3747
3748  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3749    return (Index == 0) ? V.getOperand(0)
3750                          : DAG.getUNDEF(VT.getVectorElementType());
3751
3752  if (V.getOpcode() == ISD::BUILD_VECTOR)
3753    return V.getOperand(Index);
3754
3755  return SDValue();
3756}
3757
3758/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3759/// shuffle operation which come from a consecutively from a zero. The
3760/// search can start in two diferent directions, from left or right.
3761static
3762unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3763                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3764  int i = 0;
3765
3766  while (i < NumElems) {
3767    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3768    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3769    if (!(Elt.getNode() &&
3770         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3771      break;
3772    ++i;
3773  }
3774
3775  return i;
3776}
3777
3778/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3779/// MaskE correspond consecutively to elements from one of the vector operands,
3780/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3781static
3782bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3783                              int OpIdx, int NumElems, unsigned &OpNum) {
3784  bool SeenV1 = false;
3785  bool SeenV2 = false;
3786
3787  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3788    int Idx = SVOp->getMaskElt(i);
3789    // Ignore undef indicies
3790    if (Idx < 0)
3791      continue;
3792
3793    if (Idx < NumElems)
3794      SeenV1 = true;
3795    else
3796      SeenV2 = true;
3797
3798    // Only accept consecutive elements from the same vector
3799    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3800      return false;
3801  }
3802
3803  OpNum = SeenV1 ? 0 : 1;
3804  return true;
3805}
3806
3807/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3808/// logical left shift of a vector.
3809static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3810                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3811  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3812  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3813              false /* check zeros from right */, DAG);
3814  unsigned OpSrc;
3815
3816  if (!NumZeros)
3817    return false;
3818
3819  // Considering the elements in the mask that are not consecutive zeros,
3820  // check if they consecutively come from only one of the source vectors.
3821  //
3822  //               V1 = {X, A, B, C}     0
3823  //                         \  \  \    /
3824  //   vector_shuffle V1, V2 <1, 2, 3, X>
3825  //
3826  if (!isShuffleMaskConsecutive(SVOp,
3827            0,                   // Mask Start Index
3828            NumElems-NumZeros-1, // Mask End Index
3829            NumZeros,            // Where to start looking in the src vector
3830            NumElems,            // Number of elements in vector
3831            OpSrc))              // Which source operand ?
3832    return false;
3833
3834  isLeft = false;
3835  ShAmt = NumZeros;
3836  ShVal = SVOp->getOperand(OpSrc);
3837  return true;
3838}
3839
3840/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3841/// logical left shift of a vector.
3842static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3843                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3844  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3845  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3846              true /* check zeros from left */, DAG);
3847  unsigned OpSrc;
3848
3849  if (!NumZeros)
3850    return false;
3851
3852  // Considering the elements in the mask that are not consecutive zeros,
3853  // check if they consecutively come from only one of the source vectors.
3854  //
3855  //                           0    { A, B, X, X } = V2
3856  //                          / \    /  /
3857  //   vector_shuffle V1, V2 <X, X, 4, 5>
3858  //
3859  if (!isShuffleMaskConsecutive(SVOp,
3860            NumZeros,     // Mask Start Index
3861            NumElems-1,   // Mask End Index
3862            0,            // Where to start looking in the src vector
3863            NumElems,     // Number of elements in vector
3864            OpSrc))       // Which source operand ?
3865    return false;
3866
3867  isLeft = true;
3868  ShAmt = NumZeros;
3869  ShVal = SVOp->getOperand(OpSrc);
3870  return true;
3871}
3872
3873/// isVectorShift - Returns true if the shuffle can be implemented as a
3874/// logical left or right shift of a vector.
3875static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3876                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3877  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3878      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3879    return true;
3880
3881  return false;
3882}
3883
3884/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3885///
3886static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3887                                       unsigned NumNonZero, unsigned NumZero,
3888                                       SelectionDAG &DAG,
3889                                       const TargetLowering &TLI) {
3890  if (NumNonZero > 8)
3891    return SDValue();
3892
3893  DebugLoc dl = Op.getDebugLoc();
3894  SDValue V(0, 0);
3895  bool First = true;
3896  for (unsigned i = 0; i < 16; ++i) {
3897    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3898    if (ThisIsNonZero && First) {
3899      if (NumZero)
3900        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3901      else
3902        V = DAG.getUNDEF(MVT::v8i16);
3903      First = false;
3904    }
3905
3906    if ((i & 1) != 0) {
3907      SDValue ThisElt(0, 0), LastElt(0, 0);
3908      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3909      if (LastIsNonZero) {
3910        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3911                              MVT::i16, Op.getOperand(i-1));
3912      }
3913      if (ThisIsNonZero) {
3914        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3915        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3916                              ThisElt, DAG.getConstant(8, MVT::i8));
3917        if (LastIsNonZero)
3918          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3919      } else
3920        ThisElt = LastElt;
3921
3922      if (ThisElt.getNode())
3923        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3924                        DAG.getIntPtrConstant(i/2));
3925    }
3926  }
3927
3928  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
3929}
3930
3931/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3932///
3933static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3934                                     unsigned NumNonZero, unsigned NumZero,
3935                                     SelectionDAG &DAG,
3936                                     const TargetLowering &TLI) {
3937  if (NumNonZero > 4)
3938    return SDValue();
3939
3940  DebugLoc dl = Op.getDebugLoc();
3941  SDValue V(0, 0);
3942  bool First = true;
3943  for (unsigned i = 0; i < 8; ++i) {
3944    bool isNonZero = (NonZeros & (1 << i)) != 0;
3945    if (isNonZero) {
3946      if (First) {
3947        if (NumZero)
3948          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3949        else
3950          V = DAG.getUNDEF(MVT::v8i16);
3951        First = false;
3952      }
3953      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3954                      MVT::v8i16, V, Op.getOperand(i),
3955                      DAG.getIntPtrConstant(i));
3956    }
3957  }
3958
3959  return V;
3960}
3961
3962/// getVShift - Return a vector logical shift node.
3963///
3964static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3965                         unsigned NumBits, SelectionDAG &DAG,
3966                         const TargetLowering &TLI, DebugLoc dl) {
3967  EVT ShVT = MVT::v2i64;
3968  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3969  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
3970  return DAG.getNode(ISD::BITCAST, dl, VT,
3971                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3972                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3973}
3974
3975SDValue
3976X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3977                                          SelectionDAG &DAG) const {
3978
3979  // Check if the scalar load can be widened into a vector load. And if
3980  // the address is "base + cst" see if the cst can be "absorbed" into
3981  // the shuffle mask.
3982  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3983    SDValue Ptr = LD->getBasePtr();
3984    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3985      return SDValue();
3986    EVT PVT = LD->getValueType(0);
3987    if (PVT != MVT::i32 && PVT != MVT::f32)
3988      return SDValue();
3989
3990    int FI = -1;
3991    int64_t Offset = 0;
3992    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3993      FI = FINode->getIndex();
3994      Offset = 0;
3995    } else if (Ptr.getOpcode() == ISD::ADD &&
3996               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3997               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3998      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3999      Offset = Ptr.getConstantOperandVal(1);
4000      Ptr = Ptr.getOperand(0);
4001    } else {
4002      return SDValue();
4003    }
4004
4005    SDValue Chain = LD->getChain();
4006    // Make sure the stack object alignment is at least 16.
4007    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4008    if (DAG.InferPtrAlignment(Ptr) < 16) {
4009      if (MFI->isFixedObjectIndex(FI)) {
4010        // Can't change the alignment. FIXME: It's possible to compute
4011        // the exact stack offset and reference FI + adjust offset instead.
4012        // If someone *really* cares about this. That's the way to implement it.
4013        return SDValue();
4014      } else {
4015        MFI->setObjectAlignment(FI, 16);
4016      }
4017    }
4018
4019    // (Offset % 16) must be multiple of 4. Then address is then
4020    // Ptr + (Offset & ~15).
4021    if (Offset < 0)
4022      return SDValue();
4023    if ((Offset % 16) & 3)
4024      return SDValue();
4025    int64_t StartOffset = Offset & ~15;
4026    if (StartOffset)
4027      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4028                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4029
4030    int EltNo = (Offset - StartOffset) >> 2;
4031    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4032    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4033    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4034                             LD->getPointerInfo().getWithOffset(StartOffset),
4035                             false, false, 0);
4036    // Canonicalize it to a v4i32 shuffle.
4037    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4038    return DAG.getNode(ISD::BITCAST, dl, VT,
4039                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4040                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4041  }
4042
4043  return SDValue();
4044}
4045
4046/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4047/// vector of type 'VT', see if the elements can be replaced by a single large
4048/// load which has the same value as a build_vector whose operands are 'elts'.
4049///
4050/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4051///
4052/// FIXME: we'd also like to handle the case where the last elements are zero
4053/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4054/// There's even a handy isZeroNode for that purpose.
4055static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4056                                        DebugLoc &DL, SelectionDAG &DAG) {
4057  EVT EltVT = VT.getVectorElementType();
4058  unsigned NumElems = Elts.size();
4059
4060  LoadSDNode *LDBase = NULL;
4061  unsigned LastLoadedElt = -1U;
4062
4063  // For each element in the initializer, see if we've found a load or an undef.
4064  // If we don't find an initial load element, or later load elements are
4065  // non-consecutive, bail out.
4066  for (unsigned i = 0; i < NumElems; ++i) {
4067    SDValue Elt = Elts[i];
4068
4069    if (!Elt.getNode() ||
4070        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4071      return SDValue();
4072    if (!LDBase) {
4073      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4074        return SDValue();
4075      LDBase = cast<LoadSDNode>(Elt.getNode());
4076      LastLoadedElt = i;
4077      continue;
4078    }
4079    if (Elt.getOpcode() == ISD::UNDEF)
4080      continue;
4081
4082    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4083    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4084      return SDValue();
4085    LastLoadedElt = i;
4086  }
4087
4088  // If we have found an entire vector of loads and undefs, then return a large
4089  // load of the entire vector width starting at the base pointer.  If we found
4090  // consecutive loads for the low half, generate a vzext_load node.
4091  if (LastLoadedElt == NumElems - 1) {
4092    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4093      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4094                         LDBase->getPointerInfo(),
4095                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4096    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4097                       LDBase->getPointerInfo(),
4098                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4099                       LDBase->getAlignment());
4100  } else if (NumElems == 4 && LastLoadedElt == 1) {
4101    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4102    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4103    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4104                                              Ops, 2, MVT::i32,
4105                                              LDBase->getMemOperand());
4106    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4107  }
4108  return SDValue();
4109}
4110
4111SDValue
4112X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4113  DebugLoc dl = Op.getDebugLoc();
4114  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4115  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4116  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4117  // is present, so AllOnes is ignored.
4118  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4119      (Op.getValueType().getSizeInBits() != 256 &&
4120       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4121    // Canonicalize this to <4 x i32> (SSE) to
4122    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4123    // eliminated on x86-32 hosts.
4124    if (Op.getValueType() == MVT::v4i32)
4125      return Op;
4126
4127    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4128      return getOnesVector(Op.getValueType(), DAG, dl);
4129    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4130  }
4131
4132  EVT VT = Op.getValueType();
4133  EVT ExtVT = VT.getVectorElementType();
4134  unsigned EVTBits = ExtVT.getSizeInBits();
4135
4136  unsigned NumElems = Op.getNumOperands();
4137  unsigned NumZero  = 0;
4138  unsigned NumNonZero = 0;
4139  unsigned NonZeros = 0;
4140  bool IsAllConstants = true;
4141  SmallSet<SDValue, 8> Values;
4142  for (unsigned i = 0; i < NumElems; ++i) {
4143    SDValue Elt = Op.getOperand(i);
4144    if (Elt.getOpcode() == ISD::UNDEF)
4145      continue;
4146    Values.insert(Elt);
4147    if (Elt.getOpcode() != ISD::Constant &&
4148        Elt.getOpcode() != ISD::ConstantFP)
4149      IsAllConstants = false;
4150    if (X86::isZeroNode(Elt))
4151      NumZero++;
4152    else {
4153      NonZeros |= (1 << i);
4154      NumNonZero++;
4155    }
4156  }
4157
4158  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4159  if (NumNonZero == 0)
4160    return DAG.getUNDEF(VT);
4161
4162  // Special case for single non-zero, non-undef, element.
4163  if (NumNonZero == 1) {
4164    unsigned Idx = CountTrailingZeros_32(NonZeros);
4165    SDValue Item = Op.getOperand(Idx);
4166
4167    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4168    // the value are obviously zero, truncate the value to i32 and do the
4169    // insertion that way.  Only do this if the value is non-constant or if the
4170    // value is a constant being inserted into element 0.  It is cheaper to do
4171    // a constant pool load than it is to do a movd + shuffle.
4172    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4173        (!IsAllConstants || Idx == 0)) {
4174      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4175        // Handle SSE only.
4176        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4177        EVT VecVT = MVT::v4i32;
4178        unsigned VecElts = 4;
4179
4180        // Truncate the value (which may itself be a constant) to i32, and
4181        // convert it to a vector with movd (S2V+shuffle to zero extend).
4182        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4183        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4184        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4185                                           Subtarget->hasSSE2(), DAG);
4186
4187        // Now we have our 32-bit value zero extended in the low element of
4188        // a vector.  If Idx != 0, swizzle it into place.
4189        if (Idx != 0) {
4190          SmallVector<int, 4> Mask;
4191          Mask.push_back(Idx);
4192          for (unsigned i = 1; i != VecElts; ++i)
4193            Mask.push_back(i);
4194          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4195                                      DAG.getUNDEF(Item.getValueType()),
4196                                      &Mask[0]);
4197        }
4198        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4199      }
4200    }
4201
4202    // If we have a constant or non-constant insertion into the low element of
4203    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4204    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4205    // depending on what the source datatype is.
4206    if (Idx == 0) {
4207      if (NumZero == 0) {
4208        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4209      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4210          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4211        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4212        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4213        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4214                                           DAG);
4215      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4216        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4217        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4218        EVT MiddleVT = MVT::v4i32;
4219        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4220        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4221                                           Subtarget->hasSSE2(), DAG);
4222        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4223      }
4224    }
4225
4226    // Is it a vector logical left shift?
4227    if (NumElems == 2 && Idx == 1 &&
4228        X86::isZeroNode(Op.getOperand(0)) &&
4229        !X86::isZeroNode(Op.getOperand(1))) {
4230      unsigned NumBits = VT.getSizeInBits();
4231      return getVShift(true, VT,
4232                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4233                                   VT, Op.getOperand(1)),
4234                       NumBits/2, DAG, *this, dl);
4235    }
4236
4237    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4238      return SDValue();
4239
4240    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4241    // is a non-constant being inserted into an element other than the low one,
4242    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4243    // movd/movss) to move this into the low element, then shuffle it into
4244    // place.
4245    if (EVTBits == 32) {
4246      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4247
4248      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4249      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4250                                         Subtarget->hasSSE2(), DAG);
4251      SmallVector<int, 8> MaskVec;
4252      for (unsigned i = 0; i < NumElems; i++)
4253        MaskVec.push_back(i == Idx ? 0 : 1);
4254      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4255    }
4256  }
4257
4258  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4259  if (Values.size() == 1) {
4260    if (EVTBits == 32) {
4261      // Instead of a shuffle like this:
4262      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4263      // Check if it's possible to issue this instead.
4264      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4265      unsigned Idx = CountTrailingZeros_32(NonZeros);
4266      SDValue Item = Op.getOperand(Idx);
4267      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4268        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4269    }
4270    return SDValue();
4271  }
4272
4273  // A vector full of immediates; various special cases are already
4274  // handled, so this is best done with a single constant-pool load.
4275  if (IsAllConstants)
4276    return SDValue();
4277
4278  // Let legalizer expand 2-wide build_vectors.
4279  if (EVTBits == 64) {
4280    if (NumNonZero == 1) {
4281      // One half is zero or undef.
4282      unsigned Idx = CountTrailingZeros_32(NonZeros);
4283      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4284                                 Op.getOperand(Idx));
4285      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4286                                         Subtarget->hasSSE2(), DAG);
4287    }
4288    return SDValue();
4289  }
4290
4291  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4292  if (EVTBits == 8 && NumElems == 16) {
4293    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4294                                        *this);
4295    if (V.getNode()) return V;
4296  }
4297
4298  if (EVTBits == 16 && NumElems == 8) {
4299    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4300                                      *this);
4301    if (V.getNode()) return V;
4302  }
4303
4304  // If element VT is == 32 bits, turn it into a number of shuffles.
4305  SmallVector<SDValue, 8> V;
4306  V.resize(NumElems);
4307  if (NumElems == 4 && NumZero > 0) {
4308    for (unsigned i = 0; i < 4; ++i) {
4309      bool isZero = !(NonZeros & (1 << i));
4310      if (isZero)
4311        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4312      else
4313        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4314    }
4315
4316    for (unsigned i = 0; i < 2; ++i) {
4317      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4318        default: break;
4319        case 0:
4320          V[i] = V[i*2];  // Must be a zero vector.
4321          break;
4322        case 1:
4323          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4324          break;
4325        case 2:
4326          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4327          break;
4328        case 3:
4329          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4330          break;
4331      }
4332    }
4333
4334    SmallVector<int, 8> MaskVec;
4335    bool Reverse = (NonZeros & 0x3) == 2;
4336    for (unsigned i = 0; i < 2; ++i)
4337      MaskVec.push_back(Reverse ? 1-i : i);
4338    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4339    for (unsigned i = 0; i < 2; ++i)
4340      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4341    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4342  }
4343
4344  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4345    // Check for a build vector of consecutive loads.
4346    for (unsigned i = 0; i < NumElems; ++i)
4347      V[i] = Op.getOperand(i);
4348
4349    // Check for elements which are consecutive loads.
4350    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4351    if (LD.getNode())
4352      return LD;
4353
4354    // For SSE 4.1, use insertps to put the high elements into the low element.
4355    if (getSubtarget()->hasSSE41()) {
4356      SDValue Result;
4357      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4358        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4359      else
4360        Result = DAG.getUNDEF(VT);
4361
4362      for (unsigned i = 1; i < NumElems; ++i) {
4363        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4364        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4365                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4366      }
4367      return Result;
4368    }
4369
4370    // Otherwise, expand into a number of unpckl*, start by extending each of
4371    // our (non-undef) elements to the full vector width with the element in the
4372    // bottom slot of the vector (which generates no code for SSE).
4373    for (unsigned i = 0; i < NumElems; ++i) {
4374      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4375        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4376      else
4377        V[i] = DAG.getUNDEF(VT);
4378    }
4379
4380    // Next, we iteratively mix elements, e.g. for v4f32:
4381    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4382    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4383    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4384    unsigned EltStride = NumElems >> 1;
4385    while (EltStride != 0) {
4386      for (unsigned i = 0; i < EltStride; ++i) {
4387        // If V[i+EltStride] is undef and this is the first round of mixing,
4388        // then it is safe to just drop this shuffle: V[i] is already in the
4389        // right place, the one element (since it's the first round) being
4390        // inserted as undef can be dropped.  This isn't safe for successive
4391        // rounds because they will permute elements within both vectors.
4392        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4393            EltStride == NumElems/2)
4394          continue;
4395
4396        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4397      }
4398      EltStride >>= 1;
4399    }
4400    return V[0];
4401  }
4402  return SDValue();
4403}
4404
4405SDValue
4406X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4407  // We support concatenate two MMX registers and place them in a MMX
4408  // register.  This is better than doing a stack convert.
4409  DebugLoc dl = Op.getDebugLoc();
4410  EVT ResVT = Op.getValueType();
4411  assert(Op.getNumOperands() == 2);
4412  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4413         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4414  int Mask[2];
4415  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4416  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4417  InVec = Op.getOperand(1);
4418  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4419    unsigned NumElts = ResVT.getVectorNumElements();
4420    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4421    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4422                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4423  } else {
4424    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4425    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4426    Mask[0] = 0; Mask[1] = 2;
4427    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4428  }
4429  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4430}
4431
4432// v8i16 shuffles - Prefer shuffles in the following order:
4433// 1. [all]   pshuflw, pshufhw, optional move
4434// 2. [ssse3] 1 x pshufb
4435// 3. [ssse3] 2 x pshufb + 1 x por
4436// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4437SDValue
4438X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4439                                            SelectionDAG &DAG) const {
4440  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4441  SDValue V1 = SVOp->getOperand(0);
4442  SDValue V2 = SVOp->getOperand(1);
4443  DebugLoc dl = SVOp->getDebugLoc();
4444  SmallVector<int, 8> MaskVals;
4445
4446  // Determine if more than 1 of the words in each of the low and high quadwords
4447  // of the result come from the same quadword of one of the two inputs.  Undef
4448  // mask values count as coming from any quadword, for better codegen.
4449  SmallVector<unsigned, 4> LoQuad(4);
4450  SmallVector<unsigned, 4> HiQuad(4);
4451  BitVector InputQuads(4);
4452  for (unsigned i = 0; i < 8; ++i) {
4453    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4454    int EltIdx = SVOp->getMaskElt(i);
4455    MaskVals.push_back(EltIdx);
4456    if (EltIdx < 0) {
4457      ++Quad[0];
4458      ++Quad[1];
4459      ++Quad[2];
4460      ++Quad[3];
4461      continue;
4462    }
4463    ++Quad[EltIdx / 4];
4464    InputQuads.set(EltIdx / 4);
4465  }
4466
4467  int BestLoQuad = -1;
4468  unsigned MaxQuad = 1;
4469  for (unsigned i = 0; i < 4; ++i) {
4470    if (LoQuad[i] > MaxQuad) {
4471      BestLoQuad = i;
4472      MaxQuad = LoQuad[i];
4473    }
4474  }
4475
4476  int BestHiQuad = -1;
4477  MaxQuad = 1;
4478  for (unsigned i = 0; i < 4; ++i) {
4479    if (HiQuad[i] > MaxQuad) {
4480      BestHiQuad = i;
4481      MaxQuad = HiQuad[i];
4482    }
4483  }
4484
4485  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4486  // of the two input vectors, shuffle them into one input vector so only a
4487  // single pshufb instruction is necessary. If There are more than 2 input
4488  // quads, disable the next transformation since it does not help SSSE3.
4489  bool V1Used = InputQuads[0] || InputQuads[1];
4490  bool V2Used = InputQuads[2] || InputQuads[3];
4491  if (Subtarget->hasSSSE3()) {
4492    if (InputQuads.count() == 2 && V1Used && V2Used) {
4493      BestLoQuad = InputQuads.find_first();
4494      BestHiQuad = InputQuads.find_next(BestLoQuad);
4495    }
4496    if (InputQuads.count() > 2) {
4497      BestLoQuad = -1;
4498      BestHiQuad = -1;
4499    }
4500  }
4501
4502  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4503  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4504  // words from all 4 input quadwords.
4505  SDValue NewV;
4506  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4507    SmallVector<int, 8> MaskV;
4508    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4509    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4510    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4511                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4512                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4513    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4514
4515    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4516    // source words for the shuffle, to aid later transformations.
4517    bool AllWordsInNewV = true;
4518    bool InOrder[2] = { true, true };
4519    for (unsigned i = 0; i != 8; ++i) {
4520      int idx = MaskVals[i];
4521      if (idx != (int)i)
4522        InOrder[i/4] = false;
4523      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4524        continue;
4525      AllWordsInNewV = false;
4526      break;
4527    }
4528
4529    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4530    if (AllWordsInNewV) {
4531      for (int i = 0; i != 8; ++i) {
4532        int idx = MaskVals[i];
4533        if (idx < 0)
4534          continue;
4535        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4536        if ((idx != i) && idx < 4)
4537          pshufhw = false;
4538        if ((idx != i) && idx > 3)
4539          pshuflw = false;
4540      }
4541      V1 = NewV;
4542      V2Used = false;
4543      BestLoQuad = 0;
4544      BestHiQuad = 1;
4545    }
4546
4547    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4548    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4549    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4550      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4551      unsigned TargetMask = 0;
4552      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4553                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4554      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4555                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4556      V1 = NewV.getOperand(0);
4557      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4558    }
4559  }
4560
4561  // If we have SSSE3, and all words of the result are from 1 input vector,
4562  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4563  // is present, fall back to case 4.
4564  if (Subtarget->hasSSSE3()) {
4565    SmallVector<SDValue,16> pshufbMask;
4566
4567    // If we have elements from both input vectors, set the high bit of the
4568    // shuffle mask element to zero out elements that come from V2 in the V1
4569    // mask, and elements that come from V1 in the V2 mask, so that the two
4570    // results can be OR'd together.
4571    bool TwoInputs = V1Used && V2Used;
4572    for (unsigned i = 0; i != 8; ++i) {
4573      int EltIdx = MaskVals[i] * 2;
4574      if (TwoInputs && (EltIdx >= 16)) {
4575        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4576        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4577        continue;
4578      }
4579      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4580      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4581    }
4582    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4583    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4584                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4585                                 MVT::v16i8, &pshufbMask[0], 16));
4586    if (!TwoInputs)
4587      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4588
4589    // Calculate the shuffle mask for the second input, shuffle it, and
4590    // OR it with the first shuffled input.
4591    pshufbMask.clear();
4592    for (unsigned i = 0; i != 8; ++i) {
4593      int EltIdx = MaskVals[i] * 2;
4594      if (EltIdx < 16) {
4595        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4596        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4597        continue;
4598      }
4599      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4600      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4601    }
4602    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4603    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4604                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4605                                 MVT::v16i8, &pshufbMask[0], 16));
4606    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4607    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4608  }
4609
4610  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4611  // and update MaskVals with new element order.
4612  BitVector InOrder(8);
4613  if (BestLoQuad >= 0) {
4614    SmallVector<int, 8> MaskV;
4615    for (int i = 0; i != 4; ++i) {
4616      int idx = MaskVals[i];
4617      if (idx < 0) {
4618        MaskV.push_back(-1);
4619        InOrder.set(i);
4620      } else if ((idx / 4) == BestLoQuad) {
4621        MaskV.push_back(idx & 3);
4622        InOrder.set(i);
4623      } else {
4624        MaskV.push_back(-1);
4625      }
4626    }
4627    for (unsigned i = 4; i != 8; ++i)
4628      MaskV.push_back(i);
4629    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4630                                &MaskV[0]);
4631
4632    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4633      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4634                               NewV.getOperand(0),
4635                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4636                               DAG);
4637  }
4638
4639  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4640  // and update MaskVals with the new element order.
4641  if (BestHiQuad >= 0) {
4642    SmallVector<int, 8> MaskV;
4643    for (unsigned i = 0; i != 4; ++i)
4644      MaskV.push_back(i);
4645    for (unsigned i = 4; i != 8; ++i) {
4646      int idx = MaskVals[i];
4647      if (idx < 0) {
4648        MaskV.push_back(-1);
4649        InOrder.set(i);
4650      } else if ((idx / 4) == BestHiQuad) {
4651        MaskV.push_back((idx & 3) + 4);
4652        InOrder.set(i);
4653      } else {
4654        MaskV.push_back(-1);
4655      }
4656    }
4657    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4658                                &MaskV[0]);
4659
4660    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4661      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4662                              NewV.getOperand(0),
4663                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4664                              DAG);
4665  }
4666
4667  // In case BestHi & BestLo were both -1, which means each quadword has a word
4668  // from each of the four input quadwords, calculate the InOrder bitvector now
4669  // before falling through to the insert/extract cleanup.
4670  if (BestLoQuad == -1 && BestHiQuad == -1) {
4671    NewV = V1;
4672    for (int i = 0; i != 8; ++i)
4673      if (MaskVals[i] < 0 || MaskVals[i] == i)
4674        InOrder.set(i);
4675  }
4676
4677  // The other elements are put in the right place using pextrw and pinsrw.
4678  for (unsigned i = 0; i != 8; ++i) {
4679    if (InOrder[i])
4680      continue;
4681    int EltIdx = MaskVals[i];
4682    if (EltIdx < 0)
4683      continue;
4684    SDValue ExtOp = (EltIdx < 8)
4685    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4686                  DAG.getIntPtrConstant(EltIdx))
4687    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4688                  DAG.getIntPtrConstant(EltIdx - 8));
4689    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4690                       DAG.getIntPtrConstant(i));
4691  }
4692  return NewV;
4693}
4694
4695// v16i8 shuffles - Prefer shuffles in the following order:
4696// 1. [ssse3] 1 x pshufb
4697// 2. [ssse3] 2 x pshufb + 1 x por
4698// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4699static
4700SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4701                                 SelectionDAG &DAG,
4702                                 const X86TargetLowering &TLI) {
4703  SDValue V1 = SVOp->getOperand(0);
4704  SDValue V2 = SVOp->getOperand(1);
4705  DebugLoc dl = SVOp->getDebugLoc();
4706  SmallVector<int, 16> MaskVals;
4707  SVOp->getMask(MaskVals);
4708
4709  // If we have SSSE3, case 1 is generated when all result bytes come from
4710  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4711  // present, fall back to case 3.
4712  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4713  bool V1Only = true;
4714  bool V2Only = true;
4715  for (unsigned i = 0; i < 16; ++i) {
4716    int EltIdx = MaskVals[i];
4717    if (EltIdx < 0)
4718      continue;
4719    if (EltIdx < 16)
4720      V2Only = false;
4721    else
4722      V1Only = false;
4723  }
4724
4725  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4726  if (TLI.getSubtarget()->hasSSSE3()) {
4727    SmallVector<SDValue,16> pshufbMask;
4728
4729    // If all result elements are from one input vector, then only translate
4730    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4731    //
4732    // Otherwise, we have elements from both input vectors, and must zero out
4733    // elements that come from V2 in the first mask, and V1 in the second mask
4734    // so that we can OR them together.
4735    bool TwoInputs = !(V1Only || V2Only);
4736    for (unsigned i = 0; i != 16; ++i) {
4737      int EltIdx = MaskVals[i];
4738      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4739        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4740        continue;
4741      }
4742      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4743    }
4744    // If all the elements are from V2, assign it to V1 and return after
4745    // building the first pshufb.
4746    if (V2Only)
4747      V1 = V2;
4748    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4749                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4750                                 MVT::v16i8, &pshufbMask[0], 16));
4751    if (!TwoInputs)
4752      return V1;
4753
4754    // Calculate the shuffle mask for the second input, shuffle it, and
4755    // OR it with the first shuffled input.
4756    pshufbMask.clear();
4757    for (unsigned i = 0; i != 16; ++i) {
4758      int EltIdx = MaskVals[i];
4759      if (EltIdx < 16) {
4760        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4761        continue;
4762      }
4763      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4764    }
4765    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4766                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4767                                 MVT::v16i8, &pshufbMask[0], 16));
4768    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4769  }
4770
4771  // No SSSE3 - Calculate in place words and then fix all out of place words
4772  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4773  // the 16 different words that comprise the two doublequadword input vectors.
4774  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4775  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
4776  SDValue NewV = V2Only ? V2 : V1;
4777  for (int i = 0; i != 8; ++i) {
4778    int Elt0 = MaskVals[i*2];
4779    int Elt1 = MaskVals[i*2+1];
4780
4781    // This word of the result is all undef, skip it.
4782    if (Elt0 < 0 && Elt1 < 0)
4783      continue;
4784
4785    // This word of the result is already in the correct place, skip it.
4786    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4787      continue;
4788    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4789      continue;
4790
4791    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4792    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4793    SDValue InsElt;
4794
4795    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4796    // using a single extract together, load it and store it.
4797    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4798      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4799                           DAG.getIntPtrConstant(Elt1 / 2));
4800      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4801                        DAG.getIntPtrConstant(i));
4802      continue;
4803    }
4804
4805    // If Elt1 is defined, extract it from the appropriate source.  If the
4806    // source byte is not also odd, shift the extracted word left 8 bits
4807    // otherwise clear the bottom 8 bits if we need to do an or.
4808    if (Elt1 >= 0) {
4809      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4810                           DAG.getIntPtrConstant(Elt1 / 2));
4811      if ((Elt1 & 1) == 0)
4812        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4813                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4814      else if (Elt0 >= 0)
4815        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4816                             DAG.getConstant(0xFF00, MVT::i16));
4817    }
4818    // If Elt0 is defined, extract it from the appropriate source.  If the
4819    // source byte is not also even, shift the extracted word right 8 bits. If
4820    // Elt1 was also defined, OR the extracted values together before
4821    // inserting them in the result.
4822    if (Elt0 >= 0) {
4823      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4824                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4825      if ((Elt0 & 1) != 0)
4826        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4827                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4828      else if (Elt1 >= 0)
4829        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4830                             DAG.getConstant(0x00FF, MVT::i16));
4831      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4832                         : InsElt0;
4833    }
4834    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4835                       DAG.getIntPtrConstant(i));
4836  }
4837  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
4838}
4839
4840/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4841/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4842/// done when every pair / quad of shuffle mask elements point to elements in
4843/// the right sequence. e.g.
4844/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4845static
4846SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4847                                 SelectionDAG &DAG, DebugLoc dl) {
4848  EVT VT = SVOp->getValueType(0);
4849  SDValue V1 = SVOp->getOperand(0);
4850  SDValue V2 = SVOp->getOperand(1);
4851  unsigned NumElems = VT.getVectorNumElements();
4852  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4853  EVT NewVT;
4854  switch (VT.getSimpleVT().SimpleTy) {
4855  default: assert(false && "Unexpected!");
4856  case MVT::v4f32: NewVT = MVT::v2f64; break;
4857  case MVT::v4i32: NewVT = MVT::v2i64; break;
4858  case MVT::v8i16: NewVT = MVT::v4i32; break;
4859  case MVT::v16i8: NewVT = MVT::v4i32; break;
4860  }
4861
4862  int Scale = NumElems / NewWidth;
4863  SmallVector<int, 8> MaskVec;
4864  for (unsigned i = 0; i < NumElems; i += Scale) {
4865    int StartIdx = -1;
4866    for (int j = 0; j < Scale; ++j) {
4867      int EltIdx = SVOp->getMaskElt(i+j);
4868      if (EltIdx < 0)
4869        continue;
4870      if (StartIdx == -1)
4871        StartIdx = EltIdx - (EltIdx % Scale);
4872      if (EltIdx != StartIdx + j)
4873        return SDValue();
4874    }
4875    if (StartIdx == -1)
4876      MaskVec.push_back(-1);
4877    else
4878      MaskVec.push_back(StartIdx / Scale);
4879  }
4880
4881  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
4882  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
4883  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4884}
4885
4886/// getVZextMovL - Return a zero-extending vector move low node.
4887///
4888static SDValue getVZextMovL(EVT VT, EVT OpVT,
4889                            SDValue SrcOp, SelectionDAG &DAG,
4890                            const X86Subtarget *Subtarget, DebugLoc dl) {
4891  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4892    LoadSDNode *LD = NULL;
4893    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4894      LD = dyn_cast<LoadSDNode>(SrcOp);
4895    if (!LD) {
4896      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4897      // instead.
4898      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4899      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
4900          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4901          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
4902          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4903        // PR2108
4904        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4905        return DAG.getNode(ISD::BITCAST, dl, VT,
4906                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4907                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4908                                                   OpVT,
4909                                                   SrcOp.getOperand(0)
4910                                                          .getOperand(0))));
4911      }
4912    }
4913  }
4914
4915  return DAG.getNode(ISD::BITCAST, dl, VT,
4916                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4917                                 DAG.getNode(ISD::BITCAST, dl,
4918                                             OpVT, SrcOp)));
4919}
4920
4921/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4922/// shuffles.
4923static SDValue
4924LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4925  SDValue V1 = SVOp->getOperand(0);
4926  SDValue V2 = SVOp->getOperand(1);
4927  DebugLoc dl = SVOp->getDebugLoc();
4928  EVT VT = SVOp->getValueType(0);
4929
4930  SmallVector<std::pair<int, int>, 8> Locs;
4931  Locs.resize(4);
4932  SmallVector<int, 8> Mask1(4U, -1);
4933  SmallVector<int, 8> PermMask;
4934  SVOp->getMask(PermMask);
4935
4936  unsigned NumHi = 0;
4937  unsigned NumLo = 0;
4938  for (unsigned i = 0; i != 4; ++i) {
4939    int Idx = PermMask[i];
4940    if (Idx < 0) {
4941      Locs[i] = std::make_pair(-1, -1);
4942    } else {
4943      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4944      if (Idx < 4) {
4945        Locs[i] = std::make_pair(0, NumLo);
4946        Mask1[NumLo] = Idx;
4947        NumLo++;
4948      } else {
4949        Locs[i] = std::make_pair(1, NumHi);
4950        if (2+NumHi < 4)
4951          Mask1[2+NumHi] = Idx;
4952        NumHi++;
4953      }
4954    }
4955  }
4956
4957  if (NumLo <= 2 && NumHi <= 2) {
4958    // If no more than two elements come from either vector. This can be
4959    // implemented with two shuffles. First shuffle gather the elements.
4960    // The second shuffle, which takes the first shuffle as both of its
4961    // vector operands, put the elements into the right order.
4962    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4963
4964    SmallVector<int, 8> Mask2(4U, -1);
4965
4966    for (unsigned i = 0; i != 4; ++i) {
4967      if (Locs[i].first == -1)
4968        continue;
4969      else {
4970        unsigned Idx = (i < 2) ? 0 : 4;
4971        Idx += Locs[i].first * 2 + Locs[i].second;
4972        Mask2[i] = Idx;
4973      }
4974    }
4975
4976    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4977  } else if (NumLo == 3 || NumHi == 3) {
4978    // Otherwise, we must have three elements from one vector, call it X, and
4979    // one element from the other, call it Y.  First, use a shufps to build an
4980    // intermediate vector with the one element from Y and the element from X
4981    // that will be in the same half in the final destination (the indexes don't
4982    // matter). Then, use a shufps to build the final vector, taking the half
4983    // containing the element from Y from the intermediate, and the other half
4984    // from X.
4985    if (NumHi == 3) {
4986      // Normalize it so the 3 elements come from V1.
4987      CommuteVectorShuffleMask(PermMask, VT);
4988      std::swap(V1, V2);
4989    }
4990
4991    // Find the element from V2.
4992    unsigned HiIndex;
4993    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4994      int Val = PermMask[HiIndex];
4995      if (Val < 0)
4996        continue;
4997      if (Val >= 4)
4998        break;
4999    }
5000
5001    Mask1[0] = PermMask[HiIndex];
5002    Mask1[1] = -1;
5003    Mask1[2] = PermMask[HiIndex^1];
5004    Mask1[3] = -1;
5005    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5006
5007    if (HiIndex >= 2) {
5008      Mask1[0] = PermMask[0];
5009      Mask1[1] = PermMask[1];
5010      Mask1[2] = HiIndex & 1 ? 6 : 4;
5011      Mask1[3] = HiIndex & 1 ? 4 : 6;
5012      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5013    } else {
5014      Mask1[0] = HiIndex & 1 ? 2 : 0;
5015      Mask1[1] = HiIndex & 1 ? 0 : 2;
5016      Mask1[2] = PermMask[2];
5017      Mask1[3] = PermMask[3];
5018      if (Mask1[2] >= 0)
5019        Mask1[2] += 4;
5020      if (Mask1[3] >= 0)
5021        Mask1[3] += 4;
5022      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5023    }
5024  }
5025
5026  // Break it into (shuffle shuffle_hi, shuffle_lo).
5027  Locs.clear();
5028  SmallVector<int,8> LoMask(4U, -1);
5029  SmallVector<int,8> HiMask(4U, -1);
5030
5031  SmallVector<int,8> *MaskPtr = &LoMask;
5032  unsigned MaskIdx = 0;
5033  unsigned LoIdx = 0;
5034  unsigned HiIdx = 2;
5035  for (unsigned i = 0; i != 4; ++i) {
5036    if (i == 2) {
5037      MaskPtr = &HiMask;
5038      MaskIdx = 1;
5039      LoIdx = 0;
5040      HiIdx = 2;
5041    }
5042    int Idx = PermMask[i];
5043    if (Idx < 0) {
5044      Locs[i] = std::make_pair(-1, -1);
5045    } else if (Idx < 4) {
5046      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5047      (*MaskPtr)[LoIdx] = Idx;
5048      LoIdx++;
5049    } else {
5050      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5051      (*MaskPtr)[HiIdx] = Idx;
5052      HiIdx++;
5053    }
5054  }
5055
5056  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5057  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5058  SmallVector<int, 8> MaskOps;
5059  for (unsigned i = 0; i != 4; ++i) {
5060    if (Locs[i].first == -1) {
5061      MaskOps.push_back(-1);
5062    } else {
5063      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5064      MaskOps.push_back(Idx);
5065    }
5066  }
5067  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5068}
5069
5070static bool MayFoldVectorLoad(SDValue V) {
5071  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5072    V = V.getOperand(0);
5073  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5074    V = V.getOperand(0);
5075  if (MayFoldLoad(V))
5076    return true;
5077  return false;
5078}
5079
5080// FIXME: the version above should always be used. Since there's
5081// a bug where several vector shuffles can't be folded because the
5082// DAG is not updated during lowering and a node claims to have two
5083// uses while it only has one, use this version, and let isel match
5084// another instruction if the load really happens to have more than
5085// one use. Remove this version after this bug get fixed.
5086// rdar://8434668, PR8156
5087static bool RelaxedMayFoldVectorLoad(SDValue V) {
5088  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5089    V = V.getOperand(0);
5090  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5091    V = V.getOperand(0);
5092  if (ISD::isNormalLoad(V.getNode()))
5093    return true;
5094  return false;
5095}
5096
5097/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5098/// a vector extract, and if both can be later optimized into a single load.
5099/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5100/// here because otherwise a target specific shuffle node is going to be
5101/// emitted for this shuffle, and the optimization not done.
5102/// FIXME: This is probably not the best approach, but fix the problem
5103/// until the right path is decided.
5104static
5105bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5106                                         const TargetLowering &TLI) {
5107  EVT VT = V.getValueType();
5108  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5109
5110  // Be sure that the vector shuffle is present in a pattern like this:
5111  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5112  if (!V.hasOneUse())
5113    return false;
5114
5115  SDNode *N = *V.getNode()->use_begin();
5116  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5117    return false;
5118
5119  SDValue EltNo = N->getOperand(1);
5120  if (!isa<ConstantSDNode>(EltNo))
5121    return false;
5122
5123  // If the bit convert changed the number of elements, it is unsafe
5124  // to examine the mask.
5125  bool HasShuffleIntoBitcast = false;
5126  if (V.getOpcode() == ISD::BITCAST) {
5127    EVT SrcVT = V.getOperand(0).getValueType();
5128    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5129      return false;
5130    V = V.getOperand(0);
5131    HasShuffleIntoBitcast = true;
5132  }
5133
5134  // Select the input vector, guarding against out of range extract vector.
5135  unsigned NumElems = VT.getVectorNumElements();
5136  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5137  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5138  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5139
5140  // Skip one more bit_convert if necessary
5141  if (V.getOpcode() == ISD::BITCAST)
5142    V = V.getOperand(0);
5143
5144  if (ISD::isNormalLoad(V.getNode())) {
5145    // Is the original load suitable?
5146    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5147
5148    // FIXME: avoid the multi-use bug that is preventing lots of
5149    // of foldings to be detected, this is still wrong of course, but
5150    // give the temporary desired behavior, and if it happens that
5151    // the load has real more uses, during isel it will not fold, and
5152    // will generate poor code.
5153    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5154      return false;
5155
5156    if (!HasShuffleIntoBitcast)
5157      return true;
5158
5159    // If there's a bitcast before the shuffle, check if the load type and
5160    // alignment is valid.
5161    unsigned Align = LN0->getAlignment();
5162    unsigned NewAlign =
5163      TLI.getTargetData()->getABITypeAlignment(
5164                                    VT.getTypeForEVT(*DAG.getContext()));
5165
5166    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5167      return false;
5168  }
5169
5170  return true;
5171}
5172
5173static
5174SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5175  EVT VT = Op.getValueType();
5176
5177  // Canonizalize to v2f64.
5178  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5179  return DAG.getNode(ISD::BITCAST, dl, VT,
5180                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5181                                          V1, DAG));
5182}
5183
5184static
5185SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5186                        bool HasSSE2) {
5187  SDValue V1 = Op.getOperand(0);
5188  SDValue V2 = Op.getOperand(1);
5189  EVT VT = Op.getValueType();
5190
5191  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5192
5193  if (HasSSE2 && VT == MVT::v2f64)
5194    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5195
5196  // v4f32 or v4i32
5197  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5198}
5199
5200static
5201SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5202  SDValue V1 = Op.getOperand(0);
5203  SDValue V2 = Op.getOperand(1);
5204  EVT VT = Op.getValueType();
5205
5206  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5207         "unsupported shuffle type");
5208
5209  if (V2.getOpcode() == ISD::UNDEF)
5210    V2 = V1;
5211
5212  // v4i32 or v4f32
5213  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5214}
5215
5216static
5217SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5218  SDValue V1 = Op.getOperand(0);
5219  SDValue V2 = Op.getOperand(1);
5220  EVT VT = Op.getValueType();
5221  unsigned NumElems = VT.getVectorNumElements();
5222
5223  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5224  // operand of these instructions is only memory, so check if there's a
5225  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5226  // same masks.
5227  bool CanFoldLoad = false;
5228
5229  // Trivial case, when V2 comes from a load.
5230  if (MayFoldVectorLoad(V2))
5231    CanFoldLoad = true;
5232
5233  // When V1 is a load, it can be folded later into a store in isel, example:
5234  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5235  //    turns into:
5236  //  (MOVLPSmr addr:$src1, VR128:$src2)
5237  // So, recognize this potential and also use MOVLPS or MOVLPD
5238  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5239    CanFoldLoad = true;
5240
5241  if (CanFoldLoad) {
5242    if (HasSSE2 && NumElems == 2)
5243      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5244
5245    if (NumElems == 4)
5246      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5247  }
5248
5249  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5250  // movl and movlp will both match v2i64, but v2i64 is never matched by
5251  // movl earlier because we make it strict to avoid messing with the movlp load
5252  // folding logic (see the code above getMOVLP call). Match it here then,
5253  // this is horrible, but will stay like this until we move all shuffle
5254  // matching to x86 specific nodes. Note that for the 1st condition all
5255  // types are matched with movsd.
5256  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5257    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5258  else if (HasSSE2)
5259    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5260
5261
5262  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5263
5264  // Invert the operand order and use SHUFPS to match it.
5265  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5266                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5267}
5268
5269static inline unsigned getUNPCKLOpcode(EVT VT) {
5270  switch(VT.getSimpleVT().SimpleTy) {
5271  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5272  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5273  case MVT::v4f32: return X86ISD::UNPCKLPS;
5274  case MVT::v2f64: return X86ISD::UNPCKLPD;
5275  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5276  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5277  default:
5278    llvm_unreachable("Unknow type for unpckl");
5279  }
5280  return 0;
5281}
5282
5283static inline unsigned getUNPCKHOpcode(EVT VT) {
5284  switch(VT.getSimpleVT().SimpleTy) {
5285  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5286  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5287  case MVT::v4f32: return X86ISD::UNPCKHPS;
5288  case MVT::v2f64: return X86ISD::UNPCKHPD;
5289  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5290  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5291  default:
5292    llvm_unreachable("Unknow type for unpckh");
5293  }
5294  return 0;
5295}
5296
5297static
5298SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5299                               const TargetLowering &TLI,
5300                               const X86Subtarget *Subtarget) {
5301  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5302  EVT VT = Op.getValueType();
5303  DebugLoc dl = Op.getDebugLoc();
5304  SDValue V1 = Op.getOperand(0);
5305  SDValue V2 = Op.getOperand(1);
5306
5307  if (isZeroShuffle(SVOp))
5308    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5309
5310  // Handle splat operations
5311  if (SVOp->isSplat()) {
5312    // Special case, this is the only place now where it's
5313    // allowed to return a vector_shuffle operation without
5314    // using a target specific node, because *hopefully* it
5315    // will be optimized away by the dag combiner.
5316    if (VT.getVectorNumElements() <= 4 &&
5317        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5318      return Op;
5319
5320    // Handle splats by matching through known masks
5321    if (VT.getVectorNumElements() <= 4)
5322      return SDValue();
5323
5324    // Canonicalize all of the remaining to v4f32.
5325    return PromoteSplat(SVOp, DAG);
5326  }
5327
5328  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5329  // do it!
5330  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5331    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5332    if (NewOp.getNode())
5333      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5334  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5335    // FIXME: Figure out a cleaner way to do this.
5336    // Try to make use of movq to zero out the top part.
5337    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5338      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5339      if (NewOp.getNode()) {
5340        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5341          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5342                              DAG, Subtarget, dl);
5343      }
5344    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5345      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5346      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5347        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5348                            DAG, Subtarget, dl);
5349    }
5350  }
5351  return SDValue();
5352}
5353
5354SDValue
5355X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5356  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5357  SDValue V1 = Op.getOperand(0);
5358  SDValue V2 = Op.getOperand(1);
5359  EVT VT = Op.getValueType();
5360  DebugLoc dl = Op.getDebugLoc();
5361  unsigned NumElems = VT.getVectorNumElements();
5362  bool isMMX = VT.getSizeInBits() == 64;
5363  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5364  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5365  bool V1IsSplat = false;
5366  bool V2IsSplat = false;
5367  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5368  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5369  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5370  MachineFunction &MF = DAG.getMachineFunction();
5371  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5372
5373  // Shuffle operations on MMX not supported.
5374  if (isMMX)
5375    return Op;
5376
5377  // Vector shuffle lowering takes 3 steps:
5378  //
5379  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5380  //    narrowing and commutation of operands should be handled.
5381  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5382  //    shuffle nodes.
5383  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5384  //    so the shuffle can be broken into other shuffles and the legalizer can
5385  //    try the lowering again.
5386  //
5387  // The general ideia is that no vector_shuffle operation should be left to
5388  // be matched during isel, all of them must be converted to a target specific
5389  // node here.
5390
5391  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5392  // narrowing and commutation of operands should be handled. The actual code
5393  // doesn't include all of those, work in progress...
5394  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5395  if (NewOp.getNode())
5396    return NewOp;
5397
5398  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5399  // unpckh_undef). Only use pshufd if speed is more important than size.
5400  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5401    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5402      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5403  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5404    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5405      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5406
5407  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5408      RelaxedMayFoldVectorLoad(V1))
5409    return getMOVDDup(Op, dl, V1, DAG);
5410
5411  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5412    return getMOVHighToLow(Op, dl, DAG);
5413
5414  // Use to match splats
5415  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5416      (VT == MVT::v2f64 || VT == MVT::v2i64))
5417    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5418
5419  if (X86::isPSHUFDMask(SVOp)) {
5420    // The actual implementation will match the mask in the if above and then
5421    // during isel it can match several different instructions, not only pshufd
5422    // as its name says, sad but true, emulate the behavior for now...
5423    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5424        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5425
5426    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5427
5428    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5429      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5430
5431    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5432      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5433                                  TargetMask, DAG);
5434
5435    if (VT == MVT::v4f32)
5436      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5437                                  TargetMask, DAG);
5438  }
5439
5440  // Check if this can be converted into a logical shift.
5441  bool isLeft = false;
5442  unsigned ShAmt = 0;
5443  SDValue ShVal;
5444  bool isShift = getSubtarget()->hasSSE2() &&
5445    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5446  if (isShift && ShVal.hasOneUse()) {
5447    // If the shifted value has multiple uses, it may be cheaper to use
5448    // v_set0 + movlhps or movhlps, etc.
5449    EVT EltVT = VT.getVectorElementType();
5450    ShAmt *= EltVT.getSizeInBits();
5451    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5452  }
5453
5454  if (X86::isMOVLMask(SVOp)) {
5455    if (V1IsUndef)
5456      return V2;
5457    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5458      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5459    if (!X86::isMOVLPMask(SVOp)) {
5460      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5461        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5462
5463      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5464        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5465    }
5466  }
5467
5468  // FIXME: fold these into legal mask.
5469  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5470    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5471
5472  if (X86::isMOVHLPSMask(SVOp))
5473    return getMOVHighToLow(Op, dl, DAG);
5474
5475  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5476    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5477
5478  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5479    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5480
5481  if (X86::isMOVLPMask(SVOp))
5482    return getMOVLP(Op, dl, DAG, HasSSE2);
5483
5484  if (ShouldXformToMOVHLPS(SVOp) ||
5485      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5486    return CommuteVectorShuffle(SVOp, DAG);
5487
5488  if (isShift) {
5489    // No better options. Use a vshl / vsrl.
5490    EVT EltVT = VT.getVectorElementType();
5491    ShAmt *= EltVT.getSizeInBits();
5492    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5493  }
5494
5495  bool Commuted = false;
5496  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5497  // 1,1,1,1 -> v8i16 though.
5498  V1IsSplat = isSplatVector(V1.getNode());
5499  V2IsSplat = isSplatVector(V2.getNode());
5500
5501  // Canonicalize the splat or undef, if present, to be on the RHS.
5502  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5503    Op = CommuteVectorShuffle(SVOp, DAG);
5504    SVOp = cast<ShuffleVectorSDNode>(Op);
5505    V1 = SVOp->getOperand(0);
5506    V2 = SVOp->getOperand(1);
5507    std::swap(V1IsSplat, V2IsSplat);
5508    std::swap(V1IsUndef, V2IsUndef);
5509    Commuted = true;
5510  }
5511
5512  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5513    // Shuffling low element of v1 into undef, just return v1.
5514    if (V2IsUndef)
5515      return V1;
5516    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5517    // the instruction selector will not match, so get a canonical MOVL with
5518    // swapped operands to undo the commute.
5519    return getMOVL(DAG, dl, VT, V2, V1);
5520  }
5521
5522  if (X86::isUNPCKLMask(SVOp))
5523    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5524
5525  if (X86::isUNPCKHMask(SVOp))
5526    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5527
5528  if (V2IsSplat) {
5529    // Normalize mask so all entries that point to V2 points to its first
5530    // element then try to match unpck{h|l} again. If match, return a
5531    // new vector_shuffle with the corrected mask.
5532    SDValue NewMask = NormalizeMask(SVOp, DAG);
5533    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5534    if (NSVOp != SVOp) {
5535      if (X86::isUNPCKLMask(NSVOp, true)) {
5536        return NewMask;
5537      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5538        return NewMask;
5539      }
5540    }
5541  }
5542
5543  if (Commuted) {
5544    // Commute is back and try unpck* again.
5545    // FIXME: this seems wrong.
5546    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5547    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5548
5549    if (X86::isUNPCKLMask(NewSVOp))
5550      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5551
5552    if (X86::isUNPCKHMask(NewSVOp))
5553      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5554  }
5555
5556  // Normalize the node to match x86 shuffle ops if needed
5557  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5558    return CommuteVectorShuffle(SVOp, DAG);
5559
5560  // The checks below are all present in isShuffleMaskLegal, but they are
5561  // inlined here right now to enable us to directly emit target specific
5562  // nodes, and remove one by one until they don't return Op anymore.
5563  SmallVector<int, 16> M;
5564  SVOp->getMask(M);
5565
5566  if (isPALIGNRMask(M, VT, HasSSSE3))
5567    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5568                                X86::getShufflePALIGNRImmediate(SVOp),
5569                                DAG);
5570
5571  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5572      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5573    if (VT == MVT::v2f64)
5574      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5575    if (VT == MVT::v2i64)
5576      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5577  }
5578
5579  if (isPSHUFHWMask(M, VT))
5580    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5581                                X86::getShufflePSHUFHWImmediate(SVOp),
5582                                DAG);
5583
5584  if (isPSHUFLWMask(M, VT))
5585    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5586                                X86::getShufflePSHUFLWImmediate(SVOp),
5587                                DAG);
5588
5589  if (isSHUFPMask(M, VT)) {
5590    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5591    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5592      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5593                                  TargetMask, DAG);
5594    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5595      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5596                                  TargetMask, DAG);
5597  }
5598
5599  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5600    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5601      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5602  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5603    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5604      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5605
5606  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5607  if (VT == MVT::v8i16) {
5608    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5609    if (NewOp.getNode())
5610      return NewOp;
5611  }
5612
5613  if (VT == MVT::v16i8) {
5614    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5615    if (NewOp.getNode())
5616      return NewOp;
5617  }
5618
5619  // Handle all 4 wide cases with a number of shuffles.
5620  if (NumElems == 4)
5621    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5622
5623  return SDValue();
5624}
5625
5626SDValue
5627X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5628                                                SelectionDAG &DAG) const {
5629  EVT VT = Op.getValueType();
5630  DebugLoc dl = Op.getDebugLoc();
5631  if (VT.getSizeInBits() == 8) {
5632    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5633                                    Op.getOperand(0), Op.getOperand(1));
5634    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5635                                    DAG.getValueType(VT));
5636    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5637  } else if (VT.getSizeInBits() == 16) {
5638    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5639    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5640    if (Idx == 0)
5641      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5642                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5643                                     DAG.getNode(ISD::BITCAST, dl,
5644                                                 MVT::v4i32,
5645                                                 Op.getOperand(0)),
5646                                     Op.getOperand(1)));
5647    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5648                                    Op.getOperand(0), Op.getOperand(1));
5649    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5650                                    DAG.getValueType(VT));
5651    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5652  } else if (VT == MVT::f32) {
5653    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5654    // the result back to FR32 register. It's only worth matching if the
5655    // result has a single use which is a store or a bitcast to i32.  And in
5656    // the case of a store, it's not worth it if the index is a constant 0,
5657    // because a MOVSSmr can be used instead, which is smaller and faster.
5658    if (!Op.hasOneUse())
5659      return SDValue();
5660    SDNode *User = *Op.getNode()->use_begin();
5661    if ((User->getOpcode() != ISD::STORE ||
5662         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5663          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5664        (User->getOpcode() != ISD::BITCAST ||
5665         User->getValueType(0) != MVT::i32))
5666      return SDValue();
5667    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5668                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5669                                              Op.getOperand(0)),
5670                                              Op.getOperand(1));
5671    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5672  } else if (VT == MVT::i32) {
5673    // ExtractPS works with constant index.
5674    if (isa<ConstantSDNode>(Op.getOperand(1)))
5675      return Op;
5676  }
5677  return SDValue();
5678}
5679
5680
5681SDValue
5682X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5683                                           SelectionDAG &DAG) const {
5684  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5685    return SDValue();
5686
5687  if (Subtarget->hasSSE41()) {
5688    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5689    if (Res.getNode())
5690      return Res;
5691  }
5692
5693  EVT VT = Op.getValueType();
5694  DebugLoc dl = Op.getDebugLoc();
5695  // TODO: handle v16i8.
5696  if (VT.getSizeInBits() == 16) {
5697    SDValue Vec = Op.getOperand(0);
5698    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5699    if (Idx == 0)
5700      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5701                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5702                                     DAG.getNode(ISD::BITCAST, dl,
5703                                                 MVT::v4i32, Vec),
5704                                     Op.getOperand(1)));
5705    // Transform it so it match pextrw which produces a 32-bit result.
5706    EVT EltVT = MVT::i32;
5707    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5708                                    Op.getOperand(0), Op.getOperand(1));
5709    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5710                                    DAG.getValueType(VT));
5711    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5712  } else if (VT.getSizeInBits() == 32) {
5713    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5714    if (Idx == 0)
5715      return Op;
5716
5717    // SHUFPS the element to the lowest double word, then movss.
5718    int Mask[4] = { Idx, -1, -1, -1 };
5719    EVT VVT = Op.getOperand(0).getValueType();
5720    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5721                                       DAG.getUNDEF(VVT), Mask);
5722    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5723                       DAG.getIntPtrConstant(0));
5724  } else if (VT.getSizeInBits() == 64) {
5725    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5726    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5727    //        to match extract_elt for f64.
5728    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5729    if (Idx == 0)
5730      return Op;
5731
5732    // UNPCKHPD the element to the lowest double word, then movsd.
5733    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5734    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5735    int Mask[2] = { 1, -1 };
5736    EVT VVT = Op.getOperand(0).getValueType();
5737    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5738                                       DAG.getUNDEF(VVT), Mask);
5739    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5740                       DAG.getIntPtrConstant(0));
5741  }
5742
5743  return SDValue();
5744}
5745
5746SDValue
5747X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5748                                               SelectionDAG &DAG) const {
5749  EVT VT = Op.getValueType();
5750  EVT EltVT = VT.getVectorElementType();
5751  DebugLoc dl = Op.getDebugLoc();
5752
5753  SDValue N0 = Op.getOperand(0);
5754  SDValue N1 = Op.getOperand(1);
5755  SDValue N2 = Op.getOperand(2);
5756
5757  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5758      isa<ConstantSDNode>(N2)) {
5759    unsigned Opc;
5760    if (VT == MVT::v8i16)
5761      Opc = X86ISD::PINSRW;
5762    else if (VT == MVT::v16i8)
5763      Opc = X86ISD::PINSRB;
5764    else
5765      Opc = X86ISD::PINSRB;
5766
5767    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5768    // argument.
5769    if (N1.getValueType() != MVT::i32)
5770      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5771    if (N2.getValueType() != MVT::i32)
5772      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5773    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5774  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5775    // Bits [7:6] of the constant are the source select.  This will always be
5776    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5777    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5778    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5779    // Bits [5:4] of the constant are the destination select.  This is the
5780    //  value of the incoming immediate.
5781    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5782    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5783    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5784    // Create this as a scalar to vector..
5785    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5786    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5787  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5788    // PINSR* works with constant index.
5789    return Op;
5790  }
5791  return SDValue();
5792}
5793
5794SDValue
5795X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5796  EVT VT = Op.getValueType();
5797  EVT EltVT = VT.getVectorElementType();
5798
5799  if (Subtarget->hasSSE41())
5800    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5801
5802  if (EltVT == MVT::i8)
5803    return SDValue();
5804
5805  DebugLoc dl = Op.getDebugLoc();
5806  SDValue N0 = Op.getOperand(0);
5807  SDValue N1 = Op.getOperand(1);
5808  SDValue N2 = Op.getOperand(2);
5809
5810  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5811    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5812    // as its second argument.
5813    if (N1.getValueType() != MVT::i32)
5814      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5815    if (N2.getValueType() != MVT::i32)
5816      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5817    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5818  }
5819  return SDValue();
5820}
5821
5822SDValue
5823X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5824  DebugLoc dl = Op.getDebugLoc();
5825
5826  if (Op.getValueType() == MVT::v1i64 &&
5827      Op.getOperand(0).getValueType() == MVT::i64)
5828    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5829
5830  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5831  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5832         "Expected an SSE type!");
5833  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
5834                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5835}
5836
5837// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5838// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5839// one of the above mentioned nodes. It has to be wrapped because otherwise
5840// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5841// be used to form addressing mode. These wrapped nodes will be selected
5842// into MOV32ri.
5843SDValue
5844X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5845  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5846
5847  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5848  // global base reg.
5849  unsigned char OpFlag = 0;
5850  unsigned WrapperKind = X86ISD::Wrapper;
5851  CodeModel::Model M = getTargetMachine().getCodeModel();
5852
5853  if (Subtarget->isPICStyleRIPRel() &&
5854      (M == CodeModel::Small || M == CodeModel::Kernel))
5855    WrapperKind = X86ISD::WrapperRIP;
5856  else if (Subtarget->isPICStyleGOT())
5857    OpFlag = X86II::MO_GOTOFF;
5858  else if (Subtarget->isPICStyleStubPIC())
5859    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5860
5861  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5862                                             CP->getAlignment(),
5863                                             CP->getOffset(), OpFlag);
5864  DebugLoc DL = CP->getDebugLoc();
5865  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5866  // With PIC, the address is actually $g + Offset.
5867  if (OpFlag) {
5868    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5869                         DAG.getNode(X86ISD::GlobalBaseReg,
5870                                     DebugLoc(), getPointerTy()),
5871                         Result);
5872  }
5873
5874  return Result;
5875}
5876
5877SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5878  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5879
5880  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5881  // global base reg.
5882  unsigned char OpFlag = 0;
5883  unsigned WrapperKind = X86ISD::Wrapper;
5884  CodeModel::Model M = getTargetMachine().getCodeModel();
5885
5886  if (Subtarget->isPICStyleRIPRel() &&
5887      (M == CodeModel::Small || M == CodeModel::Kernel))
5888    WrapperKind = X86ISD::WrapperRIP;
5889  else if (Subtarget->isPICStyleGOT())
5890    OpFlag = X86II::MO_GOTOFF;
5891  else if (Subtarget->isPICStyleStubPIC())
5892    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5893
5894  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5895                                          OpFlag);
5896  DebugLoc DL = JT->getDebugLoc();
5897  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5898
5899  // With PIC, the address is actually $g + Offset.
5900  if (OpFlag)
5901    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5902                         DAG.getNode(X86ISD::GlobalBaseReg,
5903                                     DebugLoc(), getPointerTy()),
5904                         Result);
5905
5906  return Result;
5907}
5908
5909SDValue
5910X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5911  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5912
5913  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5914  // global base reg.
5915  unsigned char OpFlag = 0;
5916  unsigned WrapperKind = X86ISD::Wrapper;
5917  CodeModel::Model M = getTargetMachine().getCodeModel();
5918
5919  if (Subtarget->isPICStyleRIPRel() &&
5920      (M == CodeModel::Small || M == CodeModel::Kernel))
5921    WrapperKind = X86ISD::WrapperRIP;
5922  else if (Subtarget->isPICStyleGOT())
5923    OpFlag = X86II::MO_GOTOFF;
5924  else if (Subtarget->isPICStyleStubPIC())
5925    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5926
5927  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5928
5929  DebugLoc DL = Op.getDebugLoc();
5930  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5931
5932
5933  // With PIC, the address is actually $g + Offset.
5934  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5935      !Subtarget->is64Bit()) {
5936    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5937                         DAG.getNode(X86ISD::GlobalBaseReg,
5938                                     DebugLoc(), getPointerTy()),
5939                         Result);
5940  }
5941
5942  return Result;
5943}
5944
5945SDValue
5946X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5947  // Create the TargetBlockAddressAddress node.
5948  unsigned char OpFlags =
5949    Subtarget->ClassifyBlockAddressReference();
5950  CodeModel::Model M = getTargetMachine().getCodeModel();
5951  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5952  DebugLoc dl = Op.getDebugLoc();
5953  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5954                                       /*isTarget=*/true, OpFlags);
5955
5956  if (Subtarget->isPICStyleRIPRel() &&
5957      (M == CodeModel::Small || M == CodeModel::Kernel))
5958    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5959  else
5960    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5961
5962  // With PIC, the address is actually $g + Offset.
5963  if (isGlobalRelativeToPICBase(OpFlags)) {
5964    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5965                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5966                         Result);
5967  }
5968
5969  return Result;
5970}
5971
5972SDValue
5973X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5974                                      int64_t Offset,
5975                                      SelectionDAG &DAG) const {
5976  // Create the TargetGlobalAddress node, folding in the constant
5977  // offset if it is legal.
5978  unsigned char OpFlags =
5979    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5980  CodeModel::Model M = getTargetMachine().getCodeModel();
5981  SDValue Result;
5982  if (OpFlags == X86II::MO_NO_FLAG &&
5983      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5984    // A direct static reference to a global.
5985    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5986    Offset = 0;
5987  } else {
5988    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5989  }
5990
5991  if (Subtarget->isPICStyleRIPRel() &&
5992      (M == CodeModel::Small || M == CodeModel::Kernel))
5993    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5994  else
5995    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5996
5997  // With PIC, the address is actually $g + Offset.
5998  if (isGlobalRelativeToPICBase(OpFlags)) {
5999    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6000                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6001                         Result);
6002  }
6003
6004  // For globals that require a load from a stub to get the address, emit the
6005  // load.
6006  if (isGlobalStubReference(OpFlags))
6007    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6008                         MachinePointerInfo::getGOT(), false, false, 0);
6009
6010  // If there was a non-zero offset that we didn't fold, create an explicit
6011  // addition for it.
6012  if (Offset != 0)
6013    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6014                         DAG.getConstant(Offset, getPointerTy()));
6015
6016  return Result;
6017}
6018
6019SDValue
6020X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6021  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6022  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6023  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6024}
6025
6026static SDValue
6027GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6028           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6029           unsigned char OperandFlags) {
6030  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6031  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6032  DebugLoc dl = GA->getDebugLoc();
6033  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6034                                           GA->getValueType(0),
6035                                           GA->getOffset(),
6036                                           OperandFlags);
6037  if (InFlag) {
6038    SDValue Ops[] = { Chain,  TGA, *InFlag };
6039    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6040  } else {
6041    SDValue Ops[]  = { Chain, TGA };
6042    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6043  }
6044
6045  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6046  MFI->setAdjustsStack(true);
6047
6048  SDValue Flag = Chain.getValue(1);
6049  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6050}
6051
6052// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6053static SDValue
6054LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6055                                const EVT PtrVT) {
6056  SDValue InFlag;
6057  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6058  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6059                                     DAG.getNode(X86ISD::GlobalBaseReg,
6060                                                 DebugLoc(), PtrVT), InFlag);
6061  InFlag = Chain.getValue(1);
6062
6063  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6064}
6065
6066// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6067static SDValue
6068LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6069                                const EVT PtrVT) {
6070  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6071                    X86::RAX, X86II::MO_TLSGD);
6072}
6073
6074// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6075// "local exec" model.
6076static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6077                                   const EVT PtrVT, TLSModel::Model model,
6078                                   bool is64Bit) {
6079  DebugLoc dl = GA->getDebugLoc();
6080
6081  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6082  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6083                                                         is64Bit ? 257 : 256));
6084
6085  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6086                                      DAG.getIntPtrConstant(0),
6087                                      MachinePointerInfo(Ptr), false, false, 0);
6088
6089  unsigned char OperandFlags = 0;
6090  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6091  // initialexec.
6092  unsigned WrapperKind = X86ISD::Wrapper;
6093  if (model == TLSModel::LocalExec) {
6094    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6095  } else if (is64Bit) {
6096    assert(model == TLSModel::InitialExec);
6097    OperandFlags = X86II::MO_GOTTPOFF;
6098    WrapperKind = X86ISD::WrapperRIP;
6099  } else {
6100    assert(model == TLSModel::InitialExec);
6101    OperandFlags = X86II::MO_INDNTPOFF;
6102  }
6103
6104  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6105  // exec)
6106  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6107                                           GA->getValueType(0),
6108                                           GA->getOffset(), OperandFlags);
6109  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6110
6111  if (model == TLSModel::InitialExec)
6112    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6113                         MachinePointerInfo::getGOT(), false, false, 0);
6114
6115  // The address of the thread local variable is the add of the thread
6116  // pointer with the offset of the variable.
6117  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6118}
6119
6120SDValue
6121X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6122
6123  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6124  const GlobalValue *GV = GA->getGlobal();
6125
6126  if (Subtarget->isTargetELF()) {
6127    // TODO: implement the "local dynamic" model
6128    // TODO: implement the "initial exec"model for pic executables
6129
6130    // If GV is an alias then use the aliasee for determining
6131    // thread-localness.
6132    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6133      GV = GA->resolveAliasedGlobal(false);
6134
6135    TLSModel::Model model
6136      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6137
6138    switch (model) {
6139      case TLSModel::GeneralDynamic:
6140      case TLSModel::LocalDynamic: // not implemented
6141        if (Subtarget->is64Bit())
6142          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6143        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6144
6145      case TLSModel::InitialExec:
6146      case TLSModel::LocalExec:
6147        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6148                                   Subtarget->is64Bit());
6149    }
6150  } else if (Subtarget->isTargetDarwin()) {
6151    // Darwin only has one model of TLS.  Lower to that.
6152    unsigned char OpFlag = 0;
6153    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6154                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6155
6156    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6157    // global base reg.
6158    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6159                  !Subtarget->is64Bit();
6160    if (PIC32)
6161      OpFlag = X86II::MO_TLVP_PIC_BASE;
6162    else
6163      OpFlag = X86II::MO_TLVP;
6164    DebugLoc DL = Op.getDebugLoc();
6165    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6166                                                GA->getValueType(0),
6167                                                GA->getOffset(), OpFlag);
6168    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6169
6170    // With PIC32, the address is actually $g + Offset.
6171    if (PIC32)
6172      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6173                           DAG.getNode(X86ISD::GlobalBaseReg,
6174                                       DebugLoc(), getPointerTy()),
6175                           Offset);
6176
6177    // Lowering the machine isd will make sure everything is in the right
6178    // location.
6179    SDValue Chain = DAG.getEntryNode();
6180    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6181    SDValue Args[] = { Chain, Offset };
6182    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6183
6184    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6185    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6186    MFI->setAdjustsStack(true);
6187
6188    // And our return value (tls address) is in the standard call return value
6189    // location.
6190    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6191    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6192  }
6193
6194  assert(false &&
6195         "TLS not implemented for this target.");
6196
6197  llvm_unreachable("Unreachable");
6198  return SDValue();
6199}
6200
6201
6202/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6203/// take a 2 x i32 value to shift plus a shift amount.
6204SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6205  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6206  EVT VT = Op.getValueType();
6207  unsigned VTBits = VT.getSizeInBits();
6208  DebugLoc dl = Op.getDebugLoc();
6209  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6210  SDValue ShOpLo = Op.getOperand(0);
6211  SDValue ShOpHi = Op.getOperand(1);
6212  SDValue ShAmt  = Op.getOperand(2);
6213  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6214                                     DAG.getConstant(VTBits - 1, MVT::i8))
6215                       : DAG.getConstant(0, VT);
6216
6217  SDValue Tmp2, Tmp3;
6218  if (Op.getOpcode() == ISD::SHL_PARTS) {
6219    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6220    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6221  } else {
6222    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6223    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6224  }
6225
6226  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6227                                DAG.getConstant(VTBits, MVT::i8));
6228  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6229                             AndNode, DAG.getConstant(0, MVT::i8));
6230
6231  SDValue Hi, Lo;
6232  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6233  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6234  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6235
6236  if (Op.getOpcode() == ISD::SHL_PARTS) {
6237    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6238    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6239  } else {
6240    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6241    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6242  }
6243
6244  SDValue Ops[2] = { Lo, Hi };
6245  return DAG.getMergeValues(Ops, 2, dl);
6246}
6247
6248SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6249                                           SelectionDAG &DAG) const {
6250  EVT SrcVT = Op.getOperand(0).getValueType();
6251
6252  if (SrcVT.isVector())
6253    return SDValue();
6254
6255  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6256         "Unknown SINT_TO_FP to lower!");
6257
6258  // These are really Legal; return the operand so the caller accepts it as
6259  // Legal.
6260  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6261    return Op;
6262  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6263      Subtarget->is64Bit()) {
6264    return Op;
6265  }
6266
6267  DebugLoc dl = Op.getDebugLoc();
6268  unsigned Size = SrcVT.getSizeInBits()/8;
6269  MachineFunction &MF = DAG.getMachineFunction();
6270  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6271  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6272  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6273                               StackSlot,
6274                               MachinePointerInfo::getFixedStack(SSFI),
6275                               false, false, 0);
6276  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6277}
6278
6279SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6280                                     SDValue StackSlot,
6281                                     SelectionDAG &DAG) const {
6282  // Build the FILD
6283  DebugLoc DL = Op.getDebugLoc();
6284  SDVTList Tys;
6285  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6286  if (useSSE)
6287    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6288  else
6289    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6290
6291  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6292
6293  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6294  MachineMemOperand *MMO =
6295    DAG.getMachineFunction()
6296    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6297                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6298
6299  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6300  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6301                                           X86ISD::FILD, DL,
6302                                           Tys, Ops, array_lengthof(Ops),
6303                                           SrcVT, MMO);
6304
6305  if (useSSE) {
6306    Chain = Result.getValue(1);
6307    SDValue InFlag = Result.getValue(2);
6308
6309    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6310    // shouldn't be necessary except that RFP cannot be live across
6311    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6312    MachineFunction &MF = DAG.getMachineFunction();
6313    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6314    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6315    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6316    Tys = DAG.getVTList(MVT::Other);
6317    SDValue Ops[] = {
6318      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6319    };
6320    MachineMemOperand *MMO =
6321      DAG.getMachineFunction()
6322      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6323                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6324
6325    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6326                                    Ops, array_lengthof(Ops),
6327                                    Op.getValueType(), MMO);
6328    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6329                         MachinePointerInfo::getFixedStack(SSFI),
6330                         false, false, 0);
6331  }
6332
6333  return Result;
6334}
6335
6336// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6337SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6338                                               SelectionDAG &DAG) const {
6339  // This algorithm is not obvious. Here it is in C code, more or less:
6340  /*
6341    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6342      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6343      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6344
6345      // Copy ints to xmm registers.
6346      __m128i xh = _mm_cvtsi32_si128( hi );
6347      __m128i xl = _mm_cvtsi32_si128( lo );
6348
6349      // Combine into low half of a single xmm register.
6350      __m128i x = _mm_unpacklo_epi32( xh, xl );
6351      __m128d d;
6352      double sd;
6353
6354      // Merge in appropriate exponents to give the integer bits the right
6355      // magnitude.
6356      x = _mm_unpacklo_epi32( x, exp );
6357
6358      // Subtract away the biases to deal with the IEEE-754 double precision
6359      // implicit 1.
6360      d = _mm_sub_pd( (__m128d) x, bias );
6361
6362      // All conversions up to here are exact. The correctly rounded result is
6363      // calculated using the current rounding mode using the following
6364      // horizontal add.
6365      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6366      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6367                                // store doesn't really need to be here (except
6368                                // maybe to zero the other double)
6369      return sd;
6370    }
6371  */
6372
6373  DebugLoc dl = Op.getDebugLoc();
6374  LLVMContext *Context = DAG.getContext();
6375
6376  // Build some magic constants.
6377  std::vector<Constant*> CV0;
6378  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6379  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6380  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6381  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6382  Constant *C0 = ConstantVector::get(CV0);
6383  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6384
6385  std::vector<Constant*> CV1;
6386  CV1.push_back(
6387    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6388  CV1.push_back(
6389    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6390  Constant *C1 = ConstantVector::get(CV1);
6391  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6392
6393  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6394                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6395                                        Op.getOperand(0),
6396                                        DAG.getIntPtrConstant(1)));
6397  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6398                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6399                                        Op.getOperand(0),
6400                                        DAG.getIntPtrConstant(0)));
6401  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6402  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6403                              MachinePointerInfo::getConstantPool(),
6404                              false, false, 16);
6405  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6406  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6407  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6408                              MachinePointerInfo::getConstantPool(),
6409                              false, false, 16);
6410  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6411
6412  // Add the halves; easiest way is to swap them into another reg first.
6413  int ShufMask[2] = { 1, -1 };
6414  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6415                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6416  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6417  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6418                     DAG.getIntPtrConstant(0));
6419}
6420
6421// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6422SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6423                                               SelectionDAG &DAG) const {
6424  DebugLoc dl = Op.getDebugLoc();
6425  // FP constant to bias correct the final result.
6426  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6427                                   MVT::f64);
6428
6429  // Load the 32-bit value into an XMM register.
6430  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6431                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6432                                         Op.getOperand(0),
6433                                         DAG.getIntPtrConstant(0)));
6434
6435  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6436                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6437                     DAG.getIntPtrConstant(0));
6438
6439  // Or the load with the bias.
6440  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6441                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6442                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6443                                                   MVT::v2f64, Load)),
6444                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6445                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6446                                                   MVT::v2f64, Bias)));
6447  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6448                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6449                   DAG.getIntPtrConstant(0));
6450
6451  // Subtract the bias.
6452  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6453
6454  // Handle final rounding.
6455  EVT DestVT = Op.getValueType();
6456
6457  if (DestVT.bitsLT(MVT::f64)) {
6458    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6459                       DAG.getIntPtrConstant(0));
6460  } else if (DestVT.bitsGT(MVT::f64)) {
6461    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6462  }
6463
6464  // Handle final rounding.
6465  return Sub;
6466}
6467
6468SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6469                                           SelectionDAG &DAG) const {
6470  SDValue N0 = Op.getOperand(0);
6471  DebugLoc dl = Op.getDebugLoc();
6472
6473  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6474  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6475  // the optimization here.
6476  if (DAG.SignBitIsZero(N0))
6477    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6478
6479  EVT SrcVT = N0.getValueType();
6480  EVT DstVT = Op.getValueType();
6481  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6482    return LowerUINT_TO_FP_i64(Op, DAG);
6483  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6484    return LowerUINT_TO_FP_i32(Op, DAG);
6485
6486  // Make a 64-bit buffer, and use it to build an FILD.
6487  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6488  if (SrcVT == MVT::i32) {
6489    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6490    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6491                                     getPointerTy(), StackSlot, WordOff);
6492    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6493                                  StackSlot, MachinePointerInfo(),
6494                                  false, false, 0);
6495    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6496                                  OffsetSlot, MachinePointerInfo(),
6497                                  false, false, 0);
6498    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6499    return Fild;
6500  }
6501
6502  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6503  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6504                                StackSlot, MachinePointerInfo(),
6505                               false, false, 0);
6506  // For i64 source, we need to add the appropriate power of 2 if the input
6507  // was negative.  This is the same as the optimization in
6508  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6509  // we must be careful to do the computation in x87 extended precision, not
6510  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6511  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6512  MachineMemOperand *MMO =
6513    DAG.getMachineFunction()
6514    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6515                          MachineMemOperand::MOLoad, 8, 8);
6516
6517  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6518  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6519  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6520                                         MVT::i64, MMO);
6521
6522  APInt FF(32, 0x5F800000ULL);
6523
6524  // Check whether the sign bit is set.
6525  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6526                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6527                                 ISD::SETLT);
6528
6529  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6530  SDValue FudgePtr = DAG.getConstantPool(
6531                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6532                                         getPointerTy());
6533
6534  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6535  SDValue Zero = DAG.getIntPtrConstant(0);
6536  SDValue Four = DAG.getIntPtrConstant(4);
6537  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6538                               Zero, Four);
6539  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6540
6541  // Load the value out, extending it from f32 to f80.
6542  // FIXME: Avoid the extend by constructing the right constant pool?
6543  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6544                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6545                                 MVT::f32, false, false, 4);
6546  // Extend everything to 80 bits to force it to be done on x87.
6547  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6548  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6549}
6550
6551std::pair<SDValue,SDValue> X86TargetLowering::
6552FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6553  DebugLoc DL = Op.getDebugLoc();
6554
6555  EVT DstTy = Op.getValueType();
6556
6557  if (!IsSigned) {
6558    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6559    DstTy = MVT::i64;
6560  }
6561
6562  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6563         DstTy.getSimpleVT() >= MVT::i16 &&
6564         "Unknown FP_TO_SINT to lower!");
6565
6566  // These are really Legal.
6567  if (DstTy == MVT::i32 &&
6568      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6569    return std::make_pair(SDValue(), SDValue());
6570  if (Subtarget->is64Bit() &&
6571      DstTy == MVT::i64 &&
6572      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6573    return std::make_pair(SDValue(), SDValue());
6574
6575  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6576  // stack slot.
6577  MachineFunction &MF = DAG.getMachineFunction();
6578  unsigned MemSize = DstTy.getSizeInBits()/8;
6579  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6580  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6581
6582
6583
6584  unsigned Opc;
6585  switch (DstTy.getSimpleVT().SimpleTy) {
6586  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6587  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6588  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6589  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6590  }
6591
6592  SDValue Chain = DAG.getEntryNode();
6593  SDValue Value = Op.getOperand(0);
6594  EVT TheVT = Op.getOperand(0).getValueType();
6595  if (isScalarFPTypeInSSEReg(TheVT)) {
6596    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6597    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6598                         MachinePointerInfo::getFixedStack(SSFI),
6599                         false, false, 0);
6600    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6601    SDValue Ops[] = {
6602      Chain, StackSlot, DAG.getValueType(TheVT)
6603    };
6604
6605    MachineMemOperand *MMO =
6606      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6607                              MachineMemOperand::MOLoad, MemSize, MemSize);
6608    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6609                                    DstTy, MMO);
6610    Chain = Value.getValue(1);
6611    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6612    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6613  }
6614
6615  MachineMemOperand *MMO =
6616    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6617                            MachineMemOperand::MOStore, MemSize, MemSize);
6618
6619  // Build the FP_TO_INT*_IN_MEM
6620  SDValue Ops[] = { Chain, Value, StackSlot };
6621  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6622                                         Ops, 3, DstTy, MMO);
6623
6624  return std::make_pair(FIST, StackSlot);
6625}
6626
6627SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6628                                           SelectionDAG &DAG) const {
6629  if (Op.getValueType().isVector())
6630    return SDValue();
6631
6632  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6633  SDValue FIST = Vals.first, StackSlot = Vals.second;
6634  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6635  if (FIST.getNode() == 0) return Op;
6636
6637  // Load the result.
6638  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6639                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6640}
6641
6642SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6643                                           SelectionDAG &DAG) const {
6644  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6645  SDValue FIST = Vals.first, StackSlot = Vals.second;
6646  assert(FIST.getNode() && "Unexpected failure");
6647
6648  // Load the result.
6649  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6650                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6651}
6652
6653SDValue X86TargetLowering::LowerFABS(SDValue Op,
6654                                     SelectionDAG &DAG) const {
6655  LLVMContext *Context = DAG.getContext();
6656  DebugLoc dl = Op.getDebugLoc();
6657  EVT VT = Op.getValueType();
6658  EVT EltVT = VT;
6659  if (VT.isVector())
6660    EltVT = VT.getVectorElementType();
6661  std::vector<Constant*> CV;
6662  if (EltVT == MVT::f64) {
6663    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6664    CV.push_back(C);
6665    CV.push_back(C);
6666  } else {
6667    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6668    CV.push_back(C);
6669    CV.push_back(C);
6670    CV.push_back(C);
6671    CV.push_back(C);
6672  }
6673  Constant *C = ConstantVector::get(CV);
6674  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6675  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6676                             MachinePointerInfo::getConstantPool(),
6677                             false, false, 16);
6678  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6679}
6680
6681SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6682  LLVMContext *Context = DAG.getContext();
6683  DebugLoc dl = Op.getDebugLoc();
6684  EVT VT = Op.getValueType();
6685  EVT EltVT = VT;
6686  if (VT.isVector())
6687    EltVT = VT.getVectorElementType();
6688  std::vector<Constant*> CV;
6689  if (EltVT == MVT::f64) {
6690    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6691    CV.push_back(C);
6692    CV.push_back(C);
6693  } else {
6694    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6695    CV.push_back(C);
6696    CV.push_back(C);
6697    CV.push_back(C);
6698    CV.push_back(C);
6699  }
6700  Constant *C = ConstantVector::get(CV);
6701  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6702  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6703                             MachinePointerInfo::getConstantPool(),
6704                             false, false, 16);
6705  if (VT.isVector()) {
6706    return DAG.getNode(ISD::BITCAST, dl, VT,
6707                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6708                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6709                                Op.getOperand(0)),
6710                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
6711  } else {
6712    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6713  }
6714}
6715
6716SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6717  LLVMContext *Context = DAG.getContext();
6718  SDValue Op0 = Op.getOperand(0);
6719  SDValue Op1 = Op.getOperand(1);
6720  DebugLoc dl = Op.getDebugLoc();
6721  EVT VT = Op.getValueType();
6722  EVT SrcVT = Op1.getValueType();
6723
6724  // If second operand is smaller, extend it first.
6725  if (SrcVT.bitsLT(VT)) {
6726    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6727    SrcVT = VT;
6728  }
6729  // And if it is bigger, shrink it first.
6730  if (SrcVT.bitsGT(VT)) {
6731    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6732    SrcVT = VT;
6733  }
6734
6735  // At this point the operands and the result should have the same
6736  // type, and that won't be f80 since that is not custom lowered.
6737
6738  // First get the sign bit of second operand.
6739  std::vector<Constant*> CV;
6740  if (SrcVT == MVT::f64) {
6741    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6742    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6743  } else {
6744    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6745    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6746    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6747    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6748  }
6749  Constant *C = ConstantVector::get(CV);
6750  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6751  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6752                              MachinePointerInfo::getConstantPool(),
6753                              false, false, 16);
6754  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6755
6756  // Shift sign bit right or left if the two operands have different types.
6757  if (SrcVT.bitsGT(VT)) {
6758    // Op0 is MVT::f32, Op1 is MVT::f64.
6759    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6760    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6761                          DAG.getConstant(32, MVT::i32));
6762    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
6763    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6764                          DAG.getIntPtrConstant(0));
6765  }
6766
6767  // Clear first operand sign bit.
6768  CV.clear();
6769  if (VT == MVT::f64) {
6770    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6771    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6772  } else {
6773    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6774    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6775    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6776    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6777  }
6778  C = ConstantVector::get(CV);
6779  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6780  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6781                              MachinePointerInfo::getConstantPool(),
6782                              false, false, 16);
6783  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6784
6785  // Or the value with the sign bit.
6786  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6787}
6788
6789/// Emit nodes that will be selected as "test Op0,Op0", or something
6790/// equivalent.
6791SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6792                                    SelectionDAG &DAG) const {
6793  DebugLoc dl = Op.getDebugLoc();
6794
6795  // CF and OF aren't always set the way we want. Determine which
6796  // of these we need.
6797  bool NeedCF = false;
6798  bool NeedOF = false;
6799  switch (X86CC) {
6800  default: break;
6801  case X86::COND_A: case X86::COND_AE:
6802  case X86::COND_B: case X86::COND_BE:
6803    NeedCF = true;
6804    break;
6805  case X86::COND_G: case X86::COND_GE:
6806  case X86::COND_L: case X86::COND_LE:
6807  case X86::COND_O: case X86::COND_NO:
6808    NeedOF = true;
6809    break;
6810  }
6811
6812  // See if we can use the EFLAGS value from the operand instead of
6813  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6814  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6815  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6816    // Emit a CMP with 0, which is the TEST pattern.
6817    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6818                       DAG.getConstant(0, Op.getValueType()));
6819
6820  unsigned Opcode = 0;
6821  unsigned NumOperands = 0;
6822  switch (Op.getNode()->getOpcode()) {
6823  case ISD::ADD:
6824    // Due to an isel shortcoming, be conservative if this add is likely to be
6825    // selected as part of a load-modify-store instruction. When the root node
6826    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6827    // uses of other nodes in the match, such as the ADD in this case. This
6828    // leads to the ADD being left around and reselected, with the result being
6829    // two adds in the output.  Alas, even if none our users are stores, that
6830    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6831    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6832    // climbing the DAG back to the root, and it doesn't seem to be worth the
6833    // effort.
6834    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6835           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6836      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6837        goto default_case;
6838
6839    if (ConstantSDNode *C =
6840        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6841      // An add of one will be selected as an INC.
6842      if (C->getAPIntValue() == 1) {
6843        Opcode = X86ISD::INC;
6844        NumOperands = 1;
6845        break;
6846      }
6847
6848      // An add of negative one (subtract of one) will be selected as a DEC.
6849      if (C->getAPIntValue().isAllOnesValue()) {
6850        Opcode = X86ISD::DEC;
6851        NumOperands = 1;
6852        break;
6853      }
6854    }
6855
6856    // Otherwise use a regular EFLAGS-setting add.
6857    Opcode = X86ISD::ADD;
6858    NumOperands = 2;
6859    break;
6860  case ISD::AND: {
6861    // If the primary and result isn't used, don't bother using X86ISD::AND,
6862    // because a TEST instruction will be better.
6863    bool NonFlagUse = false;
6864    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6865           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6866      SDNode *User = *UI;
6867      unsigned UOpNo = UI.getOperandNo();
6868      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6869        // Look pass truncate.
6870        UOpNo = User->use_begin().getOperandNo();
6871        User = *User->use_begin();
6872      }
6873
6874      if (User->getOpcode() != ISD::BRCOND &&
6875          User->getOpcode() != ISD::SETCC &&
6876          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6877        NonFlagUse = true;
6878        break;
6879      }
6880    }
6881
6882    if (!NonFlagUse)
6883      break;
6884  }
6885    // FALL THROUGH
6886  case ISD::SUB:
6887  case ISD::OR:
6888  case ISD::XOR:
6889    // Due to the ISEL shortcoming noted above, be conservative if this op is
6890    // likely to be selected as part of a load-modify-store instruction.
6891    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6892           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6893      if (UI->getOpcode() == ISD::STORE)
6894        goto default_case;
6895
6896    // Otherwise use a regular EFLAGS-setting instruction.
6897    switch (Op.getNode()->getOpcode()) {
6898    default: llvm_unreachable("unexpected operator!");
6899    case ISD::SUB: Opcode = X86ISD::SUB; break;
6900    case ISD::OR:  Opcode = X86ISD::OR;  break;
6901    case ISD::XOR: Opcode = X86ISD::XOR; break;
6902    case ISD::AND: Opcode = X86ISD::AND; break;
6903    }
6904
6905    NumOperands = 2;
6906    break;
6907  case X86ISD::ADD:
6908  case X86ISD::SUB:
6909  case X86ISD::INC:
6910  case X86ISD::DEC:
6911  case X86ISD::OR:
6912  case X86ISD::XOR:
6913  case X86ISD::AND:
6914    return SDValue(Op.getNode(), 1);
6915  default:
6916  default_case:
6917    break;
6918  }
6919
6920  if (Opcode == 0)
6921    // Emit a CMP with 0, which is the TEST pattern.
6922    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6923                       DAG.getConstant(0, Op.getValueType()));
6924
6925  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6926  SmallVector<SDValue, 4> Ops;
6927  for (unsigned i = 0; i != NumOperands; ++i)
6928    Ops.push_back(Op.getOperand(i));
6929
6930  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6931  DAG.ReplaceAllUsesWith(Op, New);
6932  return SDValue(New.getNode(), 1);
6933}
6934
6935/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6936/// equivalent.
6937SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6938                                   SelectionDAG &DAG) const {
6939  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6940    if (C->getAPIntValue() == 0)
6941      return EmitTest(Op0, X86CC, DAG);
6942
6943  DebugLoc dl = Op0.getDebugLoc();
6944  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6945}
6946
6947/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6948/// if it's possible.
6949SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6950                                     DebugLoc dl, SelectionDAG &DAG) const {
6951  SDValue Op0 = And.getOperand(0);
6952  SDValue Op1 = And.getOperand(1);
6953  if (Op0.getOpcode() == ISD::TRUNCATE)
6954    Op0 = Op0.getOperand(0);
6955  if (Op1.getOpcode() == ISD::TRUNCATE)
6956    Op1 = Op1.getOperand(0);
6957
6958  SDValue LHS, RHS;
6959  if (Op1.getOpcode() == ISD::SHL)
6960    std::swap(Op0, Op1);
6961  if (Op0.getOpcode() == ISD::SHL) {
6962    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6963      if (And00C->getZExtValue() == 1) {
6964        // If we looked past a truncate, check that it's only truncating away
6965        // known zeros.
6966        unsigned BitWidth = Op0.getValueSizeInBits();
6967        unsigned AndBitWidth = And.getValueSizeInBits();
6968        if (BitWidth > AndBitWidth) {
6969          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6970          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6971          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6972            return SDValue();
6973        }
6974        LHS = Op1;
6975        RHS = Op0.getOperand(1);
6976      }
6977  } else if (Op1.getOpcode() == ISD::Constant) {
6978    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6979    SDValue AndLHS = Op0;
6980    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6981      LHS = AndLHS.getOperand(0);
6982      RHS = AndLHS.getOperand(1);
6983    }
6984  }
6985
6986  if (LHS.getNode()) {
6987    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6988    // instruction.  Since the shift amount is in-range-or-undefined, we know
6989    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6990    // the encoding for the i16 version is larger than the i32 version.
6991    // Also promote i16 to i32 for performance / code size reason.
6992    if (LHS.getValueType() == MVT::i8 ||
6993        LHS.getValueType() == MVT::i16)
6994      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6995
6996    // If the operand types disagree, extend the shift amount to match.  Since
6997    // BT ignores high bits (like shifts) we can use anyextend.
6998    if (LHS.getValueType() != RHS.getValueType())
6999      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7000
7001    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7002    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7003    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7004                       DAG.getConstant(Cond, MVT::i8), BT);
7005  }
7006
7007  return SDValue();
7008}
7009
7010SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7011  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7012  SDValue Op0 = Op.getOperand(0);
7013  SDValue Op1 = Op.getOperand(1);
7014  DebugLoc dl = Op.getDebugLoc();
7015  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7016
7017  // Optimize to BT if possible.
7018  // Lower (X & (1 << N)) == 0 to BT(X, N).
7019  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7020  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7021  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7022      Op1.getOpcode() == ISD::Constant &&
7023      cast<ConstantSDNode>(Op1)->isNullValue() &&
7024      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7025    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7026    if (NewSetCC.getNode())
7027      return NewSetCC;
7028  }
7029
7030  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7031  // these.
7032  if (Op1.getOpcode() == ISD::Constant &&
7033      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7034       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7035      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7036
7037    // If the input is a setcc, then reuse the input setcc or use a new one with
7038    // the inverted condition.
7039    if (Op0.getOpcode() == X86ISD::SETCC) {
7040      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7041      bool Invert = (CC == ISD::SETNE) ^
7042        cast<ConstantSDNode>(Op1)->isNullValue();
7043      if (!Invert) return Op0;
7044
7045      CCode = X86::GetOppositeBranchCondition(CCode);
7046      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7047                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7048    }
7049  }
7050
7051  bool isFP = Op1.getValueType().isFloatingPoint();
7052  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7053  if (X86CC == X86::COND_INVALID)
7054    return SDValue();
7055
7056  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7057  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7058                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7059}
7060
7061SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7062  SDValue Cond;
7063  SDValue Op0 = Op.getOperand(0);
7064  SDValue Op1 = Op.getOperand(1);
7065  SDValue CC = Op.getOperand(2);
7066  EVT VT = Op.getValueType();
7067  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7068  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7069  DebugLoc dl = Op.getDebugLoc();
7070
7071  if (isFP) {
7072    unsigned SSECC = 8;
7073    EVT VT0 = Op0.getValueType();
7074    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7075    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7076    bool Swap = false;
7077
7078    switch (SetCCOpcode) {
7079    default: break;
7080    case ISD::SETOEQ:
7081    case ISD::SETEQ:  SSECC = 0; break;
7082    case ISD::SETOGT:
7083    case ISD::SETGT: Swap = true; // Fallthrough
7084    case ISD::SETLT:
7085    case ISD::SETOLT: SSECC = 1; break;
7086    case ISD::SETOGE:
7087    case ISD::SETGE: Swap = true; // Fallthrough
7088    case ISD::SETLE:
7089    case ISD::SETOLE: SSECC = 2; break;
7090    case ISD::SETUO:  SSECC = 3; break;
7091    case ISD::SETUNE:
7092    case ISD::SETNE:  SSECC = 4; break;
7093    case ISD::SETULE: Swap = true;
7094    case ISD::SETUGE: SSECC = 5; break;
7095    case ISD::SETULT: Swap = true;
7096    case ISD::SETUGT: SSECC = 6; break;
7097    case ISD::SETO:   SSECC = 7; break;
7098    }
7099    if (Swap)
7100      std::swap(Op0, Op1);
7101
7102    // In the two special cases we can't handle, emit two comparisons.
7103    if (SSECC == 8) {
7104      if (SetCCOpcode == ISD::SETUEQ) {
7105        SDValue UNORD, EQ;
7106        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7107        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7108        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7109      }
7110      else if (SetCCOpcode == ISD::SETONE) {
7111        SDValue ORD, NEQ;
7112        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7113        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7114        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7115      }
7116      llvm_unreachable("Illegal FP comparison");
7117    }
7118    // Handle all other FP comparisons here.
7119    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7120  }
7121
7122  // We are handling one of the integer comparisons here.  Since SSE only has
7123  // GT and EQ comparisons for integer, swapping operands and multiple
7124  // operations may be required for some comparisons.
7125  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7126  bool Swap = false, Invert = false, FlipSigns = false;
7127
7128  switch (VT.getSimpleVT().SimpleTy) {
7129  default: break;
7130  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7131  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7132  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7133  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7134  }
7135
7136  switch (SetCCOpcode) {
7137  default: break;
7138  case ISD::SETNE:  Invert = true;
7139  case ISD::SETEQ:  Opc = EQOpc; break;
7140  case ISD::SETLT:  Swap = true;
7141  case ISD::SETGT:  Opc = GTOpc; break;
7142  case ISD::SETGE:  Swap = true;
7143  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7144  case ISD::SETULT: Swap = true;
7145  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7146  case ISD::SETUGE: Swap = true;
7147  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7148  }
7149  if (Swap)
7150    std::swap(Op0, Op1);
7151
7152  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7153  // bits of the inputs before performing those operations.
7154  if (FlipSigns) {
7155    EVT EltVT = VT.getVectorElementType();
7156    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7157                                      EltVT);
7158    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7159    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7160                                    SignBits.size());
7161    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7162    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7163  }
7164
7165  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7166
7167  // If the logical-not of the result is required, perform that now.
7168  if (Invert)
7169    Result = DAG.getNOT(dl, Result, VT);
7170
7171  return Result;
7172}
7173
7174// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7175static bool isX86LogicalCmp(SDValue Op) {
7176  unsigned Opc = Op.getNode()->getOpcode();
7177  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7178    return true;
7179  if (Op.getResNo() == 1 &&
7180      (Opc == X86ISD::ADD ||
7181       Opc == X86ISD::SUB ||
7182       Opc == X86ISD::SMUL ||
7183       Opc == X86ISD::UMUL ||
7184       Opc == X86ISD::INC ||
7185       Opc == X86ISD::DEC ||
7186       Opc == X86ISD::OR ||
7187       Opc == X86ISD::XOR ||
7188       Opc == X86ISD::AND))
7189    return true;
7190
7191  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7192    return true;
7193
7194  return false;
7195}
7196
7197static bool isZero(SDValue V) {
7198  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7199  return C && C->isNullValue();
7200}
7201
7202static bool isAllOnes(SDValue V) {
7203  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7204  return C && C->isAllOnesValue();
7205}
7206
7207SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7208  bool addTest = true;
7209  SDValue Cond  = Op.getOperand(0);
7210  SDValue Op1 = Op.getOperand(1);
7211  SDValue Op2 = Op.getOperand(2);
7212  DebugLoc DL = Op.getDebugLoc();
7213  SDValue CC;
7214
7215  if (Cond.getOpcode() == ISD::SETCC) {
7216    SDValue NewCond = LowerSETCC(Cond, DAG);
7217    if (NewCond.getNode())
7218      Cond = NewCond;
7219  }
7220
7221  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7222  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7223  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7224  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7225  if (Cond.getOpcode() == X86ISD::SETCC &&
7226      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7227      isZero(Cond.getOperand(1).getOperand(1))) {
7228    SDValue Cmp = Cond.getOperand(1);
7229
7230    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7231
7232    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7233        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7234      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7235
7236      SDValue CmpOp0 = Cmp.getOperand(0);
7237      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7238                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7239
7240      SDValue Res =   // Res = 0 or -1.
7241        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7242                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7243
7244      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7245        Res = DAG.getNOT(DL, Res, Res.getValueType());
7246
7247      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7248      if (N2C == 0 || !N2C->isNullValue())
7249        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7250      return Res;
7251    }
7252  }
7253
7254  // Look past (and (setcc_carry (cmp ...)), 1).
7255  if (Cond.getOpcode() == ISD::AND &&
7256      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7257    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7258    if (C && C->getAPIntValue() == 1)
7259      Cond = Cond.getOperand(0);
7260  }
7261
7262  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7263  // setting operand in place of the X86ISD::SETCC.
7264  if (Cond.getOpcode() == X86ISD::SETCC ||
7265      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7266    CC = Cond.getOperand(0);
7267
7268    SDValue Cmp = Cond.getOperand(1);
7269    unsigned Opc = Cmp.getOpcode();
7270    EVT VT = Op.getValueType();
7271
7272    bool IllegalFPCMov = false;
7273    if (VT.isFloatingPoint() && !VT.isVector() &&
7274        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7275      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7276
7277    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7278        Opc == X86ISD::BT) { // FIXME
7279      Cond = Cmp;
7280      addTest = false;
7281    }
7282  }
7283
7284  if (addTest) {
7285    // Look pass the truncate.
7286    if (Cond.getOpcode() == ISD::TRUNCATE)
7287      Cond = Cond.getOperand(0);
7288
7289    // We know the result of AND is compared against zero. Try to match
7290    // it to BT.
7291    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7292      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7293      if (NewSetCC.getNode()) {
7294        CC = NewSetCC.getOperand(0);
7295        Cond = NewSetCC.getOperand(1);
7296        addTest = false;
7297      }
7298    }
7299  }
7300
7301  if (addTest) {
7302    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7303    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7304  }
7305
7306  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7307  // condition is true.
7308  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7309  SDValue Ops[] = { Op2, Op1, CC, Cond };
7310  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7311}
7312
7313// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7314// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7315// from the AND / OR.
7316static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7317  Opc = Op.getOpcode();
7318  if (Opc != ISD::OR && Opc != ISD::AND)
7319    return false;
7320  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7321          Op.getOperand(0).hasOneUse() &&
7322          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7323          Op.getOperand(1).hasOneUse());
7324}
7325
7326// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7327// 1 and that the SETCC node has a single use.
7328static bool isXor1OfSetCC(SDValue Op) {
7329  if (Op.getOpcode() != ISD::XOR)
7330    return false;
7331  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7332  if (N1C && N1C->getAPIntValue() == 1) {
7333    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7334      Op.getOperand(0).hasOneUse();
7335  }
7336  return false;
7337}
7338
7339SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7340  bool addTest = true;
7341  SDValue Chain = Op.getOperand(0);
7342  SDValue Cond  = Op.getOperand(1);
7343  SDValue Dest  = Op.getOperand(2);
7344  DebugLoc dl = Op.getDebugLoc();
7345  SDValue CC;
7346
7347  if (Cond.getOpcode() == ISD::SETCC) {
7348    SDValue NewCond = LowerSETCC(Cond, DAG);
7349    if (NewCond.getNode())
7350      Cond = NewCond;
7351  }
7352#if 0
7353  // FIXME: LowerXALUO doesn't handle these!!
7354  else if (Cond.getOpcode() == X86ISD::ADD  ||
7355           Cond.getOpcode() == X86ISD::SUB  ||
7356           Cond.getOpcode() == X86ISD::SMUL ||
7357           Cond.getOpcode() == X86ISD::UMUL)
7358    Cond = LowerXALUO(Cond, DAG);
7359#endif
7360
7361  // Look pass (and (setcc_carry (cmp ...)), 1).
7362  if (Cond.getOpcode() == ISD::AND &&
7363      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7364    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7365    if (C && C->getAPIntValue() == 1)
7366      Cond = Cond.getOperand(0);
7367  }
7368
7369  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7370  // setting operand in place of the X86ISD::SETCC.
7371  if (Cond.getOpcode() == X86ISD::SETCC ||
7372      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7373    CC = Cond.getOperand(0);
7374
7375    SDValue Cmp = Cond.getOperand(1);
7376    unsigned Opc = Cmp.getOpcode();
7377    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7378    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7379      Cond = Cmp;
7380      addTest = false;
7381    } else {
7382      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7383      default: break;
7384      case X86::COND_O:
7385      case X86::COND_B:
7386        // These can only come from an arithmetic instruction with overflow,
7387        // e.g. SADDO, UADDO.
7388        Cond = Cond.getNode()->getOperand(1);
7389        addTest = false;
7390        break;
7391      }
7392    }
7393  } else {
7394    unsigned CondOpc;
7395    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7396      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7397      if (CondOpc == ISD::OR) {
7398        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7399        // two branches instead of an explicit OR instruction with a
7400        // separate test.
7401        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7402            isX86LogicalCmp(Cmp)) {
7403          CC = Cond.getOperand(0).getOperand(0);
7404          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7405                              Chain, Dest, CC, Cmp);
7406          CC = Cond.getOperand(1).getOperand(0);
7407          Cond = Cmp;
7408          addTest = false;
7409        }
7410      } else { // ISD::AND
7411        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7412        // two branches instead of an explicit AND instruction with a
7413        // separate test. However, we only do this if this block doesn't
7414        // have a fall-through edge, because this requires an explicit
7415        // jmp when the condition is false.
7416        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7417            isX86LogicalCmp(Cmp) &&
7418            Op.getNode()->hasOneUse()) {
7419          X86::CondCode CCode =
7420            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7421          CCode = X86::GetOppositeBranchCondition(CCode);
7422          CC = DAG.getConstant(CCode, MVT::i8);
7423          SDNode *User = *Op.getNode()->use_begin();
7424          // Look for an unconditional branch following this conditional branch.
7425          // We need this because we need to reverse the successors in order
7426          // to implement FCMP_OEQ.
7427          if (User->getOpcode() == ISD::BR) {
7428            SDValue FalseBB = User->getOperand(1);
7429            SDNode *NewBR =
7430              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7431            assert(NewBR == User);
7432            (void)NewBR;
7433            Dest = FalseBB;
7434
7435            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7436                                Chain, Dest, CC, Cmp);
7437            X86::CondCode CCode =
7438              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7439            CCode = X86::GetOppositeBranchCondition(CCode);
7440            CC = DAG.getConstant(CCode, MVT::i8);
7441            Cond = Cmp;
7442            addTest = false;
7443          }
7444        }
7445      }
7446    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7447      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7448      // It should be transformed during dag combiner except when the condition
7449      // is set by a arithmetics with overflow node.
7450      X86::CondCode CCode =
7451        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7452      CCode = X86::GetOppositeBranchCondition(CCode);
7453      CC = DAG.getConstant(CCode, MVT::i8);
7454      Cond = Cond.getOperand(0).getOperand(1);
7455      addTest = false;
7456    }
7457  }
7458
7459  if (addTest) {
7460    // Look pass the truncate.
7461    if (Cond.getOpcode() == ISD::TRUNCATE)
7462      Cond = Cond.getOperand(0);
7463
7464    // We know the result of AND is compared against zero. Try to match
7465    // it to BT.
7466    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7467      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7468      if (NewSetCC.getNode()) {
7469        CC = NewSetCC.getOperand(0);
7470        Cond = NewSetCC.getOperand(1);
7471        addTest = false;
7472      }
7473    }
7474  }
7475
7476  if (addTest) {
7477    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7478    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7479  }
7480  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7481                     Chain, Dest, CC, Cond);
7482}
7483
7484
7485// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7486// Calls to _alloca is needed to probe the stack when allocating more than 4k
7487// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7488// that the guard pages used by the OS virtual memory manager are allocated in
7489// correct sequence.
7490SDValue
7491X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7492                                           SelectionDAG &DAG) const {
7493  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7494         "This should be used only on Windows targets");
7495  DebugLoc dl = Op.getDebugLoc();
7496
7497  // Get the inputs.
7498  SDValue Chain = Op.getOperand(0);
7499  SDValue Size  = Op.getOperand(1);
7500  // FIXME: Ensure alignment here
7501
7502  SDValue Flag;
7503
7504  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7505
7506  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7507  Flag = Chain.getValue(1);
7508
7509  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7510
7511  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7512  Flag = Chain.getValue(1);
7513
7514  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7515
7516  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7517  return DAG.getMergeValues(Ops1, 2, dl);
7518}
7519
7520SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7521  MachineFunction &MF = DAG.getMachineFunction();
7522  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7523
7524  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7525  DebugLoc DL = Op.getDebugLoc();
7526
7527  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7528    // vastart just stores the address of the VarArgsFrameIndex slot into the
7529    // memory location argument.
7530    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7531                                   getPointerTy());
7532    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7533                        MachinePointerInfo(SV), false, false, 0);
7534  }
7535
7536  // __va_list_tag:
7537  //   gp_offset         (0 - 6 * 8)
7538  //   fp_offset         (48 - 48 + 8 * 16)
7539  //   overflow_arg_area (point to parameters coming in memory).
7540  //   reg_save_area
7541  SmallVector<SDValue, 8> MemOps;
7542  SDValue FIN = Op.getOperand(1);
7543  // Store gp_offset
7544  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7545                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7546                                               MVT::i32),
7547                               FIN, MachinePointerInfo(SV), false, false, 0);
7548  MemOps.push_back(Store);
7549
7550  // Store fp_offset
7551  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7552                    FIN, DAG.getIntPtrConstant(4));
7553  Store = DAG.getStore(Op.getOperand(0), DL,
7554                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7555                                       MVT::i32),
7556                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7557  MemOps.push_back(Store);
7558
7559  // Store ptr to overflow_arg_area
7560  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7561                    FIN, DAG.getIntPtrConstant(4));
7562  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7563                                    getPointerTy());
7564  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7565                       MachinePointerInfo(SV, 8),
7566                       false, false, 0);
7567  MemOps.push_back(Store);
7568
7569  // Store ptr to reg_save_area.
7570  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7571                    FIN, DAG.getIntPtrConstant(8));
7572  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7573                                    getPointerTy());
7574  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7575                       MachinePointerInfo(SV, 16), false, false, 0);
7576  MemOps.push_back(Store);
7577  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7578                     &MemOps[0], MemOps.size());
7579}
7580
7581SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7582  assert(Subtarget->is64Bit() &&
7583         "LowerVAARG only handles 64-bit va_arg!");
7584  assert((Subtarget->isTargetLinux() ||
7585          Subtarget->isTargetDarwin()) &&
7586          "Unhandled target in LowerVAARG");
7587  assert(Op.getNode()->getNumOperands() == 4);
7588  SDValue Chain = Op.getOperand(0);
7589  SDValue SrcPtr = Op.getOperand(1);
7590  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7591  unsigned Align = Op.getConstantOperandVal(3);
7592  DebugLoc dl = Op.getDebugLoc();
7593
7594  EVT ArgVT = Op.getNode()->getValueType(0);
7595  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7596  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7597  uint8_t ArgMode;
7598
7599  // Decide which area this value should be read from.
7600  // TODO: Implement the AMD64 ABI in its entirety. This simple
7601  // selection mechanism works only for the basic types.
7602  if (ArgVT == MVT::f80) {
7603    llvm_unreachable("va_arg for f80 not yet implemented");
7604  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7605    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
7606  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7607    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
7608  } else {
7609    llvm_unreachable("Unhandled argument type in LowerVAARG");
7610  }
7611
7612  if (ArgMode == 2) {
7613    // Sanity Check: Make sure using fp_offset makes sense.
7614    assert(!UseSoftFloat &&
7615           !(DAG.getMachineFunction()
7616                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7617           Subtarget->hasXMM());
7618  }
7619
7620  // Insert VAARG_64 node into the DAG
7621  // VAARG_64 returns two values: Variable Argument Address, Chain
7622  SmallVector<SDValue, 11> InstOps;
7623  InstOps.push_back(Chain);
7624  InstOps.push_back(SrcPtr);
7625  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7626  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7627  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7628  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7629  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7630                                          VTs, &InstOps[0], InstOps.size(),
7631                                          MVT::i64,
7632                                          MachinePointerInfo(SV),
7633                                          /*Align=*/0,
7634                                          /*Volatile=*/false,
7635                                          /*ReadMem=*/true,
7636                                          /*WriteMem=*/true);
7637  Chain = VAARG.getValue(1);
7638
7639  // Load the next argument and return it
7640  return DAG.getLoad(ArgVT, dl,
7641                     Chain,
7642                     VAARG,
7643                     MachinePointerInfo(),
7644                     false, false, 0);
7645}
7646
7647SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7648  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7649  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7650  SDValue Chain = Op.getOperand(0);
7651  SDValue DstPtr = Op.getOperand(1);
7652  SDValue SrcPtr = Op.getOperand(2);
7653  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7654  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7655  DebugLoc DL = Op.getDebugLoc();
7656
7657  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7658                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7659                       false,
7660                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7661}
7662
7663SDValue
7664X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7665  DebugLoc dl = Op.getDebugLoc();
7666  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7667  switch (IntNo) {
7668  default: return SDValue();    // Don't custom lower most intrinsics.
7669  // Comparison intrinsics.
7670  case Intrinsic::x86_sse_comieq_ss:
7671  case Intrinsic::x86_sse_comilt_ss:
7672  case Intrinsic::x86_sse_comile_ss:
7673  case Intrinsic::x86_sse_comigt_ss:
7674  case Intrinsic::x86_sse_comige_ss:
7675  case Intrinsic::x86_sse_comineq_ss:
7676  case Intrinsic::x86_sse_ucomieq_ss:
7677  case Intrinsic::x86_sse_ucomilt_ss:
7678  case Intrinsic::x86_sse_ucomile_ss:
7679  case Intrinsic::x86_sse_ucomigt_ss:
7680  case Intrinsic::x86_sse_ucomige_ss:
7681  case Intrinsic::x86_sse_ucomineq_ss:
7682  case Intrinsic::x86_sse2_comieq_sd:
7683  case Intrinsic::x86_sse2_comilt_sd:
7684  case Intrinsic::x86_sse2_comile_sd:
7685  case Intrinsic::x86_sse2_comigt_sd:
7686  case Intrinsic::x86_sse2_comige_sd:
7687  case Intrinsic::x86_sse2_comineq_sd:
7688  case Intrinsic::x86_sse2_ucomieq_sd:
7689  case Intrinsic::x86_sse2_ucomilt_sd:
7690  case Intrinsic::x86_sse2_ucomile_sd:
7691  case Intrinsic::x86_sse2_ucomigt_sd:
7692  case Intrinsic::x86_sse2_ucomige_sd:
7693  case Intrinsic::x86_sse2_ucomineq_sd: {
7694    unsigned Opc = 0;
7695    ISD::CondCode CC = ISD::SETCC_INVALID;
7696    switch (IntNo) {
7697    default: break;
7698    case Intrinsic::x86_sse_comieq_ss:
7699    case Intrinsic::x86_sse2_comieq_sd:
7700      Opc = X86ISD::COMI;
7701      CC = ISD::SETEQ;
7702      break;
7703    case Intrinsic::x86_sse_comilt_ss:
7704    case Intrinsic::x86_sse2_comilt_sd:
7705      Opc = X86ISD::COMI;
7706      CC = ISD::SETLT;
7707      break;
7708    case Intrinsic::x86_sse_comile_ss:
7709    case Intrinsic::x86_sse2_comile_sd:
7710      Opc = X86ISD::COMI;
7711      CC = ISD::SETLE;
7712      break;
7713    case Intrinsic::x86_sse_comigt_ss:
7714    case Intrinsic::x86_sse2_comigt_sd:
7715      Opc = X86ISD::COMI;
7716      CC = ISD::SETGT;
7717      break;
7718    case Intrinsic::x86_sse_comige_ss:
7719    case Intrinsic::x86_sse2_comige_sd:
7720      Opc = X86ISD::COMI;
7721      CC = ISD::SETGE;
7722      break;
7723    case Intrinsic::x86_sse_comineq_ss:
7724    case Intrinsic::x86_sse2_comineq_sd:
7725      Opc = X86ISD::COMI;
7726      CC = ISD::SETNE;
7727      break;
7728    case Intrinsic::x86_sse_ucomieq_ss:
7729    case Intrinsic::x86_sse2_ucomieq_sd:
7730      Opc = X86ISD::UCOMI;
7731      CC = ISD::SETEQ;
7732      break;
7733    case Intrinsic::x86_sse_ucomilt_ss:
7734    case Intrinsic::x86_sse2_ucomilt_sd:
7735      Opc = X86ISD::UCOMI;
7736      CC = ISD::SETLT;
7737      break;
7738    case Intrinsic::x86_sse_ucomile_ss:
7739    case Intrinsic::x86_sse2_ucomile_sd:
7740      Opc = X86ISD::UCOMI;
7741      CC = ISD::SETLE;
7742      break;
7743    case Intrinsic::x86_sse_ucomigt_ss:
7744    case Intrinsic::x86_sse2_ucomigt_sd:
7745      Opc = X86ISD::UCOMI;
7746      CC = ISD::SETGT;
7747      break;
7748    case Intrinsic::x86_sse_ucomige_ss:
7749    case Intrinsic::x86_sse2_ucomige_sd:
7750      Opc = X86ISD::UCOMI;
7751      CC = ISD::SETGE;
7752      break;
7753    case Intrinsic::x86_sse_ucomineq_ss:
7754    case Intrinsic::x86_sse2_ucomineq_sd:
7755      Opc = X86ISD::UCOMI;
7756      CC = ISD::SETNE;
7757      break;
7758    }
7759
7760    SDValue LHS = Op.getOperand(1);
7761    SDValue RHS = Op.getOperand(2);
7762    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7763    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7764    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7765    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7766                                DAG.getConstant(X86CC, MVT::i8), Cond);
7767    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7768  }
7769  // ptest and testp intrinsics. The intrinsic these come from are designed to
7770  // return an integer value, not just an instruction so lower it to the ptest
7771  // or testp pattern and a setcc for the result.
7772  case Intrinsic::x86_sse41_ptestz:
7773  case Intrinsic::x86_sse41_ptestc:
7774  case Intrinsic::x86_sse41_ptestnzc:
7775  case Intrinsic::x86_avx_ptestz_256:
7776  case Intrinsic::x86_avx_ptestc_256:
7777  case Intrinsic::x86_avx_ptestnzc_256:
7778  case Intrinsic::x86_avx_vtestz_ps:
7779  case Intrinsic::x86_avx_vtestc_ps:
7780  case Intrinsic::x86_avx_vtestnzc_ps:
7781  case Intrinsic::x86_avx_vtestz_pd:
7782  case Intrinsic::x86_avx_vtestc_pd:
7783  case Intrinsic::x86_avx_vtestnzc_pd:
7784  case Intrinsic::x86_avx_vtestz_ps_256:
7785  case Intrinsic::x86_avx_vtestc_ps_256:
7786  case Intrinsic::x86_avx_vtestnzc_ps_256:
7787  case Intrinsic::x86_avx_vtestz_pd_256:
7788  case Intrinsic::x86_avx_vtestc_pd_256:
7789  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7790    bool IsTestPacked = false;
7791    unsigned X86CC = 0;
7792    switch (IntNo) {
7793    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7794    case Intrinsic::x86_avx_vtestz_ps:
7795    case Intrinsic::x86_avx_vtestz_pd:
7796    case Intrinsic::x86_avx_vtestz_ps_256:
7797    case Intrinsic::x86_avx_vtestz_pd_256:
7798      IsTestPacked = true; // Fallthrough
7799    case Intrinsic::x86_sse41_ptestz:
7800    case Intrinsic::x86_avx_ptestz_256:
7801      // ZF = 1
7802      X86CC = X86::COND_E;
7803      break;
7804    case Intrinsic::x86_avx_vtestc_ps:
7805    case Intrinsic::x86_avx_vtestc_pd:
7806    case Intrinsic::x86_avx_vtestc_ps_256:
7807    case Intrinsic::x86_avx_vtestc_pd_256:
7808      IsTestPacked = true; // Fallthrough
7809    case Intrinsic::x86_sse41_ptestc:
7810    case Intrinsic::x86_avx_ptestc_256:
7811      // CF = 1
7812      X86CC = X86::COND_B;
7813      break;
7814    case Intrinsic::x86_avx_vtestnzc_ps:
7815    case Intrinsic::x86_avx_vtestnzc_pd:
7816    case Intrinsic::x86_avx_vtestnzc_ps_256:
7817    case Intrinsic::x86_avx_vtestnzc_pd_256:
7818      IsTestPacked = true; // Fallthrough
7819    case Intrinsic::x86_sse41_ptestnzc:
7820    case Intrinsic::x86_avx_ptestnzc_256:
7821      // ZF and CF = 0
7822      X86CC = X86::COND_A;
7823      break;
7824    }
7825
7826    SDValue LHS = Op.getOperand(1);
7827    SDValue RHS = Op.getOperand(2);
7828    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7829    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7830    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7831    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7832    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7833  }
7834
7835  // Fix vector shift instructions where the last operand is a non-immediate
7836  // i32 value.
7837  case Intrinsic::x86_sse2_pslli_w:
7838  case Intrinsic::x86_sse2_pslli_d:
7839  case Intrinsic::x86_sse2_pslli_q:
7840  case Intrinsic::x86_sse2_psrli_w:
7841  case Intrinsic::x86_sse2_psrli_d:
7842  case Intrinsic::x86_sse2_psrli_q:
7843  case Intrinsic::x86_sse2_psrai_w:
7844  case Intrinsic::x86_sse2_psrai_d:
7845  case Intrinsic::x86_mmx_pslli_w:
7846  case Intrinsic::x86_mmx_pslli_d:
7847  case Intrinsic::x86_mmx_pslli_q:
7848  case Intrinsic::x86_mmx_psrli_w:
7849  case Intrinsic::x86_mmx_psrli_d:
7850  case Intrinsic::x86_mmx_psrli_q:
7851  case Intrinsic::x86_mmx_psrai_w:
7852  case Intrinsic::x86_mmx_psrai_d: {
7853    SDValue ShAmt = Op.getOperand(2);
7854    if (isa<ConstantSDNode>(ShAmt))
7855      return SDValue();
7856
7857    unsigned NewIntNo = 0;
7858    EVT ShAmtVT = MVT::v4i32;
7859    switch (IntNo) {
7860    case Intrinsic::x86_sse2_pslli_w:
7861      NewIntNo = Intrinsic::x86_sse2_psll_w;
7862      break;
7863    case Intrinsic::x86_sse2_pslli_d:
7864      NewIntNo = Intrinsic::x86_sse2_psll_d;
7865      break;
7866    case Intrinsic::x86_sse2_pslli_q:
7867      NewIntNo = Intrinsic::x86_sse2_psll_q;
7868      break;
7869    case Intrinsic::x86_sse2_psrli_w:
7870      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7871      break;
7872    case Intrinsic::x86_sse2_psrli_d:
7873      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7874      break;
7875    case Intrinsic::x86_sse2_psrli_q:
7876      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7877      break;
7878    case Intrinsic::x86_sse2_psrai_w:
7879      NewIntNo = Intrinsic::x86_sse2_psra_w;
7880      break;
7881    case Intrinsic::x86_sse2_psrai_d:
7882      NewIntNo = Intrinsic::x86_sse2_psra_d;
7883      break;
7884    default: {
7885      ShAmtVT = MVT::v2i32;
7886      switch (IntNo) {
7887      case Intrinsic::x86_mmx_pslli_w:
7888        NewIntNo = Intrinsic::x86_mmx_psll_w;
7889        break;
7890      case Intrinsic::x86_mmx_pslli_d:
7891        NewIntNo = Intrinsic::x86_mmx_psll_d;
7892        break;
7893      case Intrinsic::x86_mmx_pslli_q:
7894        NewIntNo = Intrinsic::x86_mmx_psll_q;
7895        break;
7896      case Intrinsic::x86_mmx_psrli_w:
7897        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7898        break;
7899      case Intrinsic::x86_mmx_psrli_d:
7900        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7901        break;
7902      case Intrinsic::x86_mmx_psrli_q:
7903        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7904        break;
7905      case Intrinsic::x86_mmx_psrai_w:
7906        NewIntNo = Intrinsic::x86_mmx_psra_w;
7907        break;
7908      case Intrinsic::x86_mmx_psrai_d:
7909        NewIntNo = Intrinsic::x86_mmx_psra_d;
7910        break;
7911      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7912      }
7913      break;
7914    }
7915    }
7916
7917    // The vector shift intrinsics with scalars uses 32b shift amounts but
7918    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7919    // to be zero.
7920    SDValue ShOps[4];
7921    ShOps[0] = ShAmt;
7922    ShOps[1] = DAG.getConstant(0, MVT::i32);
7923    if (ShAmtVT == MVT::v4i32) {
7924      ShOps[2] = DAG.getUNDEF(MVT::i32);
7925      ShOps[3] = DAG.getUNDEF(MVT::i32);
7926      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7927    } else {
7928      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7929// FIXME this must be lowered to get rid of the invalid type.
7930    }
7931
7932    EVT VT = Op.getValueType();
7933    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
7934    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7935                       DAG.getConstant(NewIntNo, MVT::i32),
7936                       Op.getOperand(1), ShAmt);
7937  }
7938  }
7939}
7940
7941SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7942                                           SelectionDAG &DAG) const {
7943  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7944  MFI->setReturnAddressIsTaken(true);
7945
7946  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7947  DebugLoc dl = Op.getDebugLoc();
7948
7949  if (Depth > 0) {
7950    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7951    SDValue Offset =
7952      DAG.getConstant(TD->getPointerSize(),
7953                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7954    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7955                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7956                                   FrameAddr, Offset),
7957                       MachinePointerInfo(), false, false, 0);
7958  }
7959
7960  // Just load the return address.
7961  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7962  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7963                     RetAddrFI, MachinePointerInfo(), false, false, 0);
7964}
7965
7966SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7967  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7968  MFI->setFrameAddressIsTaken(true);
7969
7970  EVT VT = Op.getValueType();
7971  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7972  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7973  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7974  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7975  while (Depth--)
7976    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
7977                            MachinePointerInfo(),
7978                            false, false, 0);
7979  return FrameAddr;
7980}
7981
7982SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7983                                                     SelectionDAG &DAG) const {
7984  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7985}
7986
7987SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7988  MachineFunction &MF = DAG.getMachineFunction();
7989  SDValue Chain     = Op.getOperand(0);
7990  SDValue Offset    = Op.getOperand(1);
7991  SDValue Handler   = Op.getOperand(2);
7992  DebugLoc dl       = Op.getDebugLoc();
7993
7994  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7995                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7996                                     getPointerTy());
7997  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7998
7999  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8000                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8001  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8002  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8003                       false, false, 0);
8004  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8005  MF.getRegInfo().addLiveOut(StoreAddrReg);
8006
8007  return DAG.getNode(X86ISD::EH_RETURN, dl,
8008                     MVT::Other,
8009                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8010}
8011
8012SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8013                                             SelectionDAG &DAG) const {
8014  SDValue Root = Op.getOperand(0);
8015  SDValue Trmp = Op.getOperand(1); // trampoline
8016  SDValue FPtr = Op.getOperand(2); // nested function
8017  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8018  DebugLoc dl  = Op.getDebugLoc();
8019
8020  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8021
8022  if (Subtarget->is64Bit()) {
8023    SDValue OutChains[6];
8024
8025    // Large code-model.
8026    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8027    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8028
8029    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8030    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8031
8032    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8033
8034    // Load the pointer to the nested function into R11.
8035    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8036    SDValue Addr = Trmp;
8037    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8038                                Addr, MachinePointerInfo(TrmpAddr),
8039                                false, false, 0);
8040
8041    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8042                       DAG.getConstant(2, MVT::i64));
8043    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8044                                MachinePointerInfo(TrmpAddr, 2),
8045                                false, false, 2);
8046
8047    // Load the 'nest' parameter value into R10.
8048    // R10 is specified in X86CallingConv.td
8049    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8050    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8051                       DAG.getConstant(10, MVT::i64));
8052    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8053                                Addr, MachinePointerInfo(TrmpAddr, 10),
8054                                false, false, 0);
8055
8056    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8057                       DAG.getConstant(12, MVT::i64));
8058    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8059                                MachinePointerInfo(TrmpAddr, 12),
8060                                false, false, 2);
8061
8062    // Jump to the nested function.
8063    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8064    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8065                       DAG.getConstant(20, MVT::i64));
8066    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8067                                Addr, MachinePointerInfo(TrmpAddr, 20),
8068                                false, false, 0);
8069
8070    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8071    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8072                       DAG.getConstant(22, MVT::i64));
8073    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8074                                MachinePointerInfo(TrmpAddr, 22),
8075                                false, false, 0);
8076
8077    SDValue Ops[] =
8078      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8079    return DAG.getMergeValues(Ops, 2, dl);
8080  } else {
8081    const Function *Func =
8082      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8083    CallingConv::ID CC = Func->getCallingConv();
8084    unsigned NestReg;
8085
8086    switch (CC) {
8087    default:
8088      llvm_unreachable("Unsupported calling convention");
8089    case CallingConv::C:
8090    case CallingConv::X86_StdCall: {
8091      // Pass 'nest' parameter in ECX.
8092      // Must be kept in sync with X86CallingConv.td
8093      NestReg = X86::ECX;
8094
8095      // Check that ECX wasn't needed by an 'inreg' parameter.
8096      const FunctionType *FTy = Func->getFunctionType();
8097      const AttrListPtr &Attrs = Func->getAttributes();
8098
8099      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8100        unsigned InRegCount = 0;
8101        unsigned Idx = 1;
8102
8103        for (FunctionType::param_iterator I = FTy->param_begin(),
8104             E = FTy->param_end(); I != E; ++I, ++Idx)
8105          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8106            // FIXME: should only count parameters that are lowered to integers.
8107            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8108
8109        if (InRegCount > 2) {
8110          report_fatal_error("Nest register in use - reduce number of inreg"
8111                             " parameters!");
8112        }
8113      }
8114      break;
8115    }
8116    case CallingConv::X86_FastCall:
8117    case CallingConv::X86_ThisCall:
8118    case CallingConv::Fast:
8119      // Pass 'nest' parameter in EAX.
8120      // Must be kept in sync with X86CallingConv.td
8121      NestReg = X86::EAX;
8122      break;
8123    }
8124
8125    SDValue OutChains[4];
8126    SDValue Addr, Disp;
8127
8128    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8129                       DAG.getConstant(10, MVT::i32));
8130    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8131
8132    // This is storing the opcode for MOV32ri.
8133    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8134    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8135    OutChains[0] = DAG.getStore(Root, dl,
8136                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8137                                Trmp, MachinePointerInfo(TrmpAddr),
8138                                false, false, 0);
8139
8140    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8141                       DAG.getConstant(1, MVT::i32));
8142    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8143                                MachinePointerInfo(TrmpAddr, 1),
8144                                false, false, 1);
8145
8146    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8147    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8148                       DAG.getConstant(5, MVT::i32));
8149    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8150                                MachinePointerInfo(TrmpAddr, 5),
8151                                false, false, 1);
8152
8153    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8154                       DAG.getConstant(6, MVT::i32));
8155    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8156                                MachinePointerInfo(TrmpAddr, 6),
8157                                false, false, 1);
8158
8159    SDValue Ops[] =
8160      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8161    return DAG.getMergeValues(Ops, 2, dl);
8162  }
8163}
8164
8165SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8166                                            SelectionDAG &DAG) const {
8167  /*
8168   The rounding mode is in bits 11:10 of FPSR, and has the following
8169   settings:
8170     00 Round to nearest
8171     01 Round to -inf
8172     10 Round to +inf
8173     11 Round to 0
8174
8175  FLT_ROUNDS, on the other hand, expects the following:
8176    -1 Undefined
8177     0 Round to 0
8178     1 Round to nearest
8179     2 Round to +inf
8180     3 Round to -inf
8181
8182  To perform the conversion, we do:
8183    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8184  */
8185
8186  MachineFunction &MF = DAG.getMachineFunction();
8187  const TargetMachine &TM = MF.getTarget();
8188  const TargetFrameInfo &TFI = *TM.getFrameInfo();
8189  unsigned StackAlignment = TFI.getStackAlignment();
8190  EVT VT = Op.getValueType();
8191  DebugLoc DL = Op.getDebugLoc();
8192
8193  // Save FP Control Word to stack slot
8194  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8195  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8196
8197
8198  MachineMemOperand *MMO =
8199   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8200                           MachineMemOperand::MOStore, 2, 2);
8201
8202  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8203  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8204                                          DAG.getVTList(MVT::Other),
8205                                          Ops, 2, MVT::i16, MMO);
8206
8207  // Load FP Control Word from stack slot
8208  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8209                            MachinePointerInfo(), false, false, 0);
8210
8211  // Transform as necessary
8212  SDValue CWD1 =
8213    DAG.getNode(ISD::SRL, DL, MVT::i16,
8214                DAG.getNode(ISD::AND, DL, MVT::i16,
8215                            CWD, DAG.getConstant(0x800, MVT::i16)),
8216                DAG.getConstant(11, MVT::i8));
8217  SDValue CWD2 =
8218    DAG.getNode(ISD::SRL, DL, MVT::i16,
8219                DAG.getNode(ISD::AND, DL, MVT::i16,
8220                            CWD, DAG.getConstant(0x400, MVT::i16)),
8221                DAG.getConstant(9, MVT::i8));
8222
8223  SDValue RetVal =
8224    DAG.getNode(ISD::AND, DL, MVT::i16,
8225                DAG.getNode(ISD::ADD, DL, MVT::i16,
8226                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8227                            DAG.getConstant(1, MVT::i16)),
8228                DAG.getConstant(3, MVT::i16));
8229
8230
8231  return DAG.getNode((VT.getSizeInBits() < 16 ?
8232                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8233}
8234
8235SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8236  EVT VT = Op.getValueType();
8237  EVT OpVT = VT;
8238  unsigned NumBits = VT.getSizeInBits();
8239  DebugLoc dl = Op.getDebugLoc();
8240
8241  Op = Op.getOperand(0);
8242  if (VT == MVT::i8) {
8243    // Zero extend to i32 since there is not an i8 bsr.
8244    OpVT = MVT::i32;
8245    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8246  }
8247
8248  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8249  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8250  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8251
8252  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8253  SDValue Ops[] = {
8254    Op,
8255    DAG.getConstant(NumBits+NumBits-1, OpVT),
8256    DAG.getConstant(X86::COND_E, MVT::i8),
8257    Op.getValue(1)
8258  };
8259  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8260
8261  // Finally xor with NumBits-1.
8262  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8263
8264  if (VT == MVT::i8)
8265    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8266  return Op;
8267}
8268
8269SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8270  EVT VT = Op.getValueType();
8271  EVT OpVT = VT;
8272  unsigned NumBits = VT.getSizeInBits();
8273  DebugLoc dl = Op.getDebugLoc();
8274
8275  Op = Op.getOperand(0);
8276  if (VT == MVT::i8) {
8277    OpVT = MVT::i32;
8278    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8279  }
8280
8281  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8282  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8283  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8284
8285  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8286  SDValue Ops[] = {
8287    Op,
8288    DAG.getConstant(NumBits, OpVT),
8289    DAG.getConstant(X86::COND_E, MVT::i8),
8290    Op.getValue(1)
8291  };
8292  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8293
8294  if (VT == MVT::i8)
8295    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8296  return Op;
8297}
8298
8299SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8300  EVT VT = Op.getValueType();
8301  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8302  DebugLoc dl = Op.getDebugLoc();
8303
8304  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8305  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8306  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8307  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8308  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8309  //
8310  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8311  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8312  //  return AloBlo + AloBhi + AhiBlo;
8313
8314  SDValue A = Op.getOperand(0);
8315  SDValue B = Op.getOperand(1);
8316
8317  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8318                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8319                       A, DAG.getConstant(32, MVT::i32));
8320  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8321                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8322                       B, DAG.getConstant(32, MVT::i32));
8323  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8324                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8325                       A, B);
8326  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8327                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8328                       A, Bhi);
8329  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8330                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8331                       Ahi, B);
8332  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8333                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8334                       AloBhi, DAG.getConstant(32, MVT::i32));
8335  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8336                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8337                       AhiBlo, DAG.getConstant(32, MVT::i32));
8338  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8339  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8340  return Res;
8341}
8342
8343SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8344  EVT VT = Op.getValueType();
8345  DebugLoc dl = Op.getDebugLoc();
8346  SDValue R = Op.getOperand(0);
8347
8348  LLVMContext *Context = DAG.getContext();
8349
8350  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8351
8352  if (VT == MVT::v4i32) {
8353    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8354                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8355                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8356
8357    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8358
8359    std::vector<Constant*> CV(4, CI);
8360    Constant *C = ConstantVector::get(CV);
8361    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8362    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8363                                 MachinePointerInfo::getConstantPool(),
8364                                 false, false, 16);
8365
8366    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8367    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8368    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8369    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8370  }
8371  if (VT == MVT::v16i8) {
8372    // a = a << 5;
8373    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8374                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8375                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8376
8377    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8378    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8379
8380    std::vector<Constant*> CVM1(16, CM1);
8381    std::vector<Constant*> CVM2(16, CM2);
8382    Constant *C = ConstantVector::get(CVM1);
8383    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8384    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8385                            MachinePointerInfo::getConstantPool(),
8386                            false, false, 16);
8387
8388    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8389    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8390    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8391                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8392                    DAG.getConstant(4, MVT::i32));
8393    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8394                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8395                    R, M, Op);
8396    // a += a
8397    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8398
8399    C = ConstantVector::get(CVM2);
8400    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8401    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8402                    MachinePointerInfo::getConstantPool(),
8403                    false, false, 16);
8404
8405    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8406    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8407    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8408                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8409                    DAG.getConstant(2, MVT::i32));
8410    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8411                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8412                    R, M, Op);
8413    // a += a
8414    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8415
8416    // return pblendv(r, r+r, a);
8417    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8418                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8419                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8420    return R;
8421  }
8422  return SDValue();
8423}
8424
8425SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8426  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8427  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8428  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8429  // has only one use.
8430  SDNode *N = Op.getNode();
8431  SDValue LHS = N->getOperand(0);
8432  SDValue RHS = N->getOperand(1);
8433  unsigned BaseOp = 0;
8434  unsigned Cond = 0;
8435  DebugLoc DL = Op.getDebugLoc();
8436  switch (Op.getOpcode()) {
8437  default: llvm_unreachable("Unknown ovf instruction!");
8438  case ISD::SADDO:
8439    // A subtract of one will be selected as a INC. Note that INC doesn't
8440    // set CF, so we can't do this for UADDO.
8441    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8442      if (C->getAPIntValue() == 1) {
8443        BaseOp = X86ISD::INC;
8444        Cond = X86::COND_O;
8445        break;
8446      }
8447    BaseOp = X86ISD::ADD;
8448    Cond = X86::COND_O;
8449    break;
8450  case ISD::UADDO:
8451    BaseOp = X86ISD::ADD;
8452    Cond = X86::COND_B;
8453    break;
8454  case ISD::SSUBO:
8455    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8456    // set CF, so we can't do this for USUBO.
8457    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8458      if (C->getAPIntValue() == 1) {
8459        BaseOp = X86ISD::DEC;
8460        Cond = X86::COND_O;
8461        break;
8462      }
8463    BaseOp = X86ISD::SUB;
8464    Cond = X86::COND_O;
8465    break;
8466  case ISD::USUBO:
8467    BaseOp = X86ISD::SUB;
8468    Cond = X86::COND_B;
8469    break;
8470  case ISD::SMULO:
8471    BaseOp = X86ISD::SMUL;
8472    Cond = X86::COND_O;
8473    break;
8474  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8475    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8476                                 MVT::i32);
8477    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8478
8479    SDValue SetCC =
8480      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8481                  DAG.getConstant(X86::COND_O, MVT::i32),
8482                  SDValue(Sum.getNode(), 2));
8483
8484    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8485    return Sum;
8486  }
8487  }
8488
8489  // Also sets EFLAGS.
8490  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8491  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8492
8493  SDValue SetCC =
8494    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8495                DAG.getConstant(Cond, MVT::i32),
8496                SDValue(Sum.getNode(), 1));
8497
8498  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8499  return Sum;
8500}
8501
8502SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8503  DebugLoc dl = Op.getDebugLoc();
8504
8505  if (!Subtarget->hasSSE2()) {
8506    SDValue Chain = Op.getOperand(0);
8507    SDValue Zero = DAG.getConstant(0,
8508                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8509    SDValue Ops[] = {
8510      DAG.getRegister(X86::ESP, MVT::i32), // Base
8511      DAG.getTargetConstant(1, MVT::i8),   // Scale
8512      DAG.getRegister(0, MVT::i32),        // Index
8513      DAG.getTargetConstant(0, MVT::i32),  // Disp
8514      DAG.getRegister(0, MVT::i32),        // Segment.
8515      Zero,
8516      Chain
8517    };
8518    SDNode *Res =
8519      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8520                          array_lengthof(Ops));
8521    return SDValue(Res, 0);
8522  }
8523
8524  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8525  if (!isDev)
8526    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8527
8528  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8529  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8530  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8531  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8532
8533  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8534  if (!Op1 && !Op2 && !Op3 && Op4)
8535    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8536
8537  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8538  if (Op1 && !Op2 && !Op3 && !Op4)
8539    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8540
8541  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8542  //           (MFENCE)>;
8543  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8544}
8545
8546SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8547  EVT T = Op.getValueType();
8548  DebugLoc DL = Op.getDebugLoc();
8549  unsigned Reg = 0;
8550  unsigned size = 0;
8551  switch(T.getSimpleVT().SimpleTy) {
8552  default:
8553    assert(false && "Invalid value type!");
8554  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8555  case MVT::i16: Reg = X86::AX;  size = 2; break;
8556  case MVT::i32: Reg = X86::EAX; size = 4; break;
8557  case MVT::i64:
8558    assert(Subtarget->is64Bit() && "Node not type legal!");
8559    Reg = X86::RAX; size = 8;
8560    break;
8561  }
8562  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8563                                    Op.getOperand(2), SDValue());
8564  SDValue Ops[] = { cpIn.getValue(0),
8565                    Op.getOperand(1),
8566                    Op.getOperand(3),
8567                    DAG.getTargetConstant(size, MVT::i8),
8568                    cpIn.getValue(1) };
8569  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8570  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8571  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8572                                           Ops, 5, T, MMO);
8573  SDValue cpOut =
8574    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8575  return cpOut;
8576}
8577
8578SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8579                                                 SelectionDAG &DAG) const {
8580  assert(Subtarget->is64Bit() && "Result not type legalized?");
8581  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8582  SDValue TheChain = Op.getOperand(0);
8583  DebugLoc dl = Op.getDebugLoc();
8584  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8585  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8586  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8587                                   rax.getValue(2));
8588  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8589                            DAG.getConstant(32, MVT::i8));
8590  SDValue Ops[] = {
8591    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8592    rdx.getValue(1)
8593  };
8594  return DAG.getMergeValues(Ops, 2, dl);
8595}
8596
8597SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
8598                                            SelectionDAG &DAG) const {
8599  EVT SrcVT = Op.getOperand(0).getValueType();
8600  EVT DstVT = Op.getValueType();
8601  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8602         Subtarget->hasMMX() && "Unexpected custom BITCAST");
8603  assert((DstVT == MVT::i64 ||
8604          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8605         "Unexpected custom BITCAST");
8606  // i64 <=> MMX conversions are Legal.
8607  if (SrcVT==MVT::i64 && DstVT.isVector())
8608    return Op;
8609  if (DstVT==MVT::i64 && SrcVT.isVector())
8610    return Op;
8611  // MMX <=> MMX conversions are Legal.
8612  if (SrcVT.isVector() && DstVT.isVector())
8613    return Op;
8614  // All other conversions need to be expanded.
8615  return SDValue();
8616}
8617SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8618  SDNode *Node = Op.getNode();
8619  DebugLoc dl = Node->getDebugLoc();
8620  EVT T = Node->getValueType(0);
8621  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8622                              DAG.getConstant(0, T), Node->getOperand(2));
8623  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8624                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8625                       Node->getOperand(0),
8626                       Node->getOperand(1), negOp,
8627                       cast<AtomicSDNode>(Node)->getSrcValue(),
8628                       cast<AtomicSDNode>(Node)->getAlignment());
8629}
8630
8631/// LowerOperation - Provide custom lowering hooks for some operations.
8632///
8633SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8634  switch (Op.getOpcode()) {
8635  default: llvm_unreachable("Should not custom lower this!");
8636  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8637  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8638  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8639  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8640  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8641  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8642  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8643  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8644  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8645  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8646  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8647  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8648  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8649  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8650  case ISD::SHL_PARTS:
8651  case ISD::SRA_PARTS:
8652  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8653  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8654  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8655  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8656  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8657  case ISD::FABS:               return LowerFABS(Op, DAG);
8658  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8659  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8660  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8661  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8662  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8663  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8664  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8665  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8666  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8667  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8668  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8669  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8670  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8671  case ISD::FRAME_TO_ARGS_OFFSET:
8672                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8673  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8674  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8675  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8676  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8677  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8678  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8679  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8680  case ISD::SHL:                return LowerSHL(Op, DAG);
8681  case ISD::SADDO:
8682  case ISD::UADDO:
8683  case ISD::SSUBO:
8684  case ISD::USUBO:
8685  case ISD::SMULO:
8686  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8687  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8688  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
8689  }
8690}
8691
8692void X86TargetLowering::
8693ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8694                        SelectionDAG &DAG, unsigned NewOp) const {
8695  EVT T = Node->getValueType(0);
8696  DebugLoc dl = Node->getDebugLoc();
8697  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8698
8699  SDValue Chain = Node->getOperand(0);
8700  SDValue In1 = Node->getOperand(1);
8701  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8702                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8703  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8704                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8705  SDValue Ops[] = { Chain, In1, In2L, In2H };
8706  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8707  SDValue Result =
8708    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8709                            cast<MemSDNode>(Node)->getMemOperand());
8710  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8711  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8712  Results.push_back(Result.getValue(2));
8713}
8714
8715/// ReplaceNodeResults - Replace a node with an illegal result type
8716/// with a new node built out of custom code.
8717void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8718                                           SmallVectorImpl<SDValue>&Results,
8719                                           SelectionDAG &DAG) const {
8720  DebugLoc dl = N->getDebugLoc();
8721  switch (N->getOpcode()) {
8722  default:
8723    assert(false && "Do not know how to custom type legalize this operation!");
8724    return;
8725  case ISD::FP_TO_SINT: {
8726    std::pair<SDValue,SDValue> Vals =
8727        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8728    SDValue FIST = Vals.first, StackSlot = Vals.second;
8729    if (FIST.getNode() != 0) {
8730      EVT VT = N->getValueType(0);
8731      // Return a load from the stack slot.
8732      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8733                                    MachinePointerInfo(), false, false, 0));
8734    }
8735    return;
8736  }
8737  case ISD::READCYCLECOUNTER: {
8738    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8739    SDValue TheChain = N->getOperand(0);
8740    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8741    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8742                                     rd.getValue(1));
8743    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8744                                     eax.getValue(2));
8745    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8746    SDValue Ops[] = { eax, edx };
8747    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8748    Results.push_back(edx.getValue(1));
8749    return;
8750  }
8751  case ISD::ATOMIC_CMP_SWAP: {
8752    EVT T = N->getValueType(0);
8753    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8754    SDValue cpInL, cpInH;
8755    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8756                        DAG.getConstant(0, MVT::i32));
8757    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8758                        DAG.getConstant(1, MVT::i32));
8759    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8760    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8761                             cpInL.getValue(1));
8762    SDValue swapInL, swapInH;
8763    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8764                          DAG.getConstant(0, MVT::i32));
8765    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8766                          DAG.getConstant(1, MVT::i32));
8767    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8768                               cpInH.getValue(1));
8769    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8770                               swapInL.getValue(1));
8771    SDValue Ops[] = { swapInH.getValue(0),
8772                      N->getOperand(1),
8773                      swapInH.getValue(1) };
8774    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8775    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8776    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8777                                             Ops, 3, T, MMO);
8778    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8779                                        MVT::i32, Result.getValue(1));
8780    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8781                                        MVT::i32, cpOutL.getValue(2));
8782    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8783    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8784    Results.push_back(cpOutH.getValue(1));
8785    return;
8786  }
8787  case ISD::ATOMIC_LOAD_ADD:
8788    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8789    return;
8790  case ISD::ATOMIC_LOAD_AND:
8791    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8792    return;
8793  case ISD::ATOMIC_LOAD_NAND:
8794    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8795    return;
8796  case ISD::ATOMIC_LOAD_OR:
8797    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8798    return;
8799  case ISD::ATOMIC_LOAD_SUB:
8800    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8801    return;
8802  case ISD::ATOMIC_LOAD_XOR:
8803    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8804    return;
8805  case ISD::ATOMIC_SWAP:
8806    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8807    return;
8808  }
8809}
8810
8811const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8812  switch (Opcode) {
8813  default: return NULL;
8814  case X86ISD::BSF:                return "X86ISD::BSF";
8815  case X86ISD::BSR:                return "X86ISD::BSR";
8816  case X86ISD::SHLD:               return "X86ISD::SHLD";
8817  case X86ISD::SHRD:               return "X86ISD::SHRD";
8818  case X86ISD::FAND:               return "X86ISD::FAND";
8819  case X86ISD::FOR:                return "X86ISD::FOR";
8820  case X86ISD::FXOR:               return "X86ISD::FXOR";
8821  case X86ISD::FSRL:               return "X86ISD::FSRL";
8822  case X86ISD::FILD:               return "X86ISD::FILD";
8823  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8824  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8825  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8826  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8827  case X86ISD::FLD:                return "X86ISD::FLD";
8828  case X86ISD::FST:                return "X86ISD::FST";
8829  case X86ISD::CALL:               return "X86ISD::CALL";
8830  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8831  case X86ISD::BT:                 return "X86ISD::BT";
8832  case X86ISD::CMP:                return "X86ISD::CMP";
8833  case X86ISD::COMI:               return "X86ISD::COMI";
8834  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8835  case X86ISD::SETCC:              return "X86ISD::SETCC";
8836  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8837  case X86ISD::CMOV:               return "X86ISD::CMOV";
8838  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8839  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8840  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8841  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8842  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8843  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8844  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8845  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8846  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8847  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8848  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8849  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8850  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8851  case X86ISD::PANDN:              return "X86ISD::PANDN";
8852  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
8853  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
8854  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
8855  case X86ISD::FMAX:               return "X86ISD::FMAX";
8856  case X86ISD::FMIN:               return "X86ISD::FMIN";
8857  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8858  case X86ISD::FRCP:               return "X86ISD::FRCP";
8859  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8860  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8861  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8862  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8863  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8864  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8865  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8866  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8867  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8868  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8869  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8870  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8871  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8872  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8873  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8874  case X86ISD::VSHL:               return "X86ISD::VSHL";
8875  case X86ISD::VSRL:               return "X86ISD::VSRL";
8876  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8877  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8878  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8879  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8880  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8881  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8882  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8883  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8884  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8885  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8886  case X86ISD::ADD:                return "X86ISD::ADD";
8887  case X86ISD::SUB:                return "X86ISD::SUB";
8888  case X86ISD::SMUL:               return "X86ISD::SMUL";
8889  case X86ISD::UMUL:               return "X86ISD::UMUL";
8890  case X86ISD::INC:                return "X86ISD::INC";
8891  case X86ISD::DEC:                return "X86ISD::DEC";
8892  case X86ISD::OR:                 return "X86ISD::OR";
8893  case X86ISD::XOR:                return "X86ISD::XOR";
8894  case X86ISD::AND:                return "X86ISD::AND";
8895  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8896  case X86ISD::PTEST:              return "X86ISD::PTEST";
8897  case X86ISD::TESTP:              return "X86ISD::TESTP";
8898  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8899  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8900  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8901  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8902  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8903  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8904  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8905  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8906  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8907  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8908  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8909  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8910  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8911  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8912  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8913  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8914  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8915  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8916  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8917  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8918  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8919  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8920  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8921  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8922  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8923  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8924  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8925  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8926  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8927  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8928  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8929  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8930  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8931  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8932  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
8933  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
8934  }
8935}
8936
8937// isLegalAddressingMode - Return true if the addressing mode represented
8938// by AM is legal for this target, for a load/store of the specified type.
8939bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8940                                              const Type *Ty) const {
8941  // X86 supports extremely general addressing modes.
8942  CodeModel::Model M = getTargetMachine().getCodeModel();
8943  Reloc::Model R = getTargetMachine().getRelocationModel();
8944
8945  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8946  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8947    return false;
8948
8949  if (AM.BaseGV) {
8950    unsigned GVFlags =
8951      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8952
8953    // If a reference to this global requires an extra load, we can't fold it.
8954    if (isGlobalStubReference(GVFlags))
8955      return false;
8956
8957    // If BaseGV requires a register for the PIC base, we cannot also have a
8958    // BaseReg specified.
8959    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8960      return false;
8961
8962    // If lower 4G is not available, then we must use rip-relative addressing.
8963    if ((M != CodeModel::Small || R != Reloc::Static) &&
8964        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8965      return false;
8966  }
8967
8968  switch (AM.Scale) {
8969  case 0:
8970  case 1:
8971  case 2:
8972  case 4:
8973  case 8:
8974    // These scales always work.
8975    break;
8976  case 3:
8977  case 5:
8978  case 9:
8979    // These scales are formed with basereg+scalereg.  Only accept if there is
8980    // no basereg yet.
8981    if (AM.HasBaseReg)
8982      return false;
8983    break;
8984  default:  // Other stuff never works.
8985    return false;
8986  }
8987
8988  return true;
8989}
8990
8991
8992bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8993  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8994    return false;
8995  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8996  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8997  if (NumBits1 <= NumBits2)
8998    return false;
8999  return true;
9000}
9001
9002bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9003  if (!VT1.isInteger() || !VT2.isInteger())
9004    return false;
9005  unsigned NumBits1 = VT1.getSizeInBits();
9006  unsigned NumBits2 = VT2.getSizeInBits();
9007  if (NumBits1 <= NumBits2)
9008    return false;
9009  return true;
9010}
9011
9012bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9013  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9014  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9015}
9016
9017bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9018  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9019  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9020}
9021
9022bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9023  // i16 instructions are longer (0x66 prefix) and potentially slower.
9024  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9025}
9026
9027/// isShuffleMaskLegal - Targets can use this to indicate that they only
9028/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9029/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9030/// are assumed to be legal.
9031bool
9032X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9033                                      EVT VT) const {
9034  // Very little shuffling can be done for 64-bit vectors right now.
9035  if (VT.getSizeInBits() == 64)
9036    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9037
9038  // FIXME: pshufb, blends, shifts.
9039  return (VT.getVectorNumElements() == 2 ||
9040          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9041          isMOVLMask(M, VT) ||
9042          isSHUFPMask(M, VT) ||
9043          isPSHUFDMask(M, VT) ||
9044          isPSHUFHWMask(M, VT) ||
9045          isPSHUFLWMask(M, VT) ||
9046          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9047          isUNPCKLMask(M, VT) ||
9048          isUNPCKHMask(M, VT) ||
9049          isUNPCKL_v_undef_Mask(M, VT) ||
9050          isUNPCKH_v_undef_Mask(M, VT));
9051}
9052
9053bool
9054X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9055                                          EVT VT) const {
9056  unsigned NumElts = VT.getVectorNumElements();
9057  // FIXME: This collection of masks seems suspect.
9058  if (NumElts == 2)
9059    return true;
9060  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9061    return (isMOVLMask(Mask, VT)  ||
9062            isCommutedMOVLMask(Mask, VT, true) ||
9063            isSHUFPMask(Mask, VT) ||
9064            isCommutedSHUFPMask(Mask, VT));
9065  }
9066  return false;
9067}
9068
9069//===----------------------------------------------------------------------===//
9070//                           X86 Scheduler Hooks
9071//===----------------------------------------------------------------------===//
9072
9073// private utility function
9074MachineBasicBlock *
9075X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9076                                                       MachineBasicBlock *MBB,
9077                                                       unsigned regOpc,
9078                                                       unsigned immOpc,
9079                                                       unsigned LoadOpc,
9080                                                       unsigned CXchgOpc,
9081                                                       unsigned notOpc,
9082                                                       unsigned EAXreg,
9083                                                       TargetRegisterClass *RC,
9084                                                       bool invSrc) const {
9085  // For the atomic bitwise operator, we generate
9086  //   thisMBB:
9087  //   newMBB:
9088  //     ld  t1 = [bitinstr.addr]
9089  //     op  t2 = t1, [bitinstr.val]
9090  //     mov EAX = t1
9091  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9092  //     bz  newMBB
9093  //     fallthrough -->nextMBB
9094  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9095  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9096  MachineFunction::iterator MBBIter = MBB;
9097  ++MBBIter;
9098
9099  /// First build the CFG
9100  MachineFunction *F = MBB->getParent();
9101  MachineBasicBlock *thisMBB = MBB;
9102  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9103  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9104  F->insert(MBBIter, newMBB);
9105  F->insert(MBBIter, nextMBB);
9106
9107  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9108  nextMBB->splice(nextMBB->begin(), thisMBB,
9109                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9110                  thisMBB->end());
9111  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9112
9113  // Update thisMBB to fall through to newMBB
9114  thisMBB->addSuccessor(newMBB);
9115
9116  // newMBB jumps to itself and fall through to nextMBB
9117  newMBB->addSuccessor(nextMBB);
9118  newMBB->addSuccessor(newMBB);
9119
9120  // Insert instructions into newMBB based on incoming instruction
9121  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9122         "unexpected number of operands");
9123  DebugLoc dl = bInstr->getDebugLoc();
9124  MachineOperand& destOper = bInstr->getOperand(0);
9125  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9126  int numArgs = bInstr->getNumOperands() - 1;
9127  for (int i=0; i < numArgs; ++i)
9128    argOpers[i] = &bInstr->getOperand(i+1);
9129
9130  // x86 address has 4 operands: base, index, scale, and displacement
9131  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9132  int valArgIndx = lastAddrIndx + 1;
9133
9134  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9135  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9136  for (int i=0; i <= lastAddrIndx; ++i)
9137    (*MIB).addOperand(*argOpers[i]);
9138
9139  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9140  if (invSrc) {
9141    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9142  }
9143  else
9144    tt = t1;
9145
9146  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9147  assert((argOpers[valArgIndx]->isReg() ||
9148          argOpers[valArgIndx]->isImm()) &&
9149         "invalid operand");
9150  if (argOpers[valArgIndx]->isReg())
9151    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9152  else
9153    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9154  MIB.addReg(tt);
9155  (*MIB).addOperand(*argOpers[valArgIndx]);
9156
9157  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9158  MIB.addReg(t1);
9159
9160  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9161  for (int i=0; i <= lastAddrIndx; ++i)
9162    (*MIB).addOperand(*argOpers[i]);
9163  MIB.addReg(t2);
9164  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9165  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9166                    bInstr->memoperands_end());
9167
9168  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9169  MIB.addReg(EAXreg);
9170
9171  // insert branch
9172  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9173
9174  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9175  return nextMBB;
9176}
9177
9178// private utility function:  64 bit atomics on 32 bit host.
9179MachineBasicBlock *
9180X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9181                                                       MachineBasicBlock *MBB,
9182                                                       unsigned regOpcL,
9183                                                       unsigned regOpcH,
9184                                                       unsigned immOpcL,
9185                                                       unsigned immOpcH,
9186                                                       bool invSrc) const {
9187  // For the atomic bitwise operator, we generate
9188  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9189  //     ld t1,t2 = [bitinstr.addr]
9190  //   newMBB:
9191  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9192  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9193  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9194  //     mov ECX, EBX <- t5, t6
9195  //     mov EAX, EDX <- t1, t2
9196  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9197  //     mov t3, t4 <- EAX, EDX
9198  //     bz  newMBB
9199  //     result in out1, out2
9200  //     fallthrough -->nextMBB
9201
9202  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9203  const unsigned LoadOpc = X86::MOV32rm;
9204  const unsigned NotOpc = X86::NOT32r;
9205  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9206  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9207  MachineFunction::iterator MBBIter = MBB;
9208  ++MBBIter;
9209
9210  /// First build the CFG
9211  MachineFunction *F = MBB->getParent();
9212  MachineBasicBlock *thisMBB = MBB;
9213  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9214  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9215  F->insert(MBBIter, newMBB);
9216  F->insert(MBBIter, nextMBB);
9217
9218  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9219  nextMBB->splice(nextMBB->begin(), thisMBB,
9220                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9221                  thisMBB->end());
9222  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9223
9224  // Update thisMBB to fall through to newMBB
9225  thisMBB->addSuccessor(newMBB);
9226
9227  // newMBB jumps to itself and fall through to nextMBB
9228  newMBB->addSuccessor(nextMBB);
9229  newMBB->addSuccessor(newMBB);
9230
9231  DebugLoc dl = bInstr->getDebugLoc();
9232  // Insert instructions into newMBB based on incoming instruction
9233  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9234  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9235         "unexpected number of operands");
9236  MachineOperand& dest1Oper = bInstr->getOperand(0);
9237  MachineOperand& dest2Oper = bInstr->getOperand(1);
9238  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9239  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9240    argOpers[i] = &bInstr->getOperand(i+2);
9241
9242    // We use some of the operands multiple times, so conservatively just
9243    // clear any kill flags that might be present.
9244    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9245      argOpers[i]->setIsKill(false);
9246  }
9247
9248  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9249  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9250
9251  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9252  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9253  for (int i=0; i <= lastAddrIndx; ++i)
9254    (*MIB).addOperand(*argOpers[i]);
9255  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9256  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9257  // add 4 to displacement.
9258  for (int i=0; i <= lastAddrIndx-2; ++i)
9259    (*MIB).addOperand(*argOpers[i]);
9260  MachineOperand newOp3 = *(argOpers[3]);
9261  if (newOp3.isImm())
9262    newOp3.setImm(newOp3.getImm()+4);
9263  else
9264    newOp3.setOffset(newOp3.getOffset()+4);
9265  (*MIB).addOperand(newOp3);
9266  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9267
9268  // t3/4 are defined later, at the bottom of the loop
9269  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9270  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9271  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9272    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9273  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9274    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9275
9276  // The subsequent operations should be using the destination registers of
9277  //the PHI instructions.
9278  if (invSrc) {
9279    t1 = F->getRegInfo().createVirtualRegister(RC);
9280    t2 = F->getRegInfo().createVirtualRegister(RC);
9281    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9282    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9283  } else {
9284    t1 = dest1Oper.getReg();
9285    t2 = dest2Oper.getReg();
9286  }
9287
9288  int valArgIndx = lastAddrIndx + 1;
9289  assert((argOpers[valArgIndx]->isReg() ||
9290          argOpers[valArgIndx]->isImm()) &&
9291         "invalid operand");
9292  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9293  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9294  if (argOpers[valArgIndx]->isReg())
9295    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9296  else
9297    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9298  if (regOpcL != X86::MOV32rr)
9299    MIB.addReg(t1);
9300  (*MIB).addOperand(*argOpers[valArgIndx]);
9301  assert(argOpers[valArgIndx + 1]->isReg() ==
9302         argOpers[valArgIndx]->isReg());
9303  assert(argOpers[valArgIndx + 1]->isImm() ==
9304         argOpers[valArgIndx]->isImm());
9305  if (argOpers[valArgIndx + 1]->isReg())
9306    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9307  else
9308    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9309  if (regOpcH != X86::MOV32rr)
9310    MIB.addReg(t2);
9311  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9312
9313  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9314  MIB.addReg(t1);
9315  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9316  MIB.addReg(t2);
9317
9318  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9319  MIB.addReg(t5);
9320  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9321  MIB.addReg(t6);
9322
9323  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9324  for (int i=0; i <= lastAddrIndx; ++i)
9325    (*MIB).addOperand(*argOpers[i]);
9326
9327  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9328  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9329                    bInstr->memoperands_end());
9330
9331  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9332  MIB.addReg(X86::EAX);
9333  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9334  MIB.addReg(X86::EDX);
9335
9336  // insert branch
9337  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9338
9339  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9340  return nextMBB;
9341}
9342
9343// private utility function
9344MachineBasicBlock *
9345X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9346                                                      MachineBasicBlock *MBB,
9347                                                      unsigned cmovOpc) const {
9348  // For the atomic min/max operator, we generate
9349  //   thisMBB:
9350  //   newMBB:
9351  //     ld t1 = [min/max.addr]
9352  //     mov t2 = [min/max.val]
9353  //     cmp  t1, t2
9354  //     cmov[cond] t2 = t1
9355  //     mov EAX = t1
9356  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9357  //     bz   newMBB
9358  //     fallthrough -->nextMBB
9359  //
9360  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9361  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9362  MachineFunction::iterator MBBIter = MBB;
9363  ++MBBIter;
9364
9365  /// First build the CFG
9366  MachineFunction *F = MBB->getParent();
9367  MachineBasicBlock *thisMBB = MBB;
9368  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9369  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9370  F->insert(MBBIter, newMBB);
9371  F->insert(MBBIter, nextMBB);
9372
9373  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9374  nextMBB->splice(nextMBB->begin(), thisMBB,
9375                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9376                  thisMBB->end());
9377  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9378
9379  // Update thisMBB to fall through to newMBB
9380  thisMBB->addSuccessor(newMBB);
9381
9382  // newMBB jumps to newMBB and fall through to nextMBB
9383  newMBB->addSuccessor(nextMBB);
9384  newMBB->addSuccessor(newMBB);
9385
9386  DebugLoc dl = mInstr->getDebugLoc();
9387  // Insert instructions into newMBB based on incoming instruction
9388  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9389         "unexpected number of operands");
9390  MachineOperand& destOper = mInstr->getOperand(0);
9391  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9392  int numArgs = mInstr->getNumOperands() - 1;
9393  for (int i=0; i < numArgs; ++i)
9394    argOpers[i] = &mInstr->getOperand(i+1);
9395
9396  // x86 address has 4 operands: base, index, scale, and displacement
9397  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9398  int valArgIndx = lastAddrIndx + 1;
9399
9400  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9401  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9402  for (int i=0; i <= lastAddrIndx; ++i)
9403    (*MIB).addOperand(*argOpers[i]);
9404
9405  // We only support register and immediate values
9406  assert((argOpers[valArgIndx]->isReg() ||
9407          argOpers[valArgIndx]->isImm()) &&
9408         "invalid operand");
9409
9410  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9411  if (argOpers[valArgIndx]->isReg())
9412    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9413  else
9414    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9415  (*MIB).addOperand(*argOpers[valArgIndx]);
9416
9417  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9418  MIB.addReg(t1);
9419
9420  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9421  MIB.addReg(t1);
9422  MIB.addReg(t2);
9423
9424  // Generate movc
9425  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9426  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9427  MIB.addReg(t2);
9428  MIB.addReg(t1);
9429
9430  // Cmp and exchange if none has modified the memory location
9431  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9432  for (int i=0; i <= lastAddrIndx; ++i)
9433    (*MIB).addOperand(*argOpers[i]);
9434  MIB.addReg(t3);
9435  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9436  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9437                    mInstr->memoperands_end());
9438
9439  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9440  MIB.addReg(X86::EAX);
9441
9442  // insert branch
9443  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9444
9445  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9446  return nextMBB;
9447}
9448
9449// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9450// or XMM0_V32I8 in AVX all of this code can be replaced with that
9451// in the .td file.
9452MachineBasicBlock *
9453X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9454                            unsigned numArgs, bool memArg) const {
9455  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9456         "Target must have SSE4.2 or AVX features enabled");
9457
9458  DebugLoc dl = MI->getDebugLoc();
9459  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9460  unsigned Opc;
9461  if (!Subtarget->hasAVX()) {
9462    if (memArg)
9463      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9464    else
9465      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9466  } else {
9467    if (memArg)
9468      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9469    else
9470      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9471  }
9472
9473  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
9474  for (unsigned i = 0; i < numArgs; ++i) {
9475    MachineOperand &Op = MI->getOperand(i+1);
9476    if (!(Op.isReg() && Op.isImplicit()))
9477      MIB.addOperand(Op);
9478  }
9479  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9480    .addReg(X86::XMM0);
9481
9482  MI->eraseFromParent();
9483  return BB;
9484}
9485
9486MachineBasicBlock *
9487X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
9488  DebugLoc dl = MI->getDebugLoc();
9489  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9490
9491  // Address into RAX/EAX, other two args into ECX, EDX.
9492  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
9493  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
9494  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
9495  for (int i = 0; i < X86::AddrNumOperands; ++i)
9496    MIB.addOperand(MI->getOperand(i));
9497
9498  unsigned ValOps = X86::AddrNumOperands;
9499  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9500    .addReg(MI->getOperand(ValOps).getReg());
9501  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
9502    .addReg(MI->getOperand(ValOps+1).getReg());
9503
9504  // The instruction doesn't actually take any operands though.
9505  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
9506
9507  MI->eraseFromParent(); // The pseudo is gone now.
9508  return BB;
9509}
9510
9511MachineBasicBlock *
9512X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
9513  DebugLoc dl = MI->getDebugLoc();
9514  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9515
9516  // First arg in ECX, the second in EAX.
9517  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9518    .addReg(MI->getOperand(0).getReg());
9519  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
9520    .addReg(MI->getOperand(1).getReg());
9521
9522  // The instruction doesn't actually take any operands though.
9523  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
9524
9525  MI->eraseFromParent(); // The pseudo is gone now.
9526  return BB;
9527}
9528
9529MachineBasicBlock *
9530X86TargetLowering::EmitVAARG64WithCustomInserter(
9531                   MachineInstr *MI,
9532                   MachineBasicBlock *MBB) const {
9533  // Emit va_arg instruction on X86-64.
9534
9535  // Operands to this pseudo-instruction:
9536  // 0  ) Output        : destination address (reg)
9537  // 1-5) Input         : va_list address (addr, i64mem)
9538  // 6  ) ArgSize       : Size (in bytes) of vararg type
9539  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9540  // 8  ) Align         : Alignment of type
9541  // 9  ) EFLAGS (implicit-def)
9542
9543  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9544  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9545
9546  unsigned DestReg = MI->getOperand(0).getReg();
9547  MachineOperand &Base = MI->getOperand(1);
9548  MachineOperand &Scale = MI->getOperand(2);
9549  MachineOperand &Index = MI->getOperand(3);
9550  MachineOperand &Disp = MI->getOperand(4);
9551  MachineOperand &Segment = MI->getOperand(5);
9552  unsigned ArgSize = MI->getOperand(6).getImm();
9553  unsigned ArgMode = MI->getOperand(7).getImm();
9554  unsigned Align = MI->getOperand(8).getImm();
9555
9556  // Memory Reference
9557  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9558  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9559  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9560
9561  // Machine Information
9562  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9563  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9564  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9565  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9566  DebugLoc DL = MI->getDebugLoc();
9567
9568  // struct va_list {
9569  //   i32   gp_offset
9570  //   i32   fp_offset
9571  //   i64   overflow_area (address)
9572  //   i64   reg_save_area (address)
9573  // }
9574  // sizeof(va_list) = 24
9575  // alignment(va_list) = 8
9576
9577  unsigned TotalNumIntRegs = 6;
9578  unsigned TotalNumXMMRegs = 8;
9579  bool UseGPOffset = (ArgMode == 1);
9580  bool UseFPOffset = (ArgMode == 2);
9581  unsigned MaxOffset = TotalNumIntRegs * 8 +
9582                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9583
9584  /* Align ArgSize to a multiple of 8 */
9585  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9586  bool NeedsAlign = (Align > 8);
9587
9588  MachineBasicBlock *thisMBB = MBB;
9589  MachineBasicBlock *overflowMBB;
9590  MachineBasicBlock *offsetMBB;
9591  MachineBasicBlock *endMBB;
9592
9593  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
9594  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
9595  unsigned OffsetReg = 0;
9596
9597  if (!UseGPOffset && !UseFPOffset) {
9598    // If we only pull from the overflow region, we don't create a branch.
9599    // We don't need to alter control flow.
9600    OffsetDestReg = 0; // unused
9601    OverflowDestReg = DestReg;
9602
9603    offsetMBB = NULL;
9604    overflowMBB = thisMBB;
9605    endMBB = thisMBB;
9606  } else {
9607    // First emit code to check if gp_offset (or fp_offset) is below the bound.
9608    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9609    // If not, pull from overflow_area. (branch to overflowMBB)
9610    //
9611    //       thisMBB
9612    //         |     .
9613    //         |        .
9614    //     offsetMBB   overflowMBB
9615    //         |        .
9616    //         |     .
9617    //        endMBB
9618
9619    // Registers for the PHI in endMBB
9620    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9621    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9622
9623    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9624    MachineFunction *MF = MBB->getParent();
9625    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9626    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9627    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9628
9629    MachineFunction::iterator MBBIter = MBB;
9630    ++MBBIter;
9631
9632    // Insert the new basic blocks
9633    MF->insert(MBBIter, offsetMBB);
9634    MF->insert(MBBIter, overflowMBB);
9635    MF->insert(MBBIter, endMBB);
9636
9637    // Transfer the remainder of MBB and its successor edges to endMBB.
9638    endMBB->splice(endMBB->begin(), thisMBB,
9639                    llvm::next(MachineBasicBlock::iterator(MI)),
9640                    thisMBB->end());
9641    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9642
9643    // Make offsetMBB and overflowMBB successors of thisMBB
9644    thisMBB->addSuccessor(offsetMBB);
9645    thisMBB->addSuccessor(overflowMBB);
9646
9647    // endMBB is a successor of both offsetMBB and overflowMBB
9648    offsetMBB->addSuccessor(endMBB);
9649    overflowMBB->addSuccessor(endMBB);
9650
9651    // Load the offset value into a register
9652    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9653    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9654      .addOperand(Base)
9655      .addOperand(Scale)
9656      .addOperand(Index)
9657      .addDisp(Disp, UseFPOffset ? 4 : 0)
9658      .addOperand(Segment)
9659      .setMemRefs(MMOBegin, MMOEnd);
9660
9661    // Check if there is enough room left to pull this argument.
9662    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9663      .addReg(OffsetReg)
9664      .addImm(MaxOffset + 8 - ArgSizeA8);
9665
9666    // Branch to "overflowMBB" if offset >= max
9667    // Fall through to "offsetMBB" otherwise
9668    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9669      .addMBB(overflowMBB);
9670  }
9671
9672  // In offsetMBB, emit code to use the reg_save_area.
9673  if (offsetMBB) {
9674    assert(OffsetReg != 0);
9675
9676    // Read the reg_save_area address.
9677    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9678    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9679      .addOperand(Base)
9680      .addOperand(Scale)
9681      .addOperand(Index)
9682      .addDisp(Disp, 16)
9683      .addOperand(Segment)
9684      .setMemRefs(MMOBegin, MMOEnd);
9685
9686    // Zero-extend the offset
9687    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9688      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9689        .addImm(0)
9690        .addReg(OffsetReg)
9691        .addImm(X86::sub_32bit);
9692
9693    // Add the offset to the reg_save_area to get the final address.
9694    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9695      .addReg(OffsetReg64)
9696      .addReg(RegSaveReg);
9697
9698    // Compute the offset for the next argument
9699    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9700    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9701      .addReg(OffsetReg)
9702      .addImm(UseFPOffset ? 16 : 8);
9703
9704    // Store it back into the va_list.
9705    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9706      .addOperand(Base)
9707      .addOperand(Scale)
9708      .addOperand(Index)
9709      .addDisp(Disp, UseFPOffset ? 4 : 0)
9710      .addOperand(Segment)
9711      .addReg(NextOffsetReg)
9712      .setMemRefs(MMOBegin, MMOEnd);
9713
9714    // Jump to endMBB
9715    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9716      .addMBB(endMBB);
9717  }
9718
9719  //
9720  // Emit code to use overflow area
9721  //
9722
9723  // Load the overflow_area address into a register.
9724  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9725  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9726    .addOperand(Base)
9727    .addOperand(Scale)
9728    .addOperand(Index)
9729    .addDisp(Disp, 8)
9730    .addOperand(Segment)
9731    .setMemRefs(MMOBegin, MMOEnd);
9732
9733  // If we need to align it, do so. Otherwise, just copy the address
9734  // to OverflowDestReg.
9735  if (NeedsAlign) {
9736    // Align the overflow address
9737    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9738    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9739
9740    // aligned_addr = (addr + (align-1)) & ~(align-1)
9741    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9742      .addReg(OverflowAddrReg)
9743      .addImm(Align-1);
9744
9745    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9746      .addReg(TmpReg)
9747      .addImm(~(uint64_t)(Align-1));
9748  } else {
9749    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9750      .addReg(OverflowAddrReg);
9751  }
9752
9753  // Compute the next overflow address after this argument.
9754  // (the overflow address should be kept 8-byte aligned)
9755  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9756  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9757    .addReg(OverflowDestReg)
9758    .addImm(ArgSizeA8);
9759
9760  // Store the new overflow address.
9761  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9762    .addOperand(Base)
9763    .addOperand(Scale)
9764    .addOperand(Index)
9765    .addDisp(Disp, 8)
9766    .addOperand(Segment)
9767    .addReg(NextAddrReg)
9768    .setMemRefs(MMOBegin, MMOEnd);
9769
9770  // If we branched, emit the PHI to the front of endMBB.
9771  if (offsetMBB) {
9772    BuildMI(*endMBB, endMBB->begin(), DL,
9773            TII->get(X86::PHI), DestReg)
9774      .addReg(OffsetDestReg).addMBB(offsetMBB)
9775      .addReg(OverflowDestReg).addMBB(overflowMBB);
9776  }
9777
9778  // Erase the pseudo instruction
9779  MI->eraseFromParent();
9780
9781  return endMBB;
9782}
9783
9784MachineBasicBlock *
9785X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9786                                                 MachineInstr *MI,
9787                                                 MachineBasicBlock *MBB) const {
9788  // Emit code to save XMM registers to the stack. The ABI says that the
9789  // number of registers to save is given in %al, so it's theoretically
9790  // possible to do an indirect jump trick to avoid saving all of them,
9791  // however this code takes a simpler approach and just executes all
9792  // of the stores if %al is non-zero. It's less code, and it's probably
9793  // easier on the hardware branch predictor, and stores aren't all that
9794  // expensive anyway.
9795
9796  // Create the new basic blocks. One block contains all the XMM stores,
9797  // and one block is the final destination regardless of whether any
9798  // stores were performed.
9799  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9800  MachineFunction *F = MBB->getParent();
9801  MachineFunction::iterator MBBIter = MBB;
9802  ++MBBIter;
9803  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9804  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9805  F->insert(MBBIter, XMMSaveMBB);
9806  F->insert(MBBIter, EndMBB);
9807
9808  // Transfer the remainder of MBB and its successor edges to EndMBB.
9809  EndMBB->splice(EndMBB->begin(), MBB,
9810                 llvm::next(MachineBasicBlock::iterator(MI)),
9811                 MBB->end());
9812  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9813
9814  // The original block will now fall through to the XMM save block.
9815  MBB->addSuccessor(XMMSaveMBB);
9816  // The XMMSaveMBB will fall through to the end block.
9817  XMMSaveMBB->addSuccessor(EndMBB);
9818
9819  // Now add the instructions.
9820  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9821  DebugLoc DL = MI->getDebugLoc();
9822
9823  unsigned CountReg = MI->getOperand(0).getReg();
9824  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9825  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9826
9827  if (!Subtarget->isTargetWin64()) {
9828    // If %al is 0, branch around the XMM save block.
9829    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9830    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9831    MBB->addSuccessor(EndMBB);
9832  }
9833
9834  // In the XMM save block, save all the XMM argument registers.
9835  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9836    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9837    MachineMemOperand *MMO =
9838      F->getMachineMemOperand(
9839          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9840        MachineMemOperand::MOStore,
9841        /*Size=*/16, /*Align=*/16);
9842    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9843      .addFrameIndex(RegSaveFrameIndex)
9844      .addImm(/*Scale=*/1)
9845      .addReg(/*IndexReg=*/0)
9846      .addImm(/*Disp=*/Offset)
9847      .addReg(/*Segment=*/0)
9848      .addReg(MI->getOperand(i).getReg())
9849      .addMemOperand(MMO);
9850  }
9851
9852  MI->eraseFromParent();   // The pseudo instruction is gone now.
9853
9854  return EndMBB;
9855}
9856
9857MachineBasicBlock *
9858X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9859                                     MachineBasicBlock *BB) const {
9860  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9861  DebugLoc DL = MI->getDebugLoc();
9862
9863  // To "insert" a SELECT_CC instruction, we actually have to insert the
9864  // diamond control-flow pattern.  The incoming instruction knows the
9865  // destination vreg to set, the condition code register to branch on, the
9866  // true/false values to select between, and a branch opcode to use.
9867  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9868  MachineFunction::iterator It = BB;
9869  ++It;
9870
9871  //  thisMBB:
9872  //  ...
9873  //   TrueVal = ...
9874  //   cmpTY ccX, r1, r2
9875  //   bCC copy1MBB
9876  //   fallthrough --> copy0MBB
9877  MachineBasicBlock *thisMBB = BB;
9878  MachineFunction *F = BB->getParent();
9879  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9880  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9881  F->insert(It, copy0MBB);
9882  F->insert(It, sinkMBB);
9883
9884  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9885  // live into the sink and copy blocks.
9886  const MachineFunction *MF = BB->getParent();
9887  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9888  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9889
9890  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9891    const MachineOperand &MO = MI->getOperand(I);
9892    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9893    unsigned Reg = MO.getReg();
9894    if (Reg != X86::EFLAGS) continue;
9895    copy0MBB->addLiveIn(Reg);
9896    sinkMBB->addLiveIn(Reg);
9897  }
9898
9899  // Transfer the remainder of BB and its successor edges to sinkMBB.
9900  sinkMBB->splice(sinkMBB->begin(), BB,
9901                  llvm::next(MachineBasicBlock::iterator(MI)),
9902                  BB->end());
9903  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9904
9905  // Add the true and fallthrough blocks as its successors.
9906  BB->addSuccessor(copy0MBB);
9907  BB->addSuccessor(sinkMBB);
9908
9909  // Create the conditional branch instruction.
9910  unsigned Opc =
9911    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9912  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9913
9914  //  copy0MBB:
9915  //   %FalseValue = ...
9916  //   # fallthrough to sinkMBB
9917  copy0MBB->addSuccessor(sinkMBB);
9918
9919  //  sinkMBB:
9920  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9921  //  ...
9922  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9923          TII->get(X86::PHI), MI->getOperand(0).getReg())
9924    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9925    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9926
9927  MI->eraseFromParent();   // The pseudo instruction is gone now.
9928  return sinkMBB;
9929}
9930
9931MachineBasicBlock *
9932X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
9933                                          MachineBasicBlock *BB) const {
9934  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9935  DebugLoc DL = MI->getDebugLoc();
9936
9937  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9938  // non-trivial part is impdef of ESP.
9939  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9940  // mingw-w64.
9941
9942  const char *StackProbeSymbol =
9943      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
9944
9945  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9946    .addExternalSymbol(StackProbeSymbol)
9947    .addReg(X86::EAX, RegState::Implicit)
9948    .addReg(X86::ESP, RegState::Implicit)
9949    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9950    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9951    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9952
9953  MI->eraseFromParent();   // The pseudo instruction is gone now.
9954  return BB;
9955}
9956
9957MachineBasicBlock *
9958X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9959                                      MachineBasicBlock *BB) const {
9960  // This is pretty easy.  We're taking the value that we received from
9961  // our load from the relocation, sticking it in either RDI (x86-64)
9962  // or EAX and doing an indirect call.  The return value will then
9963  // be in the normal return register.
9964  const X86InstrInfo *TII
9965    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9966  DebugLoc DL = MI->getDebugLoc();
9967  MachineFunction *F = BB->getParent();
9968
9969  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
9970  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9971
9972  if (Subtarget->is64Bit()) {
9973    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9974                                      TII->get(X86::MOV64rm), X86::RDI)
9975    .addReg(X86::RIP)
9976    .addImm(0).addReg(0)
9977    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9978                      MI->getOperand(3).getTargetFlags())
9979    .addReg(0);
9980    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
9981    addDirectMem(MIB, X86::RDI);
9982  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9983    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9984                                      TII->get(X86::MOV32rm), X86::EAX)
9985    .addReg(0)
9986    .addImm(0).addReg(0)
9987    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9988                      MI->getOperand(3).getTargetFlags())
9989    .addReg(0);
9990    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9991    addDirectMem(MIB, X86::EAX);
9992  } else {
9993    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9994                                      TII->get(X86::MOV32rm), X86::EAX)
9995    .addReg(TII->getGlobalBaseReg(F))
9996    .addImm(0).addReg(0)
9997    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9998                      MI->getOperand(3).getTargetFlags())
9999    .addReg(0);
10000    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10001    addDirectMem(MIB, X86::EAX);
10002  }
10003
10004  MI->eraseFromParent(); // The pseudo instruction is gone now.
10005  return BB;
10006}
10007
10008MachineBasicBlock *
10009X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10010                                               MachineBasicBlock *BB) const {
10011  switch (MI->getOpcode()) {
10012  default: assert(false && "Unexpected instr type to insert");
10013  case X86::WIN_ALLOCA:
10014    return EmitLoweredWinAlloca(MI, BB);
10015  case X86::TLSCall_32:
10016  case X86::TLSCall_64:
10017    return EmitLoweredTLSCall(MI, BB);
10018  case X86::CMOV_GR8:
10019  case X86::CMOV_FR32:
10020  case X86::CMOV_FR64:
10021  case X86::CMOV_V4F32:
10022  case X86::CMOV_V2F64:
10023  case X86::CMOV_V2I64:
10024  case X86::CMOV_GR16:
10025  case X86::CMOV_GR32:
10026  case X86::CMOV_RFP32:
10027  case X86::CMOV_RFP64:
10028  case X86::CMOV_RFP80:
10029    return EmitLoweredSelect(MI, BB);
10030
10031  case X86::FP32_TO_INT16_IN_MEM:
10032  case X86::FP32_TO_INT32_IN_MEM:
10033  case X86::FP32_TO_INT64_IN_MEM:
10034  case X86::FP64_TO_INT16_IN_MEM:
10035  case X86::FP64_TO_INT32_IN_MEM:
10036  case X86::FP64_TO_INT64_IN_MEM:
10037  case X86::FP80_TO_INT16_IN_MEM:
10038  case X86::FP80_TO_INT32_IN_MEM:
10039  case X86::FP80_TO_INT64_IN_MEM: {
10040    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10041    DebugLoc DL = MI->getDebugLoc();
10042
10043    // Change the floating point control register to use "round towards zero"
10044    // mode when truncating to an integer value.
10045    MachineFunction *F = BB->getParent();
10046    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10047    addFrameReference(BuildMI(*BB, MI, DL,
10048                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10049
10050    // Load the old value of the high byte of the control word...
10051    unsigned OldCW =
10052      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10053    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10054                      CWFrameIdx);
10055
10056    // Set the high part to be round to zero...
10057    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10058      .addImm(0xC7F);
10059
10060    // Reload the modified control word now...
10061    addFrameReference(BuildMI(*BB, MI, DL,
10062                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10063
10064    // Restore the memory image of control word to original value
10065    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10066      .addReg(OldCW);
10067
10068    // Get the X86 opcode to use.
10069    unsigned Opc;
10070    switch (MI->getOpcode()) {
10071    default: llvm_unreachable("illegal opcode!");
10072    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10073    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10074    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10075    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10076    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10077    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10078    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10079    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10080    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10081    }
10082
10083    X86AddressMode AM;
10084    MachineOperand &Op = MI->getOperand(0);
10085    if (Op.isReg()) {
10086      AM.BaseType = X86AddressMode::RegBase;
10087      AM.Base.Reg = Op.getReg();
10088    } else {
10089      AM.BaseType = X86AddressMode::FrameIndexBase;
10090      AM.Base.FrameIndex = Op.getIndex();
10091    }
10092    Op = MI->getOperand(1);
10093    if (Op.isImm())
10094      AM.Scale = Op.getImm();
10095    Op = MI->getOperand(2);
10096    if (Op.isImm())
10097      AM.IndexReg = Op.getImm();
10098    Op = MI->getOperand(3);
10099    if (Op.isGlobal()) {
10100      AM.GV = Op.getGlobal();
10101    } else {
10102      AM.Disp = Op.getImm();
10103    }
10104    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10105                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10106
10107    // Reload the original control word now.
10108    addFrameReference(BuildMI(*BB, MI, DL,
10109                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10110
10111    MI->eraseFromParent();   // The pseudo instruction is gone now.
10112    return BB;
10113  }
10114    // String/text processing lowering.
10115  case X86::PCMPISTRM128REG:
10116  case X86::VPCMPISTRM128REG:
10117    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10118  case X86::PCMPISTRM128MEM:
10119  case X86::VPCMPISTRM128MEM:
10120    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10121  case X86::PCMPESTRM128REG:
10122  case X86::VPCMPESTRM128REG:
10123    return EmitPCMP(MI, BB, 5, false /* in mem */);
10124  case X86::PCMPESTRM128MEM:
10125  case X86::VPCMPESTRM128MEM:
10126    return EmitPCMP(MI, BB, 5, true /* in mem */);
10127
10128    // Thread synchronization.
10129  case X86::MONITOR:
10130    return EmitMonitor(MI, BB);
10131  case X86::MWAIT:
10132    return EmitMwait(MI, BB);
10133
10134    // Atomic Lowering.
10135  case X86::ATOMAND32:
10136    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10137                                               X86::AND32ri, X86::MOV32rm,
10138                                               X86::LCMPXCHG32,
10139                                               X86::NOT32r, X86::EAX,
10140                                               X86::GR32RegisterClass);
10141  case X86::ATOMOR32:
10142    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10143                                               X86::OR32ri, X86::MOV32rm,
10144                                               X86::LCMPXCHG32,
10145                                               X86::NOT32r, X86::EAX,
10146                                               X86::GR32RegisterClass);
10147  case X86::ATOMXOR32:
10148    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10149                                               X86::XOR32ri, X86::MOV32rm,
10150                                               X86::LCMPXCHG32,
10151                                               X86::NOT32r, X86::EAX,
10152                                               X86::GR32RegisterClass);
10153  case X86::ATOMNAND32:
10154    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10155                                               X86::AND32ri, X86::MOV32rm,
10156                                               X86::LCMPXCHG32,
10157                                               X86::NOT32r, X86::EAX,
10158                                               X86::GR32RegisterClass, true);
10159  case X86::ATOMMIN32:
10160    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10161  case X86::ATOMMAX32:
10162    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10163  case X86::ATOMUMIN32:
10164    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10165  case X86::ATOMUMAX32:
10166    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10167
10168  case X86::ATOMAND16:
10169    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10170                                               X86::AND16ri, X86::MOV16rm,
10171                                               X86::LCMPXCHG16,
10172                                               X86::NOT16r, X86::AX,
10173                                               X86::GR16RegisterClass);
10174  case X86::ATOMOR16:
10175    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10176                                               X86::OR16ri, X86::MOV16rm,
10177                                               X86::LCMPXCHG16,
10178                                               X86::NOT16r, X86::AX,
10179                                               X86::GR16RegisterClass);
10180  case X86::ATOMXOR16:
10181    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10182                                               X86::XOR16ri, X86::MOV16rm,
10183                                               X86::LCMPXCHG16,
10184                                               X86::NOT16r, X86::AX,
10185                                               X86::GR16RegisterClass);
10186  case X86::ATOMNAND16:
10187    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10188                                               X86::AND16ri, X86::MOV16rm,
10189                                               X86::LCMPXCHG16,
10190                                               X86::NOT16r, X86::AX,
10191                                               X86::GR16RegisterClass, true);
10192  case X86::ATOMMIN16:
10193    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10194  case X86::ATOMMAX16:
10195    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10196  case X86::ATOMUMIN16:
10197    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10198  case X86::ATOMUMAX16:
10199    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10200
10201  case X86::ATOMAND8:
10202    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10203                                               X86::AND8ri, X86::MOV8rm,
10204                                               X86::LCMPXCHG8,
10205                                               X86::NOT8r, X86::AL,
10206                                               X86::GR8RegisterClass);
10207  case X86::ATOMOR8:
10208    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10209                                               X86::OR8ri, X86::MOV8rm,
10210                                               X86::LCMPXCHG8,
10211                                               X86::NOT8r, X86::AL,
10212                                               X86::GR8RegisterClass);
10213  case X86::ATOMXOR8:
10214    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10215                                               X86::XOR8ri, X86::MOV8rm,
10216                                               X86::LCMPXCHG8,
10217                                               X86::NOT8r, X86::AL,
10218                                               X86::GR8RegisterClass);
10219  case X86::ATOMNAND8:
10220    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10221                                               X86::AND8ri, X86::MOV8rm,
10222                                               X86::LCMPXCHG8,
10223                                               X86::NOT8r, X86::AL,
10224                                               X86::GR8RegisterClass, true);
10225  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10226  // This group is for 64-bit host.
10227  case X86::ATOMAND64:
10228    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10229                                               X86::AND64ri32, X86::MOV64rm,
10230                                               X86::LCMPXCHG64,
10231                                               X86::NOT64r, X86::RAX,
10232                                               X86::GR64RegisterClass);
10233  case X86::ATOMOR64:
10234    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10235                                               X86::OR64ri32, X86::MOV64rm,
10236                                               X86::LCMPXCHG64,
10237                                               X86::NOT64r, X86::RAX,
10238                                               X86::GR64RegisterClass);
10239  case X86::ATOMXOR64:
10240    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10241                                               X86::XOR64ri32, X86::MOV64rm,
10242                                               X86::LCMPXCHG64,
10243                                               X86::NOT64r, X86::RAX,
10244                                               X86::GR64RegisterClass);
10245  case X86::ATOMNAND64:
10246    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10247                                               X86::AND64ri32, X86::MOV64rm,
10248                                               X86::LCMPXCHG64,
10249                                               X86::NOT64r, X86::RAX,
10250                                               X86::GR64RegisterClass, true);
10251  case X86::ATOMMIN64:
10252    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10253  case X86::ATOMMAX64:
10254    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10255  case X86::ATOMUMIN64:
10256    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10257  case X86::ATOMUMAX64:
10258    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10259
10260  // This group does 64-bit operations on a 32-bit host.
10261  case X86::ATOMAND6432:
10262    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10263                                               X86::AND32rr, X86::AND32rr,
10264                                               X86::AND32ri, X86::AND32ri,
10265                                               false);
10266  case X86::ATOMOR6432:
10267    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10268                                               X86::OR32rr, X86::OR32rr,
10269                                               X86::OR32ri, X86::OR32ri,
10270                                               false);
10271  case X86::ATOMXOR6432:
10272    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10273                                               X86::XOR32rr, X86::XOR32rr,
10274                                               X86::XOR32ri, X86::XOR32ri,
10275                                               false);
10276  case X86::ATOMNAND6432:
10277    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10278                                               X86::AND32rr, X86::AND32rr,
10279                                               X86::AND32ri, X86::AND32ri,
10280                                               true);
10281  case X86::ATOMADD6432:
10282    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10283                                               X86::ADD32rr, X86::ADC32rr,
10284                                               X86::ADD32ri, X86::ADC32ri,
10285                                               false);
10286  case X86::ATOMSUB6432:
10287    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10288                                               X86::SUB32rr, X86::SBB32rr,
10289                                               X86::SUB32ri, X86::SBB32ri,
10290                                               false);
10291  case X86::ATOMSWAP6432:
10292    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10293                                               X86::MOV32rr, X86::MOV32rr,
10294                                               X86::MOV32ri, X86::MOV32ri,
10295                                               false);
10296  case X86::VASTART_SAVE_XMM_REGS:
10297    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10298
10299  case X86::VAARG_64:
10300    return EmitVAARG64WithCustomInserter(MI, BB);
10301  }
10302}
10303
10304//===----------------------------------------------------------------------===//
10305//                           X86 Optimization Hooks
10306//===----------------------------------------------------------------------===//
10307
10308void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10309                                                       const APInt &Mask,
10310                                                       APInt &KnownZero,
10311                                                       APInt &KnownOne,
10312                                                       const SelectionDAG &DAG,
10313                                                       unsigned Depth) const {
10314  unsigned Opc = Op.getOpcode();
10315  assert((Opc >= ISD::BUILTIN_OP_END ||
10316          Opc == ISD::INTRINSIC_WO_CHAIN ||
10317          Opc == ISD::INTRINSIC_W_CHAIN ||
10318          Opc == ISD::INTRINSIC_VOID) &&
10319         "Should use MaskedValueIsZero if you don't know whether Op"
10320         " is a target node!");
10321
10322  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10323  switch (Opc) {
10324  default: break;
10325  case X86ISD::ADD:
10326  case X86ISD::SUB:
10327  case X86ISD::SMUL:
10328  case X86ISD::UMUL:
10329  case X86ISD::INC:
10330  case X86ISD::DEC:
10331  case X86ISD::OR:
10332  case X86ISD::XOR:
10333  case X86ISD::AND:
10334    // These nodes' second result is a boolean.
10335    if (Op.getResNo() == 0)
10336      break;
10337    // Fallthrough
10338  case X86ISD::SETCC:
10339    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10340                                       Mask.getBitWidth() - 1);
10341    break;
10342  }
10343}
10344
10345unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10346                                                         unsigned Depth) const {
10347  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10348  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10349    return Op.getValueType().getScalarType().getSizeInBits();
10350
10351  // Fallback case.
10352  return 1;
10353}
10354
10355/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10356/// node is a GlobalAddress + offset.
10357bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10358                                       const GlobalValue* &GA,
10359                                       int64_t &Offset) const {
10360  if (N->getOpcode() == X86ISD::Wrapper) {
10361    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10362      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10363      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10364      return true;
10365    }
10366  }
10367  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10368}
10369
10370/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10371/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10372/// if the load addresses are consecutive, non-overlapping, and in the right
10373/// order.
10374static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10375                                     TargetLowering::DAGCombinerInfo &DCI) {
10376  DebugLoc dl = N->getDebugLoc();
10377  EVT VT = N->getValueType(0);
10378
10379  if (VT.getSizeInBits() != 128)
10380    return SDValue();
10381
10382  // Don't create instructions with illegal types after legalize types has run.
10383  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10384  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10385    return SDValue();
10386
10387  SmallVector<SDValue, 16> Elts;
10388  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10389    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10390
10391  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10392}
10393
10394/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10395/// generation and convert it from being a bunch of shuffles and extracts
10396/// to a simple store and scalar loads to extract the elements.
10397static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10398                                                const TargetLowering &TLI) {
10399  SDValue InputVector = N->getOperand(0);
10400
10401  // Only operate on vectors of 4 elements, where the alternative shuffling
10402  // gets to be more expensive.
10403  if (InputVector.getValueType() != MVT::v4i32)
10404    return SDValue();
10405
10406  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10407  // single use which is a sign-extend or zero-extend, and all elements are
10408  // used.
10409  SmallVector<SDNode *, 4> Uses;
10410  unsigned ExtractedElements = 0;
10411  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10412       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10413    if (UI.getUse().getResNo() != InputVector.getResNo())
10414      return SDValue();
10415
10416    SDNode *Extract = *UI;
10417    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10418      return SDValue();
10419
10420    if (Extract->getValueType(0) != MVT::i32)
10421      return SDValue();
10422    if (!Extract->hasOneUse())
10423      return SDValue();
10424    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10425        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10426      return SDValue();
10427    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10428      return SDValue();
10429
10430    // Record which element was extracted.
10431    ExtractedElements |=
10432      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10433
10434    Uses.push_back(Extract);
10435  }
10436
10437  // If not all the elements were used, this may not be worthwhile.
10438  if (ExtractedElements != 15)
10439    return SDValue();
10440
10441  // Ok, we've now decided to do the transformation.
10442  DebugLoc dl = InputVector.getDebugLoc();
10443
10444  // Store the value to a temporary stack slot.
10445  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10446  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10447                            MachinePointerInfo(), false, false, 0);
10448
10449  // Replace each use (extract) with a load of the appropriate element.
10450  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10451       UE = Uses.end(); UI != UE; ++UI) {
10452    SDNode *Extract = *UI;
10453
10454    // Compute the element's address.
10455    SDValue Idx = Extract->getOperand(1);
10456    unsigned EltSize =
10457        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10458    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10459    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10460
10461    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10462                                     StackPtr, OffsetVal);
10463
10464    // Load the scalar.
10465    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10466                                     ScalarAddr, MachinePointerInfo(),
10467                                     false, false, 0);
10468
10469    // Replace the exact with the load.
10470    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10471  }
10472
10473  // The replacement was made in place; don't return anything.
10474  return SDValue();
10475}
10476
10477/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10478static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10479                                    const X86Subtarget *Subtarget) {
10480  DebugLoc DL = N->getDebugLoc();
10481  SDValue Cond = N->getOperand(0);
10482  // Get the LHS/RHS of the select.
10483  SDValue LHS = N->getOperand(1);
10484  SDValue RHS = N->getOperand(2);
10485
10486  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10487  // instructions match the semantics of the common C idiom x<y?x:y but not
10488  // x<=y?x:y, because of how they handle negative zero (which can be
10489  // ignored in unsafe-math mode).
10490  if (Subtarget->hasSSE2() &&
10491      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10492      Cond.getOpcode() == ISD::SETCC) {
10493    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10494
10495    unsigned Opcode = 0;
10496    // Check for x CC y ? x : y.
10497    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10498        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10499      switch (CC) {
10500      default: break;
10501      case ISD::SETULT:
10502        // Converting this to a min would handle NaNs incorrectly, and swapping
10503        // the operands would cause it to handle comparisons between positive
10504        // and negative zero incorrectly.
10505        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10506          if (!UnsafeFPMath &&
10507              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10508            break;
10509          std::swap(LHS, RHS);
10510        }
10511        Opcode = X86ISD::FMIN;
10512        break;
10513      case ISD::SETOLE:
10514        // Converting this to a min would handle comparisons between positive
10515        // and negative zero incorrectly.
10516        if (!UnsafeFPMath &&
10517            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10518          break;
10519        Opcode = X86ISD::FMIN;
10520        break;
10521      case ISD::SETULE:
10522        // Converting this to a min would handle both negative zeros and NaNs
10523        // incorrectly, but we can swap the operands to fix both.
10524        std::swap(LHS, RHS);
10525      case ISD::SETOLT:
10526      case ISD::SETLT:
10527      case ISD::SETLE:
10528        Opcode = X86ISD::FMIN;
10529        break;
10530
10531      case ISD::SETOGE:
10532        // Converting this to a max would handle comparisons between positive
10533        // and negative zero incorrectly.
10534        if (!UnsafeFPMath &&
10535            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10536          break;
10537        Opcode = X86ISD::FMAX;
10538        break;
10539      case ISD::SETUGT:
10540        // Converting this to a max would handle NaNs incorrectly, and swapping
10541        // the operands would cause it to handle comparisons between positive
10542        // and negative zero incorrectly.
10543        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10544          if (!UnsafeFPMath &&
10545              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10546            break;
10547          std::swap(LHS, RHS);
10548        }
10549        Opcode = X86ISD::FMAX;
10550        break;
10551      case ISD::SETUGE:
10552        // Converting this to a max would handle both negative zeros and NaNs
10553        // incorrectly, but we can swap the operands to fix both.
10554        std::swap(LHS, RHS);
10555      case ISD::SETOGT:
10556      case ISD::SETGT:
10557      case ISD::SETGE:
10558        Opcode = X86ISD::FMAX;
10559        break;
10560      }
10561    // Check for x CC y ? y : x -- a min/max with reversed arms.
10562    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10563               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10564      switch (CC) {
10565      default: break;
10566      case ISD::SETOGE:
10567        // Converting this to a min would handle comparisons between positive
10568        // and negative zero incorrectly, and swapping the operands would
10569        // cause it to handle NaNs incorrectly.
10570        if (!UnsafeFPMath &&
10571            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10572          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10573            break;
10574          std::swap(LHS, RHS);
10575        }
10576        Opcode = X86ISD::FMIN;
10577        break;
10578      case ISD::SETUGT:
10579        // Converting this to a min would handle NaNs incorrectly.
10580        if (!UnsafeFPMath &&
10581            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10582          break;
10583        Opcode = X86ISD::FMIN;
10584        break;
10585      case ISD::SETUGE:
10586        // Converting this to a min would handle both negative zeros and NaNs
10587        // incorrectly, but we can swap the operands to fix both.
10588        std::swap(LHS, RHS);
10589      case ISD::SETOGT:
10590      case ISD::SETGT:
10591      case ISD::SETGE:
10592        Opcode = X86ISD::FMIN;
10593        break;
10594
10595      case ISD::SETULT:
10596        // Converting this to a max would handle NaNs incorrectly.
10597        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10598          break;
10599        Opcode = X86ISD::FMAX;
10600        break;
10601      case ISD::SETOLE:
10602        // Converting this to a max would handle comparisons between positive
10603        // and negative zero incorrectly, and swapping the operands would
10604        // cause it to handle NaNs incorrectly.
10605        if (!UnsafeFPMath &&
10606            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10607          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10608            break;
10609          std::swap(LHS, RHS);
10610        }
10611        Opcode = X86ISD::FMAX;
10612        break;
10613      case ISD::SETULE:
10614        // Converting this to a max would handle both negative zeros and NaNs
10615        // incorrectly, but we can swap the operands to fix both.
10616        std::swap(LHS, RHS);
10617      case ISD::SETOLT:
10618      case ISD::SETLT:
10619      case ISD::SETLE:
10620        Opcode = X86ISD::FMAX;
10621        break;
10622      }
10623    }
10624
10625    if (Opcode)
10626      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10627  }
10628
10629  // If this is a select between two integer constants, try to do some
10630  // optimizations.
10631  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10632    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10633      // Don't do this for crazy integer types.
10634      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10635        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10636        // so that TrueC (the true value) is larger than FalseC.
10637        bool NeedsCondInvert = false;
10638
10639        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10640            // Efficiently invertible.
10641            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10642             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10643              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10644          NeedsCondInvert = true;
10645          std::swap(TrueC, FalseC);
10646        }
10647
10648        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10649        if (FalseC->getAPIntValue() == 0 &&
10650            TrueC->getAPIntValue().isPowerOf2()) {
10651          if (NeedsCondInvert) // Invert the condition if needed.
10652            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10653                               DAG.getConstant(1, Cond.getValueType()));
10654
10655          // Zero extend the condition if needed.
10656          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10657
10658          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10659          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10660                             DAG.getConstant(ShAmt, MVT::i8));
10661        }
10662
10663        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10664        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10665          if (NeedsCondInvert) // Invert the condition if needed.
10666            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10667                               DAG.getConstant(1, Cond.getValueType()));
10668
10669          // Zero extend the condition if needed.
10670          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10671                             FalseC->getValueType(0), Cond);
10672          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10673                             SDValue(FalseC, 0));
10674        }
10675
10676        // Optimize cases that will turn into an LEA instruction.  This requires
10677        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10678        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10679          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10680          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10681
10682          bool isFastMultiplier = false;
10683          if (Diff < 10) {
10684            switch ((unsigned char)Diff) {
10685              default: break;
10686              case 1:  // result = add base, cond
10687              case 2:  // result = lea base(    , cond*2)
10688              case 3:  // result = lea base(cond, cond*2)
10689              case 4:  // result = lea base(    , cond*4)
10690              case 5:  // result = lea base(cond, cond*4)
10691              case 8:  // result = lea base(    , cond*8)
10692              case 9:  // result = lea base(cond, cond*8)
10693                isFastMultiplier = true;
10694                break;
10695            }
10696          }
10697
10698          if (isFastMultiplier) {
10699            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10700            if (NeedsCondInvert) // Invert the condition if needed.
10701              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10702                                 DAG.getConstant(1, Cond.getValueType()));
10703
10704            // Zero extend the condition if needed.
10705            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10706                               Cond);
10707            // Scale the condition by the difference.
10708            if (Diff != 1)
10709              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10710                                 DAG.getConstant(Diff, Cond.getValueType()));
10711
10712            // Add the base if non-zero.
10713            if (FalseC->getAPIntValue() != 0)
10714              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10715                                 SDValue(FalseC, 0));
10716            return Cond;
10717          }
10718        }
10719      }
10720  }
10721
10722  return SDValue();
10723}
10724
10725/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10726static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10727                                  TargetLowering::DAGCombinerInfo &DCI) {
10728  DebugLoc DL = N->getDebugLoc();
10729
10730  // If the flag operand isn't dead, don't touch this CMOV.
10731  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10732    return SDValue();
10733
10734  // If this is a select between two integer constants, try to do some
10735  // optimizations.  Note that the operands are ordered the opposite of SELECT
10736  // operands.
10737  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10738    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10739      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10740      // larger than FalseC (the false value).
10741      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10742
10743      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10744        CC = X86::GetOppositeBranchCondition(CC);
10745        std::swap(TrueC, FalseC);
10746      }
10747
10748      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10749      // This is efficient for any integer data type (including i8/i16) and
10750      // shift amount.
10751      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10752        SDValue Cond = N->getOperand(3);
10753        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10754                           DAG.getConstant(CC, MVT::i8), Cond);
10755
10756        // Zero extend the condition if needed.
10757        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10758
10759        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10760        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10761                           DAG.getConstant(ShAmt, MVT::i8));
10762        if (N->getNumValues() == 2)  // Dead flag value?
10763          return DCI.CombineTo(N, Cond, SDValue());
10764        return Cond;
10765      }
10766
10767      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10768      // for any integer data type, including i8/i16.
10769      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10770        SDValue Cond = N->getOperand(3);
10771        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10772                           DAG.getConstant(CC, MVT::i8), Cond);
10773
10774        // Zero extend the condition if needed.
10775        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10776                           FalseC->getValueType(0), Cond);
10777        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10778                           SDValue(FalseC, 0));
10779
10780        if (N->getNumValues() == 2)  // Dead flag value?
10781          return DCI.CombineTo(N, Cond, SDValue());
10782        return Cond;
10783      }
10784
10785      // Optimize cases that will turn into an LEA instruction.  This requires
10786      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10787      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10788        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10789        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10790
10791        bool isFastMultiplier = false;
10792        if (Diff < 10) {
10793          switch ((unsigned char)Diff) {
10794          default: break;
10795          case 1:  // result = add base, cond
10796          case 2:  // result = lea base(    , cond*2)
10797          case 3:  // result = lea base(cond, cond*2)
10798          case 4:  // result = lea base(    , cond*4)
10799          case 5:  // result = lea base(cond, cond*4)
10800          case 8:  // result = lea base(    , cond*8)
10801          case 9:  // result = lea base(cond, cond*8)
10802            isFastMultiplier = true;
10803            break;
10804          }
10805        }
10806
10807        if (isFastMultiplier) {
10808          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10809          SDValue Cond = N->getOperand(3);
10810          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10811                             DAG.getConstant(CC, MVT::i8), Cond);
10812          // Zero extend the condition if needed.
10813          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10814                             Cond);
10815          // Scale the condition by the difference.
10816          if (Diff != 1)
10817            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10818                               DAG.getConstant(Diff, Cond.getValueType()));
10819
10820          // Add the base if non-zero.
10821          if (FalseC->getAPIntValue() != 0)
10822            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10823                               SDValue(FalseC, 0));
10824          if (N->getNumValues() == 2)  // Dead flag value?
10825            return DCI.CombineTo(N, Cond, SDValue());
10826          return Cond;
10827        }
10828      }
10829    }
10830  }
10831  return SDValue();
10832}
10833
10834
10835/// PerformMulCombine - Optimize a single multiply with constant into two
10836/// in order to implement it with two cheaper instructions, e.g.
10837/// LEA + SHL, LEA + LEA.
10838static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10839                                 TargetLowering::DAGCombinerInfo &DCI) {
10840  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10841    return SDValue();
10842
10843  EVT VT = N->getValueType(0);
10844  if (VT != MVT::i64)
10845    return SDValue();
10846
10847  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10848  if (!C)
10849    return SDValue();
10850  uint64_t MulAmt = C->getZExtValue();
10851  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10852    return SDValue();
10853
10854  uint64_t MulAmt1 = 0;
10855  uint64_t MulAmt2 = 0;
10856  if ((MulAmt % 9) == 0) {
10857    MulAmt1 = 9;
10858    MulAmt2 = MulAmt / 9;
10859  } else if ((MulAmt % 5) == 0) {
10860    MulAmt1 = 5;
10861    MulAmt2 = MulAmt / 5;
10862  } else if ((MulAmt % 3) == 0) {
10863    MulAmt1 = 3;
10864    MulAmt2 = MulAmt / 3;
10865  }
10866  if (MulAmt2 &&
10867      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10868    DebugLoc DL = N->getDebugLoc();
10869
10870    if (isPowerOf2_64(MulAmt2) &&
10871        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10872      // If second multiplifer is pow2, issue it first. We want the multiply by
10873      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10874      // is an add.
10875      std::swap(MulAmt1, MulAmt2);
10876
10877    SDValue NewMul;
10878    if (isPowerOf2_64(MulAmt1))
10879      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10880                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10881    else
10882      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10883                           DAG.getConstant(MulAmt1, VT));
10884
10885    if (isPowerOf2_64(MulAmt2))
10886      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10887                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10888    else
10889      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10890                           DAG.getConstant(MulAmt2, VT));
10891
10892    // Do not add new nodes to DAG combiner worklist.
10893    DCI.CombineTo(N, NewMul, false);
10894  }
10895  return SDValue();
10896}
10897
10898static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10899  SDValue N0 = N->getOperand(0);
10900  SDValue N1 = N->getOperand(1);
10901  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10902  EVT VT = N0.getValueType();
10903
10904  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10905  // since the result of setcc_c is all zero's or all ones.
10906  if (N1C && N0.getOpcode() == ISD::AND &&
10907      N0.getOperand(1).getOpcode() == ISD::Constant) {
10908    SDValue N00 = N0.getOperand(0);
10909    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10910        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10911          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10912         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10913      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10914      APInt ShAmt = N1C->getAPIntValue();
10915      Mask = Mask.shl(ShAmt);
10916      if (Mask != 0)
10917        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10918                           N00, DAG.getConstant(Mask, VT));
10919    }
10920  }
10921
10922  return SDValue();
10923}
10924
10925/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10926///                       when possible.
10927static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10928                                   const X86Subtarget *Subtarget) {
10929  EVT VT = N->getValueType(0);
10930  if (!VT.isVector() && VT.isInteger() &&
10931      N->getOpcode() == ISD::SHL)
10932    return PerformSHLCombine(N, DAG);
10933
10934  // On X86 with SSE2 support, we can transform this to a vector shift if
10935  // all elements are shifted by the same amount.  We can't do this in legalize
10936  // because the a constant vector is typically transformed to a constant pool
10937  // so we have no knowledge of the shift amount.
10938  if (!Subtarget->hasSSE2())
10939    return SDValue();
10940
10941  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10942    return SDValue();
10943
10944  SDValue ShAmtOp = N->getOperand(1);
10945  EVT EltVT = VT.getVectorElementType();
10946  DebugLoc DL = N->getDebugLoc();
10947  SDValue BaseShAmt = SDValue();
10948  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10949    unsigned NumElts = VT.getVectorNumElements();
10950    unsigned i = 0;
10951    for (; i != NumElts; ++i) {
10952      SDValue Arg = ShAmtOp.getOperand(i);
10953      if (Arg.getOpcode() == ISD::UNDEF) continue;
10954      BaseShAmt = Arg;
10955      break;
10956    }
10957    for (; i != NumElts; ++i) {
10958      SDValue Arg = ShAmtOp.getOperand(i);
10959      if (Arg.getOpcode() == ISD::UNDEF) continue;
10960      if (Arg != BaseShAmt) {
10961        return SDValue();
10962      }
10963    }
10964  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10965             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10966    SDValue InVec = ShAmtOp.getOperand(0);
10967    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10968      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10969      unsigned i = 0;
10970      for (; i != NumElts; ++i) {
10971        SDValue Arg = InVec.getOperand(i);
10972        if (Arg.getOpcode() == ISD::UNDEF) continue;
10973        BaseShAmt = Arg;
10974        break;
10975      }
10976    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10977       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10978         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10979         if (C->getZExtValue() == SplatIdx)
10980           BaseShAmt = InVec.getOperand(1);
10981       }
10982    }
10983    if (BaseShAmt.getNode() == 0)
10984      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10985                              DAG.getIntPtrConstant(0));
10986  } else
10987    return SDValue();
10988
10989  // The shift amount is an i32.
10990  if (EltVT.bitsGT(MVT::i32))
10991    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10992  else if (EltVT.bitsLT(MVT::i32))
10993    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10994
10995  // The shift amount is identical so we can do a vector shift.
10996  SDValue  ValOp = N->getOperand(0);
10997  switch (N->getOpcode()) {
10998  default:
10999    llvm_unreachable("Unknown shift opcode!");
11000    break;
11001  case ISD::SHL:
11002    if (VT == MVT::v2i64)
11003      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11004                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11005                         ValOp, BaseShAmt);
11006    if (VT == MVT::v4i32)
11007      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11008                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11009                         ValOp, BaseShAmt);
11010    if (VT == MVT::v8i16)
11011      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11012                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11013                         ValOp, BaseShAmt);
11014    break;
11015  case ISD::SRA:
11016    if (VT == MVT::v4i32)
11017      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11018                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11019                         ValOp, BaseShAmt);
11020    if (VT == MVT::v8i16)
11021      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11022                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11023                         ValOp, BaseShAmt);
11024    break;
11025  case ISD::SRL:
11026    if (VT == MVT::v2i64)
11027      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11028                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11029                         ValOp, BaseShAmt);
11030    if (VT == MVT::v4i32)
11031      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11032                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11033                         ValOp, BaseShAmt);
11034    if (VT ==  MVT::v8i16)
11035      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11036                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11037                         ValOp, BaseShAmt);
11038    break;
11039  }
11040  return SDValue();
11041}
11042
11043
11044static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11045                                 TargetLowering::DAGCombinerInfo &DCI,
11046                                 const X86Subtarget *Subtarget) {
11047  if (DCI.isBeforeLegalizeOps())
11048    return SDValue();
11049
11050  // Want to form PANDN nodes, in the hopes of then easily combining them with
11051  // OR and AND nodes to form PBLEND/PSIGN.
11052  EVT VT = N->getValueType(0);
11053  if (VT != MVT::v2i64)
11054    return SDValue();
11055
11056  SDValue N0 = N->getOperand(0);
11057  SDValue N1 = N->getOperand(1);
11058  DebugLoc DL = N->getDebugLoc();
11059
11060  // Check LHS for vnot
11061  if (N0.getOpcode() == ISD::XOR &&
11062      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11063    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11064
11065  // Check RHS for vnot
11066  if (N1.getOpcode() == ISD::XOR &&
11067      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11068    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11069
11070  return SDValue();
11071}
11072
11073static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11074                                TargetLowering::DAGCombinerInfo &DCI,
11075                                const X86Subtarget *Subtarget) {
11076  if (DCI.isBeforeLegalizeOps())
11077    return SDValue();
11078
11079  EVT VT = N->getValueType(0);
11080  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11081    return SDValue();
11082
11083  SDValue N0 = N->getOperand(0);
11084  SDValue N1 = N->getOperand(1);
11085
11086  // look for psign/blend
11087  if (Subtarget->hasSSSE3()) {
11088    if (VT == MVT::v2i64) {
11089      // Canonicalize pandn to RHS
11090      if (N0.getOpcode() == X86ISD::PANDN)
11091        std::swap(N0, N1);
11092      // or (and (m, x), (pandn m, y))
11093      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11094        SDValue Mask = N1.getOperand(0);
11095        SDValue X    = N1.getOperand(1);
11096        SDValue Y;
11097        if (N0.getOperand(0) == Mask)
11098          Y = N0.getOperand(1);
11099        if (N0.getOperand(1) == Mask)
11100          Y = N0.getOperand(0);
11101
11102        // Check to see if the mask appeared in both the AND and PANDN and
11103        if (!Y.getNode())
11104          return SDValue();
11105
11106        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11107        if (Mask.getOpcode() != ISD::BITCAST ||
11108            X.getOpcode() != ISD::BITCAST ||
11109            Y.getOpcode() != ISD::BITCAST)
11110          return SDValue();
11111
11112        // Look through mask bitcast.
11113        Mask = Mask.getOperand(0);
11114        EVT MaskVT = Mask.getValueType();
11115
11116        // Validate that the Mask operand is a vector sra node.  The sra node
11117        // will be an intrinsic.
11118        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11119          return SDValue();
11120
11121        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11122        // there is no psrai.b
11123        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11124        case Intrinsic::x86_sse2_psrai_w:
11125        case Intrinsic::x86_sse2_psrai_d:
11126          break;
11127        default: return SDValue();
11128        }
11129
11130        // Check that the SRA is all signbits.
11131        SDValue SraC = Mask.getOperand(2);
11132        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11133        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11134        if ((SraAmt + 1) != EltBits)
11135          return SDValue();
11136
11137        DebugLoc DL = N->getDebugLoc();
11138
11139        // Now we know we at least have a plendvb with the mask val.  See if
11140        // we can form a psignb/w/d.
11141        // psign = x.type == y.type == mask.type && y = sub(0, x);
11142        X = X.getOperand(0);
11143        Y = Y.getOperand(0);
11144        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11145            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11146            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11147          unsigned Opc = 0;
11148          switch (EltBits) {
11149          case 8: Opc = X86ISD::PSIGNB; break;
11150          case 16: Opc = X86ISD::PSIGNW; break;
11151          case 32: Opc = X86ISD::PSIGND; break;
11152          default: break;
11153          }
11154          if (Opc) {
11155            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11156            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11157          }
11158        }
11159        // PBLENDVB only available on SSE 4.1
11160        if (!Subtarget->hasSSE41())
11161          return SDValue();
11162
11163        unsigned IID = Intrinsic::x86_sse41_pblendvb;
11164        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11165        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11166        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11167        Mask = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::v16i8,
11168                           DAG.getConstant(IID, MVT::i32), X, Y, Mask);
11169        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11170      }
11171    }
11172  }
11173
11174  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11175  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11176    std::swap(N0, N1);
11177  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11178    return SDValue();
11179  if (!N0.hasOneUse() || !N1.hasOneUse())
11180    return SDValue();
11181
11182  SDValue ShAmt0 = N0.getOperand(1);
11183  if (ShAmt0.getValueType() != MVT::i8)
11184    return SDValue();
11185  SDValue ShAmt1 = N1.getOperand(1);
11186  if (ShAmt1.getValueType() != MVT::i8)
11187    return SDValue();
11188  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11189    ShAmt0 = ShAmt0.getOperand(0);
11190  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11191    ShAmt1 = ShAmt1.getOperand(0);
11192
11193  DebugLoc DL = N->getDebugLoc();
11194  unsigned Opc = X86ISD::SHLD;
11195  SDValue Op0 = N0.getOperand(0);
11196  SDValue Op1 = N1.getOperand(0);
11197  if (ShAmt0.getOpcode() == ISD::SUB) {
11198    Opc = X86ISD::SHRD;
11199    std::swap(Op0, Op1);
11200    std::swap(ShAmt0, ShAmt1);
11201  }
11202
11203  unsigned Bits = VT.getSizeInBits();
11204  if (ShAmt1.getOpcode() == ISD::SUB) {
11205    SDValue Sum = ShAmt1.getOperand(0);
11206    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11207      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11208      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11209        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11210      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11211        return DAG.getNode(Opc, DL, VT,
11212                           Op0, Op1,
11213                           DAG.getNode(ISD::TRUNCATE, DL,
11214                                       MVT::i8, ShAmt0));
11215    }
11216  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11217    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11218    if (ShAmt0C &&
11219        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11220      return DAG.getNode(Opc, DL, VT,
11221                         N0.getOperand(0), N1.getOperand(0),
11222                         DAG.getNode(ISD::TRUNCATE, DL,
11223                                       MVT::i8, ShAmt0));
11224  }
11225
11226  return SDValue();
11227}
11228
11229/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11230static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11231                                   const X86Subtarget *Subtarget) {
11232  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11233  // the FP state in cases where an emms may be missing.
11234  // A preferable solution to the general problem is to figure out the right
11235  // places to insert EMMS.  This qualifies as a quick hack.
11236
11237  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11238  StoreSDNode *St = cast<StoreSDNode>(N);
11239  EVT VT = St->getValue().getValueType();
11240  if (VT.getSizeInBits() != 64)
11241    return SDValue();
11242
11243  const Function *F = DAG.getMachineFunction().getFunction();
11244  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11245  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11246    && Subtarget->hasSSE2();
11247  if ((VT.isVector() ||
11248       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11249      isa<LoadSDNode>(St->getValue()) &&
11250      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11251      St->getChain().hasOneUse() && !St->isVolatile()) {
11252    SDNode* LdVal = St->getValue().getNode();
11253    LoadSDNode *Ld = 0;
11254    int TokenFactorIndex = -1;
11255    SmallVector<SDValue, 8> Ops;
11256    SDNode* ChainVal = St->getChain().getNode();
11257    // Must be a store of a load.  We currently handle two cases:  the load
11258    // is a direct child, and it's under an intervening TokenFactor.  It is
11259    // possible to dig deeper under nested TokenFactors.
11260    if (ChainVal == LdVal)
11261      Ld = cast<LoadSDNode>(St->getChain());
11262    else if (St->getValue().hasOneUse() &&
11263             ChainVal->getOpcode() == ISD::TokenFactor) {
11264      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11265        if (ChainVal->getOperand(i).getNode() == LdVal) {
11266          TokenFactorIndex = i;
11267          Ld = cast<LoadSDNode>(St->getValue());
11268        } else
11269          Ops.push_back(ChainVal->getOperand(i));
11270      }
11271    }
11272
11273    if (!Ld || !ISD::isNormalLoad(Ld))
11274      return SDValue();
11275
11276    // If this is not the MMX case, i.e. we are just turning i64 load/store
11277    // into f64 load/store, avoid the transformation if there are multiple
11278    // uses of the loaded value.
11279    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11280      return SDValue();
11281
11282    DebugLoc LdDL = Ld->getDebugLoc();
11283    DebugLoc StDL = N->getDebugLoc();
11284    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11285    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11286    // pair instead.
11287    if (Subtarget->is64Bit() || F64IsLegal) {
11288      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11289      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11290                                  Ld->getPointerInfo(), Ld->isVolatile(),
11291                                  Ld->isNonTemporal(), Ld->getAlignment());
11292      SDValue NewChain = NewLd.getValue(1);
11293      if (TokenFactorIndex != -1) {
11294        Ops.push_back(NewChain);
11295        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11296                               Ops.size());
11297      }
11298      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11299                          St->getPointerInfo(),
11300                          St->isVolatile(), St->isNonTemporal(),
11301                          St->getAlignment());
11302    }
11303
11304    // Otherwise, lower to two pairs of 32-bit loads / stores.
11305    SDValue LoAddr = Ld->getBasePtr();
11306    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11307                                 DAG.getConstant(4, MVT::i32));
11308
11309    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11310                               Ld->getPointerInfo(),
11311                               Ld->isVolatile(), Ld->isNonTemporal(),
11312                               Ld->getAlignment());
11313    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11314                               Ld->getPointerInfo().getWithOffset(4),
11315                               Ld->isVolatile(), Ld->isNonTemporal(),
11316                               MinAlign(Ld->getAlignment(), 4));
11317
11318    SDValue NewChain = LoLd.getValue(1);
11319    if (TokenFactorIndex != -1) {
11320      Ops.push_back(LoLd);
11321      Ops.push_back(HiLd);
11322      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11323                             Ops.size());
11324    }
11325
11326    LoAddr = St->getBasePtr();
11327    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11328                         DAG.getConstant(4, MVT::i32));
11329
11330    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11331                                St->getPointerInfo(),
11332                                St->isVolatile(), St->isNonTemporal(),
11333                                St->getAlignment());
11334    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11335                                St->getPointerInfo().getWithOffset(4),
11336                                St->isVolatile(),
11337                                St->isNonTemporal(),
11338                                MinAlign(St->getAlignment(), 4));
11339    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11340  }
11341  return SDValue();
11342}
11343
11344/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11345/// X86ISD::FXOR nodes.
11346static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11347  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11348  // F[X]OR(0.0, x) -> x
11349  // F[X]OR(x, 0.0) -> x
11350  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11351    if (C->getValueAPF().isPosZero())
11352      return N->getOperand(1);
11353  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11354    if (C->getValueAPF().isPosZero())
11355      return N->getOperand(0);
11356  return SDValue();
11357}
11358
11359/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11360static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11361  // FAND(0.0, x) -> 0.0
11362  // FAND(x, 0.0) -> 0.0
11363  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11364    if (C->getValueAPF().isPosZero())
11365      return N->getOperand(0);
11366  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11367    if (C->getValueAPF().isPosZero())
11368      return N->getOperand(1);
11369  return SDValue();
11370}
11371
11372static SDValue PerformBTCombine(SDNode *N,
11373                                SelectionDAG &DAG,
11374                                TargetLowering::DAGCombinerInfo &DCI) {
11375  // BT ignores high bits in the bit index operand.
11376  SDValue Op1 = N->getOperand(1);
11377  if (Op1.hasOneUse()) {
11378    unsigned BitWidth = Op1.getValueSizeInBits();
11379    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11380    APInt KnownZero, KnownOne;
11381    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11382                                          !DCI.isBeforeLegalizeOps());
11383    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11384    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11385        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11386      DCI.CommitTargetLoweringOpt(TLO);
11387  }
11388  return SDValue();
11389}
11390
11391static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11392  SDValue Op = N->getOperand(0);
11393  if (Op.getOpcode() == ISD::BITCAST)
11394    Op = Op.getOperand(0);
11395  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11396  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11397      VT.getVectorElementType().getSizeInBits() ==
11398      OpVT.getVectorElementType().getSizeInBits()) {
11399    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11400  }
11401  return SDValue();
11402}
11403
11404static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11405  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11406  //           (and (i32 x86isd::setcc_carry), 1)
11407  // This eliminates the zext. This transformation is necessary because
11408  // ISD::SETCC is always legalized to i8.
11409  DebugLoc dl = N->getDebugLoc();
11410  SDValue N0 = N->getOperand(0);
11411  EVT VT = N->getValueType(0);
11412  if (N0.getOpcode() == ISD::AND &&
11413      N0.hasOneUse() &&
11414      N0.getOperand(0).hasOneUse()) {
11415    SDValue N00 = N0.getOperand(0);
11416    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11417      return SDValue();
11418    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11419    if (!C || C->getZExtValue() != 1)
11420      return SDValue();
11421    return DAG.getNode(ISD::AND, dl, VT,
11422                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11423                                   N00.getOperand(0), N00.getOperand(1)),
11424                       DAG.getConstant(1, VT));
11425  }
11426
11427  return SDValue();
11428}
11429
11430// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
11431static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
11432  unsigned X86CC = N->getConstantOperandVal(0);
11433  SDValue EFLAG = N->getOperand(1);
11434  DebugLoc DL = N->getDebugLoc();
11435
11436  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
11437  // a zext and produces an all-ones bit which is more useful than 0/1 in some
11438  // cases.
11439  if (X86CC == X86::COND_B)
11440    return DAG.getNode(ISD::AND, DL, MVT::i8,
11441                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
11442                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
11443                       DAG.getConstant(1, MVT::i8));
11444
11445  return SDValue();
11446}
11447
11448SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11449                                             DAGCombinerInfo &DCI) const {
11450  SelectionDAG &DAG = DCI.DAG;
11451  switch (N->getOpcode()) {
11452  default: break;
11453  case ISD::EXTRACT_VECTOR_ELT:
11454    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11455  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
11456  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
11457  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
11458  case ISD::SHL:
11459  case ISD::SRA:
11460  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
11461  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
11462  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
11463  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
11464  case X86ISD::FXOR:
11465  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
11466  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
11467  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
11468  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
11469  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
11470  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
11471  case X86ISD::SHUFPS:      // Handle all target specific shuffles
11472  case X86ISD::SHUFPD:
11473  case X86ISD::PALIGN:
11474  case X86ISD::PUNPCKHBW:
11475  case X86ISD::PUNPCKHWD:
11476  case X86ISD::PUNPCKHDQ:
11477  case X86ISD::PUNPCKHQDQ:
11478  case X86ISD::UNPCKHPS:
11479  case X86ISD::UNPCKHPD:
11480  case X86ISD::PUNPCKLBW:
11481  case X86ISD::PUNPCKLWD:
11482  case X86ISD::PUNPCKLDQ:
11483  case X86ISD::PUNPCKLQDQ:
11484  case X86ISD::UNPCKLPS:
11485  case X86ISD::UNPCKLPD:
11486  case X86ISD::MOVHLPS:
11487  case X86ISD::MOVLHPS:
11488  case X86ISD::PSHUFD:
11489  case X86ISD::PSHUFHW:
11490  case X86ISD::PSHUFLW:
11491  case X86ISD::MOVSS:
11492  case X86ISD::MOVSD:
11493  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
11494  }
11495
11496  return SDValue();
11497}
11498
11499/// isTypeDesirableForOp - Return true if the target has native support for
11500/// the specified value type and it is 'desirable' to use the type for the
11501/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11502/// instruction encodings are longer and some i16 instructions are slow.
11503bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11504  if (!isTypeLegal(VT))
11505    return false;
11506  if (VT != MVT::i16)
11507    return true;
11508
11509  switch (Opc) {
11510  default:
11511    return true;
11512  case ISD::LOAD:
11513  case ISD::SIGN_EXTEND:
11514  case ISD::ZERO_EXTEND:
11515  case ISD::ANY_EXTEND:
11516  case ISD::SHL:
11517  case ISD::SRL:
11518  case ISD::SUB:
11519  case ISD::ADD:
11520  case ISD::MUL:
11521  case ISD::AND:
11522  case ISD::OR:
11523  case ISD::XOR:
11524    return false;
11525  }
11526}
11527
11528/// IsDesirableToPromoteOp - This method query the target whether it is
11529/// beneficial for dag combiner to promote the specified node. If true, it
11530/// should return the desired promotion type by reference.
11531bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11532  EVT VT = Op.getValueType();
11533  if (VT != MVT::i16)
11534    return false;
11535
11536  bool Promote = false;
11537  bool Commute = false;
11538  switch (Op.getOpcode()) {
11539  default: break;
11540  case ISD::LOAD: {
11541    LoadSDNode *LD = cast<LoadSDNode>(Op);
11542    // If the non-extending load has a single use and it's not live out, then it
11543    // might be folded.
11544    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11545                                                     Op.hasOneUse()*/) {
11546      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11547             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11548        // The only case where we'd want to promote LOAD (rather then it being
11549        // promoted as an operand is when it's only use is liveout.
11550        if (UI->getOpcode() != ISD::CopyToReg)
11551          return false;
11552      }
11553    }
11554    Promote = true;
11555    break;
11556  }
11557  case ISD::SIGN_EXTEND:
11558  case ISD::ZERO_EXTEND:
11559  case ISD::ANY_EXTEND:
11560    Promote = true;
11561    break;
11562  case ISD::SHL:
11563  case ISD::SRL: {
11564    SDValue N0 = Op.getOperand(0);
11565    // Look out for (store (shl (load), x)).
11566    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11567      return false;
11568    Promote = true;
11569    break;
11570  }
11571  case ISD::ADD:
11572  case ISD::MUL:
11573  case ISD::AND:
11574  case ISD::OR:
11575  case ISD::XOR:
11576    Commute = true;
11577    // fallthrough
11578  case ISD::SUB: {
11579    SDValue N0 = Op.getOperand(0);
11580    SDValue N1 = Op.getOperand(1);
11581    if (!Commute && MayFoldLoad(N1))
11582      return false;
11583    // Avoid disabling potential load folding opportunities.
11584    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11585      return false;
11586    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11587      return false;
11588    Promote = true;
11589  }
11590  }
11591
11592  PVT = MVT::i32;
11593  return Promote;
11594}
11595
11596//===----------------------------------------------------------------------===//
11597//                           X86 Inline Assembly Support
11598//===----------------------------------------------------------------------===//
11599
11600static bool LowerToBSwap(CallInst *CI) {
11601  // FIXME: this should verify that we are targetting a 486 or better.  If not,
11602  // we will turn this bswap into something that will be lowered to logical ops
11603  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
11604  // so don't worry about this.
11605
11606  // Verify this is a simple bswap.
11607  if (CI->getNumArgOperands() != 1 ||
11608      CI->getType() != CI->getArgOperand(0)->getType() ||
11609      !CI->getType()->isIntegerTy())
11610    return false;
11611
11612  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11613  if (!Ty || Ty->getBitWidth() % 16 != 0)
11614    return false;
11615
11616  // Okay, we can do this xform, do so now.
11617  const Type *Tys[] = { Ty };
11618  Module *M = CI->getParent()->getParent()->getParent();
11619  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11620
11621  Value *Op = CI->getArgOperand(0);
11622  Op = CallInst::Create(Int, Op, CI->getName(), CI);
11623
11624  CI->replaceAllUsesWith(Op);
11625  CI->eraseFromParent();
11626  return true;
11627}
11628
11629bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11630  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11631  InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
11632
11633  std::string AsmStr = IA->getAsmString();
11634
11635  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11636  SmallVector<StringRef, 4> AsmPieces;
11637  SplitString(AsmStr, AsmPieces, ";\n");
11638
11639  switch (AsmPieces.size()) {
11640  default: return false;
11641  case 1:
11642    AsmStr = AsmPieces[0];
11643    AsmPieces.clear();
11644    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
11645
11646    // bswap $0
11647    if (AsmPieces.size() == 2 &&
11648        (AsmPieces[0] == "bswap" ||
11649         AsmPieces[0] == "bswapq" ||
11650         AsmPieces[0] == "bswapl") &&
11651        (AsmPieces[1] == "$0" ||
11652         AsmPieces[1] == "${0:q}")) {
11653      // No need to check constraints, nothing other than the equivalent of
11654      // "=r,0" would be valid here.
11655      return LowerToBSwap(CI);
11656    }
11657    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
11658    if (CI->getType()->isIntegerTy(16) &&
11659        AsmPieces.size() == 3 &&
11660        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11661        AsmPieces[1] == "$$8," &&
11662        AsmPieces[2] == "${0:w}" &&
11663        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11664      AsmPieces.clear();
11665      const std::string &Constraints = IA->getConstraintString();
11666      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11667      std::sort(AsmPieces.begin(), AsmPieces.end());
11668      if (AsmPieces.size() == 4 &&
11669          AsmPieces[0] == "~{cc}" &&
11670          AsmPieces[1] == "~{dirflag}" &&
11671          AsmPieces[2] == "~{flags}" &&
11672          AsmPieces[3] == "~{fpsr}") {
11673        return LowerToBSwap(CI);
11674      }
11675    }
11676    break;
11677  case 3:
11678    if (CI->getType()->isIntegerTy(32) &&
11679        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11680      SmallVector<StringRef, 4> Words;
11681      SplitString(AsmPieces[0], Words, " \t,");
11682      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11683          Words[2] == "${0:w}") {
11684        Words.clear();
11685        SplitString(AsmPieces[1], Words, " \t,");
11686        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
11687            Words[2] == "$0") {
11688          Words.clear();
11689          SplitString(AsmPieces[2], Words, " \t,");
11690          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11691              Words[2] == "${0:w}") {
11692            AsmPieces.clear();
11693            const std::string &Constraints = IA->getConstraintString();
11694            SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11695            std::sort(AsmPieces.begin(), AsmPieces.end());
11696            if (AsmPieces.size() == 4 &&
11697                AsmPieces[0] == "~{cc}" &&
11698                AsmPieces[1] == "~{dirflag}" &&
11699                AsmPieces[2] == "~{flags}" &&
11700                AsmPieces[3] == "~{fpsr}") {
11701              return LowerToBSwap(CI);
11702            }
11703          }
11704        }
11705      }
11706    }
11707    if (CI->getType()->isIntegerTy(64) &&
11708        Constraints.size() >= 2 &&
11709        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11710        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11711      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11712      SmallVector<StringRef, 4> Words;
11713      SplitString(AsmPieces[0], Words, " \t");
11714      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11715        Words.clear();
11716        SplitString(AsmPieces[1], Words, " \t");
11717        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11718          Words.clear();
11719          SplitString(AsmPieces[2], Words, " \t,");
11720          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11721              Words[2] == "%edx") {
11722            return LowerToBSwap(CI);
11723          }
11724        }
11725      }
11726    }
11727    break;
11728  }
11729  return false;
11730}
11731
11732
11733
11734/// getConstraintType - Given a constraint letter, return the type of
11735/// constraint it is for this target.
11736X86TargetLowering::ConstraintType
11737X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11738  if (Constraint.size() == 1) {
11739    switch (Constraint[0]) {
11740    case 'R':
11741    case 'q':
11742    case 'Q':
11743    case 'f':
11744    case 't':
11745    case 'u':
11746    case 'y':
11747    case 'x':
11748    case 'Y':
11749      return C_RegisterClass;
11750    case 'a':
11751    case 'b':
11752    case 'c':
11753    case 'd':
11754    case 'S':
11755    case 'D':
11756    case 'A':
11757      return C_Register;
11758    case 'I':
11759    case 'J':
11760    case 'K':
11761    case 'L':
11762    case 'M':
11763    case 'N':
11764    case 'G':
11765    case 'C':
11766    case 'e':
11767    case 'Z':
11768      return C_Other;
11769    default:
11770      break;
11771    }
11772  }
11773  return TargetLowering::getConstraintType(Constraint);
11774}
11775
11776/// Examine constraint type and operand type and determine a weight value.
11777/// This object must already have been set up with the operand type
11778/// and the current alternative constraint selected.
11779TargetLowering::ConstraintWeight
11780  X86TargetLowering::getSingleConstraintMatchWeight(
11781    AsmOperandInfo &info, const char *constraint) const {
11782  ConstraintWeight weight = CW_Invalid;
11783  Value *CallOperandVal = info.CallOperandVal;
11784    // If we don't have a value, we can't do a match,
11785    // but allow it at the lowest weight.
11786  if (CallOperandVal == NULL)
11787    return CW_Default;
11788  const Type *type = CallOperandVal->getType();
11789  // Look at the constraint type.
11790  switch (*constraint) {
11791  default:
11792    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11793  case 'R':
11794  case 'q':
11795  case 'Q':
11796  case 'a':
11797  case 'b':
11798  case 'c':
11799  case 'd':
11800  case 'S':
11801  case 'D':
11802  case 'A':
11803    if (CallOperandVal->getType()->isIntegerTy())
11804      weight = CW_SpecificReg;
11805    break;
11806  case 'f':
11807  case 't':
11808  case 'u':
11809      if (type->isFloatingPointTy())
11810        weight = CW_SpecificReg;
11811      break;
11812  case 'y':
11813      if (type->isX86_MMXTy() && Subtarget->hasMMX())
11814        weight = CW_SpecificReg;
11815      break;
11816  case 'x':
11817  case 'Y':
11818    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
11819      weight = CW_Register;
11820    break;
11821  case 'I':
11822    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11823      if (C->getZExtValue() <= 31)
11824        weight = CW_Constant;
11825    }
11826    break;
11827  case 'J':
11828    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11829      if (C->getZExtValue() <= 63)
11830        weight = CW_Constant;
11831    }
11832    break;
11833  case 'K':
11834    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11835      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
11836        weight = CW_Constant;
11837    }
11838    break;
11839  case 'L':
11840    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11841      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
11842        weight = CW_Constant;
11843    }
11844    break;
11845  case 'M':
11846    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11847      if (C->getZExtValue() <= 3)
11848        weight = CW_Constant;
11849    }
11850    break;
11851  case 'N':
11852    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11853      if (C->getZExtValue() <= 0xff)
11854        weight = CW_Constant;
11855    }
11856    break;
11857  case 'G':
11858  case 'C':
11859    if (dyn_cast<ConstantFP>(CallOperandVal)) {
11860      weight = CW_Constant;
11861    }
11862    break;
11863  case 'e':
11864    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11865      if ((C->getSExtValue() >= -0x80000000LL) &&
11866          (C->getSExtValue() <= 0x7fffffffLL))
11867        weight = CW_Constant;
11868    }
11869    break;
11870  case 'Z':
11871    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11872      if (C->getZExtValue() <= 0xffffffff)
11873        weight = CW_Constant;
11874    }
11875    break;
11876  }
11877  return weight;
11878}
11879
11880/// LowerXConstraint - try to replace an X constraint, which matches anything,
11881/// with another that has more specific requirements based on the type of the
11882/// corresponding operand.
11883const char *X86TargetLowering::
11884LowerXConstraint(EVT ConstraintVT) const {
11885  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11886  // 'f' like normal targets.
11887  if (ConstraintVT.isFloatingPoint()) {
11888    if (Subtarget->hasXMMInt())
11889      return "Y";
11890    if (Subtarget->hasXMM())
11891      return "x";
11892  }
11893
11894  return TargetLowering::LowerXConstraint(ConstraintVT);
11895}
11896
11897/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11898/// vector.  If it is invalid, don't add anything to Ops.
11899void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11900                                                     char Constraint,
11901                                                     std::vector<SDValue>&Ops,
11902                                                     SelectionDAG &DAG) const {
11903  SDValue Result(0, 0);
11904
11905  switch (Constraint) {
11906  default: break;
11907  case 'I':
11908    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11909      if (C->getZExtValue() <= 31) {
11910        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11911        break;
11912      }
11913    }
11914    return;
11915  case 'J':
11916    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11917      if (C->getZExtValue() <= 63) {
11918        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11919        break;
11920      }
11921    }
11922    return;
11923  case 'K':
11924    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11925      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11926        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11927        break;
11928      }
11929    }
11930    return;
11931  case 'N':
11932    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11933      if (C->getZExtValue() <= 255) {
11934        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11935        break;
11936      }
11937    }
11938    return;
11939  case 'e': {
11940    // 32-bit signed value
11941    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11942      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11943                                           C->getSExtValue())) {
11944        // Widen to 64 bits here to get it sign extended.
11945        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11946        break;
11947      }
11948    // FIXME gcc accepts some relocatable values here too, but only in certain
11949    // memory models; it's complicated.
11950    }
11951    return;
11952  }
11953  case 'Z': {
11954    // 32-bit unsigned value
11955    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11956      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11957                                           C->getZExtValue())) {
11958        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11959        break;
11960      }
11961    }
11962    // FIXME gcc accepts some relocatable values here too, but only in certain
11963    // memory models; it's complicated.
11964    return;
11965  }
11966  case 'i': {
11967    // Literal immediates are always ok.
11968    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11969      // Widen to 64 bits here to get it sign extended.
11970      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11971      break;
11972    }
11973
11974    // In any sort of PIC mode addresses need to be computed at runtime by
11975    // adding in a register or some sort of table lookup.  These can't
11976    // be used as immediates.
11977    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11978      return;
11979
11980    // If we are in non-pic codegen mode, we allow the address of a global (with
11981    // an optional displacement) to be used with 'i'.
11982    GlobalAddressSDNode *GA = 0;
11983    int64_t Offset = 0;
11984
11985    // Match either (GA), (GA+C), (GA+C1+C2), etc.
11986    while (1) {
11987      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11988        Offset += GA->getOffset();
11989        break;
11990      } else if (Op.getOpcode() == ISD::ADD) {
11991        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11992          Offset += C->getZExtValue();
11993          Op = Op.getOperand(0);
11994          continue;
11995        }
11996      } else if (Op.getOpcode() == ISD::SUB) {
11997        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11998          Offset += -C->getZExtValue();
11999          Op = Op.getOperand(0);
12000          continue;
12001        }
12002      }
12003
12004      // Otherwise, this isn't something we can handle, reject it.
12005      return;
12006    }
12007
12008    const GlobalValue *GV = GA->getGlobal();
12009    // If we require an extra load to get this address, as in PIC mode, we
12010    // can't accept it.
12011    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12012                                                        getTargetMachine())))
12013      return;
12014
12015    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12016                                        GA->getValueType(0), Offset);
12017    break;
12018  }
12019  }
12020
12021  if (Result.getNode()) {
12022    Ops.push_back(Result);
12023    return;
12024  }
12025  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12026}
12027
12028std::vector<unsigned> X86TargetLowering::
12029getRegClassForInlineAsmConstraint(const std::string &Constraint,
12030                                  EVT VT) const {
12031  if (Constraint.size() == 1) {
12032    // FIXME: not handling fp-stack yet!
12033    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12034    default: break;  // Unknown constraint letter
12035    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12036      if (Subtarget->is64Bit()) {
12037        if (VT == MVT::i32)
12038          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12039                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12040                                       X86::R10D,X86::R11D,X86::R12D,
12041                                       X86::R13D,X86::R14D,X86::R15D,
12042                                       X86::EBP, X86::ESP, 0);
12043        else if (VT == MVT::i16)
12044          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12045                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12046                                       X86::R10W,X86::R11W,X86::R12W,
12047                                       X86::R13W,X86::R14W,X86::R15W,
12048                                       X86::BP,  X86::SP, 0);
12049        else if (VT == MVT::i8)
12050          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12051                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12052                                       X86::R10B,X86::R11B,X86::R12B,
12053                                       X86::R13B,X86::R14B,X86::R15B,
12054                                       X86::BPL, X86::SPL, 0);
12055
12056        else if (VT == MVT::i64)
12057          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12058                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12059                                       X86::R10, X86::R11, X86::R12,
12060                                       X86::R13, X86::R14, X86::R15,
12061                                       X86::RBP, X86::RSP, 0);
12062
12063        break;
12064      }
12065      // 32-bit fallthrough
12066    case 'Q':   // Q_REGS
12067      if (VT == MVT::i32)
12068        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12069      else if (VT == MVT::i16)
12070        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12071      else if (VT == MVT::i8)
12072        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12073      else if (VT == MVT::i64)
12074        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12075      break;
12076    }
12077  }
12078
12079  return std::vector<unsigned>();
12080}
12081
12082std::pair<unsigned, const TargetRegisterClass*>
12083X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12084                                                EVT VT) const {
12085  // First, see if this is a constraint that directly corresponds to an LLVM
12086  // register class.
12087  if (Constraint.size() == 1) {
12088    // GCC Constraint Letters
12089    switch (Constraint[0]) {
12090    default: break;
12091    case 'r':   // GENERAL_REGS
12092    case 'l':   // INDEX_REGS
12093      if (VT == MVT::i8)
12094        return std::make_pair(0U, X86::GR8RegisterClass);
12095      if (VT == MVT::i16)
12096        return std::make_pair(0U, X86::GR16RegisterClass);
12097      if (VT == MVT::i32 || !Subtarget->is64Bit())
12098        return std::make_pair(0U, X86::GR32RegisterClass);
12099      return std::make_pair(0U, X86::GR64RegisterClass);
12100    case 'R':   // LEGACY_REGS
12101      if (VT == MVT::i8)
12102        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12103      if (VT == MVT::i16)
12104        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12105      if (VT == MVT::i32 || !Subtarget->is64Bit())
12106        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12107      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12108    case 'f':  // FP Stack registers.
12109      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12110      // value to the correct fpstack register class.
12111      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12112        return std::make_pair(0U, X86::RFP32RegisterClass);
12113      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12114        return std::make_pair(0U, X86::RFP64RegisterClass);
12115      return std::make_pair(0U, X86::RFP80RegisterClass);
12116    case 'y':   // MMX_REGS if MMX allowed.
12117      if (!Subtarget->hasMMX()) break;
12118      return std::make_pair(0U, X86::VR64RegisterClass);
12119    case 'Y':   // SSE_REGS if SSE2 allowed
12120      if (!Subtarget->hasXMMInt()) break;
12121      // FALL THROUGH.
12122    case 'x':   // SSE_REGS if SSE1 allowed
12123      if (!Subtarget->hasXMM()) break;
12124
12125      switch (VT.getSimpleVT().SimpleTy) {
12126      default: break;
12127      // Scalar SSE types.
12128      case MVT::f32:
12129      case MVT::i32:
12130        return std::make_pair(0U, X86::FR32RegisterClass);
12131      case MVT::f64:
12132      case MVT::i64:
12133        return std::make_pair(0U, X86::FR64RegisterClass);
12134      // Vector types.
12135      case MVT::v16i8:
12136      case MVT::v8i16:
12137      case MVT::v4i32:
12138      case MVT::v2i64:
12139      case MVT::v4f32:
12140      case MVT::v2f64:
12141        return std::make_pair(0U, X86::VR128RegisterClass);
12142      }
12143      break;
12144    }
12145  }
12146
12147  // Use the default implementation in TargetLowering to convert the register
12148  // constraint into a member of a register class.
12149  std::pair<unsigned, const TargetRegisterClass*> Res;
12150  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12151
12152  // Not found as a standard register?
12153  if (Res.second == 0) {
12154    // Map st(0) -> st(7) -> ST0
12155    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12156        tolower(Constraint[1]) == 's' &&
12157        tolower(Constraint[2]) == 't' &&
12158        Constraint[3] == '(' &&
12159        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12160        Constraint[5] == ')' &&
12161        Constraint[6] == '}') {
12162
12163      Res.first = X86::ST0+Constraint[4]-'0';
12164      Res.second = X86::RFP80RegisterClass;
12165      return Res;
12166    }
12167
12168    // GCC allows "st(0)" to be called just plain "st".
12169    if (StringRef("{st}").equals_lower(Constraint)) {
12170      Res.first = X86::ST0;
12171      Res.second = X86::RFP80RegisterClass;
12172      return Res;
12173    }
12174
12175    // flags -> EFLAGS
12176    if (StringRef("{flags}").equals_lower(Constraint)) {
12177      Res.first = X86::EFLAGS;
12178      Res.second = X86::CCRRegisterClass;
12179      return Res;
12180    }
12181
12182    // 'A' means EAX + EDX.
12183    if (Constraint == "A") {
12184      Res.first = X86::EAX;
12185      Res.second = X86::GR32_ADRegisterClass;
12186      return Res;
12187    }
12188    return Res;
12189  }
12190
12191  // Otherwise, check to see if this is a register class of the wrong value
12192  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12193  // turn into {ax},{dx}.
12194  if (Res.second->hasType(VT))
12195    return Res;   // Correct type already, nothing to do.
12196
12197  // All of the single-register GCC register classes map their values onto
12198  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12199  // really want an 8-bit or 32-bit register, map to the appropriate register
12200  // class and return the appropriate register.
12201  if (Res.second == X86::GR16RegisterClass) {
12202    if (VT == MVT::i8) {
12203      unsigned DestReg = 0;
12204      switch (Res.first) {
12205      default: break;
12206      case X86::AX: DestReg = X86::AL; break;
12207      case X86::DX: DestReg = X86::DL; break;
12208      case X86::CX: DestReg = X86::CL; break;
12209      case X86::BX: DestReg = X86::BL; break;
12210      }
12211      if (DestReg) {
12212        Res.first = DestReg;
12213        Res.second = X86::GR8RegisterClass;
12214      }
12215    } else if (VT == MVT::i32) {
12216      unsigned DestReg = 0;
12217      switch (Res.first) {
12218      default: break;
12219      case X86::AX: DestReg = X86::EAX; break;
12220      case X86::DX: DestReg = X86::EDX; break;
12221      case X86::CX: DestReg = X86::ECX; break;
12222      case X86::BX: DestReg = X86::EBX; break;
12223      case X86::SI: DestReg = X86::ESI; break;
12224      case X86::DI: DestReg = X86::EDI; break;
12225      case X86::BP: DestReg = X86::EBP; break;
12226      case X86::SP: DestReg = X86::ESP; break;
12227      }
12228      if (DestReg) {
12229        Res.first = DestReg;
12230        Res.second = X86::GR32RegisterClass;
12231      }
12232    } else if (VT == MVT::i64) {
12233      unsigned DestReg = 0;
12234      switch (Res.first) {
12235      default: break;
12236      case X86::AX: DestReg = X86::RAX; break;
12237      case X86::DX: DestReg = X86::RDX; break;
12238      case X86::CX: DestReg = X86::RCX; break;
12239      case X86::BX: DestReg = X86::RBX; break;
12240      case X86::SI: DestReg = X86::RSI; break;
12241      case X86::DI: DestReg = X86::RDI; break;
12242      case X86::BP: DestReg = X86::RBP; break;
12243      case X86::SP: DestReg = X86::RSP; break;
12244      }
12245      if (DestReg) {
12246        Res.first = DestReg;
12247        Res.second = X86::GR64RegisterClass;
12248      }
12249    }
12250  } else if (Res.second == X86::FR32RegisterClass ||
12251             Res.second == X86::FR64RegisterClass ||
12252             Res.second == X86::VR128RegisterClass) {
12253    // Handle references to XMM physical registers that got mapped into the
12254    // wrong class.  This can happen with constraints like {xmm0} where the
12255    // target independent register mapper will just pick the first match it can
12256    // find, ignoring the required type.
12257    if (VT == MVT::f32)
12258      Res.second = X86::FR32RegisterClass;
12259    else if (VT == MVT::f64)
12260      Res.second = X86::FR64RegisterClass;
12261    else if (X86::VR128RegisterClass->hasType(VT))
12262      Res.second = X86::VR128RegisterClass;
12263  }
12264
12265  return Res;
12266}
12267